Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND PLANT FOR THE PROCESSING OF FIBER MATERIALS BY MEANS OF LIQUIDS
Document Type and Number:
WIPO Patent Application WO/1981/000266
Kind Code:
A1
Abstract:
A textile material (4) is dyed regularly and rapidly after introduction of the dye and the material in a processing container (1) which is heated up to boiling temperature. The inner pressure in the container and the supply of heat to the liquid are controlled by control means (46, 48, 51) so that the dye slowly and gradually evaporates in order for the vapor bubbles to stirr the dye and the material without the use of a calendar or similar means. The dying operation may be aided by a pulsating motion of the dying liquid. If necessary, all the energy required for the process maybe used in the form of water vapor.

Inventors:
KARRER F (SE)
PEDRETTI A (SE)
MELLGREN P (SE)
Application Number:
PCT/EP1980/000048
Publication Date:
February 05, 1981
Filing Date:
July 11, 1980
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KARRER SYSTEM AG (CH)
KARRER F (SE)
PEDRETTI ALBERTO (SE)
MELLGREN P (SE)
International Classes:
D06B5/12; D06B19/00; D06B23/20; (IPC1-7): D06B5/12; D06B19/00
Foreign References:
FR2253865A11975-07-04
US3960487A1976-06-01
US3871821A1975-03-18
FR1495636A1967-09-22
US3692464A1972-09-19
FR2030150A11970-10-30
Download PDF:
Claims:
P a t e nt a n s p r ü c h e
1. Verfahren zur Flüssigkeitsbehandlung von Fasermaterial, insbesondere zum Färben oder Bleichen von Garn oder text ler Stückware, bei dem das Fasermaterial in einen Behäl¬ ter eingebracht wird und die Flüssigkeit ggf. nach einem Evakuieren des Behälters in vorgewärmtem Zustand in den Behälter eingefüllt wird, wobei das Fasermaterial impräg¬ niert wird, dadurch g e k e n n z e i c h n e t , daß die in den Behälter eingefüllte Flüssigkeit im wesent¬ lichen ohne mechanisch zwangsgesteuerte Strömung durch örtliche Teilverdampfung bewegt und dadurch zur Einwir¬ kung auf das Fasermaterial gebracht wird.
2. Verfahren nach Anspruch 1, dadurch g e k e n n z e i c n e t , , daß die Teilverdampfung durch eine kontrolliert Drucksenkung im Behälter gesteuert wird.
3. Verfahren nach Anspruch 2, dadurch g e k e n n z e i c n e t , daß die Drucksenkung im Behälter durch Kondensa¬ tion von dem Behälter entnommenen Dampf erzielt wird.
4. Verfahren nach Anspruch 2 oder 3» dadurch e k e n n ¬ z e i c h n e t , daß die in den Behälter eingefüllte Flüssigkeit vor ihrer durch Drucksenkung bewirkten Teil¬ v Veerrddaammppffuunngg uunter Ü *•berdruck gesetzt und auf über 100oC erwärmt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , daß die in den Behälter eingefüllte Flüssigkeit während der Teilverdampfung in einem die Abkühlung durch die Teilverdampfung im wesent¬ lichen ausgleichenden Maß erwärmt wird.
6. Verfahren nach Anspruch 5, dadurch g e k e n n z e i c h¬ n e t , daß die in den Behälter eingefüllte Flüssigkeit durch Einleitung und Kondensation von Dampf erwärmt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , daß der in den Behälter eingefüllten Flüssigkeit während ihrer Teilverdampfung bzw. Einwirkung auf das Fasermaterial auch eine pulsie¬ rende Bewegung erteilt wird.
8. Verfahren nach Anspruch 7» dadurch g e k e n n z e i oh¬ n e t , daß die pulsierende Bewegung durch stoßweises Einleiten von Dampf erzielt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch g e k e n n z e i c h n e t , daß das Fasermaterial während der Teilverdampfung kontinuierlich und langsam im Umlauf durch den Behälter bewegt wird.
10. Verfahren nach Anspruch 9, dadurch g e k e n n z e i c h n e t , daß der Behälter nur teilweise mit der Flüssig¬ keit gefüllt und das Fasermaterial längs einer im wesent¬ lichen senkrechten Umlaufbahn bewegt wird, wobei es ab¬ wechselnd in die Flüssigkeit eintaucht und aus ihr auf¬ taucht.
11. Verfahren nach Anspruch 9 oder 10, bei dem zwischen oder am Ende der Flüssigkeitsbehandlung die Flüssigkeit aus dem Behälter abgezogen und das behandelte Fasermaterial im Behälter gespült und durch Evakuieren des Behälters und/oder Durchblasen von Luft entwässert wird, dadurch g e k e n n z e i c h n e t , daß mit nur teilweise vom Spülwasser gefülltem Behälter gespült und gleichzeitig entwässert wird, so daß das Fasermaterial beim Durchlau¬ fen seiner im wesentlichen senkrechten Umlaufbahn ab¬ wechselnd im unteren Behälterbereich gespült und im obe¬ ren Behälterbereich entwässert wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem da Fasermaterial nach der Leerung des Behälters von über¬ schüssiger Flüssigkeit im Behälter getrocknet wird, da¬ durch g e k e n n z e i c h n e t , daß das Fasermate rial durch Evakuieren des Behälters zuerst mechanisch entfeuchtet und dann mittels Durchsaugen von Warmluft getrocknet wird.
13. Vorrichtung zur Durchführung des Verfahrens nach den An sprüchen 1 bis 12, mit einem Behälter, in dem ein Träge für das Fasermaterial angeordnet ist, mit einem Behälte anschluß für die Behandlungsflüssigkeit, mit einer Heiz einrichtung zum Aufwärmen des Behälterinhalts, mit eine Druckeinrichtung zum Aufbau eines Behälterdrucks und mi einer Einrichtung zur kontrollierten Senkung des Behält drucks, dadurch g e k e n n z e i c h n e t , daß die Einrichtung zur kontrollierten Änderung des Behälter¬ drucks eine Vakuumpumpe (29) ist, der ein Druckregler(51 zur Einstellung des Drucks in Behälter (l) zugeordnet i.
14. Vorrichtung nach Anspruch 13, dadurch g e k e n n ¬ z e i c h n e t , daß der Druckregler (5 ) ein Ventil¬ organ aufweist, das den Behälter (1) mit änderbarem Durchströmquerschnitt mit der Vakuumpumpe (29) verbinde.
15. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 12, mit einem Behälter, in dem ein Träger für das Fasermaterial angeordnet ist, mit einem Behälteranschluß für die Behandlungsflüssigkeit, mit einer Heizeinrichtung zum Aufwärmen des Behälterinhalts, mit einer Druckeinrichtung zum Aufbau eines Behälter¬ drucks und mit einer Einrichtung zur kontrollierten Senkung des Behälterdrucks, dadurch ge k e n n z e l eh n e t , daß die Heizeinrichtung und die Druckeinrich¬ tung von einer in den Behälter (160 bzw. 165) mündenden Dampfzuleitung (178) mit einem Regelventil (179 bzw.1δθ) gebildet sind und daß die Einrichtung zur kontrollier ten Senkung des Behälterdruclcs von einem an das obere Behälterende angeschlossenen Kondensator (182) gebildet ist.
16. Vorrichtung nach Anspruch 15, dadurch e k e n n ¬ z e i c h n e t , daß dem Kondensator (182) eine Vakuum¬ pumpe (184) nachgeschaltet ist.
17. Vorrichtung nach einem der Ansprüche 13 bis 16 mit einem im Behälter angeordneten perforierten Träger für das Fasermaterial, der die Fasermaterialkammer und eine Ab¬ laufkammer innerhalb des Behälters, die mit der Vakuum¬ pumpe verbunden ist, voneinander abgrenzt und mittels seiner durchströmbaren Perforationen miteinander verbin¬ det, dadurch g e k e n n z e i c h ne t , daß der Trä¬ ger (113) für das Fasermaterial (129) mit im wesentlichen waagerechter Achse drehbar im langgestreckten Behandlungs¬ behälter (101) gelagert ist und daß eine Antriebseinrich¬ tung (121) zum Rotieren des Trägers ( 113) vorgesehen ist. üRE OMPI.
Description:
Verfahren und Vorrichtung zur Flüssigkeits¬ behandlung von Fasermaterial

