Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING CLONED TRANSGENIC CANIDAE
Document Type and Number:
WIPO Patent Application WO/2009/088189
Kind Code:
A3
Abstract:
The present invention relates to a method for producing transgenic cloned dogs and, more specifically, it relates to a method for producing cloned dogs into which a target gene has been introduced, characterised in that a denucleated ovum is produced by removing the nucleus from a dog ovum, and a transplanted-nucleus egg is produced by transplanting a cell which has been genetically transformed with a target gene into the said denucleated ovum, and then the said transplanted-nucleus egg is transplanted into a surrogate mother. The present invention has been confirmed to be compatible with the large-scale production of disease-model animals by the successful introduction of exogenous genes, and this is useful in the fields of medical studies, anthropology and veterinary science such as with disease-model animals, xenografting and the breeding of superior breeds.

Inventors:
LEE BYEONG CHUN (KR)
KIM MIN KYU (KR)
JANG GOO (KR)
OH HYUN JU (KR)
HONG SO GUN (KR)
PARK JUNG EUN (KR)
KANG JUNG TAEK (KR)
RA JEONG CHAN (KR)
KIM TE OAN (KR)
Application Number:
PCT/KR2009/000028
Publication Date:
October 29, 2009
Filing Date:
January 05, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SEOUL NAT UNIV IND FOUNDATION (KR)
LEE BYEONG CHUN (KR)
KIM MIN KYU (KR)
JANG GOO (KR)
OH HYUN JU (KR)
HONG SO GUN (KR)
PARK JUNG EUN (KR)
KANG JUNG TAEK (KR)
RA JEONG CHAN (KR)
KIM TE OAN (KR)
International Classes:
A01K67/027
Foreign References:
KR20070013432A2007-01-31
US6906238B22005-06-14
US20040064845A12004-04-01
Other References:
GIBBOONS, J. ET AL.: "Enhanced survivability of cloned calves derived from roscovitine- treated adult somatic cells.", BIOLOGY OF REPRODUCTION., vol. 66, 2002, pages 895 - 900, XP008003993
HINRICHS, K. ET AL.: "Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin.", REPRODUCTION, vol. 134, 2007, pages 319 - 325, XP008129245
See also references of EP 2232985A4
Attorney, Agent or Firm:
LEE, Cheo Young (Yeosam Bldg.648-23, Yeoksam-dong, Gangnam-gu, Seoul 135-080, KR)
Download PDF:
Claims:
다음 단계를 포함하는, 목적 유전자가 도입된 형질전환 복제개의 생산방법:

(a) 개에서 채취한 체세포주로부터 공여 핵 세포를 제조하고, 목적 유전자를 함유하는 DNA 구조체를 도입하여 발현시키는 단계;

(b) 상기 목적 유전자가 도입된 공여 핵 세포를 로스코비틴(Roscovitine), 사이클로헥사마이드(Cyclohesimide), 디엠에스오 (DMSO), 부티로락톤 I(Butyrolactone I), 아피디콜린(Aphidicolin), 디메콜신(Demecolcine), 미모신(Mimosine), 콜치신(colchicine) 및 훽스트 33342(Hoechst 33342)으로 구성된 군에서 선택되는 세포 주기 동기화 유도물질을 첨가하여 배양하는 단계;

(c) 상기 배양된 공여핵 세포를 탈핵된 개 수핵난에 이식하여 형질전환된 핵이식란을 제조한 다음, 활성화시키는 단계; 및

(d) 상기 활성화된 핵이식란을 대리모에 이식하여 산자를 생산하는 단계.

제1항에 있어서, 상기 (a) 단계에서 체세포는 개의 난구세포, 상피세포, 섬유아세포, 신경세포, 각질세포, 조혈세포, 멜라닌 세포, 연골세포, 마크로파지, 단구세포, 근육세포, B 림프구, T 림프구, 배아 줄기세포, 배아 생식세포, 태아세포, 태좌세포 및 배아세포로 이루어진 그룹 중에서 선택된 어느 하나인 것을 특징으로 하는 방법.
제2항에 있어서, 상기 체세포는 섬유아세포 또는 난구세포인 것을 특징으로 하는 방법.
제1항에 있어서, 상기 (a)단계에서 목적 유전자를 함유하는 DNA 구조체는 상기 목적 유전자의 발현에 적합한 프로모터를 추가로 함유하는 것임을 특징으로 하는 방법.
제1항에 있어서, (b) 단계에서 상기 세포 주기 동기화 유도물질은 로스코비틴인 것을 특징으로 하는 방법.
제1항에 있어서, (b) 단계에서 상기 세포 주기 동기화 유도물질 농도는 5μM 내지 30μM인 것을 특징으로 하는 방법.
제1항의 방법에 의해 생산되고, 목적 유전자가 도입되어 있는 형질전환 복제개.
다음 단계를 포함하는, 목적 유전자가 도입되어 있는, 형질전환 복제개 생산용 핵 이식란 제조 방법:

(a) 개에서 채취한 체세포주로부터 공여 핵 세포를 제조하고, 목적 유전자를 함유하는 DNA 구조체를 도입하여 발현시키는 단계;

(b) 상기 목적 유전자가 도입된 공여 핵 세포를 로스코비틴(Roscovitine), 사이클로헥사마이드(Cyclohesimide), 디엠에스오 (DMSO), 부티로락톤 I(Butyrolactone I), 아피디콜린(Aphidicolin), 디메콜신(Demecolcine), 미모신(Mimosine), 콜치신(colchicine) 및 훽스트 33342(Hoechst 33342)으로 구성된 군에서 선택되는 세포 주기 동기화 유도물질을 첨가하여 배양하는 단계; 및

(c) 상기 배양된 공여핵 세포를 탈핵된 개 수핵난에 이식하여 융합시키는 단계.

제8항의 방법에 의해 생산되고, 목적 유전자가 도입되어 있는, 형질전환 복제개 생산용 핵 이식란.
Description:
[규칙 제26조에 의한 보정 19.05.2009] 형질전환된 복제개의 생산방법

본 발명은 형질전환 복제개의 제조에 있어서, 원하는 유전자의 체세포 내 도입(transfection) 및 적중(targeting) 기술과 유전자가 도입된 체세포의 핵이식 기술을 이용하여 특정 유전형질을 지니거나 제거된 복제개를 생산하는 방법 및 이러한 방법에 의해 생산된 형질전환 복제개에 관한 것이다.

형질전환동물(transgenic animals)을 생산하는 기술은 지난 20년간 가장 각광받고 있는 기술분야 중 하나이다. 상업적 유용성뿐 아니라, 생체의학과 생물학 연구에 있어서도 그 중요성은 압도적이다. 형질전환동물 생산기술의 산업적 적용분야는 고품질의 축산식품 생산, 고부가가치의 약리활성물질 생산, 각종 병원균에 대한 생체저항력 향상동물 생산, 질환모델동물의 생산 및 유전자치료 분야에 이르기까지 매우 광범위하다.

형질전환동물 생산을 위한 유전자도입 기술의 기본 단계로 RFP 또는 GFP 유전자의 도입은 염색체 단백질 표지 및 특정 염색체부위의 태깅(tagging)의 용이성, 세포질의 많은 단백질과 결합이 가능하며 그 무해성으로 인하여 살아있는 세포에서 같은 성질의 세포골격사(cognate cytoskeletal filaments)를 발현시키데 많이 이용되고 있다. 1994년 샬피(Chalfie)등은 해파리(Aequorea victoria)에서 얻은 RFP를 형광성 단백질 인식지표로 적용하여 돼지의 배아를 비롯한 살아있는 세포의 다양한 분자생물학적 변화를 관찰하였다. 이후 더욱 기능이 향상된 ERFP(enhanced RFP)가 개발되어 여러 동물에서 마커 유전자(marker gene)로 이용되고 있다. 

이러한 형질전환 동물생산을 위한 외래 유전자도입 방법으로 고든(Gordon) 등이 제시한 전핵내 미세주입법(pronuclear microinjection)이 있는데 이 방법은 외래유전자를 수정란의 전핵에 직접주입하는 방법으로 마우스를 비롯한 실험동물에서 많이 이용되고 있지만 산업동물에서는 극히 낮은 생산효율(소 0.5 %, 돼지1.5 %, 양 2.5 %)과 모자이키즘(Mosaicism)이 대부분의 경우에 나타나는 단점이 있다. 이를 극복하기 위해 외래유전자가 도입된 형질 전환체세포를 이용한 동물복제기술이 대안으로 제시되고 있다. 형질전환동물 복제기술은 유전자가 도입된 세포만을 핵이식함으로써 모자이키즘이 없는 100% 형질전환 핵 이식란을 생산하여 대리모이식을 통해 형질전환복제동물을 효율적으로 생산할 수 있다. 또한 이 과정에서 체세포의 성을 미리 판별하여 인위적으로 태어나는 복제동물의 성을 조절할 수 있어 산업적 유용성이 극대화 될 수 있다.

한편, 인간의 장기이식술은 인간 장기에 관련된 불치, 난치 질환을 치료하는 유용한 수단이며 과거 10여년간 장기이식 수술예는 점차 증가하였다. 그럼에도 불구하고 같은 기간의 미국 내 수술 대기자 수는 3배가 증가하였다. 이와 같은 현상은 수요와 공급의 불균형에 의한 것으로 인간의 장기 부족 현상을 초래하였다. 이와 같이 장기 이식수술에서 장기공급원이 절대적으로 부족하지만 이를 해결할 만족스런 방법은 아직도 없는 형편이다. 이와 같은 장기부족 문제를 해결하는 방안으로 의공학적 접근법에 의한 인공장기의 개발과 형질전환동물의 생산 등이 있다.

그러나 개의 경우 독특한 종-특이적 생식 특성으로 인해 다른 가축에 비해 체세포 핵 이식에 의한 복제가 매우 어렵다.

이에 본 발명자는 형질전환 복제개를 만들기 위해 체세포 핵이식 방법에 의한 복제개의 생산방법을 연구하던 중, 유전자적중 및 도입기술과 체세포복제기술을 이용하여, RFP유전자를 발현하는 공여 핵 세포 제조의 최적 조건을 확립하고 상기 조건에 따라 핵 이식란을 제조한 다음, 이를 대리모에 이식하여 RFP 유전자가 발현되는 복제개를 생산함으로써 본 발명을 완성하였다.

발명의 요약

본 발명의 목적은 특정 유전자의 도입 및 체세포 핵이식 기술을 이용하여, 원하는 유전자가 발현되는 형질전환 복제개의 생산 방법 및 상기 방법에 따라 제조된 목적 유전자가 발현되는 복제개를 제공하는 것이다.

