Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING LIQUID, STORAGE-STABLE ORGANIC ISOCYANATES COMPRISING CARBODIIMIDE AND/OR URETONIMINE GROUPS
Document Type and Number:
WIPO Patent Application WO/2007/076999
Kind Code:
A1
Abstract:
The invention relates to a method for producing liquid, storage-stable isocyanate mixtures comprising carbodiimide (CD) and/or uretonimine (UI) groups, with low colour index. The invention also relates to the isocyanate mixtures obtained according to said method and to the use thereof for producing mixtures with additional isocyanates and/or for producing prepolymers containing isocyanate groups and polyurethane plastics, preferably, polyurethane foams.

Inventors:
WERSHOFEN STEFAN (DE)
STEINWEGS MARCUS (DE)
Application Number:
PCT/EP2006/012552
Publication Date:
July 12, 2007
Filing Date:
December 27, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYER MATERIALSCIENCE AG (DE)
WERSHOFEN STEFAN (DE)
STEINWEGS MARCUS (DE)
International Classes:
C07C267/00; C07D229/00; C08G18/79
Foreign References:
US4284730A1981-08-18
EP0515933A21992-12-02
GB1356851A1974-06-19
EP1616858A12006-01-18
Attorney, Agent or Firm:
BAYER MATERIALSCIENCE AG (51368 Leverkusen, DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate, bei dem ein oder mehrere organische Isocyanate mit einer Hazen- Farbzahl von < 100 APHA, bevorzugt < 50 APHA, mit Katalysatoren vom Phospholin-Typ teilweise carbodiimidisiert werden, und anschließend die Carbodiimidisierungsreaktion abgestoppt wird, dadurch gekennzeichnet, dass die Carbodiimidisierung in Gegenwart eines Orthoesters durchgeführt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester einer Carbonsäure eingesetzt wird.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Carbonsäuren mit der generellen Struktur R'-(C(OR 2 )(OR 3 )(OR 4 )) n eingesetzt wird, wobei R 1 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeutet, der ggf. Heteroatome enthalten kann, und der ggf. weitere funktionelle Gruppen tragen kann, R 2 bis R einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der ggf. Heteroatome enthalten kann, der ggf. weitere funktionelle Gruppen tragen kann, und n > 1 ist.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Ameisensäure, der Essigsäure oder der Propionsäure eingesetzt wird.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Orthoester Trimethyl- orthoformiat, Triethylorthoformiat, Trimethylorthoacetat, Triethylorthoacetat, Trimethyl- orthopropionat oder Triethylorthopropionat oder Gemische daraus eingesetzt werden.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Kohlensäure eingesetzt wird.

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Kohlensäure mit der generellen Struktur C(OR 2 )(OR 3 )(OR 4 )(OR 5 ) eingesetzt wird, wobei R 2 bis R 5 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann.

8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Orthoester Tetramethyl- orthocarbonat oder Tetraethylorthocarbonat oder Gemische daraus eingesetzt werden.

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Kieselsäure eingesetzt wird.

10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Orthoester der Kieselsäure mit der generellen Struktur Si(OR 2 )(OR 3 )(OR 4 )(OR 5 ) eingesetzt wird, wobei R 2 bis R 5 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann.

11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Orthoester Tetramethyl- orthosilicat oder Tetraethylorthosilicat oder Gemische daraus eingesetzt werden.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Orthoester unmittelbar vor, gleichzeitig mit oder nach der Zugabe des Katalysators zugegeben wird.

13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Orthoester in Konzentrationen von < 1000 ppm, bevorzugt < 250 ppm, besonders bevorzugt < 100 ppm, bezogen auf das Gewicht des eingesetzten Isocyanats, vorliegt.

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Orthoester in Substanz zugegeben wird.

15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Orthoester als Master- batch in Ausgangsisocyanat oder bereits carbodiimidisiertem Isocyanat zugegeben wird.

16. Carbodiimid- und/oder Uretonimingruppen aufweisende organische Isocyanate erhältlich nach dem Verfahren nach einem der Ansprüche 1 bis 15.

17. Verwendung der Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate nach Anspruch 16 zur Herstellung von Isocyanat- Abmischungen.

18. Verwendung der Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate nach Anspruch 16 zur Herstellung von Prepolymeren oder Polyurethanen.

