Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A FIBER-COMPOSITE SEMI-FINISHED PRODUCT, AND FIBER-COMPOSITE SEMI-FINISHED PRODUCT
Document Type and Number:
WIPO Patent Application WO/2015/039845
Kind Code:
A1
Abstract:
The present invention relates to a method for producing a fiber-composite semi-finished product (12), the fiber-composite semi-finished product (12) comprising carbon fibers (10) and a matrix material (11). The invention further relates to a fiber-composite semi-finished product (12), the fiber-composite semi-finished product (12) comprising carbon fibers (10) and a matrix material (11).

Inventors:
DAUNER WILLY (DE)
HUBER STEPHAN (DE)
STARKE JOACHIM (DE)
Application Number:
PCT/EP2014/068155
Publication Date:
March 26, 2015
Filing Date:
August 27, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYERISCHE MOTOREN WERKE AG (DE)
International Classes:
B29B15/12; C08J5/04; D01F9/12; B29K307/00; B29K307/04; D01F9/22
Domestic Patent References:
WO1998006551A21998-02-19
WO2013086118A12013-06-13
WO2013024025A12013-02-21
WO2005099985A12005-10-27
WO2006061386A12006-06-15
Foreign References:
US4140832A1979-02-20
Other References:
HASSAN M. EL-DESSOUKY ET AL: "Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology", COMPOSITES PART B: ENGINEERING, 13 February 2013 (2013-02-13), pages 91 - 97, XP055149395, Retrieved from the Internet [retrieved on 20141028], DOI: 10.1016/j.compositesb.2013.01.026
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines Faserverbundhalbzeuges (12), das Faserverbundhalbzeug (12) umfassend Kohlenstofffasern (10) und einen Matrixwerk- stoff (11), gekennzeichnet durch folgende Schritte:

a) Herstellung der Kohlenstofffasern ( 0) und

b) Aufbringen des Matrixwerkstoffs (11) auf die unveränderten Kohlenstofffasern (10).

2 Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass Schritt b) (2) direkt anschließend an Schritt a) (1) durchgeführt wird.

3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass ein thermoplastischer und/oder duroplastischer und/oder elastomerer Matrixwerkstoff (11) verwendet wird und beim Aufbringen des Matrixwerkstoffs ( 1) in Schritt b) (2) eine Schmelzimprägnierung verwendet wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in Schritt b) (2) thermoplastischer Matrixwerkstoff (1 ) durch einen Extruder (20), insbesondere einem Extruder (20) mit einer Breitschlitzdüse (21), zur Schmelzimprägnierung bereitgestellt wird.

5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in Schritt b) (2) duroplastischer Matrixwerkstoff (1 1) durch eine Mischanlage bereitgestellt wird.

6. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass beim Aufbringen des Matrixwerkstoffs (11) in Schritt b) (2) eine Pulverimprägnierung verwendet wird.

7. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass beim Aufbringen des Matrixwerkstoffs (11) in Schritt b) (2) eine Folienimprägnierung verwendet wird.

8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass in Schritt b) (2) für ein Aufschmelzen des Matrixwerkstoffs (11) eine in Schritt a) (1) bei der Herstellung (1 ) der Kohlenstofffasern (10) entstandene Abwärme verwendet wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Abwärme zumindest teilweise durch die Kohlenstofffasern (10) bereitgestellt wird.

10. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass beim Aufbringen des Matrixwerkstoffs (11) in Schritt b) (2) eine Lösungsmittelimprägnierung verwendet wird.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass bei der Lösungsmittelimprägnierung in Schritt b) (2) ein Tauchbad verwendet wird.

12. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass nach Schritt b) (2) in einem Schritt c) (3) das Faserverbundhalbzeug (12) abgelegt, insbesondere aufgewickelt, wird.

13. Faserverbundhalbzeug (12), das Faserverbundhalbzeug (12) umfassend Kohlenstofffasern (10) und einen Matrixwerkstoff (11), dadurch gekennzeichnet, dass das Faserverbundhalbzeug (12) durch ein Verfahren gemäß einem der Ansprüche 1 bis 12 hergestellt ist.

14. Faserverbundhalbzeug (12) gemäß Anspruch 13, dadurch gekennzeichnet, dass das Faserverbundhalbzeug (12) aus Kohlenstofffasern (10) und einen Matrixwerkstoff (11) besteht.

Description:
Beschreibung

Verfahren zur Herstellung eines Faserverbundhalbzeuges

sowie Faserverbundhalbzeug

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbundhalbzeuges, das Faserverbundhalbzeug umfassend Kohlenstofffasem und einen Matrixwerkstoff. Ferner betrifft die Erfindung ein Faserverbundhalbzeug, das Faserverbundhalbzeug umfassend Kohlenstofffasern und einen Matrixwerkstoff.

