Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING ANTIFOAM COMPOSITIONS
Document Type and Number:
WIPO Patent Application WO/2013/092462
Kind Code:
A1
Abstract:
The invention relates to a method for producing antifoam compositions containing hydrophobic silicic acid, comprising (1) a mixture containing: (A) organopolysiloxanes having a viscosity of 10 to 10,000,000 mm2/s at 25⁰C and 1013 hPa from units of formula Ra (R1O) bSiO(4-a_b)/2 (I), wherein R is a monovalent or optionally substituted hydrocarbon residue having 1-30 carbon atoms or a hydrogen atom, R1 is a hydrogen atom or a monovalent hydrocarbon residue having 1-4 carbon atoms, a and b are 0, 1, 2, or 3, respectively, with the specification that the sum is a+b≤3, and for more than 50% of all units of formula (I), the sum a+b equals 2 in the organopolysiloxanes (A); (B) hydrophilic silicic acids having a BET surface of 20-500 m2/g; (C) hydrophobic silicic acid having a BET surface of 50-500 m2/g; optionally (D) organopolysiloxane resins from units of the formula R2 e (R3O), £SiO(4-e-f)/2 (II), wherein R2 has the meaning of R, and R3 has the meaning of R1, e and f are 0, 1, 2, or 3, respectively, with the specification that the sum is e+f≤3, and for less than 50% of all units of formula (II), the sum e+f equals 2 in the organopolysiloxane resin; optionally (E) water-insoluble organic combinations, which are heated to temperatures of 50-250⁰C until the viscosity reaches a value of less than 50% of the measured viscosity the mixture had prior to heating, wherein the viscosity is measured using a cone-plate viscometer at a temperature of 25⁰C and a shear rate of 1/s and (2) is subsequently mixed into the in-situ hydrophobization of the hydrophilic silicic acids carried out in (1) in the presence of the hydrophobic silicic acids; and optionally (F) organopolysiloxanes that are different from (A).

Inventors:
BURGER WILLIBALD (DE)
RAUTSCHEK HOLGER (DE)
WIMMER JOSEF (DE)
Application Number:
PCT/EP2012/075715
Publication Date:
June 27, 2013
Filing Date:
December 17, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WACKER CHEMIE AG (DE)
International Classes:
C08L83/04; B01D19/04; C08K3/36
Domestic Patent References:
WO2006128624A12006-12-07
Foreign References:
EP0726086A21996-08-14
EP1076073A12001-02-14
US3383327A1968-05-14
US3560401A1971-02-02
DE2925722A11981-02-05
US4145308A1979-03-20
EP0301531A21989-02-01
US4919843A1990-04-24
EP0726086B12003-05-02
EP0726086A21996-08-14
EP0967252A11999-12-29
EP1304361B12005-12-28
EP1561728A12005-08-10
DE2107082A11971-08-26
US3963627A1976-06-15
US2676182A1954-04-20
EP0927733A11999-07-07
GB2350117A2000-11-22
EP1076073A12001-02-14
EP1424117A22004-06-02
EP0887097A11998-12-30
EP1060778A12000-12-20
Other References:
PARSONAGE, J. R.; KENDRICK, D. A., SCIENCE OF MATERIALS AND POLYMERS GROUP, vol. 166, 1995, pages 98 - 106
Attorney, Agent or Firm:
DEFFNER-LEHNER, Maria et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung von hydrophobe Kieselsäure

enthaltenden Entschäumerzusammensetzungen, dadurch gekennzeichnet, dass

(1) eine Mischung enthaltend

(A) Organopolysiloxane mit einer Viskosität von 10 bis 10 000 000 mm2/s bei 25°C und 1013 hPa aus Einheiten der Formel (I)

Ra(R10)bSiO(4-a-b}/2 (I), worin

R gleich oder verschieden sein kann und einen

einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest mit 1-30

Kohlens offatomen, vorzugsweise 1-18

Kohlenstoffatomen, oder ein Wasserstoffatom bedeutet,

R1 gleich oder verschieden sein kann und ein

Wasserstoff tom oder einen einwertigen

Kohlenwasserstoffrest mit 1-4 Kohlenstoffatomen bedeutet,

a 0, 1, 2 oder 3 ist und

b 0, 1, 2 oder 3 ist,

mit der Maßgabe, dass die Summe a+b 3 ist und bei mehr als 50 % aller Einheiten der Formel (I) im Organopolysiloxan (A) die Summe a+b gleich 2 ist, wobei die Viskosität der Organopolysiloxane (A) durch die Anzahl der Einheiten der Formel (I) bestimmt wird,

(B) hydrophile Kieselsäuren mit einer BE -Oberfläche von 20-500 m2/g, (C) hydrophobe Kieselsäure mit einer BET-Oberflache von

gegebenenfalls

(D) Organopolysiloxanharze aus Einheiten der Formel

R2e(R30)fSiO(4-e-f)/2 (II), worin R2 die Bedeutung von R und R3 Bedeutung von R1 hat,

e 0, 1, 2 oder 3 ist und

f 0, 1, 2 oder 3 ist,

mit der Maßgabe, dass die Summe e+f<3 ist und in weniger als 50 % aller Einheiten der Formel (II) im Organopolysiloxanharz die Summe e+f gleich 2 ist, und gegebenenfalls

(E) wasserunlösliche organische Verbindungen, bei Temperaturen von 50-250°C erhitzt wird,

bis die Viskosität einen Wert von weniger als 50 %, vorzugsweise weniger als 40 %, bevorzugt weniger als 30 %, der gemessenen Viskosität aufweist, die die Mischung vor dem Erhitzen hatte, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer

Temperatur von 25°C und einem Schergefälle von l/s gemessen wird, und

(2) anschließend an die in (1) durchgeführte in-situ- Hydrophobierung der hydrophilen Kieselsäuren in Gegenwart der hydrophoben Kieselsäuren

gegebenenfalls

(F) Organopolysiloxane , die verschieden von (A) sind, eingemischt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass

die Mischung in (1) in Gegenwart von die in-situ- Hydrophobierung fördernde Katalysatoren (G) , vorzugsweise Alkalimetallhydroxide, erhitzt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Organopolysiloxane (A) lineare Organopolysiloxane der Formel

R3-g(R10)gSi- [OSiR2]n-OSi(OR1)gR3-g (III) , worin R und R1 die im Anspruch 1 dafür angegebene Bedeutung haben,

g 0 oder 1 ist und

n eine ganze Zahl ist und einen solchen Wert hat, dass die Viskosität der Organopolysiloxane (A) 10 - 10 000 000 mm2/s bei 25°C und 1013 hPa, beträgt,

mit der Maßgabe, dass die Organopolysiloxane der Formel (III) durchschnittlich einen Gehalt an Si-gebundenen OH- Gruppen von 30-500 Gew.-ppm aufweisen,

eingesetzt werden.

4. Verfahren nach Anspruch 1, 2 oder 3, dadurch

gekennzeichnet, dass

als hydrophobe Kieselsäure (C) solche mit einem

Kohlenstoffgehalt von 0,1 bis 5,0 Gew.-% und einer

Methanolbenetzbarkeit von größer als 30 Gew.-%, d.h. Wasser kann diese hydrophobe Kieselsäure nur dann benetzen, wenn es mindestens 30 Gew.-% Methanol enthält, eingesetzt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4 , dadurch

gekennzeichnet, dass

die hydrophilen Kieselsäuren (B) in Mengen von 0,1 bis 20 Gew. -teilen, bezogen auf 100 Gew. -teile

Organopolysiloxane (A) , eingesetzt werden. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass

die hydrophoben Kieselsäuren (C) in Mengen von 0,1 bis 20 Gew. -teilen, bezogen auf 100 Gew. -teile

Organopolysiloxane (A) , eingesetzt werden.

Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass

das Gewichtsverhältnis der eingesetzten hydrophilen

Kieselsäuren (B) zu den hydrophoben Kieselsäuren (C) 95:5 bis 5:95, vorzugsweise 80:20 bis 20:80, besonders bevorzugt 70:30 bis 30:70, beträgt.

Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Organopolysiloxane (D)

solche eingesetzt werden, die im Wesentlichen aus

R23SiOi/2 (M) -Einheiten und Si04/2 (Q) -Einheiten bestehen, wobei R2 die im Anspruch 1 dafür angegebene Bedeutung hat, und wobei das molare Verhältnis von M- zu Q-Einheiten vorzugsweise im Bereich von 0,5 bis 2,0, bevorzugt im Bereich von 0,6 bis 1,0, liegt.

Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als wasserunlösliche organische

Verbindungen (E) solche ausgewählt aus der Gruppe der Mineralöle, nativen Öle, Isoparaf inen, Polyisobutylenen, Rückständen aus der Oxoalkoholsynthese, Estern

niedermolekularer synthetischer Carbonsäuren,

Fettsäureestern, Fettalkoholen, Ethern niedermolekularer Alkohole, Phthalaten, Estern der Phosphorsäure und Wachsen eingesetzt werden.

Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass

als (P) Organopolysiloxane, die verschieden von (A) lineare oder verzweigte Polyethersiloxane eingesetzt werden.

Verfahren zur Herstellung von Emulsionen von hydrophobe Kieselsäuren enthaltenden Entschäumerzusammensetzungen, dadurch gekennzeichnet, dass

die nach den Ansprüchen 1 bis 10 hergestellten

EntschäumerZusammensetzungen mit

Emulgatoren,

ggf . Verdickern

und Wasser

gemischt werden.

Verfahren zur Herstellung von Pulvern, dadurch

gekennzeichnet, dasis

die nach den Ansprüchen 1 bis 10 hergestellten

Entschäumerzusammensetzungen mit

Trägermaterialien

gemischt werden.

Verfahren zum Entschäumen und/oder zur Verhinderung des Schäumens von Medien, indem die nach den Ansprüchen 1 bis 10 hergestellten Entschäumerzusammensetzungen oder die nach Anspruch 11 hergestellten Emulsionen oder die nach Anspruch 12 hergestellten Pulver mit den Medien vermischt werden. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass bei der Zellstoffherstellung anfallende wässrige Medien eingesetzt werden.

Description:
Verfahren zur Herstellung von Entschäumerzusammensetzungen

Die Erfindung betrifft Verfahren zur Herstellung von Zusammensetzungen, enthaltend Organosiliciumverbindungen und hydrophobe Kieselsäuren und deren Verwendung als Entschäumer.

In vielen flüssigen, insbesondere wässrigen Systemen, die als erwünschte oder auch unerwünschte Bestandteile oberflächenaktive Verbindungen enthalten, können durch Schaumbildung Probleme auftreten, wenn diese Systeme in mehr oder weniger intensiven Kontakt mit gasförmigen Stoffen gebracht werden, beispielsweise beim Begasen von Abwässern, beim intensiven Rühren von Flüssigkeiten, bei Destillations-, Wasch- oder Färbeprozessen oder bei Abfüllvorgängen.

Die Bekämpfung dieses Schaumes kann auf mechanischem Wege oder durch den Zusatz von Entschäumern erfolgen. Dabei haben sich Entschäumer auf Siloxanbasis besonders bewährt. Entschäumer auf Basis von Siloxanen werden beispielsweise nach US 3,383,327 A durch Erhitzen von hydrophiler Kieselsäure in

Polydimethylsiloxanen hergestellt. Durch Anwendung von

basischen Katalysatoren kann die Wirksamkeit derartiger

Entschäumer verbessert werden, wie in US 3,560,401 A offenbart. Eine Alternative ist die Verteilung von hydrophobierter

Kieselsäure in einem Polydimethylsiloxan, z.B. entsprechend DE 29 25 722 AI.

Jedoch ist die Wirksamkeit der erhaltenen Entschäumer meist verbesserungswürdig. So beschreibt US-A 4 145 308

beispielsweise eine Entschäumerzubereitung, die neben einem

Polydiorganosiloxan und Kieselsäure noch ein Copolymeres aus (CH 3 ) 3 SiOi/ 2 - und Si0 2 ~Bausteinen enthält.

Copolymere aus (CH 3 ) 3 SiOi/ 2 - und Si0 2 -Bausteinen sollen auch in Kombination mit Siloxanen, die endständige Langalkylgruppen tragen, vorteilhaft sein, wie in EP-A 301 531

(korrespondierende US 4,919,843 A) beschrieben. In diesen Formulierungen werden auch Mischungen aus pyrogenen und gefällten Kieselsäuren eingesetzt.

In EP-B 726 086 wird eine verbesserte Wirksamkeit der

Entschäumerformulierung dadurch erreicht, dass eine Mischung aus vorbehandelter hydrophobierter Kieselsäure und in situ hydrophobierter Kieselsäure eingesetzt wird. Dabei wird erst die hydrophile Kieselsäure mit dem Polysiloxan vermischt. Dann erfolgt die in situ Hydrophobierung bei erhöhten Temperaturen und nach dem Abkühlen wird die vorbehandelte hydrophob!erte Kieselsäure zugegeben. Die bekannten Entschäumerformulierungen weisen jedoch in stark schäumenden tensidreichen Systemen wie zum Beispiel in

Waschmitteln oder und der bei der Papierherstellung anfallenden Schwarzlauge und nicht immer eine ausreichend lang anhaltende Wirksamkeit und Verträglichkeit auf.

Es bestand die Aufgabe Entschäumerformulierungen

bereitzustellen, bei denen die oben genannten Nachteile vermieden werden. Gegenstand der Erfindung ist ein Verfahren zur Herstellung von hydrophobe Kieselsäure enthaltenden Zusammensetzungen

dadurch gekennzeichnet, dass

(1) eine Mischung enthaltend

(A) Organopolysiloxane mit einer Viskosität von 10 - 10 000 000 mm 2 /s bei 25°C und 1013 hPa aus Einheiten der Formel

worin R gleich oder verschieden sein kann und einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest mit 1-30 Kohlenstoffatomen, vorzugsweise 1-18

Kohlenstoffatomen, oder ein Wasserstoffatom bedeutet,

R 1 gleich oder verschieden sein kann und ein

Wasserstoffatom oder einen einwertigen

Kohlenwasserstoff est mit 1-4 Kohlenstoffatomen

bedeutet,

a 0, 1, 2 oder 3 ist und

b 0, 1, 2 oder 3 ist,

mit der Maßgabe, dass die Summe a+b<3 ist und bei mehr als 50 % aller Einheiten der Formel (I) im Organopolysiloxan

(A) die Summe a+b gleich 2 ist,

wobei die Viskosität der Organopolysiloxane (A) durch die Anzahl der Einheiten der Formel (I) bestimmt wird,

(B) hydrophile Kieselsäuren mit einer BET-Oberfläche von 20 - 500 m 2 /g

(C) hydrophobe Kieselsäuren mit einer BET-Oberfläche von 50 - 500 m 2 /g

gegebenenfalls

(D) Organopolysiloxanharze aus Einheiten der Formel

R 2 e ( R 3 0 ) f SiO(4-e-f)/2 (H), worin R 2 die Bedeutung von R und R 3 Bedeutung von R 1 hat, e 0, 1, 2 oder 3 ist und

f 0, 1, 2 oder 3 ist,

mit der Maßgabe, dass die Summe e+f<3 ist und in weniger als 50 % aller Einheiten der Formel (II) im

Organopolysiloxanharz die Summe e+f gleich 2 ist,

und gegebenenfalls

(E) wasserunlösliche organische Verbindungen,

bei Temperaturen von 50-250°C erhitzt wird, bis die

Viskosität einen Wert von weniger als 50 %, vorzugsweise weniger als 40 %, insbesondere weniger als 30 %, der gemessenen Viskosität aufweist, die die Mischung vor dem Erhitzen hatte, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25°C und einem

Schergefälle von l/s gemessen wird, und

(2) anschließend an die in (1) durchgeführte in-situ-

Hydrophobierung der hydrophilen Kieselsäuren in Gegenwart der hydrophoben Kieselsäuren

gegebenenfalls

(F) Organopolysiloxane, die verschieden von (A) sind, eingemischt werden.

