Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF PROVIDING CLEANNESS TO HAIR AND/OR SCALP
Document Type and Number:
WIPO Patent Application WO/2014/124068
Kind Code:
A1
Abstract:
Disclosed is a method of providing cleanness to hair and/or scalp, for example, providing hair volume and/or providing less oiliness on hair and/or scalp, by applying a hair care composition comprising cationic surfactants, high melting point fatty compounds, metal pyrithione, and metal salts other than metal pyrithiones.

Inventors:
YU KRISTINE SUZANNE SO (SG)
CLAPP MANNIE LEE (US)
YAGNIK CHETAN KANTILAL (SG)
KANDASAMY MANIVANNAN (SG)
Application Number:
PCT/US2014/014975
Publication Date:
August 14, 2014
Filing Date:
February 06, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PROCTER & GAMBLE (US)
International Classes:
A61Q5/00; A61K8/27; A61K8/49; A61K8/81; A61Q5/12
Domestic Patent References:
WO2004082649A12004-09-30
WO2010080543A12010-07-15
WO2008010177A22008-01-24
WO2003088965A12003-10-30
WO2004082649A12004-09-30
Foreign References:
US20080206355A12008-08-28
US20070128147A12007-06-07
US4557928A1985-12-10
US4275055A1981-06-23
Other References:
"International Cosmetic Ingredient Dictionary", 1993
"CTFA Cosmetic Ingredient Handbook", 1992
Attorney, Agent or Firm:
GUFFEY, Timothy B. (Global Patent Services299 East 6th Street,Sycamore Building, 4th Floo, Cincinnati Ohio, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method of providing cleanness to hair and/or scalp, comprising following steps:

(i) after shampooing hair, applying to the hair and/or scalp an effective amount of a hair care composition; and

(ii) then rinsing the hair;

wherein the hair care composition comprises by weight:

(a) from about 0.1% to about 10% of a cationic surfactant system;

(b) from about 0.1% to about 20% of a high melting point fatty compound;

(c) from about 0.01% to about5.0% of a metal pyrithione;

(d) from about 0.05% to about 10% of a metal salt other than metal pyrithiones; and

(e) an aqueous carrier.

2. The method of Claim 1 wherein providing cleanness to hair and/or scalp means, providing hair volume and/or providing less oiliness on hair and/or scalp.

3. The method of Claim 1 wherein the composition further comprising from about 0.01% to about 5.0% of polyquaternium-6.

4. The method of Claim 3 wherein the polyquaternium-6 has a molecular weight of from about 800 g/mol to about 1,000,000 g/mol.

5. The method of Claim 3 wherein the polyquaternium-6 has a molecular weight of from about 1,000 g/mol to about 500,000 g/mol.

6. The method of Claim 3 wherein the weight ratio of polyquaternium-6 to the metal pyrithione is from about 1:1 to about 1:30.

7. The method of Claim 3 wherein the weight ratio of polyquaternium-6 to the metal pyrithione is from about 1:2 to about 1:20.

8. The method of Claim 3 wherein the weight ratio of polyquaternium-6 to the metal pyrithione is from about 1:5 to about 1:15.

9. The method of Claim 1 wherein the cationic surfactant system is selected from: mono- long alkyl quaternized ammonium salt; a combination of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt; mono-long alkyl amidoamine; and a combination of mono-long alkyl amidoamine and di-long alkyl quaternized ammonium salt.

10. The method of Claim 1 wherein the cationic surfactant system is a combination of a mono-long alkyl quaternized ammonium salt and a di-long alkyl quaternized ammonium salt.

11. The method of Claim 1 wherein the composition is substantially free of anionic surfactants.

12. The method of Claim 1 wherein the composition is substantially free of glucan gum, guar gum, and hydroxyethylcellulose.

Description:
METHOD OF PROVIDING CLEANNESS TO HAIR AND/OR SCALP

FIELD OF THE INVENTION

The present invention relates to a method of providing cleanness to hair and/or scalp, for example, providing hair volume and/or providing less oiliness on hair and/or scalp, by applying a hair care composition comprising cationic surfactants, high melting point fatty compounds, metal pyrithione, and metal salts other than metal pyrithiones.

BACKGROUND OF THE INVENTION

A variety of approaches have been developed to condition the hair. A common method of providing conditioning benefit is through the use of conditioning agents such as cationic surfactants and polymers, high melting point fatty compounds, low melting point oils, silicone compounds, and mixtures thereof. Most of these conditioning agents are known to provide various conditioning benefits. Furthermore, a variety of approaches have been developed to provide other benefits in addition to such conditioning benefits. For example, some conditioning compositions provide antidandruff benefit in addition to conditioning benefits, by using zinc pyrithione.

