Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A HOLLOW VALVE FOR INTERNAL COMBUSTION ENGINES
Document Type and Number:
WIPO Patent Application WO/2020/182387
Kind Code:
A1
Abstract:
The invention relates to a method for producing a valve body of a hollow valve. Said method comprises the following steps: providing a workpiece, blank or semi-finished product, spin extruding the workpiece to produce a preform which comprises a cup having a hollow shape formed by the cup wall. The invention also relates to a hollow valve produced by means of this method.

Inventors:
MATTHIAS THORSTEN (DE)
WOLKING ANTONIUS (DE)
KNUST JOHANNES (DE)
Application Number:
PCT/EP2020/053348
Publication Date:
September 17, 2020
Filing Date:
February 10, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FEDERAL MOGUL VALVETRAIN GMBH (DE)
International Classes:
B21D51/10; B21D22/16; B21D51/16; B21D53/84; B21H1/18; B21H7/00; B21K1/22; B23P15/00; F01L3/14
Domestic Patent References:
WO2019001781A12019-01-03
WO2020004286A12020-01-02
Foreign References:
DE102015118495A12017-05-04
EP2811126A12014-12-10
GB461940A1937-02-26
EP2325446A12011-05-25
EP0898055A11999-02-24
US6006713A1999-12-28
CN104791040A2015-07-22
JPH07102917B21995-11-08
US20090020082A12009-01-22
DE102010051871A12012-05-24
Attorney, Agent or Firm:
BECKER & KURIG PARTNERSCHAFT PATENTANWÄLTE MBB (DE)
Download PDF:
Claims:
Ansprüche

1. Verfahren zur Herstellung eines Ventilkörpers (16, 18) eines Hohlventils, umfassend die folgenden Schritte:

Bereitstellen eines Werkstücks (Rohlings (2) oder Halbzeugs (4));

Bohrungsdrücken des Werkstücks (2, 4) zum Erzeugen einer Vorform (6) die einen Napf mit einer durch die Napfwand (14) gebildeten Hohlform (8) aufweist.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass

das Bohrungsdrücken durchgefuhrt wird, mittels eines Formstempels (22), der mit einer axialen Kraft (21) gegen das Werkstück (2, 4) gedrückt wird und

wenigstens einer Drückrolle (24, 25, 26), die mit einer radialen Kraft (23) auf das Werkstück (2, 4) gedrückt wird. 3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass

die Vorform (6) einen V entilkopf/-teller (12) und einen Ventilschaft (20) mit, im Vergleich zum Ventilteller, reduzierten S chaftdurchmesser aufweist.

4. Verfahren gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass

die wenigstens eine Drückrolle (24) gegenüber dem Formstempel (22) so angeordnet ist, dass ihre radiale Kraft (23) zwischen der Spitze und einem dicksten Durchmesser angreift oder dazwischen.

5. Verfahren gemäß einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Werkstück (2, 4) in einer W erkstückhalterung (32) an einer Spindel aufgenommen wird und um seine Längsachse rotiert und sich der Formstempel (22) synchron zur Spindel dreht.

6. Verfahren gemäß einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die wenigstens eine Drückrolle (24) und der Formstempel (22) synchron eine axiale

Bewegung (21) ausfuhren.

7. Verfahren gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Verfahren als Kalt-, Halbwarm- oder W armumformung ausgeführt wird.

8. Verfahren gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der S chaftdurchmesser mittels Necking (Einhalsen), Rundkneten, Einziehen, Drückwalzen oder Axial- V orschub-Querwalzen der Vor form (6) nach dem Bohrungsdrücken in einem weiteren Prozessschritt weiter reduziert wird.

9. Verfahren gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Querschnitt der Hohlform (8) kreisrund ist oder ein Mitnehmerprofil wie Gleichdick, Ellipse, Polygon oder axialgerichtete Vielkeil- und V erzahnungsprofi 1 e aufweist.

10. Verfahren gemäß einem der vorigen Ansprüche, dadurch gekennzeichnet, dass nach dem Bohrungsdrücken in einem weiteren Prozessschritt das Formen des Ventilkopfes (12) durch Fließpressen oder Schmieden der Ventilkopf (12) erfolgt.

1 1. Hohlventil umfassend einen Ventilkörper, hergestellt unter Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 10.

Description:
VERFAHREN ZUR HERSTELLUNG EINES HOHL VENTILS FÜR

VERBRENNUNGSMOTOREN

Gebiet der Erfindung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Hohlventilen, bzw. Hohlraumventilen, für V erbrennungsmotoren und damit hergestellte Hohlventile.

Stand der Technik

Ein- und Auslassventile sind bei V erbrennungsmotoren thermisch und mechanisch hoch beanspruchte Bauteile. Eine ausreichende Kühlung ist daher notwendig, um eine dauerhafte Funktionsfähigkeit der Ventile sicherzustellen. Hierbei sind Hohltellerventile gegenüber Vollschaftventilen und Hohlschaftventilen (d. h. ein Hohlventil bei dem lediglich im Schaft ein Hohlraum vorgesehen ist) vorteilhaft, da ein Hohlraum sowohl im Schaft als auch im Ventilkopf vorhanden ist, wodurch eine verbesserte interne Kühlung - mittels eines Kühlmediums, z. B. Natrium - erzielt werden kann. Weitere Vorteile sind ein geringeres Gewicht, die Vermeidung von Hot- Spots (im V erbrennungsmotor) und eine C02- Reduzierung.