Da die eingesetzte hydrophobe Kieselsäure (C) schon

vorbehandelt ist und keiner weiteren Hydrophobierung bedarf und auch keinen Beitrag zur Hydrophobierung der hydrophilen

Kieselsäure leisten kann, war es nicht zu erwarten, dass die Gegenwart der vorbehandelten hydrophoben Kieselsäure einen Einfluss auf die Eigenschaften des Endproduktes hat. umso überraschender war, dass die nach dem erfindungsgemäßen

Verfahren hergestellten Zusammensetzungen, bei denen die in situ Hydrophobierung der hydrophilen Kieselsäure (B) in

Gegenwart der vorbehandelten Kieselsäure (C) erfolgt, eine wesentlich bessere Wirksamkeit als Entschäumer aufweisen.

Die Reste R und R 2 können Alkylreste, Cycloalkylreste,

Alkenylreste, Arylreste oder Aralkylreste sein. Beispiele für Reste R und R 2 sind der Methylrest, der Ethylrest, der

Octylrest, der 2-Propenylphenylrest und der Phenylrest.

Beispiele für substituierte Reste R und R 2 sind halogenierte Kohlenwasserstoffreste, wie der 3 , 3 , 3-Trifluorpropylrest oder polar substituierte Reste wie der Aminopropylrest, der

Aminopropylaminoethylrest, der Methacrylpropylrest und der Glycidoxypropylrest . Besonders bevorzugt als Rest R und R 2 ist der Methylrest . Beispiele für Reste R 1 und. R 3 sind das Wasserstoffatom, der Methylrest und der Ethylrest.

Besonders bevorzugt als Rest R 1 ist das Wasserstoffatom. Vorzugsweise enthalten die Organopolysiloxane (A)

durchschnittlich 30 - 500 Gew. -ppm Si-gebundene OH-Gruppen, d. h. in 0,013 bis 0,22 mol % der Einheiten der Formel (I) ist b = 1 bzw. a = 1 und R 1 = H und in 99,78 bis 99,987 mol% der Einheiten der Formel (I) ist b = 0 bzw. a = 2.

Das Organopolysiloxan (A) hat eine Viskosität (gemessen bei 25 °C und 1013 hPa) von vorzugsweise von 50 - 200 000 mm 2 /s, bevorzugt 500 - 20 000 mm 2 /s. Bevorzugt werden als Organopolysiloxane (A) lineare

Organopolysiloxane der allgemeinen Formel

R 3-g (R 1 0) g Si- [OSiR 2 ] n -OSi(OR 1 ) g R 3 -g (III) , worin R und R 1 die oben dafür angegebene Bedeutung haben, g 0 oder 1 ist und

n eine ganze Zahl ist und einen solchen Wert hat, dass die Viskosität der Organopolysiloxane (A) 10 - 10 000 000 mm 2 /s bei 25 °C und 1013 hPa, beträgt,

mit der Maßgabe, dass die Organopolysiloxane der Formel (III) durchschnittlich einen Gehalt an Si-gebundenen OH-Gruppen von 30-500 Gew.-ppm aufweisen,

eingesetzt . Vorzugsweise wird als hydrophile Kieselsäure (B) solche mit einer BET-Oberfläche von 100-400 m 2 /g eingesetzt.

Beispiele für hydrophile Kieselsäuren (B) sind hydrophile pyrogene Kieselsäuren und hydrophile gefällte Kieselsäuren. Beispiele für Beispiele für im Handel erhältliche hydrophile pyrogene Kieselsäuren sind HDK ® N 20, HDK ® S13 und HDK ® T30 (käuflich erhältlich bei der Wacker Chemie AG, München) ,

AEROSIL ® 200 (käuflich erhältlich bei der Fa. Evonik Degussa GmbH, Frankfurt am Main) und Cab-O-Sil ® LM 150 (käuflich erhältlich bei Cabot GmbH, Rheinfelden) .

Beispiel für im Handel erhältliche hydrophile gefällte

Kieselsäuren sind Sipernat ® 383 DS und Sipernat ® 160 PQ

(käuflich erhältlich bei der Fa. Evonik Degussa GmbH, Frankfurt am Main) sowie Syloid ® 244 FP, (käuflich erhältlich bei Grace GmbH & Co. KG, Worms) .

Die erfindungsgemäßen Zusammensetzungen enthalten hydrophile Kieselsäuren (B) in Mengen von vorzugsweise 0,1 bis 20

Gewichtsteilen, bevorzugt 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .

Die vorbehandelte hydrophobe Kieselsäure (C) hat eine BET- Oberfläche von vorzugsweise von 50-200 m 2 /g. Bs können

hydrophobe pyrogene Kieselsäuren oder auch andere vorbehandelte hydrophobe Kieselsäuren wie hydrophobe gefällte Kieselsäuren eingesetzt werden. Derartig vorbehandelte hydrophobe

Kieselsäure sind dem Fachmann bekannt, handelsüblich und beispielsweise in EP 726 086 A2, EP 967 252 AI, EP 1 304 361 Bl und EP 1 561 728 A2 beschrieben.

Beispiel für im Handel erhältliche hydrophobe pyrogene

Kieselsäuren sind HDK ® H2000 und HDK ® H15 (käuflich erhältlich bei der Wacker Chemie AG, München) sowie AEROSIL ® 972 und AEROSIL ® 805 (käuflich erhältlich bei der Fa. Evonik Degussa GmbH, Frankfurt am Main) .

Beispiel für im Handel erhältliche hydrophobe gefällte

Kieselsäuren sind Sipernat ® D10 und Sipernat ® D17 (käuflich erhältlich bei der Fa. Evonik Degussa GmbH, Frankfurt am Main) . Die als Komponente (C) eingesetzte hydrophobe Kieselsäure hat einen Kohlenstoffgehalt von bevorzugt 0,1 bis 5,0 Gew.-%, insbesondere von 0,5 bis 3 Gew.-%.

Die als Komponente (C) eingesetzte hydrophobe Kieselsäure zeigt vorzugsweise eine Methanolbenetzbarkeit von größer als

30 Gew.-%, d.h. Wasser kann diese hydrophobe Kieselsäure nur dann benetzen, wenn es mindestens 30 Gew.-% Methanol enthält. Bevorzugt zeigt die hydrophobe Kieselsäure (C) eine

Methanolbenetzbarkeit von größer als 50 Gew.-%, insbesondere 50 bis 70 Gew.-%.

Der Methanoltitrationstest zur Bestimmung der Hydrophobie der Kieselsäure ist in DE-Ä 2107082, Seite 3, 2. Absatz

(korrepondierende US 3,963,627, Spalte 1, Zeilen 52-63) und EP 1 304 361 Bl, Seite 11, Zeile 15 ff. beschrieben.

