Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE PRODUCTION OF A SIDERURGICAL PRODUCT MADE OF CARBON STEEL WITH A HIGH COPPER CONTENT, AND SIDERURGICAL PRODUCT OBTAINED ACCORDING TO SAID METHOD
Document Type and Number:
WIPO Patent Application WO/2003/057928
Kind Code:
A1
Abstract:
The invention relates to a method for producing a siderurgical product made of carbon steel having a high copper content, according to which: - a liquid steel having the composition: 0.0005 % $m(F) C $m(F) 1 %; 0.5 $m(F) Cu $m(F) 10 %; 0 $m(F) Mn $m(F) 2 %; 0 $m(F) Si $m(F) 5 %; 0 $m(F) Ti $m(F) 0.5 %; 0 $m(F) Nb $m(F) 0.5 %; 0 $m(F) Ni $m(F) 5 %; 0 $m(F) Al $m(F) 2 %, the remainder being iron and impurities, is produced; - said liquid steel is poured directly in the form of a thin strip having a thickness of no more than 10 mm; - the strip is subjected to forced cooling and/or is surrounded by a non-oxidizing atmosphere while having a temperature of more than 1000? C; - said thin strip is hot rolled at a reduction rate of at least 10 %, the temperature at the end of the rolling process being such that all of the copper is still in a solid solution in the ferrite and/or austenite matrix; - the strip is then subjected to forced cooling so as to maintain the copper in an oversaturated solid solution in the ferrite and/or austenite matrix; - and the strip is coiled. The invention also relates to a siderurgical product obtained according to said method.

Inventors:
GUELTON NICOLAS PATRICE (FR)
FARAL MICHEL (FR)
BIRAT JEAN PIERRE (FR)
JUCKUM CATHERINE (FR)
Application Number:
PCT/FR2003/000088
Publication Date:
July 17, 2003
Filing Date:
January 13, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
USINOR (FR)
GUELTON NICOLAS PATRICE (FR)
FARAL MICHEL (FR)
BIRAT JEAN PIERRE (FR)
JUCKUM CATHERINE (FR)
International Classes:
B21B1/46; B21B3/00; B22D11/00; B22D11/06; B22D11/12; B22D11/22; C21D8/00; C21D8/04; C21D9/46; C22C38/00; C22C38/04; C22C38/16; (IPC1-7): C21D8/04; C22C38/16; C22C38/04
Domestic Patent References:
WO2001081640A12001-11-01
WO2001077400A12001-10-18
Foreign References:
EP0641867A11995-03-08
EP1072689A12001-01-31
EP0969112A12000-01-05
US5470529A1995-11-28
US4925500A1990-05-15
Other References:
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05)
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30)
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 12 25 December 1997 (1997-12-25)
Attorney, Agent or Firm:
Neyret, Daniel (2 Place d'Estienne d'Orves, PARIS CEDEX 09, FR)
Download PDF:
Claims:
REVENDICATIONS
1. Procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, selon lequel : on élabore un acier liquide ayant la composition, exprimée en pourcentages pondéraux : * 0,0005% < C < 1% <BR> <BR> <BR> <BR> <BR> *0, 5 <Cu<10%<BR> <BR> <BR> <BR> <BR> <BR> <BR> * 0 # Mn # 2%<BR> <BR> <BR> <BR> <BR> <BR> <BR> *0<Si<5%<BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> * 0 # Ti # 0,5% * 0 # Nb # 0, 5% <BR> <BR> <BR> <BR> <BR> * 0 # Ni # 5%<BR> <BR> <BR> <BR> <BR> <BR> <BR> * 0 # Al # 2% le reste étant du fer et des impuretés résultant de l'élaboration ; on coule cet acier liquide directement sous forme d'une bande mince d'épaisseur inférieure ou égale à 10 mm on refroidit rapidement la bande jusqu'à une température inférieure ou égale à 1000°C ; on fait subir à la bande mince un laminage à chaud à un taux de réduction d'au moins 10%, la température de fin de laminage étant telle qu'à cette température, tout le cuivre se trouve encore en solution solide dans la matrice de ferrite et/ou d'austénite ; on fait ensuite subir à la bande un refroidissement forcé de manière à maintenir le cuivre en solution solide sursaturée dans la matrice de ferrite et/ou d'austénite ; et on bobine la bande.
2. Procédé selon la revendication 1, caractérisé en ce que le rapport Mn/Si est supérieur ou égal à 3.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on réalise la coulée de la bande mince sur une installation de coulée entre deux cylindres refroidis intérieurement tournant en sens contraires.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le laminage à chaud de la bande est réalisé en ligne avec la coulée de la bande.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la vitesse V du refroidissement forcé suivant le laminage à chaud est telle que \/ 1, 98 (% Cu)0, 08 avec V exprimée en °C/s et % Cu en % pondéraux.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,1 et 1% et en ce que le bobinage de la bande est effectué à une température supérieure à la température Ms de début de transformation martensitique.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le bobinage de la bande est effectué à moins de 300°C, et en ce que la bande subit ensuite un traitement thermique de précipitation du cuivre entre 400 et 700°C.
8. Procédé selon la revendication 7, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,1 et 1% et en ce que la bande subit le traitement thermique de précipitation sans débobinage préalable.
9. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300°C, et en ce qu'on effectue ensuite un laminage à froid, un recuit de recristallisation dans un domaine de température où le cuivre est en solution solide sursaturée, un refroidissement forcé maintenant le cuivre en solution solide, et un revenu de précipitation.
10. Procédé selon la revendication 9, caractérisé en ce que ledit revenu de précipitation est effectué entre 600 et 700°C dans une installation de recuit continu.
11. Procédé selon la revendication 9, caractérisé en ce que ledit revenu de précipitation est effectué entre 400 et 700°C dans une installation de recuit base.
12. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300°C, et en ce qu'on effectue ensuite un laminage à froid et un recuit base entre 400 et 700°C servant à la fois de recuit de recristallisation et de revenu de précipitation.
13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,1 et 1 %.
14. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,01 et 0,2%.
15. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,0005% et 0,05% et en ce que sa teneur en cuivre est comprise entre 0,5 et 1, 8%.
16. Procédé selon la revendication 15, caractérisé en ce que préalablement au revenu de précipitation, on découpe la bande pour former une tôle que l'on met en forme par emboutissage, et en ce que le revenu de précipitation est effectué sur la tôle emboutie.
17. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que l'on procède à un traitement final de la bande dans un laminoir écrouisseur.
18. Produit sidérurgique, caractérisé en ce qu'il a été obtenu par un procédé selon l'une des revendications 1 à 17.
Description:
Procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, et produit sidérurgique ainsi obtenu L'invention concerne le domaine de la production d'alliages ferreux, et plus précisément le domaine de la production d'aciers à fortes teneurs en cuivre.