For example, US Patent No. 4,557,928 discloses a water base anti-dandruff cream rinse conditioner comprising zinc pyrithione, a cationic polymer, and a combination of (1) one of glucan gum, guar gum or mixtures thereof and (2) hydroxyethylcellulose, and also discloses Merquat 100 as one of the cationic polymers. Other examples include P&G's WO03/088965 and WO2004/082649, both disclosing conditioner compositions containing ZnC0 3 , which is believed to enhance antidandruff benefit from zinc pyrithione.

However, there is still a need for a method of providing cleanness to hair and/or scalp, for example, providing hair volume and/or providing less oiliness on hair and/or scalp, in addition to conditioning benefits.

None of the existing art provides all of the advantages and benefits of the present invention.

SUMMARY OF THE INVENTION

The present invention is directed to a method of providing cleanness to hair and/or scalp, comprising following steps:

(i) after shampooing hair, applying to the hair and/or scalp an effective amount of a hair care composition; and (ii) then rinsing the hair;

wherein the hair care composition comprises by weight:

(a) from about 0.1% to about 10% of a cationic surfactant system;

(b) from about 0.1% to about 20% of a high melting point fatty compound;

(c) from about 0.01% to about5.0% of a metal pyrithione;

(d) from about 0.05% to about 10% of a metal salt other than metal pyrithiones; and

(e) an aqueous carrier.

"Providing cleanness to hair and/or scalp" herein includes, for example, "providing hair volume" and/or "providing less oiliness on hair and/or scalp".

These and other features, aspects, and advantages of the present invention will become better understood from a reading of the following description, and appended claims.

DETAILED DESCRIPTION OF THE INVENTION

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.

Herein, "comprising" means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms "consisting of" and "consisting essentially of".

All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials.

Herein, "mixtures" is meant to include a simple combination of materials and any compounds that may result from their combination.

The term "molecular weight" or "M.Wt." as used herein refers to the weight average molecular weight unless otherwise stated.

METHOD OF PROVIDING CLEANNESS TO HAIR AND/OR SCALP

The method of providing cleanness to hair and/or scalp, comprises following steps:

(i) after shampooing hair, applying to the hair and/or scalp an effective amount of a hair care composition; and

(ii) then rinsing the hair; wherein the hair care composition comprises by weight:

(a) from about 0.1% to about 10% of a cationic surfactant system;

(b) from about 0.1% to about 20% of a high melting point fatty compound;

(c) from about 0.01% to about5.0% of a metal pyrithiones;

(d) from about 0.05% to about 10% of a metal salt other than metal pyrithiones; and

(e) an aqueous carrier.

The method of the present invention provides cleanness to hair and/or scalp, by the combination of metal pyrithiones and metal salts other than metal pyrithiones, from conditioning composition comprising cationic surfactants and high melting point fatty compounds.

The inventors of the present invention have surprisingly found that the addition of the metal salts in the conditioning composition containing metal pyrithione provide improved cleanness to hair and/or scalp.

Without being limited by theory, it is believed that metal salts other than pyrithiones may form a soap with fatty acids of sebum, by which sebum become easier to be washed away from scalp and/or hair. Without being limited by theory, it is also believed metal salts other than pyrithiones may provide enhanced deposition and/or efficacy of metal pyrithiones.

Also, without being limited by theory, it is believed that, hair cleanness could be provided by enhanced deposition of metal pyrithiones and/or metal salts other than pyrithiones on scalp especially infundibulum, which effectively absorb sebum coming from infundibulum and/or effectively control increase of undesirable proteins coming from infundibulum. For such enhanced deposition of metal pyrithiones and/or metal salts other than pyrithiones, it may be preferred in the composition to employ one or more of the folio wings:

the cationic surfactant system is a mixture of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt;

the composition further contains polyquaternium-6; and

the composition is substantially free of glucan gum, guar gum, and hydroxyethylcellulose.

Preferably, "Providing cleanness to hair and/or scalp" herein means "providing hair volume" and/or "providing less oiliness on hair and/or scalp". Without being limited by theory, less oiliness could be provided by above effective removal and/or effective absorption of sebum, and hair volume could also be provided by above effective removal and/or effective absorption of sebum coming from infundibulum which prevents hair root from becoming limp and/or laying down due to such sebum. Effective amount herein is, for example, from about 0.1ml to about 2ml per lOg of hair, preferably from about 0.2 ml to about 1.5ml per lOg of hair.

