Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE PRODUCTION OF ACYL GYLCINATES BY MEANS OF DIRECT OXIDATION
Document Type and Number:
WIPO Patent Application WO/2009/087086
Kind Code:
A1
Abstract:
A method is described for producing acyl glycinate salts of formula (II) in which R1 represents a saturated linear or branched alkyl radical comprising 1 to 21 carbon atoms or a monounsaturated or polyunsaturated linear or branched alkenyl radical comprising 2 to 21 carbon atoms, and B represents a cation, and/or the corresponding protonated acyl glycinic acid. Said method is characterized in that one or more fatty acid monoethanol amides of formula (I) in which R1 has the meaning indicated above is/are oxidized with oxygen in the presence of an optionally supported bimetallic catalyst consisting of gold and a metal from group VIII of the periodic table in the alkaline medium in order to obtain one or more acyl glycinate salts of formula (II). In order to produce the protonated acyl glycinic acids, the acyl glycinate salt/s of formula (II) is/are additionally reacted with an acid.

Inventors:
KLUG PETER (DE)
STANKOWIAK ACHIM (DE)
FRANKE OLIVER (DE)
SCHERL FRANZ-XAVER (DE)
PRUESSE ULF (DE)
DECKER NADINE (DE)
VORLOP KLAUS-DIETER (DE)
Application Number:
PCT/EP2009/000034
Publication Date:
July 16, 2009
Filing Date:
January 07, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLARIANT INT LTD (CH)
KLUG PETER (DE)
STANKOWIAK ACHIM (DE)
FRANKE OLIVER (DE)
SCHERL FRANZ-XAVER (DE)
PRUESSE ULF (DE)
DECKER NADINE (DE)
VORLOP KLAUS-DIETER (DE)
International Classes:
C07C231/12
Domestic Patent References:
WO2008000671A12008-01-03
WO2008000648A12008-01-03
WO2008019807A12008-02-21
Foreign References:
JPH11246473A1999-09-14
Other References:
None
Attorney, Agent or Firm:
PACZKOWSKI, Marcus et al. (Group Intellectual PropertyAm Unisys-Park 1, Sulzbach, DE)
Download PDF:
Claims:

Patentansprüche

1. Verfahren zur Herstellung von Acylglycinatsalzen der Formel (II)

worin

R 1 einen gesättigten linearen oder verzweigten Alkylrest mit 1 bis 21 Kohlenstoffatomen oder einen ein- oder mehrfach ungesättigten linearen oder verzweigten Alkenylrest mit 2 bis 21 Kohlenstoffatomen und

B ein Kation ist,

bedeutet, und/oder der entsprechenden protonierten Acylglycinsäuren, dadurch gekennzeichnet, dass ein oder mehrere Fettsäuremonoethanolamide der Formel (I)

worin R 1 die oben angegebene Bedeutung besitzt,

mit Sauerstoff in Gegenwart eines gegebenenfalls geträgerten Bimetallkatalysators bestehend aus Gold und einem Metall der Gruppe VIII des Periodensystems im alkalischen Medium zu einem oder mehreren

Acylglycinatsalzen der Formel (II) oxidiert werden und im Fall der Herstellung der protonierten Acylglycinsäuren das oder die Acylglycinatsalze der Formel (II) zusätzlich mit einer Säure umgesetzt werden.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein oder mehrere Fettsäuremonoethanolamide der Formel (I), worin der oder die Reste R 1 gesättigte lineare oder verzweigte Alkylreste mit 7 bis 17 Kohlenstoffatomen oder ein- oder mehrfach ungesättigte lineare oder verzweigte Alkenylreste mit 7 bis 17 Kohlenstoffatomen sind, in der Reaktion verwendet werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das oder die Fettsäuremonoethanolamide der Formel (I) ausgewählt sind aus Laurinsäuremonoethanolamid, Myristinsäuremonoethanolamid, Caprylsäuremonoethanolamid, Caprinsäuremonoethanolamid, Palmitinsäuremonoethanolamid, Stearinsäuremonoethanolamid, Isostearinsäuremonoethanolamid und Cocosfettsäuremonoethanolamid.

4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Bimetallkatalysator auf einem Träger aufgebracht ist.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Bimetallkatalysator auf einem oxidischen Träger aufgebracht ist.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der oxidische Träger aus Titandioxid besteht.

7. Verfahren nach einem oder mehreren der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der geträgerte Bimetallkatalysator 0,1 bis 5 Gew.-% Gold, bevorzugt 0,5 bis 3 Gew.-% Gold, enthält.

