Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A CONVERSION ELEMENT
Document Type and Number:
WIPO Patent Application WO/2017/025473
Kind Code:
A1
Abstract:
The invention relates to a method for producing a conversion element (100) for an optoelectronic component (110) having the following steps: A) providing an acidic medium (1) with a pH value of less than 2, B) adding a conversion material (2) into the acidic medium (1), C) adding a silicate solution (3) with a viscosity of 2 to 10000 P to the mixture produced in step B) such that the pH value during the addition process in step C) is less than 2, wherein a precipitation (4) is obtained which comprises the conversion material (2) and silicon dioxide (41) as the matrix material, D) separating the precipitation (4), E) washing the precipitation (4) using a washing medium (6), said washing medium (6) having a pH value of less than 2, and F) curing the precipitation (4) in order to produce the conversion element (100).

Inventors:
SCHMIDTKE KATHY (DE)
Application Number:
PCT/EP2016/068783
Publication Date:
February 16, 2017
Filing Date:
August 05, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
International Classes:
C09K11/08; C09K11/02; H01L33/50
Domestic Patent References:
WO2010037702A12010-04-08
Foreign References:
US4973462A1990-11-27
Other References:
LÜ XINGDONG: "Silica encapsulation study on SrAl2O4:Eu2+, Dy3+phosphors", MATERIALS CHEMISTRY AND PHYSICS, ELSEVIER SA, SWITZERLAND, TAIWAN, REPUBLIC OF CHINA, vol. 93, no. 2, 25 April 2005 (2005-04-25), pages 526 - 530, XP029052113, ISSN: 0254-0584, DOI: 10.1016/J.MATCHEMPHYS.2005.04.002
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines Konversionselements (100) für ein optoelektronisches Bauelement (110) mit den

Schritten:

A) Bereitstellen eines sauren Mediums (1) mit einem pH-Wert von kleiner als 2,

B) Zugabe eines Konversionsmaterials (2) in das saure Medium (1) ,

C) Zugabe einer Silikatlösung (3) mit einer Viskosität von 2 bis 10000 Poise zu dem unter Schritt B) erzeugten Gemisches derart, dass der pH-Wert während der Zugabe im Schritt C) kleiner als 2 ist, wobei ein Niederschlag (4) erhalten wird, der das Konversionsmaterial (2) und Siliziumdioxid (41) als Matrixmaterial umfasst,

D) Abtrennen des Niederschlags (4),

E) Waschen des Niederschlags (4) mit einem Waschmedium (6), wobei das Waschmedium (6) einen pH-Wert von kleiner als 2 aufweist,

F) Härten des Niederschlags (4) zur Erzeugung des

Konversionselements (100).

2. Verfahren nach Anspruch 1,

wobei vor Schritt F) der Niederschlag (4) in eine Form (8) überführt wird und die Härtung (7) im Schritt F) mittels eines Gasstroms unter Druck erfolgt.

3. Verfahren nach Anspruch 2,

wobei die Form (8) ein Sieb umfasst.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Konversionsmaterial (2) aus einer Gruppe ausgewählt ist, die (Y, Lu, Gd, Tb) 3 (Al1--xGax) (Ba, Sr, Ca) S12O2N2 , (Ba, Sr, Ca) 2Si04, (Ba, Sr, Ca) 2Si5 8 , ( Sr, Ca) AIS1N3 · Si2N20, (Sr, Ca) AIS1N3 und CagMg ( S1O4 ) 4C12 umfasst.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Konversionsmaterial (2) im Schritt B) homogen eindispergiert wird.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Konversionsmaterial (2) einen Anteil von

einschließlich 50 Gew% bis einschließlich 60 Gew% in dem Matrixmaterial (41) aufweist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei nach Schritt F) ein zusätzlicher Schritt G) erfolgt: G) Aufbringen des Konversionselements (100) auf einen optoelektronischen Halbleiterchip (10).

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei vor Schritt F) ein zusätzlicher Schritt H) erfolgt: H) Aufbringen des nach Schritt E) gewaschenen Niederschlags (4) auf einen optoelektronischen Halbleiterchip (10) mittels Spraycoating .

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei im Schritt B) zusätzlich Streupartikel eindispergiert werden .

10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das saure Medium (1) aus einer Gruppe ausgewählt ist, die Salzsäure, Phosphorsäure, Salpetersäure, Schwefelsäure, Chlorsulfonsäure, Sulfurylchlorid, Perchlorsäure und

Kombinationen daraus umfasst.

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das saure Medium (1) in konzentrierter oder verdünnter

Form vorliegt. 12. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest in einem der Schritte A) bis D) ein Indikator aus einem Peroxid zugegeben wird, der durch Farbumschlag die Vollständigkeit der Ausfällung des Niederschlags angibt. 13. Verfahren nach einem der vorhergehenden Ansprüche, wobei nach Schritt F) ein zusätzlicher Schritt I) erfolgt: I) Schleifen des Konversionselements.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Silikatlösung (3) im Schritt C) eine Lösung aus einem Natronwasserglas, Kaliwasserglas oder Lithiumwasserglas ist .

Description:
Beschreibung

Verfahren zur Herstellung eines Konversionselements Die Erfindung betrifft ein Verfahren zur Herstellung eines Konversionselements für ein optoelektronisches Bauelement.

