Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING WHEEL AXLES, IN PARTICULAR FOR RAILWAY CARRIAGES
Document Type and Number:
WIPO Patent Application WO/2011/120062
Kind Code:
A1
Abstract:
The invention relates to a method for producing wheel axles, in particular for railway carriages, having a hollow axle body (1), which with respect to thickened bearing seats (2) forms shouldered axle stubs (3) for receiving the wheel and has an inner diameter for the axle stubs (3) smaller than a widened inner diameter between the bearing seats (2), wherein the outer form of the axle body (1) is forged. In order to avoid machining, according to the invention, a hollow forging blank (8) having an inner diameter corresponding at least to the widened inner diameter of the axle body (1) is forged, advancing in the axial direction, using a forging mandrel (13) having a mould section (15) for the widened inner diameter of the axle body (1), before the mould section (15) for the widened inner diameter is pulled out from one end of the hollow forging blank (8) and the still unforged section of the forging blank (8) having the smaller inner diameter is forged with the aid of a forging mandrel (13) having a mould section (14) for the smaller inner diameter of the forging blank (8).

Inventors:
WIESER RUPERT (AT)
Application Number:
PCT/AT2011/000145
Publication Date:
October 06, 2011
Filing Date:
March 24, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GFM GMBH (AT)
WIESER RUPERT (AT)
International Classes:
B21K1/10; B21C37/16
Foreign References:
FR2926739A12009-07-31
DE19523280A11997-01-02
US2256065A1941-09-16
DE102005052178A12006-04-27
Other References:
None
Attorney, Agent or Firm:
HÜBSCHER, Helmut (AT)
Download PDF:
Claims:
P a t e n t a n s p r ü c h e

1. Verfahren zum Herstellen von Radachsen, insbesondere für Eisenbahnwagen, mit einem hohlen Achskörper (1), der gegenüber verdickten Lagersitzen (2) abgesetzte Achsstummel (3) zur Radaufnahme bildet und einen gegenüber einem erweiterten Innendurchmesser zwischen den Lagersitzen (2) kleineren Innendurchmesser für die Achsstummel (3) aufweist, wobei die Außenform des Achskörpers (1) geschmiedet wird, dadurch gekennzeichnet, dass ein hohler Schmiederohling (8) mit einem zumindest dem erweiterten Innendurchmesser des Achskörpers (1) entsprechenden Innendurchmesser unter Einsatz eines Schmiededorns (13) mit einem Formabschnitt (15) für den erweiterten Innendurchmesser des Achskörpers (1) in Achsrichtung fortschreitend geschmiedet wird, bevor der Formabschnitt (15) für den erweiterten Innendurchmesser aus einem Ende des hohlen Schmiederohlings (8) herausgezogen und der noch ungeschmiedete Abschnitt des Schmiederohlings (8) mit dem kleineren Innendurchmesser mit Hilfe eines Schmiededorns (13) mit einem Formabschnitt (14) für den kleineren Innendurchmesser des Schmiederohlings (8) geschmiedet wird.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der hohle Schmiederohling (8) ausgehend von einem Ende durchgehend bis zum anderen Ende unter Einsatz eines Schmiededorns (13) mit zwei Formabschnitten (14, 15) entsprechend den unterschiedlichen Innendurchmessern des Achskörpers (1) fortschreitend geschmiedet wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schmiederohling (8) vor dem Schmieden im Bereich der verdickten Lagersitze (2) angestaucht wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor dem Schmieden die Innenfläche des hohlen Schmiederohlings (8) entzundert wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass über den Schmiededorn (13) ein Schutzmittel gegen eine Verzunderung in den Hohlraum des Schmiederohlings (8) eingebracht wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Hohlraum des Schmiederohlings (8) während des Schmiedevorgangs endseitig verschlossen wird.

Description:
Verfahren zum Herstellen von Radachsen, insbesondere für Eisenbahnwagen Technisches Gebiet

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Radachsen, insbesondere für Eisenbahnwagen, mit einem hohlen Achskörper, der gegenüber verdickten Lagersitzen abgesetzte Achsstummel zur Radaufnahme bildet und einen gegenüber einem erweiterten Innendurchmesser zwischen den Lagersitzen kleineren Innendurchmesser für die Achsstummel aufweist, wobei die Außenform des Achskörpers geschmiedet wird.

