Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PERFORMING A TEST RUN ON A TEST STAND
Document Type and Number:
WIPO Patent Application WO/2020/118331
Kind Code:
A1
Abstract:
The aim of the invention is to reduce the deviation (x) of a comparison simulation value from a comparison reference value (ref) in the performance of a test run on a test stand (1) with a test object (2), in which test run a number of simulation values (sim) is simulated by a simulation unit (4) by means of a number of specified reference values (ref). This aim is achieved, according to the invention, in that a corrected reference value (ref') is determined, starting from a selected reference value (ref) from the number of reference values, the corrected reference value (ref') is specified to the simulation unit (4), instead of the selected reference value (ref), for the simulation of a corrected simulation value (sim'), and the at least one target value (T) is determined using the corrected simulation value (sim').

Inventors:
KURAL EMRE (AT)
FLECK ANDREAS (AT)
Application Number:
PCT/AT2019/060423
Publication Date:
June 18, 2020
Filing Date:
December 09, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AVL LIST GMBH (AT)
International Classes:
G05B19/19; G01M15/02; G01M17/00
Foreign References:
US20110066291A12011-03-17
Other References:
KUPERMAN A ED - KARATZA HELEN ET AL: "Testing motion controllers robustness by emulating electrical and mechanical parameter variations of motor drives", SIMULATION MODELLING PRACTICE AND THEORY, ELSEVIER, AMSTERDAM, NL, vol. 19, no. 9, 20 April 2011 (2011-04-20), pages 1783 - 1794, XP028251957, ISSN: 1569-190X, [retrieved on 20110429], DOI: 10.1016/J.SIMPAT.2011.04.011
DANIEL COLLINS: "How are servo system velocity control loops tuned?", 6 June 2017 (2017-06-06), XP055672868, Retrieved from the Internet [retrieved on 20200302]
Attorney, Agent or Firm:
PATENTANWÄLTE PINTER & WEISS OG (AT)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zum Durchführen eines Prüflaufs auf einem Prüfstand (1) mit einem Prüfling (2) wobei einer Simulationseinheit (4) von einer Referenzeinheit (5) eine Anzahl

Referenzwerte (ref) vorgegeben wird, wobei durch die Simulationseinheit (4) unter

Verwendung der Anzahl Referenzwerte (ref) eine Anzahl Simulationswerte (sim) simuliert wird, wobei aus der Anzahl Simulationswerte (sim) zumindest eine Sollgröße (T) und weiter zumindest eine Steuergröße zum Steuern des Prüflings (2) ermittelt wird, dadurch gekennzeichnet, dass von einer Detektionseinheit (7) eine Abweichung (x) eines

Vergleichssimulationswerts aus der Anzahl Simulationswerte (sim) von einem

Vergleichsreferenzwert aus der Anzahl Referenzwerte (ref), vorzugsweise um eine Toleranz, festgestellt wird, dass bei einer festgestellten Abweichung (x) von einer Korrektureinheit (8) ausgehend von einem ausgewählten Referenzwert (ref) aus der Anzahl Referenzwerte ein korrigierter Referenzwert (ref) ermittelt wird, dass der Simulationseinheit (4) statt dem ausgewählten Referenzwert (ref) der korrigierte Referenzwert (ref) zur Simulation eines korrigierten Simulationswerts (sim‘) vorgegeben wird, wodurch die Abweichung (x) reduziert wird, und dass die zumindest eine Sollgröße (T) unter Verwendung des korrigierten

Simulationswerts (sim‘) ermittelt wird.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest eine weitere Sollgröße (n) für zumindest eine mit dem Prüfling (2) verbundene Belastungsmaschine (3) unter Verwendung des zumindest einen korrigierten Simulationswerts (sim‘) ermittelt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der korrigierte Referenzwert (ref) kontinuierlich erhöht oder verringert wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der korrigierte Referenzwert (ref) erhöht oder verringert wird, bis keine Abweichung (x) mehr auftritt.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verfahren zu Beginn des Prüflaufs gestartet wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Verfahren während dem gesamten Prüflaufs durchgeführt wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Anzahl Referenzwerte (ref) eine Referenzposition (s_ref) zu einer Referenzzeit (t_ref) und eine Referenzgeschwindigkeit (v_ref) zur Referenzzeit (t_ref) umfasst, dass die von der Simulationseinheit (4) simulierte Anzahl Simulationswerte (sim) eine Simulationsgeschwindigkeit (v_sim) zu einer Simulationszeit (t_si ) und eine Simulationsposition (s_sim) zur Simulationszeit (t_ref) umfasst.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Simulationsposition (s_sim) als Vergleichssimulationswert dient, die Referenzposition (s_ref) als

Vergleichsreferenzwert dient und die Referenzgeschwindigkeit (v_ref) als ausgewählter Referenzwert (ref) dient.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Simulationseinheit (4) eine korrigierte Referenzgeschwindigkeit (v_ref‘), die geringer als die

Referenzgeschwindigkeit (v_ref) ist, vorgegeben wird, wenn die Simulationsposition (s_sim) größer als die Referenzposition (s_ref) ist und die Simulations-Geschwindigkeit (v_sim) eine Geschwindigkeitsschwelle, vorzugsweise Null, überschreitet.

10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Simulationseinheit (4) eine korrigierte Referenzgeschwindigkeit (v_ref‘), die größer als die

Referenzgeschwindigkeit (v_ref) ist, vorgegeben wird, wenn die Simulationsposition (s_sim) kleiner als die Referenzposition (s_ref) ist und die Simulations-Geschwindigkeit (v_sim) eine Geschwindigkeitsschwelle, vorzugsweise Null, überschreitet.

11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die

Simulationszeit (t_sim) auf eine korrigierte Simulationszeit (t_sim‘) verändert wird, wenn sie von der Referenzzeit (t_ref) abweicht und die Simulationsgeschwindigkeit (v_sim) die Geschwindigkeitsschwelle, vorzugsweise Null, nicht überschreitet.