In optoelektronischen Bauelementen, insbesondere in

anorganischen Leuchtdioden, werden Konversionselemente eingesetzt, um die von einem optoelektronischen

Halbleiterchip emittierte Strahlung in eine Strahlung mit veränderter Wellenlänge, insbesondere längerer Wellenlänge, zu konvertieren. Das Konversionselement weist in der Regel Silikon oder eine Keramik als Matrixmaterial auf, in dem ein Konversionsmaterial eingebettet ist. Allerdings weisen die insbesondere aus Silikon aufweisenden Konversionselemente eine geringe Alterungsstabilität auf.

Eine Aufgabe der Erfindung ist es, ein Verfahren zur

Herstellung eines Konversionselements für ein

optoelektronisches Bauelement bereitzustellen, das ein stabiles Konversionselement zur Verfügung stellt.

Insbesondere weist das Konversionselement eine hohe

Temperatur- und/oder Lichtbeständigkeit und/oder

Alterungsstabilität auf. Eine weitere Aufgabe der Erfindung ist es, ein kostengünstiges Verfahren zur Herstellung eines Konversionselements für ein optoelektronisches Bauelement bereitzustellen. Diese Aufgaben werden durch ein Verfahren zur Herstellung eines Konversionselements für ein optoelektronisches

Bauelement gemäß dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der

Erfindung sind Gegenstand der abhängigen Ansprüche.

In zumindest einer Ausführungsform weist das Verfahren zur Herstellung eines Konversionselements für ein

optoelektronisches Bauelement die Schritte auf:

A) Bereitstellen eines sauren Mediums mit einem pH-Wert von kleiner als 2,

B) Zugabe eines Konversionsmaterials in das saure Medium,

C) Zugabe einer Silikatlösung mit einer Viskosität von 2 bis 10000 Poise zu dem unter Schritt B) erzeugten Gemisches derart, dass der pH-Wert während der Zugabe im Schritt C) kleiner als 2 ist, wobei ein Niederschlag erhalten wird, der das Konversionsmaterial und Siliziumdioxid als Matrixmaterial umfasst , D) Abtrennen des Niederschlags,

E) Waschen des Niederschlags mit einem Waschmedium, wobei das Waschmedium einen pH-Wert von kleiner als 2 aufweist, und F) Härten des Niederschlags zur Erzeugung des

Konversionselements .

Das mit dem Verfahren hergestellte Konversionselement ist insbesondere dazu eingerichtet, im Betrieb des

optoelektronischen Bauelements die von einem

optoelektronischen Halbleiterchip emittierte Strahlung zu absorbieren und in eine Strahlung mit veränderter

Wellenlänge, insbesondere längerer Wellenlänge, zu emittieren. Insbesondere weist die konvertierte Strahlung eine Wellenlänge oder ein Wellenlängenmaximum im sichtbaren Bereich auf. Gemäß zumindest einer Ausführungsform handelt es sich bei dem optoelektronischen Bauelement um eine Leuchtdiode, kurz LED. Das optoelektronische Bauelement ist dann bevorzugt dazu eingerichtet, blaues Licht, grünes Licht, rotes Licht oder weißes Licht zu emittieren.

Gemäß zumindest einer Ausführungsform weist das

optoelektronische Bauelement einen optoelektronischen

Halbleiterchip auf. Der optoelektronische Halbleiterchip weist eine Halbleiterschichtenfolge auf. Die

Halbleiterschichtenfolge beinhaltet eine aktive Schicht mit mindestens einem pn-Übergang und/oder mit einem oder mit mehreren Quantentopfstrukturen . Die Halbleiterschichtenfolge des Halbleiterchips basiert bevorzugt auf einem III-V- Verbindungshalbleitermaterial . Bei dem Halbleitermaterial handelt es sich bevorzugt um ein Nitrid- Verbindungshalbleitermaterial wie Al n In]__ n _ m Ga m N oder auch um ein Phosphid-Verbindungshalbleitermaterial wie

Al n In]__ n _ m Ga m P, wobei jeweils 0 ^ n 1, 0 ^ m 1 und n + m < 1 ist. Ebenso kann es sich bei dem Halbleitermaterial um Al x Ga]__ x As handeln mit 0 < x < 1. Dabei kann die

Halbleiterschichtenfolge Dotierstoffe sowie zusätzliche

Bestandteile aufweisen. Der Einfachheit halber sind jedoch nur die wesentlichen Bestandteile des Kristallgitters der Halbleiterschichtenfolge, also AI, As, Ga, In, N oder P, angegeben, auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt und/oder ergänzt sein können. Im Betrieb des Halbleiterchips wird in der aktiven Schicht eine elektromagnetische Strahlung erzeugt. Eine Wellenlänge oder das Wellenlängenmaximum der Strahlung liegt bevorzugt im ultravioletten und/oder sichtbaren und/oder IR- Spektralbereich, insbesondere bei Wellenlängen zwischen einschließlich 420 nm bis einschließlich 800 nm, zum Beispiel zwischen einschließlich 440 nm und einschließlich 480 nm.

Das hier beschriebene Verfahren weist insbesondere die

Verfahrensschritte A) bis F) auf. Insbesondere erfolgen die Verfahrensschritte A) bis F) in der besagten Reihenfolge. Zusätzlich kann insbesondere vor dem Verfahrensschritt F) ein zusätzlicher Verfahrensschritt H) erfolgen. Nach dem

Verfahrensschritt F) kann ein zusätzlicher Verfahrensschritt G) und/oder I) erfolgen.

Gemäß zumindest einer Ausführungsform weist das Verfahren einen Verfahrensschritt A) auf, Bereitstellen eines sauren Mediums mit einem pH-Wert von kleiner als 2.