Die Erfindung bezieht sich auf eine Flüssigkeitsbehandlung von Fasermaterial und betrifft beispielsweise das Färben oder Bleichen von Garn in Form von Kreuzspulen oder Stück¬ ware in Form von Rollen oder auch loses Material, das bei¬ spielsweise in gepacktem Zustand behandelt wird, wobei die Erfindung auf eine kürzere Behandlungszeit als bisher er¬ forderlich abzielt und durch verringerten Aufwand zu Ein¬ sparungen führt.

Es ist bekannt, eine Flüssigkeitsbehandlung von Faserma¬ terial, beispielsweise Färben und Bleichen von Te-xtilma- terial,unter Anwendung von Vakuum so durchzuführen, daß das zu behandelnde Material in einen Behälter eingebracht wird, der Behälter evakuiert wird und dann die Behandlungs¬ flüssigkeit in vorgewärmtem Zustand in den Behälter ein¬ gefüllt wird, wie es in der DE-PS 19 27 651 und in der entsprechenden US-PS 3 631 691 beschrieben ist. Da durch die Evakuierung die im Material befindliche Luft größten¬ teils entfernt wurde, dringt die Flüssigkeit leichter in das Fasermaterial ein. Während der anschließenden Behand¬ lungsphase wird dann die Flüssigkeit mittels einer außer¬ halb des Behälters angeordneten und mit zwei im Behälter

angeordneten Kammern verbundener Pumpe umgewälzt, wobei di beiden Kammern nur durch das zu behandelnde Fasermaterial hindurch miteinander in Verbindung stehen, so daß die Be¬ handlungsflotte bzw. Flüssigkeit zwangsweise durch das Behandlungsgut geleitet wird, damit die Behandlungsflüs¬ sigkeit in möglichst innigen Kontakt mit dem gesamten Fa¬ sermaterial tritt. Diese mechanische zwangsgesteuerte Flüssigkeitsströmung erfordert in erheblichem Umfang me¬ chanische Energie sowie eine kostspielige Vorrichtungsaus¬ rüstung mit einer Pumpe, Rohrleitungen und Ventilen, zumal man festgestellt hat, daß im Interesse einer größtmögliche Gleichheit in der Behandlung des Fasermaterials ein mehr¬ maliger Wechsel der Strömungseinrichtung durch das Faser¬ material erforderlich ist.

Die vorgenanntenbekanntenMaßnahmen haben bereits zu einer Verkürzung der Behandlungszeit geführt. Der Erfindung liegt die Erkenntnis zugrunde, daß das Behandlungsverfah¬ ren weiter verkürzt und ohne Nachteil für den Behandlungs¬ erfolg vereinfacht werden kann, wenn nach dem Evakuieren des Behälters in diesen Behandlungsflüssigkeit eingefüllt wird und dann durch eine Drucksenkung eine Teilverdampfung der vorgewärmten Behandlungsflüssigkeit hervorgerufen wird, die eine intensive Flüssigkeitsbewegung verursacht, ohne daß die Flüssigkeit mechanisch zwangsbewegt werden muß. Eine entsprechende Drucksenkung führt zu Verdampfungsvor¬ gängen im ganzen Flüssigkeitsvolumen und insbesondere auch der vom Fasermaterial auf enommenen Flüssigkeit, wodurch eine die Behandlung beschleunigende Flüssigkeitsbewegung bzw. -durchmischung erreicht wird.

Dementsprechend sieht die Erfindung ein Verfahren zur Flüssigkeitsbehandlung von Fasermaterial, insbesondere zum Färben oder Bleichen von Garn oder textiler Stückware, vor, bei dem das Fasermaterial in einen Behälter eingebracht wird und die Flüssigkeit ggf. nach einem Evakuieren, des

Behälters in vorgewärmtem Zustand in den Behälter einge¬ füllt wird, wobei das Fasermaterial imprägniert wird, das dadurch gekennzeichnet ist, daß die in den Behälter einge¬ füllte Flüssigkeit im wesentlichen ohne mechanisch zwangs¬ gesteuerte Strömung durch örtliche Teilverdampfung bewegt und dadurch zur Einwirkung auf das Fasermaterial gebracht wird.

Zweckmäßige Ausgestalungen des Verfahrens ergeben sich aus den Unteransprüchen.

Die Behandlung bzw. Flüssigkeitseinwirkung kann bei Unter¬ druck, bei atmosphärischem Druck oder bei Überdruck (sta¬ tischer Überdruck im System) erfolgen, so daß die im Einzel¬ fall gewünschte Behandlungstemperatur eingehalten werden kann.