본 발명의 다른 목적은 상기 형질전환 복제개 생산을 위한, 목적 유전자가 도입되어 있는 핵 이식란의 제조방법 및 이에 따라 제조된 핵 이식란을 제공하는 것이다.

상기 목적을 달성하기 위하여, 본 발명은

(a) 개에서 채취한 체세포주로부터 공여 핵 세포를 제조하고, 목적 유전자를 함유하는 DNA 구조체를 도입하여 발현시키는 단계;

(b) 상기 목적 유전자가 도입된 공여 핵 세포에, 로스코비틴(Roscovitine), 사이클로헥사마이드(Cyclohesimide), 디엠에스오 (DMSO), 부티로락톤 I(Butyrolactone I), 아피디콜린(Aphidicolin), 디메콜신(Demecolcine), 미모신(Mimosine), 콜치신(colchicine) 및 훽스트 33342(Hoechst 33342)으로 구성된 군에서 선택되는 세포 주기 동기화 유도물질을 첨가하여 배양하는 단계;

(c) 상기 배양된 공여핵 세포를 탈핵된 개 수핵난에 이식하여 형질전환된 핵이식란을 제조한 다음, 활성화시키는 단계; 및

(d) 상기 활성화된 핵이식란을 대리모에 이식하여 산자를 생산하는 단계를 포함하는 목적 유전자가 도입된 개과 동물을 생산하는 방법을 제공한다.

이 때, 상기 (b) 단계에서 로스코비틴(R-Roscovitine)과 같은 세포 주기 동기화 유도물질을 첨가하여 배양하는 과정을 거쳐 특정 주기로 동기화된 공여핵세포를 이용하여 핵 이식란을 제조하는 것을 특징으로 하며, 상기 세포 주기 동기화 유도물질은 5-30 μM의 농도로 첨가하는 것을 특징으로 한다.

본 발명은 또한 상기 방법에 의해 생산된 목적 유전자가 도입된 형질전환 복제개를 제공한다.

다른 관점에서 본 발명은 상기 (a) 내지 (c)단계를 포함하는, 목적 유전자가 도입된 개과 동물을 생산용 핵 이식란 제조방법 및 상기 방법에 따라 제조된 핵 이식란을 제공한다.

FIG. 1은 RFP 유전자 도입 벡터의 모식도이다.

FIG. 2는 비형질전환된 섬유아세포(대조군, a), REF로 형질전환된 섬유아세포(b) 및 핵이식 후 배양된 배(c)에 대한 형광 이미지 사진이다.

FIG. 3은 형질전환 유전자 RFP에 대한 서던 블럿 분석 결과이다.

FIG. 4는 형질전환 유전자 RFP의 mRNA에 대한 RT-PCR 분석 결과이다.

FIG. 5는 RFP 유전자로 형질전환된 복제개의 2달째의 사진과 피부 및 발톱에서의 붉은 형광 이미지 사진이다.

FIG. 6은 형질전환된 복제개의 각 조직에서의 RFP 발현을 확인한 형광 이미지 사진이다[a:뇌; b:척수, c:정소, d:심장, e:폐, f:신장, g:간, h:위, i:소장].

FIG. 7은 형질전환된 복제개의 유사분열 중기 염색체에 대한 FISH 분석 결과이다.

발명의 상세한 설명 및 바람직한 구현예

이하, 본 발명을 상세히 설명하기로 한다.

본 발명에서 사용되는 용어에 대한 정의는 이하와 같다.

본 발명에서 사용된 용어 ‘목적 유전자’ 는 생물체 내에서의 발현되어 각각의 기능을 수행할 수 있는, 사용자의 의도에 부합하는 유전자를 총칭하는 용어로서, 특히, 이러한 목적 유전자의 체내 도입 및 발현은 특정 질환의 치료를 위한 유전자 치료에 유용하게 이용할 수 있다.

본 발명에서 사용된 용어 ‘핵 이식’ 은 탈핵된 난자에 다른 세포 또는 핵을 인공적으로 결합시켜 동일한 형질을 갖도록 하는 유전자 조작기술을 말한다.

본 발명에서 사용된 용어 ‘핵 이식란’ 은 공여 핵 세포가 도입 또는 융합된 난자를 말한다.

본 발명에서 사용된 용어 ‘복제’ 는 한 개체와 동일한 유전자 세트를 가진 새로운 개체를 만드는 유전자 조작기술로서 특히 본 발명에서는 세포, 배아 세포, 태아 유래 세포 및/또는 성체 유래 세포가 다른 세포의 핵 DNA 서열과 실질적으로 동일한 핵 DNA 서열을 갖는 것을 말한다.

본 발명에서 사용된 용어 ‘공여 핵 세포’ 는 핵 수용체인 수핵 난자로 핵을 전달하는 세포 또는 세포의 핵을 말한다.

본 발명에서 사용된 용어 ‘계대배양(Subcultury)’ 은 세포는 단층으로 자라고 멈추기 때문에 배양 접시에서 세포를 떼어내어 새로운 배양 접시에서 배양하는 방법으로 세포를 증식시키는데 이때 세포를 동물에서 떼어 내어 일차, 이차, 삼차 등등 계속하여 배양하는 방법 즉, 주기적으로 새로운 배지를 교환함으로써 세포주를 보존하는 방법을 말한다.

본 발명에서 사용된 용어 ‘수핵 난자’ 는 탈핵 과정을 통해 본래의 핵이 제거되고 공여 핵 세포로부터 핵을 전달받는 난자를 말한다.

본 발명에서 사용된 용어 ‘난자’ 는 바람직하게는 제2차 감수분열 중기까지 도달한 성숙난자를 말한다.

본 발명에서 사용된 용어 ‘탈핵 난자’ 는 난자의 핵이 제거된 것을 말한다.

본 발명에서 사용된 용어 ‘융합’ 은 공여 핵 세포와 수핵 난자의 지질막 부분의 결합을 의미한다. 예를 들어, 지질막은 세포의 플라스마 막 또는 핵막이 될 수 있다. 융합은 공여 핵 세포와 수핵 난자가 서로 인접하게 위치해 있는 경우 또는 공여 핵 세포가 수핵 난자의 주란강(perivitelline space) 내에 위치해 있는 경우에 전기적 자극을 가함으로써 일어날 수 있다.

본 발명에서 사용된 용어 ‘활성화’ 는 핵 전이 단계 전, 핵 전이 단계 동안 및 핵 전이 단계 후에 세포가 분열하도록 자극을 주는 것을 말한다. 바람직하게는, 본 발명에서는 핵 전이 단계 후 세포가 분열하도록 자극을 주는 것을 말한다.

본 발명에서 사용된 용어 ‘산자(living offspring)’ 는 자궁 밖에서 생존할 수 있는 동물을 말한다. 바람직하게는, 1초, 1분, 한 시간, 하루, 한 주, 한달, 6달 또는 일년 이상 생존할 수 있는 동물을 말한다. 상기 동물은 생존을 위해 자궁 내 환경을 필요로 하지 않는다.

본원 명세서에 사용된 용어 “벡터(vector)” 는 외래 유전자를 숙주세포 내로 안정적으로 운반할 수 있는 운반체로서의DNA 분자를 말한다. 유용한 벡터가 되기 위해서는 복제될 수 있어야 하며, 숙주세포 내로 유입될 수 있어야 하고, 자신의 존재를 검출할 수 있는 수단을 구비하여야 한다. 상기 벡터에 의하여 특정 유전자에 외래 유전자를 삽입시키거나 특정 유전자 형질발현을 붕괴(knock-out)시킬 수 있다. 본 발명의 일례에서는 형질전환 핵 이식 배아에 대한 마커인 RFP(red fluorescent protein) 유전자를 삽입시켰다.

본 발명에서 사용된 용어 ‘형질전환(transgenesis)’ 은 어떤 생물이 원래는 지니고 있지 않은 외부 유전자를 염색체상에 인위적으로 삽입하거나, 원래 지니고 있는 유전자를 제거하여 그 생물의 유전적 형질 일부를 변화시키는 것이다. 형질전환의 방법은 여러 가지가 있으나 가장 많이 사용되는 방법으로는 지질 매개 유전자 도입(lipid mediated gene transfer), 정자 매개 유전자 도입(sperm mediated gene transfer), 전기천공법(electroporation), 상동성 재조합(homologous recombination), 미세주입법 등이 대표적이다.

본 발명에서 사용된 용어 ‘형질전환 동물(transgenic animal)’ 은 ‘유전자 조작 동물’ 이라 불리우기도 하며 동물 자신이 원래 가지고 있지 않은 외래의 유전자를 재조합하여, 이를 동물의 염색체 상에 인공적으로 삽입시키거나 원래 가지고 있는 유전자를 상동성 재조합 방법을 이용하여 제거하여, 그 형질의 일부가 변화된 동물을 말한다. 따라서, 본원에서 형질전환 동물은 인간이 필요로 하는 생리활성 물질을 생산하는 생물반응기(Bioreator), 특정 질환을 유전적으로 나타내는 질환모델 동물, 인간의 이식용 장기 및 치료용 세포 등을 생산할 수 있는 형질전환 동물 등을 의미한다.

본 발명에서 ‘개과 동물(canidae)’ 은 크게 개족(Tribe Canini)과 여우족(Tribe Vulpini)으로 나눌 수 있고, 개, 늑대, 재칼, 여우, 승냥이, 너구리, 코요테 등이 포함될 수 있다. 바람직하게는 개 또는 늑대가 포함된다. 상기 개는 야생의 늑대가 가축화된 것으로 알려져 있으며 이에 따라 늑대와 개는 염색체 수가 동일하고 임신기간, 성 호르몬의 변화가 유사한 양상을 나타낸다(Seal US et al., Biology Reproduction 1979, 21:1057-1066). 본 발명에 있어서 상기 '개과 동물'이라는 용어에 대하여, ‘개’ 로 단순히 줄여서 혼용하여 쓰기도 한다.

본 발명은 체세포 단계에서, 특정 유전자의 도입 기술과 체세포 핵이식 기술을 병합하여, 원하는 특정 유전자가 발현되는 형질전환 복제개의 생산 방법 및 상기 방법에 따라 생산된 복제개에 관한 것이다.

좀 더 구체적으로, 본 발명은 유전자 도입기술에 의해 목적 유전자가 도입된 체세포를 체세포 핵이식 기술을 이용하여, 상기 목적 유전자가 발현되는 형질전환 복제개 생산방법에 관한 것이다.