Gemäß zumindest einer Ausführungsform ist das saure Medium aus einer Gruppe ausgewählt, die Salzsäure, Phosphorsäure, Salpetersäure, Schwefelsäure, Chlorsulfonsäure,

Sulforylchlorid, Perchlorsäure und Kombinationen daraus umfasst.

Gemäß zumindest einer Ausführungsform kann das saure Medium in konzentrierter oder verdünnter Form vorliegen. Mit

konzentrierter Form ist hier und im Folgenden gemeint, dass das saure Medium ohne Zusatz von Wasser vorliegt.

Beispielsweise bedeutet eine Schwefelsäure in konzentrierter Form, dass die Schwefelsäure 94 bis 96 %ig ist. Ein

verdünntes saures Medium bedeutet hier und im Folgenden, dass dem sauren Medium Wasser zugesetzt ist. Damit kann aus einem konzentrierten Medium, beispielsweise einer 94 bis 96 ~6igen Schwefelsäure, durch Zugabe von Wasser ein verdünntes saures Medium, wie eine verdünnte Schwefelsäure erzeugt werden.

Insbesondere ist der pH-Wert des verdünnten sauren Mediums kleiner als 2.

Insbesondere kann das saure Medium unterschiedliche

Normalitäten aufweisen. Beispielsweise kann die Salzsäure eine Normalität zwischen 2 N bis 14 N, beispielsweise

zwischen 3 N bis 6 N, aufweisen. Die Phosphorsäure kann eine Normalität zwischen 2 bis 59 N, beispielsweise zwischen 4 bis 20 N, aufweisen. Die Salpetersäure kann eine Normalität zwischen 1 bis 24 N, beispielsweise zwischen 1 bis 15 N, aufweisen. Die Schwefelsäure kann eine Normalität zwischen 1 bis 37 N, beispielsweise zwischen 2 bis 10 N, aufweisen.

Insbesondere wird als saures Medium Schwefelsäure verwendet.

Gemäß zumindest einer Ausführungsform weist das saure Medium zusätzlich Wasser auf. Insbesondere ist das Wasser

destilliertes Wasser oder VE-Wasser.

Gemäß zumindest einer Ausführungsform weist das saure Medium einen pH-Wert von kleiner als 2 auf. Insbesondere weist das saure Medium einen pH-Wert von kleiner als 1,5, insbesondere von kleiner als 1, bevorzugt von kleiner als 0,5, auf.

Der pH-Wert kann mittels Potentiometrie oder durch

ionensensitive Feldeffekttransistoren oder durch die Reaktion von Indikatorfarbstoffen bestimmt werden. Insbesondere kann der pH-Wert mittels eines pH-Meters bestimmt werden. Gemäß zumindest einer Ausführungsform weist das Verfahren einen Schritt B) auf, Zugabe eines Konversionsmaterials in das saure Medium. Das Konversionsmaterial kann aus einer Gruppe ausgewählt sein, die (Y, Lu, Gd, Tb) 3 (Al ] __ x Ga x ) 5O12 , (Ba, Sr, Ca) Si 2 0 2 N 2 , (Ba, Sr, Ca) 2 Si0 4 , (Ba, Sr, Ca) 2 Si 5 N 8 ,

(Sr, Ca) AIS1N3 · Si 2 N 2 0, ( Sr, Ca) AIS1N3 und CagMg ( S1O4 ) 4 C1 2 umfasst .

Gemäß zumindest einer Ausführungsform ist das

Konversionselement als Schicht ausgeformt. Insbesondere weist das Konversionselement eine Schichtdicke von 40 ym bis 60 ym, beispielsweise 50 ym, auf.

Gemäß zumindest einer Ausführungsform ist das

Konversionsmaterial als Partikel ausgeformt. Insbesondere weist das Konversionsmaterial eine mittlere Korngröße

zwischen einschließlich 5 bis 30 ym, insbesondere zwischen einschließlich 10 bis 30 ym, bevorzugt zwischen 15 bis 30 ym, auf .

Gemäß zumindest einer Ausführungsform wird im

Verfahrensschritt B) das Konversionsmaterial homogen in das saure Medium eindispergiert . Dies kann beispielsweise mittels Rühren oder Schütteln erfolgen.

Gemäß zumindest einer Ausführungsform können im Schritt B) zusätzlich Streupartikel eindispergiert werden. Als

Streupartikel eignen sich jegliche Materialien, die zur

Reflexion und/oder Streuung von elektromagnetischer Strahlung eingerichtet sind. Beispielsweise können Streupartikel aus Titandioxid und/oder AI 2 O 3 eindispergiert werden.

Insbesondere weisen die Streupartikel einen durchschnittlichen Durchmesser zwischen einschließlich 0,5 ym bis einschließlich 1 ym auf.

Gemäß zumindest einer Ausführungsform weist das

Konversionsmaterial einen Anteil von einschließlich 50 Gew% bis einschließlich 60 Gew%, beispielsweise zwischen 55 und 57 Gew%, in dem Matrixmaterial auf.

Gemäß zumindest einer Ausführungsform weist das Verfahren einen Schritt C) auf, Zugabe einer Silikatlösung mit einer Viskosität von 2 bis 10000 Poise zu dem unter Schritt B) erzeugten Gemisches derart, dass der pH-Wert während der Zugabe in Schritt C) kleiner als 2 ist, wobei ein

Niederschlag erhalten wird, der das Konversionsmaterial und Siliziumdioxid als Matrixmaterial umfasst.

