Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PREDICTING THE TILT INCLINATION OF A WORKPIECE PART BEING CUT FREE, AND MACHINE TOOL FOR MACHINING A PLANAR WORKPIECE
Document Type and Number:
WIPO Patent Application WO/2018/077763
Kind Code:
A2
Abstract:
The invention relates to a method for predicting the tilt inclination of a workpiece part (18) that is being cut free from a remaining workpiece using a machine tool (1, 100) during a machining process, and that rests on one or more supports, said method comprising the following steps: a. determining one or more possible tilt edges (71, 81a, 81b) about which the workpiece part (18) being cut free might tilt; b. for at least one potential tilt edge (71, 81a, 81b), particularly for each potential tilt edge (71, 81a, 81b), determining tilt moments (M1 - M4) which act on the workpiece part (18) in different states of the machine tool (1, 100); and c. on the basis of the determined tilt moments (M1 - M4), determining whether the workpiece part (18) would tilt about a tilt edge (71, 81a, 81b).

Inventors:
KRENZ CARSTEN (DE)
OTTNAD JENS (DE)
Application Number:
PCT/EP2017/076925
Publication Date:
May 03, 2018
Filing Date:
October 20, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TRUMPF WERKZEUGMASCHINEN GMBH CO KG (DE)
International Classes:
B23K37/02; B23K26/08; B23K26/16; B23K26/38; B23K37/04; B26F3/00; G05B19/4093; G05B19/41
Foreign References:
DE102013226818A12015-06-25
DE102011051170A12012-12-20
JPH06170469A1994-06-21
Attorney, Agent or Firm:
TRUMPF PATENTABTEILUNG (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Vorhersage der Kippneigung eines bei einer trennenden Bearbeitung mittels einer Bearbeitungsmaschine (1, 100) aus einem Restwerkstück freigeschnittenen und auf einem oder mehreren Auflagern aufliegenden Werkstückteils (18) mit den Verfahrensschritten :

a. Ermitteln einer oder mehrerer möglicher Kippkanten (71, 81a, 81b), um die das freigeschnittene Werkstückteil (18) kippen könnte;

b. für zumindest eine mögliche Kippkante (71, 81a, 81b), insbesondere für jede mögliche Kippkante (71, 81a, 81b) : Ermitteln von auf das Werkstückteil (18) bei unterschiedlichen Zuständen der Bearbeitungsmaschine (1, 100) wirkenden Kippmomenten (M l - M4);

c. anhand der ermittelten Kippmomente (M l - M4) : Ermitteln, ob das Werkstückteil (18) um eine Kippkante (71, 81a, 81b), kippen würde.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die durch die Gewichtskraft des Werkstückteils (18) und durch die Prozesskraft eines auf das Werkstückteil (18) an einer Freischneideposition (70) einwirkenden Fluids ausgeübten Kippmomente (M l - M4) ermittelt werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Kippkante (71) die Schnittlinie des Werkstückteils (18) mit einer Auflagerkante (74a) bestimmt wird, wenn das Werkstückteil (18) lediglich auf einem Auflager (14b) aufliegt.

4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anteile des Werkstückteils (18), die zwischen Auflagern (14a, 14b) angeordnet sind, ausgeblendet werden und die konvexe Hülle des verbleibenden Werkstückteils (18) bestimmt wird, wobei die Kippkanten (81a, 81b) als diejenigen Verbindungsgeraden von den Schnittpunkte (84 - 87) der konvexen Hülle mit den Auflagerkanten (74a, 74b) bestimmt werden, die auf der Außengeometrie der konvexen Hülle liegen.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Ermittlung der Kippmomente (M l - M4) die Gewichtskraft des freigeschnittenen Werkstückteils (18), der Schwerpunkt (75) des Werkstückteils (18) und der Abstand (a - c) des Schwerpunkts (75) von einer Kippkante (71, 81a, 81b), insbesondere von jeder Kippkante (71, 81a, 81b), ermittelt werden.

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Ermittlung der Kippmomente (M l - M4) eine in der Freischneideposition (70) wirkende Prozesskraft, insbesondere eine Gaskraft eines aus einem Bearbeitungskopf (9, 106) austretenden und auf das freigeschnittene Werkstückteil (18) auftreffenden Schneidgases, und der Abstand (b, d) der Freischneideposition (70) zu einer Kippkante (71, 81a, 81b), insbesondere zu jeder Kippkante (71, 81a, 81b), ermittelt werden.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Prozesskraft, insbesondere die Gaskraft, aus dem Produkt des aus einer am Bearbeitungskopf (9,106) angeordneten Schneidgasdüse austretenden Schneidgases und dem Öffnungsdurchmesser der Schneidgasdüse ermittelt wird.