Hergestellt werden Hohlventile üblicherweise durch eine Kombination verschiedener Verfahren, wie z. B. Schmieden, Drehen und Schweißen. Hierbei ist insbesondere das Drehen oder Fräsen des Hohlraumes kostenintensiv. Auch sollten Schweißpunkte an der Tellerfläche oder an anderen betriebsbedingt kritischen Stellen vermieden werden. Ein weiterer Nachteil bekannter Verfahren ist, dass oftmals eine große Anzahl von Prozessschritten notwendig ist, wie z. B. in EP 2325446 Al. Zur kostengünstigen Herstellung großer Stückzahlen sind jedoch schnelle Umformprozesse vorteilhaft. Beispielsweise beschreiben die EP 0898055 Al und die US 006006713 A ein Hohltellerventil, das durch Schließen eines hohlen Rohlings mittels Schweißens (Reibschweißen, Laserschweißen) oder Panzerung hergestellt wird. Weitere Druckschriften, die sich mit der Herstellung von Hohlraumventilen befassen sind CN 104791040 A und JP 1995102917.

Bei dieser Fertigung treten aber aufgrund der hochlegierten Ventilstähle große Verschleißprobleme auf. Bei der Herstellung der Ventilvorform entsteht ein sehr hoher Verschleiß am Werkzeug, insbesondere dem Formstempel. Dies bedeutet eine kurze Standzeit und hohe Werkzeugkosten.

Bekannte Verfahren zur Herstellung von Hohlraumventilen mit nicht gleichmäßiger Schaftinnengeometrie sind in US 20090020082 durch die Verwendung von Einsätzen über die gebohrte Tellerfläche und in DE 102010051871 Al durch die Erzeugung durch ein ECM- Verfahren gezeigt.

Eine Aufgabe der vorliegenden Erfindung ist es also ein Herstellungsverfahren für Hohlventile bzw. für einen Ventilkörper für Hohlventile bereitzustellen, welches die genannten Nachteile nicht aufweist und gleichzeitig eine hohe Produktivität, gute Materialausnutzung und schnelle Umformprozesse aufweist.

Eine weitere Aufgabe der vorliegenden Erfindung ist es, das Herstel lungsverfahren so zu adaptieren, dass der Verschleiß am Werkzeug verringert wird.

Zusammenfassung der Erfindung

Erfindungsgemäß wird das Problem gelöst durch ein Verfahren zur Herstellung eines Ventilkörpers eines Hohlventils gemäß den Merkmalen des angehängten Anspruchs 1.

Das Verfahren zur Herstellung eines Ventilkörpers eines Hohlventils umfasst die Schritte des Bereitstellens eines Werkstücks, d. h. Rohlings oder Halbzeugs und das Bohrungsdrücken des Werkstücks zum Erzeugen einer Vorform die einen Napf mit einer durch die Napfwand gebildeten Hohlform aufweist.

Gemäß einem Aspekt der vorliegenden Erfindung kann das B ohrungsdrücken durchgeführt werden, mittels eines Formstempels, der mit einer axialen Kraft gegen das Werkstück gedrückt wird und wenigstens einer Drückrolle, die mit einer radialen Kraft auf das

Werkstück gedrückt wird.

Gemäß einem Aspekt der vorliegenden Erfindung kann die Vor form einen Ventilkopf/-teller und einen Ventilschaft mit, im Vergleich zum Ventilteller, reduzierten Schaftdurchmesser aufweisen.

Gemäß einem Aspekt der vorliegenden Erfindung kann die wenigstens eine Drückrolle gegenüber dem Formstempel so angeordnet werden, dass ihre radiale Kraft zwischen der Spitze und einem dicksten Durchmesser angreift oder dazwischen.

Gemäß einem Aspekt der vorliegenden Erfindung kann das Werkstück in einer

W erkstückhalterung an einer Spindel aufgenommen werden und um seine Längsachse rotieren und sich der Formstempel synchron zur Spindel drehen.

Gemäß einem Aspekt der vorliegenden Erfindung können die wenigstens eine Drückrolle und der Formstempel synchron eine axiale Bewegung ausfuhren.

Gemäß einem Aspekt der vorliegenden Erfindung kann das Verfahren als Kalt-, Halbwarm oder W armumformung ausgeführt werden.

Gemäß einem Aspekt der vorliegenden Erfindung kann der S chaftdur chme ss er mittels Necking (Einhaltsen), Rundkneten, Einziehen, Drückwalzen oder Axial- Vorschub- Querwalzen der Vorform nach dem B ohrungsdrücken in einem weiteren Prozessschritt weiter reduziert werden. Gemäß einem Aspekt der vorliegenden Erfindung kann der Querschnitt der Hohlform kreisrund sein oder ein Mitnehmerprofil wie Gleichdick, Ellipse, Polygon oder

axialgerichtete Vielkeil- und V erzahnungsprofile aufweisen.