Description:

Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- und/oder Uretonimin- gruppen aufweisender organischer Isocyanate

Die Erfindung betrifft ein Verfahren zur Herstellung flüssiger, lagerstabiler Carbodiimid- (CD) und/oder Uretonimin- (UI) Gruppen aufweisender Isocyanatmischungen mit niedriger Farbzahl, die nach diesem Verfahren erhältlichen Isocyanatmischungen und deren Verwendung zur Herstellung von Abmischungen mit weiteren Isocyanaten bzw. zur Herstellung von Isocyanat- gruppen enthaltenden Prepolymeren sowie von Polyurethankunststoffen, vorzugsweise Polyurethanschaumstoffen .

CD- und /oder UI-Gruppen aufweisende Isocyanatmischungen können in einfacher Weise mit den hoch wirksamen Katalysatoren aus der Phospholin-Reihe, insbesondere der Phospholinoxid-Reihe, nach den Verfahren gemäß US-A-2,853,473, US-A-6, 120,699 und EP-A-515 933 hergestellt werden.

Die hohe katalytische Aktivität der Phospholinkatalysatoren, insbesondere der Phospholinoxid- katalysatoren, ist einerseits erwünscht, um die Carbodiimidisierungsreaktion unter schonenden Temperaturbedingungen anzustoßen, andererseits ist aber bis heute kein Verfahren bekannt, das eine wirksame Abstoppung der Phospholin-Katalyse bzw. der Phospholinoxid-Katalyse ohne Einschränkung gewährleistet. Die carbodiimidisierten Isocyanate neigen zur Nachreaktion, d.h. sie gasen infolge CO 2 -Entwicklung aus. Dies führt dann besonders bei höheren Temperaturen zu einem Druckaufbau beispielsweise in den Lagerbehältern.

Es hat nicht an Versuchen gefehlt, eine wirksame Abstoppung der Phospholin-Katalyse zu finden. Derartige Stopper sind z.B. in den Patentschriften DE-A-25 37 685, EP-A-515 933, EP-A-609 698, und US-A-6, 120,699 erwähnt und umfassen z.B. Säuren, Säurechloride, Chloroformiate, silylierte Säuren und Halogenide der Hauptgruppenelemente. Ein Abstoppen des Katalysators mit Säuren, die z.B. auch als Säurechloride vorliegen können, ist nicht ausreichend wirksam.

Nach der Lehre der EP-A-515 933 werden mittels Phospholin-Katalyse hergestellte CD/UI-haltige Isocyanatmischungen mit mindestens der äquimolaren Menge, bevorzugt der l-2fachen molaren Menge bezogen auf den eingesetzten Katalysator an z.B. Trimethylsilyltrifluormethansulfonat (TMST) abgestoppt. In der Praxis hat sich jedoch erwiesen, dass solchermaßen hergestellte CD/UI-enthaltende Isocyanate zur Herstellung von Prepolymeren, d.h. Umsetzungsprodukten von diesen CD/UI-enthaltenden Isocyanaten mit Polyolen, nur bedingt geeignet sind. Die entsprechend hergestellten Umsetzungsprodukte aus Polyolen und den CD/UI-modifizierten Isocyanaten neigen

zum Ausgasen, was zu einem Druckaufbau in den Transportbehältern oder zum Schäumen bei der Handhabung derartiger Produkte fuhren kann.

Man kann dieses Problem dadurch umgehen, dass man die zum Abstoppen des Phospholin- Katalysators benutzte silylierte Säure analog der EP-A-515 933 in höheren molaren äquivalenten (z.B. 5:1-10:1 bezogen auf den Katalysator) einsetzt. In der Praxis zeigt sich dann jedoch, dass die erhaltenen CD/UI modifizierten Isocyanate eine deutlich schlechtere Farbzahl aufweisen. Dies gilt dann auch für die hieraus hergestellten Prepolymere.

Dies gilt auch, wenn der Phospholinkatalysator mit Säuren vom Typ der Trifluormethansulfon- säure entsprechend der US-A-6, 120,699 abgestoppt wird. Auch daraus hergestellte Prepolymere weisen eine erheblich erhöhte Farbzahl auf.

