Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE PRECIPITATION OF ARSENIC AND HEAVY METALS FROM ACIDIC PROCESS WATER
Document Type and Number:
WIPO Patent Application WO/2020/078685
Kind Code:
A1
Abstract:
The invention relates to a method for the precipitation of arsenic and heavy metals from acidic, in particular sulphuric acid, process water (12), containing both arsenic and heavy metals, comprising a precipitation method phase (II) with a precipitation stage (D) in which arsenic and at least one primary heavy metal are precipitated together, wherein a sulphide precipitating agent (20) is added to the process water (12) such that arsenic is precipitated as arsenic sulphide and the at least one primary heavy metal is precipitated as metal sulphide. The precipitation method phase (II) comprises a conditioning stage (C) which is carried out before the precipitation stage (D) and in which a conditioning agent (16) is added to the acidic process water (12), which has an effect on the character, in particular the filtering properties, at least of the precipitated arsenic sulphide.

Inventors:
SCHUMACHER JOCHEN (DE)
STEIN UWE (DE)
Application Number:
PCT/EP2019/075993
Publication Date:
April 23, 2020
Filing Date:
September 26, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EISENMANN SE (DE)
International Classes:
C02F1/52; C02F1/72; C02F1/78; C02F101/10; C02F101/20; C02F103/16; C02F103/34
Foreign References:
US20140339468A12014-11-20
DE3418241A11985-11-21
Other References:
NAZARI AMIR MOHAMMAD ET AL: "Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic", HYDROMETALLURGY, vol. 174, 11 October 2016 (2016-10-11), pages 258 - 281, XP085276405, ISSN: 0304-386X, DOI: 10.1016/J.HYDROMET.2016.10.011
Attorney, Agent or Firm:
OSTERTAG & PARTNER PATENTANWÄLTE MBB (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Fällung von Arsen und Schwermetall aus saurem, insbeson dere schwefelsaurem, Prozesswasser (12), das sowohl arsen- als auch schwermetallhaltig ist, wobei das Verfahren einen Fällungs-Verfahrensab schnitt (II) mit einer Fällungsstufe (D) umfasst, in welcher Arsen und wenigs- tens ein Primär-Schwermetall gemeinsam ausgefällt werden, indem dem

Prozesswasser (12) ein Sulfid-Fällungsreagenz (20) zugegeben wird, so dass Arsen als Arsensulfid und das wenigstens eine Primär-Schwermetall als Me tallsulfid ausfallen, dadurch gekennzeichnet, dass der Fällungs-Verfahrensabschnitt (II) eine Konditionierungsstufe (C) um fasst, welche vor der Fällungsstufe (D) durchgeführt wird und bei welcher dem sauren Prozesswasser (12) ein Konditionierungsmittel (16) zugegeben wird, welches sich auf die Beschaffenheit, insbesondere die Filtrationseigen schaften, zumindest des ausgefällten Arsensulfids auswirkt 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Konditionie rungsmittel (16) Wasserstoffperoxid H202 oder Ozon 03 ist.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Konditio nierungsmittel (16) unterstöchiometrisch, stöchiometrisch oder überstöchi ometrisch bezogen auf den Arsengehalt des Prozesswassers (12) zugege- ben wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Konditionie

rungsmittel (16) im Verhältnis 0,5:1 , im Verhältnis 1 :1 oder im Verhältnis 1,5:1 bezogen auf den Arsengehalt des Prozesswassers (12) zugegeben wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass vor der Konditionierungsstufe (C) in einer Analysestufe (B) eine Analyse des Prozesswassers (12) zumindest im Hinblick auf den Arsengehalt durchge führt wird.