COMPOSITION

The composition comprises a cationic surfactant system; a high melting point fatty compound; a metal pyrithione; metal salt other than metal pyrithione; and an aqueous carrier.

These ingredients, as well as the gel matrix formed by some of these ingredients, are explained below in detail.

The composition of the present invention is, preferably, substantially free of anionic surfactants in view of avoiding undesirable interaction with cationic surfactants and/or in view of stability of the gel matrix. In the present invention, "the composition being substantially free of anionic surfactants" means that: the composition is free of anionic surfactants; or, if the composition contains anionic surfactants, the level of such anionic surfactants is very low. In the present invention, the total level of such anionic surfactants is, if included, 1% or less, preferably 0.5% or less, more preferably 0.1% or less, still more preferably 0% by weight of the composition.

METAL PYRITHIONE

The compositions of the present invention comprise a metal pyrithione. The metal pyrithione can be included at a level by weight of the compositions of, preferably from about 0.01% to about 5%, more preferably from about 0.1% to about 3%, still more preferably from about 0.1% to about 2%.

Metal pyrithiones useful herein are heavy metal salts of l-hydroxy-2-pyridinethione, the heavy metal salts being zinc, tin, cadmium, magnesium, aluminium, barium, bismuth, strontium, copper, and zirconium. Preferred are zinc and copper. More Preferred is zinc salt of 1-hydroxy- 2-pyridinethione known in the art as zinc pyrithione, more preferably in a particle size of up to about 20 microns, still preferably from about 1 to about 10 microns.

METAL SALT OTHER THAN METAL PYRITHIONE

The composition of the present invention comprises a metal salt other than metal pyrithiones. The metal salt is believed to improve antidandruff efficacy of metal pyrithione and/or help the composition to deliver cleanness benefit. The metal salt can be used at levels by weight of the composition of preferably from about 0.05 % to about 10 %, more preferably from about 0.1 % to about 7 %, still more preferably from about 0.5 % to about 5 % in view of delivering the above benefits.

When containing a metal pyrithione in the composition, metal salt is preferably, a salt of a metal which is the same metal as that of the metal pyrithione. For example, when the metal pyrithione is zinc pyrithione, the metal salt is preferably zinc salt other than zinc pyrithione. Such zinc salts include, for example, Zinc aluminate, Zinc carbonate, Zinc oxide, Zinc phosphates (i.e., orthophosphate and pyrophosphate), Zinc selenide, Zinc sulfide, Zinc silicates (i.e., ortho- and meta-zinc silicates), Zinc silicofluoride, Zinc Borate, Zinc hydroxide, zinc hydroxyl carbonate, hydrozincite (zinc carbonate hydroxide), basic zinc carbonate, aurichalcite (zinc copper carbonate hydroxide), rosasite (copper zinc carbonate hydroxide) and combinations thereof. Preferably, zinc salt are zinc hydroxyl carbonate, hydrozincite (zinc carbonate hydroxide), basic zinc carbonate, aurichalcite (zinc copper carbonate hydroxide), rosasite (copper zinc carbonate hydroxide) and combinations thereof. More preferably, hydrozincite (zinc carbonate hydroxide) is used.

Preferably, such metal salt are those which remain mostly insoluble within formulated compositions. "Being insoluble within the formulated compositions" herein means that the material remains as solid particulates and do not dissolve in the formula

D(90) is the particle size which corresponds to 90% of the amount of particles are below this size. The particulate of metal salt preferably have a particle size distribution wherein 90% of the particles are less than about 50 microns. In a further embodiment of the present invention, the particulate metal salt may have a particle size distribution wherein 90% of the particles are less than about 30 microns. In yet a further embodiment of the present invention, the particulate metal salt may have a particle size distribution wherein 90% of the particles are less than about 20 microns.

CATIONIC SURFACTANT SYSTEM

The composition of the present invention comprises a cationic surfactant system. The cationic surfactant system can be one cationic surfactant or a mixture of two or more cationic surfactants. Preferably, the cationic surfactant system is selected from: mono-long alkyl quaternized ammonium salt; a combination of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt; mono-long alkyl amidoamine salt; a combination of mono-long alkyl amidoamine salt and di-long alkyl quaternized ammonium salt. More preferably, the cationic surfactant system is a mixture of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt.

The cationic surfactant system is included in the composition at a level by weight of from about 0.1% to about 10%, preferably from about 0.5% to about 8%, more preferably from about 0.8 % to about 5%, still more preferably from about 1.0% to about 4%.

Mono-long alkyl quaternized ammonium salt

The mono-long alkyl quaternized ammonium salt cationic surfactants useful herein are those having one long alkyl chain which has from 12 to 30 carbon atoms, preferably from 16 to 24 carbon atoms, more preferably C18-22 alkyl group. The remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.