Le cuivre est généralement considéré comme un élément indésirable dans les aciers au carbone, parce qu'en favorisant la fissuration à chaud, d'une part il rend difficile le travail à chaud de l'acier, et d'autre part il dégrade la qualité et l'aspect de la surface des produits. Pour ces raisons, il est habituel de limiter la teneur en cuivre des aciers au carbone de haute qualité à des teneurs inférieures à 0,05%. Comme il n'est pas possible d'enlever le cuivre présent dans l'acier liquide, l'obtention assurée de ces basses teneurs en cuivre n'est possible qu'en produisant l'acier à partir de fonte liquide, ce qui n'est économiquement viable que pour des productions en grandes quantités, ou en produisant l'acier au four électrique par fusion de ferrailles soigneusement sélectionnées, donc onéreuses.

Il y a, cependant, des cas où la présence d'une forte teneur en cuivre dans l'acier peut être souhaitable. En effet, le cuivre peut avoir des effets bénéfiques pour certaines applications, notamment pour l'industrie automobile.

En premier lieu, il augmente la résistance à la déformation de l'acier par une précipitation que l'on peut obtenir au moyen d'un revenu (durcissement structural).

D'autre part, il améliore la résistance de l'acier à la corrosion atmosphérique, car il conduit à la formation d'une couche d'oxyde protectrice.

Enfin, il augmente la résistance à la fragilisation par l'hydrogène de deux façons : - du fait de la formation de ladite couche d'oxyde protectrice ; - en se substituant au manganèse, il limite la formation des inclusions de MnS autour desquelles l'hydrogène s'accumule.

L'augmentation de la résistance de l'acier due au durcissement structural peut être évaluée à environ 300 MPa par 1% de cuivre. Cependant, il apparaît difficile de tirer parti de ce phénomène, en ce que dans les filières de production classiques de tôles par coulée continue de brames épaisses ou minces, laminage à chaud au train à bandes et laminage à froid, le cuivre conduit à une détérioration de la qualité de surface par fissuration en peau lors de la transformation à chaud en atmosphère oxydante. Cette fissuration est appelée « faïençage ». Une teneur en cuivre inférieure à 1%, voire 0,5% est alors impérative, à moins de limiter cette fissuration par une addition de nickel ou de silicium, ou par un réchauffage avant transformation à chaud à une température inférieure à la température de fusion péritectique du cuivre (1094°C pour un alliage Fe-Cu pur), ce qui restreint la gamme d'épaisseurs accessible, ou par un contrôle de l'atmosphère de réchauffage incompatible avec les installations de production actuelles.

De plus, le pouvoir durcissant du cuivre par précipitation est optimal lorsque le cuivre est maintenu intégralement en solution solide avant le traitement de précipitation par une trempe. En effet, la contribution de la précipitation au durcissement est d'autant plus faible que la température de précipitation est élevée. vil ne faut donc pas que le cuivre précipite au refroidissement tant que la température de revenu n'est pas atteinte. La filière de production classique ne permet pas l'exécution d'une telle trempe nécessaire à la maximisation du pouvoir durcissant.

Il a été proposé dans le document EP-A-0 641 867 de produire des bandes d'acier au carbone contenant de grandes quantités de cuivre (0,3 à 10%) et d'étain (0,03 à 0,5%) par un procédé de coulée directe de bandes minces de 0,1 à 15mm d'épaisseur, tel que la coulée entre cylindres. La solidification rapide de la bande et la possibilité de limiter par un refroidissement suivant cette solidification le temps de séjour de la bande à plus de 1000°C permettent de résoudre les problèmes de qualité de surface évoqués plus haut. La bande est ensuite laminée à froid. II est ainsi possible d'élaborer des bandes ayant de bonnes propriétés mécaniques et un bon aspect de surface sans avoir recours à des matières premières pauvres en

cuivre et en étain. Pour cela, on doit obtenir un produit dont, après sa solidification, les dendrites primaires sont espacées de 5 à 100 um. Les propriétés mécaniques recherchées sur la bande mince sont essentiellement une bonne résistance et un bon allongement à la traction. Ce document n'évoque cependant pas en détail les traitements postérieurs à la coulée qui permettraient d'aboutir à une tôle exploitable pour une application industrielle.

Le but de l'invention est de proposer des procédés d'élaboration complets de tôles laminées à chaud ou laminées à froid en acier au carbone présentant des propriétés mécaniques élevées, notamment une forte résistance, une bonne anisotropie des déformations, ainsi qu'une bonne aptitude au soudage, dans lesquelles une teneur en cuivre élevée est tolérée, voire souhaitée.