Stand der Technik

Um die Radachsen eines Eisenbahnwagens mit Hilfe von Ultraschall überprüfen zu können, ist es notwendig, hohle Achskörper vorzusehen, in die ein Ultraschallkopf eingeführt werden kann. Um die Achslasten aufnehmen zu können, sind die Achskörper mit verdickten Lagersitzen versehen, denen gegenüber die Achsstummel zur Radaufnahme abgesetzt sind. Zur Gewichtsreduktion wird ein erweiterter Innendurchmesser des hohlen Achskörpers zwischen den Lagersitzen gefordert, was zu einer spanabhebenden Bohrbearbeitung der Achskörper führt. Dies gilt auch für den Fall, dass diese Achskörper vor dem Bohren durch einen Schmiedevorgang hergestellt worden sind. Die spanabhebende Bearbeitung der Radachsen ist jedoch aufwendig und bringt unter Umständen die Gefahr mit sich, dass aufgrund der Kerbwirkungen der durch die spanabhebende Bearbeitung bedingten Oberflächenstruktur die Dauerfestigkeit der Radachsen leidet. Darstellung der Erfindung

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Herstellung von Radachsen, insbesondere für Eisenbahnwagen, der eingangs geschilderten Art so auszugestalten, dass eine vorteilhafte spanlose Bearbeitung des Achskörpers ermöglicht wird.

Die Erfindung löst die gestellte Aufgabe dadurch, dass ein hohler Schmiederohling mit einem zumindest dem erweiterten Innendurchmesser des Achskörpers entsprechenden Innendurchmesser unter Einsatz eines Schmiededorns mit einem Formabschnitt für den erweiterten Innendurchmesser des Achskörpers in Achsrichtung fortschreitend geschmiedet wird, bevor der Formabschnitt für den erweiterten Innendurchmesser aus einem Ende des hohlen Schmiederohlings herausgezogen und der noch ungeschmiedete Abschnitt des Schmiederohlings mit dem kleineren Innendurchmesser mit Hilfe eines Schmiededorns mit einem Formabschnitt für den kleineren Innendurchmesser des Schmiederohlings geschmiedet wird.

Da von einem hohlen Schmiederohling ausgegangen wird, ergeben sich vorteilhafte Voraussetzungen für die Herstellung des hohlen Achskörpers durch ein Schmieden sowohl der Innen- als auch der Außenform. Die Formabschnitte zumindest eines Schmiededorns entsprechend dem Innendurchmesser der Achsstummel einerseits und entsprechend dem erweiterten Innendurchmesser zwischen den beiden Lagersitzen anderseits erlaubt das Schmieden eines Achskörpers mit einem bezüglich seines Durchmessers abgesetzten Hohlraum, wenn nach dem Schmieden des Achskörperabschnitts mit dem erweiterten Innendurchmesser der hiefür eingesetzte Formabschnitt des Schmiededorns soweit aus dem Schmiederohling herausgezogen wird, dass dieser Formabschnitt für den erweiterten Innendurchmesser außerhalb des Schmiederohlings zu liegen kommt, sodass dann mit Hilfe eines an den kleineren Innendurchmesser angepassten Formabschnitts eines Schmiededorns zumindest der Achsstum- mel an dem Ende geschmiedet werden kann, aus dem der Formabschnitt für den größeren Innendurchmesser herausgezogen wurde.

Wird zunächst nur der Abschnitt des Achskörpers mit dem größeren Innendurchmesser geschmiedet, so müssen im Anschluss daran die beiden Achsstummel an den gegenüberliegenden Enden des Achskörpers geschmiedet werden, was einen gesonderten Dorn mit einem an den kleineren Innendurchmesser angepassten Formabschnitt bedingt. Günstigere Verhältnisse ergeben sich jedoch, wenn der hohle Schmiederohling ausgehend von einem Ende durchgehend bis zum anderen Ende unter Einsatz eines Schmiededorns mit zwei Formabschnitten entsprechend den unterschiedlichen Innendurchmessern des Achskörpers fortschreitend geschmiedet wird. Ein solcher Schmiededorn ermöglicht nämlich, dass zunächst ein Achsstummel mit dem daran anschließenden, verdickten Lagersitz über den gestuften Schmiededorn geschmiedet wird, und zwar unter einer relativen Vorschubbewegung des Schmiededorns und des Schmiederohlings gegenüber den Schmiedewerkzeugen. Das anschließende Schmieden des Achskörperabschnitts mit dem erweiterten Innendurchmesser zwischen den beiden Lagersitzen bedarf einer axialen Relativbewegung zwischen dem Schmiederohling und dem Schmiededorn, wenn der Formabschnitt des Schmiededorns für den erweiterten Innendurchmesser eine kürzere axiale Länge als der Achskörperabschnitt mit dem erweiterten Innendurchmesser aufweist. Zum abschließenden Schmieden des zweiten Achsstummels ist der Schmiededorn soweit aus dem Schmiederohling herauszuziehen, dass nur der Formabschnitt mit dem an den Innendurchmesser der Achsstummel angepassten Außendurchmesser in den weitgehend bearbeitenden Schmiederohling eingreift, sodass sich für das Schmieden dieses Achsstummels eine entsprechende Abstützung auf dem abgesetzten Formabschnitt des gestuften Schmiededorns ergibt. Der Übergang vom erweiterten Innendurchmesser zum Innendurchmesser dieses zuletzt geschmiedeten Achsstummels stellt sich aufgrund einer fehlenden Abstützung im Innenbereich ein weitgehend freier Werkstofffluss ein. Die freie Formung des Übergangsbereichs spielt aber weder für die Belastbarkeit noch für die Prüfung der Radachse mit Hilfe von Ultraschall eine Rolle