Die Teilverdamp ung während der Behandlungsphase führt zu einer Senkung der Temperatur der Behandlungsflüssigkeit. Unter Umständen kann diese Temperatur.Senkung akzeptiert werden. Da jedoch beim Veredeln (Färben und Bleichen) trotz vergleichsweise kurzer Behandlungszeit bereits eine starke Abkühlung der Flüssigkeit auftritt, wird zweckmäßigerweise der Flüssigkeit eine den Wärmeverlust ausgleichende Wärme¬ menge zugeführt, was durch Einleiten kondensierenden Dampfes in die Flüssigkeit geschehen kann, so daß ggf. ohne äußere Flüssigkeitserwärmung das Verfahren wärmetechnisch reguliert werden kann.

Das Verfahren kann mit einer einzigen Flüssigkeitsfüllung durchgeführt werden, ggf. kann das Verfahren jedoch auch wiederholt bzw. mehrfach angewendet werden, indem das Fa¬ sermaterial mit Hilfe der Vakuumpumpe und evtl. zusätz¬ licher Druckluftzuführung entwässert wird und eine aber¬ malige Vakuumimprägnierung des Fasermaterials mit der zu¬ rückerhaltenen restlichen Flüssigkeit vorgenommen wird,

- _ET&~ QMPI IPO

worauf dann eine weitere Behandlungsphase bei allmählicher und gleichmäßiger Teilverdampfung der Flüssigkeit erfolgt. Fallweise kann die Materialentfeuchtung zwischen den bei¬ den Behandlungsphasen auch entfallen und das Färbeverfahre evtl. durch eine pulsierende Flüssigkeitsbewegung mittels der vorhandenen Vakuumpumpe unterstützt werden«

Beim Bleichverfahren kann nach der Vakuumimprägnierung auch eine Aufwärmung des Bleichsubstrates nach Absaugung des Flüssigkeitsüberschusses auf bekannte Weise mit einer kalten Bleichflotte und Aufwärmung des imprägnierten Ma¬ terials mittels eines Lu t-Dampf emisches erfolgen.

Nach Abschluß des Veredelungsverfahrens kann das Material im Behälter verbleiben und sehr effektiv durch mechanische Entwässerung mittels der vorhandenen Vakuumpumpe und mehr¬ maligem Einsaugen von Wasser in kürzester Zeit gespült werden. Ebenfalls kann das Fasermaterial im Behälter in kürzester Zeit getrocknet werden, wozu Warmluft und/oder ein Luft-Dampfgemisch durch das Fasermaterial hindurchge¬ saugt wird, wie es in den vorgenannten Patentschriften be¬ schrieben ist.

Besonders einfach und mit geringem Vorrichtungsaufwand läßt sich färben, wenn alle er orderlichen Energien nur in Form von Dampf zugeführt werden, der direkt eingeleitet wird. Auf diese Weise kann sowohl die zur Erwärmung der Flüssigkeit erforderliche Wärmemenge aufgebracht, durch Nutzung des Dampfdrucks eine den Färbevorgang unterstützen de pulsierende Bewegung der Färbeflotte erreicht und ggf. durch Kondensation des mit der Färbeflotte im Gleichgewich stehenden Dampfes eine Drucksenkung erzielt werden, die ei langames Weitersieden (Teilverdampfung) der Färbeflotte ge währleistet.

Die Vorteile des er indungsgemäßen Verfahrens und der ent¬ sprechenden Vorrichtung betreffen folgende Punkte:

/ A .

- wesentliche Energieeinsparung

- Verbilligung der Vorrichtung

- Einsparung an Behandlungszeit

- größtmögliche Schonung des Fasermaterials wegen kurzer Einwirkungszeit bei minimaler Flüssigkeitsbewegung und ruhendem Substrat; keine Flusenbildung, keine Schaumbil¬ dung, keine Koagulierungsgefahr; geringer Bleich- und Kochschwund

- erhöhte Gleichmäßigkeit der Behandlungseinwirkung durch Wegfall zwangsgesteuerter Flüssigkeitsumwälzung.

Es ist zu berücksichtigen, daß der für den Be andlungserfolg maßgebende innige Kontakt der Behandlungsflüssigkeit, bei¬ spielsweise einer Färbeflotte, mit dem Fasermaterial durch die Agitation der bei der Teilverdampfung entstehenden und aufsteigenden Dampfblasen hervorgerufen wird, so daß eine möglichst gleichmäßig über das Fasermaterialvolumen ver¬ teilte Entstehung der Damp blasen erwünscht ist. Das Ent¬ stehen der Dampfblasen ist jedoch insbesondere von den örtlich vorhandenen Druck- und Temperaturwerten abhängig, wobei geringe Schwankungen dieser Werte schon im Hinblick auf unterschiedliche Flüssigkeitsstandhöhen im Behälter bzw. im Fasermaterialvolumen nicht vermieden werden können. Zur weiteren Verbesserung der Gleichmäßigkeit der Einwirkung der Behandlungsflüssigkeit auf das Fasermaterial kann es daher von Vorteil sein, wenn das Fasermaterial während der Teil¬ verdampfung kontinuierlich und langsam im Umlauf durch den Behälter bewegt wird. Dadurch wird erreicht, daß alle Be¬ reiche des Fasermaterials die Zonen mit unterschiedlich intensiver Flüssigkeitseinwirkung durchlaufen, so daß im Ergebnis eine besonders gleichmäßige Behandlung erreicht wird.

Vorteilhafterweise wird im Falle einer Fasermaterialbewe¬ gung der Behälter nur teilweise mit der Flüssigkeit gefüllt und das Fasermaterial längs einer im wesentlichen senk-

OMPI

rechten Umlaufbahn bewegt, wobei es abwechselnd in die Flüssigkeit eintaucht und aus ihr auftaucht. Hierbei wird die Umläufbewegung des Fasermaterials zur Verringerung der er orderlichen Menge an Behandlungsflüssigkeit ausgenutzt. Daneben ergibt sich aber insbesondere der Vorteil, daß die primär auf die fortlaufende Flüssigkeitsverdampfung zurück gehende intensive Einwirkung auf das Fasermaterial durch die Schwerkra twirkung unterstützt wird, die nach dem Auf¬ tauchen des Fasermaterials aus dem Flüssigkeitsbad auf die innerhalb des Fasermaterials verbliebene Flüssigkeit wirkt.