Gemäß einem Aspekt der vorliegenden Erfindung kann nach dem Bohrungsdrücken in einem weiteren Prozessschritt das Formen des Ventilkopfes durch Fließpressen oder Schmieden der Ventilkopf erfolgen.

Ein zusätzliches Verfahren zur Herstellung eines Ventilkörpers eines Hohlventils umfasst die Schritte des Bereitstellens eines Werkstücks, d. h. eines Rohlings oder Halbzeugs und eines Formstempels und des Einbringens einer Schutzschicht zwischen Werkstück und

Formstempel, sowie Druckumformen des Werkstücks zum Erzeugen einer Vorform.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann vor dem Einbringen einer Schutzschicht ein Schritt des Herstellens einer Kavität in dem Werkstück stattfinden, in die die Schutzschicht eingebracht wird.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann das Herstellen der Kavität und/oder das Druckumformen mittels W armumformung geschehen.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann die Schutzschicht aus Pulver bestehen.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann das Pulver aus Ti-Fe bestehen.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann das Pulver auf 1050 - 1200 °C erwärmt werden.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann die Schutzschicht ein Pulver oder eine Pulverkombination zur Erhöhung der Kühlwirkung eines Ventiltellerbodens des Ventilkörpers umfassen, welches sich mit dem Ventilteller zu einer Kühlschicht verbindet. Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann durch das Druckumformen oder nach dem Druckumformen in einem weiteren Prozesschritt ein Ventilschaft und ein

Ventilkopf mit einem Ventilteller und einem Ventiltellerboden, insbesondere durch

Fließpressen oder Schmieden geformt werden.

Gemäß einem Aspekt dieses zusätzlichen Verfahrens kann der Schaftdurchmesser mittels Necking (Einhaltsen), Rundkneten, Einziehen, Drückwalzen oder Axial- Vorschub- Querwalzen der Vorform mit oder ohne Dom nach dem B ohrungsdrücken in einem weiteren Prozesschritt durch Kalt-, Halbwarm- oder W armum formung weiter reduziert werden.

Erfindungsgemäß wird das Problem weiterhin gelöst durch Hohlventil, welches einen Ventilkörper umfasst, der unter Verwendung des vorstehenden Verfahrens hergestellt wurde.

Kurze Beschreibung der Zeichnung

Im Folgenden werden beispielhafte Ausführungsformen der Erfindung unter Bezug auf die Figuren genauer beschrieben, wobei

Figuren la - lf verschiedene Zwischenschritte der erfmdungsgemäßen Herstellung eines Ventilkörpers eines Hohlventils (dargestellt in Fig. Id bzw. Fig. lf) aus einem Rohling (dargestellt in Fig. la);

Figuren 2a, 2b, 2b einen V erfahrensschritt des B ohrungsdrückens in einer 3D-Ansicht; und

Figur 3 eine Anwendung einer Schutzschicht während der Herstellung

zeigen.

Im Folgenden werden sowohl in der Beschreibung als auch in der Zeichnung gleiche Bezugszeichen für gleiche oder ähnliche Elemente oder Komponenten verwendet. Es ist zudem eine Bezugszeichenliste angegeben, die für alle Figuren gültig ist. Die in den Figuren dargestellten Ausführungen sind lediglich schematisch und stellen nicht notwendigerweise die tatsächlichen Größenverhältnisse dar. Ausführliche Beschreibung der Erfindung

In den Figuren 1A bis 1F sind, in Schnitansichten, verschiedene Zwischenstufen des erfindungsgemäßen Herstellungsverfahrens dargestellt, wobei auch optionale bzw. bevorzugte Herstellungsschrite/Zwischenstufen dargestellt sind.

Bevorzugt dient als Ausgangspunkt, siehe Fig. la, ein Rohling 2 aus einem dem Fachmann bekannten Ventilstahl. Der Rohling weist eine zumindest teilweise zylindrische Form auf, bevorzugt eine kreiszylindrische Form, entsprechend der Kreisform des herzustellenden Ventilkörpers bzw. Ventils.

Der Rohling 2 wird in ein in Fig. lb dargestelltes napfförmiges Halbzeug (bzw. Werkstück) 4 umgeformt. Das Halbzeug 4 in Form eines Napfes umfasst einen Bodenabschnitt 10, aus dem später ein Ventilkopf (bzw. Ventilteller) 12 gebildet wird, und eine rohrförmige Wand (bzw. ringförmige Wand) 14, die einen zylindrischen, bevorzugt kreiszylindrischen, Hohlraum 8 des napfförmigen Halbzeugs 4 umgibt und aus der später ein Ventilschaft 20 gebildet wird. Hierbei kann während der nachfolgenden Umformschrite eventuell Material zwischen Bodenabschnitt 10 und rohrförmiger Wand 14 fließen.