A cet effet, l'invention a pour objet un procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, selon lequel : - on élabore un acier liquide ayant la composition, exprimée en pourcentages pondéraux : * 0, 0005% # C # 1% <BR> <BR> <BR> <BR> * 0,5 # Cu # 10%<BR> <BR> <BR> <BR> <BR> * 0 # Mn # 2%<BR> <BR> <BR> <BR> <BR> *O<Si<5%<BR> <BR> <BR> <BR> <BR> <BR> * 0 # Ti # 0,5% * 0 # Nb # 0,5% <BR> <BR> <BR> <BR> * 0 # Ni # 5%<BR> <BR> <BR> <BR> <BR> * 0 # Al # 2% le reste étant du fer et des impuretés résultant de l'élaboration ; - on coule cet acier liquide directement sous forme d'une bande mince d'épaisseur inférieure ou égale à 10 mm ; - on refroidit rapidement la bande jusqu'à une température inférieure ou égale à 1000°C ; - on fait subir à la bande mince un laminage à chaud à un taux de réduction d'au moins 10%, la température de fin de laminage étant telle qu'à

cette température, tout le cuivre se trouve encore en solution solide dans la matrice de ferrite et/ou d'austénite ; - on fait ensuite subir à la bande un refroidissement forcé de manière à maintenir le cuivre en solution solide sursaturée dans la matrice de ferrite et/ou d'austénite ; - et on bobine la bande.

De préférence, le rapport Mn/Si est supérieur ou égal à 3.

On peut réaliser la coulée de la bande mince sur une installation de coulée entre deux cylindres refroidis intérieurement tournant en sens contraires.

Le laminage à chaud de la bande est de préférence réalisé en ligne avec la coulée de la bande.

La vitesse V du refroidissement forcé suivant le laminage à chaud est généralement telle que V 2 e 1, 98 (% CU)-0, 08 avec V exprimée en °C/s et % Cu en % pondéraux.

Selon une variante du procédé, la teneur en carbone de l'acier est comprise entre 0,1 et 1%, et le bobinage de la bande est effectué à une température supérieure à la température Ms de début de transformation martensitique.

Selon une autre variante du procédé, le bobinage de la bande est effectué à moins de 300°C, et la bande subit ensuite un traitement thermique de précipitation du cuivre entre 400 et 700°C. Dans ces conditions, si la teneur en carbone est comprise entre 0,1 et 1%, il n'y a de préférence pas de débobinage préalablement au traitement thermique.

Selon une autre variante du procédé, le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300°C, et on effectue ensuite un laminage à froid, un recuit de recristallisation dans un domaine de température où le cuivre est en solution solide sursaturée, un refroidissement forcé maintenant le cuivre en solution solide, et un revenu de précipitation.

Ledit revenu de précipitation est effectué dans une installation de recuit continu entre 600 et 700°C, ou dans une installation de recuit base entre 400 et 700°C.

Selon une autre variante du procédé, le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300°C, et on effectue ensuite un laminage à froid et un recuit base entre 400 et 700°C servant à la fois de recuit de recristallisation et de revenu de précipitation.

Dans les cas où la bande subit un laminage à froid, la teneur en carbone de l'acier est préférentiellement comprise entre 0,1 et 1%, ou entre 0,01 et 0,2%, ou entre 0,0005% et 0,05%. Dans ce dernier cas, sa teneur en cuivre est préférentiellement comprise entre 0,5 et 1,8%.

Egalement dans ce dernier cas, préalablement au revenu de précipitation, on peut découper la bande pour former une tôle que l'on met en forme par emboutissage, et effectuer le revenu de précipitation sur la tôle emboutie.

On peut enfin procéder à un traitement final de la bande dans un laminoir écrouisseur.

L'invention a également pour objet un produit sidérurgique obtenu par un des procédés précédents.

Comme on l'aura compris, l'invention consiste essentiellement à couler directement en bande mince un acier ayant la composition précisée, puis à lui imposer des conditions évitant le faïençage (soit par refroidissement rapide de la bande en sortie de lingotière l'amenant en dessous de 1000°C, soit en maintenant la bande dans une atmosphère non oxydante au moins jusqu'à l'obtention de cette température), puis à effectuer un laminage à chaud de la bande, de préférence en ligne, suivi d'un refroidissement forcé maintenant le cuivre en solution solide sursaturée. La bande est ensuite bobinée. Elle peut alors subir divers traitements thermiques ou mécaniques qui vont lui conférer son épaisseur et ses propriétés finales.

L'invention va à présent être décrite plus en détail, en référence aux figures annexées suivantes :

- la figure 1 qui représente le diagramme de phases de l'alliage fer- cuivre pur dans son ensemble (fig. 1a), et pour des teneurs en cuivre inférieures ou égales à 5% et des températures de 600 à 1000°C (fig. 1 b) ; - la figure 2 qui représente une portion du diagramme de phases d'un alliage fer-cuivre à 0,2% de carbone.

En premier lieu, on élabore un métal liquide présentant la composition suivante (toutes les teneurs sont exprimées en pourcentages pondéraux).

La teneur en carbone peut aller de 0,0005% à 1%, selon notamment les applications envisagées pour le produit final. La limite inférieure de 0,0005% correspond pratiquement au minimum qu'il est possible d'obtenir par les procédés classiques de décarburation du métal liquide. La limite supérieure de 1% se justifie par l'effet gammagène du carbone. En effet, au-delà de 1%, le carbone réduit excessivement la solubilité du cuivre dans la ferrite. De plus, au-delà de 1 %, la soudabilité de l'acier est dégradée notablement, ce qui le rend impropre à de nombreuses applications privilégiées des tôles obtenues à partir des aciers de l'invention.

Par ailleurs, le carbone permet d'obtenir un effet durcissant, ainsi que la précipitation de carbures de titane et/ou de niobium servant au contrôle de la texture, si du titane et/ou du niobium sont présents en quantités significatives dans l'acier.

De manière générale, on peut dire que : - lorsque la teneur en carbone est comprise entre 0,1 et 1%, les aciers obtenus trouvent une application privilégiée dans le domaine des tôles à très haute résistance laminées à chaud, lorsqu'après la coulée ils ont été bobinés à température permettant un revenu de précipitation, ou lorsqu'ils ont été bobinés à basse température puis ont subi un revenu, ou dans le domaine des tôles laminées à froid à très haute résistance ; - lorsque la teneur en carbone est comprise entre 0,01 et 0,2%, les aciers obtenus trouvent une application privilégiée dans le domaine des aciers soudables à haute résistance lorsqu'ils ont été laminés à chaud, ou lorsqu'ils

ont été laminés à froid et traités thermiquement dans des conditions qui seront vues plus loin ; - lorsque la teneur en carbone est comprise entre 0,0005% et 0,05%, les aciers obtenus trouvent une application privilégiée dans le domaine de l'emboutissage, lorsqu'ils ont été laminés à froid et contiennent de préférence au plus 1,8% du cuivre (les raisons en seront vues plus loin) ; Une teneur en carbone de l'ordre de 0,02% est typique des aciers de l'invention, sauf des aciers à très haute résistance laminés à chaud ou à froid.