Der Schmiederohling kann beispielsweise aus einem Vollmaterial durch ein Lochen in bekannter Weise hergestellt werden, wobei beim Lochen die verdickten Lagersitze mit einem größeren Außendurchmesser geschmiedet werden, bevor der auf diese Weise hergestellte Schmiederohling dem erfindungsgemäßen Verfahren zum Schmieden des Achskörpers unterworfen wird. Es ist aber auch möglich, einen gepressten Hohlkörper oder ein nahtloses Rohr als Schmiederohling einzusetzen. Während im Allgemeinen gepresste Hohlkörper ohne weiteres mit einer für die Ausbildung der verdickten Lagersitze ausreichenden Wanddicke vorgesehen werden können, können größere Wanddicken für nahtlose Rohre Schwierigkeiten bereiten. Aus diesem Grunde kann es vorteilhaft sein, dass der Schmiederohling vor dem Schmieden im Bereich der verdickten Lagersitze angestaucht wird. Ein solches Anstauchen im Bereich der verdickten Lagersitze hat den Vorteil, dass im Bereich außerhalb dieser Lagersitze eine geringere Schmiedeverformung erforderlich wird.

Die zum Schmiedeverformen aufgewärmten Schmiederohlinge neigen zur Zunderbildung. Während die Entzunderung beim Schmieden der Außenfläche selbständig erfolgt, können Zunderbildungen im Innenbereich des späteren hohlen Achskörpers zu Beeinträchtigungen der Oberflächengüte im Hohlraum der Radachsen führen. Um diesen Nachteil zu vermeiden, kann die Innenfläche des hohlen Schmiederohlings vor dem Schmieden entzundert werden, beispielsweise mit Hilfe eines in den hohlen Schmiederohling einführbaren Dorns, der als Bürste ausgebildet oder mit Schabern für den mechanischen Abtrag von Zunderschichten versehen sein kann. Zur Unterstützung der Entzunderung kann aber auch Wasser unter Hochdruck in den hohlen Schmiederohling eingesprüht werden, und zwar vorteilhaft über den Entzunderungsdorn. Mit der Entzunderung der Innenfläche des hohlen Schmiederohlings wird jedoch noch nicht die Gefahr einer neuerlichen Zunderbildung während des Schmiedevorgangs gebannt. Aus diesem Grund kann über den Schmiededorn ein Schutz- mittel gegen eine Verzunderung in den Hohlraum des Schmiederohlings eingebracht werden. Als Schutzmittel kann ein Schutzgas oder eine Schutzflüssigkeit dienen. Es ist aber auch möglich, Legierungs- bzw. Beschichtungsmittel auf die Innenfläche des Schmiederohlings aufzubringen, die eine weitere Zunderbildung unterbinden.

Wird der Hohlraum des Schmiederohlings während des Schmiedevorgangs endseitig zumindest im Wesentlichen verschlossen, so kann in einfacher Weise der Austritt des über den Schmiededorn eingebrachten Schutzmittels aus dem Hohlraum des Schmiederohlings vermieden werden, womit hinsichtlich der Unterdrückung einer Zunderbildung vorteilhafte Verfahrensbedingungen erreicht werden können.

Kurze Beschreibung der Zeichnung

Anhand der Zeichnung wird das erfindungsgemäße Verfahren näher erläutert. Es zeigen

Fig. 1 eine herzustellende Radachse in einem vereinfachten Längsschnitt, Fig. 2 eine Schmiedevorrichtung zur Durchführung des erfindungsgemäßen Ver-fahrens zum Herstellen von Radachsen gemäß Fig. 1 , insbesondere für Eisenbahnwagen, in einer schematischen, zum Teil aufgerissenen Seitenansicht und die

Fig. 3 bis 6 diese Schmiedevorrichtung ausschnittsweise im Bereich zwischen den beiden Spannköpfen beidseits der Schmiedewerkzeuge in einem schematischen Längsschnitt in verschiedenen Arbeitsstellungen.