Description:
Verfahren zur Fällung von Arsen und

Schwermetall aus saurem Prozesswasser

Die Erfindung betrifft ein Verfahren zur Fällung von Arsen und Schwermetall aus saurem, insbesondere schwefelsaurem, Prozesswasser, das sowohl arsen- als auch schwermetallhaltig ist, wobei das Verfahren einen Fällungs-Verfahrens abschnitt mit einer Fällungsstufe umfasst, in welcher Arsen und wenigstens ein Primär-Schwermetall gemeinsam ausgefällt werden, indem dem Prozesswasser ein Sulfid-Fällungsreagenz zugegeben wird, so dass Arsen als Arsensulfid und das wenigstens eine Primär-Schwermetall als Metallsulfid ausfallen.

Saure Prozesswässer, die sowohl arsen- als auch schwermetallhaltig sind, fallen als schwefelsaure Abwässer beispielsweise bei der Kupferverhüttung oder bei der Herstellung von Halbleiterbauelementen an. Aber auch bei vielen anderen industriellen Prozessen können saure Prozesswässer entstehen, die mit Arsen und Schwermetallen belastet sind. Solche Prozesswässer werden auch als sau res Waschwasser bezeichnet.

Mit Primär-Schwermetall soll vorliegend lediglich dasjenige Schwermetall be- nannt sein, dessen gemeinsame Fällung mit Arsen betrachtet wird. Das Prozess wasser kann noch weitere, von dem Primär-Schwermetall verschiedene Schwer metalle enthalten, wobei das Primär-Schwermetall häufig im Vergleich zu den weiteren Schwermetallen in der höchsten Konzentration im Prozesswasser vor liegt. Nachfolgend wird die Erfindung am oben genannten Beispiel von Pro- zesswässern erläutert, wie sie bei der Verhüttung von Kupfer in Folgeprozessen entstehen. Bei der Verhüttung von Kupfer fallen schwefelhaltige Rauchgase an. Diese wer den einer an und für sich bekannten Rauchgasbehandlung unterzogen, bei wel cher der vorhandene Schwefel zu Schwefelsäure umgewandelt wird. Die enthal tenen Verunreinigungen sind schließlich in einem sauren Prozesswasser gesam- melt, welches bei der Verhüttung von Kupfer als Waschlösung bzw. als Wasch säure bezeichnet wird. Ein derartiges Prozesswasser bzw. eine solche Wasch säure kann Säure in Konzentrationen zwischen 1 % und 35% enthalten. Entspre chend hat das Prozesswasser einen niedrigen und gegebenenfalls auch negati ven pH-Wert. Neben Kupfer enthält derartiges Prozesswasser weitere (Schwer- )metalle, wie Zink, Cadmium, Molybdän, Blei, Selen und Quecksilber, sowie an dere Verunreinigungen, darunter vor allem Arsen.

Arsen ist ein Umweltgift und es ist daher stets das Ziel, anfallende Rest- oder Abfallstoffe wie derartige Prozesswässer aufzubereiten und dabei so weit wie möglich von Arsen und dessen Verbindungen zu befreien. Es ist hierzu z.B. be- kannt, Arsen als Sulfid aus Waschsäuren auszufällen.

Aus der DE 34 18 241 A1 ist beispielsweise ein Verfahren zur Entfernung von Arsen aus Abfallschwefelsäuren bekannt, bei dem in einer Schwefelwasserstoff atmosphäre als Sulfidierungsmittel eine wässrige Lösung aus Natriumsulfid NaS 2 und Natriumhydrogensulfid NaHS verwendet wird, deren Natriumsulfid- menge überstöchiometrisch zum Arsengehalt der Abfallsäure eingestellt wird. Bei derartigen Fällungsreaktionen werden auch in dem Prozesswasser vorhan denes Kupfer und andere vorhandene Schwermetalle als Sulfid ausgefällt. Die ausgefällten Sulfide, d.h. Arsensulfid und Kupfersulfid sowie die Sulfide anderer vorhandener Schwermetalle werden nach der Fällungsreaktion aus dem erhal- tenen Filtergemisch herausgefiltert und der Filterkuchen anschließend entsorgt. Bei bekannten Fällungsverfahren fällt Arsensulfid in Form von einer Art Flocken aus, welche sich durch eine geringe Dichte, kleine Flockengröße, aber insge samt ein verhältnismäßig großes Volumen auszeichnen. Diese Flocken zeigen eine sehr geringe Tendenz zur Sedimentation und sind darüber hinaus mecha nisch instabil. Bei dem Filtervorgang werden die Arsensulfid-Flocken daher zu- sätzlich leicht zerrieben und es entsteht eine Art Schmierfilm oder Schlamm, durch den der Filter, welcher beispielsweise als Filtertuch ausgebildet ist, bereits nach kurzer Zeit verstopft, weshalb dann ein weiterer bzw. effektiver Filtervor gang nicht mehr möglich ist. Der Filter muss folglich bereits nach geringen Mengen an aufgenommenen Sulfiden und entsprechend kurzer Standzeit ge- wechselt werden, was den Filtervorgang arbeits- und zeitaufwendig sowie kos tenintensiv macht.