8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass jedem ermittelten Abstand (a, b, c, d) ein Vorzeichen zugeordnet wird.

9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Minimum von ermittelten Kippmomenten (M l - M4) gebildet wird und das ermittelte Minimum mit einem Referenzwert verglichen wird und eine Kippneigung des Werkstückteils (18) ermittelt wird, wenn das Minimum kleiner ist als der Referenzwert.

10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Freischneideposition (70) derart gewählt wird und/oder eine Bearbeitungsmaschine (1, 100) derart eingestellt wird, dass ein Kippen des freigeschnittenen Werkstückteils (18) vermieden wird.

11. Verfahren zur Festlegung einer Freischneideposition (70) für ein bei einer trennenden Bearbeitung mittels einer Bearbeitungsmaschine (1, 100) aus einem Restwerkstück zuschneidendes und auf einem oder mehreren Auflagern aufliegendes Werkstückteil (18), dadurch gekennzeichnet, dass ein Verfahren zur Vorhersage der Kippneigung des Werkstückteils nach einem der Ansprüche 2 bis 9 so oft durchgeführt wird, bis eine Freischneideposition (70) derart gewählt ist, dass keine Kippneigung des freigeschnittenen Werkstückteils (18) ermittelt wird.

12. Bearbeitungsmaschine (1, 100) zur trennenden Bearbeitung eines plattenförmigen Werkstücks (2) mittels eines Bearbeitungsstrahls (3) mit einem den Bearbeitungsstrahl (3), insbesondere La- serstrahl, auf das plattenförmige Werkstück (2) ausrichtenden Bearbeitungskopf (9, 106) und zumindest einem Auflager (14a, 14b) auf dem ein durch trennende Bearbeitung freigeschnittenes Werkstückteil (18) aufliegen kann, mit einer Steuereinrichtung (15), die unter Berücksichtigung der im Verfahren nach einem der Ansprüche 1 bis

9 ermittelten Kippneigung des freigeschnittenen Werkstückteils (18) so eingerichtet und/oder programmiert ist, dass das freigeschnittene Werkstückteil (18) nicht verkippt. Bearbeitungsmaschine (1, 100) nach Anspruch 12, bei der die Steuereinrichtung (15) so eingerichtet und/oder programmiert ist, das Werkstückteil an einer Freischneideposition (70) freizuschneiden, die nach einem Verfahren gemäß Anspruch 11 ermittelt wurde.

Description:
Verfahren zur Vorhersage der Kippneigung eines freigeschnittenen Werkstückteils und Bearbeitungsmaschine zur trennenden Bearbeitung eines plattenförmigen Werkstücks

Die Erfindung betrifft ein Verfahren zur Vorhersage der Kippneigung eines bei einer trennenden Bearbeitung mittels einer Bearbeitungsmaschine aus einem Restwerkstück freigeschnittenen und auf einem oder mehreren Auflagern aufliegenden Werkstückteils. Weiterhin betrifft die Erfindung eine Bearbeitungsmaschine zur trennenden Bearbeitung eines plattenförmigen Werkstücks mittels eines Bearbeitungsstrahls mit einem den Bearbei- tungsstrahl, insbesondere Laserstrahl, auf das plattenförmige Werkstück ausrichtenden Bearbeitungskopf.

Beim Freischneiden von Werkstückteilen auf einer Laserschneidanlage, beispielsweise einer Flachbettschneidanlage, einer kombinierten Laser- Stanz-Maschine oder Hybridanlagen, können die freigeschnittenen Werkstückteile durch ihre Gewichtskraft und/oder durch die Einwirkung des Schneidgasdrucks verkippen. Dies kann in Folgeprozessen zu Problemen führen. Beim Schneiden weiterer Werkstückteile kann es zu Kollisionen kommen oder das Werkstückteil kann nicht mehr automatisiert von der Maschine entnommen werden.

Aus der DE 10 2013 226 818 AI ist eine Maschine zum trennenden Bearbeiten eines plattenförmigen Werkstücks mittels eines Bearbeitungsstrahls bekannt. Die Maschine weist zwei Werkstückauflageflächen zur Auflage des Werkstücks auf, zwischen denen ein sich entlang einer Richtung erstreckender Spalt gebildet ist. Innerhalb des Spalts sind mindestens zwei unabhängig voneinander verfahrbare Unterstützungsschlitten angeordnet, die jeweils eine Auflagefläche zur Unterstützung von beim trennenden Bearbeiten geschnitten Werkstückteilen aufweisen. Es hat sich gezeigt, dass diese Unterstützungsschlitten nicht ausreichend sind, um ein Verkippen von ausgeschnittenen Werkstückteilen sicher zu vermeiden, wenn die jeweilige Freischneideposition der Werkstückteile an einer falschen Stelle gewählt wird.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Bearbeitungsmaschine bereit zu stellen, mit denen es möglich ist, ein

Verkippen von freigeschnittenen Werkstückteilen zu vermeiden.

