Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR POSITIONING WILDCAT, PROSPECT AND PRODUCTION WELLS AT OIL AND GAS FIELDS BY USING A THREE-DIMENSIONAL GEOLOGICAL MODEL
Document Type and Number:
WIPO Patent Application WO/2008/041885
Kind Code:
A1
Abstract:
The invention can be used in oil geology, in particular for optimally locating new wells at the site to be investigated. The inventive method for positioning wildcat, prospect and production wells on oil and gas fields by using a three-dimensional geological model, consists in carrying out seismic exploration works, in drilling wells and simultaneously recovering a core from target formations, in carrying out geophysical examinations of wells, in testing said wells, in determining geological types of sections having different oil and gas production characteristics for the target formations by using the entirety of obtained seismic and borehole data items, in drawing forecast and seismic maps relating to the distribution of the determined types of sections on the investigated area, wherein the map of distribution of types of geological sections based on borehole and seismic investigations is converted into a number format which takes into account the fidelity parameters of forecasting technique, in developing, on the basis of the thus obtained map, the lithologic (lithofacies) model of a formation or a field, in developing, on the basis of the obtained lithofacies model, porosity models and oil and gas saturation of rocks, in evaluating, on the basis of the obtained geological model, the resource base of the field, in determining sites for possible sink of new (projected) wells and in locating new wells by means of a geologically, ecologically and economically optimal manner using the entire information available in the model. Said invention makes it possible to increase the efficiency of geological exploration works and to reduce the cost and time thereof by reducing the amount of drilling works and by increasing the performance thereof, to improve environmental friendliness by decreasing the negative influence on the environment, reducing drill footage and the amount of auxiliary engineering measures, such as communications and infrastructure.

Inventors:
SLAVKIN VLADIMIR SEMENOVICH (RU)
ALEXEEV ALEXEI DMITRIEVICH (RU)
GAVRILOV SERGEI SERGEEVICH (RU)
KOLOSKOV VASILY NIKOLAEVICH (RU)
KUCHERYANVENKO DMITRY SERGEEVI (RU)
Application Number:
PCT/RU2007/000182
Publication Date:
April 10, 2008
Filing Date:
April 13, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZAKRYTOE AKTSIONERNOE OBSCHEST (RU)
SLAVKIN VLADIMIR SEMENOVICH (RU)
ALEXEEV ALEXEI DMITRIEVICH (RU)
GAVRILOV SERGEI SERGEEVICH (RU)
KOLOSKOV VASILY NIKOLAEVICH (RU)
KUCHERYANVENKO DMITRY SERGEEVI (RU)
International Classes:
G01V1/00
Foreign References:
RU2205435C12003-05-27
RU2183335C12002-06-10
FR2113552A51972-06-23
RU2183843C22002-06-20
Other References:
BAKIROVA E.A.: "Osnovy metodiki geologorazvedochnykh rabot na neft i gas", POD RED., MOSCOW, NEDRA, 1991, pages 81 - 84
Download PDF:
Claims:
формула изобретения

способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа, характеризующийся тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом, полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным с геолого-эколого-экономической точки зрения образом размещают новые скважины.

Description:

способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели.

область техники

изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте.

предшествующий уровень техники

известен способ размещения скважин по спектрально-временным параметрам нефтегазопродуктивных типов геологического разреза, включающий бурение скважин с отбором керна, проведение электрического, радиоактивного, акустического и сейсмического каротажа, испытание скважин, исследование керна, проведение сейсморазведочных работ могт и суждение по полученным данным о нефтегазопродуктивных, иных типах геологического разреза исследуемого объекта. местоположение выявленных типов разреза определяют на картах по изолиниям равных значений спектрально временных параметров. скважины размещают по принципу максимальных, эффективных продуктивных объемов на изолиниях спектрально- временных параметров, соответвтвующих нефтегазопродуктивным типам геологического разреза, в доверительном интервале, равном 0,5 сечения карт (RU 2205435, Cl, 27.05.2003).

недостатками известного способа являются:

1) использование в целях обоснования заложения скважин отдельных конкретных результатов сейсмического прогноза геологических типов разреза. наличие одного конкретного прогнозного параметра (карты) не является достаточным для размещения новых скважин, поскольку не учитывает прочие показатели, не всегда коррелирующиеся с данным. неиспользование части материалов ведет к ошибкам в определении точек размещения скважин.