Gemäß zumindest einer Ausführungsform ist die Silikatlösung im Schritt C) eine Lösung aus Wasserglas, insbesondere aus einem Natronwasserglas, Kaliwasserglas oder

Lithiumwasserglas.

Mit Wasserglas wird hier und im Folgenden ein Alkalisilikat mit unterschiedlichen Anteilen von Alkalioxiden, wie Na20 und/oder K2O, bezeichnet. Unter Natronwasserglas kann

beispielsweise ein hochkonzentriertes Wasserglas mit einem

Si02 _ Gehalt von 36 bis 37 Gew% und einem Na20-Gehalt von 17,8 bis 18,4 Gew% und einer Viskosität bei 20 °C von zirka 600 Poise bezeichnet werden. Die Silikatlösung kann von

unterschiedlichen Herstellern, beispielsweise von der Firma Van Baerle Chemische Fabrik, bezogen werden. Silikatlösungen sind dem Fachmann, beispielsweise aus der WO 2010/037702 AI, bekannt und werden daher an dieser Stelle nicht weiter erläutert . Die Silikatlösung weist insbesondere eine Viskosität von 2 bis 10000 Poise, bevorzugt zwischen 3 bis 5000 Poise, besonders bevorzugt zwischen 4 bis 1000 Poise und ganz besonders bevorzugt zwischen 4 und 800 Poise, ganz speziell bevorzugt zwischen 4 bis 100 Poise und insbesondere bevorzugt zwischen 5 und 50 Poise, auf. Die Viskosität kann mittels eines Kugelfallviskosimeters bestimmt werden. Die Silikatlösung wird zu dem Gemisch aus dem

Konversionsmaterial und dem sauren Medium in Schritt C) hinzugegeben. Insbesondere ist der pH-Wert jederzeit, also während der gesamten Zugabe in Schritt C) , kleiner als 2, insbesondere kleiner als 1,5, insbesondere kleiner als 1 und bevorzugt kleiner als 0,5.

Gemäß zumindest einer Ausführungsform erfolgt die Zugabe der Silikatlösung in Tropfenform in das Gemisch aus dem

Konversionsmaterial und dem sauren Medium. Beispielsweise kann das Zutropfen der Silikatlösung mittels Sprühaggregate, Tropfengeneratoren, Prillteller, erfolgen. Diese Methoden sind dem Fachmann bekannt und werden daher nicht näher erläutert. Durch die Zugabe der Silikatlösung in Tropfenform kann ein gut filtrierbarer Niederschlag erhalten werden.

Der Niederschlag ist insbesondere eine Suspension. Der

Niederschlag enthält das Siliziumdioxid als Matrixmaterial und das Konversionsmaterial. Gemäß zumindest einer Ausführungsform wird der

Verfahrensschritt C) bei einer Temperatur von 20 bis 95 °C, bevorzugt zwischen 30 bis 90 °C, beispielsweise zwischen 40 bis 80 °C, durchgeführt. Insbesondere wird die Temperatur im Schritt C) auf dieser Temperatur gehalten.

Gemäß zumindest einer Ausführungsform weist das Verfahren einen Schritt D) auf, Abtrennen des Niederschlags. Mit anderen Worten wird der Niederschlag von den restlichen

Bestandteilen des Gemisches abgetrennt. Dies kann je nach Filtrierbarkeit des Niederschlags durch dem Fachmann bekannte Filtrationstechniken erfolgen. Beispielsweise kann der

Niederschlag mittels Filterpressen oder Drehfiltern erfolgen. Alternativ kann der Niederschlag auch durch Zentrifugation und/oder durch Abdekantieren der flüssigen Bestandteile des Niederschlages erfolgen. Gemäß zumindest einer Ausführungsform weist das Verfahren einen Schritt E) auf, Waschen des Niederschlags mit einem Waschmedium, wobei das Waschmedium einen pH-Wert von kleiner als 2, insbesondere einen pH-Wert von kleiner 1,5 oder 1 oder 0,5, aufweist. Als Waschmedium können die im Schritt A) bereits genannten sauren Medien verwendet werden.

Alternativ kann als Waschmedium eine Chelatierungsreagenz zugegeben werden. Gemäß zumindest einer Ausführungsform wird ein Indikator in zumindest einem der Schritte A) bis D) , insbesondere im

Schritt A) , aus einem Peroxid zugegeben. Der Indikator gibt insbesondere einen Farbumschlag an und zeigt damit die

Vollständigkeit der Ausfällung des Niederschlags an.

Insbesondere kann dies nicht auf LED-Basis, sondern auf

Materialebene stattfinden. Insbesondere weist das Peroxid Titan ( IV) -Ionen auf.

Insbesondere wird als Indikator Wasserstoffperoxid oder

Kaliumperoxidisulfat , das die Titan ( IV) -Ionen umfasst, verwendet. Die Titan ( IV) -Ionen weisen unter sauren

Bedingungen eine Gelb-Orange-farbene Färbung auf. Durch die Gelb-Orange-farbene Färbung des Gemisches kann der Grad der Aufreinigung, beispielsweise während des Waschschrittes E) , kontrolliert werden. Da sich bereits bei pH-Werten über 2 das Titan leicht an den entstehenden Niederschlag anlagert und damit eine sehr hartnäckige Verunreinigung darstellt, kann damit der Reinigungsgrad des Niederschlages kontrolliert werden .

Der Verfahrensschritt E) kann so lange durchgeführt werden, bis visuell keine Gelb-Orange-farbene Färbung des Indikators gezeigt ist.