STAND DER TECHNIK

In der modernen Technik kommen Faserverbundwerkstoffe universell zum Einsatz. Insbesondere ist die Verwendung von Faserverbundwerkstoffen mit Kohlenstofffa- sern und einem Matrixwerkstoff bekannt. Dieser bildet eine Verbindung zu den Kohlenstofffasern aus. Der Matrixwerkstoff kann dabei verschiedene Eigenschaften aufweisen, es kann beispielsweise ein thermoplastischer, duroplastischer oder elastomerer Matrixwerkstoff verwendet werden. Beispiele für Anwendungsgebiete derartiger Faserverbundwerkstoffe sind dabei unter anderem der Automobil-, Flug- zeug- oder Schiffbau.

Die Herstellung von Kohlenstofffasern ist bekannt. Ein möglicher Ablauf einer derartigen Herstellung 1 ist schematisch in Fig. 1 gezeigt. Dabei werden aus einem Ausgangsmaterial zur Herstellung 1 von Kohlenstofffasern dünne Fasern mit Durchmes- sern von wenigen Mikrometern erzeugt. Als Ausgangsmaterial kann dabei beispielsweise Polyacrylnitril (PAN), Pech oder Lignin verwendet werden. Nach einem Oxida- tionsschritt 40 werden durch Karbonisierung 41 die Kohlenstofffasern erzeugt. Bei der Karbonisierung 41 können hohe Temperaturen, insbesondere Temperaturen über 1000°C, und eine Schutzgasatmosphäre eingesetzt werden. Nach dieser Karbonisierung 41 liegen somit die Kohlenstofffasern vor. Die Herstellung kann jedoch noch weitere Herstellungsschritte aufweisen, beispielsweise eine Oberflächenbehandlung 42. Hierbei können insbesondere die Oberflächen der Kohlenstofffasern derart behandelt werden, dass sie eine hohe Reaktivität aufweisen. Um die frisch hergestellten Fasern zu schützen, insbesondere um ein Verkleben der Fasern zu verhindern, und eine textile Weiterverarbeitung der Fasern zu ermöglichen, kann als letzter Herstellungsschritt in einer Schlichtebehandlung 43 eine Schlichte auf die Fasern aufgebracht werden. Dafür kann üblicherweise ein Schlichtebad verwendet werden. Für eine Lagerung beziehungsweise einen Transport für eine Weiterverarbeitung der Fasern ist es bekannt, diese im Anschluss an die Herstellung 1 auf Spulen aufzuwickeln 50.

Nachteilig hierbei hat sich herausgestellt, dass durch das Aufwickeln auf Spulen die Kohlenstofffasern geschädigt werden können. Derartige Schäden können sich beispielsweise in einer verminderten Steifigkeit und/oder Festigkeit des erzeugten Faserverbundwerkstoffs niederschlagen. Ferner kann bei einer Weiterverarbeitung der Kohlenstofffasern zu einem Faserverbundwerkstoff beziehungsweise zu einem Halbzeug aus Faserverbundwerkstoff (Faserverbundhalbzeug) die Verbindung zwischen den Kohlenstofffasern und bestimmten Matrixwerkstoffen durch die Schlichte auf den Kohlenstofffasern negativ beeinflusst werden. Eine Faser-Matrix-Verbindung des erzeugten Faserverbundwerkstoffs kann dadurch insgesamt verringert sein.

OFFENBARUNG DER ERFINDUNG

Es ist daher Aufgabe der vorliegenden Erfindung, die voranstehend beschriebenen Nachteile bei einem Verfahren zur Herstellung eines Faserverbundhalbzeuges zumindest teilweise zu beheben. Insbesondere ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines Faserverbundhalbzeuges sowie ein Fa- serverbundhalbzeug zu schaffen, die es auf einer einfache und kostengünstige Art und Weise ermöglichen, ein Faserverbundhalbzeug mit erhöhter Performance, vor allem hinsichtlich einer besseren Faser-Matrix-Verbindung, einer besseren Steifigkeit, einer besseren Festigkeit und/oder eines verminderten Faserauszuges, herzustellen.

Voranstehende Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Faserverbundhalbzeuges mit den Merkmalen des unabhängigen Anspruchs 1 sowie durch ein Faserverbundhalbzeug mit den Merkmalen gemäß Anspruch 13. Weitere Merkmale und Details der Erfindung ergeben sich aus den Unteransprüchen, der Be- Schreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem Verfahren beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Faserverbundhalbzeug und jeweils umgekehrt, so dass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird beziehungsweise werden kann.

Gemäß dem ersten Aspekt der Erfindung wird die Aufgabe durch ein Verfahren zur Herstellung eines Faserverbundhalbzeuges, das Faserverbundhalbzeug umfassend Kohlenstofffasern und einen atrixwerkstoff, gelöst. Insbesondere ist das erfin- dungsgemäße Verfahren durch folgende Schritte gekennzeichnet:

a) Herstellung der Kohlenstofffasern und

b) Aufbringen des Matrixwerkstoffs auf die unveränderten Kohlenstofffasern.

