Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF PRODUCING REGENERATED CELLULOSE AND HEMICELLOSE
Document Type and Number:
WIPO Patent Application WO/2014/170546
Kind Code:
A1
Abstract:
A method of producing regenerated cellulose and hemicellulose from a fibre pulp which is prepared by using chemical cooking. Hemicellulose and, correspondingly, cellulose is separated from the pulp, in order to form separate fractions, by dissolving them in such a solvent or an aqueous solution of it, from which they are precipitated by adding water, after which the regenerated hemicellulose and cellulose can be recovered. Hemicellulose- containing pulp, which for example is used as raw material of paper, can be efficiently fractionated into polymeric hemicellulose-rich fractions and very pure cellulose fractions, such as regenerated cellulose fibre, various cellulose particles or cellulose films.

Inventors:
REILAMA ISMO (FI)
TURUNEN ESKO (FI)
Application Number:
PCT/FI2014/050273
Publication Date:
October 23, 2014
Filing Date:
April 15, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
METSÄ FIBRE OY (FI)
International Classes:
D21C3/00; C08B16/00; C08B37/14; D21C3/20; D21C9/00
Domestic Patent References:
WO2005098546A22005-10-20
Foreign References:
US20080190013A12008-08-14
US5858021A1999-01-12
US20040020854A12004-02-05
Other References:
MAZZA ET AL: "Influence of water on the dissolution of cellulose in selected ionic liquids", CELLULOSE (2009), vol. 16, April 2009 (2009-04-01), pages 207 - 215, XP002729249, DOI: 10.1007/s10570-008-9257-x
Attorney, Agent or Firm:
SEPPO LAINE OY (Helsinki, FI)
Download PDF:
Claims:
Claims:

1. A method of producing regenerated cellulose and hemicellulose from a cellulose and hemicellulose containing fibre pulp prepared by chemical cooking from lignocellulosic material, characterised in that the hemicellulose and the cellulose, respectively, are separated from the fibre pulp into separate fractions

- by first dissolving the hemicellulose and then, correspondingly, the cellulose into a water-miscible organic solvent or its aqueous solution, in order to generate a first solution which comprises mainly dissolved hemicellulose, and a second solution which comprises mainly dissolved cellulose, and in which case the water content in the first solution is higher than the water content in the second solution, and

- the hemicellulose is precipitated from the first solution, in order to produce

regenerated hemicellulose, and the cellulose is precipitated from the second solution, in order to produce regenerated cellulose, by increasing the water content in the first and, correspondingly, the second solution.

2. The method according to Claim 1, characterised in that the fibre pulp comprises at least 7 % of hemicellulose, calculated based on the dry weight, preferably the percentage of hemicellulose is approximately 10-30 % of the polysaccharides in the fibre pulp.

3. A method according to Claim lor2, characterised in that the hemicellulose to be precipitated is recovered and separated from the first solution.

4. A method according to any of the Claims 1-3, characterised in that the hemicellulose to be precipitated is polymeric, preferably its average molar mass is higher than 5,000 g/mol, most suitably higher than 10,000 g/mol, more preferably higher than 15,000 g/mol.

5. A method according to any of the preceding claims, characterised in that, when the cellulose is precipitated from the solution products are generated, such as fibres, beads and various particles or films.

6. A method according to any of the preceding claims, characterised in that the water-miscible organic solvent is N-methylmorpholine-N-oxide or an ionic liquid, such as an imidazolium-based ionic liquid, for example [bmim]Cl, (l-butyl-3-methyl - imidazolium chloride), [emim][OAc] (l-ethyl-3-methyl-imidazolium acetate) or

[emim][Me2PC>4] ( l-ethyl-3-methyl-imidazolium-dimethyl phosphate), or a mixture thereof, or a conjugated acid, which comprises an organic base, such as 1, 1,3,3- tetramethyl-guanidine (TMG), 1, 1,2,3,3-pentamethyl-guanidine (PMG) or 1,8- diazabicyclo [5.4.0] undec-7-ene (DBU), which comprises inorganic or organic conjugated acids, such as propionic acid (and other carboxylic acids), hydrochloric acid, methyl dihydrogen phosphonate, dimethyl hydrogen phosphate or phosphinic acid.

7. A method of treating fibre pulp, which is prepared by chemical cooking from lignocellulose material and which comprises cellulose and hemi cellulose, in which method a first solution is formed, which comprises solid particles of fibre pulp, which particles are suspended in water, c h a r a c t e r i s e d in that

- in the first step, the solid particles in the first solution are brought into contact with such a solvent that comprises an organic solvent or an ionic liquid, which has a first concentration relative to water, in order to dissolve hemicellulose into the liquid phase, in which case is generated

o a solid matter, which mainly comprises cellulose, and

o a first solution, which comprises dissolved hemicellulose,

- the first solution, which comprises hemicellulose, is brought to a second step, in which the dissolved hemicellulose is precipitated from the solution, which comprises organic solvent or ionic liquid, which has a second concentration relative to water, in which case said second concentration is lower than the first concentration;

- the solid matter which comprises cellulose is brought to a third step, in which it is brought into contact with such a solvent that comprises organic solvent or ionic liquid, which has a third concentration relative to water, in order to dissolve the solid matter into the solvent, in which case the said third concentration is higher than the first concentration, and in which case a third solution is generated, the dissolved solid matter of which is mainly cellulose, and

- the third solution which comprises dissolved solid matter, is brought to a fourth step, in which the dissolved solid matter is precipitated from the solvent that comprises organic solvent or ionic liquid, which has a fourth concentration relative to water, in which case the said fourth concentration is lower than the third concentration, but higher than the second concentration.