Die erfindungsgemäßen Zusammensetzungen enthalten hydrophobe Kieselsäuren (C) in Mengen von vorzugsweise 0,1 bis 20

Gewichtsteilen, bevorzugt 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .

Das Gewichtsverhältnis von Komponente (B) zu Komponente (C) ist vorzugsweise 95:5 bis 5:95, bevorzugt 80:20 bis 20:80, und besonders bevorzugt 70:30 bis 30:70.

Bei der gegebenenf lls eingesetzten Komponente (D) handelt es sich um Siliconharze aus Einheiten der Formel (II) , bei denen vorzugsweise in weniger als 5% der Einheiten im Harz die Summe a+b gleich 2 ist.

Besonders bevorzugt handelt es sich bei Komponente (D) um

Organopolysiloxanharze, die im Wesentlichen aus R 2 3 SiOi /2 (M) - und Si0 4/2 (Q) -Einheiten bestehen, wobei R 2 die oben dafür angegebene Bedeutung hat; diese Harze werden auch als MQ-Harze bezeichnet. Das molare Verhältnis von M- zu Q-Einheiten liegt vorzugsweise im Bereich von 0,5 bis 2,0, besonders bevorzugt im Bereich von 0,6 bis 1,0. Diese Siliconharze können außerdem bis zu 10 Gew.-% freie Si-gebundene Hydroxy- oder Alkoxygruppen enthalten.

Vorzugsweise haben diese Organopolysiloxanharze (D) bei 25°C eine Viskosität größer 1 000 mPas oder sind Feststoffe. Das mit Gelpermeationschromatografie bestimmte gewichtsmittlere

Molekulargewicht M w (bezogen auf einen Polystyrolstandard) dieser Harze beträgt vorzugsweise 200 bis 200 000 g/mol, bevorzugt 1 000 bis 20 000 g/mol.

Komponente (D) sind handelsübliche Produkte bzw. können nach in der Siliciumchemie gängigen Verfahren, z. B. entsprechend „Parsonage, J. R . ; Kendrick, D. A. (Science of Materials and Polymers Group, University of Greenwich, London, UK SE18 6PF) Spec. Publ. - R. Soc . Chem. 166, 98-106, 1995", US-A 2,676,182 oder EP-A 927 733 hergestellt werden. Die erfindung gemäßen Zusammensetzungen enthalten

Organopolysiloxanharze (D) in Mengen von vorzugsweise 0,5 bis 30 Gewichtsteilen, bevorzugt 0,1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) . Außer den Komponenten (A) bis (D) können die erfindungsgemäßen Zusammensetzungen weitere Stoffe enthalten, wie sie auch bisher in Entschäumerformulierungen verwendet worden sind.

Beispiele für weitere Stoffe sind wasserunlösliche organische Verbindungen (E) . Unter dem Begriff „wasserunlöslich" soll im Sinne der vorliegenden Erfindung eine Löslichkeit in Wasser bei 25 °C und einem Druck von 1013 hPa von maximal 3 Gewichtsprozent verstanden werden.

Vorzugsweise handelt es sich bei den wasserunlösliche

organische Verbindungen um solche mit einem Siedepunkt größer als 100°C bei dem Druck der umgebenden Atmosphäre, also bei 900 bis 1100 hPa, insbesondere um solche, ausgewählt aus

Mineralölen, nativen Ölen, Isoparaffinen, Polyisobutylenen, Rückständen aus der Oxoalkoholsynthese , Estern

niedermolekularer synthetischer Carbonsäuren, Fettsäureestern, wie z. B. Octylstearat , Dodecylpalmitat , Fettalkoholen, Ethern niedermolekularer Alkohole, Phthalaten, Estern der

Phosphorsäure und Wachsen. Die erfindungsgemäßen Zusammensetzungen enthalten

wasserunlösliche organische Verbindung (E) in Mengen von bevorzugt 0 bis 1000 Gewichtsteilen, besonders bevorzugt 0 bis 100 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (A) bis (E) .

Das Herstellen der erfindungsgemäßen Zusammensetzungen im

Verfahrenschritt (1) kann nach bekannten Verfahren durch

Mischen aller Komponenten (A) bis (D) , ggf. (E) , erfolgen, z.B. unter Anwendung von hohen Scherkräften in Kolloidmühlen,

Dissolvern oder Rotor-Stator-Homogenisatoren. Dabei kann der Mischvorgang bei reduziertem Druck erfolgen, um das Einmischen von Luft, welche z. B. in hochdispersen Füllstoffen, wie den Kieselsäuren (B) und (C) , enthalten ist, zu verhindern.

Vorzugsweise erfolgt nach dem Mischen aller Komponenten das Erhitzen der Mischung und damit die in situ Hydrophobierung der hydrophilen Kieselsäure (B) in Gegenwart der hydrophoben

Kieselsäure (C) .

Das Mischen und Erhitzen kann aber auch ganz oder teilweise simultan erfolgen, so dass beispielsweise das Erhitzen schon während des Mischens der Komponenten er olgt .

Die Herstellung der erfindungsgemäßen Zusammensetzungen erfolgt z.B. in Knetern, Dissolvern und Kolloidmühlen. Das Erhitzen im Verfahrensschritt (1) wird bei Temperaturen von vorzugsweise 100 bis 200°C und beim Druck der umgebenden

Atmosphäre, also zwischen 900 und 1100 hPa, durchgeführt. Bei der Herstellung der erfindungsgemäßen Zusammensetzung im Verfahrensschritt (1) wird eine Mischenergie von vorzugsweise mehr als 3,0 kJ/kg, besonders bevorzugt mehr als 8 kJ/kg, insbesondere 10 bis 150 kJ/kg, eingetragen.

Die in situ Hydrophobierung der hydrophilen Kieselsäure (B) im Verfahrensschritt (1) erfolgt dabei vorzugsweise durch

mehrstündiges Erhitzen der Mischung im Verfahrenschritt (1) . Das Erhitzen erfolgt vorzugsweise für 1 bis 10 Stunden, bevorzugt 2 bis 5 Stunden,

Die in situ Hydrophobierung kann dabei unter Zusatz von die in- situ-Hydrophobierung fördernde Katalysatoren (G) vorzugsweise Alkalimetallhydroxide, erfolgen. Bevorzugte Beispiele für Alkalimetallhydroxide sind Natriumhydroxid und Kaliumhydroxid, wobei Kaliumhydroxid besonders bevorzugt ist.

Besonders bevorzugt erfolgt die in-situ-Hydrophobierung im Verfahrensschritt (1) in Gegenwart von 100-5000 Gew.-ppm, insbesondere 500-2000 Gew.-ppm, die in-situ-Hydrophobierung fördernde Katalysatoren (G) , vorzugsweise

Alkalimetallhydroxide, bevorzugt KOH, die vorzugsweise als Lösung, z.B. in Polydimethylsiloxan oder Methanol, dosiert werden, wobei die Gew.-ppp Katalysator (G) jeweils auf die Gesamtmenge der Mischung (1) bezogen sind.

Die Mischung (1) weist vor dem Erhitzen eine Viskosität von vorzugsweise 10 000 mPa.s bis 1 000 000 mPa.s auf, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25 °C und einem Schergefalle von 1/s gemessen wird.

Die Viskosität der Mischung sinkt beim Erhitzen im

Verfahrensschritt (1) vorzugsweise stark ab.

Nach dem Erhitzen der Mischung weist die Viskosität einen Wert von vorzugsweise mindestens 5%, bevorzugt mindestens 10%, der gemessenen Viskosität auf, die die Mischung vor dem Erhitzen hatte, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25°C und einem Schergefälle von 1/s gemessen wird.

Nach dem Erhitzen im Verfahrensschritt (1) weist die Mischung eine Viskosität von vorzugsweise 1000 mPa.s bis 200 000 mPa.s auf, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25°C und einem Schergefälle von l/s gemessen wird.