Wenn bei umlaufendem Fasermaterial das behandelte Faser¬ material in an sich bekannter Weise im Behälter gespült und durch Evakuieren des Behälters und/oder Durchblasen von Luft entwässert werden soll, ist es von Vorteil, mit nur teilweise vom Spülwasser gefülltem Behälter zu spülen und gleichzeitig zu entwässern, so daß das Fasermaterial beim Durchlaufen seiner im wesentlichen senkrechten Um¬ laufbahn abwechselnd im unteren Behälterbereich gespült und im oberen Behälterbereich entwässert wird.

Die Erfindung betrifft auch eine Vorrichtung, wie sie sich aus den Ansprüchen ergibt. Mit einer entsprechenden Vor¬ richtung kann ohne äußere mechanische Zwangsumwälzung eine intensive Flüssigkeitseinwirkung durch Teilverdamp ung bei gleichmäßiger Einwirkung auf das gesamte Fasermaterial er¬ zielt werden, insbesondere bei einer Ausbildung mit dreh¬ barem Fasermaterialträger. Dabei kann durch Abstimmung des Drucks im Behandlungsbehälter einerseits und der Temperatu der Behandlungsflüssigkeit durch Regelung der Dampfzufuhr andererseits eine langsame und gleichmäßige Teilverdampfun während der Behandlungsdauer erreicht werden. Insbesondere kann das Verfahren isotherm durchgeführt werden, so daß mi im wesentlichen gleichbleibenden Temperatur- und Druckver¬ hältnissen im Behandlungsbehälter gearbeitet werden kann.

Zweckmäßigerweise ist der Behandlungsbehälter lang ge¬ streckt und mit seiner Längsachse im wesentlichen waagerecht angeordnet. Hierdurch werden die statischen Druckunterschie¬ de innerhalb der im Behandlungsbehälter befindlichen Flüs¬ sigkeit klein gehalten, und das vorhandene Behältervolumen läßt sich - insbesondere bei einem um eine waagerechte Achse drehbaren Materialträger - optimal nutzen.

Ausführungsbeispxele der Erfindung werden nachfolgend anhand einer schematischen Zeichnung erläutert. Es zeigt:

Fig. 1 eine erste Vorrichtung zum Behandeln von Fasermate¬ rial mit einem stehenden Behälter und mehreren fest¬ stehenden senkrechten Materialträgern,

Fig. 2 eine zweite Vorrichtung mit einem feststehenden senk¬ rechten Materialträger für Kreuzspulen, die zugleich für eine pulsierende Flüssigkeitseinwirkung auf das Fasermaterial vorgesehen ist,

Fig. 3 eine dritte Vorrichtung mit einem liegenden Behand¬ lungsbehälter, in dem ein drehbarer waagerechter Ma¬ terialträger angeordnet ist, und

Fig. 4 eine vierte Vorrichtung mit zwei Behältern zum Färben von Kreuzspulen mit dampfgesteuerter pulsierender Färbeflottenbewegung während der Teilverdampfung.

Gemäß Fig. 1 ist im unteren Teil des Behälters 1 eine innere Kammer 2 abgegrenzt, auf deren oberer Umgrenzungswand sich senkrecht angeordnete perforierte Rohre 3 abstützen, auf die wie angedeutet die zu behandelnden Garnspulen 4 aufgesteckt sind, die dabei in der äußeren Kammer 5 des Behälters 1 an¬ geordnet sind. Auf diese Weise stehen die innere Kammer 2 und die äußere Kammer 5 über die perforierten Rohre nur durch das zu behandelnde Fasermaterial 4 hindurch mitein¬ ander in Verbindung. Eine Leitung 6 verbindet die äußere

OMPI

Kammer 5 mit einer Leitung 7 » die mit den Absperrventilen 8 und 9 versehen ist. In entsprechender Weise ist die inne¬ re Kammer 2 durch die Leitung 10 an die Leitung 11 mit den Absperrventilen 12 und 13 angeschlossen.

Die Leitungen 7 und 11 sind mit ihrem linken Ende an eine Leitung 14 angeschlossen, die über einen Lufterhitzer 19 i eine Leitung 20 übergeht, in welche die Leitungen 7 und 11 mit ihren rechten Enden einmünden. Eine Dampfzuleitung 21 ist über ein Ventil 22 an den Lufterhitzer 19 zur Lieferun der benötigten Wärmeenergie und über ein Ventil 24an die Leitung 20 angeschlossen. An die Leitung 14 ist ferner eine Zufuhrleitung 25 für Druckluft mit einem Absperrventil 26 angeschlossen. Der Lufterhitzer 19 kann ebenfalls zur An¬ wärmung des gesamten Systems dienen.

Die Behandlungsflüssigkeit wird über die Leitung 31 zuge¬ führt, die über die Zweigleitung 32 mit dem Absperrventil 3 an die äußere Behälterkammer 5 und über die Zweigleitung 3 mit dem Absperrventil 37 an die Leitung 10 und damit an die innere Behälterkammer 2 angeschlossen ist.

In ähnlicher Weise ist eine Evakuierleitung 28, in die eine Vakuumpumpe 29 mit einem behältef*seitig angeordneten Kon¬ densator 0 eingebaut sind, über eine Zweigleitung 3 mit einem Absperrventil 35 an die Leitung 10 und damit an die innere Behälterkammer 2 sowie über eine weitere Zweiglei¬ tung 41 mit dem Absperrventil 43 an das obere Ende der äußeren Behälterkammer ~ angeschlossen. Dort mündet auch das obere Ende der vom Lufterhitzer 19 ausgehenden Leitung 20, in die vor der Einmündung ein Absperrventil 42 einge¬ baut ist. Ferner mündet in das obere Ende des Behälters 1 eine Entlüftungsleitung 45 mit einem Absperrventil 44.

In das obere Ende der äußeren Behälterkammer ~ ragt ein Druckfühler 46, der über eine Signalleitung 47 an eine

.

Steuereinheit 48 angeschlossen ist. In ähnlicher Weise ist auch ein Temperaturfühler 49, der im unteren Bereich der perforierten Rohre 3 bzw. des zu behandelnden Fasermateri¬ als 4 angeordnet ist, über eine Signalleitung 0 mit der Steuereinheit 48 verbunden. In die Evakuierleitung 28 ist zwischen der Vakuumpumpe 29 und der Aufteilung in die Zweigleitungen 3 und 41 ein verstellbares Drosselventil 51 eingeschaltet, das über eine Steuerleitung 52 zur Einhal¬ tung eines einem eingegebenem Sollwertentsprechenden Drucks bzw. Unterdrucks, bei dem die gewünschte Teilverdampfung der Behandlungsflüssigkeit stattfinden kann, eingeregelt wird.