Im Schritt a) des erfindungsgemäßen Verfahrens werden die Kohlenstofffasern hergestellt. Dabei kann eine Herstellung von Kohlenstofffasern im Sinne der Erfindung bereits nach einer Karbonisierung abgeschlossen sein. Alternativ können jedoch auch eine Oberflächenbehandlung und/oder eine Schlichtebehandlung noch als weitere) Schritt(e) der Herstellung der Kohlenstofffasern durchgeführt werden. Bedingt durch das angewandte Herstellungsverfahren, bei dem ein Ausgangsmaterial wie beispielsweise Polyacrylnitril (PAN), Pech oder Lignin zur Herstellung von Kohlenstofffasern eingesetzt werden kann, können die Kohlenstofffasern aktiviert sein. Dies bedeutet, dass diese eine hohe Oberflächenspannung aufweisen und somit sehr reaktiv sind.

Im Gegensatz zu den Verfahren des Standes der Technik wird nach der Herstellung der Kohlenstofffasern kein Aufspulen der hergestellten Kohlenstofffasern durchge- führt. Stattdessen ist im Schritt b) erfindungsgemäß ein Aufbringen des Matrixwerkstoffs auf die unveränderten Kohlenstofffasern vorgesehen ist. Unverändert im Sinne der Erfindung bedeutet dabei insbesondere, dass kein weiterer Verarbeitungsschritt zwischen der Herstellung der Kohlenstofffasern und dem Aufbringen des Matrixwerkstoffes vorgenommen wird. Somit wird der Matrixwerkstoff je nach durchgeführtem Herstellungsprozess beispielsweise nach einer Karbonisierung, einer Oberflächenbehandlung oder einer Schlichtebehandlung auf die Kohlenstofffasern aufgebracht. Ein Aufspulen der hergestellten Fasern für eine Lagerung oder einen Transport, bei dem die Fasern geschädigt werden können, kann so vermieden werden. Auch können insbesondere nach einer Oberflächenbehandlung die Kohlenstofffasern aktiviert sein wodurch die Anbindung der Kohlenstofffasern an den Matrixwerkstoff dadurch deutlich verbessert werden kann. Als Matrixwerkstoff können dabei sowohl Thermo- plaste als auch Duroplaste oder Elastomere verwendet werden. Durch die Weiterverarbeitung der unveränderten Kohlenstofffasem ist ein Aufspulen der Kohlenstofffasern nach der Herstellung für eine Lagerung beziehungsweise einen Transport der Fasern nicht notwendig. Schädigungen der Kohlenstofffasern durch ein derartiges Aufspulen können somit vermieden werden. Ein derartig hergestelltes Faserver- bundhalbzeug weist somit insbesondere durch das Vermeiden einer Schädigung durch das Aufspulen der Kohlenstofffasern nach ihrer Herstellung eine gesteigerte Performance auf. Eine gesteigerte Performance des Faserverbundhalbzeugs um- fasst dabei beispielsweise eine bessere Anbindung der Kohlenstofffasern an den Matrixwerkstoff, eine erhöhte Steifigkeit oder Festigkeit des Faserverbundhalbzeugs und/oder eine Verringerung eines Faserauszuges aus dem Faserverbundhalbzeug. Bei einer Imprägnierung nach einem Aufbringen einer Schlichte in einer

Schlichtebehandlung kann insbesondere auch die Haltbarkeit von derart hergestellten Kohlenstofffasern deutlich verlängert werden. Ein durch ein erfindungsgemäßes Verfahren hergestelltes Faserverbundhalbzeug kann dabei insbesondere als Tape, Band oder Faserbündel (Tow) vorliegen. Insbesondere bei der Herstellung eines Tapes oder Bandes kann dabei zusätzlich vorteilhafterweise genutzt werden, dass die Kohlenstofffasern nach ihrer Herstellung bereits gespreizt vorliegen, das heißt dass sie nebeneinander angeordnet sind. Ein Ta- pe oder Band, insbesondere ein Tape oder Band mit unidirektional angeordneten Kohlenstofffasern, kann dadurch besonders einfach durch Aufbringen des Matrixwerkstoffs in Schritt b) des erfindungsgemäßen Verfahrens hergestellt werden. Ein aufwendiges, nachträgliches Aufspreizen zusammengefügter Kohlenstofffasern kann dadurch vermieden werden. Durch den Einsatz eines erfindungsgemäßen Verfah- rens ist es dadurch insgesamt möglich, eine Herstellung eines Faserverbundhalbzeuges schneller und kostengünstiger durchzuführen, wobei zusätzlich die Performance des Faserverbundhalbzeuges gesteigert ist. Gemäß einer bevorzugten Weiterentwicklung eines erfindungsgemäßen Verfahrens kann es vorgesehen sein, dass Schritt b) direkt anschließend an Schritt a) durchgeführt wird. Auf diese Weise kann besonders einfach sichergestellt werden, dass die Kohlenstofffasern beim Aufbringen des Matrixwerkstoffs in Schritt b) des erfindungs- gemäßen Verfahrens unverändert sind. Insbesondere können durch das direkte Anschließen des Schritts b) an den Schritt a) und der damit verbundenen Minimierung der Zeit zwischen den beiden Schritten Reaktionen der aktivierten Kohlenstofffasern mit der Umgebung, zum Beispiel mit der Umgebungsluft, verhindert oder zumindest deutlich unterdrückt werden.