Stattdessen kann das napfförmige Halbzeug 4 direkt bereitgestellt werden; das Verfahren startet dann also mit Bereitstellen des in Fig. lb dargestellten napfförmigen Halbzeugs 4.

In einem anschließenden Umformschritt wird aus dem Bodenabschnitt 10 der Ventilkopf 12 geformt. Eine dadurch erhaltene Vorform 6 des Ventilkörpers ist in Fig. lc dargestellt.

Sowohl das Umformen des Rohlings 2 in ein napfförmiges Werkstück 4 als auch das Formen des Ventilkopfs 12 aus dem Bodenabschnitt 10 kann z. B. durch ein Warm- oder Kaltumformverfahren durchgefuhrt werden. Bevorzugt wird Fließpressen oder Schmieden verwendet. Beim Fließpressen wird ein Stempel in den Rohling 2 bzw. das Halbzeug 4 gepresst, um den Hohlraum 8 bzw. den Ventilkopf 12 zu formen, d. h. es handelt sich im Wesentlichen um (N apf-)Rück wärtsfl i eßpressen bzw. Querfließpressen. Die Vorform 6 kann auch in einem einzigen Umformschritt, z. B. Schmieden oder Fließpressen, direkt aus dem Rohling 2 geformt werden.

Im nächsten Bearbeitungsschritt, von Fig. lc nach Fig. Id, wird eine axiale Länge der rohrförmigen Wand 14 vergrößert. , Axial 4 bezieht sich hier auf die durch die rohrförmige Wand 14 (d. h. den späteren Schaft) definierte Richtung, also auf die (Mittel-)Achse der rohrförmigen Wand; , radial 4 ist entsprechend eine Richtung orthogonal zur axialen Richtung. Eine Länge der rohrförmigen Wand 6 wird also in axialer Richtung gemessen.

Hierzu kann z. B. Drückwalzen bzw. Zylinderdrückwalzen über einem Drückwalzdom 22 durchgeführt werden. Beim Drückwalzen rotiert die Vorform und es wird mindestens eine, durch Reibschluss mitrotierende, Drückwalze 24, 26 gegen die Außenseite der rohrförmigen Wand gedrückt und in axialer Richtung bewegt, so dass es zu einer plastischen Formänderung kommt. Die damit einhergehende inkrementelle Umformung fuhrt zu einer vorteilhaften Kaltverfestigung des bearbeiteten Stahls. Insgesamt verringert sich die Wanddicke der rohrförmigen Wand während sich gleichzeitig die axiale Länge der rohrförmigen Wand vergrößert. Die mindestens eine Drückwalze wird gegebenenfalls mehrmals in axialer Richtung verfahren bis die gewünschte Längenzunahme bzw. W anddickenverringerung erreicht ist. Dabei wird der radiale Abstand der mindestens einen Drückwalze von der Achse der rohrförmigen Wand bei aufeinanderfolgenden Durchgängen sukzessive verringert.

Das Drückwalzen führt also, aufgrund des eingesetzten Drückwalzdoms 22, im Wesentlichen zu einer Längung der rohrförmigen Wand 14, wobei deren Außendurchmesser ein wenig abnimmt (entsprechend der Abnahme der Wanddicke). Falls eine größere Abnahme des Außendurchmessers erwünscht ist, kann auch ein Drückwalzen, mit mehreren Drückwalzen, ohne Drückwalzdom erfolgen.

Falls Abmessungen der Vorform 6 und Parameter des Drückwalzens so gewählt sind, dass die durch das Drückwalzen erreichte Länge der rohr förmigen Wand 14, der durch das Drückwalzen erreichte Außendurchmesser und ein Innendurchmesser der rohrförmigen Wand 14 der Vorform (der einem Durchmesser des Drückwalzdoms entspricht) den gewünschten Abmessungen des herzustellenden Hohlventils entsprechen, kann auf diese Weise ein Ventilkörper 16 für ein Hohlschaftventil erhalten werden (vgl. Fig. Id, wobei angemerkt sei, dass die in den Figuren gezeigten relativen Abmessungen nicht den tatsächlichen relativen Abmessungen entsprechen müssen, insbesondere ist in Fig. Id der Durchmesser des Ventiltellers/-kopfes im Verhältnis zum Schaftdurchmesser kleiner als bei einem üblichen tatsächlichen Ventil dargestellt, ebenso ist der S chaftdurchmesser im Verhältnis zur Länge des Schaftes 20 größer als üblich dargestellt).