8. The method according to Claim 7, characterised in that the same organic solvent, or organic solvent that possibly comprises water, is used in the first, second, third and fourth step.

9. The method according to Claim 8, characterised in that the concentration of the organic solvent or ionic liquid in the solvent is adjusted by increasing or reducing the amount of the organic solvent or ionic liquid, by increasing or reducing the amount of water, or by a combination of these measures.

10. The method according to Claim 9, characterised in that the water content of the solvent that comprises ionic liquid is

- in the first step, higher than 11 % but lower than 23 %,

- in the second step, higher than 24 %,

- in the third step, 10 % or lower,

in the fourth step, higher than 10 %.

11. A method according to any of the preceding claims, characterised in that the hemicellulose is recovered from the precipitate in the third step.

12. The method according to Claim 11, characterised in that the liquid phase which is generated from the first step and which comprises hemicellulose, is ultrafiltrated in order to separate and concentrate the hemicellulose into the retentate, after which the concentration of the solvent in the retentate, relative to the ionic liquid, is changed in order to precipitate the hemicelluloses.

13. A method according to any of the Claims 7-12, characterised in that the cellulose is recovered from the precipitate in the fourth step.

14. The method according to Claim 13, characterised in that

- the solvent is separated from the solid matter,

- the separated solvent is divided into solvent or ionic liquid and water, and

- the organic solvent or the ionic liquid is recirculated into the solvent in the second step, and possibly also the first and the fourth step.

15. The method according to Claim 14, characterised in that the water is returned into the solvent in the third step and possibly also the first and the second step.

16. A method according to any of the Claims 7-15, characterised in that the fibre pulp and the cellulose are enriched, dissolved and regenerated.

17. A method according to any of the Claims 7-16, characterised in that the fibre pulp to be treated is dried to a dry matter percentage of maximum 52 %, and the cellulose pulp is thickened to a dry matter percentage of 30 - 52 %, preferably to a dry matter percentage of over 40 %, before it is brought into contact with the solvent in the first step. 18. A method according to any of the Claims 7-17, characterised in that the fibre pulp comprises at least 7 % hemicellulose, calculated based on the dry weight, preferably the percentage of hemicellulose is approximately 10 - 30 % of the

polysaccharides of the fibre pulp. 19. A method according to any of the preceding claims, characterised in that the hemicellulose is precipitated from the mother liquor in the fourth step, for example by combining this with the solution in the third step.

20. A method according to any of the preceding claims, characterised in the combination of

- the fibre pulp is brought into contact with the mixture AB 1, which is comprised of solvent A, which is an ionic liquid, and B, which is water, at a mixing ratio, which is capable of dissolving selectively the hemi celluloses, after which

- the main part of this solvent mixture AB land the hemicelluloses dissolved in it are separated from the fibre pulp and then directed for further treatment, after which

- the fibre pulp is brought into contact with the mixture AB2, which is comprised of the same solvents A and B, at a mixing ratio, which is capable of dissolving the cellulose in the fibre pulp and the hemicelluloses which were undissolved in the previous treatment, after which

- the dissolved fibre material is directed to a space, where a mixture AB3, which is comprised of solvents A and B, is held, and the dissolved cellulose, which comes into contact with the mixture, is precipitated, and the dissolved hemicellulose, which comes into contact with the mixture, remains mainly dissolved in the solution, after which the precipitated cellulose is separated from the solvent mixture AB3, which solvent mixture is directed for further treatment, and

- the hemicellulose-containing solvent mixture AB l, which is separated from the fibre pulp, and the hemicellulose-containing solvent mixture AB3, which is separated from the precipitated cellulose, are ultrafiltrated together or separately, in order to separate and concentrate the hemicellulose into the retentate, whereas the main part of the solvent mixture ends up, essentially free from hemicelluloses, in the permeate flow, after which

- the mixing ratio of the solvents A and B in the retentate is changed in order that, in this solvent mixture AB4, the bulk of the hemicelluloses is precipitated, after which, optionally

- the precipitated hemicelluloses are separated from the solvent mixture for further treatment, and the solvent mixture AB4 is directed, together with the permeate from the ultrafiltration, to evaporation, where the solvent B is separated from solvent A by evaporation and condensation of solvent B, and the separated and recovered solvent A is reused to form the solvent mixtures.