Darüber hinaus kann ein erfindungsgemäßes Verfahren dadurch gekennzeichnet sein, dass ein thermoplastischer und/oder duroplastischer und/oder elastomerer Matrixwerkstoff verwendet wird und beim Aufbringen des Matrixwerkstoffs in Schritt b) eine Schmelzimprägnierung verwendet wird. Insbesondere sind die verwendeten Matrixwerkstoffe dabei Kunststoffe, die bei genügend hoher Wärmezufuhr in einen schmelzflüssigen Zustand übergehen und in diesem verformbar sind. Durch die Verwendung derartiger Matrixwerkstoffe kann so ein Faserverbundhalbzeug hergestellt werden, das ebenfalls unter geeignet großer Wärmezufuhr plastisch verformbar ist. Dieser Vorgang ist insbesondere darüber hinaus beispielsweise bei thermoplasti- sehen Matrixwerkstoffen reversibel, das heißt, nach einer Abkühlung ist das thermoplastische Material wieder fest, kann aber durch erneute Erwärmung wieder in einen verformbaren Zustand gebracht werden. Eine Schmelzimprägnierung, bei der der thermoplastische und/oder duroplastische und/oder elastomere Matrixwerkstoff in seinem schmelzflüssigen Zustand vorliegt, stellt eine besonders einfache Weise dar, einen Matrixwerkstoff auf die Kohlenstofffasern aufzubringen. Dabei kann beispielsweise der aufgeschmolzene thermoplastische und/oder duroplastische und/oder elastomere Matrixwerkstoff den Kohlenstofffasern zugeführt werden, wodurch eine Imprägnierung der Kohlenstofffasern durch den Matrixwerkstoff erreicht werden kann. Dabei ist insbesondere von Vorteil, dass keine weiteren Materialien, wie bei- spielsweise Lösungsmittel, benötigt werden und dass eine hohe Prozessgeschwindigkeit bei der Imprägnierung erreicht werden kann.

Darüber hinaus kann in einer Weiterentwicklung eines erfindungsgemäßen Verfahrens vorgesehen sein, dass in Schritt b) thermoplastischer Matrixwerkstoff durch ei- nen Extruder, insbesondere einem Extruder mit einer Breitschlitzdüse, zur Schmelzimprägnierung bereitgestellt wird. Ein Extruder kann den thermoplastischen Matrixwerkstoff gleichmäßig mit insbesondere hohem Druck und hoher Temperatur bereitstellen. Eine besonders gleichmäßige Schmelzimprägnierung der Kohlenstofffasem mit dem thermoplastischen Matrixwerkstoff kann dadurch erreicht werden. Durch eine Breitschlitzdüse ist dies darüber hinaus über eine lineare Ausdehnung von mehreren Zentimetern, insbesondere mehreren Dezimetern, möglich. Dies ist insbesondere bei der Herstellung eines Faserverbundhalbzeuges in Form eines Tapes oder eines Bandes besonders vorteilhaft.

Alternativ kann in einer Weiterentwicklung eines erfindungsgemäßen Verfahrens dahingehend ausgestaltet sein, dass in Schritt b) duroplastischer Matrixwerkstoff durch eine Mischanlage bereitgestellt wird. Eine Mischanlage stellt dabei eine besonders einfache Vorrichtung dar, einen duroplastischen Matrixwerkstoff bereitzustellen. In der Mischanlage können dabei insbesondere die Bestandteile des duroplastischen Matrixwerkstoffes, beispielsweise ein Harz- und ein Härtermaterial, miteinander vermischt werden. Durch die Mischanlage kann dabei insbesondere ein besonders homogen gemischter duroplastischer Matrixwerkstoff bereitgestellt werden. Dadurch, insbesondere durch eine üblicherweise sehr geringe Viskosität des von der Mischan- läge bereitgestellten, noch nicht ausreagierten, Gemisches, kann eine besonders gleichmäßige Imprägnierung der Kohlenstofffasern mit dem duroplastischen Matrixwerkstoff bereits bei geringen Drücken erreicht werden.