Anschließend an die in-situ-Hydrophobierung im

Verfahrensschritt (1) können zu der Mischung noch weitere

Komponenten, wie Organopolysiloxane (F) , die verschieden von Organopolysiloxanen (Ά) sind, zugegeben werden.

Als Komponente (F) können alle Polysiloxane eingesetzt werden, die nicht unter die Definitionen der Komponenten (A) oder (D) fallen. Insbesondere werden als Komponenten (F) lineare

Polyethersiloxane (F) eingesetzt, bei denen die Polyetherreste seitenständig an lineare Siloxanketten über

Kohlenwasserstoffreste, vorzugsweise zweiwertige

Kohlenwasserstoffreste, SiC-gebunden sind.

Solche lineare Polyether-Polysiloxan-Copolymere sind z. B. in

GB 2 350 117 A beschrieben.

Vorzugsweise handelt es sich bei den Polyethersiloxanen (F) um solche Polye hersiloxane, die ein Siloxanrückgrat mit 10 - 200, insbesondere 20 - 100, Siloxaneinheiten haben und bei denen 2- 20%, insbesondere 5-15%, der Siloxaneinheiten einen SiC- gebundenen Polyetherrest Z der Formel

-R 4 -0- [CH 2 -CH 2 0] x - [CH 2 -CH(CH 3 )0] y -R s (IV) tragen, wobei

x einen Wert von 0 - 100, bevorzugt 5 - 50, hat,

y einen Wert von 5 - 100, bevorzugt 5 - 50, aufweist,

wobei das Verhältnis x:y 4:1 bis 0:1 beträgt,

R 4 einen zweiwertigen Kohlenwasserstoffrest mit 1-10 Kohlenstoffatomen, vorzugsweise einen Ci_i 0 -Alkylenrest , bedeutet, R B gleich oder verschieden ist und ein Wasserstoffatom oder einen gegebenenfalls substituierten Kohlenwasserstoffrest mit 1-30 Kohlenstoffatomen oder ein Carboxyrest der Formel -C(0)R s , wobei der Rest R 6 ein C 1-3 -Alkylrest , wie Methyl- oder Ethylrest ist, bedeutet.

Bevorzugt ist R 4 ein Rest der Formel -CH 2 -CH 2 -CH 2 - .

Vorzugsweise ist der Rest R 5 ein Wasserstoffatom oder ein einwertiger Kohlenwasserstoffrest mit 1-18 C-Atomen.

Beispiele für Reste R s sind ein Wasserstoffatom oder ein

Ci- 6 -Alkylrest .

Bevorzugt werden als Polyethersiloxane (F) solche der

allgemeinen Formel

R 3 Si- [OSiR 2 ] 0 - [OSiZR] p -OSiR 3 (V) , wobei der Polyetherrest Z und der Rest R die oben dafür angegebene Bedeutung haben,

o eine ganze Zahl von 5 bis 500, bevorzugt 10 bis 100, ist und p eine ganze Zahl von 1 bis 50, bevorzugt 2 bis 15, ist, eingesetzt. Vorzugsweise ist in Formel (V) die Summe o+p 20 bis 200, bevorzugt 20 bis 100, ist, wobei vorzugsweise durchschnittlich 2-20%, insbesondere 5-15%, der Siloxaneinheiten o+p einen SiC- gebundenen Polyetherrest Z aufweisen.

Der Trübungspunkt der Polyethersiloxane (F) wird nach

DIN EN 1890 Verfahren A gemessen.

Der Trübungspunkt der Polyethersiloxane (F) ist vorzugsweise kleiner als 40°C, bevorzugt kleiner als 30°C, besonders bevorzugt kleiner als 25°C, d.h. die Polyethersiloxane sind bei 25°C zu weniger als 1% in Wasser löslich.

Als Komponente (F) können auch verzweigte Polyethersiloxane eingesetzt werden. Beispiele für verzweigte Polyethersiloxane sind solche, bei denen die Polyetherreste seitenständig an lineare Siloxanketten über Kohlenwasserstoffreste, vorzugsweise zweiwertige Kohlenwasserstoffreste, SiC-gebunden sind und wobei diese linearen Siloxanketten über seitenständige organische Brücken miteinander verbunden.

Beispiele für diese organischen Brücken sind SiC-gebundene lineare oder verzweigte organische Reste, vorzugsweise

zweiwertige Kohlenwasserstoffreste, die ein oder mehrere

Heteroatome ausgewählt aus der Gruppe der Sauerstoff- und

Stickstoffatome enthalten können, wie Alkylenreste, SiC- gebundene Polyetherreste, die über Alkylenreste an die

Siloxanketten gebunden sind, und SiC-gebundene zweiwertige Kohlenwasserstoffreste, wie Alkylenreste, die Polyether- und Urethangruppen enthalten.

Besonders gut geeignet als verzweigte Polyethersiloxane (F) sind verzweigte Polyether-Polysiloxan-Copolymere, wie sie z. B. in EP 1 076 073 AI, EP 1 424 117 A2 oder WO 2006/128624 AI als Komponente von Entschäumern beschrieben sind. Bevorzugte verzweigte Polyether-Polysiloxan-Copolymere sind solche, bei denen die Siloxanketten über seitenständige zweiwertige SiC-gebundene Kohlenwasserstoffreste, die

Polyetherreste und Urethangruppen enthalten, miteinander verbunden sind.

Diese Polyether-Polysiloxan-Copolymere und deren Herstellung sind in WO 2006/128624 AI, insbesondere auf Seite 3, Zeile 8 bis Seite 13, Zeile 38, beschrieben (incorporated by

reference) .

Falls die erfindungsgemäßen Zusammensetzungen als Komponente (F) Polyethersiloxane enthalten, dann enthalten sie

Polyethersiloxane (F) in Mengen von vorzugsweise 1 bis 200 Gewichtsteilen, bevorzugt 2 bis 100 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .

In einer weiteren Au führungsform enthält die erfindungsgemäße Zusammensetzung als Komponente (F) von (A) verschiedene

Organopolysiloxane aus Einheiten der allgemeinen Formel

R k (R 6 0)iSiO (4 -k-i)/2 (VI), worin

R die oben dafür angegebene Bedeutung hat,

R 6 gleich oder verschieden sein kann und einen einwertigen, linearen und/oder verzweigten Kohlenwasserstoffrest mit mindestens 6 Kohlenstoffatomen, vorzugsweise 6-30

Kohlenstoffatomen, bedeutet,

k 0, 1, 2 oder 3 ist und

1 0, 1, 2 oder 3 ist, durchschnittlich 0,005 bis 0,5 ist, mit der Maßgabe, dass die Summe k+l<3 ist, durchschnittlich 1,9 bis 2,1 ist.

Derartige Organopolysiloxane (F) der Formel (VI) sind

beispielsweise durch alkalisch katalysierte Kondensation von silanolterminierten Polydimethylsiloxanen einer Viskosität 50 bis 50 000 mPa's bei 25°C und aliphatischen Alkoholen mit mindestens 6 Kohlenstoffatomen, wie Isotridecylalkohol, n- Octanol, Stearylalkohol, 4 -Ethyl-hexadecanol oder Eicosanol, zugänglich.

Falls die erfindungsgemäßen Zusammensetzungen als Komponente (F) Organopolysiloxane der Formel (VI) enthalten, dann

enthalten sie sie in Mengen von vorzugsweise 0,5 bis 30

Gewichtsteilen, bevorzugt 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .

Die erfindungsgemäßen Zusammensetzungen können neben den

Komponenten (A) bis (G) weitere Bestandteile z.B.

herstellungsbedingte Verunreinigungen, wie cyclische Siloxane, enthalten. Vorzugsweise sind keine oder weniger als 5% dieser Bestandteile enthalten.

Die erfindungsgemäßen Zusammensetzungen sind bevorzugt viskose klare bis opake farblose Flüssigkeiten.

Die erfindungsgemäßen Zusammensetzungen haben nach dem

Verfahrenschritt (1) und (2) eine Viskosität von vorzugsweise 1000 bis 200 000 mPas, besonders bevorzugt von 5000 bis 50 000 mPas, jeweils bei 25°C und 1013 hPa.

Das erfindungsgemäße Verfahren kann diskontinuierlich,

halbkontinuierlich oder vollkontinuierlich durchgeführt werden. Bei den erfindungsgemäßen Zusammensetzungen kann es sich um

Lösungen, Dispersionen oder Pulver handeln.

Gegenstand der Erfindung ist daher ein Verfahren zur

Herstellung von Emulsionen von hydrophobe Kieselsäuren

enthaltenden Entschäumerzusammensetzungen, bei dem die nach dem erfindungsgemäßen Verfahren hergestellten

Entschäumerzusammensetzungen mit

Emulgatoren,

ggf . Verdickern

und Wasser

gemischt werden.

Zur Herstellung der Emulsionen der nach dem erfindungsgemäßen Verfahren hergestellten Entschäumerzusammensetzungen können alle Emulgatoren eingesetzt werden, die dem Fachmann zur

Herstellung von Siliconemulsionen bekannt sind, wie z. B.

anionische, kationische oder nichtionogene Emulgatoren.

Bevorzugt werden Emulgatormischungen eingesetzt, wobei

mindestens ein nichtionogener Emulgator, vorzugsweise

ausgewählt aus der Gruppe der Sorbitanfettsäureester,

ethoxylierten Sorbitanfettsäureester, ethoxylierten Fettsäuren, ethoxylierten linearen oder verzweigten Alkohole mit 10 bis 20 Kohlenstoffatomen und/oder Glycerinester, enthalten sein sollte. Weiterhin können als Verdicker bekannte Verbindungen, wie Polyacrylsäure, Polyacrylate, Celluloseethe , wie

Carboxymethylcellulose und Hydroxyethylcellulose, natürliche Verdicker, wie z. B. Xanthan Gum, und Polyurethane sowie

Konservierungsmittel und andere übliche und dem Fachmann zur Herstellung von Siliconemulsionen bekannte Zusätze zugesetzt werden.

Die kontinuierliche Phase der erfindungsgemäßen Emulsionen ist bevorzugt Wasser. Es können jedoch auch erfindungsgemäße

Zusammensetzungen in Form von Emulsionen hergestellt werden, bei denen die kontinuierliche Phase durch die Komponenten (A) bis (G) gebildet wird. Es kann sich dabei auch um multiple Emulsionen handeln. Verfahren zur Herstellung von Siliconemulsionen sind bekannt, üblicherweise erfolgt die Herstellung durch einfaches Verrühren aller Bestandteile und ggf. anschließendes Homogenisieren mit Strahldispergatoren, Rotor-Stator-Homogenisatoren,

Kolloidmühlen oder Hochdruckhomogenisatoren.

Falls es sich bei der erfindungsgemäßen Zusammensetzung um Emulsionen handelt, sind Öl in Wasser Emulsionen enthaltend 5 bis 50 Gew.-% Komponenten (A) bis (G) , 1 bis 20 Gew.-%

Emulgatoren und Verdicker und 30 bis 94 Gew.-% Wasser

bevorzugt .

Die erfindungsgemäßen Zusammensetzungen können auch als frei fließende Pulver formuliert werden. Diese sind z, B. bei der Anwendung in pulverförmigen Waschmitteln bevorzugt. Die

Herstellung dieser Pulver ausgehend von der Mischung der

Komponenten (A) bis (E) , gegebenenfalls (F) und gegebenenfalls (G) erfolgt nach dem Fachmann bekannten Verfahren, wie

Sprühtrocknung oder Aufbaugranulation und mit dem Fachmann bekannten Zusätzen.

Gegenstand der Erfindung ist daher ein Verfahren zur

Herstellung von Pulvern, bei dem

die nach dem erfindungsgemäßen Verfahren hergestellten

Entschäumerzusammensetzungen mit

Trägermaterialien

gemischt werden.

Die erfindungsgemäßen Pulver enthalten bevorzugt 2 bis 20 Gew.-% der erfindungsgemäßen Zusammensetzung, die die

Komponenten (A) bis (G) enthalten. Als Träger kommen z. B.

Zeolithe, Natriumsulf t, Cellulosederivate, Harnstoff und Zucker zum Einsatz. Die erfindungsgemäßen Pulver enthalten 50 bis 95 Gew.-% Trägermaterialien. Weitere Bestandteile der erfindungsgemäßen Pulver können z. B. Wachse sein oder organische Polymere, wie sie z. B. in EP-A 887 097 und

EP-A 1 060 778 beschrieben sind.

Die erfindungsgemäßen Entschäumerzusammensetzungen können überall dort eingesetzt werden, wo störender Schaum unterdrückt werden soll. Das ist z. B. in nichtwässrigen Systemen wie bei der Teerdestillation oder der Erdölverarbeitung der Fall.

Insbesondere eigenen sich die erfindungsgemäßen

Entschäumerzusammensetzungen zur Bekämpfung von Schaum in wässrigen Tensidsystemen, für die Anwendung in Wasch- und Reinigungsmitteln, zur Bekämpfung von Schaum in

Abwasseranlagen, bei Textilfärbeverfahren, bei der

Erdgaswäsche, in Polymerdispersionen, und zum Entschäumen von bei der Zellstoffherstellung anfallenden wässrigen Medien.

Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zum Entschäumen und/oder zur Verhinderung des Schäumens von Medien, indem die erfindungsgemäßen

Zusammensetzungen oder deren Emulsionen oder Pulver mit den Medien vermischt werden.

Vorzugsweise werden die erfindungsgemäßen Zusammensetzungen zum Entschäumen und/oder zur Verhinderung des Schäumens bei der Zellstoffherstellung anfallenden wässrigen Medien eingesetzt. Die erfindungsgemäßen Entschäumerszusammensetzungen können weiterhin in Wasch- und Reinigungsmittel und Pflegemittel, wie z.B. Weichspüler, eingesetzt werden, wobei die

erfindungsgemäßen Entschäumerzusammensetzungen in Substanz oder in Form von Emulsionen oder Pulvern eingesetzt werden können.

Der Zusatz der erfindungsgemäßen Zusammensetzung zu den schäumenden Medien kann direkt erfolgen, gelöst in geeigneten Lösungsmitteln, wie Toluol, Xylol, Methylethylketon oder tert . -Butanol, als Pulver oder als Emulsion. Die zur Erzielung der gewünschten Entschäumerwirkung notwendige Menge richtet sich z. B. nach der Art des Mediums, der Temperatur und der auftretenden Turbulenz .

Bevorzugt werden die erfindungsgemäßen Zusammensetzungen in Mengen von 0,1 Gew.-ppm bis 1 Gew.-%, insbesondere in Mengen von 1 bis 100 Gew.-ppm, bezogen auf das Gesamtgewicht des zu entschäumenden Mediums, zum schäumenden Medium zugegeben.