Bei der Herstellung von flüssigen, lagerstabilen Carbodiimid- (CD) und/oder Uretonimin- (UI) Gruppen aufweisenden Isocyanatmischungen werden z.T. deutliche Schwankungen der Reaktivität des eingesetzten Isocyanates und damit der erforderlichen Reaktionszeiten beobachtet. Einer unerwünschten Verlängerung der Reaktionszeit könnte z.B. durch Erhöhung der Reaktions- temperatur und/oder der Katalysatorkonzentration (und in Folge der Stoppermenge) begegnet werden. Damit wären aber Verfahrens- und/oder sicherheitstechnische Risiken und/oder Qualitätsprobleme (z.B. erhöhte Farbwerte) verbunden.

Aufgabe der vorliegenden Erfindung war es daher, ein einfaches und wirtschaftliches Verfahren zur Herstellung flüssiger, lagerstabiler und heller Carbodiimid- und/oder Uretonimingruppen auf- weisender Isocyanatmischungen zur Verfügung zu stellen, welches die angesprochenen Mängel nicht aufweist und zu flüssigen, lagerstabilen Isocyanatmischungen mit niedrigen Farbzahlen führt.

Die Erfindung betrifft ein Verfahren zur Herstellung Carbodiimid- und/oder Uretonimingruppen aufweisender organischer Isocyanate, bei dem ein oder mehrere organische Isocyanate mit einer Hazen-Farbzahl von < 100 APHA, bevorzugt < 50 APHA, mit Katalysatoren vom Phospholin-Typ teilweise carbodiimidisiert werden, und anschließend die Carbodiimidisierungsreaktion abgestoppt wird, dadurch gekennzeichnet, dass die Carbodiimidisierung in Gegenwart eines Orthoesters durchgeführt wird. Dadurch kann die erforderliche Reaktionszeit erniedrigt werden bzw. niedrig gehalten werden und/oder die erforderliche Katalysatormenge reduziert werden.

In dem erfindungsgemäßen Verfahren kann ein Orthoester oder auch ein Gemisch mehrerer verschiedener Orthoester eingesetzt werden. Die Zugabe des Orthoesters kann dabei zu dem

Ausgangs isocyanat oder zum Reaktionsgemisch während der Carbodiimidisierung erfolgen. Der

Orthoester wird dabei bevorzugt in Substanz, d.h. ohne Verdünnung, oder als Masterbatch,

beispielsweise als Lösung des Orthoesters im Ausgangsisocyanat oder bereits carbodiimidisiertem Isocyanat zugegeben.

Die Messung der Hazen-Farbzahl kann dabei gemäß DIN/EN/ISO 6271-2 (Entwurf September 2002) in Substanz gegen Wasser als Referenz bei einer Schichtdicke von 5 cm erfolgen. Als Messgerät kann z. B. ein Photometer Dr. Lange LICO 300 eingesetzt werden.

Selbstverständlich können auch organische Isocyanate mit einer höheren Farbzahl als Einsatzstoffe verwendet werden. In diesem Falle können allerdings die Vorteile hinsichtlich der günstigen Farbwerte nicht in vollem Umfang genutzt werden.

Die Erfindung betrifft auch die Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate, die nach dem obengenannten Verfahren erhältlich sind. Diese Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate sind bei Raumtemperatur und in Abhängigkeit vom CD- / UI-Gehalt und/oder vom eingesetzten Isocyanat bis hin zu tiefen Temperaturen (z.B. 0 0 C) flüssig.

Gegenstand der Erfindung ist auch die Verwendung der erfmdungsgemäßen Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate zur Herstellung von Abmi- schungen mit weiteren Isocyanaten bzw. zur Herstellung von Isocyanatgruppen enthaltenden Prepolymeren mit verbesserter Farbzahl.

Gegenstand der Erfindung ist schließlich auch die Verwendung der erfindungsgemäßen Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate und der daraus herge- stellten Isocyanat-Abmischungen und/oder Prepolymere mit verbesserter Farbzahl zur Herstellung von Polyurethankunststoffen.

Als Ausgangsmaterialien für das erfindungsgemäße Verfahren können beliebige organische Isocyanate mit einer Hazen-Farbzahl von < 100 APHA, bevorzugt < 50 APHA, eingesetzt werden. Vorzugsweise wird das erfindungsgemäße Verfahren jedoch zur Carbodiimidisierung von organischen Diisocyanaten verwendet, die in der Polyurethan-Chemie eingesetzt werden können.