La teneur en cuivre de l'acier est comprise entre 0,5 et 10%, de préférence entre 1 et 10%.

En deçà de 0,5%, le cuivre n'a pas d'effet durcissant par précipitation ou, plus exactement, la force motrice de précipitation est trop faible pour obtenir un durcissement de précipitation dans des conditions de temps et de température raisonnables dans la perspective d'une application industrielle. Pratiquement, il est préférable d'avoir au moins 1% de cuivre dans l'acier pour profiter de son effet durcissant.

Lorsqu'on élabore un acier destiné à former des bandes laminées à chaud, il n'y a pas de limitation métallurgique à la teneur en cuivre, si on respecte les conditions de vitesse de refroidissement et de température de fin de refroidissement de la bande mince après sa coulée. II faut que le refroidissement commence dans le domaine 100% austénitique (le domaine y- Fe de la figure 1a) et qu'il soit suffisamment rapide pour conserver la totalité du cuivre en solution solide. La limitation est donc technologique. On peut par exemple viser la teneur en cuivre (2,9%) où la température d'apparition de la ferrite est la plus basse (environ 840°C, voir la fig. 1) et pour laquelle la vitesse critique de refroidissement au delà de laquelle le cuivre reste en solution solide est encore facilement accessible (pour cette teneur en cuivre elle est d'environ 350°C/s). Une augmentation de la teneur en cuivre nécessite une élévation de la vitesse de refroidissement et de la température de fin de laminage. La température de fin de laminage est conditionnée par la limite de solubilité du cuivre dans l'austénite. Mais des teneurs de l'ordre de 4% de

cuivre, imposant de laminer à chaud au-dessus de 1000°C et de refroidir ensuite la bande à plus de 2500°C/s, sont encore accessibles par la technologie de coulée de bandes minces, à condition d'imposer une faible vitesse de défilement du produit chaud, de l'ordre de quelques m/s.

Lorsqu'on élabore un acier destiné à former des bandes laminées à froid, on doit procéder à un traitement de recristallisation de la tôle laminée à froid. Deux variantes peuvent être choisies à cet effet.

Selon la première variante, on choisit de dissocier le traitement de recristallisation du traitement de précipitation (cas des tôles laminées à froid à haute résistance pour emboutissage). A la température de recristallisation, le cuivre doit être totalement en solution solide dans le domaine ferritique monophasé. La teneur maximale en cuivre est alors donnée par la limite de solubilité du cuivre dans la ferrite à la température de recristallisation considérée. Elle est au maximum de 1,8% à la température de recristallisation maximale admissible de 840°C (voir la figure 1 b).

Selon la deuxième variante, on choisit de coupler le traitement de recristallisation et le traitement de précipitation (cas des tôles laminées à froid à haute résistance). Des teneurs très élevées en cuivre, jusqu'à 10%, sont tolérables si on procède à un recuit base. Néanmoins, l'optimum de recristallisation peut ne pas coïncider avec l'optimum de précipitation, et les paramètres du traitement doivent alors être choisis de manière à réaliser le meilleur compromis pour l'application envisagée.

Typiquement, des teneurs en cuivre de l'ordre de 3% et 1,8% selon les applications peuvent être recommandées.

La teneur en manganèse doit être maintenue inférieure ou égale à 2%. Comme le carbone, le manganèse a un effet durcissant. De plus, il est gammagène, donc il diminue la solubilité du cuivre dans la ferrite en réduisant l'étendue du domaine ferritique. Typiquement, on recommande une teneur en manganèse de l'ordre de 0,3%.

La teneur en silicium peut aller jusqu'à 5%, sans qu'une teneur minimale soit à imposer impérativement. Son caractère alphagène le rend cependant avantageux, car il permet de rester dans le domaine ferritique

même avec les teneurs en cuivre privilégiées de 1,8, voire 3% des aciers de l'invention. II est recommandé d'ajuster le rapport Mn/Si à une valeur préférentiellement supérieure à 3, pour contrôler, lors de la transformation 6 oy, le transfert de rugosité de la surface des cylindres sur les peaux solidifiées et la régularité d'accrochage des peaux solidifiées, afin d'éviter la formation de criques sur la bande en cours de solidification et de refroidissement. A cet effet, il est également recommandé (comme il est connu) d'effectuer la coulée en utilisant des surfaces de coulée rugueuses et un gaz d'inertage contenant de l'azote, qui est soluble dans l'acier liquide, de manière à se donner la possibilité d'ajuster favorablement les transferts thermiques entre l'acier et les surfaces de coulée. La teneur maximale en Si de 5% est imposée par la facilité de réalisation et de coulée de la nuance à l'aciérie. Typiquement, on recommande une teneur de l'ordre de 0,05%.

Le niobium et le titane peuvent, de préférence mais pas obligatoirement, être présents à des teneurs allant jusqu'à 0,5% chacun. Ils produisent des carbures favorables au contrôle de la texture, et lorsqu'ils sont en sur-stoechiométrie par rapport au carbone, ils augmentent la température Ac1 de l'acier, donc la solubilité du cuivre dans la ferrite. Typiquement, chacun de ces éléments peut être présent à une teneur de 0,05% environ.