Abschließend (von Fig. Id über Fig. le nach Fig. lf) wird, optional, der Außendurchmesser der rohrförmigen Wand 14 reduziert, um einen fertiggestellten Ventilkörper 18 für ein Hohltellerventil zu erhalten, dessen Ventilschaft 20 einen vorbestimmten Außendurchmesser aufweist, d. h. einen gewünschten Zieldurchmesser aufweist; vgl. Fig. lf. Dieser Umformschritt erfolgt bevorzugt ohne eingesetzten Dorn, damit der Durchmesser effektiv verkleinert werden kann. Dieser Schritt führt, neben einer Verringerung des Außendurchmessers, auch zu einer weiteren Längung der rohrförmigen Wand 14 und, falls ohne Dom durchgeführt, zu einer Zunahme der Wanddicke der rohrförmigen Wand 14. Die Wanddicke wäre also gegebenenfalls im vorhergehenden Drückwalzschritt etwas kleiner einzustellen, um unter Berücksichtigung der Dickenzunahme im abschließenden Schritt eine bestimmte Wanddicke, und damit bei gegebenen Außendurchmesser D einen bestimmten Innendurchmesser, zu erhalten.

Das Reduzieren des Außendurchmessers der rohrförmigen Wand 14 kann durch Rundkneten oder Einziehen („Necking“, Durchmesserverminderung durch Einschnüren) erfolgen, wobei Rundkneten bevorzugt wird. Beim Rundkneten ist wichtig, dass nach dem Rundkneten zur Reduzierung des Außendurchmessers der rohrförmigen Wand 14 kein weiterer Umformschritt des Ventilkörpers 18 für ein Hohltellerventil statt findet, da dies die durch das Rundkneten erhaltenen positiven Materialeigenschaften verschlechtern würde. Rundkneten ist also in diesem Fall der abschließende Umformschritt.

Beim Rundkneten handelt es sich um ein inkrementeiles Druckumformverfahren, bei dem in schneller Abfolge von verschiedenen Seiten in radialer Richtung auf das zu bearbeitende Werkstück eingehämmert wird. Durch den dadurch entstehenden Druck , fließt 4 das Material sozusagen und die Materialstruktur wird nicht durch Zugspannungen verzerrt. Bevorzugt wird Rundkneten als Kaltumformverfahren, d. h. unterhalb der Rekristallisationstemperatur des bearbeiteten Materials, ausgeführt. Wesentlicher Vorteil der Verwendung von Rundkneten als abschließenden Umformschritt ist also, dass beim Rundkneten durch die radiale Krafteinleitung Druckspannungen induziert werden, wodurch das Auftreten von Zugspannungen, welche die Anfälligkeit für Risse erhöhen verhindert wird, insbesondere trifft dies für die Randschichten des Hohlschaftes zu. Das Rundkneten wirkt somit mit dem vorhergehenden, ebenfalls inkrementeilen Umformverfahren des Drückwalzens auf vorteilhafte Weise zusammen, so dass optimale Materialeigenschaften, z. B. Festigkeit, erreicht werden.

Weitere Vorteile des Rundknetens als abschließenden Umformschritt - gegenüber Ziehverfahren oder „Necking“ (Einziehen) - sind durch eine bessere erreichbare Oberflächenqual ität und durch eine relativ höhere Durchmesserreduzierung des Schaftes je Schritt gegeben. Aufgrund der hohen erreichbaren Oberflächenqualität und dadurch, dass die einhaltbaren Toleranzen beim Rundkneten sehr klein sind, ist eine Nachbearbeitung des Ventilschaftes meist nicht notwendig. Mit Freiformverfahren bzw. Stauchverfahren - wie z. B. Necking - lässt sich im Allgemeinen nur eine schlechtere Oberflächenqualität bzw. Toleranzeinhaltung erreichen. Dementsprechend sollte nach dem Rundkneten zur Reduzierung des Außendurchmessers der rohrförmigen Wand insbesondere kein weiterer Verfahrensschritt mittels eines Ziehverfahrens oder Neckings erfolgen.

Um den Herstellungsprozess des Hohlventils abzuschließen, kann weiterhin ein Kühlmedium, z. B. Natrium, über das nach außen offene Ende des Ventilschaftes in den Hohlraum des Ventilkörpers eingefüllt werden und anschließend dieses Ende des Ventilschaftes verschlossen werden, z. B. durch ein V enti lschaftendstück, welches, etwa mittels Reibschweißen oder einem anderen S chweißverfahren, angebracht wird (in den Figuren nicht dargestellt). Das Reduzieren des Außendurchmessers kann in mehreren Teilschritten erfolgen (ein Zwischenschritt ist beispielsweise in Fig. le dargestellt), wobei die einzelnen Teilschritte jeweils wahlweise mit oder ohne Dom erfolgen können (zu Beginn eines Teilschritts kann der Durchmesser eines Doms kleiner als der Durchmesser des Hohlraums sein); auch kann ein Durchmesser der Dome in aufeinander folgenden Teilschritten verringert werden.

Fig. 2a, 2b und 2c stellen den V erfahrensschritt des Bohrungsdrückens, das zwischen Fig. la oder Fig. lb und Fig. lc stattfindet, in einer 3D- Ansicht dar.

In einem optionalen ersten Schritt wird in den Rohling 2 eine Kavität eingebracht, an der Stelle des Rohlings 2, an welcher der spätere Hohlraum 8 entstehen soll. Dies dient dazu den Formstempel 22 an den Rohling 2 anzulegen und zu zentrieren oder den folgenden Produktionsschritt zu vereinfachen. Somit entsteht ein Werkstück als Halbzeug 4 mit Kavität, wie in Fig. lb dargestellt. Das Werkstück für das Bohrungsdrücken kann somit ein unbearbeiteter Rohling 2 oder ein Halbzeug 4 sein.