Mono-long alkyl quaternized ammonium salts useful herein are those having the formula

(I):

wherein one of R , R , R and R is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X " is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals. The alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups. The longer chain alkyl groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferably, one of R 75 , R 76 , R 77 and R 78 is selected from an alkyl group of from 12 to 30 carbon atoms, more preferably from 16 to 24 carbon atoms, still more preferably from 18 to 22 carbon atoms, even more preferably 22 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from CH 3 , C2H5, C2H4OH, and mixtures thereof; and X is selected from the group consisting of CI, Br, CH 3 OSO 3 , C2H5OSO 3 , and mixtures thereof. Nonlimiting examples of such mono-long alkyl quaternized ammonium salt cationic surfactants include: behenyl trimethyl ammonium salt; stearyl trimethyl ammonium salt; cetyl trimethyl ammonium salt; and hydrogenated tallow alkyl trimethyl ammonium salt.

Mono-long alkyl amidoamine salt

Mono-long alkyl amines are also suitable as cationic surfactants. Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons. Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldimethylamine, diethylaminoethylstearamide. Useful amines in the present invention are disclosed in U.S. Patent 4,275,055, Nachtigal, et al. These amines can also be used in combination with acids such as ^-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, l- glutamic hydrochloride, maleic acid, and mixtures thereof; more preferably ^-glutamic acid, lactic acid, citric acid. The amines herein are preferably partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1 : 0.3 to about 1 : 2, more preferably from about 1 : 0.4 to about 1 : 1.

Di-long alkyl quaternized ammonium salt

Di-long alkyl quaternized ammonium salt is preferably combined with a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt. It is believed that such combination can provide easy-to rinse feel, compared to single use of a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt. In such combination with a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt, the di-long alkyl quaternized ammonium salts are used at a level such that the wt of the di-long alkyl quaternized ammonium salt in the cationic surfactant system is in the range of preferably from about 10% to about 50%, more preferably from about 30% to about 45%.

The di-long alkyl quaternized ammonium salt cationic surfactants useful herein are those having two long alkyl chains having 12-30 carbon atoms, preferably 16-24 carbon atoms, more preferably 18-22 carbon atoms. The remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.

Di-long alkyl quaternized ammonium salts useful herein are those having the formula

(Π):

wherein two of R , R , R and R is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X " is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals. The alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups. The longer chain alkyl groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.

Preferably, one of R 75 , R 76 , R 77 and R 78 is selected from an alkyl group of from 12 to 30 carbon atoms, more preferably from 16 to 24 carbon atoms, still more preferably from 18 to 22 carbon atoms, even more preferably 22 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from CH 3 , C2H5, C2H4OH, and mixtures thereof; and X is selected from the group consisting of CI, Br, CH 3 OSO 3 , C2H5OSO 3 , and mixtures thereof.

Such di-long alkyl quaternized ammonium salt cationic surfactants include, for example, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, and dicetyl dimethyl ammonium chloride. Such dialkyl quaternized ammonium salt cationic surfactants also include, for example, asymmetric dialkyl quaternized ammonium salt cationic surfactants.

HIGH MELTING POINT FATTY COMPOUND

The high melting point fatty compound useful herein have a melting point of 25 °C or higher, and is selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature. Further, it is understood by the artisan that, depending on the number and position of double bonds, and length and position of the branches, certain compounds having certain required carbon atoms may have a melting point of less than 25°C. Such compounds of low melting point are not intended to be included in this section. Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.

Among a variety of high melting point fatty compounds, fatty alcohols are preferably used in the composition of the present invention. The fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Preferred fatty alcohols include, for example, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.

High melting point fatty compounds of a single compound of high purity are preferred. Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred. By "pure" herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%. These single compounds of high purity provide good rinsability from the hair when the consumer rinses off the composition.

The high melting point fatty compound is included in the composition at a level of from about 0.1% to about 20%, preferably from about 1% to about 15%, more preferably from about 1.5% to about 8% by weight of the composition, in view of providing improved conditioning benefits such as slippery feel during the application to wet hair, softness and moisturized feel on dry hair.

AQUEOUS CARRIER

The conditioning composition of the present invention comprises an aqueous carrier. The level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic of the product. The carrier useful in the present invention includes water and water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol. The polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.

Preferably, the aqueous carrier is substantially water. Deionized water is preferably used. Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product. Generally, the compositions of the present invention comprise from about 20% to about 99%, preferably from about 30% to about 95%, and more preferably from about 80% to about 95% water.