8. Verfahren nach einem oder mehreren der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der geträgerte Bimetallkatalysator 0,1 bis 3 Gew.-% und vorzugsweise 0,1 bis 2 Gew.-% eines Metalls der Gruppe VIII, vorzugsweise Platin oder Palladium, enthält.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Teilchengröße des Bimetallkatalysators von 1 bis 50 nm und vorzugsweise von 2 bis 10 nm ist.

10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Lösung enthaltend ein oder mehrere Fettsäuremonoethanolamide der Formel (I) und ein oder mehrere Acylglycinate der Formel (II) der Oxidation unterworfen werden.

Description:

Beschreibung

Verfahren zur Herstellung von Acylglycinaten mittels Direktoxidation

Aminosäuretenside sind in der Waschmittel- und Kosmetikindustrie weit verbreitet. Sie zählen zu der Gruppe der milden Cotenside und werden meist zur Verbesserung des Schaumvolumens und der Milde der Formulierungen eingesetzt. Sie wurden in der Vergangenheit hauptsächlich über die Umsetzung von Aminosäuren mit aktivierten Fettsäurederivaten, speziell Fettsäurechloriden, synthetisiert wie z. B. in US 6,703,517 oder US 2005/0085651 A1 für Acylglycinate der Formel (IIa) beschrieben (s. Schema 1 ).

(IIa)

R 1a ist ein gesättigter oder ungesättigter Fettsäurerest mit 8 bis 22 Kohlenstoffatomen

Schema 1 Herstellung von Natrium-Acylglycinaten nach dem Stand der Technik.

Dieses Verfahren nach dem Stand der Technik benötigt mit dem Fettsäurechlorid einen relativ teuren und reaktiven Rohstoff und weist außerdem den Nachteil auf, dass pro ein mol Aminosäuretensid, d. h. Verbindung der Formel (IIa), ein mol Kochsalz NaCI gebildet wird. Dieses gelangt in das Reaktionsabwasser und stellt dort für biologische Kläranlagen ein Problem dar, da Kochsalz die Reinigungsleistung solcher Anlagen beeinträchtigen kann.

Es bestand also ein Bedarf an Verfahren zur Herstellung von Aminosäuretensiden und hier speziell Aminosäuretensiden auf Basis der Aminosäure Glycin, so genannte Acylglycinate und deren protonierte Basissäuren, die die obigen Nachteile nicht aufweisen.

überraschend wurde gefunden, dass acylierte Glycine und deren Salze, so genannte Acylglycinatsalze oder kurz Acylgylcinate, alternativ zu der üblichen Fettsäurechloridroute nach dem Stand der Technik auch durch direkte Oxidation von Fettsäuremonoethanolamiden mit Luftsauerstoff oder Reinsauerstoff mittels übergangsmetallkatalysatoren zugänglich sind.

Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von Acylglycinatsalzen der Formel (II)

worin

R 1 einen gesättigten linearen oder verzweigten Alkylrest mit 1 bis 21

Kohlenstoffatomen oder einen ein- oder mehrfach ungesättigten linearen oder verzweigten Alkenylrest mit 2 bis 21 Kohlenstoffatomen und

B ein Kation ist,

bedeutet, und/oder der entsprechenden protonierten Acylglycinsäuren, dadurch gekennzeichnet, dass ein oder mehrere Fettsäuremonoethanolamide der Formel (I)

worin R 1 die oben angegebene Bedeutung besitzt,

mit Sauerstoff in Gegenwart eines gegebenenfalls geträgerten Bimetallkatalysators bestehend aus Gold und einem Metall der Gruppe VIII des

Periodensystems im alkalischen Medium zu einem oder mehreren Acylglycinatsalzen der Formel (II) oxidiert werden und im Fall der Herstellung der protonierten Acylglycinsäuren das oder die Acylglycinatsalze der Formel (II) zusätzlich mit einer Säure umgesetzt werden.

Im Rahmen der vorliegenden Erfindung werden unter den Metallen der Gruppe VIII des Periodensystems die Metalle Fe, Ru, Os, Co, Rh, Ir, Ni, Pd und Pt verstanden.

Bei dem erfindungsgemäßen Verfahren wird gegenüber der Verwendung des Fettsäurechlorids mit einem deutlich preisgünstigeren Rohstoff, dem Fettsäuremonoethanolamid der Formel (I), gestartet. Außerdem wird bei der Herstellung der Acylglycinate der Formel (II) kein Salz gebildet (s. Schema 2).