Es ist Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art bereit zustellen, welches eine sehr stabile und schwere Flocke ausbildet, so dass eine effektive Sedimentation bei guten Filtrationseigenschaften erreicht wird. Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass der Fällungs-Verfahrensabschnitt eine Konditionierungsstufe umfasst, welche vor der Fällungsstufe durchgeführt wird und bei welcher dem sauren Prozess wasser ein Konditionierungsmittel zugegeben wird, welches sich auf die Be- schaffenheit, insbesondere auf die Filtrationseigenschaften, zumindest des aus gefällten Arsensulfids auswirkt.

Erfindungsgemäß wurde festgestellt, dass es möglich ist, die Beschaffenheit des ausgefällten Arsensulfids bereits vor dem Ausfallen günstig zu beeinflussen, in dem dem sauren Prozesswasser zunächst ein Konditionierungsmittel zugege- ben wird, um erst hiernach die Sulfidfällung für Arsen und das Primär-Schwer- metall zu initiieren. Es ist also erfindungsgemäß möglich, die Fällungschemie bereits im Vorfeld der Fällungsreaktion derart positiv zu beeinflussen, dass Fäl lungsprodukte erhalten werden, welche beträchtlich bessere Sedimentationsei- genschaften und Filtrationseigenschaften zeigen als Fällungsprodukte, die ohne vorherige Zugabe eines Konditionierungsmittels erhalten werden.

Vorzugsweise handelt es sich bei dem Konditionierungsmittel um Wasserstoff peroxid H 2 0 2 oder Ozon 0 3 . Entgegen dem herrschenden Verständnis wurde erfindungsgemäß erkannt, dass eine vorhergehende Zugabe von Wasserstoff- peroxid H 2 0 2 oder Ozon 0 3 nicht nur gegebenenfalls eine Oxidation von vor handenem As(lll) zu As(V) bewirkt, sondern außerdem bei der Fällungsreaktion zu Fällungsprodukten, vornehmlich Arsensulfid, führt, die eine günstigere Be schaffenheit bezogen auf die Sedimentationsfähigkeit und die Filtrationseigen schaften aufweisen. Das nach dem erfindungsgemäßen Verfahren ausgefällte Arsensulfid bzw. die erhaltenen Fällungsprodukte bilden einen schweren, stabi len Schlamm, welcher gute Sedimentations- und Filtrationseigenschaften hat und einen zwar dichten, aber nicht verstopfenden Filterkuchen ausbildet.

Die Filtrationseigenschaften des Fällungsprodukts werden bereits positiv beein flusst, wenn Konditionierungsmittel unterstöchiometrisch bezogen auf den Ar- sengehalt des Prozesswassers zugegeben wird. Besonders gute Ergebnisse wer den jedoch erreicht, wenn das Konditionierungsmittel stöchiometrisch oder so gar überstöchiometrisch zum Arsengehalt des Prozesswassers zugegeben wird.