GEL MATRIX

The composition of the present invention comprises a gel matrix. The gel matrix comprises a cationic surfactant, a high melting point fatty compound, and an aqueous carrier.

The gel matrix is suitable for providing various conditioning benefits such as slippery feel during the application to wet hair and softness and moisturized feel on dry hair. In view of providing the above gel matrix, the cationic surfactant and the high melting point fatty compound are contained at a level such that the weight ratio of the cationic surfactant to the high melting point fatty compound is in the range of, preferably from about 1:1 to about 1:10, more preferably from about 1:1 to about 1:6.

POL YOU ATERNIUM- 6

Preferably the composition of the present invention further comprises polyquaternium-6, i.e., homopolymer of diallyldimethylammonium chloride.

The polyquaternium-6 can be included in the composition at a level by weight of from about 0.01% to about 5%, preferably from about 0.03% to about 1%, more preferably from about 0.05% to about 0.5%, still more preferably from about 0.05% to about 0.3%, in view of providing improved deposition of metal pyrithione, and also in view of providing improved conditioning benefit by avoiding stickiness, hair clumping and/or build up which may cause when adding polyquaternium-6 at higher levels.

It is preferred that polyquaternium-6 and the metal pyrithione are included such that the weight ratio of polyquaternium-6 to the metal pyrithione is from about 1:1 to about 1:30 more preferably from about 1:2 to about 1:20, still more preferably from about 1:5 to about 1: 15 in view of providing improved deposition of metal pyrithione while avoiding stickiness, hair clumping and/or build up.

The polyquaternium-6 useful herein is that having a cationic charge density of, preferably from about 3.5meq/g, more preferably from about 4.5 meq/g, still more preferably from about 5.5 meq/g in view of providing improved deposition of metal pyrithione, and preferably to about 13 meq/g, more preferably to about 10 meq/g, still more preferably to about 7.0 meq/g, in view of achieving the appropriate coacervate adhesive properties to enhance metal pyrithione deposition.

The polyquaternium-6 useful herein is that having a molecular weight of, preferably about 800 g/mol or more, more preferably 1,000 g/mol or more, still more preferably 1,200 g/mol or more in view of providing improved deposition of metal pyrithione. The molecular weight is also preferably to about 1,000,000 g/mol, more preferably to about 500,000 g/mol, still more preferably to about 100,000 g/mol, even more preferably to about 50,000 g/mol in view of providing better conditioning while providing improved deposition of metal pyrithione

Commercially available examples of highly preferred polyquaternium-6 polymer include, for example, that having a tradename Merquat 100 available from Lubrizol, which has a cationic charge density of about 6.19 meq/g, molecular weight of about 150,000g/mol, and that having a tradename Merquat 106 available from Lubrizol, which has a cationic charge density of about 6.19 meq/g, molecular weight of about 15,000g/mol.

SUBSTANTIALLY FREE OF GLUCAN GUM, GUAR GUM, and

HYDROXYETHYLCELLULOSE

Preferably, the composition of the present invention is substantially free of glucan gum, guar gum, and hydroxyethylcellulose, in view of, for example, improved deposition of metal pyrithiones. In the present invention, "the composition being substantially free of glucan gum, guar gum, and hydroxyethylcellulose" means that: the composition is free of glucan gum, guar gum, and hydroxyethylcellulose; or, if the composition contains glucan gum, guar gum, and/or hydroxyethylcellulose, the total level of such polymers is very low. In the present invention, the total level of such polymers is, if included, preferably 0.4% or less, more preferably 0.1% or less, still more preferably 0% by weight of the composition. ANIONIC POLYMER

The composition of the present invention may further contain an anionic polymer. The anionic polymer can be used at levels by weight of the composition of preferably from about 0.001 % to about 1 , more preferably from about 0.01 % to about 0.80 , still more preferably from about 0.02 % to about 0.6 % in view of improving suspension of metal pyrithiones, improving deposition of metal pyrithiones, and/or improving stability of conditioner formula.

It is preferred that the weight ratio of the anionic polymer to metal pyrithione, is from about 1:1 to about 1:100, more preferably from about 1:10 to about 1:50 still more preferably from about 1:20 to about 1:30 , in view of improving suspension of metal pyrithiones,

It is preferred that the weight ratio of the anionic polymer to polyquaternium-6 or cationic polymer, is from about 1000:1 to about 1:35, more preferably from about 100:1 to about 1:20, still more preferably from about 10:1 to about 1: 10 in view of achieving efficient polymer- polymer coacervation which would lead to high deposition of actives onto the surface.