12. Prüfstand (1) mit einem Prüfling (2) zum Durchführen eines Prüflaufs, wobei eine Referenzeinheit (5) vorgesehen ist, die einer Simulationseinheit (4) eine Anzahl

Referenzwerte (ref) vorgibt, wobei die Simulationseinheit (4) ausgestaltet ist unter

Verwendung der Anzahl Referenzwerte (ref) eine Anzahl Simulationswerte (sim) zu simulieren und aus der Anzahl Simulationswerte (sim) zumindest eine Sollgröße (T) zu ermitteln und an eine Steuereinheit (ECU) zu übermitteln, wobei die Steuereinheit (ECU) ausgestaltet ist basierend auf der zumindest einen Sollgröße (T) zumindest eine

Steuergröße zum Steuern des Prüflings (2) vorzugeben, dadurch gekennzeichnet, dass eine Detektionseinheit (7) vorgesehen ist, die ausgestaltet ist eine Abweichung (x) eines Vergleichssimulationswerts (sim) aus der Anzahl Simulationswerte (sim) von einem

Vergleichsreferenzwert aus der Anzahl Referenzwerte (ref), vorzugsweise um eine Toleranz, festzustellen, und dass eine Korrektureinheit (8) vorgesehen ist, die ausgestaltet ist bei einer festgestellten Abweichung (x) ausgehend von einem ausgewählten Referenzwert (ref) aus der Anzahl Referenzwerte einen korrigierten Referenzwert (ref) zu ermitteln und der Simulationseinheit (4) statt dem ausgewählten Referenzwert (ref) zur Simulation eines korrigierten Simulationswerts (sim‘) vorzugeben, wodurch die Abweichung (x) reduziert und die zumindest eine Sollgröße (T) unter Verwendung des korrigierten Simulationswert (sim‘) ermittelt wird.

Description:
Verfahren zum Durchführen eines Prüflaufs auf einem Prüfstand

Die gegenständliche Erfindung betrifft ein Verfahren zum Durchführen eines Prüflaufs auf einem Prüfstand mit einem Prüfling wobei einer Simulationseinheit von einer Referenzeinheit eine Anzahl Referenzwerte vorgegeben wird, wobei durch die Simulationseinheit unter Verwendung der Anzahl Referenzwerte eine Anzahl Simulationswerte simuliert wird, wobei aus der Anzahl Simulationswerte zumindest eine Sollgröße und weiter zumindest eine Steuergröße zum Steuern des Prüflings ermittelt wird.

Weiters betrifft die gegenständliche Erfindung einen Prüfstand mit einem Prüfling zum Durchführen eines Prüflaufs, wobei eine Referenzeinheit vorgesehen ist, die einer

Simulationseinheit eine Anzahl Referenzwerte vorgibt, wobei die Simulationseinheit ausgestaltet ist unter Verwendung der Anzahl Referenzwerte eine Anzahl Simulationswerte zu simulieren und aus der Anzahl Simulationswerte zumindest eine Sollgröße zu ermitteln und an eine Steuereinheit zu übermitteln, wobei die Steuereinheit ausgestaltet ist basierend auf der zumindest einen Sollgröße zumindest eine Steuergröße zum Steuern des Prüflings vorzugeben

Es gibt gesetzliche Vorgaben für zulässige Schadstoffemissionen von Fahrzeugen

(insbesondere CO2, CO, NO x und Partikelanzahl), z.B. die Verordnung (EG) Nr. 715/2007 des Europäischen Parlaments und des Rates, in der der Euro 5 und Euro 6 Standard definiert sind. Die Einhaltung dieser gesetzlichen Vorgaben durch Fahrzeuge wird bisher mittels standardisierter Testzyklen (wie z.B. dem New European Driving Cycle (NEDC)) auf Prüfständen überprüft. Dazu wird das während des Testzyklus erzeugte Abgas am Prüfstand entnommen und untersucht. Das Problem hierbei ist, dass die Bedingungen am Prüfstand unter dem standardisierten Testzyklus mit den realen Verhältnissen, wenn das Fahrzeug auf einer realen Strecke bewegt wird, nicht vergleichbar sind. Damit kann ein Fahrzeug zwar die gesetzliche Vorgabe am Prüfstand einhalten, aber diese im realen Betrieb trotzdem überschreiten.

Um dem vorzubeugen gibt es das Bestreben des Gesetzgebers, die Überprüfung der vorgegebenen Schadstoffemissions-Grenzwerte vom Prüfstand auf die reale Straße zu verlagern. Das erfordert es, dass die Schadstoffemissionen während einer realen Fahrt des Fahrzeugs auf einer realen Strecke mit Portable Emission Measurement Systems (PEMS) gemessen und überprüft werden. Es gibt damit keinen standardisierten Testzyklus mehr, weil eine Fahrt auf einer öffentlichen Straße mit normalem Verkehr immer zufälligen Einflüssen unterliegt. Das Ziel des Gesetzgebers dabei ist, dass ein Fahrzeug die Grenzwerte der Schadstoffemissionen unter normalen Betriebsbedingungen, und nicht nur am Prüfstand, einhält. Auch für die Auswertung der Schadstoffemissionen nach der Testfahrt werden vom Gesetzgeber Vorgaben gemacht, z.B. die Verwendung bestimmter Datenanalysewerkzeuge. Der Gesetzgeber definiert dazu eine Real Driving Emissions (RDE) Testprozedur. Darin sind nur mehr bestimmte Vorgaben für die Fahrzeugmasse, die Umgebungstemperatur und die geographische Höhe, unter der die Testfahrt stattfinden muss vorgegeben. Zusätzlich wird noch definiert, zu welchen Anteilen verschiedene Fahrsituationen in der Testprozedur enthalten sein müssen, beispielsweise 33% ± 10% Aufteilung auf Stadt, Land und Autobahn aber zumindest jeweils 16km, Fahrzeuggeschwindigkeit Land im Bereich von 60 - 90 km/h, Länge der Testfahrt 90 - 120 min, usw. Nachdem diese Überprüfung auf einer öffentlichen Straße stattfinden soll, unterliegt die jeweilige Testfahrt auch zufälligen Einflüssen, wie beispielsweise Fremdverkehr, Positionierungen und Schaltphasen von Ampeln, usw. Daraus ist unmittelbar erkennbar, dass eine reale Testfahrt nicht reproduzierbar ist, sondern jeweils eine mehr oder weniger zufällige Ereigniskette darstellt.

Dieser Paradigmenwechsel hat auch unmittelbaren Einfluss auf die Fahrzeughersteller beim Entwickeln neuer Fahrzeuge und insbesondere neuer Motoren. Bisher konnte jeder

Entwicklungsschritt mittels der standardisierten Testzyklen am Prüfstand überprüft werden. Dazu musste lediglich der jeweilige Prüfling nach jedem Entwicklungsschritt dem Testzyklus unterworfen werden und die Schadstoffemissionen untersucht werden. Das geht nun mit der neuen RDE Testprozedur nicht mehr, da grundsätzlich nicht vorhersagbar ist, ob ein neu entwickeltes Fahrzeug am Ende der Entwicklung die RDE Testprozedur durch Einhaltung der Grenzwerte der Schadstoffemissionen übersteht. Erst das fertige Fahrzeug kann auf der realen Straße bewegt werden, d.h. es kann erst ganz zum Schluss der Entwicklung die RDE Testprozedur durchgeführt werden. Wenn das Fahrzeug dieser Überprüfung nicht standhält, hätte das nachvollziehbar enorme Auswirkungen auf den Fahrzeughersteller, der im

Extremfall eine jahrelange Entwicklung unter enormen Kosten und Aufwand zumindest teilweise neu aufrollen müsste.