Selbstverständlich können auch organische Isocyanate mit einer höheren Farbzahl als Einsatzstoffe verwendet werden. In diesem Falle können allerdings die Vorteile hinsichtlich der günstigen Farbwerte nicht in vollem Umfang genutzt werden.

Geeignete Isocyanate sind z.B. aromatische, araliphatische, aliphatische und/oder cycloalipha- tische Diisocyante und/oder Polyisocyanate.

- A -

AIs Vertreter der aliphatischen und/oder cycloaliphatischen Diisocyante sind beispielhaft zu nennen Isophorondiisocyanat, Hexamethylendiisocyanat und Dicyclohexylmethandiisocyanat (jeweils die reinen Isomeren sowie beliebige Isomerengemische).

Als Vertreter der araliphatischen Diisocyante sind beispielhaft zu nennen die verschiedenen Iso- meren der Xylidendiisocyante.

Geeignet sind insbesondere aromatische Di- und Polyisocyanate wie Toluylendiisocyanat und Di- und Polyisocyanate der Diphenylmethanreihe.

Geeignet sind insbesondere:

• Aromatische Diisocyanate wie 2,4- und/oder 2,6-Diisocyanatotoluol (TDI), 2,2'-, 2,4'- und/oder 4,4'-Diisocyanatodiphenylmethan (MDI) bzw. beliebige Gemische derartiger aromatischer Diisocyanate,

• Di- und Polyisocyanatgemische der Diphenylmethanreihe mit einem Gehalt an monomeren Diisocyanatodiphenylmethan-Isomeren von 80 bis 100 Gew.-% und einem Gehalt an höher als difunktionellen Polyisocyanaten der Diphenylmethanreihe von 0 bis 20 Gew.-%, wobei sich die Diisocyanatodiphenylmethan-Isomeren zu 0 bis 100 Gew.-% aus 4,4'-Diiso- cyanatodiphenylmethan, 100 bis 0 Gew.-% aus 2,4'-Diisocyanatodiphenylmethan und zu 0 bis 8 Gew.-% aus 2,2'-Diisocyanatodiphenylmethan zusammensetzen, wobei sich die genannten Prozentsätze zu 100 Gew.-% ergänzen.

Als Ausgangsmaterialien bevorzugte organische Isocyanate sind insbesondere aromatische Diisocyanate wie 2,4- und/oder 2,6-Diisocyanatotoluol (TDI), 2,2'-, 2,4'- und/oder 4,4 ' -Diiso- cyanatodiphenylmethan (MDI) bzw. beliebige Gemische derartiger aromatischer Diisocyanate. Besonders bevorzugt sind 2,2'-, 2,4'- und/oder 4,4 '-Diisocyanatodiphenylmethan (MDI) bzw. beliebige Gemische derartiger aromatischer Diisocyanate, wobei die Summe an 2,2'-, 2,4'- und/oder 4,4 '-Diisocyanatodiphenylmethan im Ausgangsmaterial (organisches Isocyanat) min- destens 85 Gew.-% beträgt, und wobei sich die Diisocyanatodiphenylmethan-Isomeren zu 0 bis 100 Gew.-% aus 4,4'-Diisocyanatodiphenylmethan, 100 bis 0 Gew.-% aus 2,4 '-Diisocyanatodiphenylmethan und zu 0 bis 8 Gew.-% aus 2,2 '-Diisocyanatodiphenylmethan zusammensetzen, wobei sich die genannten Prozentsätze zu 100 Gew.-% ergänzen. Ganz besonders bevorzugt sind 2,2'-, 2,4'- und/oder 4,4 '-Diisocyanatodiphenylmethan (MDI) bzw. beliebige Gemische aroma- tischer Diisocyanate, wobei die Summe an 2,2'-, 2,4'- und/oder 4,4 '-Diisocyanatodiphenylmethan im Ausgangsmaterial (organisches Isocyanat) mindestens 90 Gew.-% beträgt, und wobei sich die Diisocyanatodiphenylmethan-Isomeren zu 0 bis 100 Gew.-% aus 4,4'-Diisocyanatodiphenyl-