상기 목적 유전자 발현 복제개를 생산하는 방법은 크게,

(a) 개에서 채취한 체세포주로부터 공여 핵 세포를 준비하고, 목적 유전자를 함유하는 DNA 구조체를 상기 공여 핵 세포에 도입하여 발현시키는 단계;

(b) 상기 목적 유전자가 도입된 공여 핵 세포를 배양하는 단계;

(c) 상기 배양된 공여 핵 세포를 탈핵된 개 수핵난에 이식하여 형질전환된 핵이식란을 제조한 다음, 활성화시키는 단계; 및

(d) 상기 활성화된 핵이식란을 대리모에 이식하여 산자를 생산하는 단계를 포함한다.

이 때, (a) 단계의 목적 유전자를 함유하는 DNA 구조체는 상기 목적 유전자의 발현을 조절하는 적합한 프로모터를 함유하고 있거나, 상동성 재조합(homologous recombination)을 위하여 목적 유전자와 유사한 구조체를 함유할 수 있다. 또한, (b)단계의 목적 유전자가 도입된 공여 핵 세포를 배양하는 공정은 세포 주기 동기화 유도 물질을 첨가하여 배양하는 공정을 포함하는 것을 특징으로 한다.

세포주기 동기화 유도물질이란, 핵분열기(M기)·DNA합성전기(G1기)·DNA합성기(S )·DNA합성후기(G2기)로 이루어진 세포주기 중 특정한 하나의 세포주기로 세포들을 일시정지 시키는 물질이며, 이 물질을 제거시에 특정주기로 정지된 세포주기가 다시 진행되어지게 된다. 이와 같은 특정 세포 주기 동기화 유도 물질을 첨가함으로써 개과 (canidae) 동물의 체세포 핵 이식 산자 생산 효율을 향상시킬 수 있다.

상기 세포 주기 동기화 유도 물질로는 Cdk(cyclin-dependent kinase) 저해제로 G0/G1기를 블로킹하는 로스코비틴(Roscovitine)(화학식 1); G0/G1기를 블로킹하는 사이클로헥사마이드(Cycloheximide)(화학식 2); G0/G1기를 블로킹하는 디엠에스오 (Dimethyl Sulfoxide, DMSO)(화학식 3); Cdk 저해제로 G1/S기를 블로킹하는 부티로락톤 I(Butyrolactone I)(화학식 4); DNA 폴리머라아제 A,D의 저해제로 S 초기를 블로킹하는 아피디콜린(Aphidicolin)(화학식 5); 유사분열 중기에서 M기를 블로킹하는 디메콜신(Demecolcine)(화학식 6);DNA 복제 저해제로서 S기를 블로킹하는 미모신(Mimosine)(화학식 7); 미소관 저해제로서 G2/M기를 블로킹하는 콜치신(colchicine)(화학식 8); 및 DNA 토포이소머라아제로서 훽스트 33342(Hoechst 33342)(화학식 9)등이 있고, 각각의 물질에 대한 화학 구조식은 이하와 같다. 바람직하게는 로스코비틴, 사이클로헥사마이드 또는 디엠에스오 (DMSO)이고, 가장 바람직하게는 로스코비틴이다.

화학식 1

화학식 2

화학식 3

화학식 4

화학식 5

화학식 6

화학식 7

화학식 8

화학식 9

이하에서는, 상기 목적 유전자로서 RFP 유전자를 선택하여, 상기 RFP 유전자가 발현되는 복제개의 생산방법을 단계별로 나누어 보다 구체적으로 설명한다. 당업자의 필요에 따라서 RFP 유전자외 다른 목적 유전자를 사용할 수 있음은 자명하다.

제1단계: 수핵 난자의 탈핵

일반적으로 포유동물(예컨대 소, 돼지, 양 등)의 난자는 성숙난자, 즉 제2차 감수분열 중기(metaphase II)에 배란되는 것에 반해, 개과 동물의 난자는 다른 동물과는 달리 제1차 감수분열의 전기에 배란되어 난관 내에서 48∼72시간 동안 머물면서 성숙되는 특징이 있다.

수핵 난자는 개과 동물의 미성숙난자, 성숙난자, 초기 노화, 중간노화, 심한 노화 단계의 난자일 수 있다. 바람직하게는, 개에서 회수된 미성숙 난자를 체외에서 성숙시켜 이용하거나 개과 동물의 체내에서 성숙된 난자를 회수하여 이용할 수 있다. 개과 동물의 미성숙 난자는 체외에서의 핵 성숙률이 매우 낮으며, 배란시기 및 번식 생리가 다른 포유동물과는 달라서, 개과 동물의 수핵 난자는 개과 동물의 생체 내에서 성숙된 난자를 회수하는 것이 바람직하다. 보다 구체적으로 개과 동물로부터 성숙 난자의 회수는 개과 동물의 배란이 이루어 진 후 약 48∼72시간째, 보다 바람직하게는 72시간째에 수행하는 것이 바람직하다.

상기에서 개과 동물의 배란일은 당 업계에 공지된 방법을 사용하여 결정할 수 있다. 배란일을 결정하는 방법으로는 예를 들면, 이에 한정되지는 않으나 질세포 도말검사(vaginal smear), 혈중 호르몬 수준 측정 및 초음파 진단 시스템을 사용할 수 있다. 개과 동물의 발정의 시작은 외음부 팽창 및 장액성 혈액성의 배출 및 수컷의 승가 허용 여부를 통해 확인할 수 있다.

본 발명의 일 실험 예에서는 개과 동물의 배란일을 질세포 도말검사와 혈중 프로게스테론 농도 검사를 수행함으로써 결정한 결과 무각화 상피 세포가 80%이상이고 혈중 프로게스테론 농도가 약 4.0ng/mL 이상으로 처음 도달할 때 배란이 이루어짐을 알 수 있었다.

생체 내 성숙 난자를 회수하는 방법으로는 대상 동물을 마취한 후 개복시키는 것을 포함하는 외과적 방법을 사용할 수 있다. 보다 구체적으로, 생체 내 성숙 난자의 회수는 당업계에 공지된 방법인 난관 절제법을 사용할 수 있다. 상기 난관 절제법은 난관을 수술적으로 잘라낸 후 배아 수집 배지를 난관 내부에 관류시켜 관류액을 수득하고 상기 관류액으로부터 난자를 회수하는 방법이다.

또한, 생체 내 성숙 난자는 카테터를 난관채에 장착한 후 난관-자궁 접합부위에 주사침을 이용하여 관류액을 주입함으로써 회수할 수 있다. 이 방법은 난관을 손상시키지 않기 때문에 난자를 공여하는 동물을 다음 발정에도 이용할 수 있는 장점이 있다.

성숙한 난자를 회수한 다음에는 난자의 반수체 핵을 제거한다. 난자의 탈핵은 당업계에 공지된 방법을 사용하여 수행할 수 있다(미국특허 제4994384호, 미국특허 제5057420호, 미국특허 제5945577호, 유럽특허 공개공보 제0930009A1, 대한민국특허 제342437호, Kanda et al, J. Vet. Med. Sci ., 57(4):641-646, 1995; Willadsen, Nature , 320:63-65, 1986, Nagashima et al., Mol. Reprod. Dev. 48:339-343 1997; Nagashima et al., J. Reprod Dev 38:37-78, 1992; Prather et al., Biol. Reprod 41:414-418, 1989, Prather et al., J. Exp. Zool . 255:355-358, 1990; Saito et al., Assis Reprod Tech Andro , 259:257-266, 1992; Terlouw et al., Theriogenology 37:309, 1992).

바람직하게는, 수핵 난자의 탈핵은 크게 두 가지 방법을 사용하여 수행할 수 있다. 한 가지 방법으로는 성숙한 수핵 난자의 난구 세포(cumulus cell)를 제거한 다음, 미세침을 이용하여 수핵 난자의 투명대 일부를 절개하여 절개창을 형성하고 이를 통하여 제1극체, 난자의 핵 및 세포질(가능한 적은 양)을 제거한다. 다른 방법으로는 수핵 난자의 난구 세포를 제거한 다음 난자를 염색하고 미세 흡입 피펫(aspiration pipette)을 이용하여 제1극체 및 난자의 핵을 제거한다. 보다 바람직하게는, 난자의 탈핵은 수핵 난자의 상태를 육안으로 평가하여 생존율이 높은 난자에 대해서 흡입 방법을 사용하고, 그렇지 않은 난자에 대해서는 절개창을 형성하는 방법을 사용한다.

제2단계: 공여 핵 세포의 준비

체세포 핵이식 기술에 의한 목적 유전자를 발현하는 형질전환동물의 생산에는 공여 핵 세포가 필요하다. 본 발명에서의 공여 핵 세포로는 개로부터 유래된 체세포를 사용한다. 구체적으로, 본 발명에서 사용된 체세포로는 개의 배아세포(embryonic cell), 태아세포(fetus cell), 유세포(juvenile cell), 성체세포(adult cell), 바람직하게는 성체세포로부터 수득될 수 있는 난구, 피부, 구강 점막, 혈액, 골수, 간, 폐, 신장, 근육 및 생식기관 등과 같은 형태의 조직으로부터 유래된 것일 수 있다.

본 발명에서 사용될 수 있는 체세포로는 예를 들면, 이에 한정되지는 않으나 난구세포, 상피세포, 섬유아세포, 신경세포, 각질세포, 조혈세포, 멜라닌 세포, 연골세포, 마크로파지, 단구세포, 근육세포, B 림프구, T 림프구, 배아 줄기세포, 배아 생식세포, 태아세포, 태좌세포 및 배아세포 등이 있다. 보다 바람직하게는, 본 발명에서 사용되는 체세포로는 태아 및 성체 섬유아세포, 난구세포일 수 있다. 가장 바람직하게는, 개의 태아 및 성체에서 분리한 섬유아세포를 이용한다. 이 세포의 특징은 초기 분리시 다수의 세포를 얻을 수 있고, 세포 배양도 비교적 쉬우며 체외에서 배양 및 조작이 용이하다는 장점을 지니고 있다.

공여 핵 세포로서 제공되는 상기 체세포는 외과용 표본 또는 생체검사용 표본을 제조하는 방법으로부터 수득될 수 있으며 상기 표본으로부터 이하와 같은 방법을 사용하여 최적화된 조건으로 배양된 단일세포를 수득할 수 있다.

대상동물로부터 조직의 일부를 채취하여 세포를 분리한 다음 기본 조직 배양용 배지에서 배양한 후 세포주기 동기화 유도 물질을 첨가하여 재배양한 다음 완전히 자라면 트립신을 처리하여 회수한 후 공여 핵 세포로 사용할 수 있다.