Das Werkstück 2, 4 wird wie in Fig. 2a gezeigt in eine W erkstückhalterung 32 eingesetzt und in einer Spindel einer Drehbank oder Drehautomaten eingespannt.

Der eigentliche Schritt des Bohrungsdrückens beginnt mit dem Ansetzen des Formstempels 22 (und der Drückrollen 24, 25, 26) zentrisch auf die Stirnseite 3 des Werkstücks 2, 4, wie in Fig. 2a und 2b (in Vergrößerung) dargestellt. Dabei kann direkt vom Stangenmaterial 2 ausgehend eine Vorform 6 in einem einzigen Prozessschritt gefertigt werden. Diese Vorform kann dann einen Ventilteller 12 und einen Ventilschaft 20 mit, im Vergleich zum Ventilteller reduziertem Schaftdurchmesser, aufweisen. Der Schaftdurchmesser dieser Vorform 6 kann größer sein, als der des fertigen Ventils.

Zur Herstellung der Vorform 6 versetzt die Spindel das Werkstück 2, 4 in Drehung 33 um seine Längsachse. Der Formstempel 22, welcher auch als Drückstempel oder Drückwalzdom bezeichnet werden kann, kann dabei mit dem Werkstück 2, 4 mitrotieren, z. B. durch Reibschluss oder durch einen Antrieb. Alternativ kann der Formstempel 22 auch nicht rotieren, sondern sich lediglich axial bewegen. In letzterem Fall wäre eine hohe Wärmeentwicklung zu erwarten. Wenn die drei zueinander äquidistant angeordneten Drückwalzen 24, 25, 26 (Gleichlaufdrückwalzen) durch eine aufzubringende radiale Kraft 23 gegen die Seiten wand 14 des Werkstücks 2, 4 gedrückt werden, versetzen sich diese aufgrund von Reibschluss in Drehung 27 um ihre Achsen (nicht um die Drehachse der Spindel 33). Die Rotationsrichtung 33 des Werkstücks 2, 4, zusammen mit W erkstückhalterung 32 und (optional) Formstempel 22 und die Rotationsrichtung 27 der Drückwalzen 24, 25, 26 sind in der Figur durch gekrümmte Pfeile angedeutet.

Die Anordnung aus Formstempel 22 und den Drückwalzen 24, 25, 26 werden gleichförmig, synchron in axialer Richtung in Richtung der Spindel bewegt. Alternativ kann das Werkstück 2, 4 gegen die W erkzeuganordnung bewegt werden. Dadurch kommt es zu einer plastischen Verformung des Werkstücks 2, 4. Die Drückwalzen und der axial wirkende Formstempel arbeiten gleichzeitig. Der Formstempel 22 dringt dabei zentrisch in das Werkstück ein und bildet eine rohrförmigen Wand 14 eines Napfes aus, mit einem Innendurchmesser, der dem Außendurchmesser des Formstempels 22 entspricht. Der äußere Durchmesser der rohrförmigen Wand 14 wird durch die Drückwalzen 24, 25, 26 begrenzt. Zusätzlich führen diese gleichzeitig einen Schritt des Abstreckdrückens/-walzens durch. Das überschüssige, verdrängte Material des Werkstücks 2, 4 fließt ab, so dass die Länge der rohrförmigen Wand 14 in axialer Richtung zunimmt (Rückwärts fließpressen eines Napfs - Napffließpressen. Die translatorische Bewegungsrichtung 21 des Formstempels 22 und der Drückwalzen 24, 25 26 sind in der Figur durch Pfeile angedeutet. Die Fließrichtung des Materials der rohrförmigen Wand 14 ist entgegengesetzt.

Vorteilhafterweise werden durch das vorgestellte Verfahren des B ohrungsdrückens die Vorteile des Napffließpressens und Drückwalzens in einem Schritt kombiniert. Mit anderen Worten: Die Schritte des Fließpressens der Vorform 6 und des Abstreckens der Vorform 6 werden eingespart und stattdessen in einem Schritt des B ohrungsdrückprozes ses vereint.

In den Figuren 2 sind beispielhaft drei Drückwalzen 24, 25 26 dargestellt, ebenso ist die Verwendung nur einer, zwei oder von mehr als drei Drückwalzen möglich. Werden mehrere Drückwalzen verwendet, so sind diese bevorzugt regelmäßig über den Umfang verteilt; d. h. bei zwei Drückwalzen beträgt der Winkel (in Umfangrichtung) zwischen den Drückwalzen in etwa 180°, bei drei Drückwalzen in etwa 120°, usw. Dadurch wird die Vorform 6 insbesondere auch in allen Richtungen abgestützt und Querkräfte auf das Werkstück 2, 4 vermieden.