(II)

(I)

H +

(III)

R 1 und B haben die oben angegebenen Bedeutungen

Schema 2 Herstellung von Acylglycinaten und/oder der entsprechenden protonierten Acylglycinsäuren nach dem erfindungsgemäßen Verfahren.

Als Fettsäuremonoethanolamide können Monoethanolamide von gesättigten, unverzweigten oder verzweigten Fettsäuren mit 2-22 Kohlenstoffatomen (d. h. R 1 = Ci bis C 2 -I ) oder von ein- oder mehrfach ungesättigten, unverzweigten oder

verzweigten Fettsäuren mit 3-22 Kohlenstoffatomen (d.h. R 1 = C 2 bis C 2 i) eingesetzt werden.

Bevorzugt sind Fettsäuremonoethanolamide mit 8-18 Kohlenstoffatomen im Fettsäurerest bzw. Acylrest R 1 CO-, d. h. R 1 ist in diesem Fall ein gesättigter linearer oder verzweigter Alkylrest mit 7 bis 17 Kohlenstoffatomen oder ein ein- oder mehrfach ungesättigter linearer oder verzweigter Alkenylrest mit 7 bis 17 Kohlenstoffatomen. Besonders bevorzugt sind Laurinsäuremonoethanolamid, Myristinsäuremonoethanolamid, Caprylsäuremonoethanolamid, Caprinsäuremonoethanolamid, Palmitinsäuremonoethanolamid,

Stearinsäuremonoethanolamid oder Isostearinsäuremonoethanolamid. Hierbei können auch Amide basierend auf Kettenschnitten bzw. Mischungen dieser Fettsäuremonoethanolamide eingesetzt werden, bevorzugt Cocosfettsäuremonoethanolamid.

Unter den gesättigten und ungesättigten Fettsäuremonoethanolamiden sind die gesättigten Fettsäuremonoethanolamide bevorzugt.

Bei dem Kation B handelt es sich vorzugsweise um Alkalimetallkationen ausgewählt aus Kationen der Alkalimetalle Li, Na, K, Rb und Cs. Besonders bevorzugt sind die Kationen der Alkalimetalle Na und K.

Die Bimetallkatalysatoren sind gemischte Katalysatoren, die neben Gold noch ein Metall aus der Gruppe VIII enthalten. Die Bimetallkatalysatoren sind demnach vorzugsweise Goldkatalysatoren, die zusätzlich mit einem der Metalle aus der Gruppe VIII dotiert sind. Besonders bevorzugt ist die Dotierung mit Platin oder Palladium.

Vorzugsweise sind die Metalle der Bimetallkatalysatoren bzw. sind die Bimetallkatalysatoren auf einem Träger aufgebracht. Bevorzugte Träger sind Aktivkohle und oxidische Träger, vorzugsweise oxidische Träger. Als oxidische Träger wiederum bevorzugt sind Titandioxid, Cerdioxid oder Aluminiumoxid, besonders bevorzugt bestehen die oxidischen Träger aus Titandioxid. Solche

Katalysatoren können nach den bekannten Methoden wie lncipient Wetness (IW) oder Deposition-Precipitation (DP) wie z. B. in L. Prati, G. Martra, Gold Bull. 39 (1999) 96 und S. Biella, G.L. Castiglioni, C. Fumagalli, L. Prati, M. Rossi, Catalysis Today 72 (2002) 43-49 oder L. Prati, F. Porta, Applied catalysis A: General 291 (2005) 199-203 beschrieben, hergestellt werden.

In einer weiteren bevorzugten Ausführungsform der Erfindung enthalten die geträgerten Bimetallkatalysatoren 0,1 bis 5 Gew.-% und vorzugsweise 0,5 bis 3 Gew.-% Gold.

Weiterhin bevorzugt enthalten die geträgerten Bimetallkatalysatoren 0,1 bis 3 Gew.-% und vorzugsweise 0,1 bis 2 Gew.-% eines Metalls der Gruppe VIII 1 vorzugsweise Platin oder Palladium.

Besonders bevorzugt enthalten die geträgerten Bimetallkatalysatoren 0,1 bis 5 Gew.-%, insbesondere 0,5 bis 3 Gew.-%, Gold und 0,1 bis 3 Gew.-%, insbesondere 0,1 bis 2 Gew.-%, eines Gruppe Vlll-Metalls, bevorzugt Platin oder Palladium, bezogen auf die Summe von Trägermaterial und Bimetallkatalysator. Das bevorzugte Gewichtsverhältnis Gold/Gruppe VIII Metall, insbesondere Gold/Platin oder Gold/Palladium, beträgt 70 : 30 bis 95 : 5. Gleiche

Mengenverhältnisse gelten auch bei Verwendung von Gold und anderer Metalle der Gruppe VIII als Platin oder Palladium.

