Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PREPARATION OF CHLORINATED S-PROPYLTHIOBARBITURIC ACID
Document Type and Number:
WIPO Patent Application WO/2019/016111
Kind Code:
A1
Abstract:
The invention discloses a method for preparation of 4,6-dichloro-5-nitro-2- (propylthio)pyrimidine by conversion of 5-nitro-2-propylthiopyrimidine-4,6-diol with phosgene in the presence of DMF.

Inventors:
BERSIER MICHAEL (CH)
HANSELMANN PAUL (CH)
STOFFEL CANDID (CH)
Application Number:
PCT/EP2018/069193
Publication Date:
January 24, 2019
Filing Date:
July 16, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LONZA AG (CH)
International Classes:
C07D239/47
Domestic Patent References:
WO2011017108A22011-02-10
WO1999005142A11999-02-04
WO2012085665A22012-06-28
WO2002000628A22002-01-03
Foreign References:
US20130030176A12013-01-31
US20130030176A12013-01-31
Other References:
H. G. DU ET AL: "Synthesis, Antiplatelet Aggregation Activity Evaluation and 3D-QSAR of a Series of Novel 6-Alkylamino(Alkoxyl)-2-Propylthio-8-Azapurine Nucleosides : Synthesis, Antiplatelet Aggregation Activity Evaluation and 3D-QSAR of a Series of Novel 6-Alkylamino(Alkoxyl)-2-Propylthio-8-Azapurine Nucleosides", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 54, no. 1, 1 January 2017 (2017-01-01), US, pages 436 - 449, XP055425333, ISSN: 0022-152X, DOI: 10.1002/jhet.2601
Download PDF:
Claims:
Claims

1. Method for the preparation of compound of formula (2)

by a reaction REAC1 of compound of formula (1)

with a compound PHOS in the presence of DMF;

PHOS is selected from the group consisting of phosgene, diphosgene, triphosgene and

mixtures thereof. 2. Method according to claim 1, wherein

PHOS is phosgene.

3. Method according to claim 1 or 2, wherein

the molar amount of PHOS is from 2 to 5 times of the molar amount of compound of formula

(1).

4. Method according to one or more of claims 1 to 3, wherein

the amount of DMF is from 10 to 100 times of the weight of PHOS.

5. Method according to one or more of claims 1 to 4, wherein

the reaction temperature TEMPI of REAC1 is from -10 to 50° C.

6. Method according to one or more of claims 1 to 5, wherein

the reaction time TIME1 of REAC1 is from 5 h to 48 h.

7. Method according to one or more of claims 1 to 6, wherein

compound of formula (1) is dissolved in DMF to provide a solution SOL-1, and PHOS is dissolved in DMF to provide a solution SOL-PHOS; and SOL-1 and SOL-PHOS are mixed with each other to provide for RE AC 1.

8. Method according to claim 7, wherein

for the mixing of SOL-1 with SOL-PHOS, SOL-1 is added to SOL-PHOS. 9. Method according to one or more of claims 1 to 8, wherein

after REAC1 toluene and water is added to the reaction mixture.

10. Method according to one or more of claims 1 to 9, wherein

the addition of toluene and water is done at a temperature of from -10 to 30°C.

Description:
METHOD FOR PREPARATION OF CHLORINATED S-PROPYL- THIOBARBITURIC ACID

The invention discloses a method for preparation of 4,6-dichloro-5-nitro-2- (propylthio)pyrimidine by conversion of 5-nitro-2-propylthiopyrimidine-4,6-diol with phosgene in the presence of DMF.

BACKGROUND OF THE INVENTION

US 2013/0030176 Al discloses of method for preparation of 4,6-dichloro-5-nitro-2- (propylthio)pyrimidine and its use as intermediate for the preparation of ticagrelor.

Example 10 discloses a yield of 233.5 g of the 4,6-dichloro-5-nitro-2-(propylthio)pyrimidine (MW 266 g/mol) with a purity of 99.45% is disclosed; with a MW of 229 g/mol for the substrate 5-nitro-2-propylthiopyrimidine-4,6-diol and a starting amount of 200 g the yield is 99.9%, which is admittedly very high.

