Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A CODE, METHOD FOR IDENTIFYING A WORKPIECE, USE OF A METAL-WORKING MACHINE FOR INCORPORATING A CODE INTO A WORKPIECE, AND METAL-WORKING MACHINE
Document Type and Number:
WIPO Patent Application WO/2019/076729
Kind Code:
A1
Abstract:
The invention relates to a method for producing a code for a workpiece (1) consisting of a metal base material, particularly sheet metal, in which the workpiece (1) is subjected to a forming process. Said method is characterised in that a local modification of an electrical and/or magnetic property of the base material of the workpiece (1) is carried out in a coding region (8) by means of a forming process, and the code is formed by the local variation of the electrical and/or magnetic property. In this way, workpieces can be effectively provided with an inconspicuous code.

Inventors:
BOSSERT, Daniel (Pfalzstrasse 3, Nussdorf, 71735, DE)
BAUER, Klaus (Konrad-Kocher-Strasse 11, Ditzingen, 71254, DE)
POPP, Andreas (Enge Gasse 21, Markgroeningen, 71706, DE)
TATARCZYK, Alexander (Truchsessenstrasse 40, Hoefingen, 71229, DE)
Application Number:
EP2018/077756
Publication Date:
April 25, 2019
Filing Date:
October 11, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG (Johann-Maus-Strasse 2, Ditzingen, 71254, DE)
International Classes:
G06K1/12
Domestic Patent References:
WO1999005636A11999-02-04
Foreign References:
DE102009056584A12011-06-09
DE4306209A11994-09-01
DE10248142B32004-07-01
DE4306209A11994-09-01
DE10248142B32004-07-01
Attorney, Agent or Firm:
TRUMPF PATENTABTEILUNG (TRUMPF GmbH & Co. KG, TH501 Patente und LizenzenJohann-Maus-Strasse 2, Ditzingen, 71254, DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Erzeugung einer Kodierung eines Werkstücks (1) aus einem metallischen Grundmaterial, wobei das Werkstück (1) einem Umformpro- zess unterzogen wird,

dadurch gekennzeichnet,

dass mittels des Umformprozesses eine lokale Änderung einer elektrischen und/oder magnetischen Eigenschaft des Grundmaterials des Werkstücks (1) innerhalb eines Kodierbereichs (8, 8λ) vorgenommen wird und die Kodierung durch die örtliche Variation der elektrischen und/oder magnetischen Eigenschaft gebildet wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mittels des Umformprozesses eine lokale Änderung der Materialstruktur innerhalb des Kodierbereichs (8, 8λ) vorgenommen wird .

3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Umformprozess Kaltumformung oder Warmumformung verwendet wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass neben der Umformung, durch welche die Kodierung erzeugt wird, eine weitere Umformung durchgeführt wird zur Erzeugung einer einheitlichen Dicke und/oder einer ebenen Oberfläche des Werkstücks (1) in einem Lesebereich (11, 1 ), der den Kodierbereich (8, 8λ) zumindest teilweise umfasst.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kodierung ein stochastisches Kodiermuster aufweist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zuvor festgelegtes Kodiermuster in das Werkstück (1) eingebracht wird.

Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Einbringen der Kodierung durch Eindringen eines Umformwerkszeugs (3) in unterschiedliche Tiefen des Werkstücks (1) und/oder Verwenden von Umform- werkzeugen (3) verschiedener Breite realisiert wird .

Verfahren zum Identifizieren eines Werkstücks aus einem metallischen Grundmaterial, wobei das Verfahren umfasst:

• Kodieren des Werkstücks (1) mittels eines Kodierverfahrens nach einem der vorhergehenden Ansprüche;

• Auslesen der Kodierung durch Messung der örtlichen Verteilung einer elektrischen und/oder magnetischen Eigenschaft des Werkstücks mittels eines Lesegeräts (15) in einem Lesebereich (11, 1 Γ) entlang einer Auslesestrecke (10), der den Kodierbereich (8, 8λ) zumindest teilweise umfasst, wobei ein auf den Abstand des Lesegeräts zur Oberfläche des Grundmaterials des Werkstücks (1) genormtes Signal ermittelt wird;

• Speicherung der ausgelesenen Kodierung in einer Speichereinrichtung (5);

• erneutes Auslesen der Kodierung;

• Vergleich der gespeicherten Kodierung und der erneut ausgelesenen Kodierung.

Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es sich bei der Auslesestrecke (10) um eine Isolinie handelt, entlang der das Grundmaterial des Werkstücks (1) eine einheitliche Dicke aufweist und/oder die Oberfläche des Werkstücks (1) eben ist.

10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Kontur des Grundmaterials des Werkstücks (1) entlang der Auslesestrecke (10) er- fasst wird und dass nach dem Auslesen der Kodierung eine Konturkorrektur durchgeführt wird, durch welche Signaländerungen, die sich aus einer Änderung der Dicke des Grundmaterials und/oder einer strukturierten Oberfläche des Grundmaterials entlang der Auslesestrecke (10) ergeben, aus dem vom Lesegerät (15) detektierten Signal herausgerechnet werden.

11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass beim Auslesen die lokale Änderung einer magnetischen Eigenschaft des Grundmaterials des Werkstücks (1) ermittelt wird .

12. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass beim Auslesen die lokale Änderung einer elektrischen Eigenschaft des Grundmaterials des Werkstücks (1) ermittelt wird .

13. Verwendung einer Metallbearbeitungsmaschine (2), die zur Umformung von Werkstücken (1) gemäß jeweils einer Bearbeitungsanleitung eingerichtet ist, zur Einbringung einer Kodierung in ein Werkstück (1) mittels Umformung, insbesondere mittels Kaltumformung, in Form einer lokalen Änderung einer elektrischen und/oder magnetischen Eigenschaft, insbesondere einer lokalen Änderung der Materialstruktur, des Grundmaterials des Werkstücks (1) in einem Kodierbereich (8, 8λ).

14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, dass die Kodierung Informationen enthält zur RückVerfolgbarkeit bezüglich einer Bearbeitungsanleitung und/oder eines Bearbeitungszeitpunkts und/oder der verwendeten Metallbearbeitungsmaschine und/oder des Bearbeitungsauftrags für das Werkstück (1).