Alternativ oder zusätzlich kann der Verfahrensschritt E) auch mit einem Waschmedium aus destilliertem Wasser oder VE-Wasser durchgeführt werden. Insbesondere wird so lange gewaschen, bis das Filtrat, also die Waschsuspension, eine Leitfähigkeit von kleiner oder gleich 9 yS/cm, bevorzugt kleiner oder gleich 5 yS/cm, beträgt. Die Leitfähigkeit kann mittels eines Leitfähigkeitsmessgerätes bestimmt werden.

Der Verfahrensschritt E) kann bevorzugt bei Temperaturen von 15 bis 100 °C durchgeführt werden.

Gemäß zumindest einer Ausführungsform weist das Verfahren einen Verfahrensschritt F) auf, Härten des Niederschlags zur Erzeugung des Konversionselements. Gemäß zumindest einer Ausführungsform wird die Härtung im Schritt F) mittels eines Gasstroms durchgeführt. Zusätzlich kann die Härtung im Verfahrensschritt F) unter Druck

erfolgen. Der Druck kann durch eine Presse erfolgen. Der Druck kann beispielsweise zwischen 80 und 150 bar,

beispielsweise 100 bar, betragen. Der Gasstrom kann ein

Gasdampf, beispielsweise ein Wasserdampf, sein. Der Kontakt des Niederschlags mit dem Gasstrom und gegebenenfalls unter Druck führt zu einem Härten und zum Verfestigen des

Konversionselements.

Alternativ oder zusätzlich können die Verfahrensschritte auch mehrmals durchgeführt werden, so dass ein Schichtsystem aus dem Konversionsmaterial und dem Matrixmaterial erzeugt wird. Insbesondere wird zusätzlich der Farbort eingestellt.

Zusätzlich kann vor Schritt F) der Niederschlag in eine Form überführt werden. Insbesondere ist der Niederschlag bei Überführen in die Form gelartig.

Die Form kann jede beliebige Gestalt annehmen. Beispielsweise kann die Form in Draufsicht eine Rechteckform mit einer Fläche von beispielsweise 1 mm^, 2 mm^ oder 750 ym oder eine Barenform aufweisen. Die Form kann eine Kavität aufweisen, in die der Niederschlag eingebracht wird. Die Kavität kann ein Loch aufweisen. Insbesondere werden durch das Loch die im Schritt F) erzeugten Nebenprodukte, wie Wasser, abgeführt.

Gemäß zumindest einer Ausführungsform weist die Form ein Sieb auf. Dadurch kann der Gasstrom das Konversionselement vollständig durchdringen und die wässrigen Bestandteile können aus dem Konversionselement austreten, sodass das Konversionselement vollständig aushärten kann. Gemäß zumindest einer Ausführungsform erfolgt vor Schritt F) ein zusätzlicher Schritt H) , Aufbringen des nach Schritt E) gewaschenen Niederschlags auf einen optoelektronischen

Halbleiterchip mittels Spraycoating . Insbesondere wird die Viskosität des Niederschlags auf die Prozessviskosität eingestellt .

Gemäß zumindest einer Ausführungsform weist das Verfahren nach Schritt F) einen zusätzlichen Schritt G) auf, Aufbringen des Konversionselements auf einen optoelektronischen

Halbleiterchip. Insbesondere wird das Konversionselement in einem sogenannten Pick-and-Place-Prozess , also als

vorgefertigter Körper, auf eine Strahlungsaustrittsfläche des Halbleiterchips aufgebracht. Das Aufbringen kann in direktem oder indirektem, also in unmittelbarem mechanischem und/oder elektrischem Kontakt oder in mittelbarem mechanischem oder elektrischem Kontakt, erfolgen. Bei mittelbarem elektrischem oder mechanischem Kontakt kann eine weitere Schicht,

beispielsweise eine Kleberschicht, zwischen dem

Konversionselement und dem optoelektronischen Halbleiterchip angeordnet sein.

Insbesondere weist das Konversionselement scharfe Kanten auf. Mit anderen Worten ist das Konversionselement vieleckig, beispielswiese quaderförmig ausgeformt, wobei die Kanten beim Übergang von einer Quaderfläche zur anderen Quaderfläche nicht abgerundet sind. Insbesondere sind die Seitenflächen des Konversionselements formschlüssig in Draufsicht auf die Strahlungsaustrittsfläche mit den Seitenflächen des

Halbleiterchips angeordnet. Gemäß zumindest einer Ausführungsform erfolgt nach Schritt F) ein zusätzlicher Schritt I), Schleifen des

Konversionselements. Damit kann die Lichtauskopplung des Konversionselements erhöht werden.

Mit dem hier beschriebenen Verfahren kann ein

Konversionselement bereitgestellt werden, das ein sehr sauberes und hochreines Matrixmaterial aus Siliziumdioxid aufweist, in dem das Konversionsmaterial eindispergiert ist. Insbesondere ist das Konversionsmaterial homogen in dem

Matrixmaterial verteilt. Mit der Fällung des Niederschlags in Kombination mit dem Konversionsmaterial kann insbesondere ein alternatives Konversionselement bereitgestellt werden. Das Konversionselement ist zudem kostengünstig und zuverlässig herstellbar. Ferner weist das Konversionselement keine

Alterung auf. Ferner können in das Konversionselement

beliebige Leuchtstoffe oder Mischungen der Leuchtstoffe eindispergiert werden. Das Konversionselement kann eine flexible Form aufweisen.