Die Teilchengröße des Bimetallkatalysators ist vorzugsweise von 1 bis 50 nm und besonders bevorzugt von 2 bis 10 nm. Diese Bimetallkatalysatoren werden im Rahmen der vorliegenden Erfindung auch als Nanogoldkatalysatoren bezeichnet.

Als Basen können Carbonate, Hydroxide oder Oxide in dem erfindungsgemäßen Verfahren verwendet werden. Bevorzugt sind die Hydroxide BOH.

Das erfindungsgemäße Verfahren wird vorzugsweise in Wasser durchgeführt.

Die Oxidationsreaktion wird vorzugsweise bei einer Temperatur von 30 bis 200 0 C, besonders bevorzugt zwischen 80 und 150 0 C, durchgeführt.

Der pH-Wert bei der Oxidation liegt bevorzugt zwischen 8 und 13, besonders bevorzugt zwischen 9 und 12.

Der Druck bei der Oxidationsreaktion ist vorzugsweise im Vergleich zu Atmosphärendruck erhöht.

Bei der Reaktion im alkalischen Medium entstehen zunächst die Alkalisalze (B = Li, Na, K, Rb, Cs) der acylierten Glycine mit 2 bis 22 Kohlenstoffatomen im Acylrest, bevorzugt mit 8 bis 18 Kohlenstoffatomen, bevorzugt die Natrium- oder Kaliumsalze. Besonders bevorzugt ist das Verfahren für Natriumcocoylglycinat und Kaliumcocoylglycinat. Durch Ansäuern mit anorganischen Säuren kann aus den Lösungen dann das acylierte Glycin erhalten werden. Bevorzugte Säuren sind Salz- und Schwefelsäure.

In einer weiteren Ausführungsform der Erfindung wurde der Tatsache Rechnung getragen, dass längerkettige (> Cs) Fettsäuremonoethanolamide, d. h. Fettsäuremonoethanolamide mit 8 oder mehr Kohlenstoffatomen im Acylrest R 1 CO-, speziell Laurinsäuremonoethanolamid und

Cocosfettsäuremonoethanolamid, für eine ausreichende Oxidationsreaktion ohne Zusatz geeigneter Lösemittel nicht ausreichend im Reaktionsmedium Wasser löslich sind. Somit würde der Vorteil der Kochsalz-freien Produktion der Zielsubstanzen in diesem Fall durch den zusätzlichen Einsatz von Lösemitteln wieder teilweise aufgehoben.

Es wurde nun gefunden, dass Fettsäuremonoethanolamide mit 8 oder mehr Kohlenstoffatomen im Acylrest R 1 CO-, speziell Laurinsäuremonoethanolamid und Cocosfettsäuremonoethanolamid, in Lösungen von Alkalisalzen der Acylglycinate bzw. Fettsäureglycinate, insbesondere der Alkalisalze von Laurinsäure- oder Cocosfettsäureglycinaten, löslich sind. Dadurch ergibt sich eine elegante, lösemittelfreie Reaktionsführung dadurch, dass man eine Lösung von

Fettsäuremonoethanolamid im Zielprodukt Acylglycinatsalz, vorzugsweise Natriumacylglycinat, herstellt (dies kann durch Rückmischung der fertigen Reaktionslösung mit Fettsäuremonoethanolamid erfolgen) und diese Mischung der katalytischen Oxidation unterwirft. Dabei wird das enthaltene Monoethanolamid oxidiert und wiederum eine Lösung eines Alkalisalzes (B = Li 1 Na, K, Rb 1 Cs) der Acylgylcinsäure der Formel (IM) in Wasser erzeugt. Besonders bevorzugt sind hierbei die Natrium- und Kaliumsalze (B = Na, K).

Anschließend kann wiederum aus der alkalischen Reaktionslösung mittels geeigneter Säuren die Acylglycinsäure der Formel (III) freigesetzt werden. Bevorzugte Säuren sind Salzsäure und Schwefelsäure.

In einer bevorzugten Ausführungsform der Erfindung wird somit eine Lösung enthaltend ein oder mehrere Fettsäuremonoethanolamide der Formel (I) und ein oder mehrere Acylglycinate der Formel (II) der Oxidation unterworfen.