15. Verwendung nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass für jedes Werkstück (1) eine unterschiedliche Kodierung erzeugt wird, so dass jedes Werkstück (1) seiner Bearbeitungsanleitung eindeutig zuordenbar ist. Verwendung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Metallbearbeitungsmaschine (3) in einem Kodiersystem verwendet wird, in dem die eingebrachte Kodierung mittels eines Lesegeräts (15) ausgelesen, mittels einer Speichereinrichtung (5) abgelegt und mittels einer Vergleichseinrichtung (6) das Werkstück (1) einer Bearbeitungsanleitung zugeordnet wird.

Metallbearbeitungsmaschine (2) mit einem Umformwerkzeug (3) zur Umformung eines Werkstücks, einem Lesegerät (15) zur Erfassung von elektrischen und/oder magnetischen Eigenschaften, und einer Steuereinrichtung (7), die dazu eingerichtet ist, ein Kodierverfahren nach einem der Ansprüche 1 bis 6 und ein Identifizierverfahren nach einem der Ansprüche 8- 12 durchzuführen.

Description:
Verfahren zur Erzeugung einer Kodierung, Verfahren zum Identifizieren eines Werkstücks, Verwendung einer Metallbearbeitungsmaschine zur Einbringung einer Kodierung in ein Werkstück, Metallbearbeitungsmaschine

Hintergrund der Erfindung

Die Erfindung betrifft ein Verfahren zur Erzeugung einer Kodierung eines Werkstücks aus einem metallischen Grundmaterial, insbesondere eines Blechs, wobei das Werkstück einem Umformprozess unterzogen wird . Die Erfindung betrifft auch ein Verfahren zum Identifizieren eines Werkstücks. Um Produkte identifizieren und nachverfolgen zu können, ist es bekannt, die Produkte mit einem auslesbaren Code zu versehen. Ein Verfahren zur Kodierung eines Materials mittels Umformung ist bekannt aus DE 43 06 209 AI .

In DE 43 06 209 AI wird ein Verfahren beschrieben, bei dem Strichcode- Strukturen in ein elektrisch leitfähiges Material eingekerbt werden. Zum Auslesen wird ein Lesekopf mit einem in einem Schwingkreis angeordneten Elektromagneten verwendet, der im Material einen örtlich begrenzten Wirbelstrom induziert. Aufgrund der Einkerbungen ergeben sich unterschiedliche Abstände des Lesekopfes zum Material und daraus unterschiedliche magnetische Widerstände des Schwingkreises, welche detektiert werden. Nachteilig daran ist, dass zum Zwecke der Kodierung in die Oberfläche des Materials Einkerbungen vorgenommen werden müssen und dadurch die Eigenschaften des Werkstücks eventuell negativ beeinflusst werden. Insbesondere ist der Code optisch und haptisch erkennbar. Da dies oftmals nicht gewünscht ist, müssen zusätzliche Arbeitsschritte (Spachteln, Lackieren) durchgeführt werden, um die Strukturen der Kodierung unsichtbar zu machen.

DE 102 48 142 B3 beschreibt ein Verfahren zur Herstellung einer magnetisch abtastbaren Kodierung in einem metallischen Bauelement durch Erzeugung bleibender Gefügeveränderungen mittels einer Strahlenquelle, die durch Veränderung der Gitterstruktur und Einlagerung von Ionen eine Änderung der magnetischen Leitfähigkeit in den bestrahlten Bereichen gegenüber den nicht bestrahlten Bereichen des Bauteils hervorruft. Das Verfahren ist aber beschränkt auf nur wenige Materialien, die sich auf diese Weise magnetisieren lassen. Zudem ist die so erzielte Kodierung nur mit technisch sehr aufwändigen Leseköpfen auslesbar.

Aufgabe der Erfindung

Es ist Aufgabe der Erfindung ein Verfahren sowie eine Vorrichtung vorzuschlagen, die es ermöglichen, Werkstücke auf effektive Weise mit einer unauffälligen Kodierung zu versehen. Beschreibung der Erfindung

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass mittels des Umformprozesses eine lokale Änderung einer elektrischen und/oder magnetischen Eigenschaft des Grundmaterials des Werkstücks innerhalb eines Kodierbereichs vorgenommen wird und die Kodierung durch die örtliche Variation der elektrischen und/oder magnetischen Eigenschaft gebildet wird.

Erfindungsgemäß werden also Umformtechniken verwendet, um eine elektrische und/oder magnetische Eigenschaft des Werkstückmaterials lokal zu verändern und hierdurch eine Kodierung zu erzeugen. Dies ist insbesondere für Werkstücke die gemäß einer Bearbeitungsanleitung umgeformt werden sollen, vorteilhaft, da zur Kodierung und Umformung gemäß Bearbeitungsanleitung dieselbe Bearbeitungsmaschine eingesetzt werden kann. Insbesondere bietet das erfindungsgemäße Verfahren die Möglichkeit, die gemäß Bearbeitungsanleitung auszuführenden Umformungen zur Kodierung zu verwenden, sodass die Kodierung innerhalb der Wertschöpfungskette gezielt in das Werkstück eingebracht und als Identifikationsmerkmal genutzt werden kann.

Die Metallbearbeitungsmaschine kann eine Maschine sein, die Metall, insbesondere Blech, in einer oder mehreren der folgenden Arten bearbeiten kann : Schneiden, Stanzen, Biegen, Kalt- und/oder Warmumformen, Scheren, Pressen, Walzen, Beschichten, Fräsen, Schweißen, Körnen, Bohren, Gewindeschneidern, Nieten etc..

Bei den durch das erfindungsgemäße Verfahren kodierten Werkstücken liegt der Kodierbereich im Aktionsbereich (Umformbereich) der zur Umformung verwendeten Bearbeitungsmaschine. Die sich aus der Umformung ergebende Variation der elektrischen und/oder magnetischen Eigenschaft (Kodiermuster) innerhalb des Kodierbereichs bildet die Kodierung. Mit Umformtechniken sind insbesondere solche Techniken gemeint, die das Grundmaterial plastisch verformen. Das Einbringen des Kodiermusters erfolgt idealerweise maschinell, z. B. durch Stanzmaschinen, Stanz-Kombi-Maschinen, Biegemaschinen, Pressen unter Verwendung von Standardwerkzeugen, wie z. B. Prägen, Rollkneifen, Ankörnen und Umformen allgemein (kleiner Napf, Sicke, Rollumformung, Walzen, Tiefziehen, Biegen, Den- geln oder auch Hämmern und Kugelstrahlen). Ebenso kann ein Kodiermuster durch eine manuell eingebrachte plastische Umformung, z. B. durch Einbringen einer Schlagzahl mittels Stempel und Hammer, erfolgen. Auch bei einem Schnitt, z.B. durch Stanzen oder Laserschneiden kann eine Kodiermuster erzeugt werden.