In einer weiteren alternativen Ausgestaltungsform kann ein erfindungsgemäßes Ver- fahren dahingehend ausgebildet sein, dass beim Aufbringen des Matrixwerkstoffs in Schritt b) eine Pulverimprägnierung verwendet wird. Dabei liegt der Matrixwertstoff in Pulverform vor und wird mit den unveränderten Kohlenstofffasem in Kontakt gebracht. Dies kann beispielsweise durch Aufstreuung des Pulvers erfolgen. Durch die hohe Reaktivität der Kohlenstofffasern kann dabei bereits eine Imprägnierung erfol- gen. Auch ist selbstverständlich möglich, nur auf einen Teil der Kohlenstofffasem den pulverförmigen Matrixwerkstoff aufzubringen. Durch diese Behinderung der Kohlenstofffasern kann dabei insbesondere erreicht werden, dass nur die Lage der Kohlenstofffasern zueinander fixiert wird. Selbstverständlich kann das Pulver, alternativ oder zusätzlich, auch durch Wärmezufuhr an die Kohlenstofffasern zur Imprägnierung angeschmolzen werden und/oder durch Druck mit den Kohlenstofffasern zur Imprägnierung verpresst werden. Insbesondere für Matrixwerkstoffe, für die kein geeignetes Lösungsmittel zur Verfügung steht, stellt somit die Pulverimprägnierung eine besonders geeignete Möglichkeit einer Anordnung des Matrixwerkstoffes an den unverän- derten Kohlenstofffasern dar.

Auch kann alternativ bei einem erfindungsgemäßen Verfahren vorgesehen sein, dass beim Aufbringen des Matrixwerkstoffs in Schritt b) eine Folienimprägnierung verwendet wird. Dabei werden die unveränderten Kohlenstofffasern auf Folien auf- gebracht, die den Matrixwerkstoff umfassen oder aus diesem bestehen. Die aktivierten Kohlenstofffasern verbinden sich im Anschluss durch ihre hohe Reaktionsfähigkeit mit dem Matrixwerkstoff, wobei dieser Prozess selbstverständlich durch beispielsweisen ein Erhitzen, ein Verpressen oder Ähnliches in vielen Fällen noch unterstützt wird beziehungsweise werden kann. Insbesondere für Faserverbundhalb- zeuge mit großer Breitenausdehnung, zum Beispiel bei Tapes oder Bändern, stellt dies eine einfache Art und Weise des Aufbringens des Matrixwerkstoffes dar, da die Folie beispielsweise bereits die Breite des herzustellenden Faserverbundhalbzeuges aufweisen kann. In einer Weiterentwicklung eines erfindungsgemäßen Verfahrens kann ferner vorgesehen sein, dass in Schritt b) für ein Aufschmelzen des Matrixwerkstoffs eine in Schritt a) bei der Herstellung der Kohlenstofffasern entstandene Abwärme verwendet wird. Bei der Herstellung der Kohlenstofffasern entsteht Abwärme, insbesondere bei dem Herstellungsschritt der Karbonisierung. Diese Abwärme kann verwendet wer- den, um den Matrixwerkstoff als Vorbereitung der Imprägnierung aufzuschmelzen. Die Verwendung der vorhandenen Abwärme für diesen Aufschmelzvorgang hat dabei insbesondere den Vorteil, dass eine zusätzliche Wärmequelle nicht oder nur mehr in geringerem Ausmaß nötig ist. Dadurch können Energie und damit Kosten eingespart und die Umwelt geschont werden.

Besonders bevorzugt kann ein erfindungsgemäßes Verfahren dahingehend weiterentwickelt werden, dass die Abwärme zumindest teilweise durch die Kohlenstofffasern bereitgestellt wird. Die Kohlenstofffasern können direkt nach dem Herstellungsschritt der Karbonisierung hohe Temperaturen, insbesondere Temperaturen deutlich über 1000°C, aufweisen. Diese in den Kohlenstofffasern selbst gespeicherte Abwärme kann genutzt werden, um den verwendeten Matrixwerkstoff zumindest teilweise aufzuschmelzen. Aufwendige Transportsysteme für die Abwärme von der Herstellung der Kohlenstofffasern zum Ort der Imprägnierung können so eingespart oder zumindest kleiner dimensioniert werden. Dies wiederum stellt eine Kostenersparnis bei der Herstellung eines Faserverbundhalbzeuges dar.

Alternativ kann ein erfindungsgemäßes Verfahren dahingehend ausgestaltet sein, dass beim Aufbringen des Matrixwerkstoffs in Schritt b) eine Lösungsmittelimprägnie- rung verwendet wird. Dabei können insbesondere thermoplastische, duroplastische oder elastomere Matrixwerkstoffe verwendet werden. Bevorzugt wird dabei der Matrixwerkstoff im Lösungsmittel gelöst und zusammen mit diesem auf die Kohlenstofffasern aufgebracht. Nach einem Verdampfen des Lösungsmittels verbleibt der Matrixwerkstoff auf den Kohlenstofffasern und imprägniert diese. Eine Lösungsmittelim- prägnierung stellt somit eine besonders vielseitige, insbesondere hinsichtlich der Breite der einsetzbaren Matrixwerkstoffe, Möglichkeit eines Aufbringens des Matrixwerkstoffs dar.