In dieser bevorzugten Ausführungsform der Erfindung werden die Fettsäuremonoethanolamide mittels Sauerstoff und einem gegebenenfalls geträgerten Bimetallkatalysator bestehend aus Gold und einem Metall der Gruppe VIII im alkalischen Medium zu Lösungen von Acylglycinaten oxidiert, wobei vor Beginn der Oxidationsreaktion eine Lösung des Fettsäuremonoethanolamids in einem Alkalisalz eines Acylglycinats vorliegt und diese Mischung in Wasser der Oxidationsreaktion unterworfen wird.

In dieser bevorzugten Ausführungsform der Erfindung beträgt das

Massenverhältnis zwischen Fettsäuremonoethanolamid der Formel (I) und Acylglycinat der Formel (II) zu Beginn der Reaktion zwischen und 1 : 10 und 3 : 1 , bevorzugt zwischen 1 : 2 und 2 : 1. Der Gesamtmassenanteil an Fettsäuremonoethanolamid der Formel (I) und Acylglycinat der Formel (II) beträgt zwischen 15 und 50 %, bevorzugt zwischen 20 und 40 %, besonders bevorzugt zwischen 25 und 35 %.

Das erfindungsgemäße Verfahren ergibt vorzugsweise Lösungen von Acylglycinaten der Formel (II) mit nur noch geringen Restgehalten an Fettsäuremonoethanolamid von < 10 Gew.-%, bevorzugt < 5 Gew.-%, besonders bevorzugt < 2 Gew.-%.

Die folgenden Beispiele illustrieren die Erfindung:

Beispiel 1 : Verfahren zur Herstellung von Glycinaten unter Verwendung von Goldkatalysatoren

In einen 2-Liter-Druckautoklaven mit Begasungsrührer werden 1 Liter einer wässrigen Lösung, enthaltend 15 Gew.-% Cocosfettsäuremonoethanolamid und 15 Gew.-% Natriumcocoylglycinat, gegeben. Diese Mischung ist bis 80 0 C klar und flüssig. Die Menge an Natriumcocoylglycinat kann aus einem vorausgegangenen Ansatz entnommen werden bzw. aus einem vorausgegangenen Oxidationsansatz im Reaktor verbleiben. Nach Zugabe von 5 g eines Nanogoldkatalysators (0,9 Gew.-% Gold und 0,1 Gew.-% Platin auf Titandioxid, Teilchengröße 4-8 nm) wird die Suspension mit Natronlauge auf pH 12 eingestellt und auf 80 0 C aufgeheizt. Nach Erreichen der Reaktionstemperatur wird die Reaktionslösung mit Sauerstoff auf einen Druck von 9 bar aufgepresst und durch Nachpressen auf diesem Druck gehalten. Während der gesamten Reaktionszeit wird mittels eines Autotitrators der pH-Wert der Mischung mit Natronlauge auf 12 gehalten. Nach 6 Stunden wird der Reaktor abgekühlt, entspannt und der Katalysator durch Filtration von der Reaktionslösung abgetrennt. Die Lösung zeigt einen Restgehalt von < 2 Gew.-% Cocosmonoethanolamid und ca. 32 Gew.-% Natriumcocoylglycinat.

Beispiel 2: Verfahren zur Herstellung von Glycinaten unter Verwendung von Goldkatalysatoren

In einen 2-Liter-Druckautoklaven mit Begasungsrührer werden 1 Liter einer wässrigen Lösung, enthaltend 15 Gew.-% Cocosfettsäuremonoethanolamid und

15 Gew.-% Kaliumcocoylglycinat, gegeben. Diese Mischung ist bis 80 °C klar und flüssig. Die Menge an Kaliumcocoylglycinat kann aus einem vorausgegangenen Ansatz entnommen werden bzw. aus einem vorausgegangenen Oxidationsansatz im Reaktor verbleiben. Nach Zugabe von 5 g eines Nanogoldkatalysators (0,9 Gew.-% Gold und 0,1 Gew.-% Platin auf Titandioxid, Teilchengröße 4-8 nm) wird die Suspension mit Natronlauge auf pH 12 eingestellt und auf 80 0 C aufgeheizt. Nach Erreichen der Reaktionstemperatur wird die Reaktionslösung mit Sauerstoff auf einen Druck von 9 bar aufgepresst und durch Nachpressen auf diesem Druck gehalten. Während der gesamten Reaktionszeit wird mittels eines Autotitrators der pH-Wert der Mischung mit Kalilauge auf 12 gehalten. Nach 6 Stunden wird der Reaktor abgekühlt, entspannt und der Katalysator durch Filtration von der Reaktionslösung abgetrennt. Die Lösung zeigt einen Restgehalt von < 1 Gew.-% Cocosmonoethanolamid und ca. 33 Gew.-% Kaliumcocoylglycinat.