일 구체예를 들어 설명하면, 우선, 대상동물로부터 조직의 일부를 무균적으로 절개하여 상기 외과용 표본 또는 생체검사용 표본을 수득하고 이를 미세하게 세절하여 트립신으로 처리한 다음 조직 배양용 배지에서 배양한다. 상기 조직 배양용 배지로는 당업계에 공지된 것을 사용할 수 있으며 예를 들면, TCM-199, DMEM(Dulbecco’s modified Eagle’s medium) 등이 있다. 조직 배양용 배지에서 3-4일 배양 후에 배양 접시(dish)에 자라는 것을 확인하고, 배양한 후 완전히 다 자라면 트립신 처리하여 일부는 추후 사용을 위하여 동결하여 액체 질소에 보관하며, 나머지는 핵 이식에 이용하기 위하여 계속 배양을 실시한다. 계속하여 배양하여 핵이식에 사용할 세포는 새로운 배양접시에서 배양한 후, 트립신 처리하여 세포를 단일세포로 제조한 후 핵이식에 사용한다.

유전자 도입에 이용될 체세포는 최적조건에서 성장시킨 후 효소처리 (trypsin-EDTA)를 통해 단세포로 만들어 계대배양하면서 최소한 실험 하루 전에 신선한 배양액으로 교체하고, 실시 4시간 전에 다시 신선한 배양액을 공급한다. 생화학적 매개체에 따라 최적의 세포밀도가 될때까지 세포를 배양하여 유전자를 도입시킨다.

제3단계: RFP 유전자의 체세포 도입 및 배양

본 발명의 상기 제2단계에서 준비한 공여 핵 세포는, 상기 체세포에 특정 유전자를 삽입하거나 조작하여 염색체를 유전자 이식방법이나 유전자 적중법을 이용하여 형질전환시킨 것일 수 있다. 이러한 유전자 이식방법이나 유전자 적중법은 당업계에 공지된 방법이므로 당업자라면 용이하게 실시할 수 있다. 유전자 적중법은 이에 한하는 것은 아니나 예를 들어, 핵이식 후 화학물질에 노출, 불활성화된 바이러스 주입, 전기자극(electroporation) 등의 방법이 있다.

1. RFP 유전자 도입용 벡터 제작 및 감염

본 발명의 일 구체예로서, RFP(red fluorescent protein) 유전자를 도입할 수 있다. 이 때, 레트로 바이러스 벡터 서열을 포함하고 있는 플라스미드 pLHCRW(SEQ ID NO.: 1)[5’LTR:1-589, psi sequence:659-1468, HygroR:1510-2544, CMVp:2838-3649, DsRed2:3686-4363, WPRE:4409-5000, 3’LTR:5085-5678]을 도입 벡터로 사용할 수 있다(Fig. 1).

상기 pLHCRW 플라스미드는, 상업적으로 시판되고 있는 pRevTRE(Clontech Mountain View, CA, USA)의 TRE 서열을 CMV 프로모터, DsRed2 유전자 및 WPRE(Woodchuck hepatitis virus posttranscriptional regulatory element) 서열을 함유하는 프래그먼트로 대체하여 본 발명에 사용한다. pLNCX 및 pDsRed2-C1(Clontech Mountain View, CA, USA)으로부터 각각 상기 CMV 프로모터 및 DsRed2 유전자를, Woodchuck 간염 바이러스 2 게놈 DNA(GenBank Accession No. M11082)로부터 상기 WPRE서열을 상기 플라스미드에 도입할 수 있다. 또한, 레트로바이러스 생산 세포는 Koo et al .의 제시한 공정에 따라 설계할 수 있다(FASEB, 20: 2251-2260, 2006).

이처럼, 상기 RFP 유전자를 도입시키는 경우에 사용되는 벡터는 CMV 프로모터를 함유하고 있지만, 각 목적에 필요한 유전자를 함유하는 벡터(DNA 구조체)가 각 목적 유전자의 발현에 적합한 프로모터를 함유할 수 있음은 당업자에게 자명한 사항이다. 또한, 상동성 재조합(homologous recombination)을 위하여 목적 유전자와 유사한 구조체를 함유할 수 있음도 당업자에게 자명한 사항이다.

본 발명의 일 구체예로서, PT 67 세포(Clontech Mountain View, CA, USA)를 일시적으로 pLHCRW로 트랜스펙션시키고, 트랜스펙션된 PT 67세포로부터 수득한 바이러스를 GP2-293 세포(Clontech Mountain View, CA, USA)에 감염시킨다. PT 67은 레트로바이러스 패키징 세포로서, MoMLV(Moloney murine leukemia virus)의 gag 유전자, pol 유전자 및 Gibbon ape leukemia 바이러스 막 유전자를 발현하고, GP2-293 세포는 MoMLV의 gag 유전자 및 pol 유전자를 발현한다. LHCRW-감염된 GP2-293 세포를 2주 동안 하이그로마이신 (150 μg/ml)을 이용하여 선별하고, 이러한 Hyg R (hygromycin-resistant) 세포들을 pVSV-G(Clontech Mountain View, CA, USA)로 트랜스펙션 하여 VSV-G 단백질을 발현시킨다.

트랜스펙션 후 48시간 후에 VSV-G 단백질로 포장된 바이러스들을 수득한다. 바이러스를 생산하는 세포를 포함한 모든 세포는 4.5 g/l 글루코오스(GibcoBRL, Grand Island, NY, USA), 소 태아 혈청(10%) 및 스트렙토마이신(100 μ/ml)을 함유하고 있는 DMEM 배지에서 37℃ 및 5% CO 2 조건에서 배양한다. 상기의 감염 및 트랜스팩션된 GP2-293 세포로부터 수거한 바이러스-함유 배지는 0.45㎛ 포어(pore) 크기의 필터를 통해 여과한 후. 개의 섬유아세포들을 감염시키는데 사용한다. 감염과정을 거친 섬유아세포를 하이그로마이신 (150 μg/ml)으로 6일간 선별한다.

본 발명은 다른 관점에서 이러한 목적 유전자, 예를 들어 RFP 유전자를 효율적으로 도입시킬 수 있는 벡터에 관한 것이다.

2. RFP 유전자가 도입된 공여 핵 세포의 선별, 증식 및 동결보존

바이러스 벡터의 감염을 통하여 RFP 유전자가 도입된 세포는 하이그로마이신 (150 μg/ml)이 함유된 배지에 6일간 배양하여 RFP 유전자가 발현하는 세포만을 선발 및 증식시킨 후, 트립신 효소처리에 의해 단세포로 만든다. 이러한 단세포들을 현미경 상에서 자외선 필터를 이용하여 관찰하여 적색을 띄우는 세포만을 선별하여 핵이식에 이용한다.

RFP 유전자 벡터에 이용된 양성 마커(positive marker)인 하이글로마이신(hyglomycin) 저항유전자는 RFP 유전자와 함께 세포내로 도입되어 발현되면 하이글로마이신 저항성단백질을 생산한다. 따라서 적중된 세포를 항생제가 포함된 세포배양액에 배양하면 RFP 유전자 벡터가 도입된 세포는 생존하게 되고, 그 외의 세포들은 항생제의 독성에 의해 사멸되어 일정 시간 후 배양 용기에는 유전자가 적중된 세포만 증식한다.

항생제를 통한 선별 과정이 이루어지면 정상 배양으로 전환하고, 세포의 신속한 증식과 배양시 세포 사멸에 의한 불필요한 손실을 감소시키기 위해 적절한 성장인자와 세포사멸 억제제 등을 첨가하는 방법을 적용한다. 증식 배양한 세포의 효율적 보존을 위해 최적 조건을 확립하여 각 단계마다 동결을 실시한다.

3. 세포 주기 동기화 물질 존재 하에서 목적 유전자가 도입된 공여 핵 세포의 배양

본 발명은 복제 개의 생산 효율을 향상시키기 위하여, 핵 이식 직전 단계에서 목적 유전자가 도입된 공여 핵 세포에 세포 주기 동기화 유도 물질을 첨가하여 배양한다.

사용할 수 있는 세포 주기 동기화 유도 물질로는 Cdk(cyclin-dependent kinase) 저해제로 G0/G1기를 블로킹하는 로스코비틴(Roscovitine); G0/G1기를 블로킹하는 사이클로헥사마이드(Cycloheximide); G0/G1기를 블로킹하는 디엠에스오 (Dimethyl Sulfoxide, DMSO); Cdk(cyclin-dependent kinase) 저해제로 G1/S기를 블로킹하는 부티로락톤 I(Butyrolactone I); DNA 폴리머라아제 A,D의 저해제로 S 초기를 블로킹하는 아피디콜린(Aphidicolin); 유사분열 중기에서 M기를 블로킹하는 디메콜신(Demecolcine);DNA 복제 저해제로서 S기를 블로킹하는 미모신(Mimosine); 미소관 저해제로서 G2/M기를 블로킹하는 콜치신(colchicine); 및 DNA 토포이소머라아제로서 훽스트 33342(Hoechst 33342) 등이 있고, 각각의 물질에 대한 화학 구조식은 앞서 설명한 바와 같다. 바람직하게는 로스코비틴, 사이클로헥사마이드, 디엠에스오을 사용하고, 더욱 바람직하게는 로스코비틴을 사용한다.

핵 이식을 하기 직전에, 상기 세포에 로스코비틴을 첨가하여 추가 배양 한 후, 트립신 처리하여 세포를 회수하여 체세포 핵이식을 실시한다. 이 때 첨가하는 로스코비틴의 농도는 바람직하게는 5~30μM, 보다 바람직하게는 10~20μM이며, 배양시간은 바람직하게는 18~72시간, 보다 바람직하게는 24~48시간 동안 배양한다.

일 구체예로서, 새로운 배양접시에서 배양한 후, 세포의 농도가 약 60% 정도에 달하였을 때 로스코비틴 15μM을 18-24시간 동안 처리한 후, 트립신 처리하여 세포를 단일세포로 제조한 후 핵이식에 사용한다.

제4단계: 체세포의 핵이식을 통한 핵 이식란의 생산

본 발명은 상기 전 단계에서 형질전환된 공여 핵 세포의 형질을 그대로 지닌 동물을 생산하기 위해 체세포 핵이식(somatic cell nuclear transfer, SCNT) 을 통한 복제기술을 접목한다. 즉, 핵 이식란을 생산한다.