Mittels des Umform prozesses kann eine lokale Änderung der Materialstruktur innerhalb des Kodierbereichs vorgenommen werden. Die Kodierung wird also durch die örtliche Variation der Materialstruktur (Gefügeveränderung) gebildet, welche wiederum eine örtliche Variation der elektrischen und/oder magnetischen Eigenschaft bewirkt. Darüber hinaus ist es auch möglich, chemische Prozesse, die aufgrund der Umformung stattfinden (z. B. Oxidation), zur Kodierung zu nutzen.

Als Umformprozess kann Kaltumformung verwendet werden. Kaltumformung bezeichnet das plastische Umformen von Metallen unterhalb der Rekristallisationstemperatur, z.B. Kaltwalzen, Tiefziehen, Biegen, Dengeln oder auch Hämmern und Kugelstrahlen. Die elektrische Leitfähigkeit und die Anfangspermeabilität verändern, insbesondere verringern, sich aufgrund einer Kaltumformung.

Als Umformprozess kann Warmumformung verwendet werden. Die Warmumformung ist für nahezu alle metallischen Werkstoffe geeignet. Für eine Warmumformung werden im Vergleich zur Kaltumformung geringere Umformkräfte benötigt. Bei Eisenwerkstoffen findet ab einer materialabhängigen Grenztemperatur eine Reaktion des Luftsauerstoffs mit dem Oberflächenmaterial des Werkstücks statt, so dass ein Oxidationsprodukt (Zunder bzw. Eisen(II,III)-oxid) entsteht, welches eine Änderung der elektrischen und magnetischen Eigenschaften bewirken kann. Gefügeveränderungen können auch bei Warmumformung, insbesondere bspw. durch Abschrecken bzw. Abkühlen des Werkstücks, erreicht werden.

Neben der Umformung, durch welche die Kodierung erzeugt wird, kann eine weitere Umformung zum optischen oder haptischen Überdeckung, z. B. zur Erzeugung einer einheitlichen Dicke und/oder einer ebenen Oberfläche des Werkstücks in einem Lesebereich, der den Kodierbereich zumindest teilweise umfasst, durchgeführt werden. Das Kodiermuster kann hierdurch optisch und haptisch „versteckt" werden; die Kodierung kann trotzdem noch ausgelesen werden. Die Kodierung kann so vorgenommen werden, dass die Wiedererkennungswahr- scheinlichkeit der Kodierung so hoch ist, dass die Kodierung auch dann auffindbar ist, wenn der Kodierbereich bei einem späteren Lesevorgang nicht bekannt ist. Ein umgeformtes und kodiertes Metall-, insbesondere Blechstück, kann beispielsweise ein Teil einer Fahrzeugkarosserie oder einer Maschine sein. Wenn nun ein Sensor, z. B. von einem Servicemitarbeiter oder Sicherheitspersonal, die von außen nicht sichtbare und nicht ertastbare Kodierung auslesen soll, kann es sein, dass wohl bekannt ist, dass es eine solche Kodierung geben muss, der Ort, an dem sich dieser Kodierbereich befindet, jedoch unbekannt ist. Wenn der Sensor zum Auslesen entlang der gesamten Oberfläche des Werkstücks geführt wird, so werden sehr viele Muster erkannt. Um diese von der eigentlichen Kodierung zu unterscheiden, kann beispielsweise eine vorher festgelegte, ausreichend hohe Anzahl an kodierten Stellen in das Werkstück eingebracht werden oder eine bestimmte Größe der kodierten Fläche vorgegeben sein, die beim Auslesen eine signifikante Anzahl an Signalen oberhalb eines Grenzwertes hervorruft. Es ist auch möglich, die Werkstücke mit einem Grundkodiermuster (das für alle Werkstücke gleich sein kann) in der Nähe der individuellen Kodierung zu versehen . Sobald das Grundkodiermuster erkannt wurde, weiß man, dass sich das eigentliche Kodiermuster sich in der Nähe befindet. Darüber hinaus kann mit der Kodierung ein Prüfcode, beispielsweise eine Prüfsumme, in das Werkstück eingebracht werden. Somit kann sichergestellt werden, dass Muster, die keine Kodierung sind, nicht zufällig als vermeintliche Kodierung erkannt werden. Wenn das Grundcodiermuster oder der Prüfcode-Errechnung nicht allgemein zugängliche Informationen sind, so erhöht dies auch die Sicherheit gegen unerwünschtes Auffinden oder Auslesen der Kodierung, wenn z. B. eine bewusste Löschung oder Fälschung der Kodierung verhindert werden soll .

Der Lesebereich ist der Bereich, in dem mittels eines Sensors die Kodierung später ausgelesen wird. Der Lesebereich kann in einem vordefinierten Bereich des Werkstücks vorgesehen sein (z. B. linke untere Ecke) oder durch Umformschritte gemäß Bearbeitungsanleitung definiert sein (z. B. entlang einer Biegekante).

Bei der weiteren Umformung handelt es sich vorzugsweise um eine gemäß Bearbeitungsanleitung vorgesehene Umformung . Anders gesagt kann die Kodierung von einer Bearbeitungsanleitung bewusst in einen Bereich vorgenommen werden, in dem die weitere Umformung ohnehin vorgesehen ist. So kann beispielsweise ein Lesebereich, in dem zur Kodierung Vertiefungen eingehämmert wurden, durch Walzen auf eine einheitliche Dicke (Materialstärke) gebracht werden, indem die Vertiefungen ausgeglichen werden; eine zur Kodierung verbogene Werkstückoberfläche kann durch Zurückbiegen in eine Ebene gebracht werden. Dadurch wird es ermöglicht, dass ein Lesegerät in einem konstanten Abstand zum Werkstück über den Lesebereich verfahren werden kann, so dass eine Verfälschung des vom Sensor detektierten Signals aufgrund unterschiedlicher Abstände zwischen Sensor und Werkstückoberfläche vermieden werden kann.