21. The method according to Claim 20, c h a r a c t e r i s e d in that the fibre pulp, which is rich in hemicelluloses before the fibre pulp and solvent A come into contact, is thickened in order to ensure that the amount of solvent B remains within a dry matter percentage range of 30 - 52 %, preferably a dry matter percentage of over 40 %.

22. A method according to Claim 20 or 21, c h a r a c t e r i s e d in that the contact between the pulp fibre and the solvent mixture AB l lasts for at least 10 minutes and typically takes place at a fibre consistency of 8 - 15 %.

23. A method according to any of the Claims 20 - 22, c h a r a c t e r i s e d in that the separation of the solvent mixture AB l from the fibre pulp is carried out by compressing the suspension, which is formed of the fibre pulp and the solvent mixture, to a dry matter percentage of 30 - 52 %, preferably to a dry matter percentage of over 40 %.

24. A method according to any of the Claims 20-23, characterised in that hemicellulose-poor permeate from the ultrafiltration is added into the compressed fibre pulp, in order to extract the hemicelluloses in the fibre pulp, and to remove them to the solvent mixture, after which the fibre pulp is re-compressed to a dry matter percentage of 40-52 %, and the separated solvent mixture is directed into ultrafiltration, in order to separate the hemicelluloses. 25. A method according to any of the preceding claims, characterised in the ionic solvent is [emim]OAc.

26. A method according to any of the Claims 20-25, characterised in that the water content of the solvent mixture AB1 is 12 - 22 % by weight.

27. A method according to any of the Claims 20-26, characterised in that the water content in the solvent mixture AB2 is 0 - 10 % by weight.

28. A method according to any of the Claims 20-27, characterised in that the water content in the solvent mixture AB3 is 10-20 % by weight.

29. A method according to any of the Claims 20-28, characterised in that the water content in the solvent mixture AB4 is 25 - 35 % by weight. 30. A method of fractionating the hemicellulose and the cellulose in the fibre pulp, which comprises cellulose and hemicellulose, and of treating the fractions generated in this way with a water-miscible organic cellulose solvent, by which the desired component is dissolved, characterised in that, for the fractionation and for the treating of the various fractions, one and the same solution is used, which solution is formed of an ionic liquid and of this liquid and water, the concentration of which is adjusted by changing the water content, depending on which component is to be dissolved.

31. The method according to Claim 30, characterised in that the water-miscible organic cellulose solvent is N-methylmorpholine-N-oxide or an ionic liquid, such as an imidazolium-based ionic liquid, for example [bmim]Cl, (l-butyl-3-methyl -imidazolium chloride), [emim][OAc] (l-ethyl-3-methyl-imidazolium acetate) or [emim][Me2P04] (1- ethyl-3-methyl-imidazoliurn-dimethyl phosphate), or a mixture thereof, or a conjugated acid, which comprises an organic base, such as 1, 1,3,3-tetramethyl-guanidine (TMG), 1, 1,2,3, 3-pentamethyl-guanidine (PMG) or 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), which comprises inorganic or organic conjugated acids, such as propionic acid (or other carboxylic acid), hydrochloric acid, methyl dihydrogen phosphonate, dimethyl hydrogen phosphate or phosphinic acid.

Description:
Method of producing regenerated cellulose and hemicellulose

Scope of the invention The present invention relates to production of regenerated cellulose and hemicellulose.

In particular, the present invention relates to the method according to the preamble of Claim 1 of isolating cellulose and hemicellulose from a fibre pulp, which is produced by chemical cooking and which comprises cellulose and hemicellulose, such as from chemical pulp that is prepared from wood or grasses.

The present invention also relates to the method according to the preamble of Claim 7 of treating fibre pulp, and to the method according to the preamble of Claim 30 of

fractionating the fibre pulp.

Background Art

Dissolving pulp is generally used in the production of viscose fibres and other textile fibres, as well as different further processed products which demand high chemical purity. Traditionally, it is required that the dissolving pulp has a high percentage of cellulose

("alpha-cellulose") and is reactive towards various derivatising chemicals, such as carbon disulphide.

Generating high alpha-cellulose content means removing particularly the lignin and the hemicellulose material (xylan and glucomannan) from the fibres. The removal of lignin takes place in the same way as happens during the production of chemical pulp in general: by cooking lignocellulose-containing raw materials together with chemicals that remove the lignin, under conditions which are typical for each process, and which can be divided into, for example alkaline, acidic or solvent-based (organosolv) cooking methods. It is also possible to combine different cooking reaction steps which remove the lignin, referred to as multi-stage cooking. Lignin removal is completed in follow-up processes (oxygen delignification and bleaching), in which the fibre suspension generated during the cooking is treated with various lignin-removing chemicals, such as oxygen, chlorine dioxide, ozone, chlorine, hypochlorite and hydrogen peroxide. For the removal of the hemicelluloses, many known processes have been used in the industry already for decades, which processes have been described in detail, among others, by Herbert Sixtan in his Handbook of Pulp (2006). Alkaline extraction of sulphate pulp is also a known method, which is described in several patent applications, such as WO publication 2007/065 969.