Gelöst wird diese Aufgabe gemäß einem ersten Aspekt der Erfindung durch ein Verfahren zur Vorhersage der Kippneigung eines bei einer trennenden Bearbeitung mittels einer Bearbeitungsmaschine aus einem Rest- Werkstück frei geschnittenen und auf einem oder mehreren Auflagern aufliegenden Werkstückteils mit den Verfahrensschritten :

a. Ermitteln einer oder mehrerer möglicher Kippkanten, um die das freigeschnittene Werkstückteil kippen könnte;

b. für zumindest eine mögliche Kippkante, insbesondere für jede mögliche Kippkante: Ermitteln von auf das Werkstückteil bei unterschiedlichen Zuständen der Bearbeitungsmaschine wirkenden Kippmomenten;

c. anhand der ermittelten Kippmomente: Ermitteln, ob das Werkstückteil um eine Kippkante kippen würde.

Es wird also zunächst analysiert, um welche möglichen Kippkanten ein freigeschnittenes Werkstückteil kippen könnte. Dann werden unterschiedliche Zustände der Bearbeitungsmaschinewird analysiert und bewertet, welche Kippmomente auf das Werkstückteil in den unterschiedlichen Zuständen wirken könnten. Beispielsweise ist ein Zustand der Bearbeitungsmaschine die Werkstückbearbeitung, bei der beispielsweise ein Schneidgas aus einem Bearbeitungskopf austritt und im Moment des Freischnitts in einer Freischneideposition auf das Werkstückteil einwirkt. Andere Kippmomente wirken auch dann auf das Werkstückteil, wenn das Schneidgas abgeschaltet ist.

Vorzugsweise werden die durch die Gewichtskraft des Werkstückteils und die durch die Prozesskraft eines auf das Werkstückteil an einer Freischneideposition einwirkenden Fluids (z.B. Wasser oder Schneidgas) ausgeübten Kippmomente (M l - M4) ermittelt. Je nach dem Verhältnis der wirkenden Kräfte bzw. Kippmomente kann es sein, dass in einem Bearbeitungszustand ein Kippen vermieden wird, weil das ausströmende Gas ein Kippen des Werkstücks aufgrund dessen Eigengewichts verhindert. Andererseits kann das Gas eine so große Kraft auf das Werkstückteil ausüben, dass das Gas für ein Kippen des Werkstückteils verantwortlich ist, das nicht kippen würde, wenn kein Gas auf das Werkstückteil strömen würde. Die Freischneideposition ist dabei die Position, an der die letzte Verbindung des Werkstückteils zum Restwerkstück getrennt wird. Bei dem freigeschnittenen Werkstückteil kann es sich sowohl um ein Gutteil als auch um ein Restteil handeln, das entsorgt werden muss.

Anhand der ermittelten Kippmomente kann dann ermittelt werden, ob es einen Maschinenzustand gibt, in dem das Werkstückteil um eine Kippkante kippen würde. Wenn dies vorhergesagt wird, können entsprechende Maßnahmen ergriffen werden, um ein solches Kippen zu verhindern. Beispielsweise kann eine andere Freischneideposition gewählt werden, oder es kann ein Auflager anders positioniert werden, oder das Werkstück kann anders auf den Auflagern angeordnet werden, um ein Kippen eines ausgeschnittenen Werkstückteils zu vermeiden.

Die Kippkante kann in Abhängigkeit davon ermittelt werden, ob das ausgeschnittene Werkstückteil auf einem oder mehreren Auflagern aufliegt. Liegt das Werkstückteil nur auf einem Auflager auf, so kann als Kippkante die Schnittlinie des Werkstückteils mit einer Auflagerkante bestimmt werden.