Das erfindungsgemäße Verfahren wird vorzugsweise beim Druck der umgebenden Atmosphäre, also bei etwa 900 bis 1100 hPa,

durchgeführt . Das erfindungsgemäße Verfahren kann auch bei höheren oder niedrigeren Drücken durchgeführt werden, wie etwa bei 3000 bis 4000 hPa oder 1 bis 10 hPa. Überraschenderweise wurde gefunden, dass die Wirksamkeit und Handhabbarkeit der erfindungsgemäßen Entschäumerformulierungen durch das erfindungsgemäße Verfahren wesentlich verbessert wird. Die erfindungsgemäßen Entschäumerformulierungen zeichnen sich besonders durch eine sehr gute Handhabbarkeit und

Dosierbarkeit sowie durch eine hohe Wirksamkeit sowohl

bezüglich des sofortigen Schaumzerfalls als auch der

Langzei irkung aus .

Die erfindungsgemäßen Zusammensetzungen haben den Vorteil, dass sie sich durch eine hohe, lang anhaltende Wirksamkeit in unterschiedlichsten Medien bei geringen Zusatzmengen

auszeichnen. Das ist sowohl ökonomisch als auch ökologisch außerordentlich vorteilhaft. Das erfindungsgemäße Verfahren hat den Vorteil, dass es einfach in der Durchführung und sehr wirtschaftlich ist.

In den nachfolgenden Beispielen beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nicht anders angegeben, auf das Gewicht . Sofern nicht anders angegeben, werden die folgenden Beispiele bei einem Druck der umgebenden Atmosphäre, also bei etwa 1000 hPa, und bei Raumtemperatur, also etwa 20 °C bzw. einer Temperatur, die sich beim Zusammengeben der

Reaktanten bei Raumtemperatur ohne zusätzliche Heizung oder Kühlung einstellt, durchgeführt. Alle in den Beispielen angeführten Viskositätsangaben sollen sich auf eine Temperatur von 25°C beziehen.

Prüfungen der Entschäumerwirksamkeit In Schwarzablauge

400 ml Schwarzablauge aus dem Zellstoff rozess (Hardwood der Fa. UPM Kymmene Oy aus uusankoski, Finnland) werden in einer auf 80°C thermostatisierten 1000ml Umpumpapparatur mit einer Umpumpgeschwindigkeit von 1,5 1/min umgepumpt.

Sobald das Schaumniveau eine Höhe von 75 mm erreicht hat, wird der Entschäumer (10 mg bezogen auf die

Entschäumerformulierungen von Beispiel 1 und die

Vergleichsversuche VI bis V3) zudosiert, Schaumzerfallszeit und das niedrigste Schaumniveau, das nach Zugabe von Entschäumer und einsetzendem Schaumzerfall erreicht wird, werden

festgehalten. Je kleiner die Schaumzerfallszeit tl und je niedriger das Schaumniveau hl sind, desto besser ist die

Schnellwirkung eines Entschäumers.

Danach wird die Langzeitwirkung des Entschäumers bestimmt, welche die Zeitspanne t2 darstellt, die benötigt wird, um vom niedrigsten Schaumniveau zum ursprünglichen Schaumniveau (75mm) zu kommen.

Verwendete Stoffe:

Siloxan A: ein mit Trimethylsiloxygruppen terminiertes

Polydimethylsiloxan mit einer Viskosität von 8000 mm z /s und einem Anteil an Silanolgruppen von 350 Gew. ppm

Füllstoff B: eine hydrophile pyrogene Kieselsäure mit einer Oberfläche von 300 m 2 /g erhältlich unter der Bezeichnung HDK ® T30 bei der Wacker Chemie AG München

Füllstoff C; eine hydrophobierte pyrogene Kieselsäure mit einer Oberfläche von 150 m 2 /cf erhältlich unter der Bezeichnung HDK ® H2000 bei der Wacker Chemie AG München. Diese Kieselsäure hatte einen Kohlenstoffgehalt von 2,8 Gew.-% und eine

Methanolbenetzbarkeit von 65 Gew.-%.

Organopolysiloxanharz D: ein bei Raumtemperatur festen

Siliconharzes aus Trimethylsiloxy- und Si0 2 -Einheiten im

Molverhältnis 0,61/1 mit einer gewichtsmittleren Molmasse von 5728 g/mol (bezogen auf Polystyrolstandard) und einem Gehalt an

Si-gebunden Hydroxylgruppen von 0,8 Gew.-%

Wasserunlösliche organische Verbindung E:

Kohlenwasser toffgemisch mit einem Siedebereich von 230 bis 270°C bei 1013 hPa.

Polyethersiloxan F: Dieses Polymer wird wie folgt hergestellt: 67 g eines mit Methylgruppen terminierten Siloxans aus

Dimethylsiloxy- und Hydrogenmethylsiloxyeinheiten mit einem Aktivwasserstoffgehalt von 0,133 % und einer Viskosität von 72 mm z /s (25°C) werden unter kräftigem Rühren mit 408 g eines Allylpolyethers (560 ppm H 2 0-Gehalt) mit einem PO/EO-Verhältnis von 4,0und einer Jodzahl von 11,2 vermischt und auf 100°C erwärmt. Durch Zugabe von 0,5 ml einer 2 %-igen Lösung von Hexachloroplatinsäure in Isopropanol wird die Hydrosilylierung gestartet, was sich in einer schwach exothermen Reaktion zeigt. Das Reaktionsgemisch wird bei 100 bis 110°C gehalten, bis ein klares Copolymer erhalten wird und kein Aktivwasserstoff mehr nachweisbar ist. Das Polysiloxan mit seitenständigen

Polyethergruppen, hat eine Viskosität von 870 mm 2 /s (25°G) und einen Trübungspunkt von kleiner 25 °C.

Katalysator G: eine 20%ige Lösung von KOH in Methanol

Beispiel 1 (erfindungsgemäß) :

83 Teile Organopolysiloxan A, 6 Teile Füllstoff B, 2 Teile Füllstoff C, 2,5 Teile Organopolysiloxanharz D und 2,5 Teile Mineralöl E werden vermischt und homogenisiert und in Gegenwart von 7500 ppm Katalysator G 4h auf 150°C erhitzt. Die Viskosität der Mischung wird vor und nach dem Erhitzen, also vor und nach der in- situ-Hydrophobierung bestimmt, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25°C und einem Schergefälle von l/s gemessen wird. Die Ergebnisse sind in der Tabelle 1 zusammengefasst .

Anschließend an das Erhitzen werden zu der Mischung noch

4 Teile Polyethersiloxan F zugegeben und homogen eingemischt.

Vergleichbeispiel 1 (nur in situ hydrophobierte Kieselsäure) :

83 Teile Organopolysiloxan A, 8 Teile Füllstoff B, 2,5 Teile Organopolysiloxanharz D und 2,5 Teile Mineralöl E werden vermischt und homogenisiert und in Gegenwart von 7500 ppm Katalysator G 4h auf 150°C erhitzt. Die Viskosität der Mischung wird vor und nach dem Erhitzen bestimmt, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25 °C und einem Schergefälle von l/s gemessen wird. Die

Ergebnisse sind in der Tabelle 1 zusammengefasst.

Anschließend an das Erhitzen werden zu der Mischung noch

4 Teile Polyethersiloxan F zugegeben und homogen eingemischt. Vergleichbeispiel 2 (nur vorbehandelte hydrophobierte

Kieselsäure) :

83 Teile Organopolysiloxan A, 8 Teile Füllstoff C, 2,5 Teile Organopolysiloxanharz D und 2,5 Teile Mineralöl E werden vermischt und homogenisiert und in Gegenwart von 7500 ppm Katalysator G 4h auf 150°C erhitzt. Die Viskosität der Mischung wird vor und nach dem Erhitzen bestimmt, wobei die Viskosität mit einem Kegel-Platte Viskosimeter bei einer Temperatur von 25 °C und einem Schergefälle von 1/s gemessen wird. Die

Ergebnisse sind in der Tabelle 1 zusammengefasst .