Unter dem Behälter 1 ist ein Heizmantel 55 angeordnet, in den eine mit der Dampfzuleitung 21 verbundene Dampflei¬ tung 6 mit einem Regelventil 57 mündet. Vom Boden des Heiz¬ mantels 55 geht eine Kondensatablaufleitung 58 aus. Alter¬ nativ kann die Dampfleitung ~ " wie die Leitung 6 direkt in die äußere Kammer 5 und/oder wie die Leitung 10 direkt in die innere Kammer 2 führen. Das Regelventil 57 wird über eine Steuerleitung 59 von der Steuereinheit 48 aus so ein¬ geregelt, daß die im Behälter 1 vorhandene Behandlungs¬ flüssigkeit im wesentlichen auf einer Sollwerttemperatur gehalten wird, die mit Hilfe des Temperaturfühlers 49 fest¬ gestellt wird. Ggf. kann eine entsprechende Erwärmung der Behandlungs lüssigkeit auch dadurch erfolgen, daß über die Leitung 6 Dampfmengen mit dem benötigten Wärmeeinhalt in die Behandlungsflüssigkeit eingeleitet werden. Die Zufüh¬ rung der Wärme zum Ausgleich der Wärmeverluste insbesondere durch Teilverdampfung von der Unterseite des Behälters 1 her kann in vorteilha ter Weise zu einer im wesentlichen gleichmäßig über das gesamte Flüssigkeitsvolumen verteilten Dampfbildung beitragen, da auf diese Weise die unteren Flüssigkeitsschichten, in denen ein etwas höherer stati¬ scher Flüssigkeitsdruck herrscht, auch eine etwas höhere Temperatur aufweisen können, was die- Damp blasenbildung begünstigt.

_ OMPI

Nach der Aufwärmung des Systems und Evakuierung des Behäl¬ ters 1 wird die Behandlungs lüssigkeit über die Zweiglei¬ tung 32 und/oder 33 in den Behälter 1 eingefüllt, bis die Behandlungsflüssigkeit das zu behandelnde Fasermaterial 4 vollständig bedeckt. Darauf wird mittels der Vakuumpumpe 29 über die geöffnete Zweigleitung 41 der Druck im Behälter 1 auf einen Wert gesenkt, der beispielsweise zwischen 0,3 und 0,6 ata beträgt, wobei der vorgesehene Druckwert mit Hilfe der Steuereinheit 48 eingeregelt wird. Bei diesem Unter¬ druck, der auf die Flüssigkeitstemperatur abgestimmt ist, findet eine teilweise Verdampfung der Flüssigkeit statt, un zwar im wesentlichen in allen Bereichen der von Flüssigkeit durchtränkten Fasermaterialien bzw. Spulen 4. Die Verdamp¬ fung hat eine intensive Bewegung und Durchmischung der Flüs sigkeit zur Folge, wodurch der Veredelungsprozeß beschleu¬ nigt wird, der bereits in wenigen Minuten abgeschlossen sei kann. Zum Ausgleich der Wärmeverluste durch Teilverdampfun wird der Flüssigkeit im Behälter 1 Wärme zugeführt, was durch eine mittels des Regelventils 57 in Abhängigkeit von der Temperatur am Fühler 49 geregelte Zufuhr von Dampf zum Heizmantel 55 und/oder durch direkte Einleitung von Dampf in die Behandlungsflüssigkeit geschehen kann. Ggf. kann auc durch wechselndes Senken und Heben des Drucks im Behälter 1 ein Pulsieren der Behandlungsflüssigkeit zur Intensivierung der Flüssigkeitsverteilung und der gleichmäßigen Einwirkung erreicht werden. Die Flüssigkeit kann dabei eine Art Schau¬ kelbewegung ausführen, verbunden mit einer partiellen Flot¬ tenbewegung, so daß das Fasermaterial unter dem Flüssigkeit spiegel im Behälter 1 verbleibt (Teilpulsierung) .

Ggf. kann die Einwirkungsphase unter teilweiser Verdampfung der Flüssigkeit nach dem Abziehen und Wiedereinleiten der überschüssigen Behandlungsflüssigkeit wiederholt werden. Ferner kann das Fasermaterial im Behälter 1 intermittierend durch eine mechanische Entwässerung und eine Vakuumimpräg¬ nierung mittels Frischwasser intensiv gespült werden.

( .

^

Schließlich ist die Vorrichtung so ausgebildet, daß das veredelte Material, insbesondere Chemiefasermaterial, in kürzester Zeit mittels Durchsaugung von Warmluft und/oder Luft-Damp gemisch getrocknet werden kann, wie es aus den eingangs genannten Patentschri ten bekannt ist. Die vor¬ gesehene Leitungsführung in Verbindung mit den jeweiligen Ventilen schafft die Möglichkeit, alle in Frage kommenden Verfahrensschritte im Behälter 1 durchzuführen. Dabei kann insbesondere bei entsprechender Ventilstellung das Faser¬ material 4 wahlweise von innen nach außen, also von der Kammer 2 zur Kammer 5 » oder von außen nach innen durch¬ strömt werden, also von der Kammer 5 zur Kammer 2.

Gemäß Fig. 2 ist ein Behälter 70 vorgesehen, der durch einen Boden 1 i die Kammern 72 und 73 unterteilt ist. Durch die Kammer 7 erstreckt sich ein rohrförmiger Mate¬ rialträger 74, der an seinem oberen Ende in die Kammer 73 mündet und nach unten aus dem Behälter 70 herausgeführt und mit einem Absperrventil 75 versehen ist. Am unteren Ende des Behälters 70 ist eine Heizkammer 76 gebildet, die durch eine Lochplatte 77 hindurch mit der Kammer 72 in Verbindung steht. In die Heizkammer 76 mündet eine mit einem Absperrventil 78 versehene Dampfleitung 79 zum direkten Einleiten von Dampf in den Behälter 70. Ferner ist eine Dampfleitung 80 mit einem Absperrventil 81 vorgesehen, die einen Wärmetauscher innerhalb der Heizkammer 76 bildet, so daß dem Behälter 70 auch Dampfwärme zugeführt werden kann, ohne daß der Dampf in den Behälter 70 ausströmt.