Dabei wird Konditionierungsmittel vorzugsweise im Verhältnis 0,5:1, vorzugs weise im Verhältnis 1 :1, bevorzugt im Verhältnis 1,5:1 bezogen auf den Arsen- gehalt des Prozesswassers zugegeben. In der Praxis bei Anwendung von Was serstoffperoxid H 2 0 2 als Konditionierungsmittel konnten umso besser filterbare Fällungsprodukte gewonnen werden, je mehr H 2 0 2 zugegeben wurde.

Um die notwendige Menge an Konditionierungsmittel zu ermitteln, ist es von Vorteil, wenn vor der Konditionierungsstufe in einer Analysestufe eine Analyse des Prozesswassers zumindest im Hinblick auf den Arsengehalt durchgeführt wird. Auf diese Weise kann eine auf den tatsächlichen Arsengehalt abge stimmte Fällung durchgeführt werden.

Nachfolgend wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand Figuren erläutert. In diesen zeigen:

Figur 1 ein Verfahrensschema;

Figur 2 Fotos von Ergebnissen des Verfahrens, das im Laboratoriumsmaßstab durchgeführt wurde.

Dort sind zwei Pumpen mit 2 und 4 bezeichnet, Förderleitungen sind in dem Schema durch Pfeile veranschaulicht, deren Pfeilrichtung die jeweilige Förder richtung anzeigt. Auf eine jeweilige Kennzeichnung der Förderleitungen wurde verzichtet.

In einem mit I bezeichneten Vorbehandlungs-Verfahrensabschnitt erfolgt eine Vorbehandlung, bei der eine bei der eingangs erwähnten Rauchgasbehandlung erhaltene Waschsäure 6 zunächst für die Trennung von Arsen und Kupfer vor bereitet wird. Beispielsweise können insbesondere von der Waschsäure 6 mit geführte Staubpartikel und ungelöste Arsentrioxid-Partikel unter Verwendung von Fällungshilfsmitteln, wie sie an und für sich bekannt sind, gefällt und abge- trennt werden. Hierzu wird die Waschsäure 6 in einer Abscheide- oder Filter stufe A über eine Zuführleitung zu einer Filtereinheit 8 geführt. Die abgeschie denen Feststoffe werden in einen Sammelbehälter 10 überführt und von dort einer Entsorgung zugeführt. Das erhaltene Filtrat bildet nun dasjenige Prozess- wasser 12, das von Arsen und Schwermetallen, vornehmlich von Kupfer, befreit werden soll. Die Zusammensetzung des Prozesswassers 12 wird in einer Analy sestufe B zumindest im Hinblick auf den Arsengehalt und beim vorliegenden Ausführungsbeispiel auch auf den Kupfergehalt und/oder die Schwefelsäure konzentration bestimmt. Üblicherweise haben Prozesswässer bzw. Waschsäu- ren, wie sie hier betrachtet werden, einen Schwefelsäuregehalt zwischen 1 % und 35% und enthalten zwischen 3 g/L und 18 g/L Arsen. Der Kupfergehalt liegt in der Regel bei Größenordnungen zwischen 0,1 g/L und 12 g/L.

Der Verfahrensabschnitt I zur Vorbehandlung kann neben der Filterstufe A noch weitere Behandlungsstufen oder -schritte umfassen, was hier jedoch nicht wei- ter von Interesse ist.

Kupfer definiert bei dem vorliegenden Ausführungsbeispiel das Primär-Schwer- metall. Das von Staub befreite Prozesswasser 12 ist stark sauer und hat einen pH=0. Das Prozesswasser 12 wird nun einem Fällungs-Verfahrensabschnitt II zugeführt, in welchem Arsen und Kupfer gemeinsam und gegebenenfalls mit anderen vorhandenen Schwermetallen ausgefällt werden. In diesem Fällungs- Verfahrensabschnitt II wird das Prozesswasser 12 zunächst in einen Konditionie rungsreaktor 14 gepumpt, wo ihm in einem Konditionierungsschritt C unter Rühren ein Konditionierungsmittel 16 zugegebenen wird, welches sich auf die Beschaffenheit zumindest des ausgefällten Arsensulfids auswirkt. Beim vorlie- genden Ausführungsbeispiel wird als Konditionierungsmittel 16 Wasserstoff peroxid H 2 0 2 oder alternativ Ozon 0 3 zugegeben. Wie oben angegeben, wird das Konditionierungsmittel 16 unterstöchiometrisch, stöchiometrisch oder überstöchiometrisch bezogen auf den Arsengehalt des Prozesswassers 12 zu gegeben.