Die Bearbeitungsmaschine kann Computer-gesteuert arbeiten und die Werkstücke aus einem Grundmaterial nach einer oder mehreren Bearbeitungsanleitungen formen, die in Form von digitalen Daten gespeichert sind . Dazu können Programme verwendet werden, denen die Konturen und die Ausgestaltung des fertig umgeformten Werkstücks übermittelt werden, oder die von diesen selbst erzeugt werden. Man kann einem solchen Programm nun ein Zusatzmodul anbieten, dass dem Anwender anbietet, ein Kodiermuster in das Werkstück einzubringen. Das Programm kann eine Auswahl unterschiedlicher Kodiermuster anbieten. Das Programm kann abfragen, ob das Kodiermuster optisch und/oder haptisch überdeckt sein soll . Wenn diese Option ausgewählt wird, kann das Programm derart ausgestaltet sein, dass es einen Vorschlag macht für den Kodierbereich und dabei die weitere gemäß Bearbeitungsanleitung vorgesehen Umformung mit berücksichtigt und zu Kodierung und/oder Überdeckung zumindest teilweise nutzt. Das Programm kann ein auf einem Speichermedium befindlicher ausführbarer Programmcode sein und/oder in den einzelnen Verfahrensschritten durchgeführt werden.

Insbesondere wenn die Anzahl der Arbeitsschritte minimiert werden soll, ist es vorteilhaft, wenn die Kodierung ein stochastisches Kodiermuster aufweist: Da sich, bspw. beim Kaltumformen, im Umformbereich (z. B. entlang einer Biegekante) eine zufällige Variation der elektrischen und/oder magnetischen Eigenschaften (stochastisches Kodiermuster) ergibt, kann diese als einzigartige Kodierung (Fingerabdruck) für das betreffende Werkstück genutzt werden. Die Nutzung die- ser zufälligen lokalen Variation der elektrischen und/oder magnetischen Eigenschaften als individuelle Kodierung ermöglicht es, Umformschritte, die ohnehin gemäß Bearbeitungsanleitung für das betreffende Werkstück durchgeführt werden, zum Einbringen der Kodierung zu nutzen.

Alternativ oder zusätzlich kann ein zuvor festgelegtes Kodiermuster in das Werkstück eingebracht werden. Auf diese Weise können mehrere Werkstücke mit derselben Kodierung versehen werden, falls gewünscht. Ein derartig festgelegtes Kodiermuster kann bspw. als Grundkodierung (z.B. für eine bestimmte Werkstückart) dienen, die mit einer individuellen Kodierung (z. B. in Form eines sto- chastischen Kodiermusters) kombiniert werden kann. Darüber hinaus kann ein für mehrere Werkstücke verwendetes festgelegtes Kodiermuster als Indikator zum Auffinden des Kodierbereichs, in dem eine zusätzliche individuelle Kodierung vorhanden ist, dienen.

Zur Erstellung des festgelegten Kodiermusters kann das Einbringen der Kodierung durch Eindringen eines Umformwerkzeugs in unterschiedliche Tiefen des Werkstücks und/oder Verwenden von Umformwerkzeugen verschiedener Breite realisiert werden.

Die Erfindung betrifft auch ein Verfahren zum Identifizieren eines Werkstücks, insbesondere eines Metallwerkstücks, besonders bevorzugt eines Blechs, wobei das Verfahren umfasst:

• Kodieren des Werkstücks mittels eines zuvor beschriebenen Kodierverfahrens;

• Auslesen der Kodierung durch Messung der örtlichen Verteilung einer elektrischen und/oder magnetischen Eigenschaft des Werkstücks mittels eines Lesegeräts in einem Lesebereich entlang einer Auslesestrecke, der den Kodierbereich zumindest teilweise umfasst, wobei ein auf den Abstand des Lesegeräts zur Oberfläche des Grundmaterials des Werkstücks genormtes Signal ermittelt wird;

• Speicherung der ausgelesenen Kodierung in einer Speichereinrichtung;

• erneutes Auslesen der Kodierung; • Vergleich der gespeicherten Kodierung und der erneut ausgelesenen Kodierung .

Die sensorische Erkennung der Kodierung erfolgt über das Lesegerät, das einen Sensor umfasst, der die elektrische und/oder magnetische Eigenschaft über eine Weg-/Zeitstrecke (entlang der Auslesestrecke) oder auf einer Fläche (z.B. mit mehreren Auslesestrecken innerhalb des Lesebereichs) erfasst. Beim Auslesevorgang kann durch Bewegung (Verfahren) des Lesegeräts und/oder des Werkstücks eine Relativbewegung zwischen Lesegerät und Lesebereich des Werkstücks entlang einer Auslesestrecke durchgeführt werden. Dabei handelt es sich in der Regel um eine 1- oder 2-dimensionale Bewegung, die unabhängig von der Oberflächenstruktur (Unebenheiten, Eindellungen, Einkerbungen usw.) des Werkstücks durchgeführt wird. Das Lesegerät kann oberhalb oder unterhalb des Kodierbereichs positioniert sein.

Alternativ oder zusätzlich kann der Auslesevorgang erfolgen, indem das Lesegerät den Lesebereich detektiert, z.B. mit einem Lesegerät, das den Lesebereich zumindest teilweise, insbesondere vollständig, abdeckt, und auch ohne oder nur mit einer deutlich geringeren Relativbewegung die Kodierung detektieren kann.

Durch die Kodierung mittels Umformung kann jedoch die Oberflächenstruktur des Werkstücks verändert werden, sodass das Grundmaterial des Werkstücks eine variierende Dicke oder eine unebene (strukturierte) Oberfläche aufweisen kann. Dies kann einen unerwünschten Einfluss auf das vom Lesegerät ermittelte Signal haben und zur Verfälschung des durch den Sensor detektierten Signals führen, da der Abstand zwischen Sensor und Werkstückoberfläche einen Einfluss auf das gemessene Signal haben kann (bspw. bei der Verwendung von Wirbelstromsensoren).