1. 공여 핵 세포의 미세주입 및 융합

제1단계에서 준비한 탈핵 난자에 형질전환된 공여 핵 세포의 미세주입은 이식용 피펫을 사용하여 공여 핵 세포를 탈핵 난자의 세포질과 투명대 사이에 주입함으로써 수행한다.

상기에서 공여 핵 세포의 미세주입이 완료된 탈핵 난자는 세포 조작기를 이용하여 전기적으로 공여 핵 세포와 융합시킨다. 전기적 융합에서 전류는 교류 또는 직류일 수 있다. 특히, 전기적 융합에서 전류는 교류 또는 직류일 수 있으며, 바람직하게는 전압이 2.0∼6.0 kV/cm 조건으로 수행할 수 있으며 보다 바람직하게는 직류전압이 3.0∼5.0 kV/cm 조건으로 10∼30 ㎲ 동안 1∼3 회 수행할 수 있다. 가장 바람직하게는, 전압 3.5∼5.0 kV/cm 조건으로 15㎲ 동안 2회 수행할 수 있다.

상기 전기적 융합시의 전압 범위는 지금까지 알려진 다른 종에서의 일반적인 전기적 융합시의 전압 범위보다 매우 높은 특징이 있다. 이같은 범위는 전기융합의 최적화된 조건으로서, 보다 높은 복제효율로 복제개를 생산할 수 있게 한다.

상기 공여 핵 세포와 난자의 전기적 자극에 의한 융합은 다양한 융합용 배지, 예를 들면 짐머맨 (Zimmerman), 소비톨 (sorbitol) 또는 만니톨 등의 내에서 수행할 수 있다. 바람직하게는 만니톨, MgSO 4 , 헤페스, BSA가 혼합된 배지를 사용할 수 있다.

탈핵된 난자에 형질 전환된 체세포핵 이식을 하고, 전기 융합을 실시한 후, 난자의 핵은 리모델링 과정을 겪게 되는데, 이때 리모델링이 원활하게 잘 일어난 증거로, 전기융합 후 약 1시간이 지나면 융합란에서 조숙 염색체 응축 (premature chromosome condensation) 현상이 일어나게 된다. 그리고, 상기 조숙 염색체 응축 과정을 잘 겪은 융합란이 리모델링과 활성화 후 리프로그래밍까지 잘 일어나게 된다고 알려져 있다.

본 발명의 로스코비틴 등의 세포주기 동기화 유도물질을 처리한 공여 핵 세포를 이식한 경우에는, 그렇지 않은 경우에 비하여 더 높은 비율로 조숙 염색체 응축(premature chromosome condensation, PCC)가 일어나며, 융합란의 활성화 후에도 계속적인 핵의 팽윤과 재응축이 일어나게 된다. 특히, PCC(premature chromosome condensation), NE(nuclear enlargement), NS(nuclear swelling)는 핵이 시간에 지남에 따라 정상적으로 발달할 때, 겪게되는 현상들로(핵 리모델링), 시간의 흐름에 따라서 PCC → NE → NS 의 순서대로 과정을 겪게 되는데, 로스코비틴 등의 세포주기 동기화 유도물질을 처리한 공여 핵 세포를 이식한 복제수정란에서 PCC가 유의하게 더 높은 비율로 일어나는 등 상기 핵 리모델링이 더욱 활성화되어 나타남을 특징으로 한다.

2. 융합된 핵 이식란의 활성화

융합된 핵 이식란의 활성화는 성숙과정에서 일시적으로 정지되어진 세포주기를 다시 가동시키는 단계이다. 이를 위해서는 세포주기 정지요소인 MPF, MAP 키타제 등의 세포신호전달물질의 활성을 저하시켜야 한다.

일반적으로 핵 이식란을 활성화하는 방법은 전기적 방법 및 화학적 방법이 있다. 본 발명에서는 핵 이식란의 활성화를 위한 방법으로 화학적 방법을 사용하는 것이 바람직하다.

상기 화학적 방법은 전기적 활성화 방법에 비해 본 발명에 따른 핵 이식란의 활성화를 보다 많이 촉진할 수 있다. 상기에서 화학적 방법으로는 에탄올, 이노시톨 트리포스페이트, 2가 이온(예를 들어 Ca 2+ 또는 Sr 2+ ), 미소관 억제제(microtubule inhibitors, 예를 들어 사이토칼라신 B), 2가 이온 이오노포어(ionophore)(예를 들어, Ca 2+ 이오노포어 이노마이신), 단백질 키나제 억제제(예를 들어, 6-디메틸아미노퓨린), 단백질 합성 억제제(예를 들어, 사이클로헥시미드), 포볼 12-미리스테이트 13-아세테이트(phorbol 12-myristate 13-acetate)와 같은 물질을 처리하는 방법이 있다.

바람직하게는, 본 발명에서 핵 이식란의 활성화를 위한 화학적 방법으로는 칼슘 이오노포어와 6-디메틸아미노퓨린을 핵 이식란에 동시에 처리하거나 단계적으로 처리하는 방법을 사용할 수 있다. 보다 바람직하게는 칼슘 이오노포어 5∼10μM을 37~39℃에서 3∼6분 동안 처리한 다음 6-디메틸아미노퓨린 1.5mM ~ 2.5mM을 37∼39℃에서 4∼5시간 동안 처리한다.

본 발명은 또 다른 관점에서 상술한 방법에 의해 제조된 개의 형질 전환된 핵 이식란에 관한 것이다.

제5단계: 핵 이식란의 대리모 이식 및 산자생산

나아가, 본 발명에 따른 개의 형질 전환된 핵 이식란은 대리모에 이식되어 산자를 출생시킴으로써 복제개를 생산하는데 사용될 수 있다. 개의 경우는 체외 배양하지 않고 활성화 후 바로 이식하는데, 상기 이식은 당업계에 공지된 방법을 사용하여 수행할 수 있으며 바람직하게는 카테터를 사용하여 복제 배아를 이식할 수 있다.

핵 이식란을 이식하여 정상적으로 태아로 발생시킬 수 있는 대리모를 선발한다. 경산개 중 발정기를 파악하여 이식적기를 선정한다. 일반적으로, 적당한 이식시기는 발정 징후를 보이기 시작하고부터 대략 48∼72시간 후이므로 핵 이식란의 대리모 이식은 이로부터 계산하여 핵 이식란의 체외발육 단계와 시기를 동기화하여 정한다. 대리모의 바람직한 발정주기 평가는 프로게스테론 농도를 기준으로 하였다.

핵 이식란의 대리모 이식은 개복수술에 의하여 대리모의 난관에 이식을 수행한다. 상기 대리모 이식에 있어서 상기 핵 이식란은 1세포기, 즉 바로 만들어진 복제란이거나 2 세포기 또는 4 세포기의 것이 바람직하다. 가장 바람직하게는 1세포기의 것이다. 이를 위해서 상기 핵 이식란의 대리모 이식은 활성화한 후 4시간 이내에 수행하는 것이 바람직하다. 또한 상기 핵 이식란은 대리모가 준비되기 전까지 미네랄 오일이 덮여진 mSOF 25㎕ 미세유적(microdrop)에서 배양할 수 있다. 대리모는 난자를 제공한 개와 발정주기가 동일하거나 1일 이내로 늦은 것을 선택한다.

핵이식란의 이식 후 4주째에 초음파 검사를 실시하여 임신여부를 확 인한다. 이 후에도 2주일 간격으로 초음파검사를 통하여 임신지속여부 및 태아의 발육상태 등을 확인한다.

태아의 출산은 분만간격이 30분 이상이 지났는데도 산자가 태어나지 않으면 분만을 도와야 하며, 분만 예정일이 지난 경우는 호르몬 제제 주사 또는 제왕절개와 같은 수술방법을 통하여 산자를 생산하게 된다.

본 발명의 방법에 따라 제조된 복제개는 공여 핵 세포 또는 공여자와 표현형이 유사하고 완전히 동일한 유전적 특성을 가지며, RFP를 발현시킨다. 본 발명의 일 실시예에서는 본 발명의 방법에 따라 생산된 복제개의 유전적 특성을 마이크로세틀라이트 분석방법을 이용하여 분석하였다(실험예 2 참조). 그 결과, 본 발명에 따른 복제개는 공여 핵 세포 또는 공여자와 완전히 동일한 유전적 특성을 가짐을 확인할 수 있었다.

실시예

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.

특히, 본 발명에서는 목적 유전자로 RFP 유전자만을 사용하였으나, 이 밖에도 당업자의 필요에 따라 다른 목적 유전자를 사용할 수 있고, 상기 유전자의 발현에 적합한 프로모터를 임의 선택하여 사용할 수 있음은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.

실시예 1:개로부터 수핵 난자의 회수

난자 공여자로 실험에 사용한 개는 1~5년령의 잡종 암캐를 사용하였다. 상기 난자 공여자로 사용한 개들은 서울대학교의 사육관리 연구소의 기준에 따라 사육하였다. 자연적으로 발정기가 시작된 개를 대상으로 질세포 도말검사(vaginal smear)와 혈청 프로게스테론의 농도를 매일 측정하여 배란일을 결정하고, 배란일로부터 48∼72시간 후에 수술을 실시하여 난자를 회수하였다.

혈중 프로게스테론의 농도는 혈액 3-5ml을 매일 채취하고 원심분리하여 혈장을 수득한 다음 DSL-3900 ACTIVE 프로게스테론 코팅된 튜브 방사선면역 분석 키트(Diagnostic Systems Laboratories, Inc., USA)를 사용하여 분석하였다. 프로게스테론 농도가 4.0∼7.5ng/ml가 되면 배란일로 간주하였다(Hase et al., J. Vet. Med. Sci ., 62:243-248, 2000).

질세포 도말검사는 발정기의 초기 증후가 나타난 날로부터 매일 표본을 수득함으로써 수행하였다. 질세포 표본은 면봉을 외음부로 삽입함으로써 수집하였고 이를 슬라이드 글라스 위에 도말하였다. 그 다음 디프-퀴(Diff-Quik) 염색액(International chemical co., Japan)으로 염색한 후 현미경으로 검경하여 표피세포가 상피세포 인덱스(cornified index, Evans J.M. et al., Vet. Rec , 7:598-599, 1970)의 80%이상인 경우를 배란시기로 간주하였다.

본 발명자들은 상술한 방법에 따라 배란시기를 확인한 후 개복술을 통하여 난자 공여자 개로부터 다음과 같은 방법으로 회수하였다.