methan, 100 bis 0 Gew.-% aus 2,4'-Diisocyanatodiphenylmethan und zu 0 bis 8 Gew.-% aus 2,2'- Diisocyanatodiphenylmethan zusammensetzen, wobei sich die genannten Prozentsätze zu 100 Gew.-% ergänzen. Insbesondere ganz besonders bevorzugt sind 2,2'-, 2,4'- und/oder 4,4'- Diisocyanatodiphenylmethan (MDI) bzw. beliebige Gemische aromatischer Diisocyanate, wobei die Summe an 2,2'-, 2,4'- und/oder 4,4'-Diisocyanatodiphenylmethan im Ausgangsmaterial (organisches Isocyanat) mindestens 99 Gew.-% beträgt, und wobei sich die Diisocyanatodiphenyl- methan-Isomeren zu 0 bis 100 Gew.-% aus 4,4'-Diisocyanatodiphenylmethan, 100 bis 0 Gew.-% aus 2,4'-Diisocyanatodiphenylmethan und zu 0 bis 8 Gew.-% aus 2,2 ' -Diisocyanatodiphenyl- methan zusammensetzen, wobei sich die genannten Prozentsätze zu 100 Gew.-% ergänzen.

Das erfindungsgemäße Verfahren wird in Gegenwart von Katalysatoren vom Phospholin-Typ durchgeführt. Die Katalysatoren vom Phospholin-Typ sind beispielsweise aus EP-A-515 933 und US-A-6, 120,699 bekannt. Typische Beispiele dieser Katalysatoren sind beispielsweise die aus dem Stand der Technik bekannten Gemische der Phospholinoxide der Formel:

Die Menge des eingesetzten Katalysators hängt von der Qualität und/oder der Reaktivität der Ausgangsisocyanate ab. Die jeweils notwendige Katalysatormenge lässt sich daher am einfachsten in einem Vorversuch bestimmen.

Durch den Einsatz von Orthoestern wird erreicht, dass die Reaktivität des Ausgangsisocyanats erhöht wird. Dies kann z.B. ursächlich dadurch erfolgen, dass sie der reaktivitätsvermindernden Wirkung von potentiell HCl abspaltenden Nebenkomponenten im Ausgangsisocyanat entgegenwirken. Aber auch andere Wirkmechanismen sind möglich.

Geeignete Orthoester sind beispielsweise Orthoester einer Carbonsäure. Geeignete Orthoester der Carbonsäuren weisen die generelle Struktur R 1 -(C(OR 2 )(OR 3 )(OR 4 )) n auf, wobei

• R 1 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeutet, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann,

• R 2 bis R 4 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann,

• n > 1 ist.

R 2 bis R 4 können entweder alle gleich oder alle verschieden sein, oder zwei der Reste R 2 bis R 4 können gleich sein. Es ist ebenfalls möglich, dass zwei oder drei der Reste R 2 bis R 4 Teile eines einzigen Moleküls sind und somit cyclische oder bicyclische Orthoesterstrukturen vorliegen.

Geeignete Orthoester der Carbonsäuren sind z.B. Orthoester der Ameisensäure, wie z.B. Trimethylorthoformiat, Triethylorthoformiat, Orthoester der Essigsäure, wie z.B. Trimethyl- orthoacetat, Triethylorthoacetat, Orthoester der Propionsäure, wie z.B. Trimethylorthopropionat, Triethylorthopropionat oder Gemische daraus.

Die genannten Verbindungen werden nur als Beispiele angesehen; geeignete Orthoester der Carbonsäuren sind nicht auf die genannten Verbindungen beschränkt.

Geeignete Orthoester sind auch beispielsweise die Orthoester der Kohlensäure. Geeignete Orthoester der Kohlensäure weisen die generelle Struktur C(OR 2 )(OR 3 )(OR 4 )(OR 5 ) auf, wobei

• R 2 bis R 5 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann.

,Jl3_bis-R^können-entweder-alle-gleiGh-oder-alle -versehieden-sein— oder-zwei-der-Reste-R 2~ bis ~ R 5~ können jeweils gleich sein, oder zwei oder drei der Reste R 2 bis R 5 können gleich sein. Es ist ebenfalls möglich, dass zwei oder jeweils zwei oder drei der Reste R 2 bis R 5 Teile eines einzigen Moleküls sind und somit cyclische oder bicyclische Orthoesterstrukturen vorliegen.