Wenn das Werkstückteil auf mehreren Auflagern aufliegt, die voneinander beabstandet sind, so können die Anteile des Werkstückteils, die zwischen Auflagern angeordnet sind, ausgeblendet werden und die konvexe Hülle des verbleibenden Werkstückteils bestimmt werden, wobei die Kippkanten als diejenigen Verbindungsgeraden von den Schnittpunkten der konvexen Hülle mit den Auflagerkanten bestimmt werden, die auf der Außengeometrie der konvexen Hülle liegen. Verbindungsgeraden, die in der konvexen Hülle liegen oder diese schneiden, sind keine Kippkanten. Wenn beispielsweise das freigeschnittene Werkstückteil auf zwei Auflagern aufliegt, werden die Anteile des Werkstückteils zwischen den Auflagern ausgeblendet. Aus den restlichen Punkten des freigeschnittenen Werkstückteils wird die konvexe Hülle gebildet und diese mit den Kanten der Auflager geschnitten. Somit ergeben sich vier Schnittpunkte. Jeweils zwei dieser Schnittpunkte können durch eine Gerade verbunden werden. Die Geraden bilden die Kippkanten. In diesem Fall wird also an zwei unterschiedlichen Kippkanten überprüft, ob das freigeschnittene Werkstückteil voraussichtlich kippen würde.

Zum Ermitteln der auf das Werkstückteil an den Kippkanten wirkenden Kippmomente können die Gewichtskraft des freigeschnittenen Werkstückteils, der Schwerpunkt des Werkstückteils und der Abstand des Schwerpunkts von einer Kippkante, insbesondere von jeder Kippkante, ermittelt werden. Der Abstand des Schwerpunkts von der Kippkante stellt den Hebelarm dar, der verwendet werden kann, um ein durch die Gewichtskraft des Werkstückteils verursachtes Kippmoment an der Kippkante zu ermitteln.

Außerdem kann für die Ermittlung der Kippmomente eine in der Freischneideposition wirkende Prozesskraft, insbesondere eine Gaskraft eines aus einem Bearbeitungskopf austretenden und auf das freigeschnittene Werkstückteil auftreffenden Schneidgases, ermittelt werden. Grundsätzlich ist das Verfahren für jegliche Art von Bearbeitungsstrahl anwendbar. Es kann sich dabei um einen Hochenergiestrahl, beispielsweise in Form eines Plasmalichtbogens oder eines Wasserstrahls handeln. Besonders bevorzugt ist es jedoch, wenn es sich bei dem Bearbeitungsstrahl um einen Laserstrahl handelt. Beim Laserschneiden wird ein Schneidgas verwendet, welches auf das Werkstück trifft. Somit wird durch das austretende

Schneidgas eine Kraft auf das Werkstück ausgeübt, welche zum Verkippen des Werkstücks führen könnte. Näherungsweise kann diese Gaskraft als das Produkt aus dem Gasdruck und dem Düsenquerschnitt einer Bearbeitungsdüse eines Bearbeitungskopfes ermittelt werden. Es ist auch denkbar, die Gaskraft durch detailliertere Modelle genauer zu ermitteln.

Weiterhin kann vorgesehen sein, dass der Abstand der Freischneideposition zu einer Kippkante, insbesondere zu jeder Kippkante, ermittelt wird. Dieser Abstand stellt somit den Hebelarm dar, der zur Berechnung eines Kippmoments verwendet werden kann, das sich ergibt, wenn in der Freischneideposition eine Kraft auf das freigeschnittene Werkstückteil wirkt, wie beispielsweise eine Prozesskraft, insbesondere eine Gaskraft.

Aus den durch die Gewichtskraft und die Gaskraft verursachten Kippmomenten kann ein Kippmomentengleichgewicht an der oder den Kippkan- te(n) des freigeschnittenen Werkstückteils ermittelt und somit geprüft werden, ob das freigeschnittene Werkstückteil verkippen würde.

Besondere Vorteile ergeben sich, wenn jedem ermittelten Abstand ein Vorzeichen zugeordnet wird. Jedem Abstand bzw. Hebelarm, der einem Kippen um eine Kippkante entgegenwirkt, kann beispielsweise ein positives Vorzeichen zugeordnet werden und jedem Hebelarm, der zu einem Kippen führen könnte, kann ein negatives Vorzeichen zugeordnet werden.

Gemäß einer weiteren Ausgestaltung des Verfahrens kann vorgesehen sein, dass für jede Kippkante ein Kippmoment für das alleinige Einwirken der Gewichtskraft des Werktsückteils sowie ein resultierendes Kippmoment für das gleichzeitige Einwirken von Prozesskraft und Gewichtskraft bestimmt werden und anschließend ein Minimum der so ermittelten Kippmomente gebildet und das Minimum mit einem Referenzwert verglichen wird. Der Referenzwert kann beispielsweise gleich Null gewählt werden. Wenn sich demnach ergibt, dass bei einer gewählten Freischneideposition das kleinste Kippmoment positiv ist, spricht das dafür, dass das Werkstückteil beim und nach dem Freischnitt nicht kippen würde. Um eine weitere Sicherheit einzubauen, kann der Referenzwert größer Null gewählt werden. Wenn demnach das kleinste Kippmoment größer als dieser positive Referenzwert ist, besteht Sicherheit, dass das freigeschnittene Werkstückteil für die überprüfte Freischneideposition nicht kippen würde.