Die Verwendung der bisherigen standardisierten Testzyklen während der

Fahrzeugentwicklung hilft dabei auch nicht weiter, da die Einhaltung der Grenzwerte der Schadstoffemissionen unter Anwendung solcher standardisierter Testzyklen nicht automatisch auch die Einhaltung dieser Grenzwerte unter der RDE Testprozedur sicherstellt.

Man könnte nun alle möglichen Betriebszustände eines Fahrzeugs in einem Testszenario zusammenführen und dieses Testszenario für die Überprüfung jedes Entwicklungsschrittes verwenden. Das ist aber kaum zielführend, da die Umsetzung eines solchen Testszenarios auf einem Prüfstand sehr lange dauern würde, was die Entwicklung verzögern würde, die teuren Prüfstandszeiten erhöhen würde und insgesamt sehr aufwändig wäre. Eine willkürliche Erstellung eines Testszenarios ist ebenfalls nicht zielführend, da damit nicht sichergestellt werden könnte, dass damit die Einhaltung der gesetzlichen Vorgaben unter der RDE Testprozedur erreicht wird. Dazu kommt noch, dass nicht jedes Fahrmanöver, z.B. Beschleunigung aus einer niedrigen Drehzahl heraus, Überholen auf einer Landstraße, Abbiegen im Stadtverkehr, usw., in jedem Fahrzeug dieselbe Auswirkung auf die Schadstoffemission haben muss. Das bedeutet, dass ein Testszenario für ein bestimmtes Fahrzeug geeignet sein kann, aber für ein anderes Fahrzeug nicht.

Grundsätzlich gilt das Obige in gleicher Weise auch für andere Zielgrößen der Entwicklung eines Fahrzeugs, beispielsweise für den Verbrauch eines Fahrzeugs, obwohl es hierzu keine (zumindest noch keine) gesetzlichen Vorgaben gibt. Der Verbrauch ist aber in der Regel auch ein Entwicklungsziel bei der Entwicklung eines Fahrzeugs, weshalb auch hier das Erreichen des angestrebten Verbrauchs, beispielsweise bei der RDE Testprozedur, angestrebt wird.

So werden für Emissionstests im praktischen Fährbetrieb während realen Testfahrten die reale Geschwindigkeit und die reale Position eines Fahrzeugs als Referenzgeschwindigkeit und Referenzposition über die Referenzzeit als Referenz für Fahrmanöver aufgezeichnet. Diese Referenzwerte werden während einer Simulationseinheit auf einem Prüfstand von einer Referenzeinheit zur Verfügung gestellt und können vor der Durchführung der

Simulation auch aufbereitet werden. Es können die Referenzwerte variiert werden und/oder Worst-Case-Szenarios dargestellt werden. Wird die Simulation auf einem Prüfstand abgewickelt, können bestimmte Teile des Fahrzeugmodells, z. B. der Motor oder ein Antriebsstrang, auch durch entsprechende Teile auf dem Prüfstand ersetzt werden.

Eine Simulation eines Fahrzeugs weist drei grundlegende Bausteine auf: die simulierte Strecke, das simulierte Fahrzeug und der simulierte Fahrer. Der simulierte Fahrer steuert das simulierte Fahrzeug entlang der simulierten Strecke mit einer

Simulationsgeschwindigkeit, die der vorgegebenen Referenzgeschwindigkeit entsprechen sollte. Hierzu kann sich der simulierte Fahrer an die Referenzzeit, oder an die

Referenzposition halten. Dabei können leichte Abweichungen der

Simulationsgeschwindigkeit von der Referenzgeschwindigkeit jedoch nicht verhindert werden. Die simulierte Strecke kann auch die Eigenschaften der Umgebung, wie

Temperatur, Luftdruck, Wind,„gegnerischen“ Verkehr, wie z.B. andere Fahrzeuge, etc., umfassen.

Wird die Simulationsgeschwindigkeit auf Basis der Referenzzeit vorgegeben, so werden leichte Abweichungen der Simulationsgeschwindigkeit von der Referenzgeschwindigkeit eine akkumulierte Abweichung der Simulationsposition von der Referenzposition bewirken. Liegt während einer Simulation beispielsweise nach einer gewissen Dauer an einer

Referenzposition von 80 km eine akkumulierte Positionsabweichung von 20 m vor, so hat diese Simulationsposition von 80 km und einem Meter einen relativen Fehler von nur 0,025%. Soll das Fahrzeug auf einem steilen Hügel stoppen (d.h.

Simulationsgeschwindigkeit Null), beispielsweise um Emissionen während eines Bergstarts zu testen, so würde sich das simulierte Fahrzeug bei einer vermeintlichen Referenzposition von 80km bereits bei einer Simulationsposition von 80 km und 20 m befinden. Liegt diese Simulationsposition an einem Ort der Strecke, an dem keine Neigung vorhanden ist, so würde ein simulierter Stopp und Start des Fahrzeugs also zu verfälschten Ergebnissen, insbesondere hinsichtlich einer Emissionsmessung, führen.

Wird die Simulationsgeschwindigkeit auf Basis der Referenzposition vorgegeben, so ergeben leichte Abweichungen der Simulationsgeschwindigkeit von der Referenzgeschwindigkeit eine Abweichung der Simulationszeit von der Referenzzeit. Wrd beispielsweise erst eine

Referenz-Geschwindigkeit von 130 km/h vorgegeben und daraufhin zu einer bestimmten Referenzzeit, die Referenzgeschwindigkeit auf 40 km/h reduziert, beispielsweise aufgrund einer scharfen Kurve einer Autobahnausfahrt, und weicht die Simulationszeit um einige Sekunden von der Referenzzeit ab, so würde dies zu einer Geschwindigkeit von 130 k/m während der scharfen Kurve führen. Dies könnte wiederum zu Problemen bei der Simulation oder Reproduktion führen, beispielsweise aufgrund sehr hoher, falsch simulierter,

Seitenbeschleunigungen. Zudem kann bei einer positionsabhängigen

Simulationsgeschwindigkeit nach einem Stopp an einer bestimmten Referenzposition kein Start erfolgen, die Simulation bleibt also hängen.

Eine zeitbasierte Bestimmung einer Simulationsgeschwindigkeit ruft also Abweichungen der Simulationsposition von der Referenzposition hervor, eine positionsbasierte Bestimmung der Simulationsgeschwindigkeit Abweichungen der Simulationszeit von der Referenzzeit.

Es ist daher eine Aufgabe der gegenständlichen Erfindung ein Verfahren und einen

Prüfstand anzugeben, wobei eine Simulation ermöglicht wird, bei der oben genannte

Probleme vermieden werden.