Es wird weiterhin ein Konversionselement angegeben. Das

Konversionselement wird vorzugsweise mit dem Verfahren zur Herstellung eines Konversionselements für ein

optoelektronisches Bauelement hergestellt. Das heißt,

sämtliche für das Verfahren zur Herstellung eines

Konversionselements offenbarten Merkmale sind auch für das Bauelement offenbart und umgekehrt.

Das Konversionselement umfasst insbesondere ein

Konversionsmaterial, das aus den oben beschriebenen

Materialien ausgewählt sein kann. Zusätzlich weist das

Konversionselement ein Matrixmaterial aus Siliziumdioxid auf. Das Siliziumdioxid ist insbesondere ein hochreines Siliziumdioxid. Mit hochreinem Siliziumdioxid wird hier und im Folgenden bezeichnet, dass der Gehalt von Verunreinigungen in dem Siliziumdioxid sehr gering ist. Insbesondere ist der Anteil an Aluminium in dem Siliziumdioxid kleiner als 1 ppm. Alternativ oder zusätzlich ist der Anteil an Bor in dem

Siliziumdioxid kleiner als 0,1 ppm. Alternativ oder

zusätzlich ist der Anteil an Kalzium in dem Siliziumdioxid kleiner als 0,3 ppm. Alternativ oder zusätzlich ist der

Anteil an Eisen in dem Siliziumdioxid kleiner als 0,6 ppm. Alternativ oder zusätzlich ist der Anteil an Nickel kleiner als 0,5 ppm. Alternativ oder zusätzlich ist der Anteil an Phosphor in dem Siliziumdioxid kleiner als 0,1 ppm.

Alternativ oder zusätzlich ist der Anteil an Titan kleiner gleich 1 ppm. Alternativ oder zusätzlich ist der Anteil an Zink kleiner oder gleich 0,3 ppm. Insbesondere ist die Summe der Verunreinigungen in dem Siliziumdioxid inklusive Natrium und Kalium kleiner 5 ppm, bevorzugt kleiner 4 ppm, besonders bevorzugt zwischen 0,5 und 3 ppm oder zwischen 1 bis 3 ppm. Die Erfindung betrifft ferner ein optoelektronisches

Bauelement. Vorzugsweise weist das optoelektronische

Bauelement das oben beschriebene Konversionselement auf. Das heißt, sämtliche für das Verfahren zur Herstellung eines Konversionselements offenbarten Merkmale und Ausführungen sind auch für das Konversionselement offenbart und umgekehrt.

Gemäß zumindest einer Ausführungsform umfasst das

optoelektronische Bauelement einen optoelektronischen

Halbleiterchip. Dem optoelektronischen Halbleiterchip ist das Konversionselement nachgeordnet. Der optoelektronische

Halbleiterchip und das Konversionselement sind insbesondere in einem Verguss, beispielsweise aus Silikon, eingebettet. Der Verguss kann ferner Streupartikel, beispielsweise aus Titandioxid, aufweisen. Zusätzlich kann der optoelektronische Halbleiterchip auf einem Träger oder Substrat angeordnet sein. Bei dem Träger oder Substrat kann es sich

beispielsweise um einen Siliziumwafer handeln.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines optoelektronischen Bauelements. Vorzugsweise stellt das Verfahren das optoelektronische Bauelement her. Das heißt, sämtliche für das Verfahren zur Herstellung eines

Konversionselements, für das Konversionselement und/oder für das optoelektronische Bauelement offenbarten Merkmale und Ausführungen sind auch für das Verfahren zur Herstellung eines optoelektronischen Bauelements offenbart und umgekehrt. Gemäß zumindest einer Ausführungsform weist das Verfahren, die Schritte auf:

A) Bereitstellen eines Trägers oder eines Substrats,

B) Aufbringen zumindest eines optoelektronischen

Halbleiterchips auf das Substrat oder den Träger,

C) Aufbringen des Konversionselements auf den jeweiligen optoelektronischen Halbleiterchips, und

D) gegebenenfalls Vereinzeln von mehreren optoelektronischen Halbleiterchips .

Insbesondere kann vor oder nach Schritt C) der jeweilige optoelektronische Halbleiterchip mit einem Verguss umhüllt werden. Der Verguss kann aus Silikon sein, in dem zusätzlich Streupartikel eindispergiert sein können.

Gemäß zumindest einer Ausführungsform ist das aufgebrachte Konversionselement beständig gegenüber Temperatur und/oder elektromagnetischer Strahlung. Die Erfinderin hat erkannt, dass durch das hier beschriebene Verfahren zur Herstellung eines Konversionselements ein kostengünstiges Konversionselement mit einem einfachen

Matrixmaterial hergestellt werden kann. Ein wesentliches

Verfahrensmerkmal ist dabei die Kontrolle des pH-Wertes des Matrixmaterials, insbesondere des Siliziumdioxids, sowie der Reaktionsmedien, in denen sich das Matrixmaterial und

Konversionsmaterial während der verschiedenen

Verfahrensschritte befindet. Ohne an eine bestimmte Theorie gebunden zu sein, ist die Erfinderin der Ansicht, dass durch einen sehr niedrigen pH-Wert sichergestellt wird, dass idealerweise keine freien negativ geladenen SiO-Gruppen auf der Siliziumdioxidoberfläche vorhanden sind und an die störenden Metallionen gebunden werden können. Bei sehr niedrigem pH-Wert ist die Oberfläche sogar positiv geladen, sodass Metallkationen von der Kieselsäureoberfläche

abgestoßen werden. Werden die Metallionen nun ausgewaschen, solange der pH-Wert sehr niedrig ist, kann verhindert werden, dass sich diese an der Oberfläche des Matrixmaterials

anlagern. Nimmt die Kieselsäureoberfläche eine positive

Ladung an, so wird zudem verhindert, dass Kieselsäurepartikel sich aneinander anlagern und dadurch Hohlräume gebildet werden, in denen sich Verunreinigungen einlagern können. Das Verfahren kann somit ohne die Verwendung von

Chelatierungsreagenzen und/oder von Ionenaustauschersäulen durchgeführt werden. Zusätzlich sind Kalzinierungsschritte nicht erforderlich. Das Verfahren zur Herstellung eines

Konversionselements kann somit einfacher und kostengünstiger hergestellt werden.