Nevertheless the method uses phosphorous oxy chloride (MW 153 g/mol) as CI source for the exchange of the OH residues against CI. The given 425.6 g of phosphorous oxychloride are converted by the reaction ultimately to 271 g phosphoric acid H3PO4 (MW 100). So 1.16 times, of the weight of the product, of phosphoric acid needs to be disposed of. This waste is a serious environmental challenge as well as a cost factor.

There was a need for a process that does not pose the mentioned waste problem in form of

An extensive screening of phosgene as alternative CI source without catalyst, with various catalysts and with various solvents was not successful but showing yields of not more than 32%), instead showing significant amounts of undesired by products, as documented herein under Comparative Examples 1 to 60. Only one combination, the combination of phosgene with DMF, surprisingly showed satisfying yields. The method has the advantage of comparably high yields without the problem of generation of H3PO4 as waste.

The following abbreviations are used, if not otherwise stated: compound of formula (1) 5-nitro-2-propylthiopyrimidine-4,6-diol, also called 5-nitro-2- propylsulfanyl-pyrimidine-4,6-diol

compound of formula (2) 4,6-dichloro-5-nitro-2-(propylthio)pyrimidine

DMF dimethyl formamide

eq equivalent

RT room temperature

MW molecular weight

SUMMARY OF THE INVENTION

Subject of the invention is a method for the preparation of compound of formula (2)

by a reaction REACl of compound of formula (1)

with a compound PHOS in the presence of DMF;

PHOS is selected from the group consisting of phosgene, diphosgene, triphosgene and mixtures thereof.

DETAILED DESCRIPTION OF THE INVENTION

Compound of formula (1) is a known compound and can be produced by known methods. Preferably, PHOS is phosgene.

Preferably, the molar amount of PHOS is from 2 to 5 times, more preferably from 2 to 4 times, even more preferably from 2 to 3 times, of the molar amount of compound of formula (1). Preferably, the amount of DMF is from 10 to 100 times, more preferably from 15 to 75 times, even more preferably from 15 to 50 times, especially from 15 to 40 times, more specially from 20 to 30 times, of the weight of PHOS.

Preferably, the reaction temperature TEMPI of REACl is from -10 to 50°C, more preferably from -5 to 40°C, even more preferably from -5 to 30°C, especially from -2.5 to 25°C.

Preferably, the reaction time TIME1 of REACl is from 5 h to 48 h, more preferably from 10 h to 24 h, even more preferably of from 12 h to 20 h.

In one embodiment, REACl is in the beginning of TIME 1 done at a lower temperature than at the end of TIME 1;

preferably, REACl is done at first for 4.5 h to 41 h at -10 to 9°C and thereafter for 30 min to 7 h at 10 to 50 °C;

more preferably, REACl is done at first for 9 h to 21 h at -5 to 7°C and thereafter for 1 h to 3 h at 12 to 40 °C;

even more preferably, REACl is done at first for 10.5 h to 19.5 h at -5 to 5°C and thereafter for 1.5 h to 2.5 h at 15 to 30 °C;

Preferably, the DMF acts also as solvent in REAC 1.

More preferably, compound of formula (1) is dissolved in DMF to provide a solution SOL-1, and PHOS is dissolved in DMF to provide a solution SOL-PHOS; and SOL-1 and SOL- PHOS are mixed with each other to provide for REACl; preferably, for the mixing of SOL-1 with SOL-PHOS, SOL-1 is added to SOL-PHOS.

Therefore in one embodiment, the amount of DMF for preparation of SOL-1 is from 1 to 10 times, more preferably from 1.5 to 7.5 times, even more preferably from 2.5 to 7.5 times, of the weight of compound of formula (1); and

the amount of DMF for preparation of SOL-PHOS is from 10 to 90 times, more preferably from 10 to 50 times, even more preferably from 15 to 40 times, especially from 15 to 30 times, of the weight of PHOS. After REAC1, compound of formula (2) can be isolated and purified by conventional methods, which are known to those skilled in the art. These conventional methods include quenching the reaction mixture from REAC 1 with water, with a solvent or with both water and a solvent, extraction, distillation, preferably fractional distillation, which can be done under reduced pressure, crystallization, chromatography, filtration, washing or any combination of these methods.