In einer erweiterten Anordnung (in den Figuren nicht dargestellt) bestehen zwischen den Drückwalzen 24, 25, 26 ein radialer und ein axialer Versatz. Radialer Versatz bedeutet, dass der radiale Abstand der Drückwalzen 24, 25, 26 von der Mittelachse unterschiedlich ist. Der axiale Versatz der Drückwalzen 24, 25, 26 führt dazu, dass die dem Werkstück nähere Drückwalze 24 zuerst auf das Werkstück 2, 4 trifft und dieses bearbeitet, während weiter entfernt liegende Drückwalzen 25, 26 später das Werkstück bearbeiten, sprich, die Stellen, die bereits durch die vorherige Drückrolle 24 bearbeitet wurde. So kann die Dicke der rohrförmigen Wand 14 stufenweise abgestreckt werden. Demzufolge muss die dem Werkstück am nächsten liegende Drückwalze 24 den größten radialen Abstand von der Mittelachse aufweisen, für den ersten Abstreckschritt, gefolgt derjenigen mit dem zweitgrößtem radialen Abstand, usw. Auf diese Weise kann das Verfahren beschleunigt werden, da mehrere Radius- bzw. W anddickenreduzierungsschritte in einem Durchgang erfolgen können. Statt einem radialen Versatz von Drückwalzen gleichen Durchmessers können auch Drückwalzen mit unterschiedlichen Durchmessern Verwendung finden.

Der Verzicht auf einen axialen Versatz der Drückwalzen 24, 25, 26 (in diesem Fall wäre ein radialer Versatz sinnlos), verringert hingegen Quer- und Torsionskräfte auf das Werkstück, die durch axial versetzt drückende Rollen entstehen würde.

Alternativ können auch mehrere Sätze (nicht dargestellt) von Drückwalzen angeordnet werden. Die Drückwalzen eines jeden Satzes 24, 25, 26 sind dabei ohne Versatz angeordnet. Die Sätze sind in axialer Richtung beabstandet und jeder Satz bewirkt eine Teilabstreckung des Werkstücks 2, 4. Dadurch werden Quer- und Torsionskräfte auf das Werkstück im Vergleich zum Drückwalzen mit radialem/axialem Versatz verringert/ vermieden und dennoch der Vorteil von stufenweisem Abstrecken und geringeren Fließkräften im Material des Werkstücks realisiert.

Das Bohrungsdrücken kann als Ergebnis ein Halbzeug 4 mit einem Napf, der einen Hohlraum 8 ausbildet, haben (siehe Fig. lb). Jedoch kann während dieses Bearbeitungsschritts auch sogleich der Ventilkopf 12 hergestellt werden. Hierzu muss der Abstand der Drehachsen 27 der Drückwalzen 24, 25, 26 von der Drehachse 33 des Werkstücks 2, 4 einstellbar sein, so dass während des axialen Verschiebens der W erkzeuganordnung die resultierende Dicke der rohrförmigen Wand 14 variabel ist und eine Kontur mit Ventilkopf 12 (wie in Fig. lc gezeigt) hergestellt werden kann. Hierbei ist als Besonderheit zu beachten, dass der Ventilboden 10 entweder durch Abstechen des Werkstücks mit einem weiteren Werkzeug (Meißel) hergestellt wird oder ggf. durch eine knappe Einspannung des Werkstücks, so dass der Ventilboden 10 sich aus dem Boden des Werkstücks ergibt. Weiterhin ist zu beachten, dass sich der Formstempel 22 ggf. auf dem letzten Stück nicht mehr synchron mit den Drückrollen 24, 25, 26 bewegen sollte, um nicht einen durchgängigen Hohlraum 8 anstatt einem Sackloch zu erzeugen.

V orteilhafterweise kann durch das Bohrungsdrücken eine hohe Produktivität, eine gute Materialausnutzung, ein geringer Zeitaufwand bei der Herstellung, ein kontinuierliches Umformverfahren erzielt werden. W erkstoffeinsparungen von bis zu 90% gegenüber dem Tiefbohren sind erreichbar. Gleichzeitig wird eine unerwünschte Schweißnaht an der Fläche des Ventiltellers 12 vermieden.

Verfahren der partiellen Massivumformung, wie das Bohrungsdrücken, zeichnen sich dadurch aus, dass der Werkstoff nicht im gesamten Umformvolumen, sondern in zeitlich und räumlich begrenzten Inkrementen plastifiziert wird. Im Vergleich zum Napf- Rückwärtsfließpressen ist aus diesem Grunde eine Verringerung der Stempelkraft möglich, während sogar etwa das vierfache Längen-Durchmesser- V erhältnis erreichbar ist.