Many of the manufacturing processes of dissolving pulp (viscose pulp) are based on sulphite cooking. Generally, in sulphite pulp mills, increasing the percentage of alpha- cellulose takes place in such a way that hemicelluloses are removed in association with bleaching, during the "hot alkali stage", by using diluted NaOH solutions as reagents, and under conditions of high temperature.

There are also cooking processes in which it is possible to achieve the desired percentage of alpha-cellulose already during the cooking. Such methods are based on multi-stage sulphite cooking or prehydrolysis sulphate cooking.

In the sulphite methods, the chemicals and especially the pH of the different cooking steps are varied appropriately. In prehydrolysis sulphate cooking, in the beginning of the process there is a special acidic hydrolysis step, in which the pH of the wood chips is brought down to a low level by using steam, water or an acid solution. Bleaching of the

prehydrolysis pulp does not necessarily require a separate step at all for removing the hemicelluloses. The prehydrolysis sulphate cooking is so close to the basic sulphate process used in paper pulp production that application of it does not require a radically different technology, compared to the production of paper pulp.

A disadvantage of the prehydrolysis sulphate process is that the selectivity regarding the cellulose is compromised as the intensity of the hydrolysis is increased. This results in the consumption of wood per tonne of dissolving pulp produced becoming uneconomically high. It is possible to improve the selectivity by selecting milder conditions for the hydrolysis step, in which case not as much hemicelluloses as is theoretically possible is removed during the hydrolysis. However, a lower level of removal of hemicelluloses means that in order to achieve the desired alpha-cellulose content, the removal of hemicelluloses must be continued, for example by means of a hot-alkali-step or a cold- alkali-step, which is carried out in association with the bleaching process.

Today, the importance of hemicellulose as a biopolymer material is of increasing interest. In particular, there are new ways of using polymeric hemicellulose, for example by means of derivatisation.

As described above, traditionally the hemicellulose has had to be removed from the fibre pulp before it can be used for dissolving pulp applications. Treatments which have been carried out under hydrolysing conditions have, however, resulted in degradation of the hemicelluloses, and as a result, the percentage of polymeric material is quite small.

The publication WO 2008/098 032 describes a method, in which lignocellulose raw material, which comprises, among others, cellulose and hemicellulose, is completely dissolved in an ionic liquid. This liquid comprises almost no or only a very small amount of water. Cellulose and hemicellulose are precipitated from the ionic liquid, for example by adding water. The publication does not describe any methods of separating cellulose and hemicellulose from each other. For this reason, the regenerated lignocellulose material that is produced using this method is not pure cellulose, instead it also comprises

hemicellulose. To precipitate the hemicellulose from the circulated ionic liquid, acetonitrile or THF is added into the liquid.

In an article from year 2009, Mazza et al. describe the importance of water for the solubility of cellulose in various ionic liquids (Mazza et al. Cellulose 2009, vol. 16, No. 2, pp. 207-215). The authors carried out experiments to determine how much water could be added into cellulose solution, in which the solvent was an ionic liquid. The publication makes no mention of how the water content affected the other dissolved components.

Froschauer et al., in Biomacromolecules 2012, 13, 1973-1980, describe a solvent which can be used to selectively dissolve xylan from a hemicellulose-rich pulp. They make no mention at all of the significance of the water content. Summary of the Invention

Technical problem The purpose of the present invention is to eliminate disadvantages associated with the known technology and to generate a completely new solution of producing regenerated (i.e. "reformed") polymeric hemicellulose and, correspondingly, regenerated cellulose, in the same mill. Solution of the Problem

The present invention is based on the idea that a fibre pulp which comprises hemicellulose and cellulose can be fractionated into hemicellulose and cellulose by using one and the same cellulose solvent, such as an ionic liquid or its aqueous solution, in which case the concentration of the solvent is adjusted by changing the water content, always depending on which component is to be dissolved. The prior art has not exploited the fact that an organic solvent, such as NMMO or IL, forms, together with water, a solvent system, which within a given range of water content selectively dissolves hemicellulose, and

correspondingly within another range of water content it dissolves cellulose.

In the present invention, from a fibre pulp which has, for example, a high hemicellulose content, the hemicellulose and, correspondingly, the cellulose, are separated to form separate fractions by dissolving them into such a solvent or its aqueous solution, from which they are precipitated - each from its own solution - by adding water into the solution, after which the regenerated hemicellulose and cellulose can be recovered.

More specifically, the method, according to the present invention, of producing

regenerated hemicellulose and cellulose is characterised by what is stated in the characterising part of Claim 1.