Eine Freischneideposition für die Werkstückbearbeitung kann derart gewählt werden und/oder eine Bearbeitungsmaschine kann derart eingestellt werden, dass ein Kippen des freigeschnittenen Werkstückteils vermieden wird. Wenn demnach die Analyse bzw. Vorhersage gemäß dem erfindungsgemäßen Verfahren ergibt, dass für eine überprüfte Freischneideposition kein Verkippen des freigeschnittenen Werkstücks zu befürchten ist, kann die Freischneideposition beibehalten werden. Andernfalls kann eine andere Freischneideposition gewählt und überprüft werden. Alternativ ist es denkbar, das Werkstück oder das bzw. die Auflager anders zu positionieren, so dass für eine gewählte Freischneideposition kein Verkippen des freigeschnittenen Werkstückteils zu befürchten ist.

In den Rahmen der Erfindung fällt außerdem eine Bearbeitungsmaschine zur trennenden Bearbeitung eines plattenförmigen Werkstücks mittels eines Bearbeitungsstrahls mit einem den Bearbeitungsstrahl, insbesondere Laserstrahl, auf das plattenförmige Werkstück ausrichtenden Bearbeitungskopf und zumindest einem Auflager, auf dem ein durch trennende Bearbeitung freigeschnittenes Werkstückteil aufliegen kann, mit einer Steuereinrichtung, die unter Berücksichtigung der mit dem erfindungsgemäßen Verfahren ermittelten Kippneigung des freigeschnittenen Werkstückteils so eingerichtet und/oder programmiert ist, insbesondere eine Freischneideposition so festzulegen und/oder die Lage des Auflagers und/oder die Positionierung des Werkstückteils so anzusteuern, dass das freigeschnittene Werkstückteil nicht verkippt.

Erfindungsgemäß wird demnach die Endlage eines freigeschnittenen

Werkstückteils in einer Bearbeitungsmaschine für eine gewählte Freischneideposition ermittelt. Weiterhin können eine Gaskraft und die

Schwerkraft des freigeschnittenen Werkstückteils ermittelt werden. Daraus kann über ein Kippmomentengleichgewicht und eine geometrisch ermittelte Kippkante bewertet werden, ob das freigeschnittene Werkstückteil verkippen wird. Anschließend kann ggf. eine neue Freischneideposition gewählt und/oder eine Position des Auflagers bzw. des Werkstücks geändert und erneut die Kippneigung des freigeschnittenen Werkstückteils geprüft werden, um schließlich eine Freischneideposition und/oder eine Lage des Auflagers relativ zum Werkstückteil zu ermitteln, bei der keine Kippneigung des Werkstückteils gegeben ist.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.

Es zeigen :

Figur 1 eine Darstellung eines Ausführungsbeispiels einer Laserbearbeitungsmaschine mit zwei in einem Spalt verfahrbaren Unterstützungsschlitten beim trennenden Bearbeiten eines platten- förmigen Werkstücks; Figur 2 eine alternative Ausführungsform einer Laserbearbeitungsmaschine zum trennenden Bearbeiten eines plattenförmigen Werkstücks;

Figur 3 eine Skizze zur Erläuterung des erfindungsgemäßen Verfahrens bei der Auflage eines freigeschnittenen Werkstücks auf einem Auflager;

Figur 4 eine Darstellung zur Verdeutlichung des erfindungsgemäßen

Verfahrens anhand eines Werkstücks, welches auf zwei Auflagern aufliegt.

Figur 1 zeigt einen beispielhaften Aufbau einer Maschine 1 zur Laserbearbeitung, genauer gesagt zum Laserschneiden, eines gestrichelt dargestellten plattenförmigen Werkstücks 2 mittels eines Laserstrahls 3. Zur schneidenden Bearbeitung des Werkstücks 2 kann an Stelle des Laserstrahls 3 auch eine andere Art von thermischem Bearbeitungsstrahl, beispielsweise eine Plasmafackel, oder ein Wasserstrahl eingesetzt werden. Das Werkstück 2 liegt bei der Bearbeitung auf zwei Werkstückauflageflächen 4, 5 auf, die im gezeigten Beispiel die Oberseiten von zwei Werkstücktischen bilden und eine Auflageebene E (X-Y-Ebene eines XYZ-Koordinatensystems) zur Auflage des Werkstücks 2 definieren. Die Werkstückauflageflächen 4, 5 können durch Tischflächen oder durch stiftförmige Auflageelemente (Pins), Auflagebänder, Bürsten, Rollen, Kugeln, Luftpolster o.ä. gebildet werden.