La teneur en nickel peut aller jusqu'à 5%, cet élément n'étant qu'optionnel. Le nickel est souvent ajouté dans les aciers au cuivre pour lutter contre la fissuration à chaud. Son action est double. D'une part, en augmentant la solubilité du cuivre dans l'austénite, le nickel retarde la ségrégation du cuivre à l'interface métal-oxyde. D'autre part, comme il est miscible au cuivre en toute proportion, le nickel augmente le point de fusion de la phase qui ségrège. On considère habituellement qu'une addition de nickel de l'ordre celle du cuivre suffit à empêcher la fissuration à chaud. Le refroidissement rapide et/ou l'inertage après coulée du procédé selon l'invention empêchent la fissuration à chaud, ce qui diminue l'intérêt d'une addition de nickel avec cet objectif en vue. On peut néanmoins prévoir l'ajout de nickel pour faciliter le laminage à chaud.

La teneur en aluminium peut aller jusqu'à 2% sans détériorer les propriétés de l'acier, mais cet élément n'est pas obligatoirement présent. II est cependant avantageux pour son rôle alphagène comparable à celui du silicium. Typiquement, l'aluminium est présent à une teneur de 0,05% environ.

Les autres éléments chimiques sont présents à titre d'éléments résiduels, à des teneurs résultant de l'élaboration de l'acier selon les procédés classiques. En particulier, la teneur en étain est inférieure à 0,03%, la teneur en azote est inférieure à 0,02%, la teneur en soufre inférieure à 0,05%, la teneur en phosphore inférieure à 0,05%.

L'acier liquide dont la composition vient d'être exposée est ensuite coulé en continu directement sous forme de bande mince d'épaisseur inférieure ou égale à 10mm. A cet effet, l'acier est typiquement coulé dans une lingotière sans fond, dont l'espace de coulée est limité par les parois latérales refroidies intérieurement de deux cylindres en rotation en sens contraires, et par deux parois latérales en réfractaire plaquées contre les extrémités planes des cylindres. Ce procédé est aujourd'hui bien connu dans la littérature (il est décrit dans EP-A-0 641 867 notamment), et on n'en parlera pas davantage. II serait aussi envisageable d'utiliser un procédé de coulée par solidification de l'acier sur un cylindre unique, qui donnerait accès à des bandes plus fines que la coulée entre deux cylindres.

Afin d'éviter les problèmes de faïençage de la surface de la bande liés à l'infiltration intergranulaire de cuivre liquide dans l'acier sous la calamine lorsque la température de la bande dépasse la température de fusion de la phase riche en cuivre, soit 1000°C environ, il faut ensuite : - soit refroidir rapidement la bande venant d'être coulée, par exemple par aspersion d'eau ou d'un mélange eau/air, de manière à la porter en dessous de 1000°C avant qu'un enrichissement en cuivre ne se produise à l'interface métal-calamine ; on considère que cet objectif est atteint pour une vitesse de refroidissement de 25°C/s lorsque la bande a une teneur de 3% en cuivre ; - soit empêcher l'oxydation du fer en maintenant la bande dans une atmosphère non oxydante, au moins jusqu'à ce qu'elle atteigne une

température inférieure à 1000°C ; cela peut être réalisé classiquement en faisant passer la bande dans une enceinte dont l'atmosphère est pauvre en oxygène (moins de 5%) et est constituée essentiellement par un gaz neutre, argon ou azote ; la présence d'un gaz réducteur tel que l'hydrogène est également envisageable.

Ces deux solutions peuvent être combinées, en étant utilisées simultanément ou en succession.

La bande subit ensuite un laminage à chaud. Celui-ci peut être réalisé sur une installation séparée de l'installation de coulée, après un réchauffage de la bande à une température ne dépassant pas 1000°C pour éviter le faïençage (à moins que l'on ne réalise ce réchauffage en atmosphère non oxydante). Mais il est préférable, pour des raisons économiques, de réaliser ce laminage à chaud en ligne, c'est-à-dire sur la même installation que la coulée de la bande, en plaçant une ou plusieurs cages de laminage sur le trajet de la bande. Un laminage en ligne permet également de se passer d'une séquence d'opérations de bobinage/débobinage/réchauffage entre la coulée et le laminage à chaud, qui peut présenter des risques métallurgiques : fissuration superficielle, et incrustation de calamine au bobinage notamment.

Ce laminage à chaud est réalisé, avec un taux de réduction d'au moins 10%, en une passe ou davantage. Il a essentiellement trois fonctions.

En premier lieu, la recristallisation qu'il provoque supprime la structure de solidification, qui est défavorable à la mise en forme de la tôle.

Par ailleurs, cette recristallisation conduit à un affinement du grain qui est nécessaire à l'amélioration simultanée des propriétés de résistance et de ténacité de la bande, si celle-ci est destinée à être utilisée à l'état de tôle laminée à chaud.

En second lieu, il referme les porosités qui ont pu être formées au coeur de la bande lors de la solidification, et qui seraient également néfastes lors de la mise en forme.

De plus, il garantit le respect des spécifications dimensionnelles de la bande concernant sa planéité, son bombé, sa symétrie.

Enfin, il améliore l'aspect de surface de la bande.

La température de fin de laminage doit être telle que le cuivre soit encore à ce stade en solution solide dans la ferrite et/ou l'austénite. En effet, la précipitation du cuivre avant la fin du laminage ne permettrait pas d'en tirer le maximum de durcissement. Ce maximum est de l'ordre de 300 MPa par 1% de cuivre, lorsque les conditions de précipitation sont bien maîtrisées. Cette température de fin de laminage à respecter dépend donc de la composition de l'acier, notamment de ses teneurs en cuivre et en carbone.

On considère ainsi que pour les hautes teneurs en cuivre d'environ 7% et davantage, la température de fin de laminage doit être supérieure à 1094°C, cette température étant approximativement la température du palier péritectique que présente le diagramme de phases Fe-Cu représenté sur la figure 1a, pour les teneurs en carbone très faibles. Cela implique également que le laminage à chaud soit effectué dans une atmosphère non oxydante, et que si on procède à un refroidissement de la bande immédiatement après sa solidification, ce refroidissement soit interrompu à une température suffisamment élevée pour permettre ensuite un laminage à chaud de la bande dans des conditions entraînant une température de fin de laminage supérieure à 1094°C.