The method of treating fibre pulp, in turn, is characterised by what is stated in the characterising part of Claim 7, and the method of fractionating the fibre pulp by what is stated in the characterising part of Claim 30. Advantageous Effects of the Invention

Considerable advantages are achieved with the present invention. Thus, in the present method, hemicellulose-containing pulp, which is traditionally used as paper raw material, can be efficiently fractionated into polymeric hemicellulose-rich fractions and very pure cellulose fractions, such as regenerated cellulose fibre, different cellulose particles or cellulose film. Unlike the conventional chains for producing cellulose polymer, the present method also makes it possible to increase the percentage of both glucomannan and xylan in the hemicelluloses in the intermediate product pulp, by modifying traditional pulp cooking by means of methods which are known per se, such as polysulphide cooking. In this way, it is possible to significantly increase the yield of wood raw material in the form of hemicellulose-based and cellulose-based material products, compared to the current production chains.

The use of ionic liquids and similar cellulose solvents for example in the regenerated fibre production chain, in the way described here, is in principle possible in such business units, which are currently producing regenerated cellulose fibres (cf. viscose mills). A mill which produces chemical cellulose pulp offers an industrial infrastructure, an economy of scale and a possibility to develop, based on the hemicellulose fraction, new value chains and to make more efficient, as described above, the use of wood raw material. The present method enables the adapting of such a pulp mill in order to produce regenerated hemicellulose and cellulose products. The pulp mill can become for example a producer of cellulose staple fibre. A pulp mill can be further developed into a biorefinery, that is to say in one and the same production unit it is possible to produce side by side a variety of biopolymers, for example both polymeric hemicelluloses and regenerated cellulose products.

Dissolving and regenerating of cellulose, carried out in a pulp mill is particularly advantageous also because the intermediate products: hemicellulose-rich fibre pulp or hemicellulose-poor fibre pulp, do not need to be dried because logistics do not require it. This avoids keratinisation of the fibre. The fibre structure remains open, allowing access of the solvent into the fibre wall through the porous structures of the fibre, and making the dissolving more efficient. Dissolving of cellulose, without prior derivatisation, using the direct dissolution method and using the above-mentioned cellulose solvents, in turn, simplifies the process and the apparatus required for its implementation, for example, compared to the traditional viscose method.

The pulp mill environment offers the opportunity, in traditional pulp bleaching unit processes (such as in the peroxide, ozone and hypochlorite stages, as well as by acidification for example with sulphuric acid), to adjust the viscosity of the cellulose to correspond to the needs of the cellulose product produced in each case.

In the following, preferred embodiments are described.

Short Description of Drawing The accompanying picture shows a basic drawing of the flow chart of one embodiment.

Embodiments

The present invention exploits, on the one hand, the ability of a cellulose solvent, such as an ionic liquid, to dissolve all the hemi celluloses in wood-based pulp fibre, and on the other hand, exploits the observation that it is possible to control, for example, the ability of an ionic liquid to dissolve hemicellulose and cellulose, by controlling the water content of the ionic liquid. These phenomena can be used, in accordance with the present invention, for the fractionating of these two bio-based polymers, and be used for dissolving and re- precipitating of material.

Based on the above, regenerated (or "reformed") cellulose and hemicellulose can be produced with a method, in which the hemicellulose and, correspondingly, the cellulose are separated from the fibre pulp, to form separate fractions. This is carried out by first dissolving the hemicellulose and, correspondingly, the cellulose, into a water-miscible cellulose solvent or its aqueous solution, in order to generate such a first solution that comprises, as dissolved polysaccharide, mainly hemicellulose, and to generate such a second solution that comprises, as dissolved polysaccharide, mainly cellulose. This can be achieved by setting the water content of the first dissolving solution higher than the water content of the second solution.

Hemicellulose and, correspondingly, cellulose, are precipitated from these solutions by increasing the water content of the solutions, in which case regenerated hemicellulose and, correspondingly, regenerated cellulose, are generated.

In one embodiment, N-methylmorpholine-N-oxide is used as the water-miscible organic cellulose solvent. In another embodiment, an ionic liquid is used as the cellulose solvent. Examples of these are: [bmim]Cl, (l-butyl-3-methyl-imidazolium chloride), [emim][OAc] (l-ethyl-3-methyl- imidazoliumacetate) or [emim][Me 2 P0 4 ] (l-ethyl-3-methyl-imidazolium- dimethylphosphate), and mixtures thereof. Other examples of ionic liquids include conjugated acids, which are comprised of an organic base, such as 1, 1,3,3-tetramethyl guanidine (TMG), 1, 1,2,3,3-pentamethyl guanidine (PMG) or 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), which comprises inorganic or organic conjugated acids, such as propionic acid (and other carboxylic acids), hydrochloric acid, methyl dihydrogen phosphonate, dimethyl hydrogen phosphate or phosphinic acid.

The solvents described above are suitable for all the embodiments, which are described above. The hemicellulose which is produced with the present method can be polymeric, preferably its molar mass is higher than 5,000 g/mol, most suitably higher than 10,000 g/mol, more preferably higher than 15,000 g/mol. The molar mass of hemicellulose can be, for example 17,500 g/mol-50,000 g/mol. Typically, the polydispersivity of polymeric hemicellulose is 1 - 5, for example 1.2 - 4.0.