Diese Aufgabe wird erfindungsgemäß gelöst, indem von einer Detektionseinheit eine Abweichung eines Vergleichssimulationswerts aus der Anzahl Simulationswerte von einem Vergleichsreferenzwert aus der Anzahl Referenzwerte, vorzugsweise um eine Toleranz, festgestellt wird, bei einer festgestellten Abweichung x von einer Korrektureinheit ausgehend von einem ausgewählten Referenzwert aus der Anzahl Referenzwerte ein korrigierter Referenzwert ermittelt wird, der Simulationseinheit statt dem ausgewählten Referenzwert der korrigierte Referenzwert zur Simulation eines korrigierten Simulationswerts vorgegeben wird, wodurch die Abweichung reduziert wird, und die zumindest eine Sollgröße unter

Verwendung des korrigierten Simulationswert ermittelt wird.

Die Aufgabe wird ebenso durch einen Prüfstand gelöst auf dem eine Detektionseinheit vorgesehen ist, die ausgestaltet ist eine Abweichung eines Vergleichssimulationswerts aus der Anzahl Simulationswerte von einem Vergleichsreferenzwert aus der Anzahl Referenzwerte, vorzugsweise um eine Toleranz, festzustellen, wobei eine Korrektureinheit vorgesehen ist, die ausgestaltet ist bei einer festgestellten Abweichung ausgehend von einem ausgewählten Referenzwert aus der Anzahl Referenzwerte einen korrigierten

Referenzwert zu ermitteln und der Simulationseinheit statt dem ausgewählten Referenzwert zur Simulation eines korrigierten Simulationswerts vorzugeben, wodurch die Abweichung reduziert und die zumindest eine Sollgröße unter Verwendung des korrigierten

Simulationswert ermittelt wird.

Es erfolgt also erst ein Vergleich eines Vergleichssimulationswerts mit einem

Vergleichsreferenzwert, welcher zum Vergleichssimulationswert äquivalent ist, d.h. es wird beispielsweise eine Simulationsposition mit einer Referenzposition verglichen. Natürlich können auch mehrere Vergleichssimulationswerte mit zugehörigen Vergleichsreferenzwerten verglichen werden, um jeweils Abweichungen festzustellen. Wird eine Abweichung zwischen dem Vergleichssimulationswert und dem zugehörigen Vergleichsreferenzwert festgestellt, so wird erfindungsgemäß nicht der Vergleichssimulationswert selbst geändert, sondern ein ausgewählter Referenzwert aus der Anzahl Referenzwerte durch einen korrigierten

Referenzwert ersetzt, wobei der ausgewählte Referenzwert üblicherweise nicht dem

Vergleichsreferenzwert entspricht. Da die Simulationseinheit nun auf Basis des korrigierten Referenzwerts anstelle des (unkorrigierten) Simulationswerts einen korrigierten

Simulationswert berechnet, wird in Folge die Abweichung reduziert. Damit wird die zumindest eine Sollgröße unter Verwendung des korrigierten Simulationswerts ermittelt, womit die zumindest eine Sollgröße ebenso korrigiert ist.

Somit kann das Verfahren, bzw. die Detektionseinheit, bzw. Korrektureinheit auch in einen bestehenden Prüfstand integriert werden. Der ausgewählte Referenzwert, welcher zuvor der Simulationseinheit von der Referenzeinheit zur Verfügung gestellt wurde, wird auf einen korrigierten Referenzwert geändert, welcher dann der Simulationseinheit statt dem ursprünglichen ausgewählten Referenzwert zur Verfügung gestellt wird. Das Verfahren muss also nicht am Prüfstand integriert sein, sondern kann auch nachträglich nachgerüstet werden, indem eine entsprechende Detektionseinheit bzw. Korrektureinheit zwischen Referenzeinheit und Simulationseinheit geschaltet wird. Da lediglich der ausgewählte Referenzwert durch einen korrigierten Referenzwert ersetzt wird, kann das Verfahren auf allen Prüfständen Verwendung finden, bei welchen eine Simulationseinheit in derartiger Weise eine Anzahl Referenzwerte von einer Referenzeinheit vorgegeben bekommt. Das Verfahren kann auch während einer laufenden Simulation aktiviert werden um eine

Abweichung zu verringern oder zu eliminieren. So ist eine Aktivierung des Verfahrens auf Prüfständen, bzw. ein Einbinden der Korrektureinheit in Prüfständen, die Simulationseinheiten mit komplexeren Fahrermodellen, die beispielsweise vorausschauende Informationen, wie Geschwindigkeits- und Neigungsinformationen erfordern, möglich.

Es kann auch eine weitere Sollgröße für zumindest eine mit dem Prüfling verbundene Belastungsmaschine unter Verwendung des korrigierten Simulationswerts vorgegeben werden.

Das erfindungsgemäße Verfahren kann in einem oder mehreren Zyklus des Prüflaufs durchgeführt werden.

Vorteilhafterweise kann der korrigierte Referenzwert kontinuierlich erhöht oder verringert werden, womit eine rasche Reduktion der Abweichung zwischen Vergleichssimulationswert und Vergleichsreferenzwert erfolgen kann, ohne Sprünge des ausgewählten Referenzwerts vorzusehen. Damit wird das erfindungsgemäße Verfahren in mehreren Zyklen des Prüflaufs durchgeführt.

Der korrigierte Referenzwert kann erhöht oder verringert werden, bis keine Abweichung mehr auftritt. Damit kann erreicht werden, dass der Vergleichssimulationswert dem

Vergleichsreferenzwert entspricht.

Vorteilhafterweise wird das Verfahren zu Beginn des Prüflaufs gestartet, womit

Abweichungen von Beginn an gering gehalten, bzw. verhindert werden können. Natürlich kann das Verfahren auch gestartet werden, wenn die Simulation bereits fortgeschritten ist und ggf. bereits eine größere Abweichung vorhanden ist. Das Verfahren kann auch im laufenden Betrieb auf dem Prüfstand angewandt werden, beispielsweise um während der Simulation vorgenommene Änderungen, z. B. eine Änderung der Fahrer- oder Getriebewert, auszuwerten, oder auch während eines Prüflaufs mehrmals aktiviert und deaktiviert werden.

Das Verfahren kann während des gesamten Prüflaufs durchgeführt werden, um eine Abweichung gänzlich zu verhindern oder gering zu halten, z.B., innerhalb eines

Toleranzbandes. Damit wird das erfindungsgemäße Verfahren in allen Zyklen des Prüflaufs durchgeführt.