Entre 2,9 et 7% de cuivre, la température de fin de laminage doit être supérieure à la limite de solubilité du cuivre dans l'austénite, telle que donnée par le diagramme de phases Fe-Cu, pour la teneur en carbone considérée. A titre indicatif, pour une teneur en carbone très faible, cette température T serait donnée par <BR> <BR> <BR> <BR> T (K) = 3093<BR> <BR> 3, 1 86-log10 Cu (%) Entre 2,9 et 1,8% de cuivre, la température de fin de laminage doit être supérieure à 840°C pour les teneurs en carbone très faibles, cette température correspondant au palier eutectoïde (voir fig. 1 b).

En dessous de 1,8% de cuivre, la température de fin de laminage doit être supérieure à la limite de solubilité du cuivre dans la ferrite, telle que donnée par le diagramme de phases Fe-Cu pour la teneur en carbone considérée. A titre indicatif, pour une teneur en carbone très faible, cette température T serait donnée par

T (K) = 3351<BR> <BR> <BR> 3, 279log10 Cu (%) pour le fer a paramagnétique (entre 840°C et la température de Curie de 759°C, pour une teneur en cuivre de 1,08 à 1,8%), et par <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> T (K) = 4627<BR> <BR> <BR> 4, 495-logioCu (%) pour le fer a ferromagnétique (entre 690°C et 759°C, pour une teneur en cuivre de 0,5 à 1,08%). il faut cependant faire remarquer que les valeurs numériques ci- dessus ne sont données qu'à titre indicatif, car elles varient légèrement selon les auteurs.

Lorsque la teneur en carbone de l'acier augmente, les chiffre ci- dessus sont également modifiés, car le carbone a un effet gammagène, comme on le voit sur l'extrait de diagramme de phase Fe-Cu de la figure 2, établi pour une teneur en carbone de 0,2 %. La température du palier eutectoïde s'en trouve abaissée par rapport au cas des teneurs en carbone très faibles, et se situe souvent en-dessous de 800°C. On peut alors se permettre d'abaisser la température de fin de laminage par rapport aux cas précédemment décrits. Pour ces aciers relativement riches en carbone, on obtient, de plus, un durcissement structurel par l'action des constituants de trempe qui précipitent, tels que la bainite ou la martensite, qui vient s'ajouter au durcissement lié à la précipitation du cuivre.

Compte tenu de ce que l'on vient de dire, il ressort qu'il n'est pas possible de définir quantitativement de façon simple et très précise la valeur de la température de fin de laminage minimale du procédé selon l'invention.

Ce qui est certain, c'est que cette température de fin de laminage ne doit pas être inférieure à la température pour laquelle, compte tenu de la composition de l'acier, on observerait une précipitation du cuivre. La détermination de cette température pour une composition d'acier donnée peut être effectuée au

moyen d'expériences courantes par des métallurgistes, au cas où une mesure de cette température ne serait pas disponible dans la littérature.

Si le laminage à chaud n'a pas lieu en ligne, il n'est pas nécessaire de maintenir le cuivre en solution solide jusqu'au bobinage suivant la coulée, par un refroidissement rapide tel qu'indiqué précédemment, puisque le réchauffage précédant le laminage à chaud induira une remise en solution du cuivre.

Après le laminage à chaud, la bande subit un nouveau refroidissement forcé. Ce refroidissement a plusieurs fonctions : - si la température de fin de laminage est supérieure à 1000°C (ce qui, on l'a vu, est souhaitable principalement pour les aciers à teneur en cuivre très élevée), ce refroidissement garantit qu'entre la température de fin de laminage et 1000°C il n'y aura pas d'oxydation significative du fer, et qu'on ne constatera pas de faïençage sur la bande ; - et surtout, il permet de maintenir le cuivre en solution solide sursaturée dans l'austénite et/ou la ferrite ; cette condition est importante pour profiter au maximum de l'effet de durcissement par précipitation du cuivre.

Pour des teneurs en cuivre de 3% et moins, on admet que le maintien du cuivre en solution solide est généralement réalisé si, pendant tout le temps que la bande passe en défilement, sans être bobinée, la vitesse de refroidissement V de la bande est telle que V 2 e 1, (% Cu)-0, 08/ avec V en °C/s et % Cu en % pondéraux.

Pour une teneur en cuivre de 1%, V doit donc être supérieure ou égale à 7°C/s, ce qui est aisément accessible. Pour une teneur en cuivre de 3%, V doit être supérieure ou égale à 350°C/s. Cette vitesse élevée est cependant accessible sur une installation de coulée de bandes minces.

Pour les teneurs en cuivre supérieures à 3%, la formule ci-dessus n'est plus valable, et un contrôle expérimental des résultats du

refroidissement doit être effectué pour vérifier que celui-ci a bien été suffisant pour obtenir le maintien du cuivre en solution solide sursaturée.

Le bobinage de la bande a ensuite lieu. On peut profiter de la période où la bande séjourne à l'état de bobine pour procéder à un revenu de précipitation du cuivre qui provoque le durcissement de l'acier. La dureté de l'acier HV obtenue dépend de la composition de l'acier, mais aussi de la durée du séjour de la bande sous forme de bobine et de la température de bobinage, sachant que, dans la pratique, une bobine reste environ 1h à sa température de bobinage avant de refroidir à une vitesse d'environ 10 à 20°C/h. On constate que la courbe HV = f (t) présente un maximum HVmax pour une durée donnée tHvmax, au-delà de laquelle la dureté diminue. On peut donc conseiller de refroidir la bande bobinée (ou de la débobiner) dès que tHvmax a été atteinte.

L'expérience montre que tHVmax est donnée par l'équation : avec tnvmax en h, % Cu en % pondéraux et T en K.

On peut ainsi choisir, pour une teneur en cuivre donnée, les combinaisons (tHV, T) préférentielles compatibles avec l'outil industriel utilisé.