Durch die erfindungsgemäße Ermittlung eines Signals, welches auf den Abstand zwischen Lesegerät und Oberfläche des Werkstücks genormt ist, wird sichergestellt, dass eine Variation der Signalstärke nicht aufgrund eines variierenden Ab- stands verfälscht wird, sondern von der Signalstärke auf die elektrische und/oder magnetische Eigenschaft der Gefügeveränderung im Grundmaterial geschlossen werden kann. Die Messergebnisse bzw. das erfasste Kodiermuster werden für jedes Bauteil separat in der Speichereinrichtung abgelegt. Dies kann sowohl in einem lokalen Datenspeicher als auch in einer örtlich entfernten für mehrere Benutzer prinzipiell zugänglichen Datenablage (Cloud) erfolgen. Der gespeicherten Kodierung kann eine Referenznummer zugewiesen werden. In der Speichereinrichtung/Datenbank können darüber hinaus Zusatzinformationen zu dem Werkstück hinterlegt werden. Um das Werkstück zu identifizieren und um Zugriff auf die Zusatzinformationen zu erhalten, wird das erfasste Kodiermuster mit den in der Speichereinrichtung abgelegten Daten abgeglichen.

Vorzugsweise handelt es sich bei der Auslesestrecke um eine Isolinie, entlang welcher das Grundmaterial des Werkstücks eine einheitliche Dicke aufweist und/oder die Oberfläche des Werkstücks eben ist. Wie bereits oben erwähnt, kann eine variierende Dicke oder eine unebene (strukturierte) Oberfläche zu einer Verfälschung des durch den Sensor detektierten Signals führen. Durch das Auslesen entlang einer Isolinie wird sichergestellt, dass von dem detektierten Signal direkt (ohne Abstandskorrektur) auf die elektrischen und/oder magnetischen Eigenschaften des Grundmaterials geschlossen werden kann.

Die Kontur des Grundmaterials des Werkstücks kann entlang der Auslesestrecke erfasst werden. Nach dem Auslesen der Kodierung kann eine Konturkorrektur durchgeführt werden, durch welche Signaländerungen, die sich aus einer Änderung der Dicke des Grundmaterials und/oder einer strukturierten Oberfläche des Grundmaterials entlang der Auslesestrecke ergeben, aus dem vom Lesegerät detektierten Signal herausgerechnet werden können. Es wird also ein um die Oberflächenkontur des Grundmaterials im Lesebereich bereinigtes Signal ermittelt. Dabei kann es sich um die exakte Kontur der Werkstückoberfläche handeln. Es ist jedoch auch möglich, mittels der Konturkorrektur eine Grobkontur aus dem detektierten Signal herauszurechnen, bspw. die Welligkeit des Werkstücks, um die Empfindlichkeit der Messung zu erhöhen.

Bei einer vorteilhaften Variante des erfindungsgemäßen Verfahrens wird beim Auslesen der Kodierung die lokale Änderung einer magnetischen Eigenschaft des Grundmaterials des Werkstücks ermittelt. Zum Auslesen von magnetischen Eigenschaften (z. B. magn. Remanenz, Magnetisierung, Permeabilität) können rela- tiv einfache und günstige Auslesegeräte verwendet werden, bspw. Hall-Sensoren in einem Smartphone o. ä .. Ebenso können magneto-optische Sensoren eingesetzt werden. Die Permeabilität des Grundmaterials kann mit Hilfe eines Wirbel- strommessgeräts ermittelt werden. Zur Verstärkung der messbaren Flussdichte kann während oder nach der lokalen Beanspruchung, insbesondere Umformung, eines Werkstücks die beanspruchte Stelle mit einem starken Magnetfeld (z. B. durch Permanentmagneten, Elektromagneten/stromdurchflossene Spule, etc.) aufmagnetisiert werden. Im Gegensatz zu bekannten Verfahren, wie z. B. der Magnetstreifentechnik bei Kreditkarten, werden lokal magnetisierte Kodiermuster durch ein flächiges Aufmagnetisieren nicht gelöscht, sondern verstärkt. So lassen sich z. B. geringe Gefügeveränderungen in ein Metall- oder Blechteil einbringen, welche in diesem Zustand nicht als Kodiermuster von Sensoren erfasst werden, jedoch durch die flächige Aufmagnetisierung für eine Sensorik "sichtbar" werden.

Bei einer weiteren vorteilhaften Variante des erfindungsgemäßen Verfahrens wird beim Auslesen die lokale Änderung einer elektrischen Eigenschaft des Grundmaterials des Werkstücks ermittelt. Bspw. kann die elektrische Leitfähigkeit des Grundmaterials mit Hilfe eines Wirbelstrommessgeräts durch Induktion von Strom in das Werkstück ermittelt werden.

Die Erfindung betrifft auch die Verwendung einer Metall-, insbesondere Blechbearbeitungsmaschine, die zur Umformung von Werkstücken gemäß jeweils einer Bearbeitungsanleitung eingerichtet ist, zur Einbringung einer Kodierung in ein Werkstück mittels Umformung, insbesondere mittels Kaltumformung, in Form einer lokalen Änderung einer elektrischen und/oder magnetischen Eigenschaft, insbesondere einer lokalen Änderung der Materialstruktur, des Grundmaterials des Werkstücks in einem Kodierbereich. Erfindungsgemäß wird die Bearbeitungsmaschine, mit der das Werkstück gemäß Bearbeitungsanleitung bearbeitet wird, nicht nur zur formenden Bearbeitung gemäß Bearbeitungsanleitung, sondern auch zur Kodierung mittels lokaler Variation von elektrischen und/oder magnetischen Eigenschaften des Grundmaterials verwendet. Die durch die Bearbeitungsmaschine vorgenommenen Umformungen finden also in einem Bereich statt, in dem das Auslesen mittels des Sensors erfolgt (Lesebereich). Alle zuvor und im Folgenden genannten Verfahrensschritte und Vorrichtungsmerkmale sowie die sich einstellenden Effekte können die Verwendung weiter verbessern.