Vorzugsweise umfasst die Anzahl Referenzwerte eine Referenzposition zu einer

Referenzzeit und eine Referenzgeschwindigkeit zur Referenzzeit, wobei die von der Simulationseinheit simulierte Anzahl Simulationswerte eine Simulationsgeschwindigkeit zu einer Simulationszeit und eine Simulationsposition zur Simulationszeit umfasst. Damit wird also der Simulationseinheit die Referenzgeschwindigkeit zur Referenzzeit von der

Referenzeinheit vorgegeben, woraufhin die Simulationseinheit die

Simulationsgeschwindigkeit, wie auch eine Simulationsposition zu einer Simulationszeit simuliert. Es kann die Simulationsposition als Vergleichssimulationswert dienten, die Referenzposition als Vergleichsreferenzwert dienen und die Referenzgeschwindigkeit als ausgewählter Referenzwert dienen.

Weiters kann der Simulationseinheit eine korrigierte Referenzgeschwindigkeit, die geringer als die Referenzgeschwindigkeit ist, vorgegeben werden, wenn die Simulationsposition größer als die Referenzposition ist und die Simulations-Geschwindigkeit eine

Geschwindigkeitsschwelle, vorzugsweise Null, überschreitet.

Zudem kann der Simulationseinheit eine korrigierte Referenzgeschwindigkeit, die größer als die Referenzgeschwindigkeit ist, vorgegeben werden, wenn die Simulationsposition kleiner als die Referenzposition ist und die Simulations-Geschwindigkeit eine

Geschwindigkeitsschwelle, vorzugsweise Null, überschreitet.

Damit wird die Ortsabweichung der Simulationsposition von der Referenzposition als Abweichung des Vergleichssimulationswerts vom äquivalenten Vergleichsreferenzwert angesehen. Die Referenzgeschwindigkeit (ausgewählter Referenzwert) wird durch eine korrigierte Referenzgeschwindigkeit (korrigierten Referenzwert), welche höher oder geringer als die Referenzgeschwindigkeit ist, ersetzt. Dadurch wird natürlich in weiterer Folge in der Simulationseinheit nicht mehr wie zuvor eine Simulationsposition simuliert, sondern eine korrigierte Simulationsposition (korrigierter Simulationswert), womit die Abweichung reduziert wird. In Folge wird die zumindest eine Sollgröße und weiter die zumindest eine Steuergröße unter Verwendung der korrigierten Simulationsposition vorgegeben.

Vorzugsweise wird die Simulationszeit auf eine korrigierte Simulationszeit verändert, wenn sie von der Referenzzeit abweicht und die Simulationsgeschwindigkeit die

Geschwindigkeitsschwelle, vorzugsweise Null, nicht überschreitet. So kann die

Simulationszeit beispielsweise beschleunigt oder verlangsamt und damit an die Referenzzeit angepasst werden.

Die Geschwindigkeitsschwelle kann derart gewählt werden, dass eine Änderung der Simulationszeit keinen signifikanten Einfluss auf die Simulation hat. Dies ist insbesondere der Fall, wenn die Geschwindigkeitsschwelle bei Null, im Bereich von Null bis 6 km/h, oder zwischen 3 und 6 km/h liegt, d.h. das Fahrzeug in einer Stopp-Phase still steht, oder sich langsam bewegt. Es wird somit lediglich die Länge dieser Stoppphase angepasst. Damit wird ein Singularitätsproblem gelöst, welches auftritt, wenn lediglich die Simulationsposition angepasst wird, da die Simulationsposition bei einer Simulationsgeschwindigkeit von Null nicht ansteigen kann. Da insbesondere bei RDE-Tests viele Stoppphasen, in denen sich das Fahrzeug nicht bewegt, von der Referenzeinheit vorgegeben werden, können durch eine Änderung der Dauer dieser Stoppphasen durch eine Änderung der Simulationszeit bereits akkumulierte Abweichungen, z.B. Zeitabweichungen und/oder Positionsabweichungen, idealerweise auf Null, reduziert werden. So kann auch eine Positionsabweichung korrigiert werden, indem zuvor eine Zeitabweichung korrigiert wurde.

Die gegenständliche Erfindung wird nachfolgend unter Bezugnahme auf die Figuren 1 bis 7 näher erläutert, die beispielhaft, schematisch und nicht einschränkend vorteilhafte

Ausgestaltungen der Erfindung zeigen. Dabei zeigt

Fig.la einen typischen Prüfstandsaufbau für einen Prüfling,

Fig.1 b eine mögliche Ausführung der Simulationseinheit,

Fig.2 eine beispielhafte Referenzfahrt,

Fig.3 eine zeitbasierte Vorgabe der Simulationsgeschwindigkeit,

Fig.4 eine ortsbasierte Vorgabe der Simulationsgeschwindigkeit,

Fig.5 einen erfindungsgemäßen Prüfstandsaufbau,

Fig.6 eine erfindungsgemäße Korrektur der Referenzgeschwindigkeit,

Fig.7 eine erfindungsgemäße Korrektur der Simulationszeit bei einer Stopp-Phase.

In Fig.1 ist ein typischer Prüfstand 1 für einen Prüfling 2, hier ein Motorprüfstand für einen Verbrennungsmotor, dargestellt. Der Prüfling 2 ist hier mit einer Belastungsmaschine 3 verbunden, beispielsweise über eine Verbindungswelle, wie in Fig.1 angedeutet. Der Prüfling 2 kann aber auch einen Antriebsstrang, ein ganzes Fahrzeug, einzelne oder mehrere Komponenten, wie Getriebe, Batterien, etc. umfassen. Demgemäß kann der Prüfstand 1 beispielsweise einen Antriebsstrangprüfstand oder einen Rollenprüfstand darstellen, wobei auch mehr als eine Belastungsmaschine 3, z.B. je eine pro angetriebener Halbachse oder auch pro Achse, vorgesehen sein kann. Der Prüfling 2 wird dabei am Prüfstand 1 gemäß den Vorgaben eines Prüflaufs betrieben, um Aussagen hinsichtlich bestimmter Messgrößen m des Fahrzeugs zu erhalten, wie z.B. die Schadstoffemission, ein Verbrauch, das akustische Verhalten des Fahrzeugs, die Fahrbarkeit des Fahrzeugs, die Haltbarkeit des Fahrzeugs, Hinweise zur Auslegung/Optimierung einzelner Komponenten, usw. Dabei wird die

Messgröße mit einer Zielgröße verglichen. Wenn sich die Messgröße auf die

Schadstoffemissionen eines Verbrennungsmotors bzw. den Verbrauch eines

Verbrennungsmotors bezieht, umfasst der Prüfling 2 natürlich auch einen

Verbrennungsmotor.