Depending on what fibre raw material is used, the hemicellulose comprises branched or linear polysaccharide polymers, such as arabinoxylan, glucuronic acid-xylan,

galactoglucomannan and glucomannan. Typical hemicelluloses are xylans and

glucomannans. From the cellulose which is precipitated from the solution, associated with the

precipitation, products are formed, such as fibres, beads and different particles or films. Naturally, it is possible to produce two or more such products. In particular, cellulose fibres, cellulose beads, cellulose particles and/or cellulose films, are produced.

It actually is possible to carry out the precipitation using a traditional spinning nozzle directed into a precipitation basin, the water content of which is suitable for the cellulose precipitation.

A more preferred embodiment of treating the pulp fibre comprises several steps. They can be carried out in series and partly in parallel. Most suitably, the steps are performed in one and the same factory. In particular, an ionic liquid is used as the cellulose solvent. Accordingly

- in a first step, the solid particles in the first liquid phase are brought into contact with a solvent, which comprises an organic solvent or an ionic liquid that has a first concentration relative to water, in order to dissolve the hemicellulose into the liquid phase, resulting in

o a solid matter, which is mainly comprised of cellulose, and

o a second liquid phase, which is mainly comprised of dissolved

hemicellulose.

For the water content in the first dissolving step to be suitable, in a more preferred embodiment, the fibre pulp to be treated is dried to a dry matter content of maximum 52 %, and the pulp is thickened to a dry matter content of 30 - 52 %, preferably to a dry matter content of over 40 %, before bringing it into contact with the solvent.

As described above, more preferably, the fibre pulp which is brought to the first dissolving step, is never dried, in order to avoid possible keratinisation.

The second liquid phase, which comprises hemicellulose, is brought to the second step, in which the dissolved hemicellulose is precipitated from the solvent, which comprises ionic liquid that has a second concentration relative to water, in which case the said second concentration is lower than the first concentration.

The solid matter which comprises cellulose is, in turn, brought to a third step where it is brought into contact with a solvent which comprises ionic liquid that has a third concentration relative to water, in order to dissolve the solid matter into the liquid phase, in which case the said third concentration is higher than the first concentration, and in which case a third liquid phase is generated, the dissolved solid matter of which is mainly cellulose. Finally, the third liquid phase that comprises dissolved solid matter is brought to the fourth step, where the dissolved solid matter is precipitated from the solvent, which comprises ionic liquid that has a fourth concentration relative to water, in which case the said fourth concentration is lower than the first concentration, but higher than the second

concentration.

It is essential for the application that a solvent which comprises the same ionic liquid, which possibly comprises water, is used in the first, second, third and fourth step. The concentration of this ionic liquid in the solvent is adjusted by increasing or decreasing the amount of ionic liquid, increasing or decreasing the amount of water or by a combination of these measures.

More preferably, the water content of the solvent comprising ionic liquid is

- in the first step, higher than 1 1 % but lower than 23 %,

- in the second step, higher than 24 %,

- in the third step, 10 % or lower,

- in the fourth step, 10 - 20 %.

Most suitably, the hemicellulose is recovered from the precipitate in the third step, and the cellulose is recovered from the precipitate in the fourth step.

The liquid phase, which comprises hemicellulose and which is obtained from the first step is, in turn, preferably and typically ultrafiltrated. As a result, the hemicellulose is separated and concentrated into the retentate. The concentration of the solvent in the retentate, relative to the ionic liquid, is changed in order to precipitate the hemicelluloses. Solvent and water are recirculated in the process.

In one embodiment, where the solvent is separated from the solid matter, the separated solvent is divided into ionic liquid and water, and the ionic liquid is recirculated into the solvent in the second step, and possibly in the first and the fourth step, too. The water, in turn, is returned into the solvent in the third step, and possibly in the first and the second step, too. A more preferred application is shown in the accompanying figure.

As shown in the figure, in the application of the present method, the fibre pulp 1 , which acts as the initial material, is brought into contact 2 with the solvent mixture AB l, for example in a mixing tank. The solvent mixture is comprised of a solvent A, which is an ionic liquid, and B, which is water. The mixture ratio is selected suitably to render the solvent mixture capable of selectively dissolving hemicelluloses.

In one preferred embodiment, an initial material pulp, which is rich in hemicelluloses, is thickened in order to ensure that the amount of solvent B remains within a dry matter percentage range of 30 - 52 %, preferably to a dry matter percentage of over 40 %, before it comes into contact with solvent A.

Contact between the fibre pulp and the solvent mixture ABl lasts for at least 10 minutes and typically takes place at a fibre consistency of 8 - 15 %.

After that, a main part of this solvent mixture ABl and hemicelluloses which are dissolved into the mixture, are separated from the fibre pulp 3 and directed to further treatment 4. After concentration, the fibre pulp is brought into contact 5 with the mixture AB2, which comprises the same solvents A and B, which mixture is capable of dissolving the cellulose in the fibre pulp and the hemicelluloses which have not been dissolved in the preceding treatment.