Preferably, the solvent that is used for quenching the reaction mixture is preferably an organic solvent, more preferably toluene; preferably, the quenching is done with water and toluene, thereby two phases are generated; then the phases are separated and the organic phase is evaporated to provide compound of formula (2).

Preferably, after REAC1 toluene and water is added to the reaction mixture.

Preferably, the amount of water is from 5 to 15 times, more preferably from 7.5 to 12.5 times, of the weight of compound of formula (1).

Preferably, the amount of toluene is from 4 to 14 times, more preferably from 6.5 to 11 times, of the weight of compound of formula (1).

Preferably, the addition of toluene and water is done at a temperature of from -10 to 30°C, more preferably of from -5 to 20°C, even more preferably of from -5 to 15°C, especially of from -5 to 10°C, more especially of from -5 to 5°C, even more especially of from -2.5 to 2.5°C.

Examples

Compound of formula (3):

Compound of formula (4):

Compound of formula (5):

GC Method

Instrument:

Hewlett Packard gas chromatograph 6890 with a split injector and a flame ionisation detector or an instrument with corresponding performance and quality.

Column:

HP-1 (SIMDIST), 15 m x 0.53 mm, 0.15 micrometer film-thickness, polydimethylsiloxane (or an equivalent column).

Instrument. Settings:

OVEN:

INITIAL TEMP 50°C

HOLD 2 min

RAMP 1 20°C / min NEXT TEMP 320°C

HOLD lO min

INJECTOR:

Injection volume 1 microliter

Check the auto-injector parameters.

INLETS:

INJ. MODE Split

INJ TEMP 250°C

SPLIT FLOW 200 ml / min

SPLIT RATIO 25 : 1

MODE constant flow 8.0 ml /

DETECTORS:

DET TEMP 300°C

Check the FID gas flow rates.

The GC results are given in area %.

Comparative Examples 1 to 42 - with Base

5.0 g (21.62 mmol, 1 eq) of compound of formula (1) were dissolved in 25 mL of solvent

SOLV and base was added. 100 mL of SOLV were mixed with 4.7 g of phosgene (47.56 mmol. 2.2 eq) at 0°C. The solution of compound of formula (1) and base was added at 0°C to the mixture of SOLV with phosgene. After stirring for 5 h at 0°C and then for 2 h at RT, a sample from the reaction mixture was taken and analysed with GC. Result are shown in Table

1 with the following abbreviations:

CE Comparative Example

DPA-2.2 Diisopropylamine, 2.2 eq

DPA-2.5 Diisopropylamine, 2.5 eq

EMP-2.2 5-Ethyl-2-methylpyridine, 2.2 eq

NMM-2.2 N-Methylmorpholine, 2.2 eq

TEA-2.2 Triethylamine (2.2 eq.)

(2) compound of formula (2) compound of formula (2)

compound of formula (4)

Table 1

Base SOLV GC Results

(2) (3) (4)

DPA-2.2 Dichloromethane 20% 15% 10%

DPA-2.2 Toluene 25% 12% 8%

DPA-2.2 Acetonitrile 30% 17% 12%

DPA-2.2 Chlorobenzene 10% 18% 9%

DPA-2.2 Sulfolane 32% 12% 14%

DPA-2.2 Dimethyl 12% 19% 5% carbonate

DPA-2.5 Dichloromethane 20% 15% 10%

DPA-2.5 Toluene 25% 12% 8%

DPA-2.5 Acetonitrile 30% 17% 12%

DPA-2.5 Chlorobenzene 10% 18% 9%

DPA-2.5 Sulfolane 32% 12% 14%

DPA-2.5 Dimethyl 12% 19% 5% carbonate

3 -Pico line (2.2 Dichloromethane 21% 18% 11% eq.)

3 -Pico line (2.2 Toluene 28% 13% 8% eq.)

3 -Pico line (2.2 Acetonitrile 31% 12% 7% eq.)