Gegebenenfalls kann auf den Verfahrensabschnitt I und eine entsprechende Vorbehandlung verzichtet werden. In diesem Fall entspricht das Prozesswasser 12 der Waschsäure 6; diese wird dann direkt in den Aufbereitungsreaktor 14 geleitet.

Nach einer entsprechenden Verweildauer im Aufbereitungsreaktor 14 wird das jetzt konditionierte Prozesswasser, welches mit 12a bezeichnet ist, in einen Fäl- lungsreaktor 18 einer Fällungsstufe D überführt. Dort wird dem konditionierten Prozesswasser 12a unter Rühren ein Sulfid-Fällungsreagenz 20 zugegeben. Als Sulfid-Fällungsreagenz 20 dient in der Praxis anorganisches Sulfid, wie bei spielsweise Natriumhydrogensulfid NaHS. Aber auch andere Sulfid-Fällungsrea genzien, wie z.B. Dinatriumsulfid Na 2 S, kommen in Betracht. Auch kann Schwe felwasserstoff H 2 S verwendet werden, der seinerseits auch mittels Schwefelwas serstoff produzierender Bakterien erzeugt werden kann, wie es an und für sich bekannt ist. Das Sulfid-Fällungsreagenz 20 wird dem konditionierten Prozess wasser 12a bei einer Temperatur von etwa 40°C bis 50°C zugegeben.

In dem Fällungsreaktor 18 erfolgt eine gemeinsame Fällung von Arsensulfid und Kupfersulfid. Es können zwar auch Sulfide der anderen vorhandenen Schwermetalle ausfallen, in der flüssigen Phase des nun vorhandenen Gemi sches 22 sind aber auch nach der Fällungsstufe D insbesondere noch Cadmium und Quecksilber gelöst.

Das nun im Fällungsreaktor 18 vorliegende Gemisch 22 wird nun zu einem Ab- Scheideabschnitt III geführt und durchläuft dort eine oder mehrere Trennstufen. In der Figur ist stellvertretend eine Trennstufe E veranschaulicht, in welcher mit tels einer Filtereinheit 24 die vorhandenen Fällungsprodukte aus dem Gemisch 22 abgetrennt werden. Beim vorliegenden Ausführungsbeispiel wird das Ge misch 22 durch ein Filtertuch 26 geführt, wodurch ein Filterkuchen 28 und ein Filtrat 30 erhalten wird. In der Praxis wird das Gemisch 22 vorhergehend sedi- mentiert. Durch die dem Fällungsvorgang vorausgehende Konditionierung mit dem Konditionierungsmittel 16 kann die Sedimentationszeit des Fällungspro duktes um bis zu 50% reduziert werden im Vergleich zu dem erhaltenen Fäl lungsprodukt, das ohne die Konditionierungsstufe C erhalten wird. Das Volu- men des erhaltenen Fällungsproduktes ist demgegenüber um bis zu mehr als 60% verringert.

Insgesamt kann durch die verbesserten Filtrationseigenschaften des Fällungs produktes die Standzeit der Filtereinheit 24 bzw. insbesondere des Filtertuches 26 deutlich erhöht und gegebenenfalls mehr als verdoppelt werden. Das Filtrat 30 enthält noch zumindest oben angesprochenes Cadmium und Quecksilber und wird einer weiteren Aufbereitung IV zugeführt, wie es an und für sich bekannt ist, weshalb hierauf nicht weiter eingegangen wird.