Auf einer Simulationseinheit 4 wird ein auf einer Prüfstrecke bewegtes Fahrzeug simuliert. Hierzu wird der Simulationseinheit 4 von einer Referenzeinheit 5 eine Anzahl Referenzwerte ref vorgegeben. Die Simulationseinheit 4 ermittelt im Rahmen der Simulation eine Anzahl Simulationswerte sim. Im der Simulationseinheit 4 aus der Anzahl Simulationswerte sim wiederum zumindest eine Sollgröße T, z.B. ein Drehmoment ermittelt, wobei die zumindest eine Sollgröße T auch einem Simulationswert sim entsprechen kann. Die zumindest eine Sollgröße T kann auch eine Pedalstellung eines Gaspedals darstellen oder aus einer Pedalstellung berechnet werden. Die zumindest eine Sollgröße T wird an eine Steuereinheit ECU übergeben, die Steuereinheit ECU steuert basierend auf der zumindest einen Sollgröße T den Prüfling 2 mit zumindest einer Steuergröße an. Die Steuereinheit ECU, hier als Motorsteuereinheit ausgeführt, kann basierend auf einem zu erzeugenden Drehmoment (Sollgröße T) dem Prüfling 2 eine Drosselklappenstellung a und/oder eine Kraftstoffmenge k (Steuergröße) vorgeben.

Die Simulationseinheit 4 kann auch zumindest eine weitere Sollgröße, z.B. eine Drehzahl n, einer weiterer Steuereinheit 30 zuführen, wobei die weitere Steuereinheit 30 eine

Belastungsmaschine 3 steuern kann, wie in Fig. 1 dargestellt. Die tatsächliche Drehzahl der Belastungsmaschine 3 wirkt hier von der Belastungsmaschine 3 über die Welle auf den Prüfling 2.

Auf einem Rollenprüfstand können auch Fahrroboter vorgesehen sein, die gemäß den Vorgaben des durchzuführenden Prüfversuchs die Bedienelemente des Fahrzeugs, wie Gaspedal, Bremspedal, Gangschaltung, betätigen.

Am Prüfstand 1 sind in der Regel auch eine Reihe von (nicht näher dargestellten)

Messsensoren vorhanden, mit denen z.B. aktuelle Istwerte des Drehmoments T , st und der Drehzahl n, st des Prüflings 2 erfasst werden und an die Simulationseinheit 4 übermittelt werden.

Am Prüfstand 1 wird mit einem konkreten Prüfling 2 ein Prüflauf durchgeführt und es werden dabei beispielsweise Schadstoffemissionen als Messgröße gemessen. Je nach Messgröße können am Prüfstand 1 entsprechende Messeinheiten, wie z.B. eine Emissionsmesseinheit 6, welcher Abgas des Verbrennungsmotors zugeführt wird und die bestimmte

Schadstoffemissionen, wie CO2, CO, NO x , Gesamtmasse an Kohlenwasserstoffen (THC) und/oder Partikelanzahl (wie Rußpartikel) misst, und/oder eine Verbrauchsmesseinheit 7, die den Kraftstoffverbrauch des Verbrennungsmotors misst, vorgesehen sein.

Simulationseinheit 4 und Steuereinheit ECU können auch als eine Einheit ausgeführt, oder wie in Fig.1 dargestellt, als eigenständige Einheiten ausgeführt sein. Die Referenzeinheit 5 ist in Fig. 1 als eigenständige Einheit ausgeführt, kann aber ebenso mit der

Simulationseinheit 4 zusammengeführt sein. Die Simulationseinheit 4 weist

Simulationshardware und/oder Simulationssoftware auf, mit welcher die Prüffahrt des Fahrzeugs simuliert wird. Dazu ist in der Simulationseinheit 4 ein Simulationsmodell, welches beispielsweise ein Fahrermodell 11 , ein Fahrzeugmodell 12 und ein Streckenmodell 13 umfasst, implementiert. Es können auch weitere Modelle, wie z.B. ein Reifenmodell, ein Straßenmodell, etc., implementiert sein. Die Simulationseinheit 4 simuliert damit die Fahrt eines virtuellen Fahrzeugs (Fahrzeugmodell 12), das von einem virtuellen Fahrer gesteuert wird (Fahrermodell 11), entlang einer virtuellen Teststrecke (Umgebungsmodell 13), wobei auch bestimmte Ereignisse, wie beispielsweise Verkehrszeichen, Ampeln, Fremdverkehr, usw., simuliert werden können. Ereignisse werden vom virtuellen Fahrer im Fahrermodell 11 wahrgenommen und in Form von entsprechenden Reaktionen umgesetzt werden. Ein Teil des Fahrzeugs, wie der Verbrennungsmotor oder ein Antriebsstrang, ist als reale Hardware am Prüfstand 1 als Prüfling 2 physisch aufgebaut und wird mit den Vorgaben der Simulation gemäß dem Prüfversuch am Prüfstand 1 betrieben. Dieses Vorgehen der Durchführung eines Prüfversuches ist auch hinlänglich bekannt und wird häufig als X-In-The-Loop Prüfung bezeichnet, wobei das„X“ für den jeweiligen Prüfling 2, der real vorhanden ist, steht. Diese Art der Durchführung eines Prüfversuchs ist sehr flexibel und kann dem Charakter einer realen Testfahrt mit einem realen Fahrzeug sehr nahe kommen. Es können auch Variationen für Worst-Case-Abschätzungen vorgenommen und evaluiert werden. Variationen können sehr abstrakt definiert werden, z.B. in Form von mehr Fahrzeugmasse, mehr Verkehr, starkem Gegenwind, aggressiverem Fahrverhalten, etc.

Mit dem derart erstellten Prüflauf kann daher die Entwicklung des Fahrzeugs in allen

Entwicklungsstadien durchgeführt werden und es kann die Wahrscheinlichkeit der Einhaltung gewisser Vorgaben der Zielgröße, beispielsweise gesetzlicher Grenzwerte der

Schadstoffemissionen bei einer Überprüfung mit einer RDE Testprozedur, deutlich erhöht werden. Das gleiche gilt in analoger Weise auch für andere Messgrößen, wie z.B. den Verbrauch, die Fahrbarkeit das akustische Verhalten, die Haltbarkeit, anstelle einer

Schadstoffemission.

Der Prüflauf enthält üblicherweise viele verschiedene Fahrmanöver, z.B. eine

Beschleunigung, eine Verzögerung, ein Stillstand, eine Konstantfahrt, eine Kurvenfahrt, usw. unter bestimmten Randbedingungen, wie beispielsweise Drehzahl, Drehmoment,

Lenkeinschlag, Steigung der Straße, Verkehr, usw., verstanden. Als Fahrmanöver kann ein Anfahren aus dem Stillstand, Beschleunigen aus einer Kurve, Änderung der

Fahrzeuggeschwindigkeit, Überholvorgang eines langsamen Fahrzeugs, Ausrollen zu einer roten Ampel, usw., umgesetzt sein. Jede Fahrt eines Fahrzeugs und somit auch ein Prüflauf kann als zeitliche Abfolge solcher Fahrmanöver gesehen werden. Es ist unmittelbar einsichtig, dass es eine Fülle an solchen Fahrmanövern geben kann. Die Fahrmanöver sind in der Referenzeinheit 5 hinterlegt und stammen beispielsweise aus realen vermessenen Testfahrten, aus bereits durchgeführten Simulationen, etc.