Die Kodierung kann Informationen zur RückVerfolgbarkeit bezüglich einer Bearbeitungsanleitung und/oder eines Bearbeitungszeitpunkts und/oder der verwendeten Metall-, insbesondere Blechbearbeitungsmaschine, und/oder des Bearbeitungsauftrags für das Werkstück enthalten. Dadurch wird die RückVerfolgbarkeit des Werkstücks (bspw. falls später Fehler in der Bearbeitung des Werkstücks erkannt werden) ermöglicht. Dies kann dadurch realisiert werden, dass jede Kodierung einen eindeutigen Identifikationscode aufweist. Dieser Identifikationscode ist dann einer Bearbeitungsanleitung und/oder Bearbeitungszeitpunkt und/oder der verwendeten Metall-, insbesondere Blechbearbeitungsmaschine, und/oder dem Bearbeitungsauftrag zugeordnet. Die Zuordnung kann in einer vom Werkstück entfernten Speichereinheit abgelegt sein, die z.B. Teil einer Steuerung der Bearbeitungsmaschine ist. In diesem Fall sind Informationen über Bearbeitungsanleitung und/oder Bearbeitungszeitpunkt und/oder verwendeten Metall-, insbesondere Blechbearbeitungsmaschine, und/oder Bearbeitungsauftrag nicht direkt aus der Kodierung auslesbar, sondern können nur mit Hilfe der Zuordnung in der Speichereinheit abgerufen werden. Das kann vorteilhaft sein, wenn der Hersteller des Werkstücks selbst gerne die RückVerfolgbarkeit sicherstellen möchte, diese Daten aber nicht jedem Anwender bekannt machen möchte.

Es kann für jedes Werkstück eine unterschiedliche Kodierung erzeugt werden, so dass jedes Werkstück seiner Bearbeitungsanleitung eindeutig zuordenbar ist. Dies ermöglicht für jedes Werkstück ein direktes Ablesen der Anweisungen für weitere Bearbeitungen aus der Kodierung.

Die Metall-, insbesondere Blechbearbeitungsmaschine, kann in einem Kodiersystem verwendet werden, indem die eingebrachte Kodierung mittels eines Lesegeräts ausgelesen, mittels einer Speichereinrichtung abgelegt und das Werkstück mittels einer Vergleichseinrichtung einer Bearbeitungsanleitung zugeordnet wird . Die Erfindung betrifft auch eine Metall-, insbesondere Blechbearbeitungsmaschine, mit einer Umform Werkzeug zur Umformung eines Werkstücks, einem Lesegerät zur Erfassung von elektrischen und/oder magnetischen Eigenschaften, und einer Steuereinrichtung, die dazu eingerichtet ist, ein zuvor beschriebenes Kodierverfahren und ein zuvor beschriebenes Identifizierverfahren durchzuführen. Das Lesegerät umfasst einen Sensor zum Detektieren einer elektrischen und/oder magnetischen Eigenschaft und muss dazu eingerichtet (insbesondere entsprechend positioniert) sein, in einem Umformbereich, in dem sich der Kodierbereich befindet, die Kodierung auszulesen.

Die Metallbearbeitungsmaschine kann eine Maschine sein, die Metall, insbesondere Blech, in einer oder mehreren der folgenden Arten bearbeiten kann : Schneiden, Stanzen, Biegen, Kalt- und/oder Warmumformen, Scheren, Pressen, Walzen, Beschichten, Fräsen, Schweißen, Körnen, Bohren, Gewindeschneidern, Nieten etc..

Die Auswerteeinrichtung kann in analoger oder digitaler oder als Kombination beider Techniken aufgebaut sein. Eine digitale Auswerteeinrichtung kann aus logischen Bauelementen, insbesondere aus programmierbaren Logikbauelementen (PLD) aufgebaut sein. Sie kann einen Mikroprozessor und einen Datenspeicher und einen Programmspeicher umfassen. Das Programm kann Algorithmen zum Extrahieren von Informationen aus den erfassten Signalen, insbesondere der örtlichen Verteilung der Leitfähigkeit und/oder der Permeabilität eines Werkstücks aufweisen.

Die Erfindung macht sich die bei speziellen Umformtechniken entstehenden Gefügeveränderungen oder Oxidationsprozesse und die damit verbundenen Änderungen von elektrischen und/oder magnetischen Eigenschaften zunutze, um Kodiermuster auf Basis einer lokalen Variation von elektrischen und/oder magnetischen Eigenschaften zu erzeugen. Dies kann insbesondere unter Ausnutzung von Umformvorgängen erfolgen, die im Rahmen der Werkstückbearbeitung ohnehin vorgesehen sind. Durch Integration des Kodierprozesses in die eigentliche Werkstückbearbeitung kann die Erzeugung einer versteckten Kodierung mit einer effektiven Werkstückbearbeitung kombiniert werden. Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung . Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung .

Detaillierte Beschreibung der Erfindung und Zeichnung

Fig . 1 zeigt eine erfindungsgemäße Metall-, insbesondere Blechbearbeitungsmaschine mit einem in Bearbeitung befindlichen Werkstück.

Fig . 2 zeigt ein gemäß dem erfindungsgemäßen Verfahren kodiertes Werkstück sowie die lokale Änderung der Signalintensität aufgrund der eingebrachten Kodierung.

Fig . 3 zeigt im Zeichnungsbereich (I) eine räumliche Darstellung eines unkodierten Werkstücks, im Zeichnungsbereich (II) eine räumliche Darstellung sowie eine Schnittdarstellung eines mittels Umformung kodierten Werkstücks und im Zeichnungsbereich (III) eine räumliche Darstellung sowie eine Schnittdarstellung des kodierten Werkstücks aus Zeichnungsbereich (II) nach einer weiteren Umformung gemäß einer ersten Variante (Ebnung der Oberfläche im Lesebereich).

Fig . 4 zeigt eine räumliche Darstellung sowie eine Schnittdarstellung des kodierten Werkstücks aus Zeichnungsbereich (II) der Fig. 3 nach einer weiteren Umformung gemäß einer zweiten Variante (Kodierung innerhalb Biegekante).

Fig . 5a zeigt eine Schnittdarstellung eines Werkstücks 1 während der Kodierung durch Biegeverformung .

Fig . 5b zeigt eine Schnittdarstellung des kodierten Werkstücks aus Fig. 5a nach einer weiteren Umformung . Fig. 1 zeigt ein Werkstück 1 aus einem Grundmaterial, welches mittels einer erfindungsgemäßen Metall-, insbesondere Blechbearbeitungsmaschine 2, kodiert wird . Die Metall-, insbesondere Blechbearbeitungsmaschine 2, umfasst ein Um- formwerkzeug 3 zum Umformen des Werkstücks 1, einen Sensor 4 zum Detek- tieren von lokalen Änderungen einer elektrischen und/oder magnetischen Eigenschaft des Grundmaterials des Werkstücks 1, eine Auswerte- und Vergleichseinrichtung 6 zum Extrahieren von Informationen aus den detektierten Signalen, eine Speichereinrichtung 5 zum Speichern der detektierten Signale und/oder der extrahierten Informationen, sowie eine Steuereinrichtung 7 zur Ansteuerung des Umformwerkzeugs 3. Je nach Ausgestaltung des Umformwerkzeugs 3 und/oder der Ansteuerung des Umformwerkzeugs 3 mittels der Steuereinrichtung 7 kann ein vorgegebenes Kodiermuster durch Erzeugung von Bereichen 16 mit veränderter elektrischer und/oder magnetischer Eigenschaft in einem Kodierbereich 8 erzeugt werden.