Mittels einer herkömmlichen Bewegungs- und Halteeinrichtung 7, welche einen Antrieb sowie Klemmeneinrichtungen 8 in Form von Spannpratzen zum Festhalten des Werkstücks 2 aufweist, kann das Werkstück 2 auf den Werkstückauflageflächen 4, 5 in einer ersten Bewegungsrichtung X (im Folgenden : X-Richtung) gesteuert verschoben und an eine vorgegebene Werkstückposition X w bewegt werden. Um die Bewegung des Werkstücks 2 in X-Richtung zu erleichtern, können auf den in Fig. 1 gezeigten Werkstücktischen Bürsten, Kugeln oder Gleitrollen angebracht sein, die die eigentliche Auflageflächen 4, 5 darstellen. Alternativ ist es beispielsweise möglich, zur Bewegung oder zur Unterstützung der Bewegung des

Werkstücks 2 in X-Richtung die Werkstückauflageflächen 4, 5 selbst als Bewegungseinrichtung auszugestalten, beispielsweise in Form eines (umlaufenden) Förderbandes, wie dies in der DE 10 2011 051 170 AI der Anmelderin beschrieben ist, oder in Form einer Werkstückauflage, wie sie in der JP 06170469 beschrieben ist.

Zwischen den beiden Werkstückauflageflächen 4, 5 ist ein Spalt 6 gebildet, der sich in einer zweiten Richtung (im Folgenden : Y-Richtung) über den gesamten Verfahrweg eines als Laserschneidkopf ausgebildeten Bearbeitungskopfs 9 erstreckt, der den Laserstrahl 3 auf das Werkstück 2 ausrichtet und fokussiert. Der Bearbeitungskopf 9 ist mittels eines als Bewegungseinrichtung dienenden angetriebenen Schlittens 11, der an einem fest stehenden Portal 10 geführt ist, innerhalb des Spalts 6 in Y- Richtung gesteuert verfahrbar. Der Bearbeitungskopf 9 ist im gezeigten Beispiel innerhalb des Spalts 6 zusätzlich auch in X-Richtung gesteuert verfahrbar und kann mit Hilfe einer an dem Schlitten 11 angebrachten zusätzlichen Bewegungseinrichtung 12, beispielsweise in Form eines Linearantriebs, in X-Richtung gesteuert verfahren werden. Der maximale Verfahrweg des Bearbeitungskopfs 9 in X-Richtung ist im gezeigten Beispiel geringer als die Breite b des Spalts 6.

Mithilfe der aufeinander aufbauenden Bewegungseinrichtungen 11, 12 kann der Bearbeitungskopf 9 sowohl in X-Richtung als auch in Y-Richtung an einer gewünschten Schneidkopfposition Xs, Ys innerhalb des Spalts 6 positioniert werden . Gegebenenfalls kann der Bearbeitungskopf 9 auch entlang einer dritten Bewegungsrichtung Z (Schwerkraftrichtung, im

Folgenden : Z-Richtung) verschoben werden, um den Abstand zwischen der Bearbeitungsdüse 9a und der Werkstückoberfläche einzustellen . Aus der Bearbeitungsdüse 9a tritt in Z-Richtung nach unten ein Gas aus, welches dem Bearbeitungskopf 9 über lediglich angedeutete Gasleitungen 9b zugeführt wird .

Innerhalb des Spalts 6 sind zwei Unterstützungsschlitten 13a, 13b angeordnet, die sich jeweils über die gesamte Breite b des Spalts 6 erstrecken und in dem Spalt 6 in Y-Richtung gesteuert und unabhängig voneinander verfahrbar sind . Die gesteuerte Bewegung der Unterstützungsschlitten 13a, 13b in dem Spalt 6 kann beispielsweise mit Hilfe von Spindelantrieben erfolgen, wobei die Spindelmutter an dem jeweiligen Unterstützungsschlitten 13a, 13b angebracht ist und die Spindel sowie der Antriebsmotor an einer der beiden fest stehenden Werkstückauflagen 4, 5 angebracht sind . Es versteht sich, dass die gesteuerte Bewegung der Unterstützungsschlitten 13a, 13b in dem Spalt 6 auch auf andere Weise realisiert werden kann.