Geeignete Orthoester der Kohlensäure sind z.B. Tetramethylorthocarbbnat und Tetraethyl- orthocarbonat oder Gemische daraus. Die genannten Verbindungen werden nur als Beispiele angesehen; geeignete Orthoester der Kohlensäure sind nicht auf die genannten Verbindungen beschränkt.

Geeignete Orthoester sind auch beispielsweise die Orthoester der Kieselsäure. Geeignete Orthoester der Kieselsäure weisen die generelle Struktur Si(OR 2 )(OR 3 )(OR 4 )(OR 5 ) auf, wobei

• R 2 bis R 5 einen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten, der Heteroatome und / oder weitere funktionelle Gruppen enthalten kann.

R 2 bis R 5 können entweder alle gleich oder alle verschieden sein, oder zwei der Reste R 2 bis R 5 können jeweils gleich sein, oder zwei oder drei der Reste R 2 bis R 5 können gleich sein. Es ist ebenfalls möglich, dass zwei oder jeweils zwei oder drei der Reste R 2 bis R Teile eines einzigen Moleküls sind und somit cyclische oder bicyclische Orthoesterstrukturen vorliegen.

Geeignete Orthoester der Kieselsäure sind z.B. Tetramethylorthosüicat und Tetraethylorthosilicat oder Gemische daraus. Die genannten Verbindungen werden nur als Beispiele angesehen; geeignete Orthoester der Kieselsäure sind nicht auf die genannten Verbindungen beschränkt.

Der Orthoester oder das Gemisch mehrerer verschiedener Orthoester kann unmittelbar vor, gleichzeitig mit oder auch erst nach der Zugabe des Katalysators zugegeben werden. Vorzugsweise wird der Orthoester erst nach der Zugabe des Katalysators, d.h. während der Carbodiimidisierung, zugegeben. Der beste Zeitpunkt der Zugabe kann in einem einfachen Vorversuch ermittelt werden und liegt bevorzugt vor Erreichen von 50%, besonders bevorzugt vor Erreichen von 30% und ganz besonders bevorzugt vor Erreichen von 20% des insgesamt gewünschten Umsatzes an Isocyanat.

Die optimale Einsatzmenge des Orthoesters kann ebenfalls in einem einfachen Vorversuch ermittelt werden und beträgt bevorzugt < 1000 ppm, besonders bevorzugt < 250 ppm und ganz besonders bevorzugt < 100 ppm, bezogen auf das Gewicht des eingesetzten Isocyanat.

Die Zugabe des Orthoesters kann also zu dem Ausgangsisocyanat oder zum Reaktionsgemisch während der Carbodiimidisierung erfolgen. Der Orthoester wird dabei bevorzugt in Substanz, d.h. ohne Verdünnung, oder als Masterbatch, beispielsweise als Lösung des Orthoesters im Ausgangsisocyanat oder bereits carbodiimidisierten Isocyanat zugegeben.

Der Einsatz des Orthoesters resultiert in einer höheren Reaktivität bezüglich der Carbodiimidi- sierungsreaktion, wodurch entweder die erforderliche Reaktionszeit und/oder die erforderliche Katalysatormenge reduziert werden kann.

Die Carbodiimidisierungsreaktion wird üblicherweise im Temperaturbereich zwischen 50 bis 150°C, vorzugsweise von 60 bis 100 0 C, durchgeführt. Jedoch sind auch deutlich höhere Reaktionstemperaturen möglich (bis zu ca. 280 0 C). Die optimale Reaktionstemperatur richtet sich nach der Art der Ausgangsisocyanate und / oder des eingesetzten Katalysators und kann in einem einfachen Vorversuch ermittelt werden.

Die Carbodiimidisierungsreaktion wird im allgemeinen bei Erreichen eines Carbodiimidisierungs- grades (Carbodiimidisierungsgrad ist der Prozentsatz der carbodiimidisierten Isocyanatgruppen bezogen auf die Gesamtmenge der in Ausgangsisocyanat vorliegenden Isocyanatgruppen) von 3 bis 50 %, vorzugsweise 5 bis 30 %, abgebrochen.