Ein Prüflauf wird nun als zeitliche Sequenz solcher Fahrmanöver erstellt. Das kann manuell durch einen Benutzer, durch zufällige Auswahl der Fahrmanöver oder durch eine gezielte Auswahl erfolgen. Die Fahrmanöver müssen natürlich so aneinander gefügt werden müssen, dass es im Prüflauf zu keinen Unstetigkeiten, beispielsweise abrupte

Geschwindigkeitssprünge, kommt. Auch muss sichergestellt werden, dass der Prüfling 2 in Kombination mit dem Simulationsmodell den gewünschten Vorgaben folgen kann. Der Prüflauf sollte dabei viele verschiedene Fahrmanöver beinhalten, die vorzugsweise einen größtmöglichen Betriebsbereich (Drehzahl, Drehmoment) des Fahrzeugs abdecken sollen.

So kann es genaue Vorgaben geben, welche Manöver zu welchen Anteilen enthalten sein müssen.

Zur Durchführung der Simulation erhält die Simulationseinheit 4 wie erwähnt von der Referenzeinheit 5 eine Anzahl Referenzwerte ref entsprechend des aktuell gewünschten Fahrmanövers im Rahmen des Prüflaufs. Als Referenzwerte ref dienen beispielsweise eine Referenzgeschwindigkeit v_ref und eine Referenzposition s_ref, jeweils als Funktion der Referenzzeit t_ref. Der Simulationseinheit 4 wird somit entsprechend des Prüflaufs eine Referenzgeschwindigkeit v_ref vorgegeben, welche beispielsweise durch das Fahrermodell 11 simuliert wird. Das Fahrermodell 11 folgt also der Referenzgeschwindigkeit v_ref, welche unter Verwendung des Fahrzeugmodells 12 und des Streckenmodells 13 errechnet wird.

Der Prüflauf, bzw. die einzelnen Fahrmanöver sind in der Referenzeinheit 5 als Verlauf der Referenzgeschwindigkeit v_ref über die Referenzzeit t_ref vorgegeben und werden als Referenzwerte ref der Simulationseinheit 4 übermittelt. Die Simulationseinheit 4 versucht im Rahmen der Simulation der Referenzgeschwindigkeit v_ref mit einer

Simulationsgeschwindigkeit v_sim zu folgen. Dies kann ortsbasiert (d.h. die

Simulationsgeschwindigkeit v_sim zur Simulationsposition s_sim entspricht immer der Referenzgeschwindigkeit v_ref zur Referenzposition s_ref) oder zeitbasiert (d.h. die

Simulationsgeschwindigkeit v_sim zur Simulationszeit t_sim entspricht immer der

Referenzgeschwindigkeit v_ref zur Referenzzeit t_ref) erfolgen. Da die

Simulationsgeschwindigkeit v_sim der Referenzgeschwindigkeit jedoch v_ref nie exakt folgen kann, entsteht dabei eine Zeitabweichung bei einem ortsbasierten Ansatz und eine Positionsabweichung bei einem zeitbasierten Ansatz auf.

Fig. 2, 3, 4, 6 und 7 zeigen jeweils ein Zeit-Geschwindigkeit-Weg-Diagramm, wobei auf der positiven Abszisse die Zeit t, auf der negativen Abszisse die Geschwindigkeit v und auf der positiven Ordinate die Position s aufgetragen ist. Damit ergibt sich im linken Teil des

Diagramms ein Geschwindigkeits-Zeit-Zusammenhang und im rechten Teil des Diagramms ein Weg-Zeit-Zusammenhang.

In Fig. 2 ergibt sich eine Referenzfahrt durch entsprechende Referenzwerte ref: Eine Referenzgeschwindigkeit v_ref ist für jede Referenzzeit t_ref vorgegeben und ebenso ist eine Referenzposition s_ref zu für jede Referenzzeit t_ref vorgegeben, womit jeweils die

Referenzkurven gebildet werden: Links eine Referenzgeschwindigkeit v_ref in Abhängigkeit der Referenzposition s_ref und rechts eine Referenzposition s_ref zur Referenzzeit t_ref. Durch diesen Zusammenhang ist ebenso eine Referenzgeschwindigkeit v_ref für jede Referenzzeit t_ref vorgegeben.

Fig. 3 zeigt zusätzlich zu den Referenzwerten ref die Simulationswerte sim einer Simulation, wobei eine zeitbasierte Vorgabe der Simulationsgeschwindigkeit v_sim erfolgt. Damit folgt die Simulationsgeschwindigkeit v_sim zu jedem Zeitpunkt der Simulationszeit t_sim der Referenzgeschwindigkeit v_ref. Da die Simulationsgeschwindigkeit v_sim der

Referenzgeschwindigkeit v_ref nicht exakt folgen kann gibt es dennoch eine

Geschwindigkeitsabweichung v_x zwischen Simulationsgeschwindigkeit v_sim und

Referenzgeschwindigkeit v_ref, wie im linken Quadranten des Graphen ersichtlich ist. Hier ist die Simulationsgeschwindigkeit v_sim zu gering. Dadurch ergibt sich in weiterer Folge als Abweichung x eine Ortsabweichung s_x der Simulationsposition s_sim von der

Referenzposition s_ref, wie im rechten Teil des Graphen zu sehen ist.

In Fig. 4 ist sind Simulationswerte sim dargestellt, die über eine ortsbasierte Vorgabe der Simulationsgeschwindigkeit v_sim ermittelt werden. Damit folgt die

Simulationsgeschwindigkeit v_sim zu jedem Punkt der Simulationsposition s_sim der Referenzposition s_ref. Da die Simulationsgeschwindigkeit v_sim der

Referenzgeschwindigkeit v_ref abermals nicht exakt folgen kann, gibt es hier ebenso eine Geschwindigkeitsabweichung v_x zwischen Simulationsgeschwindigkeit v_sim und

Referenzgeschwindigkeit v_ref (wieder beispielhaft als zu geringe

Simulationsgeschwindigkeit v_sim dargestellt), weshalb sich als Abweichung x eine

Zeitabweichung t_x der Simulationszeit t_sim von der Referenzzeit t_ref ergibt.

Wie in Fig. 5 ersichtlich ist, ist am Prüfstand 1 erfindungsgemäß eine Detektionseinheit 7 und eine Korrektureinheit 8 vorgesehen, die hier als eine Einheit zwischen die Simulationseinheit 4 und die Referenzeinheit 5 geschaltet sind. Das ist besonders vorteilhaft, weil damit in die Simulationseinheit 4 selbst nicht eingegriffen wird, es müssen lediglich die entsprechenden Simulationswerte sim vorliegen um sie mit den äquivalenten Referenzwerten ref zu vergleichen. In Fig. 5 wird der Detektionseinheit 7 die Simulationsposition s_sim von der Simulationseinheit 4 zugeführt.