3 -Pico line (2.2 Chlorobenzene 17% 22% 15% eq.)

3 -Pico line (2.2 Sulfolane 22% 18% 10% eq.)

3 -Pico line (2.2 Dimethyl 28% 11% 15% eq.) carbonate

TEA-2.2 Dichloromethane 20% 14% 8% 20 TEA-2.2 Toluene 25% 12% 8%

21 TEA-2.2 Acetonitrile 30% 17% 12%

22 TEA-2.2 Chlorobenzene 10% 18% 9%

23 TEA-2.2 Sulfolane 32% 12% 14%

24 TEA-2.2 Dimethyl 12% 19% 5% carbonate

25 Pyridine (2.2 Dichloromethane 20% 15% 10% eq.)

26 Pyridine (2.2 Toluene 25% 12% 8% eq.)

27 Pyridine (2.2 Acetonitrile 30% 17% 12% eq.)

28 Pyridine (2.2 Chlorobenzene 12% 19% 5% eq.)

29 Pyridine (2.2 Sulfolane 20% 15% 10% eq.)

30 Pyridine (2.2 Dimethyl 25% 12% 8% eq.) carbonate

31 EMP-2.2 Dichloromethane 30% 17% 12%

32 EMP-2.2 Toluene 10% 18% 9%

33 EMP-2.2 Acetonitrile 32% 12% 14%

34 EMP-2.2 Chlorobenzene 12% 19% 5%

35 EMP-2.2 Sulfolane 21% 18% 11%

36 EMP-2.2 Dimethyl 28% 13% 8% carbonate

37 NMM-2.2 Dichloromethane 16% 15% 8%

38 NMM-2.2 Toluene 20% 15% 15%

39 NMM-2.2 Acetonitrile 18% 15% 5%

40 NMM-2.2 Chlorobenzene 20% 18% 10%

41 NMM-2.2 Sulfolane 22% 18% 10%

42 NMM-2.2 Dimethyl 28% 15% 8% carbonate

Comparative Examples 43 to 60 - without Base 5.0 g (21.62 mmol, 1 eq) of compound of formula (1) were dissolved in 125 mL of solvent SOLV and Catalyst was added. 4.7 g of phosgene (47.56 mmol, 2.2 eq) were added at 0°C. After 5 h at 0°C, then 2 h at RT and then 2 h at 40°C, a sample from the reaction mixture was taken and analysed with GC.

Result are shown in Table 2 with the following abbreviations:

(2) compound of formula (2)

CE Comparative Example

TPP-0.1 Triphenylphosphine, 0.1 eq

TPP-0.3 Triphenylphosphine, 0.3 eq

Example 1 - with DMF

5.0 g (21.62 mmol, 1 eq) compound of formula (1) were dissolved in 25 mL of DMF. 100 mL of DMF were mixed with 4.7 g of phosgene (47.56 mmol, 2.2 eq) at 0°C. The solution of compound of formula (1) was added to the mixture of DMF with phosgene at 0°C. After 14 h stirring at 0°C and then 2 h at RT, 50 mL of water and 50 mL of toluene were added at 0°C. The mixture was stirred 15 min and the phases were separated. The organic phase was evaporated under vacuum. 5 g of compound of formula (2) were isolated (83% yield, 98.2% purity, GC analysis showed 1.1% of compound of formula (3), 0.32% of compound of formula (4) and 0.35% of compound of formula (5)).

Example 2 - with DMF

50 g (216.2 mmol, 1 eq) of compound of formula (1) were dissolved in 250 mL of DMF. 1000 mL of DMF were mixed with 47 g of phosgene (475.6 mmol, 2.2 eq) at 0°C. The solution of compound of formula (1) was added to the mixture of DMF with phosgene at 0°C. After 14 h stirring at 0°C and then 2 h at RT, 500 mL of water and 500 mL of toluene were added at 0°C. The mixture was stirred 30 min and the phases were separated. The organic phase was evaporated under vacuum. 54 g of compound of formula (2) were isolated (93% yield, 98.4% purity, GC analysis showed 1.1% of compound of formula (3), 0.26% of compound of formula (4) and 0.24% of compound of formula (5)).