Weitere Vorteile, vorteilhafte Ausführungsformen und

Weiterbildungen ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen

Ausführungsbeispielen .

Es zeigen:

Die Figuren 1A bis 1F ein Verfahren zur Herstellung eines

Konversionselements gemäß einer Ausführungsform, die Figuren 2A bis 2C ein Verfahren zur Herstellung eines

Konversionselements gemäß einer Ausführungsform, und die Figuren 3A bis 3F sowie die Figuren 4A bis 4F jeweils ein

Verfahren zur Herstellung eines optoelektronischen Bauelements gemäß einer Ausführungsform.

In den Ausführungsbeispielen und Figuren können gleiche, gleichartige oder gleich wirkende Elemente jeweils mit denselben Bezugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, wie zum Beispiel Schichten, Bauteile, Bauelemente und Bereiche, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt werden.

Die Figuren 1A bis 1F zeigen ein Verfahren zur Herstellung eines Konversionselements gemäß einer Ausführungsform. Die Figur 1A zeigt das Bereitstellen eines sauren Mediums 1 mit einem pH-Wert von kleiner als 2 in einem Behälter 11.

Anschließend kann ein Konversionsmaterial 2, wie in Figur 1B gezeigt, zu dem sauren Medium 1 hinzugegeben werden.

Anschließend kann, wie in Figur IC gezeigt, zu diesem Gemisch aus dem Konversionsmaterial 2 und dem sauren Medium 1 eine Silikatlösung 3 hinzugegeben werden. Die Silikatlösung 3 weist insbesondere eine Viskosität von 2 bis 10000 Poise auf. Der pH-Wert während der Zugabe im Schritt C) ist dabei kleiner als 2. Es wird ein Niederschlag 4 erhalten, wie in Figur 1D gezeigt. Der Niederschlag 4 weist ein

Konversionsmaterial 2 und Siliziumdioxid 41 als

Matrixmaterial auf oder besteht aus diesen. Alternativ kann der Niederschlag 4 auch Streupartikel aufweisen, die

beispielsweise im Verfahrensschritt B) hinzugegeben wurden (hier nicht gezeigt) . Anschließend kann der Niederschlag 4, wie in Figur IE gezeigt, abgetrennt werden. Der Niederschlag 4 kann beispielsweise filtriert werden. Es entsteht ein

Filtrat 51. Anschließend kann die Waschung des Niederschlages 4 erfolgen (hier nicht gezeigt) . Die Waschung kann mit einem Waschmedium 6, beispielsweise einem sauren Medium 1, das bereits im Verfahrensschritt A) bereitgestellt wurde, genutzt werden. Insbesondere ist der pH-Wert des Waschmediums kleiner als 2. Nach diesem Waschen mit dem sauren Medium 1 kann alternativ oder zusätzlich die Waschung mittels destilliertem Wasser erfolgen. Es entsteht ein Waschfiltrat als

Nebenprodukt. Nach dem Verfahrensschritt E) des Waschens kann der Niederschlag 4 ausgehärtet werden. Dazu kann der

Niederschlag 4 in eine Form, wie in Figur 1F gezeigt,

überführt werden und die Härtung kann erfolgen. Die Härtung kann beispielsweise mittels eines Gasstroms und unter Druck, beispielsweise bei 100 bar, erfolgen.

Das Konversionselement 100, das zumindest nach Schritt F) ausgehärtet ist, weist insbesondere eine Härte auf, die der Härte des Siliziumdioxids, also einer Glashärte, entspricht.

Die Figuren 2A bis 2C zeigen ein Verfahren zur Herstellung eines Konversionselements gemäß einer Ausführungsform. Die Figur 2A zeigt eine Form 8. Die Form 8 zeigt verschiedene Kavitäten 82, die jeweils ein Loch 81 aufweisen. In die Form 8 kann der Niederschlag 4, welcher insbesondere nach Schritt E) gewaschen wurde, eingefüllt werden (Figur 2B) .

Anschließend kann der Niederschlag 4 ausgehärtet werden

(Schritt F) . Dies kann mittels eines Gasstroms unter Druck, beispielsweise bei 100 bar, erfolgen. Das jeweilige Loch 81 ist insbesondere dazu eingerichtet, die bei der Härtung im Schritt F) ausscheidenden Nebenprodukte, wie Wasser,

abzuführen. Es resultiert ein Konversionselement 100, das in Draufsicht eine rechteckige Form aufweist. Die Form des Konversionselements 100 ist nicht auf die Rechteckform begrenzt. Das Konversionselement 100 kann in jede beliebige Form überführt werden. Das Konversionselement 100 weist insbesondere scharfe Kanten 102 auf (Figur 2C) .