Der Filterkuchen 28 wird gesammelt und kann im Anschluss in ebenfalls an und für sich bekannter Art und Weise einem Entsorgungsabschnitt V zugeführt und entsorgt werden. Wie oben erläutert, wird der Filterkuchen 28 in der Regel ver brannt.

Das oben beschriebene Verfahren zeigte in Laboratoriumsversuchen deutliche Effekte auf die Sedimentations- und Filtrationseigenschaften der Fällungspro dukte: Bei einem Abwasser A mit einer Konzentration an Arsen von 7,5 g/L, an Kupfer von 0,3 g/L und an Sulfat von 350 g/L wurden insgesamt 10 g/L NaHS (wirk sam) dosiert Damit konnte bei dem Flüssigkeitsanteil des Gemisches 22 bzw. bei dem Filtrat 30 die Arsenkonzentration auf unter 50 mg/L und die Kupfer- konzentration auf unter 1 mg/L reduziert werden. Bereits bei einer unterstöchi ometrische Dosierung von Wasserstoffperoxid H 2 0 2 mit einem molaren Ver hältnis von 0,5 zu Arsen konnte eine deutlich größere und kompakte Flocke, eine durchsichtige Klarphase und um ein mindestens 20% geringeres Schlamm volumen im Vergleich zu einer Fällung ohne vorherige Zugabe von Wasser- Stoffperoxid H 2 0 2 erreicht werden.

Bei einer überstöchiometrischen Dosierung von Wasserstoffperoxid H 2 0 2 mit einem molaren Verhältnis von 2 zu Arsen konnte ein nochmals kompakterer Fällschlamm erzielt werden, dessen Volumen um etwa 40% im Vergleich zu ei ner Fällung ohne vorherige Zugabe von Wasserstoffperoxid H 2 0 2 geringer ist. Dies veranschaulicht die Tabelle gemäß Figur 2. Wie dort in Spalte 2 zu erken nen ist, ergibt eine Sulfid-Fällung ohne vorherige Zugabe von Wasserstoffper oxid H 2 0 2 eine Trübe ohne Klarphase. Die Fällungsprodukte sedimentieren schlecht bis gar nicht; der verbleibende Filterkuchen ist schleimig. Spalte 3 zeigt das Ergebnis der unterstöchiometrischen Zugabe von Wasserstoffperoxid H 2 0 2 , nach welcher die Fällungsprodukte gut sedimentieren und sich eine Klarphase und ein schwerer Schlamm ausbilden, der sich gut abfiltrieren lässt, wobei ein kompakter Filterkuchen entsteht, der ein gutes Ablöseverhalten vom Filter zeigt. Spalte 4 von Figur 2 belegt, dass es bei der überstöchiometrischen Zu gabe von Wasserstoffperoxid H 2 0 2 insbesondere zu einem noch besseren Sedi- mentationsverhalten kommt. Bei einem Abwasser B mit einer Konzentration von 10 g/L Arsen, 2 g/L Kupfer und 40 g/L Sulfat wurden insgesamt 12 g/L NaHS (wirksam) dosiert. Damit konnte bei dem Flüssigkeitsanteil des Gemisches 22 bzw. bei dem Filtrat 30 die Konzentration an Arsen auf unter 4 mg/L und die Kupferkonzentration auf un- ter 0,5 mg/L reduziert werden. Auch hier wurde Wasserstoffperoxid H 2 0 2 unter stöchiometrisch in einem molaren Verhältnis von 0,5 zu Arsen dosiert. Die Flo ckenbildung wurde ebenfalls sehr positiv beeinflusst und im Vergleich zu einer Fällung ohne vorherige Zugabe von Wasserstoffperoxid H 2 0 2 die Absetzge schwindigkeit etwa halbiert und ein um mindestens 25 % geringeres Schlamm- volumen erreicht.