Mittels des Umformwerkzeugs 3 (hier ein Körner- oder Hammerwerkzeug 3a und Unterlage 3b) wird die Oberfläche des Werkstücks 1 verformt, wodurch eine Änderung der magnetischen und/oder elektrischen Eigenschaften des Werkstücks 1 in Bereichen 16 der mechanischen Oberflächenbehandlung bewirkt wird . Durch eine Kaltumformung wird bspw. eine Gefügeveränderung und somit eine Änderung der elektrischen Leitfähigkeit erzeugt. Die Änderung der elektrischen und/oder magnetischen Eigenschaft kann mittels des Sensors 4 (bspw. eines Wirbelstromsensors, eines magneto-optischen Sensors oder eines Hall-Sensors) gemessen werden, der über das Werkstück 1 verfahren wird . Der Sensor 4 kann in einem portablen Lesegerät, beispielsweise einem Smartphone oder einem Tablet-Computer, verbaut sein.

Fig. 2 zeigt das Werkstück 1, bei dem in den Bereichen 16 Gefügeveränderungen mittels Umformung (plastische Eindrücke, z. B. Einkerbungen 9) eingebracht wurden. Darüber hinaus ist in Fig . 2 die lokale Änderung der Signalintensität aufgrund der eingebrachten Einkerbungen 9 gezeigt. Das detek- tierte Signal kann in der Speichereinrichtung 5 abgelegt werden bzw. mit einem in der Speichereinrichtung hinterlegten Signal mittels der Vergleichseinrichtung 6 verglichen werden (bspw. wenn das kodierte Werkstück 1 zu einer anderen Ar- beitsstation gebracht wird und die Kodierung dort erneut ausgelesen wird). In der Speichereinrichtung 5 können darüber hinaus Informationen zu dem entsprechend kodierten Werkstück 1 hinterlegt sein, z.B. betreffend eine Bearbeitungsanleitung, Bearbeitungszeitpunkt usw.

Erfindungsgemäß wird als Kodierung eine lokale Änderung einer elektrischen und/oder magnetischen Eigenschaft mittels Umformtechniken erzeugt, wodurch in der Regel die Oberfläche des Werkstücks 1 verformt wird. Ein zuvor ebenes Werkstück 1, wie im Zeichnungsbereich (I) der Fig. 3 gezeigt, kann nach der Kodierung eine strukturierte Oberfläche aufweisen, da bspw. Einkerbungen 9 in die Oberfläche eingebracht wurden, wie im Zeichnungsbereich (II) der Fig . 3 gezeigt. Die Umformung bewirkt also einerseits eine Änderung der Oberflächenkontur des Werkstücks 1 als auch eine lokale Änderung der elektrischen und/oder magnetischen Eigenschaft des Werkstücks 1.

Um zu vermeiden, dass die Änderung der Oberflächenkontur das durch den Sensor 4 ermittelte Signal verfälscht, ist bei den im Zeichnungsbereich (III) der Fig. 3, und in Fig. 4, 5a und 5b gezeigten Varianten des durch das erfindungsgemäße Kodierverfahren erzeugten Werkstücks 1 vorgesehen, dass eine weitere Umformung des Werkstücks 1 vorgenommen wird, mittels der die Kodierung weder optisch sichtbar, noch haptisch zu ertasten ist. Insbesondere wird die Oberfläche des Werkstücks 1 so verändert, dass der Abstand zwischen Sensor 4 und Oberfläche des Werkstücks 1 entlang einer Auslesestrecke 10 oder in einem Lesebereich 11 (Strecke bzw. Bereich auf der Oberfläche des Werkstücks 1 entlang welcher bzw. innerhalb welchem der Sensor 4 zum Auslesen der Kodierung verfahren oder angeordnet wird) konstant ist. In dem in Fig . 3 Zeichnungsbereich (III) gezeigten Beispiel wurde das Werkstück 1 in einem Lesebereich 11, der den Kodierbereich 8 umfasst, mittels eines Walzwerkzeugs 12 gewalzt und somit eine im Lesebereich 11 ebene Oberfläche erzeugt. Der Sensor 4 kann somit innerhalb des Lesebereichs 11 in einem konstanten Abstand zur Oberfläche des Werkstücks 1 verfahren werden, ohne dass er eine Bewegung senkrecht zur Oberfläche ausführen muss, um den Abstand zum Werkstück 1 konstant zu halten. Der Sensor 4 kann sich somit zum Auslesen auf einer Isolinie bzgl. der Werkstückoberfläche bewegen. Darüber hinaus kann durch die weitere Umformung auch sichergestellt werden, dass das Werkstück 1 zumindest im Lesebereich 11 eine konstante Dicke aufweist, was insbesondere beim Auslesen von nicht ferromagnetischen Werkstücken mittels eines Wirbelstromsensors von Vorteil ist, da hier auch die Materialdicke Einfluss auf das detektierte Signal hat. Der Sensor 4 kann somit Signale detektieren, aus denen direkt Informationen über die veränderte elektrische und/oder magnetische Eigenschaft extrahiert werden können . Vorzugsweise handelt es sich bei der weiteren Umformung um eine Umformung die gemäß einer dem Werkstück 1 zugeordneten Bearbeitungsvorschrift ohnehin hätte durchgeführt werden müssen. Die Kodierung erfolgt also vorzugsweise vor bzw. während der Bearbeitung des Werkstücks 1 gemäß Bearbeitungsvorschrift. Zum Auslesen der Kodierung kann ein Wirbelstromsensor verwendet werden. Der Wirbelstromsensor weist einen Magnetfelderzeugungsvorrichtung z. B. eine Spule auf, die eingerichtet ist von einem Strom durchflössen zu werden. Dabei kann durch eine Spule mittels eines elektrischen Wechselstroms ein wechselndes Magnetfeld erzeugt (Erregersignal) werden, welches im Grundmaterial des Werkstücks Wirbelströme induzieren kann. Der Wirbelstromsensor weist weiter einen Magnetfeldsensor auf. Mittels des Magnetfeldsensors wird die Wirbelstromdichte durch das vom Wirbelstrom erzeugte Magnetfeld detektiert (Wirbelstromsignale). Der Magnetfeldsensor kann auch eine Spule sein, in der ein elektrischer Strom durch das vom Wirbelstrom erzeugte Magnetfeld induziert wird. Es gibt aber auch andere technische Möglichkeiten zur Detektion eines Magnetfelds, z.B. einen Hall- Sensor.