Weg zur Ausführung der Erfindung

Wie der Fig. 1 entnommen werden kann, weist die zu schmiedende Radachse einen durchgehend hohlen Achskörper 1 mit zwei verdickten Lagersitzen 2 und mit gegenüber diesen Lagersitzen 2 abgesetzten Achsstummeln 3 zur Radauf- nähme auf. Der Achskörperabschnitt 4 zwischen den beiden Lagersitzen 2, der mit einem gegenüber den Lagersitzen 2 verringerten Außendurchmesser versehen ist, bildet einen zylindrischen Hohlraum 5 mit einem gegenüber dem Innendurchmesser der zylindrischen Hohlräume 6 der Achsstummel 3 erweiterten Innendurchmesser.

Die dargestellte Vorrichtung zum Herstellen einer Radachse für Eisenbahnwagen mit einem Achskörper 1 entsprechend der Fig. 1 umfasst gemäß der Fig. 2 in herkömmlicher Weise einander paarweise gegenüberliegende Schmiedewerkzeuge 7, beispielsweise in Form von Schmiedehämmern, zwischen denen der rohrförmige Schmiederohling 8 unter einem gleichzeitigen Drehen um seine Achse zu seiner Bearbeitung axial durchgefördert wird. Zu diesem Zweck sind beidseits der Schmiedewerkzeuge 7 Spannköpfe 9, 10 vorgesehen, die in je einem Gehäuse 11 drehbar gelagert sind und mit Hilfe der Gehäuse 11 entlang eines Führungsbettes 12 verfahren werden können. Der intermittierende Drehantrieb für die Spannköpfe 9, 10 ist aus Übersichtlichkeitsgründen nicht dargestellt.

Im Gehäuse 11 für den Spannkopf 9 ist ein gestufter Schmiededorn 13 axial verstellbar gelagert, der einen endseitigen Formabschnitt 14 mit einem dem Innendurchmesser der Achsstummel 3 entsprechenden Außendurchmesser und einen daran anschließenden Formabschnitt 15 für den erweiterten zylindrischen Hohlraum 5 des Achskörperabschnitts 4 ausbildet. Dem gegenüberliegenden Spannkopf 10 ist ein ebenfalls axial verstellbarer Dorn 16 zugeordnet, der zum Entzundern der Innenfläche des hohlen Schmiederohlings 8 dient und beispielsweise einen Bürstenkopf 17 trägt, der zusätzlich mit nicht dargestellten Düsen zur Beaufschlagung der Innenfläche des hohlen Schmiederohlings 8 mit Wasser unter hohem Druck zur Unterstützung der Entzunderung der Innenfläche des Schmiederohlings 8 ausgerüstet werden kann.

Zum Schmieden eines Achskörpers 1 gemäß der Fig. 1 wird ein hohler, rohr- förmiger Schmiederohling 8 eingesetzt, der im gewählten Ausführungsbeispiel einen an die Abmessungen der Lagersitze 2 des Achskörpers 1 angepassten Außendurchmesser mit einer entsprechenden Wanddicke aufweist. Dieser Schmiederohling 8 wird nach einer entsprechenden Erwärmung auf eine vorgegebene Schmiedetemperatur im Spannkopf 9 eingespannt und axial gegen den gegenüberliegenden Spannkopf 10 vorgeschoben, um seine Innenfläche mit Hilfe des Bürstenkopfs 17 zu entzundern, der über den Dorn 16 in den hohlen Schmiederohling 8 eingestoßen wird, wie dies in der Fig. 2 durch einen Pfeil angedeutet ist. Nach dem vorzugsweise durch das Eindüsen von Hochdruckwasser unterstützten Entzunderungsvorgang wird der Bürstenkopf 17 aus dem Schmiederohling 8 zurückgezogen und der gestufte Schmiededorn 13 zum Schmieden des dem Spannkopf 9 gegenüberliegenden Achsstummels 3 in den Schmiederohling 8 eingeführt. In der Fig. 3 ist diese Schmiededornstellung zum Schmieden des Achsstummels 3 dargestellt. Unter einem intermittierenden Drehen des Schmiederohlings 8 und einem entsprechenden Schmiedevorschub über das den Spannkopf 9 aufnehmende Gehäuse 1 entlang des Führungsbetts 12 kann somit der dem Spannkopf 9 gegenüberliegenden Achsstummel 3 über den Formabschnitt 14 des Schmiededorns 13 geschmiedet werden, um den anschließenden Lagersitz 2 bei unveränderter Relativlage des Schmiededorns 13 gegenüber dem Schmiederohling 8 zu schmieden.