먼저, 난자 공여자인 암캐에 케타민 HCl(ketamine HCl) 6mg/kg과 자일라진(xylazine) 1mg/kg을 투여하여 전 마취시키고, 이소플루란(isoflurane)을 흡입시킴으로써 마취상태를 유지하였다.

상기 마취된 개의 생식열구(bursal slit)를 통하여 난관의 술 모양의 말단에 접근하고 앞부분이 둥글게 처리된 니들을 삽관하였다. 삽입된 니들을 수술용 봉합사로 고정하였다. 이때 3cm 플라스틱 튜브(직경 2mm) 및 지혈겸자(hemostatic forceps)를 이용한 퀵-릴리즈 장치(quick-release device)를 사용하였다. 그 다음 난관의 도관을 잘 보이게 하기 위하여, 손가락으로 난관과 주위의 자궁-난관 접합부의 아랫부분에 압력을 가하고, 정맥 내 카테터(24 게이지)를 삽입한 다음 상기 카테터를 통해 10% (v/v) FBS, 2 mM NaHCO 3 , 5 mg/ml BSA (Invitrogen, Carlsbad, CA)가 첨가된 헤페스-버퍼 조직 배양 배지 표1의 TCM-199(난자 회수용 배지)를 관류시켜 난자가 흘러나오도록 하였다.

표 1

성분 함량 TCM powder 1L 용 (Gibco 31100-027) 9.9g P/S 항생제 1%(페니실린 10000IU, 스트렙토마이신 10mg) HEPES 완충액 2.38g FBS 10%(v/v) NaHCO 3 0.1680g BSA 5mg/L

실시예 2: 수핵 난자의 탈핵

상기 수득한 난자를 표 1의 난자 회수용 배지에 넣고, 히알루로니다제(Sigma, USA)를 반복적으로 피펫팅함으로써 난구세포를 제거하였다. 그 다음 난구세포가 제거된 난자를 5㎍/mL 훽스트(Hoechst 33342)로 5분간 염색하고 형광 도립 현미경을 이용하여 x 200의 배율로 관찰하여 제1극체가 확인된 난자만을 선별하였다.

선별된 난자를 5㎍/mL 사이토칼라신 B가 첨가된 상기 배지(표 1)에 넣고 미세조작장치(micromanipulator, Narishige, Tokyo, Japan)를 이용하여 탈핵을 수행하였다. 즉, 홀딩 마이크로 피펫(약 150㎛ 직경)으로 수핵 난자를 고정한 후 제1극체와 난자 핵 그리고 일부 세포질(5% 이하)을 흡입 피펫(약 20 μm 직경)을 이용하여 제거하였다. 상기 과정을 거쳐 탈핵된 난자는 10%(v/v) FBS가 첨가된 TCM-199 배지(표 2)에 넣어 보관하였다.

표 2

TCM-199 배지 성분 함량 TCM199 liquid 89ml pyruvic acid 0.0099g P/S(항생제) 1ml FBS 10%

실시예 3: 핵 공여세포의 준비

공여 핵 세포로는 개로부터 수득한 성체 섬유아세포를 사용하였다. 이를 위해 먼저 개의 귀 피부 조직을 분리하였다. 상기 귀 피부 조직 단편을 DPBS(Dulbecco’s Phosphate Buffered Saline)로 3회 세척하고 수술용 칼로 잘게 조각내었다. 상기 조각낸 피부조직을 1mM EDTA가 포함된 DMEM(Dulbecco’s modified Eagle’s medium) 배지(DMEM Life Technologies, Rockville, MD)에 넣고 300 x g로 2분간 원심분리한 후 60mm 플라스틱 배양용 접시(Becton Dickinson, Lincoln Park, NJ)에서 배양하였다.

그 다음 상기 세포를 10%(v/v) FBS, 1mM 글루타민, 25mM NaHCO 3 및 1%(v/v) 최소 필수 배지(MEM) 비필수 아미노산 용액(Invitrogen, CA)이 첨가된 DMEM 배지에서 39℃, 5% CO 2 및 95% 공기로 가습된 조건으로 3~4일간 배양하였다.

세포가 컨플루언시(confluency)가 될 때까지 배양한 후, 체세포가 부착되지 않은 세포는 제거하고 부착된 나머지 세포는 0.1% 트립신 및 0.02% EDTA가 포함된 배지 내에서 1분간 트립신 처리하고 추가 계대를 위해 3개의 새로운 배양접시로 옮기어 4 내지 6일 간격으로 계대배양하였다. 그 다음 80%(v/v) DMEM, 10%(v/v) DMSO 및 10%(v/v) FBS로 이루어진 동결 배지에 넣고 -196℃의 액체 질소에 보관하였다.

체세포 핵 이식을 하기에 앞서, 세포들을 해동하고, 15 μM의 로스코비틴이 첨가된 배양 배지(즉, DMEM + 10% FBS + 15 μM 로스코비틴) 에서 24시간 동안 배양하였다. 그 후, 체세포 핵이식시 약 2분 동안 트립신 처리하여 단일층으로부터 세포를 회수하였다.

실시예 4: RFP 유전자 도입 및 RFP 유전자가 도입된 공여 핵 세포의 선별

(1) 유전자 도입용 벡터 제작

RFP 유전자가 포함된 pLHCRW 플라스미드는 다음과 같이 준비되었다.

상업적으로 시판되고 있는 pRevTRE(Clontech Mountain View, CA, USA)의 TRE 서열을 제거한 후 그 위치에 CMV promoter (미국의 Clontechdptj 구입한 pLNCX 에서 분리)와 DsRed2 유전자 (미국의 Clontechdptj 구입한 pDsRed2-C1로부터 분리), 그리고 WPRE (Woodchuck hepatitis virus posttranscriptional regulatory element) 서열(Woodchuck 간염 바이러스 2 게놈 DNA 로부터 cloning)을 함유하는 프래그먼트를 차례로 삽입하여 최종 pLHCRW 플라스미드를 구축하였다.

(2) RFP 유전자 도입

PT 67 세포(Clontech Mountain View, CA, USA)를 일시적으로 pLHCRW로 트랜스펙션시키고, 트랜스펙션된 PT 67세포로부터 수득한 바이러스를 GP2-293 세포(Clontech Mountain View, CA, USA)를 감염시켰다. LHCRW-감염된 GP2-293 세포를 2주 동안 하이그로마이신 (150 μg/ml)을 이용하여 선별하고, 이러한 Hyg R (hygromycin-resistant) 세포들을 pVSV-G(Clontech Mountain View, CA, USA)에로 트랜스펙션 하여 VSV-G 단백질을 발현시켰다.

트랜스펙션 후 48시간 후에 VSV-G 단백질로 포장된 바이러스들을 수득하였다. 바이러스를 생산하는 세포를 포함한 모든 세포는 4.5 g/l 글루코오스(GibcoBRL, Grand Island, NY, USA), 소 태아 혈청(10%) 및 스트렙토마이신(100 μ/ml)을 함유하고 있는 DMEM 배지에서 37℃ 및 5% CO 2 조건에서 배양한다. 상기의 감염 및 트랜스팩션된 GP2-293 세포로부터 수거한 바이러스-함유 배지는 0.45㎛ 포어(pore) 크기의 필터를 통해 여과한 후 개의 섬유아세포들을 감염시키는데 사용하였다. 감염과정을 거친 섬유아세포는 하이그로마이신 (150 μg/ml)으로 6일간 선별하였다.

(3) RFP 유전자가 도입된 공여 핵 세포의 선별 및 증식

레트로바이러스 벡터를 이용하여 RFP 유전자를 암캐(BF3) 및 수캐(BF4) 태아 섬유아세포의 공여 세포에 도입하고, 안정된 이입세포(transfectant)(BF3/RFP 및 BF4/RFP)를 hygromycin selection으로 분리하고자 하였다. 항생제를 이용한 세포선별을 위해 유전자 도입 후 2-3일 간격으로 6일간 하이글로마이신을 150ug/ml 용량으로 적용하여 선별을 실시하였다(Fig. 2의 b).

선별 후 세포들은 하나의 집락(colony)으로 자라게 되는데 이를 트립신으로 처리하여 96-웰(96-well)의 배양용기로 옮겨 배양 한 후 이들이 증식되면 이후 24-웰로 옮겨 배양하고 더 나아가서 12-웰과 6-웰까지 증식 배양을 실시하였다. 트립신처리로 분리한 단세포 중 현미경하에서 자외선 필터를 이용하여 RFP 단백질이 발현되는 세포만을 선택하여 핵이식에 적용하였다.

RFP유전자 도입과 항생제 선별이 끝나 증식배양된 세포를 15 % 소태아혈청과 10 % 세포배양배지를 이용하여 세포를 부유한 다음 4℃에서 2시간, -70℃에서 12시간 이상 정치시킨 후 -150℃에서 동결보관하였다.

체세포 핵 이식을 하기에 앞서, 세포들을 해동하고, 15 μM의 로스코비틴이 첨가된 배양 배지(즉, DMEM + 10% FBS + 15 μM 로스코비틴) 에서 24시간 동안 배양하였다. 그 후, 체세포 핵이식시 약 2분 동안 트립신 처리하여 단일층으로부터 세포를 회수하였다.

실험예 1 : 로스코비틴 처리군과 대조군의 비교

로스코비틴을 처리하지 않은 대조군과 로스코비틴을 24시간 처리한 처리구간에, 탈핵된 난자에 미세주입방법을 이용하여 개의 체세포 이식을 실시한 후, 핵의 형성 및 변화에 있어서 차이점을 조사하였다.

그 결과 로스코비틴 처리구가 대조군에 비하여 더 높은 비율로 조숙 염색체 응축(premature chromosome condensation, PCC)가 일어나며, 융합란의 활성화 후에도 계속적인 핵의 팽윤과 재응축이 대조군과 상이하게 차이를 보이며 일어나는 것을 확인할 수 있었다. 상기 결과들은 개 난자의 미세주입법을 이용한 핵치환 이후에도 개의 재구축된 복제수정란이 정상적으로 리모델링(remodeling) 될 수 있음을 보여주고 있으며, 대조군에 비하여 처리군이 더 우수하게 발달하는 것을 보여주고 있다. 실제 이러한 핵 리모델링으로 인한 핵의 다양한 형태학적 양상을 표 3에 나타내었다.