Separation of the solvent mixture ABl from the fibre pulp is carried out, for example, compressing the suspension formed of the fibre pulp and the solvent mixture to a dry matter percentage of 30 - 52 %, preferably to a dry matter percentage of over 40 %.

The solution which is obtained from step 5 is directed into the space 6, where the mixture AB3, which is formed of solvents A and B, is held, and when the cellulose, which has been dissolved, comes into contact with the mixture, the cellulose is precipitated, and the hemicellulose, which has been dissolved, mainly remains dissolved in the solution. After that, the precipitated cellulose is separated in step 7 from the solvent mixture AB3. The solution mixture is directed for further processing 5. The hemicellulose-containing solvent mixture AB l, which is separated from the fibre pulp, and the hemicellulose-containing solvent mixture AB3, which is separated from the precipitated cellulose, are ultrafiltered together or separately 5, to separate and concentrate the hemicellulose into the retentate, whereas the bulk of the solvent mixture, being essentially hemicelluloses-free, ends up in the permeate flow 8, after which the mixture ratio of the solvents A and B in the retentate, is changed in order that the bulk of the hemicelluloses in this solvent mixture AB4 is precipitated 9.

In one embodiment, the hemicellulose-poor permeate in the ultrafiltration is added into the compressed fibre pulp, in order to extract the hemicelluloses in the fibre pulp, and to remove them to the solvent mixture, after which the fibre pulp is re-compressed to a dry matter percentage of 40 - 52 %, and the separated solvent mixture is directed to

ultrafiltration, in order to separate the hemicelluloses.

The precipitated hemicelluloses are separated from the solvent mixture for further processing and the solvent mixture AB4 is directed, together with the permeate in the ultrafiltration, to an evaporation step, in which solvent B is separated from solvent A by evaporation and by condensation of solvent B, and the separated and recovered solvent A is reused 10 to form the solvent mixtures.

In one embodiment, the water contents in the solvent mixtures, which are used

process, are the following:

a) the water content in the solvent mixture ABl is 12 - 22 % by weight;

b) the water content in the solvent mixture AB2 is 0 - 10 % by weight;

c) the water content in the solvent mixture AB3 is 10 - 20 % by weight; and d) the water content in the solvent mixture AB4 is 25 - 35 % by weight.

As described above, standard hemicellulose-rich pulp, such as paper pulp, can be used as the initial material, i.e. as the pulp (chemical fibre mass). Such a fibre pulp comprises for example at least 7 %, for example at least 10 % hemicellulose, calculated based on the dry weight. Preferably, the percentage of hemicellulose of the polysaccharides in the fibre pulp is approximately 10 - 30 %.

The fibre pulp used in the present technology can be produced from wood or grasses, by using chemical cooking. The wood material can be softwood or hardwood, examples of which are pine, spruce, birch, aspen, poplar, eucalyptus or mixed tropical hardwood, and examples of grasses are hemp, straw, bamboo, reed canary grass, reed and meadow fescue and goat's rue, but these are of course only examples. Cooking methods which are known per se, are suitable for producing fibre pulp; in the cooking it is possible to use conventional chemicals that remove lignin, at alkaline, acidic or solvent-based (organosolv) conditions.

Examples of methods which are suitable for producing fibre pulp are sulphate cooking, polysulphide cooking, soda cooking, sulphite cooking and formic acid cooking, and other organosolv cookings, but these examples do not in any way restrict the invention. A variety of additional chemicals, such as anthraquinone, can be used in the cooking. It is also possible to combine different lignin-removing cooking reaction steps, by using multistage cookings. After cooking, delignifi cation can be continued in oxygen delignification. Delignification of the treated pulp is completed in the bleaching stage.

Most suitably, the pulp to be treated is bleached. Therefore, its lignin content is low or very low. Typically, the lignin content is less than 1 %, especially 0.5 % or less, calculated based on the dry weight of the pulp.

Based on the properties of a regenerated polysaccharide product, which is produced in one non-restrictive embodiment, the properties of the fibre pulp which is fed into the process are modified to better suit the end product. An example of such a solution is an application, in which the degree of polymerisation of the cellulose in the fibre pulp is modified to correspond to the degree of polymerisation of the regenerated cellulose product. Thus, the initial viscosity of the pulp can be, for example, lowered before treatment by 1 - 75 %. In one non-restrictive special embodiment, the intrinsic viscosity of the fibre pulp, which is 800 - 1100 cmVg, is reduced to 400 - 750 cm 3 /g, for example 400 - 550 cm 3 /g, before treatment. The initial value is typical for example for paper pulp and the latter value represents a most typical viscosity value in production processes of regenerated products.