Anionic polymers useful herein are, for example, those having a molecular weight of preferably from about 100 g/mol to about 100,000 g/mol more preferably from about 1,000 g/mol to about 10,000 g/mol still more preferably from about 1,000 g/mol to about 5,000 g/mol in comparison to standards of sodium poly(styrenesulfonate) in view of having the ability to suspend solids and prevent their agglomeration, and those having a charge density of from about 1.0 meq/g to about 10 meq/g more preferably from about 2.0 meq/g to about 7 meq/g still more preferably from about 3.0 meq/g to about 5.0 meq/g in view of compatibility with cationic materials and stability of the formula.

Anionic polymers useful herein include, for example, sodium polynaphthalene sulfonate, Sodium Lignosulfonate, sodium carboxymethyl cellulose, Sodium salt of hydrophobically modified maleic anhydride copolymer, Sodium polyacrylate, sodium polymethacrylate, ammonium polyacrylate, ammonium polymethacrylate, Sodium salt of polymethacrylic acid, preferably sodium polynaphthalene sulfonate, and sodium carboxymethyl cellulose, and more preferably sodium polynaphthalene sulfonate, still more preferably sodium polynaphthalene sulfonate having a tradename Darvanl Spray Dried, supplied from RT Vanderbilt having a molecular weight of about 3,000 g/mol in comparison to standards of sodium poly(styrenesulfonate) and a charge density of from about 3.5 to about 4.0 meq/g.

SILICONE CONDITIONING AGENT

The compositions of the present invention may further contain a silicone conditioning agent. The silicone conditioning agent herein can be used at levels by weight of the composition of preferably from about 0.1% to about 20%, more preferably from about 0.5% to about 10%, still more preferably from about 1% to about 8%.

Preferably, the silicone compounds have an average particle size of from about lmicrons to about 50 microns, in the composition.

The silicone compounds useful herein, as a single compound, as a blend or mixture of at least two silicone compounds, or as a blend or mixture of at least one silicone compound and at least one solvent, have a viscosity of preferably from about 1,000 to about 2,000,000mPa-s at 25°C.

The viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970. Suitable silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, amino substituted silicones, quaternized silicones, and mixtures thereof. Other nonvolatile silicone compounds having conditioning properties can also be used.

Preferred polyalkyl siloxanes include, for example, polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred. These silicone compounds are available, for example, from the General Electric Company in their Viscasil® and TSF 451 series, and from Dow Corning in their Dow Corning SH200 series.

The above polyalkylsiloxanes are available, for example, as a mixture with silicone compounds having a lower viscosity. Such mixtures have a viscosity of preferably from about l,000mPa-s to about 100,000mPa- s, more preferably from about 5,000mPa-s to about 50,000mPa- s. Such mixtures preferably comprise: (i) a first silicone having a viscosity of from about 100,000mPa- s to about 30,000,000mPa- s at 25°C, preferably from about 100,000mPa- s to about 20,000,000mPa-s; and (ii) a second silicone having a viscosity of from about 5mPa-s to about 10,000mPa- s at 25°C, preferably from about 5mPa-s to about 5,000mPa-s. Such mixtures useful herein include, for example, a blend of dimethicone having a viscosity of 18,000,000mPa-s and dimethicone having a viscosity of 200mPa- s available from GE Toshiba, and a blend of dimethicone having a viscosity of 18,000,000mPa- s and cyclopentasiloxane available from GE Toshiba.

The silicone compounds useful herein also include a silicone gum. The term "silicone gum", as used herein, means a polyorganosiloxane material having a viscosity at 25 °C of greater than or equal to 1,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. The "silicone gums" will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1,000,000. Specific examples include polydimethylsiloxane, poly(dimethylsiloxane methylvinylsiloxane) copolymer, poly(dimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof. The silicone gums are available, for example, as a mixture with silicone compounds having a lower viscosity. Such mixtures useful herein include, for example, Gum/Cyclomethicone blend available from Shin-Etsu.

Silicone compounds useful herein also include amino substituted materials. Preferred aminosilicones include, for example, those which conform to the general formula (I):

(R 1 ) a G 3 -a-Si-(-OSiG 2 ) n -(-OSiG b (R 1 ) 2 _ b ) m -0-SiG 3 -a(Ri)a wherein G is hydrogen, phenyl, hydroxy, or Ci-Cs alkyl, preferably methyl; a is 0 or an integer having a value from 1 to 3, preferably 1; b is 0, 1 or 2, preferably 1; n is a number from 0 to 1,999; m is an integer from 0 to 1,999; the sum of n and m is a number from 1 to 2,000; a and m are not both 0; Ri is a monovalent radical conforming to the general formula CqH 2q L, wherein q is an integer having a value from 2 to 8 and L is selected from the following groups: -N(R 2 )CH 2 -CH 2 -N(R 2 ) 2 ; -N(R 2 ) 2 ; -N(R 2 ) 3 A ~ ; -N(R 2 )CH 2 -CH 2 -NR 2 H 2 A ~ ; wherein R 2 is hydrogen, phenyl, benzyl, or a saturated hydrocarbon radical, preferably an alkyl radical from about Ci to about C 2 o; A is a halide ion.