Die Unterstützungsschlitten 13a, 13b können in dem Spalt 6 jeweils an eine gewünschte Position YUA, YUB in Y-Richtung bewegt werden, um dort das Werkstück 2, genauer gesagt von dem Werkstück 2 freizuschneidende bzw. beim Bearbeiten geschnittene Werkstückteile, mittels einem an dem jeweiligen Unterstützungsschlitten 13a, 13b angebrachten als Auflagefläche ausgebildeten Auflager 14a, 14b zu unterstützen. Die Auflagefläche eines jeweiligen Unterstützungsschlittens 13a, 13b schließt im gezeigten Fall in Z-Richtung bündig mit den Werkstückauflageflächen 4, 5 ab, d . h. die Auflageflächen befinden sich in der Auflageebene E für das Werkstück 2.

Zur Steuerung der schneidenden Bearbeitung weist die Maschine 1 eine Steuerungseinrichtung 15 auf, die zur Koordinierung der Bewegungen des Werkstücks 2, des Bearbeitungskopfs 9 sowie der Unterstützungsschlitten 13a, 13b dient, um eine gewünschte Werkstückposition X w , eine

gewünschte Schneidkopfposition Xs, Ys sowie eine gewünschte Position YUA, YUB der Unterstützungsschlitten 13a, 13b einzustellen, um das

Schneiden einer vorgegebenen Schnittkontur zu ermöglichen und das Werkstück falls erforderlich im Bereich des Spalts 6 zu unterstützen und insbesondere so zu positionieren, dass ein freigeschnittenes Werkstückteil 18 nicht von einem Auflager 14a, 14b abkippt. Das erfindungsgemäße Verfahren kann in der Steuerungseinrichtung 15 durchgeführt werden oder mit einem externen Programmiersystem, d . h. mit einer

Programmiersoftware, die auf einem separaten Computer abläuft und die als Ergebnis ein Ablaufprogramm für die Bearbeitung des Werkstücks 2 erstellt.

Die Bezugsziffern 16a, 16b bezeichnen Überdeckungselemente zum

Abdecken des Spalts 6.

Die Bewegung der Unterstützungsschlitten 13a, 13b kann synchron erfolgen, d . h . der Abstand zwischen der Position YUA des ersten

Unterstützungsschlittens 13a und der Position YUB des zweiten Unter ¬ stützungsschlittens in Y-Richtung während der Bewegung ist konstant. Die Bewegung des ersten Unterstützungsschlittens 13a kann auch unabhängig von der Bewegung des zweiten Unterstützungsschlittens 13b erfolgen, d . h . der Abstand zwischen der Position YUA des ersten

Unterstützungsschlittens 13a und der Position YUB des zweiten Unterstützungsschlittens 13b in Y-Richtung verändert sich während der Bewegung in Y-Richtung.

Die Figur 2 zeigt eine weitere Laserbearbeitungsmaschine 100 zum Laserschneiden von plattenförmigen Werkstücken 2. Die Laserbearbeitungsmaschine 100 umfasst eine Schneidvorrichtung 103 mit einem Lasergerät 104, einer externen Strahlführung 105 und einem Bearbeitungskopf 106, sowie einen Arbeitstisch 107 mit einer Werkstückauflage 108. Der Bearbeitungskopf 106 weist eine Bearbeitungsdüse 106a auf, aus der nach unten ein Gas austritt.

Der Bearbeitungskopf 106 ist an einem Querträger 110 angebracht und in einer Ebene parallel zu der Werkstückauflage 108 verfahrbar.

Die Werkstückauflage 108 ist durch eine Vielzahl von Auflagern 111 mit vorzugsweise dreieckig ausgebildeten Tragpunktspitzen gebildet, die eine Auflageebene für das zu bearbeitende Werkstück 2 definieren. Die Auflager 111 sind in einem vorbestimmten Raster angeordnet. Aus dem Werkstück 2 freigeschnittene Werkstückteile liegen ebenfalls auf den Auflagern 111 auf.