Bevorzugt kann dabei in einer Weiterentwicklung eines erfindungsgemäßen Verfah- rens vorgesehen sein, dass bei der Lösungsmittelimprägnierung in Schritt b) ein

Tauchbad verwendet wird. Im Tauchbad liegt der Matrixwerkstoff in gelöster Form im Lösungsmittel vor. Die unveränderten Kohlenstofffasern werden dem Tauchbad zugeführt und dadurch durch das Lösungsmittel-Matrixwerkstoff-Gemisch benetzt. Dies stellt eine besonders einfache und wirtschaftliche Art und Weise der Lösungsmittel- Imprägnierung dar, da insbesondere überschüssiger Matrixwerkstoff, der an den Kohlenstofffasern nicht anordenbar ist, im Tauchbad verbleibt und somit nicht verloren geht.

Darüber hinaus kann ein erfindungsgemäßes Verfahren dahingehend ausgebildet sein, dass nach Schritt b) in einem Schritt c) das Faserverbundhalbzeug abgelegt, insbesondere aufgewickelt, wird. Nach Schritt b) und einer eventuellen Abkühl-, Trocknungs- und/oder Aushärtungszeit ist das Faserverbundhalbzeug bereit für die Weiterverarbeitung. Auch können, beispielsweise durch Textilverarbeitungsschritte, verschiedene Formen von Faserverbundhalbzeugen erzeugt werden. Für eine bes- sere Transportierbarkeit kann deshalb vorgesehen sein, das Faserverbundhalbzeug abzulegen. Je nach Art und Form des Faserverbundhalbzeuges, das beispielsweise als Granulat, Faserbündel (Tow), Tape, flächiges Gelege oder flächiges Gewebe vorliegen kann, kann dabei vorgesehen sein, insbesondere bei Faserbündeln oder Bän- dem, diese auf eine Spule aufzuwickeln. Nach Schritt b) ist der Matrixwerkstoff auf die Kohlenstofffasern aufgebracht, die Kohlenstofffasern sind, zumindest teilweise, imprägniert. Eine Reaktion, insbesondere ein Verkleben, der einzelnen Kohlenstofffasern untereinander ist nicht mehr zu erwarten. Ein Ablegen, insbesondere ein Aufwickeln, stellt somit eine besonders einfache Art und Weise dar, ein nach einem er- findungsgemäßen Verfahren hergestelltes Faserverbundhalbzeug für einen Transport zu seinem Weiterverarbeitungsort vorzubereiten.

Gemäß einem zweiten Aspekt wird die Aufgabe durch Faserverbundhalbzeug, das Faserverbundhalbzeug umfassend Kohlenstofffasern und einen Matrixwerkstoff, ge- löst. Insbesondere ist ein erfindungsgemäßes Faserverbundhalbzeug dadurch gekennzeichnet, dass das Faserverbundhalbzeug durch ein Verfahren gemäß dem ersten Aspekt der Erfindung hergestellt ist. Sämtliche Vorteile, die zu einem Verfahren zur Herstellung eines Faserverbundhalbzeuges gemäß dem ersten Aspekt der Erfindung beschrieben worden sind, ergeben sich somit selbstverständlich auch für ein erfindungsgemäßes Faserverbundhalbzeug, das durch ein derartiges Verfahren hergestellt ist

Gemäß einer besonders bevorzugen Ausgestaltung eines erfindungsgemäßen Faserverbundhalbzeugs kann ferner vorgesehen sein, dass das Faserverbundhalbzeug aus Kohlenstofffasern und einen Matrixwerkstoff besteht. Der Matrixwerkstoff wurde somit im erfindungsgemäßen Verfahren gemäß dem ersten Aspekt der Erfindung direkt auf die Kohlenstofffasern aufgebracht, beispielsweise nach der Karbonisierung oder einer Oberflächenbehandlung. Eine Schlichtebehandlung wurde nicht vorgenommen. Dadurch kann zum einen ein Kostenvorteil erreicht werden, da das Faser- verbundhalbzeug schneller und ohne den Einsatz einer Schlichte hergestellt werden kann. Zudem weist ein derartiges Faserverbundhalbzeug durch das Fehlen der Schlichte auch ein geringeres Gewicht auf. Zum anderen kann durch das direkte Aufbringen des Matrixwerkstoffes auf die Kohlenstofffasern, insbesondere beispielsweise bei einem Aufbringen direkt nach der Karbonisierung oder einer Oberflächen- behandlung, eine besonders gute Verbindung zwischen den Kohlenstofffasern und dem Matrixwerkstoff erreicht werden. Dadurch können Faserverbundhalbzeuge mit besonders hoher Performance erzeugt werden. BEVORZUGTE AUSFÜHRUNGSBEISPIELE

Das erfindungsgemäße Verfahren sowie das erfindungsgemäße Faserverbundhalbzeug und deren Weiterbildungen sowie deren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Es zeigen jeweils schematisch:

Figur 1 Bereitstellung von Kohlenstofffasern gemäß dem Stand der

Technik

Figur 2 eine Ausgestaltungsform eines erfindungsgemäßen Verfahrens und

Figur 3a und 3b zwei Ansichten einer Vorrichtung zum Ausführen einer Ausgestaltungsform eines erfindungsgemäßen Verfahrens. Elemente mit gleicher Funktion und Wirkungsweise sind in den Fig. 1 , 2, 3a und 3b jeweils mit denselben Bezugszeichen versehen.