Fig. 4 zeigt eine weitere Variante, bei der die durch die Kodierung erzeugte (und unerwünschte) Oberflächenstruktur auch durch eine Umformung gemäß Bearbeitungsvorschrift„kompensiert" wird. Die Kodierung wurde hier an Stellen (Bereiche 16) durchgeführt, die gemäß Bearbeitungsvorschrift für eine Biegung vorgesehen sind (also entlang der geplanten Biegekante). Durch Ausführen der Biegung nach der Kodierung werden die Einkerbungen 9 aus Zeichnungsbereich (II) der Fig. 3, zusammengedrückt und damit überdeckt, also„unsicht- und fühlbar" gemacht, während die durch die Einkerbungen 9 erzeugte Gefügeveränderung in den Bereichen 16 in der Biegekante I V verbleiben. Der Sensor 4 kann dann ent- lang der Biegekante verfahren werden, um die Kodierung auszulesen. Auch hier wird ein konstanter Abstand zwischen Sensor und Lesebereich (Biegekante 1 ) realisiert.

Durch die Verbiegung des Werkstücks 1 kann darüber hinaus eine stochastische Kodierung entlang der Biegekante 1 Γ erzeugt werden, da sich auch durch die Verbiegung eine lokale Änderung der elektrischen und/oder magnetischen Eigenschaften ergeben kann. Die Biegekante bildet also einen weiteren Kodierbereich 8\ Diese stochastische lokale Änderung der elektrischen und/oder magnetischen Eigenschaften stellt eine individuelle Kodierung dar, die für sich oder auch in Kombination mit dem mittels des Hammerwerkzeugs gezielt eingebrachten Kodiermusters im Kodierbereich 8 zur Identifikation des Werkstücks 1 verwendet werden kann.

Neben einer stochastischen Kodierung ist es auch möglich, mittels Verbiegen des Werkstücks 1 ein Kodiermuster gezielt einzubringen. Dazu wird das Werkstück 1 mehrfach entlang verschiedener Biegekanten verbogen, wodurch eine Änderung der Leitfähigkeit oder der Permeabilität des Grundmaterials des Werkstücks 1 entlang der Biegekanten erzeugt wird. Durch Zurückbiegen des Werkstücks 1 wird eine ebene Oberfläche erzeugt, entlang der der Sensor 4 verfahren werden kann (Fig. 5b). Die Kodierung wird hier durch die unterschiedlich voneinander beabstandeten und/oder schräg zueinander ausgerichteten (nicht gezeigt) Biegekanten gebildet.

Wird der Sensor 4 zum Auslesen der Kodierung über das Werkstück 1 geführt, kann die Bewegung über einen weiteren Sensor 13 (Gyrosensor und/oder Beschleunigungs-Sensor) erfasst werden (s. Fig . 1), sodass das Signal in Abhängigkeit vom Ort (hier beispielhaft entlang der Richtung x) angegeben werden kann. Dies ist besonders dann interessant, wenn der Sensor 4 nicht fest in der Bearbeitungsvorrichtung eingebaut ist, sondern Teil eines portablen Lesegeräts 15 ist. Über einen Empfänger 14 zur Ortsbestimmung (z.B. ein GPS-Sensor) kann darüber hinaus beim Auslesen der Kodierung der Standort des Werkstücks 1 ermittelt werden und über das Internet z.B. an einen Produktverkäufer übermittelt werden. Durch die Vergleichseinrichtung 6 (bspw. in Form einer App, die mit einer Datenbank über das Internet verbunden ist) kann die Kodierung auf Echtheit hin überprüft werden. Die Daten der Sensoren 4, 13, 14 werden dazu, vorzugsweise über W-LAN, an die Vergleichseinrichtung 6 übermittelt und dort mit den in der Speichereinrichtung 5 hinterlegten Signatur-Daten verglichen. Auf diese Weise kann das Werkstück 1 identifiziert und in der Speichereinrichtung 5 hinterlegte Eigenschaften des Werkstücks 1 verifiziert werden. Mit dem beschriebenen Verfahren und Vorrichtung kann ein schwer zu fälschendes Schließsystem realisiert werden mit Schlüsseln als Werkstücke 1 und Schloss als Sensor 4.

Ein Beschleunigungssensor ist eine Vorrichtung, die Beschleunigung in eine oder mehrere unterschiedliche Richtungen entlang einer Geraden, einer Fläche oder im Raum erfassen kann. Ein Empfänger zur Ortsbestimmung kann z. B. ein GPS- Empfänger sein. Es kann allgemeiner ein Empfänger von elektromagnetischen, insbesondere Licht- oder Radiowellen, Schallwellen, oder anderen Signalen sein, mit Hilfe derer der Ort gegenüber einem oder mehreren Fixpunkte eindeutig bestimmbar ist. Mit einem solchen Empfänger kann die Position des Wirbelstromsensors auch dann ermittelt werden, wenn der Wirbelstromsensor nicht bewegt wird .

Bezuaszeichenliste

1 Werkstück

2 Metall-, insbesondere Blechbearbeitungsmaschine

3 Umformwerkzeug

3a Körner- oder Hammerwerkzeug

3b Unterlage

4 Sensor

5 Speichereinrichtung

6 Vergleichseinrichtung

7 Steuereinrichtung

8 Kodierbereich

8 λ Kodierbereich entlang Biegekante

9 Einkerbungen

10 Auslesestrecke

11 Lesebereich auf Werkstückoberfläche

1 Γ Lesebereich entlang Biegekante

12 Walzwerkzeug

13 Gyrosensor und/oder Beschleunigungs-Sensor

14 Empfänger zur Ortsbestimmung (z. B GPS-Empfänger)

15 portables Lesegerät

16 Bereiche mit veränderter elektrischer und/oder magnetischer Eigenschaft