Der Materialträger 74 weist im Bereich der Kammer 72 einen perforierten Abschnitt auf, auf den Kreuzspulen 82 aufge¬ steckt sind. In das obere Ende der Kammer 72 münden eine Druckluftleitung 83 mit einem Absperrventil 84 sowie eine Dampfleitung 85 mit einem Absperrventil 86. Ferner ist ein Standhöhenanzeiger 87 vorgesehen, der den Flüssigkeitsstand in der Kammer 72 anzeigt. Angedeutet sind die obere

OMPI

Standhöhe 88 und die untere Standhöhe 89, zwischen denen der Flüssigkeitsspiegel bei einer pulsierenden Einwirkung auf das Fasermaterial der Kreuzspulen 82 pendelt.

Die Vakuumpumpe 90 mit vorgeschaltetem Kondensator 1 ist über eine Zweigleitung 92 mit einem Absperrventil 93 an die Kammer 73 sowie über eine parallele Zweigleitung 9 mit einem Absperrventil 95 an das obere Ende der Kammer 7 angeschlossen. In die Kammer 73 mündet ferner eine Dampf¬ leitung 96 mit einem Absperrventil 97.

Mit der Vorrichtung gemäß Fig. 2 wird so gearbeitet, daß zuerst eine Vakuumimprägnierung mit Behandlungs lüssigkei bei ca. 60 C erfolgt, die von unten über das zunächst ge¬ öffnete Absperrventil 75 zugeführt wird. Dann erfolgt wäh rend einiger Minuten eine fortgesetzte Entlüftung, wobei die restliche Luft aus dem Fasermateriäl in Blasenform ab geht, da sich die Blasen im Vakuum erweitern. Dadurch en stehen günstigere Bedingungen für eine Diffusion. Hierauf erfolgt eine schnelle Aufwärmung durch direkt eingeleite¬ ten Dampf, unterstützt durch eine pulsierende Flüssigkeit einwirkung, die dadurch erzielt wird, daß im Wechsel eine positive und negative Druckdi erenz zwischen den Kammern 72 und 73 erzeugt wird, indem die der Vakuumpumpe 90 zuge ordneten Absperrventile 93 und 95 abwechselnd geöffnet un geschlossen werden. Gleichzeitig erfolgt wie bereits be¬ schrieben eine Teilverdamp ung der Flüssigkeit. Damit ist eine einwandfreie kurzfristige Färbung ohne Zirkulation d Flotte und bei stillstehenden Kreuzspulen 82 gewährleiste

Wie aus Fig. 3 zu ersehen umfaßt die dritte Vorrichtung einen mit waagerechter Achse angeordneten langgestreckten zylindrischen Behandlungsbehälter 101 und einen mit senk¬ rechter Achse angeordneten Flüssigkeitsspeicherbehälter 1 Die Behälter 101 und 102 sind durch eine Überströmleitung 103 mit einem Überströmventil 104 miteinander verbunden.

In den unteren Bereich des Speicherbehälters 102 mündet eine Dampfleitung 105 mit einem Dampfventil 106. Vom Boden des Speicherbehälters 102 geht eine Leitung 107 mit einem Ventil 108 aus, die der Füllung des Speicherbehälters mit der Behandlungsflüssigkeit, beispielsweise einer Färbeflotte, sowie zum Ablaufen der Behandlungsflüssigkeit dient. Die Überströmleitung 103 ist an die Leitung 107 angeschlossen. Ferner sind am oberen Ende des Speicherbehälters 102 eine Druckluftleitung 109 mit einem Druckluftventil 110 und ein Entlüftungsventil 111 eingezeichnet.

Der Behandlungsbehälter 101 weist an seinem rechten Ende eine Beschickungsöffnung auf, die mit einem deckelartigen Verschluß 112 versehen ist. Im Behandlungsbehälter 101 ist ein langgestreckter zylindrischer Träger 113 mit in seiner Umfangsflache vorgesehenen Perforationen 114 koaxial und drehbar mittels lagerartigen Unterstützungen 115 und 116 gelagert. Das rechte Ende des Trägers 113 ist duch eine Stirnplatte 117 verschlosssen, an der ein mit dem Verschluß 112 entfernbares einstellbares Halteteil 118 anliegt, das den Träger 113 an axialen Verlagerungen hindert. Am linken Ende ist der Träger 113 mit einem äußeren Zahnkranz 119 versehen, mit dem ein Ritzel 120 einer Antriebseinrichtung 121 .kämmt, die einen Motor 122 mit einem Getriebe 123, eine Kupplung 124 und eine Antriebswelle 125 umfaßt, die durch die fest verschlossene Stirnwand des Behandlungsbehälters 101 geführt und gelagert ist sowie das Ritzel 120 trägt.

Im Behandlungsbehälter 101 ist eine ringförmige Trennwand 126 vorgesehen, die sich radial zwischen dem Mantel des Be¬ handlungsbehälters und dem Träger 113 erstreckt, wodurch der Behälter 101 in eine Ablaufkammer 127 am linken Ende des Behälters 101 und in eine Fasermaterialkammer 128 unter¬ teilt ist. Da der Träger 113 ~- n seinem den Zahnkranz 119 tragenden linken Ende offen ist, bildet das Innere des zy¬ lindrischen Trägers 113 einen zentralen Fortsatz der Ablauf¬ kammer 127. Die Kammern 127 und 128 stehen nur durch die

OMPI . /., IPO

Per orationen 114 des Trägers 113 in Strömungsverbindung miteinander.

Wie dargestellt ist das zu behandelnde Fasermaterial 129 in Schichten auf den Träger 113 au gewickelt, und da die Per orationen 114 nur in dem vom Fasermaterial 129 be¬ deckten Axialbereich vorgesehen sind, verläuft die Strö¬ mungsverbindung zwischen den Kammern 127 und 128 außer durch die Per orationen 114 nur durch das Fasermaterial 129 hindurc .

Die Überströmleitung 103 mit dem Überströmventil 104 mün¬ det wie dargestellt an der Unterseite des Behälters 101 in die Fasermaterialkammer 128. Die Überströmleitung 103 ist aber auch über eine Zweigleitung 130 mit einem Ventil 131 mit der Ablaufkammer 127 verbunden.

Ferner mündet eine Spülwasserleitung 132 mit einem Spül¬ ventil 133 an der Behälterunterseite in die Fasermaterial¬ kammer 128. Auch ist eine vom unteren Ende der Ablaufkam¬ mer 127 ausgehende gesonderte Ablaufleitung 134 mit einem Ablaufventil 135 vorgesehen.