In Fig. 2 ist schematisch eine Ausgestaltungsform eines erfindungsgemäßen Verfahrens abgebildet. In Schritt a) 1 werden Kohlenstofffasern 10 (nicht abgebildet) herge- stellt. Dabei wird insbesondere eine Karbonisierung 41 (nicht abgebildet) eingesetzt. In dieser wird ein Ausgangsmaterial zur Herstellung von Kohlenstofffasern, insbesondere auf über 1000°C, erhitzt, wodurch sich Fasern 10 aus graphitartig angeordnetem Kohlenstoff bilden. Auch eine Oberflächenbehandlung 42 und/oder eine Schlichtebehandlung 43 (nicht abgebildet) können Teilschritte der Herstellung 1 der Kohlenstofffasern 10 sein. Die Herstellung 1 der Kohlenstofffasern kann somit im Sinne der Erfindung bereits nach der Karbonisierung 41 abgeschlossen sein oder alternativ zusätzlich noch eine Oberflächenbehandlung 42 und/oder eine

Schlichtebehandlung 43 umfassen. Die Kohlenstofffasern 10 können dabei nach der Herstellung 1 insbesondere aktiviert sein, das heißt, sie weisen eine hohe Oberflä- chenspannung und dadurch eine gesteigerte Reaktivität auf. Dies wird in Schritt b) 2 des erfindungsgemäßen Verfahrens ausgenutzt, in dem ein Matrixwerkstoff 11 (nicht abgebildet) auf die unveränderten Kohlenstofffasern 10 aufgebracht wird. Unverändert bedeutet dabei im Sinne der Erfindung insbesondere, dass zwischen Herstellung 1 der Kohlenstofffasern 10 und Aufbringen 2 des Matrixwerkstoffs 11 kein weiterer Verarbeitungsschritt durchgeführt wird. Die Anbindung des Matrixwerkstoffs 11 an die aktivierten Kohlenstofffasern 0 ist dadurch besonders effizient, wodurch ein besonders stabiles Faserverbundhalbzeug 12 (nicht abgebildet) hergestellt werden kann. Mögliche Schädigungen der Kohlenstofffasern 10, die bei einem Aufwickeln der Fasern vor der Weiterverarbeitung zu Faserverbundhalbzeugen 12 auftreten können, werden so vermieden. Bevorzugt kann dabei Schritt b) 2 des Verfahrens, das Aufbringen 2 des Matrixwerkstoffs 11 auf die Kohlenstofffasern 10, direkt anschließend an Schritt a) 1 , die Herstellung 1 der Kohlenstofffasern 10 durchgeführt werden. Dies ermöglicht beispielsweise eine Nutzung der Abwärme der Herstellung 1 der Kohlenstofffasern 10, die durch diese selbst bereitgestellt werden kann und zum Aufschmelzen eines Matrixwerkstoffs 11 verwendet werden kann. Im Anschluss an Schritt b) 2 kann das hergestellte Faserverbundhalbzeug 12 noch in einem optionalen Schritt c) 3 abgelegt werden, beispielsweise auf eine Wickelrolle 23 (nicht abgebildet) aufgewickelt werden. Dadurch kann beispielsweise der Transport des herge- stellten Faserverbundhalbzeuges 12 zu seinem Weiterverarbeitungsort erleichtert werden.