하기 표 4는 로스코비틴을 처리한 처리군과 대조군 간의 탈핵된 난자에 체세포를 이식한 후 재구축된 난자의 핵 리모델링을 관찰한 결과이다. PCC, NE, NS는 핵이 시간에 지남에 따라 정상적으로 발달하는데 겪게되는 현상들로, 시간의 흐름에 따라서 PCC → NE → NS 의 순서대로 과정을 겪게 되는데, 전기 융합후 1시간째, 대조군에 비하여 처리군에서 PCC가 유의하게 더 높은 비율로 일어나있는 것을 확인하였다. 그리고 융합란의 활성화 후 4시간째, 핵의 팽윤 (NS)이 처리군에서 더 많이 발생되는 것이 확인되었다.

표 3

시간(hpf/hpa) 처리 핵이식란수 재구축된난자수 재구축된 난자에 대하여 IN (%) PCC (%) NE (%) NS (%) 1 hpf 대조군 32 27 24(88.8±7.9) 3(11.1±7.9) 0 0 실험군 39 34 11(32.3±7.0) 23(67.6±7.0) 0 0 4 hpa 대조군 36 30 0 2(6.6±3.7) 17(56.6±8.4) 11(36.6±8.5) 실험군 45 38 0 1(2.6±3.3) 9(23.6±7.5) 28(73.6±7.5)

(hpf = hour post fusion; hpa = hour post activation; IN = intact nucleus; PCC = premature chromosome condensation; NE = nuclear enlargement; NS = nuclear swelling. (P < 0.05))

다음으로, 본 발명의 방법에 따라 로스코비틴을 처리한 공여 핵 세포와 그에 대한 대조군으로 로스코비틴을 처리하지 않고 배양한 공여 핵 세포를 사용하여 체세포 핵이식을 실시한 후 각 그룹의 임신율을 조사하였다.

그 결과, 대조군에서는 체세포 핵이식한 478 개의 배아를 26 마리의 대리모에 이식하였으며, 그 중 4 마리가 임신이 되었다 (15.3%,임신 대리모수/총 대리모수). 로스코비틴 처리군에서는 체세포 핵이식 후 556 개의 배아를 29마리의 대리모에 이식하였으며, 그 중 11 마리가 임신에 성공하였다 (37.9%,임신 대리모수/총 대리모수).

이 결과로 볼 때, 로스코비틴 처리 후 체세포 이식한 경우에 임신율이 매우 유의미하게 향상되었음을 확인할 수 있었다.

표 4

세포의 처리 이식한배아수 대리모수 임신수 임신율(대리모 기준) 임신율(이식한 배아 기준) 대조군 478 26 4 15.38% 1.040% 로스코비틴 처리군 556 29 11 39.93% 3.95%

실시예 5: 체세포 핵이식

(1) 탈핵 난자에 공여 핵 세포의 미세주입 및 융합

상기 실시예 2에서 제조한 탈핵 난자에 상기 실시예 4에서 제조한 RFP 유전자가 도입된 공여 핵 세포를 미세주입하였다. RFP 유전자가 도입된 공여 핵 세포는 탈핵 난자의 주란강(perivitellin) 공간으로 다음과 같은 방법으로 미세주입하였다. 미세주입시 정치된 탈핵 난자를 100/mL 피토헤마글루티닌(phytohemagglutinin)이 함유된 표1의 배지에 처리하고, 탈핵 난자의 절개창을 고정용 피펫으로 고정한 다음 이식용 피펫을 절개창으로 삽입하여 실시예 3에서 단일세포로 분리된 섬유아세포를 탈핵 난자의 세포질과 투명대 사이에 주입하였다.

그 다음 상기 RFP 유전자가 도입된 공여 핵 세포-난자 결합체(couplets)를 융합 배지(0.26M 만니톨, 0.1mM MgSO 4 , 0.5mM 헤페스 및 0.05% BSA)에 넣고 미세조작장치(Nikon-Narishige, Japan)에 부착되어 있는 평행한 2개의 전극사이에 놓고 전기-세포 융합 장치(Electro-Cell Fusion apparatus) (NEPA GENE Co., Chiba, Japan)로, 전압 4kV/cm 조건으로 15㎲ 동안 2회간 전기적 자극을 가하였다.

상기에서 전극 사이의 거리는 약 180 ㎛ (난자의 직경) 정도였다. 전기 융합 장치의 전압을 72V로 조절하고, 15μsec으로 2 펄스를 인가하였으며, 전기 자극 1시간 후에 공여 핵 세포와 난자 세포질체의 융합을 입체현미경 하(stereomicroscope)에서 관찰하였다.

전기자극 1시간 후에 공여 핵 세포와 난자 세포질체의 융합을 입체현미경 하(stereomicroscope)에서 관찰하였다. 융합된 수정란을 선별하였고 이를 10%(v/v) FBS가 첨가된 TCM-199(표 2)에서 1.5~4시간 동안 배양하였다.

(2) 활성화

상기 세포융합과정이 끝난 형질전환 핵이식란은 10μM 이오노포어(Sigma)가 함유된 변형된 합성 난관액((modified synthetic oviductal fluid; mSOF) (표 5)에 넣고 39℃에서 4분간 배양하여 핵 이식란의 활성화를 유도하였다. 그 다음 상기 핵 이식란을 세척하고 1.9mM 6-디메틸아미노퓨린이 첨가된 mSOF에서 4시간 동안 추가로 배양하였다. 상기 핵 이식란은 대리모에 이식하기 전까지 미네랄 오일이 덮여진 mSOF 25㎕ 미세유적(microdrop)에서 배양하였다.

표 5

성분 농도 부피 NaCl(54.44) 2.900-3.100g/ml stock-T 107.7mM(3.14g) 2ml Kcl(74.55) 0.2669g 7.2mM KH 2 PO 4 (136.1) 0.0810g 1.2mM Sod Lactate 0.28ml 3.3mM Kanamycin 0.0375g Phenel-Red 0.0050g NaHCO 3 (84.01) 1.0531g/50ml Stock-B 25.1mM 2ml NaHCO 3 (84.01) 0.42124g/20ml Sod.Pyruvate(110.0) 0.0182g/5ml Stock-C 0.3mM 200㎕ MgCl 2 6H 2 O(147.0) 0.0996g/10ml Stock-M 0.5mM 200㎕ CaCl 2 2H 2 O(203.3) 0.2514g/10ml Stock-D 1.71mM 200㎕ Glucose(180) 0.27024g/10ml 1.5mM 200㎕ Glutamine(146.1) 0.14618g/10ml 1mM 200㎕ Citri Acid(192) 0.096g/10ml Stock-CA 0.5mM 200㎕ HEPES(238.3) 0.5958g/10ml Stock-E 2.5mM 200㎕ EAA(Gibco 11051-018) 400㎕ NEAA(Gibco 11140-019) 200㎕ ITS(I-3146) 100㎕ BSA(fatty acid free) 0.1600g Hyaluronic Acid 0.5mg/ml 1N NaOH D.W. total 20ml pH 7.2-7.4 / 삼투압 275-285 / EAA, NEAA는 빛에 민감하므로 주의

실험예 2: 체세포 핵이식한 배의 In vitro 발생 및 RFP 발현확인

형질전환 SCNT군(SCNT-BF3/REF), 비형질전환 SCNT군(SCNT-BF3) 및 단위발생(parthenogenetic)군별로 in vitro 배 발생 비율을 비교하여 살펴보았다(표 6).

표 6

배유형 배양 cleaved(%) 4 cells(%) 8 cells(%) 16-32 cells(%) > Morula(%) RFP발현% 단위 발생군 42 37(87.0±0.04) 27(65.3±0.05) 22(56.2±0.05) 11(25.5±0.05) 1(1.8±0.01) SCNT-BF3 27 16(58.7±0.05) 8(29.9±0.04) 5(17.4±0.06) 2(6.1±0.07) SCNT-BF3/REF 54 28(53.4±0.07) 15(30.2±0.04) 9(17.9±0.04) 3(6.2±0.02) 100

(평균%±SEM; p < 0.05)

SCNT 배들의 전체 배발생율은 단위발생군보다 현저히 낮았으나, 형질전환군 및 비형질전환군은 각각 2 cell (53.4±0.07 vs. 58.7±0.05%), 4 cell (30.2±0.04 vs. 29.9±0.04%), 8 cell (17.9±0.04 vs. 17.4±0.06%), 및 16-32 cell (6.2±0.02 vs. 6.1±0.07%) stages에서 유사한 발생율을 나타내었다. 붉은 형광이 2, 4, 8-16 cell에서 모자이크 현상없이 나타난 반면(Fig. 2의 c), 단위발생군에서는 형광이 나타나지 않았다.

실시예 6: 대리모 이식 및 복제개의 생산

상기 실시예 5의 핵 이식란을 발정 동기화된 대리모의 난관에 외과적 수술방법을 사용하여 이식하였다. 이식은 상기에서 핵 이식란을 활성화한 후 4시간 이내에 수행하였다. 대리모로는 질병에 이환되지 않으며 정상적인 발정주기가 반복되며 자궁상태가 정상인 암캐를 사용하였다. 전체 344개의 배(287 BF3/RFP 및 57 BF4/RFP)를, 대리모 20마리의 난관에 이식하였다. 그 중 16 마리에는 BF3/RFP배를, 4마리에는 BF4/RFP 배를 이식하였다.

이를 위해 먼저 대리모에 케타민 HCl(ketamine HCl) 6mg/kg과 자일라진(xylazine) 1mg/kg을 투여하여 전 마취시키고, 2% 이소플루란(isoflurane)을 이용하여 흡입마취상태를 유지하였다. 마취된 개의 수술부위를 무균처리하고 난관을 노출시키기 위해 일반적인 개복수술법에 따라 등배쪽 부위를 절개하였다. 손으로 복강 내를 촉진하여 난소와 난관 및 자궁을 절개창으로 견인하였다. 견인된 난소의 난소간막을 조심스레 다루어 난관의 개구부를 인지하고 1.0ml 튜버큘린(tuberculin) 주사기(Latex free, Becton Dickinson & CO. Franklin lakes, NJ 07417)가 장착된 3.5F 톰 캣 카테터(Tom cat catheter, Sherwood, St. Louis, MO)를 난관 내로 넣어 카테터 전방에 충분한 공간을 확보하고 핵 이식란을 주입하였다. 핵 이식란의 주입여부는 현미경을 검경하였다. 복부의 봉합은 흡수성 봉합사를 이용하였고 이후 피부봉합을 실시하였다. 수술 후 감염을 방지하기 위하여 광범위 항생제를 3일이상 혈중 유지되도록 투여하였다.