Ferner ist dem Behandlungsbehälter 101 eine Vakuumpumpe 136 zugeordnet, die über eine Saugleitung 137 mit einem Saugventil 138 an die Ablaufkammer 127 angeschlossen ist. Die Saugleitung 127 ist über eine Hilfssaugleitung 139 mit einem Hilfssaugventil 140 auch mit der Fasermaterialkam¬ mer 128 verbunden. Zwischen der Abzweigung der Hil ssaug¬ leitung 139 und der Vakuumpumpe 1 6 sind in die Sauglei¬ tung 137 ein Wärmeaustauscher 141 mit einer ein Ventil 142 aufweisenden Wärmetauscherschlange " h ' ~ sowie ein Drossel¬ ventil 144 eingeschaltet, das den von der Vakuumpumpe 136 bestimmten Druck in der Ablau kammer 127 auf einen gewünsch ten Wert einregelt.

Ferner mündet in die Fasermaterialkammer 128 an der Ober¬ seite des Behälters eine Luftleitung 145 mit einem Luft¬ ventil 146. Durch diese Luftleitung 145 kann ggf. vorge¬ wärmte Druckluft eingeleitet werden. Außerdem sind am Behälter 101 im Bereich der Fasermaterialkammer 128 ein Entlüftungsventil 147 sowie eine Entleerungsleitung 148 mit einem Entleerungsventil 14 angeschlossen.

Zur Steuerung der Vorrichtung, die ggf. auch teilweise von Hand vorgenommen werden kann, ist eine Steuereinheit 150 vorgesehen. Wie schematisch angedeutet ist die Steuerein¬ heit 150 über Signalleitungen mit einem Temperaturfühler 151 im Behandlungsbehälter 101 und mit einem Temperatur¬ fühler 152 im Speicherbehälter 102 sowie mit einem Flüs- sigkeitsstandhöhenfühler 153 und einem Druckfühler 1 4 in der Ablaufkammer 127 verbunden. Ferner gehen von der Steuereinheit 150 Steuerleitungen aus, die der Übersicht¬ lichkeit wegen nicht zu allen zu betätigenden Ventilen sondern nur zum Drosselventil 144 sowie zum Überström¬ ventil Tθ4 bzw. zum Dampfventil 106 eingezeichnet sind. Diese dargestellten Steuerleitungen dienen der Regelung des Drucks und der Temperatur der Flüssigkeit während ihrer Teilverdampfung.

Nachfolgend wird die Betriebsweise der Vorrichtung er¬ läutert: Zu Beginn des Verfahrens ist die Behandlungs¬ flüssigkeit (Färbeflotte)im Speicherbehälter 102 einge¬ füllt. Die Ventile 104, 108, 131, 133, 140 und 146 sind geschlossen, wie in Fig. ~ angedeutet. Die Färbeflotte wird durch Dampfzufuhr auf beispielsweise 135 C erwärmt und auf einen Druck von 3 bar gebracht. Die Vakuumpumpe 36 saugt Luft aus dem Behandlungsbehälter 101 sowie aus dem befindlichen Fasermaterial 129» Dabei wird ein

Vakuum von beispielsweise 80 im Behandlungsbehälter 101 erzeugt. Gleichzeitig wird der Träger 114 mit dem Faser¬ material 129 mittels der Antriebseinrichtung121 langsam gedreht, beispielsweise mit ein bis zwei Umdrehungen pro

Minute .

In der zweiten Stufe wird das Überströmventil 104 geöffnet so daß die Färbeflotte in den Behandlungsbehälter 101 strö Infolge der Druckverhältnisse strömt die Färbeflotte schne in beispielsweise nur 100 Sekunden zum Behandlungsbehälte und dringt durch das Fasermaterial 129 u d die Perforatio¬ nen 1l4 hindurch in die Ablau ammer 127 ein. Der Druck im Speicherbehälter 102 wird weiterhin auf 3 bar gehalten, un eingleich hoher Druckwert herrscht in der Fasermaterial- kammer 128 außerhalb des Fasermaterials 129. Infolge der Vakuumpumpe 136 und der entsprechenden Regelung des Dros¬ selventils 1 4 wird in der Ablaufkammer 127 ein niedrigere Druck von beispielsweise etwa 2,9 bar aufrecht erhalten. Dieser Druckunterschied zeigt sich in unterschiedlichen Standhöhen in der Ablaufkammer 127 und in der Fasermateria kammer 128. Der Träger 113 wird weiterhin kontinuierlich gedreht. Ggf. kann eine Umkehrung der Durchströmungsrich¬ tung vorgenommen werden, indem an Stelle der Ventile 104 und 138 die Ventile 131 und 140 geöffnet werden. Eine pul¬ sierende Durchströmung, bei der beispielsweise die Ventile 104 und 138 20 Sekunden lang und die Ventile 131 und 140 zehn Sekunden lang geöffnet werden,kann ggf. zweckmäßig sein.

Dann wird zum Beispiel isotherm gefärbt. Dabei wird der Träger 113 beispielsweise mit zwei bis drei Umdrehungen pro Minute gedreht. Das Dampfventil 106 ist teilweise ge¬ öffnet, damit Dampf in einer solchen Menge eingeleitet wird, daß die vorgesehene Färbetemperatur τon beispiels¬ weise 135 C aufrecht erhalten bleibt. Diese Temperatur herrscht auch innerhalb des Fasermaterials 129. Hierbei siedet die Färbeflotte, wobei sie mit einer vergleichs¬ weise großen Diffusionsgeschwindigkeit in das Fasermate¬ rial eindringt. Aus der Ablaufkammer 127 wird Wasserdampf bei etwa 2,9 bar und 133 0 abgezogen. Im Wärmeaustauscher 141 beträgt der Druck etwa 2,85 bis 2,90 bar. Dieser Färbe

vorgang unter kontinuierlichem Sieden der Färbeflotte er¬ folgt während einer Zeitdauer von 5 is 10 Minuten oder mehr.