Das Schmieden des an den Lagersitz 2 anschließenden Achskörperabschnitts 4 mit dem erweiterten zylindrischen Hohlraum 5 erfordert eine Reduzierung des Außendurchmessers des Formrohlings 8. Der den Innendurchmesser des erweiterten Hohlraums 5 bestimmende Formabschnitt 15 des Schmiededorns 16 ist dabei gegenüber dem Schmiedebereich festzuhalten, was bei einem axialen Schmiedevorschub des Schmiederohlings 8 durch den Spannkopf 9 ein dem Schmiedevorschub entsprechendes Zurückziehen des Schmiededorns 13 bedingt, um den Schmiederohling 8 während des Schmiedevorgangs am Formabschnitt 15 des Schmiededorns 13 abstützen zu können. Gemäß der Fig. 4 kann nach dem Schmieden des Achskörperabschnitts 4 zwischen den beiden Lagersitzen 2 des Achskörpers 1 der dem Spannkopf 9 nähere Lagersitz 2 geschmiedet werden, und zwar über den Formabschnitt 15 des Schmiededorns 13, wie dies der Fig. 5 entnommen werden kann. Zumindest für diesen Schmiedevorgang muss der Spannkopf 10 den Vorschubantrieb für den Schmiederohiing 8 übernehmen, um die Schmiedewerkzeuge 7 unbehindert durch den Spannkopf 9 einsetzen zu können.

Zum abschließenden Schmieden des Achsstummels 3 ist jedoch der Formabschnitt 15 des Schmiededorns 13 aus dem Schmiederohling 8 vollständig herauszuziehen, damit der verbleibende Achsstummel 3 über den abgesetzten Formabschnitt 14 des Schmiededorns 15 geschmiedet werden kann. In der Fig. 6 ist dieser Verformungsschritt dargestellt. Zum Unterschied zum Achsstummel 3 auf der dem Spannkopf 9 gegenüberliegenden Seite bildet sich der Übergang vom erweiterten Hohlraum 5 des Achskörperabschnitts 4 zum Hohlraum 6 des Achsstummels 3 auf der Seite des Spannkopfs 9 durch ein im Wesentlichen freies Fließen des Werkstoffs aus. Dies bringt aber keine Nachteile weder für die Belastbarkeit der Radachse noch für die Ultraschallüberprüfung mit sich.

Um die Gefahr einer neuerlichen Zunderbildung während des Schmiedevorgangs zu unterbinden, kann durch den Schmiededorn 15 ein entsprechendes Schutzmittel in den hohlen Schmiederohling 8 eingebracht werden. Eine entsprechende Schutzmittelleitung 18 durch den Schmiededorn 13 ist strichpunktiert angedeutet. Als Schutzmittel kann Schutzgas, aber auch eine Schutzflüssigkeit eingesetzt werden. Es ist aber auch möglich, die Innenfläche des Schmiederohlings 8 durch eine Schutzschicht abzudecken, die eine Zunderbildung unterbindet. Damit ein in den hohlen Schmiederohling 8 eingebrachtes Schutzmittel nicht ohne weiteres aus dem Schmiederohling 8 austreten kann, kann der hohle Schmiederohling 8 stirnseitig verschlossen werden. Gemäß den Fig. 4 bis 6 wird zu diesem Zweck der Bürstenkopf 14 des Dorns 16 eingesetzt. Auf der gegenüberliegenden Stirnseite des Schmiederohlings könnte ein in den Fig. 3 und 4 strichpunktiert angedeuteter, vom Schmiededorn 13 durchsetzter Deckel 9 vorgesehen werden. Die Erfindung ist selbstverständlich nicht auf das dargestellte Ausführungsbeispiel beschränkt. So könnte ein rohrförmiger Schmiederohling 8 eingesetzt werden, dessen Außendurchmesser dem Außendurchmesser des Achskörperabschnitts 4 zwischen den Lagersitzen 2 entspricht. Die verdickten Lagersitze 2 müssten in diesem Fall dadurch berücksichtigt werden, dass der Schmiederohling 8 in ihrem Bereich entsprechend angestaucht wird. Der hohle Schmiederohling 8 könnte aber auch auf der Schmiedevorrichtung selbst hergestellt werden, indem ein volles Ausgangsmaterial zunächst in herkömmlicher Weise mit Hilfe eines Lochdorns gelocht wird.