The following non-limiting example illustrates the invention: Example:

Paper pulp which is produced using the softwood sulphate method, and the ISO brightness of which is 89 % and the hemicellulose percentage is 17.0 % (8.0 % glucomannan and 9.0 % xylan) and the cellulose percentage is 83.0 %, is taken from the high consistency pulp storage tower in the form of a suspension, and then pressed to a dry matter percentage of 42 %. The water which is released in pressing is used as process water in the bottom dilution of the storage tower. Into the pressed paper pulp is added, while stirring, concentrated approximately 100 % [emim][OAc] liquid in such a way that the water, which is carried with the pressed paper pulp, is mixed into the [emim][OAc], and then forms, around the fibres in the paper pulp, a liquid phase, in which the percentage of water is 19 % by weight and of [emim][OAc] 81 % by weight. The pulp fibres are allowed to be in contact with the surrounding liquid phase, at the generated fibre consistency of approximately 10 %. The liquid also penetrates into the fibre wall, in which case approximately 99 % of the hemicellulose in the fibres is dissolved, and the hemicelluloses are transferred into the surrounding fluid.

After that, the mixture of the fibres and the liquid surrounding them is directed to a press, and when the fibre pulp is pressed to a dry matter percentage of 45 %, the main part, i.e. approximately 87 % of the dissolved hemicellulose, ends up in the compression filtrate which is to be separated. The pressed fibre pulp, in turn, which comprises carbohydrates, 2.9 % of which are hemicelluloses and 97.1 % is cellulose, and the liquid of which comprises 19 % water and 81 % [emim][OAc] is directed to dissolving stage of the cellulose. In the dissolving stage, concentrated approximately 100 % [emim][OAc] is added, while stirring, into the compressed fibre pulp. The purpose is to generate a carbohydrate solution which has a concentration of over 10 %, preferably, however, 15-20 %.

Excess water is removed at the dissolving stage of the cellulose by evaporation of water and, at the same time, any air bubbles are removed from the solution. The resulting cellulose polymer solution is stored under controlled conditions in order to even out the quality, and possible impurities are removed from it by filtration. The dissolved polymers are regenerated into fibres by directing the solution, which comprises cellulose polymer, through a spinning nozzle into a bath having a water content of 19-25 %, in which case the long-molecular cellulose is precipitated into the spin bath. Countercurrent washing of the regenerated cellulose is carried out to generate pure water which is introduced into the spin bath.

A mixture [emim][OAc] and water is removed from the spin bath, which mixture comprises small amounts of dissolved hemicelluloses and low molecular cellulose. This solution is then directed to the regeneration of the [emim][OAc], into which is also directed the hemicellulose-containing pressing mixture, which is generated from the pressing of the fibre pulp. In the regeneration, the mixture of water-[emim][OAc] is purified by ultrafiltration. In the ultrafiltration, the hemicellulose solution is concentrated to approximately 8-10 %, and the hemicelluloses are precipitated by dilution with water in order that the water percentage in the liquid mixture after dilution is 80 % and the

[emim][OAc] percentage 20 %.

The precipitated hemicelluloses are separated in a centrifuge and then dried. The separated hemicellulose is macromolecular. The average molecular weight Mw is approximately 35 kDa and the polydispersity is approximately 1.9.

The filtrate generated in the centrifuge is directed to a second step of regeneration of the [emim][OAc], in which step also the permeates, which have passed through the

membranes in the ultrafiltration, are collected. In this second regeneration step, the water is evaporated off the [emim][OAc], which is reused. Industrial applicability

The present invention can be industrially used, for example for producing regenerated products from lignocellulose-containing carbohydrate material, such as cellulose and hemicellulose. Examples of such products are fibres, including staple fibres, hemicellulose polymers, hemicellulose oligomers and hemicellulose monomers, and it is possible to further produce, for example, fine chemicals or ethanol, of the latter ones.

From the lignocellulose raw material it is possible to produce optionally, among others, hemicellulose-rich fibre pulp or, correspondingly, hemicellulose-poor fibre pulp, which pulps are suitable for different end-use applications.

As an alternative to traditional base extractions, it is possible to use the present method for the fractionating of lignocellulose material, in which case the depolymerisation during the separation and fractionation remains very insignificant. For this reason, the method is also suitable for research purposes.

Reference number list

1. Feed of hemicellulose-rich fibre suspension

2. Dissolution of hemicelluloses using solvent mixture AB1

3. Separation of fibre from liquid

4. Concentration of hemicellulose solution by ultrafiltration

5. Dissolution of fibre using solvent mixture AB2

6. Precipitation of dissolved cellulose using solvent mixture AB3

7. Separation of precipitated cellulose and solvent mixture

8. Precipitation of hemicelluloses using solvent mixture AB4

9. Separation of precipitated hemicellulose from liquid

10 Separation of solvents from each other

1 1 Recirculation of solvent B

12 Recirculation of solvent A List of References

Patent literature

WO 2007/065969.

WO 2008/098032

Non-patent literature

Sixta, Herbert, Handbook of Pulp (2006).

Mazza et al., Cellulose 2009, vol. 16, No. 2, pp. 207-215.

Froschauer et al., Biomacromolecules 2012, 13, pp. 1973-