임신여부는 대리모에 핵 이식란을 이식한 후 23일째에 7.0 MHZ 리니어-어레이 프로브(linear-array probe)가 장착된 SONOACE 9900 초음파 스캐너(Medison Co. LTD, Korea)를 이용하여 검사하였다. 즉 이식 후 23일째에 초음파에 의해 각 대리모로부터 한 개의 태아 낭(embyonic sac)이 검출되었으며 태아 사망이나 유산은 검출되지 않았다. 대리모 중 7마리가 이식 후 약 25일 후에 초음파 검사를 통해 임신한 것으로 나타났다(5마리:BF3/RFP 및 2마리:BF4/RFP)(표 7). 약 60일 후에 제왕절개 또는 자연분만을 통해 암컷 4마리(R1-R3 및 R5로 명명) 및 수컷 2마리(R6 및 R7로 명명)의 형질전환된 복제개가 태어났다.

표 7

Nuclear donor cells BF3/ RFP BF4/RFP Total 공여세포의 성별 Female Male In vivo oocytes 434 74 508 Enucleated oocytes 405 66 471 Celltransferred oocytes 396 66 462 Fusion attempted 384 66 450 Fused embryos (%) 315(82) 57(86.4) 372(82.7) Embryos transferred to recipients 287 57 344 Recipients 16 4 20 Pregnancies / recipients (%) 5(31.3) 2(50.0) 7(35.0) Births / embryos transferred (%) 4(1.4) 2(3.5) 6(1.7)

실험예 3 :본 발명의 방법에 따라 생산된 복제개의 특성 확인

핵이식에 따른 강아지의 특성을 이하 표 8에 요약하였다. 형질전환된 복제 강아지들은 유전학적으로 각각 공여 세포와 동일하였다.

표 8

ID Donor cell type Gestation(days) Birth weight(Kg) Karyotype status Comments R1 BF3/RFP 61 310 76 + XX Live C-sec R2 BF3/RFP 59 270 76 + XX Live C-sec R3 BF3/RFP 60 240 76 + XX Live Naturaldelivery R5 BF3/RFP 60 260 76 + XX Live Naturaldelivery R6 BF4/RFP 61 330 76 + XX Dead(2 mo) C-sec R7 BF4/RFP 60 260 76 + XX Live Naturaldelivery

또한, 형질전환된 강아지들의 mtDNA는 전부 공여 개의 난자로부터 유래됨을 보여주었다(데이터 도시 않음).

실험예 4 :본 발명의 방법에 따라 생산된 복제개의 RFP 유전자 발현 In vivo 확인

실시예 6에서 생산된 각각의 형질전환 산자는 육안적 방법 및 분자생물학적 방법으로 유전자 분석을 하였다. RFP발현 복제개는 외견관찰 및 조직을 이용한 서던블럿 및 현미경의 자외선 필터을 이용하여 RFP 발현 및 유전자 도입을 분석하였다.

(1) 서던 블럿 및 RT-PCR 분석

분자생물학적 검사로 우선, 서던 블럿으로 산자의 Genomic DNA를 분석하였다. 서던 블럿 분석에서 RFP 유전자 프로브의 합성을 위한 프라이머로, pDsRed2-C1 (Clontech, Mountain View, CA, USA) 뉴클레오티드 서열 606-623 위치 및 1270-1287위치에 해당하는 5’- CGCCACCATGGCCTCCTC-3’(SEQ ID NO.: 2) 및 5’-CAGGAACAGGTGGTGGCG-3’(SEQ ID NO.: 3)을 사용하였다. 상기 프로브(3905 bp)를 the PCR DIG Probe Synthesis kit (Roche, Mannheim, Germany)를 이용하여 합성하고, 아가로스 겔 전기영동에 의해 분리정제하고, 혼성화 전에 digoxigenin으로 표지하였다.

그 결과, 양성전하를 띠는 나일론 막(positively-charged nylon membrane) 상에서, 표지된 DNA가 DIG luminescent detection kit (Roche, Mannheim, Germany)에 의해 나타남을 확인하였다(Fig. 3).

마찬가지로, RFP 유전자의 전사수준에서의 확인을 위하여 복제개에 대하여 RT-PCR을 수행하였다. 전체 RNA를 DNase I로 처리하고, the first-strand cDNA synthesis kit (Amersham Pharmacia Biotech, Oakville, ON, Canada)를 이용하여 상기 RNA를 역전사시켰다. RT-PCR을 수행함에 있어서, 정방향 프라이머 RFP-F : 5’-CGTGAAGCTGAAGGTGA-3’(SEQ ID NO.: 4) 및 역방향 프라이머 RFP-R : 5’- CTCGTACTGCTCCACGA-3’(SEQ ID NO.: 5)를 사용하여 RFP cDNA의 증폭 후 산물(517 bp)을 수득하였다. 그리고, β-actin 내부 전사 조절을 위하여, 베타 액틴-F 정방향 프라이머:5’-TGCCTTGAAGTTGGAAAACG-3’(SEQ ID NO.: 6) 및 역방향 프라이머:5’-CTGGGGCCTAATGTTCTCACA-3’(SEQ ID NO.: 7)을 사용하여 베타-액틴 전사산물(153 bp)을 수득하였다.

RT-PCR 결과를 Fig. 4에 도시하였다. 즉, RFP 유전자의 전사수준에서의 발현을 확인하였다.

(2) 붉은 형광 발색 확인

Texas red filter set를 구비한 Leica inverted microscope과 특정 DsRed filter set를 구비한 Leica upright stereomicroscope을 이용하여 붉은 형광의 발색을 검출하였다. 상기 붉은 형광 발색은 540±0 nm에서의 방출로 나타나고 600±5 nm의 최대 투과율의 파장에서 emission filter에 의해 검출되어진다.

GFsP-5 head light source (Biochemical Laboratory Services, Budapest, Hungary)를 이용하여 DsRed를 발현하는 산자들을 확인하였다.

그 결과, Fig. 5에 나타난 바와 같이 형질전환된 복제개로부터 붉은 형광이 나타나는 것을 쉽게 확인할 수 있었으나, 대조군인 비형질전환된 개에서는 전혀 붉은 형광이 나타나지 않음이 관찰되었다(Fig. 5의 b 및 c).

또한, 활성 필터(excitation filter)(HQ 540/40; Chroma Technology Corp., Rockingham, VT, USA)를 갖춘 70W 외과용 라이트(surgery light)로 형질전환된 복제개의 피부 및 발톱에 빛을 가했을때, 카메라 렌즈에 인접하게 붙어있는 방사 필터(emission filter)(HQ 600/50; Chroma Technology Corp., Rockingham, VT, USA)를 갖춘 SAMSUNG 디지털 카메라(GX10, Republic of Korea)를 이용하여 붉은 형광의 발광(Red fluorescence emission)이 나타남을 확인하였다(Fig. 5의 b’ 및 c’).

그리고, Fig. 6에 나타낸 바와 같이, RFP 유전자로 형질전환된 복제개는, 뇌, 심장, 간, 신장, 정소, 폐, 근육, 소장, 흉선, 비장, 피부, 위 등 각 조직에서 RFP 유전자를 100% 발현하고 있음을 알 수 있다. 이에 반하여, RFP 유전자를 도입하지 않은 대조구 복제개의 경우는 전혀 형광물질이 검출되지 않았다.

한편, 형질전환된 산자들로부터 섬유아세포를 수득한 후, RFP specific filter (EX 510-560 nm, BA 590 nm)를 구비하고 있는 도립 현미경을 이용하여 RFP 발현을 관찰하고, FACS(fluorescence activated cell sorter)로 확인하고자 하였다. 이를 위해 우선, 섬유아세포를 PBS로 세척하고 부착된 세포를 트립신으로 탈착시킨 후, 4℃에서 10 min동안 70% 에탄올로 고정시켰다. FACS Caliber (Becton-Dickinson, NY, USA)를 이용하여 분석하였다. 그 결과, 마찬가지로 형질전환된 복제개의 섬유아세포에서의 RFP 발현을 확인하였다(데이터 도시 않음).

(3) FISH(Fluorescence in situ hybridization)분석

또한 Fluorescence in situ hybridization (FISH) 분석으로 RFP 유전자의 삽입을 확인하였다.

FISH 분석을 위하여, RFP 특이 프로브를 Biotin nick translation mix kit (Roche, Mannheim, Germany)를 이용하여 biotin으로 표지하고, 표지된 프로브 100ng을 Salmon sperm DNA 및 Hyb 혼합물[50% formamide, 10% dextran sulfate (Sigma), 2x SSC]과 섞은 후 75 ℃에서 5분 동안 변성시키고(denatured), 변성된 염색체를 37℃에서 밤새 인큐베이션시켰다. 그 후, 2x SSC에서 45℃ 및 30분 동안 50%의 포르마미드(formamide)로 세척하고, 2x SSC에서 5분동안 추가로 세척한 후, 4xSSC/0.1% Tween 20으로 헹구었다. 그리고, fluorescein avidin DCS (Vector Laboratories Inc., Burlingame, USA) 처리 후 커버슬립하여 37℃에서 20분동안 인큐베이션한 후, 4x SSC로 세척하였다. immunopure biotinylated goat anti-avidine (Pierce, Rockford, USA) 처리하여 37℃에서 20 분동안 다시 인큐베이션하고, 세척한 다음 fluorescein avidin DCS 처리하였다. 이어서, 슬라이드를 세척하고 4’,6-diamidino-2-phenylindole (Vector Laboratories Inc.)로 염색하였다. FISH 이미지는 Leica DMRXA2 (Leica Microsystems, Wetzlar, Germany)로 관찰하였고, CoolSNAP cf digital camera (Roper Scientific photometrics, Tucson, USA)로 캡쳐하여, Leica CW4000 (Leica Microsystems, Wetzlar, Germany)로 분석하였다.

그 결과, Fig. 7에 나타낸 바와 같이, 유사분열 중기 염색체에 있어서 RFP 유전자의 삽입이 한 군데(Fig. 7의 a) 또는 두 군데(Fig. 7의 b)에서 일어나 있음을 확인할 수 있었고, 두 군데에서 삽입이 일어난 경우는 다른 염색체 상에서 이루어져 있었다.

상기 실험들을 결과를 종합해보면, 본 발명의 방법에 따라, 목적하는 유전자로 형질 전환시킨 복제개를 생산할 수 있음을 의미한다.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

본 발명은 체세포에서 목적 유전자를 도입한 후, 상기 체세포를 핵이식 복제 기술을 접목하여 목적 유전자가 발현되는 개를 제공함으로써, 인간 및 동물 질환모델동물의 생산가능성 및 초급성 면역거부반응없이 인체에 이식 가능한 장기나 치료용 세포를 공급하는 동물의 생산 가능성을 제공한다.

전자 파일 첨부하였음.