2) размещение скважин на основе двухмерной карты, а не трехмерной геологической модели. использование результатов известных способов разведки при построении трехмерных геологических моделей может выполняться лишь на качественном уровне (используются общие закономерности) или они не используются вовсе. полный учет результатов сейсмического прогноза не проводится ввиду отсутствия

методологии и технологии их использования. это означает, что при создании результирующей трехмерной геологической модели месторождения значительная часть накопленной геолого-геофизической информации не используется. это приводит к значительным ошибкам в технико-экономических обоснованиях (тэо) доразведки и эксплуатации месторождений, тэо коэффициента извлечения нефти, а также невозможности детальной экономической оценки нескольких вариантов размещения скважин.

3) результаты сейсмического прогноза представлены детерминистически и не преобразуются в стохастический (вероятностный) вид, что не позволяет создавать на их основе стохастические (вероятностные) модели, которые в настоящее время являются основным средством расчета рисков проведения тех или иных мероприятий, оценки запасов нефти и газа и практически любых технико-экономических проектов и обоснований. помимо этого при построении моделей не учитывается критерий достоверности методологии и технологии сейсмического прогноза, который важен при оценке рисков заложения новых скважин, оценке ресурсной базы месторождения по каждому геологическому типу разреза или типу коллектора в отдельности. это приводит к получению только некоторой обобщенной величины оценки описанных выше важнейших технико-экономических показателей.

раскрытие изобретения

технической задачей, на решение которой направлено данное изобретение, является повышение надежности и точности обоснования заложения новых поисковых, разведочных и эксплуатационных скважин, составления и обоснование технико- экономических проектов доразведки и эксплуатации месторождений, технико- экономических обоснований коэффициента извлечения нефти, сокращение стоимости и сроков геологоразведочных работ, уменьшение негативного воздействия на окружающую среду.

техническим результатом является повышение эффективности, сокращение стоимости и сроков геологоразведочных работ на месторождениях нефти и газа за счет сокращения объемов буровых работ и повышения их результативности; повышение экологичности за счет сокращения негативного воздействия на окружающую среду, уменьшения объемов бурения и объемов вспомогательных инженерных мероприятий, таких как проведение коммуникаций, инфраструктуры.

технический результат достигается тем, что способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели, характеризуется тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом, полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным с геолого-эколого-экономической точки зрения образом размещают новые скважины.

вариант осуществления изобретения

предложенное изобретение реализуется следующим образом.

способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели, характеризующийся тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом, полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных

пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным с геолого- эколого-экономической точки зрения образом размещают новые скважины.

стандартными являются операции:

- проведение сейсморазведочных работ, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин;

- выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования.

операция трансформации полученных прогнозных карт распространения геологических типов разреза пластов в числовой формат, учитывающий параметры достоверности методики прогноза, выполняется в зависимости от метода проведенного сейсмического прогнозирования. в общем случае для каждого типа разреза выделяют четыре зоны, различающиеся оценочными параметрами достоверности выполненного сейсмического прогноза, а между их границами осуществляют линейную или гладкую интерполяцию. эти четыре зоны таковы:

1. прискважинная зона (участок в районе скважины с размерами примерно соответствующими минимальным размерам выявленной или предполагаемой зоны распространения того типа геологического разреза, к которому относится данная скважина). вероятность присутствия соответствующего типа в этой зоне принимается равной 1.

2. зона уверенного выделения типа (участок внутри выявленной площади распространения того или иного типа разреза, находящийся на некотором удалении от границ смены типов геологического разреза; удаление выбирается на основе детальности проведенного анализа и ограничений метода прогноза). вероятность присутствия соответствующего типа здесь уменьшается от 1 (прискважинная область) до числа, характеризующего доказанную или ожидаемую подтверждаемость использованного метода прогнозирования.

3. зона интерполяции, которая находится между зоной уверенного выделения типа разреза и внешней границей прогнозного поля распространения данного типа разреза. вероятность присутствия здесь соответствующего типа принимается

уменьшающейся по направлению к границе прогнозного поля распространения от значения характеризующего доказанную или ожидаемую подтверждаемость использованного метода прогнозирования до этой же величины деленной на количество типов геологического разреза, граничащих с данной областью в заданном направлении.

4. собственно граница смены типов разреза. вероятность присутствия здесь соответствующего типа принимается равной значению характеризующему подтверждаемость использованного метода прогнозирования деленному на количество типов геологического разреза, граничащих с данным на рассматриваемом участке.