Fakultativ kann der Färbevorgang bei allmählich sinkendem Druck und sinkender Temperatur durchgeführt werden. Dabei sind die Ventile 104 und 138 geschlossen, und das Hilfs- saugventil 140 ist geöffnet. Dieser Färbevorgang kann 5 bis 10 Minuten oder länger durchgeführt werden. Zweckmäßiger¬ weise kann darauf hingewirkt werden, daß in kurzen Abstän¬ den beispielsweise von einer Minute eine gleichmäßige Temperatur in jeder Fasermaterialschicht gewährleistet ist. Selbstverständlich wird auch während dieses Verfahrens¬ schritts der Träger 113 mit dem Fasermaterial 129 gedreht.

Die nächste Ver ahrensstu e betrifft das Ablaufen der heißen Färbeflotte. Dabei sind sowohl das Saugventil 138 wie das Hilfssaugventil 140 geschlossen, jedoch sind die ' Ventile 104, 108 und 131 geöffnet. Bei Temperaturen unter 100°C wird auch das Luftventil 146 geöffnet.

Die letzte Verfahrensstufe bilden das Spülen und Entwäs¬ sern des Fasermaterials im Behandlungsbehälter 101. Dabei sind die Ventile 133, 138 und 146 geöffnet, wobei das Spül¬ wasser nur im unteren Bereich des Behälters steht, während durch den oberen Bereich Luft gesaugt wird. Der Träger 113 mit dem Fasermaterial 129 wird auch hierbei weitergedreht, so daß das Fasermaterial mit seinen in Umfangsrichtung hintereinander angeordneten Abschnitten abwechselnd ge¬ spült und entwässert wird. Dabei kann auch Spülwasser mittels der Vakuumpumpe 136 abgeführt werden. Ein schnel¬ les Entleeren der Spülflüssigkeit erfolgt bei geöffneten Ventilen 104, 131 und 146. Eine kurze Extraktion der Feuchtigkeit aus dem Fasermaterial 129 erfolgt dann da¬ durch, daß nur die Ventile 138 und 146 geöffnet sind.

Ge äß Fig. 4 umfaßt die vierte Vorrichtung einen Be¬ handlungsbehälter l6θ, der wie der Behälter 1 gemäß Fig. 1 in eine innere Kammer 161 und eine äußere Kammer 162 unte teilt ist, in der perforierte Träger 163 für Kreuzspulen 164 angeordnet sind, sowie einen Flüssigkeitsbehälter 165. Die beiden Behälter 16θ und 165 sind an ihren unteren End durch eine Flüssigkeitsleitung 166 mit einem Ventil 167 miteinander verbunden. Die Flüssigkeitsleitung 166 mündet wie dargestellt direkt in die innere Kammer 161, ist aber über eine Zweigleitung 168 mit einem Ventil 169 auch mit der äußeren Kammer 162 des Behälters 160 verbunden. In die Flüssigkeitsleitung 166 mündet auf der dem Flüssigkeitsbe¬ hälter 165 zugeordneten Seite des Ventils 167 eine Zu- un Ablaufleitung 170 mit einem Ventil 171.

Die beiden Behälter 160 und 165 sind in ihrem oberen Be¬ reich durch eine Dampfleitung 172 mit Ventilen 173 und 17 sowie durch eine Evakuierleitung 175 mit Ventilen 176 und 177 miteinander verbunden. Eine Dampfzuleitung 178 führt über ein Ventil 179 in den unteren Bereich des Flüssig¬ keitsbehälters 165 sowie über ein Regelventil 180 zum zwischen den Ventilen 173 und 174 angeordneten mittleren Abschnitt der Dampfleitung 172.

An den mittleren Abschnitt der Evakuierleitung 175 zwische den Ventilen 176 und 177 ist eine Leitung 181 angeschlosse in die zunächst ein Kondensator 182 mit einem Regelventil 183 und dahinter eine Vakuumpumpe 184 eingebaut sind.

Mit dieser Vorrichtung kann wie folgt gearbeitet werden: Zunächst wird bei geschlossenem Ventil 167 und geöffnetem Ventil 171 die Färbeflotte über die Leitung 170 in den Flüssigkeitsbehälter 165 eingeführt, worauf das Ventil 171 wieder geschlossen wird und die Flotte im Behälter 165 da¬ durch auf die gewünschte Temperatur gebracht wird, daß durch das geöffnete Ventil 179 heißer Dampf in die Flüssi keit eingeleitet wird. Nach dem Öffnen des Ventils 167

strömt die Flüssigkeit durch die Flüssigkeitsleitung 166 in den mit zu färbenden Kreuzspulen 164 beschickten Be¬ handlungsbehälter l6θ. Zur Vermeidung eines Gegendrucks im Behälter 160 wird das Ventil 176 geöffnet. Nachdem der Flüssigkeitsspiegel im Behandlungsbehälter 160 bis über die Kreuzspulen 164 angestiegen ist, wird die Färbeflotte im Behandlungsbehälter 160 dadurch zum langsamen Kochen gebracht, daß der Behälterdruck allmählich gesenkt wird, was auch ohne Zuhilfenahme der Vakuumpumpe 184 allein mit dem Kondensator 182 und dem Regelventil 18 möglich ist. Die Einwirkung der Flotte auf das Fasermaterial der Kreuz¬ spulen 164 wird durch das Entstehen und Aufsteigen der Dampfblasen innerhalb der Flotte und die damit verbundene Durchmischung der Flotte intensiviert. Des weiteren wird der Färbevorgang dadurch beschleunigt, daß die Ventile 173 und 174 in der Dampfleitung 172 wechselweise kurzzeitig geöffnet bzw. geschlossen werden, so daß der Flotte im Be¬ handlungsbehälter 160 eine pulsierende Bewegung erteilt wird.

Die Vorrichtung bietet die Möglichkeit, bei entsprechender Ventilstellung und unter Nutzung des Drucks des in der Lei¬ tung 78 vorhandenen Wasserdampfes sowie ggf. der Saugwir¬ kung der Vakuumpumpe 184 das Färbeverfahren mehrstufig durchzuführen, indem die Färbeflotte aus dem Behandlungs¬ behälter 160 durch die Flüssigkeitsleitung 166 in den Flüssigkeitsbehälter 165 zurückgeführt wird, um dann das vorbeschriebene Verfahren zu wiederholen. Eine vollständige Entleerung des Behandlungsbehälters 160 wird durch Öffnen des Ventils 169 in der Zweigleitung 168 erreicht. Nach Be¬ endigung des Färbevorganges kann die Flotte auch über die Leitung 170 ganz abgezogen werden.

- υREX

OMPI

Λ. WIPO




 
Previous Patent: BRAIDING MACHINE

Next Patent: ACCELERATED PULPING PROCESS