Es wird nun mittels einer Detektionseinheit 7 die Abweichung x eines

Vergleichssimulationswerts von einem Vergleichsreferenzwerts ermittelt. Hier wird als Abweichung x die Ortsabweichung s_x der Simulationsposition s_sim als

Vergleichssimulationswert von der Referenzposition s_ref als Vergleichsreferenzwert ermittelt. Dabei kann natürlich ein(e) Toleranz(band) vorgesehen werden. Daraufhin wird durch die hier vorteilhafterweise in die Detektionseinheit 7 integrierte Korrektureinheit 8 die Referenzgeschwindigkeit v_ref als ausgewählter Referenzwert ref auf die korrigierte Referenzgeschwindigkeit v_ref geändert, welche daraufhin der Simulationseinheit 4 statt der Referenzgeschwindigkeit v_ref zur Verfügung gestellt wird. Damit wird in der

Simulationseinheit 4 im weiteren Verlauf eine korrigierte Simulationsposition s_sim‘ simuliert, womit sich eine geringere Ortsabweichung s_x ergibt.

In Fig. 6 ist wird zum Zeitpunkt t1 eine Ortsabweichung s_x, hier eine zu geringe

Simulationsposition s_sim gegenüber der Referenzposition s_ref, erkannt. Diese

Ortsabweichung s_x kann aufgrund an einer zu geringen Simulationsgeschwindigkeit v_sim entstehen, wie es auch in den vorliegenden Figuren angedeutet ist. Gegenüber der Figur 4 ist zu sehen, dass nach dem Zeitpunkt t1 der Simulationseinheit 4 statt der

Referenzgeschwindigkeit v_ref (als ausgewählter Referenzwert ref) eine korrigierte

Referenzgeschwindigkeit v_ref‘ , die hier höher ist, vorgegeben wird, was durch den strichlierten Abschnitt dargestellt ist. In der Simulationseinheit 4 wird darauf basierend eine höhere Simulationsgeschwindigkeit v_sim simuliert, da diese der nunmehr korrigierten Referenzgeschwindigkeit v_ref‘ folgt. Der korrigierte Referenzwert ref (hier also die korrigierte Referenzgeschwindigkeit v_ref‘) kann dabei weiter kontinuierlich erhöht oder verringert werden.

Es wird dadurch ab dem Zeitpunkt t1 der Simulationseinheit 4 statt der

Simulationsgeschwindigkeit v_sim die korrigierte Simulationsgeschwindigkeit v_sim‘ vorgegeben und damit die Ortsabweichung s_x reduziert, im dargestellten Fall bis zum Zeitpunkt t2 keine Ortsabweichung s_x mehr auftritt. Danach wird die korrigierte

Referenzgeschwindigkeit v_ref‘ beibehalten, um die Ortsabweichung s_x auf Null zu halten. Damit folgt die Simulationsgeschwindigkeit v_sim in etwa der Referenzgeschwindigkeit v_ref und die Simulationsposition s_sim der Referenzposition s_ref.

Das hat zur Folge, dass die Simulationseinheit 4 unter Verwendung des zumindest einen korrigierten Simulationswert sim‘ zumindest eine Sollgröße T, die nunmehr korrigiert ist, an die Steuereinheit ECU weitergibt. Die Steuereinheit ECU steuert unter Verwendung dieser zumindest einen Sollgröße T den Prüfling 2 mit zumindest einer Steuergröße, die ebenso korrigiert ist an. Es kann dabei unter Verwendung korrigierten Simulationswerts sim‘ auch zumindest eine weitere Sollgröße n für die weitere Steuereinheit 30 der Belastungsmaschine 3 ermittelt werden.

Das Verfahren könnte natürlich auch bereits zu Beginn des Prüflaufs gestartet werden und vorzugsweise während dem gesamten Prüflaufs durchgeführt werden. Damit tritt während der Simulation eine geringe Abweichung x auf, da diese vorzugsweise laufend und bestmöglich auskorrigiert wird.

Es muss im vorliegenden Ausführungsbeispiel jedoch für eine Verringerung der

Referenzgeschwindigkeit v_ref (als ausgewählter Referenzwert ref) auf eine korrigierte Referenzgeschwindigkeit v_ref immer sichergestellt werden, dass die

Simulationsgeschwindigkeit v_sim eine erste Geschwindigkeitsschwelle, überschreitet. Für eine Erhöhung der Referenzgeschwindigkeit v_ref, muss ebenso sichergestellt werden, dass die Simulationsgeschwindigkeit v_sim die Geschwindigkeitsschwelle, überschreitet.

Insbesondere darf hier die Simulationsgeschwindigkeit v_sim nicht Null sein.

Bei geringen Referenzgeschwindigkeiten v_ref und damit auch geringen

Simulationsgeschwindigkeiten v_sim ist zudem die Möglichkeit einer Korrektur über eine Anpassung der Referenzgeschwindigkeit v_ref als ausgewählten Referenzwert ref gering, insbesondere wenn die Simulationsposition s_sim größer als die Referenzposition s_ref ist. Da die Referenzgeschwindigkeit v_ref gering ist, kann diese natürlich nicht mehr weit verringert werden, bevor sie Null erreicht.

In Fig. 7 wird die Referenzgeschwindigkeit v_ref zum Zeitpunkt t4 Null. Da eine

Zeitabweichung t_x auftritt, wird die Simulationsgeschwindigkeit v_sim erst zum Zeitpunkt t3 Null. Damit wird die Geschwindigkeitsschwelle (von Null) zum Zeitpunkt t3 von der

Simulationsgeschwindigkeit v_sim erreicht, womit die Geschwindigkeitsschwelle nicht mehr überschritten wird, was vorzugsweise von der Detektionseinheit 7 erkannt wird. Es wird somit, vorzugsweise von der Korrektureinheit 8, die von der Referenzzeit t_ref abweichende Simulationszeit t_sim verändert. Zum Zeitpunkt t5 wird die Referenzgeschwindigkeit v_ref und damit die Simulationsgeschwindigkeit v_sim wieder erhöht. Damit diese Zeitpunkte wieder synchron sind, wird die Dauer, in der die Simulationsgeschwindigkeit v_sim Null ist, reduziert. Lt. Referenz müsste die Stoppdauer von t4 bis t5 andauern, in der Simulation wurde die Stoppdauer auf t3 bis t5 reduziert. Die Änderung der Simulationszeit t_sim kann auch als schnelleres oder langsameres Ablaufen der Simulationszeit t_sim bzw. der Referenzzeit t_ref im geänderten Bereich der Simulationszeit t_sim angesehen werden.