Anschließend an das Erhitzen werden zu der Mischung noch

4 Teile Polyethersiloxan F zugegeben und homogen eingemischt. Vergleichbeispiel 3 (in situ hydrophob erte Kieselsäure und vorbehandelte Kieselsäure; die in situ Hydrophobierung erfolgt vor der Zugabe der vorbehandelten Kieselsäure) :

83 Teile Organopolysiloxan A, 6 Teile Füllstoff B, 2,5 Teile Organopolysiloxanharz D und 2,5 Teile Mineralöl E werden vermischt und homogenisiert und in Gegenwart von 7500 ppm

Katalysator G 4h auf 150 °C erhitzt. Die Viskosität der Mischung wird vor und nach dem Erhitzen bestimmt, wobei die Viskosität mit einem Kegel -Platte Viskosimeter bei einer Temperatur von 25°C und einem Schergefälle von 1/s gemessen wird. Die

Ergebnisse sind in der Tabelle 1 zusammengefasst ,

Anschließend an das Erhitzen werden zu der Mischung noch

2 Teile Füllstoff C und 4 Teile Polyethersiloxan F zugegeben und homogen eingemischt Tabelle 1: Aussehen und Viskositäten von Beispiel 1 und

Vergleichsversuchen V1-V3

Die Entschäumerzusammensetzungen gemäß dem Beispiel 1 bzw.

gemäß denVergleichsversuchen und nach Einmischung des

Polyethersiloxans F werden jeweils mit Mineralöl E auf eine 40 Gew.-%ige Lösung verdünnt und mittels einer Pipette zur Prüfung der jeweiligen Wirksamkeit der Entschäumerzusammensetzungen zur Schwarzablauge zudosiert.

Die Ergebnisse der Prüfung der Wirksamkeit sind in der

Tabelle 2 zusammengefasst . Tabelle 2: Ergebnisse der Prüfung der Entschäumerwirksamkeit Hartholz Schwarzablauge

Aus den in der Tabelle 2 zusammengefassten Ergebnissen ist deutlich ersichtlich, dass,

Vergleichsversuch VI zwar eine ähnliche Langzeitwirkung besitzt, jedoch eine signifikant schlechteren Schaumzerfall als das erfindungsgemäße Beispiel 1 hat. Außerdem ist es aufgrund der fast doppelt so hohen Viskosität wesentlich schlechter handhabbar.

Vergleichsversuch V2 in der Schnellwirkung gut ist, die Wirkung jedoch nicht lange anhält. Die Neigung zur

FüllstoffSedimentation ist ebenso ein deutlicher Nachteil im Vergleich zu dem erfindungsgemäß hergestellten Entschäumer. Auf der anderen Seite ist die ausschließliche Verwendung von bereits hydrophobierter also vorbehandelter Kieselsäure, wie Füllstoff C, aufgrund des höheren Preises im Vergleich zu hydrophiler Kieselsäure auch aus Kostengründen nachteilig,

• Vergleichsversuch V3 eine gute Schnellwirkung besitzt,

aber in der Langzeitwirkung deutlich schlechter ist als Beispiel 1.

Da die vorbehandelte hydrophobe Kieselsäure (Füllstoff C) mit der Methanolbenetzbarkeit von 65 Gew.-% und dem

Kohlenstoffgehalt von 2,8 Gew.-% bereits als vollständig hydrophobiert angesehen werden kann, auf der anderen Seite aber keinen Beitrag zu Hydrophobierung der hydrophilen Kieselsäure leistet, war davon auszugehen, dass der Zeitpunkt der Zugabe dieses Füllstoffes keinen Einfluss auf die Produkteigenschaften haben kann. Deshalb war es überraschend, dass bei Durchführung des erfindungsgemäßen Verfahrens entsprechend Beispiel 1

Entschäumerformulierungen erhalten werden, die im Hinblick auf Handhabbarkeit (moderate Viskosität und keine

FüllstoffSedimentation) , Schnellwirkung (Sofortiger

Schaumzerfall und Schaumhöhe) und Langzeitwirkung den nach dem Stand der Technik hergestellten Formulierungen überlegen sind.

Beispiel 2:

Es werden 100 Teile einer Entschäumerformulierung von Beispiel 1 werden bei 60 °C mit 30 Teilen Sorbitanmonstearat (erhältlich unter der Bezeichnung „Span 60 bei Croda GmbH D-Nettetal) und 20 Teilen Polyoxyethylen (20) sorbitanmonostearate (erhältlich unter der Bezeichnung „Tween 60" bei Uniqema D-Emmerich) vermischt und schrittweise mit 500 Teilen Wasser verdünnt. Zu dieser Mischung werden 2 Teile einer Polyacrylsaure (erhältlich unter der Bezeichnung „Carbopol 934" bei BF Goodrich D-Neuss) gegeben, vermischt und weitere 345 Teile Wasser und 3 Teile eines Konservierungsmittels auf Isothiazolinonbasis (erhältlich unter der Bezeichnung „Acticide MV" bei der Thor-Chemie, D- Speyer) zugegeben. Anschließend wird die Emulsion bei 100 bar mit einem Hochdruckhomogenisator homogenisiert und mit 10%iger NaOH auf einen pH-Wert von 6-7 eingestellt.

Die erhaltene Entschäumeremulsion war hervorragend geeignet, um wässrige Tensidlösungen zu entschäumen.

Beispiel 3:

35 ml einer 2 %igen Lösung eines hochmolekularen Copolymers aus Acrylsäure, Methacrylsäurestearat und Pentaerythritol- diallylether (im molaren Verhältnis 100:2:0,3) (die, wenn sie neutralisiert wird, eine Viskosität von 17 500 mm 2 /s aufweist) wurden in einem Becherglas vorgelegt, und unter intensivem Mischen mit einem Flügelrührer wurden 10 g der

Entschäumerformulierung nach Beispiel 2 langsam zugegeben, so dass nach 10 Minuten Rühren eine Emulsion der

Entschäumerformulierung in der Polymerlösung vorlag. Unter fortgesetztem Rühren wurden zu dieser Emulsion 88,5 g leichte Soda gegeben und anschließend das Wasser unter fortgesetztem Mischen unter Vakuum entfernt. Danach wurden 0,5 g einer hydrophilen Kieselsäure mit einer BET-Oberflache von 200 m 2 /g (erhältlich bei der Wacker-Chemie GmbH unter der Bezeichnung HDK ® N20) zugemischt.

Es wurde ein weißes, rieselfähiges Pulver erhalten. Dieses wurde mit Erfolg zur Schaumverhinderung in pulverförmigen

Waschmitteln oder in pulverförmigen Pflanzenschutzkonzentraten eingesetzt .

Beispiel 4:

Die Verfahrensweise nach Beispiel 1 wird wiederholt, mit der Abänderung, dass anstelle der pyrogenen hydrophobierten

Kieselsäure (Füllstoff C) eine gefällte hydrophobe Kieselsäure als Komponente (C) mit einer BET Oberfläche von 90 m 2 /-? / einem Kohlenstoffgehalt von 3% und einer Methanolbenetzbarkeit von 60 % (erhältlich unter der Bezeichnung Sipernat D10 bei der

Evonik-Degussa GmbH, Prankfurt am Main) eingesetzt wird. Im Unterschied zur Verfahrensweise in Beispiel 1 werden die

Füllstoffe (B) und (C) bei 150°C in die Mischung aus (A) und (D) eingemischt und dann wie im Beispiel 1 in Gegenwart von 7500 ppm Katalysator (G) weitere 4h erhitzt.

Es wurde ebenfalls ein Entschäumer mit besonders guter

Wirksamkeit erhalten.