Dans le cas où on choisit d'effectuer un revenu pendant le bobinage, tHv est imposé (supérieur à 1 h) ; on ne peut alors jouer que sur la température de bobinage.

D'autre part, la valeur de la dureté maximale que l'on peut obtenir augmente lorsque la température du revenu de précipitation diminue, à condition que l'on laisse à la bande assez de temps pour parvenir à cette dureté maximale.

Par ailleurs, le choix de la température de bobinage de la bande et le choix des opérations ultérieures dépendent du type de produit que l'on désire fabriquer.

Comme on l'a dit, il est possible de fabriquer des tôles laminées à chaud selon le procédé de l'invention. Deux modes opératoires sont envisageables.

Selon un premier mode opératoire, on effectue le bobinage de la bande après laminage à chaud à une température élevée, par exemple celle (calculée en fonction de la teneur en cuivre selon la formule (2) précédente) qui permet d'atteindre la dureté maximale en 1h (durée à partir de laquelle, comme on l'a dit, la température de la bobine commence habituellement à décroître). La période pendant laquelle la bande subit un séjour à haute température est donc la phase initiale de son séjour sous forme de bobine suivant le refroidissement rapide.

Dans le cas des aciers dont la teneur en carbone est comprise entre 0,1 et 1%, une condition supplémentaire sur la température de bobinage est qu'elle se situe au dessus de la température Ms de début de transformation martensitique. En effet, la formation de martensite pourrait provoquer l'apparition de criques lors du débobinage. Ms est donnée par la formule classique dite « formule d'Andrews » : Ms (°C) = 539-423 C%-30,4 Mn%-17,7 Ni%-12,1 Cr%-11 Si%-7 Mo% où les teneurs en les divers éléments sont exprimées en % pondéraux.

Pour les aciers dont la teneur en carbone est comprise entre 0,0005 et 0, 1%, il n'est pas nécessaire de prendre Ms en compte. Dans leur cas Ms est de l'ordre de 400 à 500°C, ce qui est élevé et, le plus souvent, au dessus de la température de bobinage qui serait aisément accessible sur l'installation. Mais il n'y a ici pas d'inconvénient à bobiner en dessous de Ms, car : - soit, au cours du refroidissement, on aura formé de la bainite (les aciers à faible teneur en carbone ne sont pas « trempants »), ce qui empêche la formation de martensite ;

- soit on forme effectivement de la martensite ; mais comme la teneur en carbone est faible, la quantité de martensite formée est réduite et ne provoque pas d'incidents au débobinage.

Après refroidissement complet de la bobine (qui, selon les besoins, peut s'effectuer de façon entièrement naturelle ou être exécuté de manière forcée après l'écoulement du temps nécessaire à l'obtention de la dureté désirée), la tôle laminée à chaud est prête à l'emploi.

Cependant, il faut savoir que le taux de germination des précipités de cuivre est une fonction exponentielle croissante du degré de refroidissement de la bande. Dans ces conditions, il est conseillé, pour obtenir un effet de durcissement par précipitation maximal, d'achever la phase de germination à une température inférieure à celle à laquelle s'effectuera la croissance des grains. On peut donc proposer un second mode opératoire pour la fabrication de bandes laminées à chaud. Selon ce second mode opératoire, on procède au bobinage de la bande à une température suffisamment basse pour que, lors du refroidissement naturel de la bobine, il ne se produise pas de précipitation du cuivre, celui-ci restant en solution solide sursaturée. On estime qu'une température de bobinage inférieure à 300°C est suffisante à cet effet. II n'y a, ici, pas d'inconvénient à bobiner la bande dans le domaine de transformation martensitique. En effet, la bande (toujours bobinée, au moins dans le cas où le bobinage a eu lieu en dessous de Ms) subit ensuite un traitement thermique de revenu entre 400 et 700°C qui permet de faire disparaître la martensite. Mais le rôle principal de ce revenu est de faire précipiter le cuivre, de manière à obtenir les propriétés désirées pour la tôle à chaud. Les paramètres de ce traitement (température et durée) peuvent être déterminés au moyen de l'équation (2) précédemment donnée.

Dans le cas où on désire produire des tôles laminées à froid selon le procédé de l'invention, la température de bobinage doit être supérieure à Ms pour les aciers dont la teneur en carbone est comprise entre 0,1 et 1%, car il n'y a pas de traitement thermique qui permettrait d'éliminer la martensite entre le bobinage et le débobinage précédant le laminage à froid. Mais la

température de bobinage doit également dans tous les cas être inférieure à 300°C pour que le laminage à froid et le recuit de recristallisation qui suit aient lieu sur un acier où le cuivre se trouve en solution solide sursaturée.

Dans le cas où on désire fabriquer des tôles laminées à froid à très haute résistance pouvant contenir des teneurs en cuivre et en carbone élevées (0,1 à 1% de C), ou des tôles laminées à froid à haute résistance et aisément soudables, pour lesquelles une teneur en carbone relativement basse est exigée (0,01 à 0, 2%), on peut proposer différentes variantes de mode opératoire, selon que l'on désire utiliser une installation de recuit continu ou une installation de recuit base pour réaliser le traitement thermique de revenu de précipitation.

Dans tous les cas, on procède d'abord au laminage à froid (typiquement à un taux de réduction de 40 à 80% et à température ambiante) de la bande dont le cuivre est en solution solide sursaturée puis à un recuit de recristallisation effectué dans le domaine des températures élevées où le cuivre est également en solution solide dans la ferrite et/ou l'austénite. On a déjà vu à propos du choix de la température de fin du laminage à chaud quelles pouvaient être les conditions adaptées à cet effet, en fonction de la teneur en cuivre de la bande.