Der Carbodiimidisierungsgrad kann während der Durchführung des erfindungsgemäßen Verfahrens durch Bestimmung des NCO-Wertes z.B. mittels dem Fachmann an sich bekannter Titration oder mittels online- Verfahren bestimmt werden. Ein geeignetes online-Verfahren ist z.B. die Nahinfrarot- oder die Mittelinfrarot-Analytik.

Der Carbodiimidisierungsgrad kann während der Durchführung des erfmdungsgemäßen Verfahrens ebenfalls z.B. an der Menge des im Reaktorgemisch entweichenden Kohlendioxids erkannt werden. Diese volumetrisch bestimmbare Kohlendioxidmenge gibt somit zu jedem Zeitpunkt Auskunft über den erreichten Carbodiimidisierungsgrad.

Darüber hinaus können grundsätzlich auch andere geeignete, dem Fachmann bekannte offline- oder online-Methoden der Prozessverfolgung eingesetzt werden.

Zum Beenden der Carbodiimidisierungsreaktion wird bevorzugt mindestens die äquimolaren Menge, besonders bevorzugt der 1 - 20 fache molare überschuss, ganz besonders bevorzugt der 1 - 10 fache molare überschuss, bezogen auf den Katalysator, eines Abstoppers, bevorzugt Trimethylsilyltrifluormethansulfonat (TMST) oder eines Alkylierungsmittels oder eines Gemisches der genannten Abstopper eingesetzt. Bevorzugt wird dabei ein Alkylierungsmittel oder Trimethylsilyltrifluormethansulfonat (TMST) als einziger Abstopper eingesetzt.

Bevorzugte Alkylierungsmittel sind Ester der Trifluormethansulfonsäure, Ester anorganischer Säuren (bevorzugt starker anorganischer Säuren) oder Trialkyloxoniumverbindungen.

Das Reaktionsprodukt der Carbodiimidisierung kann Farbstabilisatoren enthalten, wie sie üblicherweise Isocyanaten zugesetzt werden. Dabei ist der Zeitpunkt des Zusatzes nicht kritisch. Die Farbstabilisatoren können entweder dem als Ausgangmaterial verwendeten Isocyanat vor der Carbodiimidisierung zugesetzt werden, oder dem Reaktionsprodukt nach vollendeter Umsetzung. Es ist ebenfalls möglich, Farbstabilisatoren sowohl dem Ausgangsmaterial als auch dem Reaktionsprodukt zuzugeben. Derartige Stabilisatoren sind generell dem Fachmann bekannt und umfassen z.B. Substanzen aus der Gruppe der sterisch gehinderten Phenole, der Phosphorig- säureester oder der sterisch gehinderten Amine. Die Farbstabilisatoren können jeweils für sich allein oder im Gemisch mit anderen Vertretern der gleichen oder verschiedener Substanzgruppen eingesetzt werden. Die Mengen der eingesetzten Farbstabilisatoren bewegen sich in der dem Fachmann bekannten Größenordnung, üblicherweise im Bereich von 100 ppm bis 10000 ppm für die Einzelsubstanz bzw. das Gemisch, bezogen auf das als Ausgangsmaterial verwendete Isocyanat bzw. das Reaktionsprodukt der Carbodiimidisierung.

Isocyanatgruppen enthaltende Prepolymere werden durch Umsetzung der nach dem erfϊndungs- gemäßen Verfahren hergestellten Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate mit in der Polyurethanchemie üblichen Polyolen erhalten. Geeignete Polyole sind sowohl einfache mehrwertige Alkohole des Molekulargewichtsbereiches 62 bis 599 g/mol, vorzugsweise 62 bis 300 g/mol, wie z.B. Ethylenglykol, Trimethylolpropan, Propandiol-1,2, Butandiol-1,2 oder Butandio 1-2,3, Hexandiol, Octandiol, Dodecandiol und/oder Octadecandiol,

insbesondere jedoch höhermolekulare Polyetherpolyole und/oder Polyesterpolyole der aus der Polyurethanchemie an sich bekannten Art mit Molekulargewichten von 600 bis 8000 g/mol, vorzugsweise 800 bis 4000 g/mol, die mindestens zwei, in der Regel 2 bis 8, vorzugsweise 2 bis 4 primäre und/oder sekundäre Hydroxylgruppen aufweisen. Beispiele derartiger Polyole sind in der US-PS 4 218543, Kolonne 7, Zeile 29 bis Kolonne 9, Zeile 32 beschrieben.