Die Figuren 3A bis 3F zeigen ein Verfahren zur Herstellung eines optoelektronischen Bauelements 110 gemäß einer

Ausführungsform. Zur Herstellung wird ein Träger oder

Substrat 9, beispielsweise ein Siliziumwafer, bereitgestellt (Figur 3A) . Auf dieses Substrat 9 wird, wie in Figur 3B gezeigt, zumindest ein optoelektronischer Halbleiterchip 10 angeordnet. Insbesondere können auch mehr als ein

optoelektronischer Halbleiterchip 10 auf das Substrat 9 angeordnet werden. Die Figur 3B zeigt beispielhaft die

Anordnung von drei optoelektronischen Halbleiterchips 10. Den optoelektronischen Halbleiterchips 10 kann jeweils ein

Konversionselement 100 nachgeordnet werden. Dieses

Konversionselement 100 wird im sogenannten Pick-and-Place- Prozess, also als vorgefertigter Körper, insbesondere auf die Strahlungsaustrittsfläche 101 des optoelektronischen

Halbleiterchips 10 angeordnet (Figur 3C) . Insbesondere ist das Konversionselement 100 mit dem Verfahren gemäß dem Anspruch 1 hergestellt. Anschließend, wie in Figur 3D

gezeigt, können die Halbleiterchips 10 vergossen werden. Dies kann beispielsweise mit einem Verguss 12 aus Silikon

erfolgen. Der Verguss 12 kann zusätzlich Streupartikel, beispielsweise Titandioxid und/oder AI 2 O 3 , aufweisen (hier nicht gezeigt) . Insbesondere ist der Verguss 12 bis zur oberen Konversionselementkante 100 angeordnet. Mit anderen Worten schließt die Oberfläche des Konversionselements 100 und die obere Fläche des Vergusses bündig miteinander ab. Insbesondere wird die bündige Herstellung durch die scharfen Kanten des Konversionselements 100 erzeugt. Der Verguss 12 ist insbesondere nicht auf der Oberfläche des

Konversionselements 100 angeordnet, da sonst die

Streupartikel, beispielsweise Titandioxid, eine

Lichtauskopplung reduzieren würden. Anschließend kann der Verbund der Halbleiterchips 10 vereinzelt werden 13 (Figur 3E) . Es resultieren, wie in Figur 3F gezeigt,

optoelektronische Bauelemente 110, welche ein Substrat 9, einen Halbleiterchip 10, einen Verguss 12 und ein

Konversionselement 110 aufweisen.

Die Figuren 4A bis 4F zeigen ein Verfahren zur Herstellung eines optoelektronischen Bauelements 110 gemäß einer

Ausführungsform. Insbesondere weist das optoelektronische Bauelement 110 ein Konversionselement 100, wie oben

beschrieben, auf. Die Figur 4A zeigt das Bereitstellen eines Substrates 9. Die Figur 4B zeigt die Anordnung zumindest eines Halbleiterchips 10 auf dem Substrat 9. Anschließend kann, wie in Figur 4C gezeigt, der optoelektronische

Halbleiterchip 10 mittels eines Vergusses 12 vergossen werden. Mit anderen Worten sind die Seitenflächen des

jeweiligen Halbleiterchips 10 in direktem mechanischem

Kontakt mit dem Verguss 12. Insbesondere bleibt die jeweilige Strahlungsaustrittsfläche 101 des Halbleiterchips 10 frei von dem Verguss 12. Der Verguss 12 kann aus Silikon sein.

Alternativ oder zusätzlich kann der Verguss 12 Streupartikel, wie Titandioxid, aufweisen. Anschließend kann, wie in Figur 4D gezeigt, der gewaschene Niederschlag 4 auf den

optoelektronischen Halbleiterchip, insbesondere auf die

Strahlungsaustrittsfläche 101 des optoelektronischen

Halbleiterchips, angeordnet werden. Dies kann mittels

Spraycoating erfolgen. Der Niederschlag 4 kann ausgehärtet werden, beispielsweise mittels eines Gasstroms oder mittels Dampf. Es entsteht das Konversionselement 100 auf dem

optoelektronischen Halbleiterchip 10. Anschließend kann eine Linse 14 auf das Konversionselement 100 aufgebracht werden. Die Linse 14 ist insbesondere aus Silikon geformt.

Anschließend kann der Verbund der optoelektronischen

Bauelemente 110 vereinzelt 13 werden, wie in Figur 4F

gezeigt .

Die in Verbindung mit den Figuren beschriebenen

Ausführungsbeispiele und deren Merkmale können gemäß weiterer Ausführungsbeispiele auch miteinander kombiniert werden, auch wenn solche Kombinationen nicht explizit in Verbindung mit den Figuren offenbart sind. Weiterhin können die in

Verbindung mit den Figuren beschriebenen Ausführungsbeispiele zusätzliche oder alternative Merkmale gemäß der Beschreibung im allgemeinen Teil aufweisen.

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von

Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den

Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2015 113 360.1, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

Bezugs zeichenliste

100 Konversionselement

110 optoelektronisches Bauelement

1 saures Medium

2 Konversionsmaterial

3 Silikatlösung

4 Niederschlag

41 Siliziumdioxid

5 Abtrennen

6 Waschmedium

7 Härten

8 Form

9 Substrat

10 optoelektronischer Halbleiterchip

11 Behälter

12 Verguss

13 Vereinzeln

14 Linse

51 Filtrat

101 Strahlungsaustrittsfläche des optoelektronischen Halbleiterchips

102 Kanten des Konverterelements

81 Loch

82 Kavität der Form