в результате трансформации прогнозной сейсмической карты распространения типов разреза по вышеописанному принципу получается карта, которая характеризует не только прогнозные области распространения определенных типов разреза, как то имеет место на первичном варианте, но и точность прогноза (вероятность присутствия) данных типов для каждой точки территории. вероятность присутствия остальных типов в этой точке рассчитывается отдельно в программной среде, в которой производится литофациальное моделирование. сумма вероятностей присутствия всех типов при этом должна оставаться равной 1.

операция построения на основе полученной карты литологической (литофациальной) модели пласта или месторождения может выполняться различным образом в зависимости от используемого программного обеспечения и поставленной задачи, например, с помощью свертки полученной карты вероятности с геолого- статистическими разрезами распределения литологических (литофациальных) типов по скважинам каждого конкретного типа разреза. геолого-статистические разрезы (гср) определяют вероятность присутствия каждого конкретного моделируемого параметра (в данном случае - литологического типа породы) для каждого элементарного стратиграфического интервала моделируемого объекта и однозначно характеризуют выделенные ранее геологические типы разреза. идея свертки состоит в том, что вероятностная карта типов разреза задаёт распространение типов разреза по площади, а гср - по разрезу (т.е. по вертикали), объединив эти закономерности, получаем объёмную характеристику моделируемого объекта. формулы свертки могут быть различными, например, при использовании в роли альтернативных соседних типов разреза, формула выглядит следующим образом:

р iюро a (ij ty _ вероятность присутствия конкретного литологического типа в ячейке номером i,j,k; f тιт оJ) - вероятность присутствия геологического типа разреза в ячейке с номерами г,j (из прогнозной карты типов);

^ поро д а гcp mm Qψ _ вероятность (частота встречаемости) литологического типа в ячейке

гср с номером к; п — количество соседних геологических типов разреза

назначение формулы заключается в расчете вероятности присутствия каждого конкретного литологического типа в конкретной ячейке геологической объёмной модели. она рассчитывается как произведение вероятности наличия геологического типа разреза на площади (fтипfij)) нa вероятность наличия данного литологического типа на вертикальном (стратиграфическом) уровне в соответствии с гср рассматриваемого геологического типа разреза.остальная вероятность l-f, nгm (i,j) одинаково распределяется между прилежащими «типaми-coceдями».

в итоге получаем кубы (т.е. трехмерные модели) распространения вероятностей наличия каждого конкретного литологического типа пород в каждой конкретной ячейке модели. число кубов соответствует числу литологических (литофациальных) типов, используемых в модели. полученные кубы вероятностей используются в виде трехмерных трендов при построении трехмерной литологической модели объекта. собственно методика моделирования выбирается в зависимости от исходных данных и поставленной задачи из стандартных методик, входящих в состав пакетов трехмерного моделирования.

операция построения модели пористости осуществляется на основе полученной трехмерной литофациальной модели стандартным образом или с использованием методики использования карт распространения типов разреза, описанной выше (в разделе простроение литологической модели). построение модели нефтегазонасыщенности также осуществляется одним из стандартных методов.

операция оценки ресурсной базы месторождения может проводиться как стандартными методами, так и с разделением модели на зоны, соответствующие

областям распространения конкретных геологических типов разреза или зоны распространения различных нефтегазоперспективных типов коллекторов. в этом случае на основе литофациальной модели выделяются отдельные участки геологической модели, соответствующие зонам распространения типов разреза или типов коллекторов и в их пределах по отдельности стандартным образом на основе модели нефтегазонасыщенности проводится подсчет геологических запасов нефти и (или) газа.

операция расчета оптимального положения новых (проектируемых) скважин проводится на основе нескольких (стохастических) реализаций геологической модели путем выбора минимального количества скважин, необходимого для решения поставленной геологической задачи среди всех возможных положений скважин в соответствии со всей имеющейся информацией, сведенной в трехмерную геологическую модель.

промышленная применимость

промышленное применение изобретения заключается в создании с его помощью трехмерных геологических моделей месторождений нефти и газа. при этом наибольшая эффективность достигается для месторождений, характеризующихся недостаточной буровой изученностью, в частности для месторождений, находящихся на стадии завершения геолого-разведочного этапа, а также для месторождений локализованных в коллекторах с высокой вертикальной литологической и латеральной фациальной изменчивостью. на основе получаемой трехмерной геологической модели с наибольшей обоснованностью и наименьшим риском выбирается положение и траектория новых поисковых, разведочных и эксплуатационных скважин, создаются проекты доразведки месторождений, выбирается оптимальная система разработки месторождения, проводится оценка его запасов. при этом запасы дифференцируются по приуроченности к зонам, соответствующим областям распространения конкретных геологических типов разреза, и коллекторам с различными фильтрационно-емкостными (добычными) свойствами.