Die Vorteile des erfindungsgemäßen Verfahrens sind augenscheinlich: Durch die Anwesenheit eines Orthoesters während der Carbodiimidisierung wird die Reaktivität des Reaktionsgemisches erhöht und/oder vereinheitlicht. Dadurch kann die erforderliche Reaktionszeit erniedrigt werden bzw. niedrig gehalten werden und/oder die erforderliche Katalysatormenge reduziert werden. Sowohl die Carbodiimid- und/oder Uretonimingruppen-haltigen Isocyanate als auch die daraus hergestellten Prepolymere weisen zudem eine gute Lagerstabilität und eine helle Farbe auf.

Diese Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanate und die daraus durch Umsetzung mit Polyolen hergestellten Prepolymere stellen wertvolle Ausgangsmaterialien zur Herstellung von Polyurethankunststoffen durch Umsetzung mit Polyolen (z.B. mit Polyetherpolyolen oder Polyesterpolyolen) nach dem Isocyanat-Polyadditionsverfahren dar.

Beispiele:

Ausgangsprodukte:

- Desmodur 44M ® , Bayer AG (4,4'- Diphenylmethandiisocyanat, NCO-Gehalt: 33,6 Gew.-%)

Katalysator vom Phospholinoxid-Typ: technisches Gemisch aus 1 -Methyl- 1-oxo-l-phospha- cyclopent-2-en und 1 -Methyl- l-oxo-l-phosphacyclopent-3-en, 1 Gew.-%ig in Toluol

Stopper: Trimethylsilyltrifluormethan-sulfonat (TMST)

Allgemeine Vorschrift zur Herstellung des Carbodiimid- und/oder Uretonimingruppen aufweisenden organischen Isocyanates:

10 kg technisches 4,4'-MDI (Desmodur 44M ® ,der Bayer MaterialScience AG) mit einer Hazen Farbzahl von < 15 APHA, das 750 ppm 3,5-Di-teτt-butyl-4-hydroxytoluol enthält, werden unter N 2 /Rühren auf ca. 90 0 C erhitzt. Anschließend wird die in der Tabelle angegebene Menge Katalysatorlösung zugegeben, um die gewünschte Katalysatormenge zu erreichen. Das Reaktionsgemisch wird mit der entsprechenden Menge an Orthoester versetzt (Zeitpunkt, Substanz und Menge siehe Tabelle; A: Triethylorthoacetat). Das Reaktionsgemisch wird unter N 2 /Rühren bis zum Erreichen des erwünschten NCO-Gehaltes auf ca. 95°C erhitzt. Danach wird die Carbo- diimidisierung durch Zugabe des Stoppers Trimethylsilyltrifluormethansulfonat (TMST) abgestoppt und 1 Stunde nachgerührt.

Die Ergebnisse sind in der nachstehenden Tabelle zusammengefasst.

Die Messung der Hazen-Farbzahl erfolgt gemäß DIN/EN/ISO 6271-2 (Entwurf September 2002) in Substanz gegen Wasser als Referenz bei einer Schichtdicke von 5 cm. Als Messgerät kann z. B. ein Photometer Dr. Lange LICO 300 eingesetzt werden.

Vergleichsbeispiele 1 und 2 verdeutlichen den negativen Einfluss des erhöhten Wertes an hydroly- sierbarem Chlor auf die Reaktivität bzw. die Reaktionszeit. In dem erfindungsgemäßen Beispiel wird bei gleichem Gehalt an hydrolysierbarem Chlor eine gegenüber Vergleichsbeispiel 2 verbesserte Reaktivität erreicht; nach 360 min war im Vergleichsbeispiel 2 der NCO- Wert von ursprünglich ca. 33,6 % nur auf 31,6 % gesunken gegenüber 29,5 % im erfindungsgemäßen Beispiel.

Die Gegenüberstellung von Vergleichsbeispiel 1 und erfindungsgemäßem Beispiel zeigt, dass durch die Zugabe des Orthoesters bei doppeltem Gehalt an hydrolysierbarem Chlor wieder eine vergleichbare Reaktivität erreicht wird, d. h. zum Erreichen des gleichen NCO-Wertes eine vergleichbare Reaktionszeit ermöglicht wird.