Die Figur 3 zeigt stark schematisiert den Spalt 6 der Laserbearbeitungsmaschine 1 gemäß der Figur 1. Zu sehen sind weiterhin die Auflager 14a, 14b sowie ein freigeschnittenes Werkstückteil 18. Dieses liegt lediglich auf dem Auflager 14a auf. Eine Freischneideposition ist mit der Bezugsziffer 70 gekennzeichnet. Um zu überprüfen, ob bei dieser Freischneideposition 70 ein Abkippen des Werkstückteils 18 zu befürchten ist, wird zunächst die Schnittlinie des Werkstückteils 18 mit dem Auflager 14a bestimmt. Dies ist die Linie zwischen den Schnittpunkten 72, 73. In diesem Fall fällt die Kippkante 71 zusammen mit der Auflagerkante 74a. Sodann wird der Abschnitt a bzw. Hebelarm des Schwerpunkts 75 des Werkstückteils 18 bestimmt. Ebenfalls wird der Abstand b bzw. Hebelarm der Freischneideposition 70 zur Kippkante 71 bestimmt. Das Vorzeichen der Hebelarme a, b wird über den Winkel α bzw. ß zur Kippkante 71 bestimmt. Der Winkel α ist größer als 180°. Daher wird dem Abstand a ein positives Vorzeichen zugeordnet. Der Winkel ß ist kleiner 180°. Daher wird dem Abstand b ein negatives Vorzeichen zugeordnet. Anschließend werden Kippmomente für unterschiedliche Zustände der Bearbeitungsmaschine 1 berechnet. Während einer Werkstückbearbeitung, d.h. während Gas in Richtung Werkstückteil 18 strömt, wirkt auf das Werkstückteil 18 das Kippmoment M l = a x Gewichtskraft + b x Gaskraft. Wird dagegen das Gas abgeschaltet, wirkt auf das Werkstückteil 18 das Kippmoment M2 = a x Gewichtskraft.

Anschließend wird das Minimum der Kippmomente M l, M2 gebildet. Die Freischneideposition 70 führt nicht zu einem Abkippen des Werkstücksteils 18, wenn das ermittelte minimale Kippmoment größer Null ist, wobei Null in diesem Fall als Referenzwert gewählt wurde. Wird ein Referenzwert größer Null gewählt und ist das minimale Kippmoment größer als dieser Referenzwert, wird eine Sicherheitsmarge eingehalten, so dass auf jeden Fall ein Abkippen des Werkstücksteils 18 nicht erfolgt.

Bei der Situation, die in der Figur 4 gezeigt ist, liegt das Werkstückteil 18 auf beiden Auflagern 14a, 14b auf. In diesem Fall ergeben sich die Kippkanten 81a, 81b indem zunächst Bereiche des Werkstückteils 18, die sich im Spalt 6, d.h. nicht über einem Auflager 14a, 14b befinden, ausgeblendet werden. Mit den verbleibenden Punkten des Werkstückteils 18 wird die konvexe Hülle des Werkstückteils 18 gebildet. Dies ist durch die gestrichelten Linien 82, 83 angedeutet. Es werden nun die Schnittpunkte 84 - 87 dieser zweidimensionalen konvexen Hülle mit den Auflagerkanten 74a, 74b ermittelt. Die die jeweils äußersten Schnittpunkte 84, 85 verbindende Gerade bildet die erste Kippkante 81a und die die Schnittpunkte 86, 87 verbindende Gerade bildet die zweite Kippkante 81b. Der Abstand a des Schwerpunkts 75 zur ersten Kippkante 81a wird ebenso ermittelt wie der Abstand b bzw. Hebelarm der Freischneideposition 70 zur ersten Kippkante 81a. Ebenfalls wird der Abstand c bzw. Hebelarm des Schwerpunkts 75 zur zweiten Kippkante 81b und der Abstand d bzw. Hebelarm der Freischneideposition 70 zur zweiten Kippkante 81b ermittelt. Den Abständen a, c, d wird ein positives Vorzeichen zugeordnet, da die Winkel α, γ und ε größer 180° sind. Dem Abstand b wird ein negatives Vorzeichen zugeordnet, da der Winkel ß kleiner als 180° ist. Nun werden sämtliche mögliche Kippmomente für unterschiedliche Zustände der Bearbeitungsmaschine ermittelt:

M l = a x Gewichtskraft + b x Gaskraft

M2 = a x Gewichtskraft

M3 = c x Gewichtskraft + d x Gaskraft

M4 = c x Gewichtskraft

Anschließend wird das kleinste Kippmoment als Ergebnis ausgegeben, indem das Minimum der Kippmomente M l bis M4 gebildet wird. Wenn das kleinste Kippmoment positiv ist bzw. über einem vorgegebenen Referenzwert liegt, ist für die untersuchte Freischneideposition 70 in keinem Zustand der Bearbeitungsmaschine ein Verkippen des Werkstückteils 18 zu befürchten. Ist dagegen das kleinste ermittelte Kippmoment kleiner Null bzw. kleiner als ein vorgegebener Referenzwert, ist mit einem Verkippen zu rechnen, so dass die Bearbeitungsmaschine entsprechend programmiert werden muss, insbesondere die Position der Auflager 14a, 14b verändert werden muss oder die Freischneideposition 70 verändert werden muss, bis eine Analyse der Kippmomente ergibt, dass kein Verkippen zu befürchten ist.