La durée de ce recuit de recristallisation dépend de la capacité à avoir préalablement conservé le cuivre en solution solide. En effet, à la température de recristallisation de 840°C où l'on peut remettre jusqu'à 1,8% de cuivre en solution solide, la croissance des grains peut être excessive. Si le cuivre est déjà en solution solide avant la recristallisation, le temps de recuit est fixé non plus par la cinétique de dissolution des précipités de cuivre, mais par la cinétique de croissance des grains. La dissolution du cuivre avant recristallisation facilite donc l'optimisation de la texture, et cette situation est la plus avantageuse pour le métallurgiste. En fonction de l'état dans lequel se trouve le cuivre (intégralement en solution ou partiellement précipité), le recuit de recristallisation, s'il est effectué à 840°C, a une durée pouvant varier de 20s à 5mn. II peut avantageusement être exécuté dans une installation de

« recuit compact » donnant accès en peu de temps à des températures élevées qui permettent de remettre en solution de fortes quantité de cuivre.

Après le recuit de recristallisation, on effectue le revenu de précipitation. Ces deux opérations sont séparées par une étape de refroidissement rapide, destinée à conserver le cuivre en solution solide. Ce refroidissement doit donc obéir à l'équation (1) précédemment citée.

Si pour le revenu de précipitation on utilise une installation de recuit continu (de préférence enchaînée directement avec l'installation de recuit compact qui a servi à réaliser le recuit de recristallisation), pour laquelle on ne dispose que de peu de temps pour atteindre la dureté maximale HVmax de la bande (voir l'équation (2) pour son calcul), il faut exécuter ce revenu à une température relativement élevée (600-700°C). Cela limite l'ampleur du durcissement par précipitation obtenu, puisque ce durcissement, comme on l'a dit, est d'autant plus important que le revenu est effectué à plus basse température.

C'est pourquoi, lorsque de très hauts niveaux de résistance sont recherchés, il est préférable de réaliser le revenu de précipitation à relativement basse température (400 à 700°C), mais pendant une durée prolongée déterminée, de préférence, par l'équation (2) précédente, dans une installation de recuit base où la bande séjourne à l'état de bobine. Dans ce cas, le refroidissement rapide suivant le traitement doit porter la bande à moins de 300°C pour conserver le cuivre en solution solide sursaturée.

L'utilisation d'une filière « recuit compact suivi d'un refroidissement très rapide (facilement accessible sur ce type d'installation) -recuit base » s'avère donc particulièrement avantageuse pour obtenir des aciers à forte teneur en cuivre, ayant donc une grande capacité à être durcis par précipitation et, par suite, une résistance finale très élevée. Cette filière est cependant relativement longue du fait de la présence du recuit base.

En variante, comme on l'a dit, il est possible de coupler les deux opérations de recristallisation et de précipitation au cours d'un recuit base effectué à 400-700°C pendant une durée pouvant être déterminée par l'équation (2) précédente, sans recuit de recristallisation préalable, donc

directement après le laminage à froid. Cette façon de procéder s'adresse plus particulièrement aux aciers les plus chargés en cuivre (jusqu'à 10%). Dans certains cas, les paramètres du traitement devront être choisis afin d'obtenir le meilleur compromis possible entre les exigences concernant la recristallisation et les exigences concernant la précipitation du cuivre.

Dans le cas où on désire fabriquer une tôle laminée à froid en acier à bas carbone (moins de 0,05%) et à bonne emboutissabilité, on propose un mode opératoire comportant, comme précédemment, un laminage à froid (typiquement à un taux de réduction de 40 à 80% et à température ambiante) effectué sur la bande où le cuivre est en solution solide sursaturée, un recuit de recristallisation et un revenu de précipitation.

Pour que la tôle conserve de bonnes propriétés d'emboutissage, la recristallisation doit s'effectuer dans le domaine ferritique et ne doit pas permettre au cuivre de précipiter. La température de recristallisation est donc déterminée par la limite de solubilité du cuivre dans la ferrite telle qu'on l'a vue plus haut. Pratiquement, on peut recommander de réaliser le recuit de recristallisation à la température eutectoïde (de l'ordre de 840°C pour les aciers au cuivre à bas carbone), là où la solubilité du cuivre dans la ferrite est maximale (1,8%).

Il est nécessaire d'éviter une croissance exagérée du grain ferritique pendant le recuit de recristallisation. Il peut également être nécessaire d'élever la température Ac1 de l'acier pour que la mise en solution complète du cuivre puisse être effectuée en phase ferritique au cas où le refroidissement après laminage à chaud n'ait pas permis de le conserver intégralement en sursaturation. L'addition de titane ou de niobium permet de satisfaire ces deux exigences. Ces éléments ont aussi un effet favorable sur la texture de recristallisation par piégeage du carbone et de l'azote notamment.

Comme il est classique, la bande laminée à chaud ou à froid peut subir un traitement final dans un laminoir écrouisseur (skin-pass) pour lui conférer son état de surface et sa planéité définitifs et ajuster ses propriétés mécaniques.

Enfin, si la mise en oeuvre de la tôle obtenue à partir des bandes selon l'invention demande une emboutissabilité très élevée, il est possible de la réaliser avant le revenu de précipitation, qui est donc effectué non plus sur la bande brute mais sur le produit embouti.

Grâce au procédé selon l'invention, il est possible de fabriquer des tôles à très haute résistance non nécessairement produites à partir de fonte liquide, ce qui les rend économiques.

Un autre avantage de ces tôles est que la présence de cuivre en proportion importante les rend moins sensibles à la corrosion atmosphérique, et peut donc permettre de se passer de revêtement anticorrosion.

Concernant les propriétés mécaniques accessibles par le procédé selon l'invention : - les tôles laminées à chaud ou à froid contenant jusqu'à 10% de cuivre et de 0,1 à 1% de carbone peuvent avoir des résistances très supérieures à 1000 MPa ; les tôles laminées à chaud ou à froid ayant des teneurs en carbone moindres ont des résistances moins élevées, mais qui sont toujours supérieures à 1000 MPa, et elles présentent une bonne soudabilité qui rend leur emploi possible notamment dans l'industrie automobile ; - les tôles laminées à froid contenant jusqu'à 1,8% de cuivre et 0,05% de carbone présentent une résistance de l'ordre de 700 à 900 MPa et un allongement à la rupture de 15 à 30%, donc une très bonne emboutissabilité.