Highly preferred amino silicones are those corresponding to formula (I) wherein m=0, a=l, q=3, G=methyl, n is preferably from about 1500 to about 1700, more preferably about 1600; and L is -N(CH 3 ) 2 or -NH 2 , more preferably -NH 2 . Another highly preferred amino silicones are those corresponding to formula (I) wherein m=0, a=l, q=3, G=methyl, n is preferably from about 400 to about 600, more preferably about 500; and L is -N(CH 3 ) 2 or -NH 2 , more preferably -NH 2 . Such highly preferred amino silicones can be called as terminal aminosilicones, as one or both ends of the silicone chain are terminated by nitrogen containing group.

The above aminosilicones, when incorporated into the composition, can be mixed with solvent having a lower viscosity. Such solvents include, for example, polar or non-polar, volatile or non-volatile oils. Such oils include, for example, silicone oils, hydrocarbons, and esters. Among such a variety of solvents, preferred are those selected from the group consisting of non-polar, volatile hydrocarbons, volatile cyclic silicones, non-volatile linear silicones, and mixtures thereof. The non-volatile linear silicones useful herein are those having a viscosity of from about 1 to about 20,000 centistokes, preferably from about 20 to about 10,000 centistokes at 25°C. Among the preferred solvents, highly preferred are non-polar, volatile hydrocarbons, especially non-polar, volatile isoparaffins, in view of reducing the viscosity of the aminosilicones and providing improved hair conditioning benefits such as reduced friction on dry hair. Such mixtures have a viscosity of preferably from about l,000mPa-s to about 100,000mPa-s, more preferably from about 5,000mPa-s to about 50,000mPa- s.

Other suitable alkylamino substituted silicone compounds include those having alkylamino substitutions as pendant groups of a silicone backbone. Highly preferred are those known as "amodimethicone". Commercially available amodimethicones useful herein include, for example, BY16-872 available from Dow Corning.

The silicone compounds may further be incorporated in the present composition in the form of an emulsion, wherein the emulsion is made my mechanical mixing, or in the stage of synthesis through emulsion polymerization, with or without the aid of a surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, and mixtures thereof.

ADDITIONAL COMPONENTS

The composition of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits. Such other additional components generally are used individually at levels of from about 0.001 to about 10%, preferably up to about 5% by weight of the composition.

A wide variety of other additional components can be formulated into the present compositions. These include: other conditioning agents such as hydrolyzed collagen with tradename Peptein 2000 available from Hormel, vitamin E with tradename Emix-d available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, hydrolyzed keratin, proteins, plant extracts, and nutrients; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; coloring agents, such as any of the FD&C or D&C dyes; perfumes; and sequestering agents, such as disodium ethylenediamine tetra-acetate; and ultraviolet and infrared screening and absorbing agents such as octyl salicylate. PRODUCT FORMS

The conditioning compositions of the present invention can be in the form of rinse-off products or leave-on products, and can be formulated in a wide variety of product forms, including but not limited to creams, gels, emulsions, mousses and sprays.

The conditioning composition of the present invention is especially suitable for rinse-off hair conditioner. Such compositions are preferably used by following steps:

(i) after shampooing hair, applying to the hair an effective amount of the conditioning compositions for conditioning the hair; and

(ii) then rinsing the hair.

EXAMPLES

The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. Where applicable, ingredients are identified by chemical or CTFA name, or otherwise defined below.

[Compositions

Components Ex.1 Ex.2 Ex.3 CEx.i

Polyquaternium-6 *1 0.075 - - -

Polyquaternium-6 *2 - 0.075 - 0.075

Zinc pyrithione *3 0.5 0.75 0.75 0.75

Zinc carbonate *4 1.6 1.6 1.6 -

Stearamidopropyldimethylamine 2.0 - - -

1-glutamic acid 0.64 - - -

Behenyl trimethyl ammonium

- 1.8 1.8 1.8 methosulfate

Dicetyl dimethyl ammonium chloride - 0.52 0.52 0.52

Cetyl alcohol 2.5 1.1 1.1 1.1

Stearyl alcohol 4.5 2.75 2.75 2.75

Polydimethylsiloxane *5 0.6 - - -

Aminosilicone *6 - 0.75 0.75 0.75

Preservatives 0.45 0.4 0. 4 0. 4 Perfume 0.5 0.5 0.5 0.5

Deionized Water q.s. to 100%

Method of preparation I II I II

Definitions of Components

*1 Polyquaternium-6: Poly(diallyldimethylammonium chloride) supplied with a tradename