Wegen des hohen hydrostatischen Druckanteils eignet sich das Verfahren insbesondere für hochfeste Werkstoffe. Beim Bohrungsdrücken werden formspeicherarme Werkzeuge verwendet. In Fig. 3 ist eine Idee dargestellt, welche zu fast allen Arten des Fließpressens unter Druck angewendet werden kann. Dabei wird eine Schutzschicht 41 zwischen Werkzeug 22 und Werkstück 2, 4, während der Bearbeitung hergestellt. Eine solche Schutzschicht 41 wird unter dem Druck zwischen Werkzeug 22 und Werkstück 2, 4 zu einem Flüssigkeitsfilm und verringert den Verschleiß, der ansonsten durch das radiale Abfließen des Materials an der Stirnfläche des mit einer axialen Kraft beaufschlagten Formstempels 22 entstehen würde. Der Stempel kommt somit im Bereich der Stellen mit der größten Verschleißanfalligkeit nur mit dem Pulver 40 (bzw. dessen Flüssigkeitsphase) in Kontakt. Der Formstempel 22 wird vom Material des Werkstücks abgeschirmt. Dadurch kann hoher Verschleiß vermieden und eine längere Einsatzdauer des Werkzeugs und höhere Wirtschaftlichkeit des Herstellungsprozesses erreicht werden.

Optional kann das Verfahren zweistufig erfolgen. Dann wird in einem ersten Schritt in einen Rohling 2 bzw. Butzen eine Kavität mit einem Hohlraum 8 geformt, insbesondere geschmiedet, insbesondere als W armumformung. Die Kavität kann verschiedene Formen aufweisen. In einem zweiten Schritt wird eine Schutzschicht 41 in die Kavität eingebracht. Alternativ kann, unter Verzicht auf den beschriebenen ersten Schritt, auch eine Schutzschicht 41 direkt auf die Kontaktfläche zwischen Rohling 2 und Formstempel 22 aufgebracht werden. Z. B. kann durch eine entsprechende Matrize das Material der Schutzschicht an der Position gehalten werden, indem sie z. B. das seitliche Abfließen verhindert.

Als Ausgangsmaterial der Schutzschicht 41 kann Pulver 40, insbesondere aus der Legierung Ti-Fe verwendet werden, welche in die Kavität gefüllt oder auf die Oberfläche 3 des Rohlings 2 aufgebracht wird.

Nach dieser Vorbereitung kann der Schmiedeprozess stattfinden, insbesondere Fließpressverfahren, insbesondere per W armumformung, um die Vor form 6 (siehe auch Fig. lc) zu erzeugen. Dazu wird das Werkstück vor dem Schmiedeschritt erwärmt, üblicherweise auf eine Temperatur von 1050 - 1200 °C, abhängig vom Grundwerkstoff des Ventils. Bei einer solchen Warmumformung verflüssigt sich und verbindet sich das Pulver 40 und bildet so eine (flüssige) Schutzschicht 41 zwischen Formstempel 22 und Werkstück 2, 4.

Diese verflüssigte Schutzschicht 41 härtet beim Abkühlen wieder aus und verbindet sich mit dem Werkstück, d. h. diese spezielle Schutzschicht 42 bleibt im fertigen Ventil bestehen.

Daher sind auch andere Pulverkombinationen anstatt Ti-Fe denkbar um so die Kühlwirkung des Ventiltellerbodens 10 mittels einer Kühlschicht 42 im fertigen Ventil zu erhöhen.

Anschließend wird die Prozesskette fortgeführt, z. B. kann wie in der Beschreibung zu den Figuren 1 beschrieben, die Wandstärke 14 des Napfes reduziert und eine Längung des Napfes erzielt werden.

Es können verschiedene Vorformen 6 mit unterschiedlichen Hohlformen durch die Abbildung des formgebenden Werkzeugs (Formstempel 22) hergestellt werden. So kann der Querschnitt der Hohlform kreisrund sein oder ein Mitnehmerprofil wie Gleichdick, Ellipse, Polygon oder axialgerichtete Vielkeil- und V erzahnungsprofile aufweisen.

Insbesondere für das oben beschriebene Fließpressverfahren des Bohrungsdrückens kann das Verfahren mit der Schutzschicht 41 besondere Vorteile bei der verschleißarmen Herstellung bieten, denn durch die gleichzeitige Herstellung des Hohlraums 8 mittels Formstempel 22 und dem gleichzeitigen Druck durch außen durch die Drückrollen 24, 25, 26 ist die Werkzeugbelastung höher, als bei herkömmlichen Verfahren. Daher ist insbesondere (aber nicht ausschließlich) für dieses Verfahren die Verschleißarmut wichtig.

Bezugszeichenliste

2 Rohling, Stangenmaterial, Butzen

3 Stirnseite des Rohlings

4 (napfförmiges) Halbzeug

6 Vorform

8 Hohlraum

10 Bodenabschnitt

12 Ventilkopf / Ventilteller

14 rohrförmige Wand

16 fertiggestellter Ventilkörper für Hohlschaftventil 18 fertiggestellter Ventilkörper für Hohltellerventil

20 Ventilschaft

21 axiale Kraft

22 Drückwalzdom, Formstempel, Drückstempel

23 radiale Kraft

24 Drückwalze, -rolle

25 Drückwalze

26 Drückwalze

27 Drehrichtung der Drückwalzen

32 W erkstückhalterung

33 Drehrichtung zur Bearbeitung

40 Pulver

41 Schutzschicht

42 Kühlschicht