Fig. 3a und 3b zeigen zwei Ansichten einer Vorrichtung zum Ausführen einer Ausgestaltungsform eines erfindungsgemäßen Verfahrens. In der gezeigten Vorrichtung wird ein als Tape ausgebildetes Faserverbundhalbzeug 12 aus Kohlenstofffasern 10 und einem thermoplastischen Matrixwerkstoff 11 hergestellt. Selbstverständlich sind die beschriebenen Eigenschaften und Vorteile des erfindungsgemäßen Verfahrens auch auf andere Arten und/oder Formen des Faserverbundhalbzeuges 12 übertragbar. Dabei ist in Fig. 2a eine Seitenansicht, in Fig. 2b eine Draufsicht der Vorrichtung abgebildet. In einer Kohlenstofffaserquelle 30 wird der Schritt a) 1 des erfindungsgemäßen Verfahrens, das Herstellen 1 der Kohlenstofffasern 10, durchgeführt. Dabei können beispielsweise durch Karbonisierung aus einem Ausgangsmaterial zur Herstellung von Kohlenstofffasern derartige Kohlenstofffasern 10 mit graphitartig angeordnetem Kohlenstoff hergestellt werden. Insbesondere in Fig. 3b ist deutlich sichtbar, dass die Kohlenstofffasern 10, bedingt durch ihre Herstellung 1 , bereits gespreizt vorliegen, das heißt, sie sind nebeneinander angeordnet. Die Herstellung eines Faserverbundhalbzeuges 12, das als Tape oder Band mit unidirektional angeordneten Kohlenstofffasern 10 ausgebildet ist, ist dadurch deutlich vereinfacht. Ein nachträgliches Aufspreizen der Kohlenstofffasern 10 vor der Herstellung des Faserverbundhalbzeuges 12 ist nicht nötig. Lediglich Umlenkrollen 22 (nur in Fig. 2a abgebildet) werden eingesetzt, um die Kohlenstofffasern 10 zu Herstellung des als Tape ausgebildeten Faserverbundhalbzeuges 12 planar in einer Ebene anzuordnen. Die Kohlenstofffasern 10 liegen nach ihrer Herstellung 1 aktiviert vor. Dies bedeutet, dass sie eine hohe Oberflächenspannung aufweisen und dadurch sehr reaktiv sind. Dies wird dahingehend ausgenützt, dass auf die unveränderten, das heißt keinem weiteren Verarbeitungsschritt unterzogenen, Kohlenstofffasern 0 unmittelbar anschließend in Schritt b) 2 des erfindungsgemäßen Verfahrens ein Matrixwerkstoff 11 aufgebracht wird. Eine Anbindung des Matrixwerkstoffs 11 an die Kohlenstofffasern 10 ist dadurch besonders effektiv. Das resultierende Faserverbundhalbzeug 12 erhält dadurch eine besonders hohe Performance. Für das Aufbringen 2 des Matrixwerkstoffs 1 wird in der gezeigten Vorrichtung ein Extruder 20 eingesetzt. Durch einen Extruder 20 ist insbesondere eine besonders gleichmäßige Bereitstellung des thermoplastischen Matrixwerkstoffes 11 bei gleichzeitig hohen Temperaturen und hohem Druck ermöglicht. Der Extruder 20 weist eine Breitschlitzdüse 21 auf, wie besonders in Fig. 2b gezeigt ist. Dadurch ist es möglich, gleichmäßig über die gesamte Breite des herzustellenden Faserverbundhalbzeuges 12 den Matrixwerkstoff 1 1 auf die Kohlenstofffasern 10 aufzubringen. Selbstverständlich ist es auch möglich, nur auf einen Teil der Breite des herzustellenden Faserverbundhalbzeuges 12 den Mat- rixwerkstoff 11 auf die Kohlenstofffasern 10 aufzubringen. Durch diese insbesondere direkt an die Herstellung 1 anschließende Aufbringung 2 des Matrixwerkstoffs 11 ist darüber hinaus auch eine Nutzung der Abwärme der Herstellung 1 der Kohlenstofffasern 10 ermöglicht, wobei die Abwärme insbesondere durch die Kohlenstofffasern 10 selbst bereitgestellt werden kann. Besonders in der gezeigten Ausgestaltungsform, in der ein thermoplastischer Matrixwerkstoff 11 eingesetzt wird, können dadurch Energie und somit auch Kosten eingespart werden. Nach dem Aufbringen 2 des Matrixwerkstoffes 11 wird in der gezeigten Ausbildungsform das Faserverbundhalbzeug 12 in einem weiteren Schritt c) 3 abgelegt, insbesondere auf eine Wickelrolle 23 aufgewickelt. Dies ist hier nur schematisch dargestellt, selbstverständlich ist vor dem Auf- wickeln 3 eine Abkühlung, Trocknung und/oder Aushärtung des hergestellten Faserverbundhalbzeuges möglich. Zusammenfassend kann durch ein erfindungsgemäßes Verfahren ein Faserverbundhalbzeug 12 zur Verfügung gestellt werden, dass sich durch eine kürzere und dadurch kostengünstigere Prozesskette in der Herstellung und durch eine bessere Anbindung des Matrixwerkstoffs 11 an die Kohlenstofffasern 10 auszeichnet.

Bezugszeichenliste

1 Schritt a), Herstellung der Kohlenstofffasern

2 Schritt b), Aufbringen des Matrixwerkstoffes

3 Schritt c), Ablegen des Faserverbundhalbzeuges

10 Kohlenstofffasern

11 Matrixwerkstoff

12 Faserverbundhalbzeug

20 Extruder

21 Breitschlitzdüse

22 Umlenkrolle

23 Wickelrolle

30 Kohlenstofffaserquelle

40 Oxidation

41 Karbonisierung

42 Oberflächenbehandlung

43 Schlichtebehandlung

50 Aufspulen