Merquat 100 from Lubrizol, having a charge density of about 6.2meq/g, and molecular weight of about 150,000g/mol

*2 Polyquaternium-6: Poly(diallyldimethylammonium chloride) supplied with a tradename

Merquat 106 from Lubrizol having a charge density of about 6.2meq/g, and molecular weight of about 15,000g/mol

*3 Zinc pyrithione: having a particle size of from about 1 to about 10 microns

*4 Zinc carbonate: having a particle size of from about 1 to about 10 microns

*5 Polydimethylsiloxane: having a viscosity of 10,000cSt

*6 Aminosilicone: Terminal aminosilicone which is available from GE having a viscosity of about 10,000mPa»s, and having following formula:

(R 1 ) a G 3 -a-Si-(-OSiG 2 ) n -0-SiG 3 -a(Rl)a

wherein G is methyl; a is an integer of 1; n is a number from 400 to about 600; Ri is a monovalent radical conforming to the general formula C q H 2q L, wherein q is an integer of 3 and L is -NH 2 .

Method of Preparation

The conditioning compositions of "Ex. 1" through "Ex.3" and "CEx. i as shown above can be prepared by any conventional method well known in the art. They are suitably made by one of the following Methods I or II as shown above.

Method I

Cationic surfactants and high melting point fatty compounds are added to water with agitation, and heated to about 80°C. The mixture is cooled down to about 55°C and gel matrix is formed. Zinc carbonates, and if included, silicones and preservatives, are added to the gel matrix with agitation. Then, zinc pyrithione, and if included, polymers are added with agitation at about 45 °C. Then, if included, other components such as perfumes are added with agitation. Then the composition is cooled down to room temperature. Method II

Cationic surfactants and high melting point fatty compounds are mixed and heated to from about 66 °C to about 85 °C to form an oil phase. Separately, water is heated to from about 20 °C to about 48 °C to form an aqueous phase. In Becomix® direct injection rotor-stator homogenizer, the oil phase is injected and it takes 0.2 second or less for the oils phase to reach to a high shear field having an energy density of from 1.0x10 s J/m 3 to l.OxlO 7 J/m 3 where the aqueous phase is already present. A gel matrix is formed at a temperature of above 50 °C to about 60 °C. Silicones, Perfume, Polymer and Preservative, if included, are added to the gel matrix with agitation at temperature below 55 °C and mixed well. Then, zinc carbonate, if included, followed by zinc pyrithione, are added to the gel matrix with agitation at temperature below 50 °C and mix well. Finally the composition is cooled down to room temperature.

Properties and Benefits

For some of the compositions, properties and benefits are evaluated by the following methods. Such properties and benefits of the compositions and results of the evaluation are shown below.

Examples 1 through 3 are hair care compositions used in the method of the present invention. After shampooing hair, an effective amount of the hair care compositions are applied to the hair and/or scalp, and then rinsed off.

The embodiments disclosed and represented by the previous "Ex. 1" through "Ex. 3" have many advantages. For example, they provide cleanness to hair and/or scalp, for example, providing hair volume and/or providing less oiliness to hair and/or scalp.

Such advantages can be understood by the comparison between the examples of the present invention and a comparative example "CEx. i", for example, by the comparison between Ex. 2 and CEx. i in below Cleanness test.

Cleanness test

Cleanness is evaluated by a panellist test. 4 panelists joined in the test who all declared to suffer from oily scalp, thus, who all wash their hair twice a day. First, a cosmetic shampoo is applied to entire hair and scalp of a panelist, and washed away. Then, 10ml of the composition of Ex. 2 of the present invention is applied to a half (left side) of scalp, the remaining composition left on hand is then spread down the hair. The composition is massaged on the scalp for 1 minute. On another half (right side) of scalp of the panellist, lOmlof composition of comparative example CEx.i is applied, the remaining composition left on hand is then spread down the hair. The composition is massaged on the scalp for 1 minute. While avoiding mixing up the two different compositions, and both sides of compositions are rinse off. Panelists are instructed not to shampoo or apply any product (especially scalp product) for at least 24 hours. After about 24hours, "less oiliness" and "hair volume" are assessed by panelists as follows:

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.