Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR RECOVERING POLYMER POWDERS
Document Type and Number:
WIPO Patent Application WO/2012/053922
Kind Code:
A1
Abstract:
A method for recovering polymer powders which are functionally the technological waste from a selective laser sintering (SLS) process for forming prototypes according to mathematical models, the method consisting in that the spent and exhausted initial physico-chemical properties of the powders - the technological waste - are enriched by a powder containing physico-chemical properties commensurate with the initial properties. The differentiating characteristics of the method are that a powder containing physico-chemical properties commensurate with the initial properties is formed directly in the volume of the above-mentioned technological waste. For this, the latter is subjected to a process of destroying the aggregates of the initial finely dispersed particles (formed in the SLS process) by means of an impact action disperser - a ball mill, in which ceramic balls with a diameter of 15-20 mm are used as the pulverizing bodies. The process of destroying the aggregates of the initial finely dispersed particles is expediently carried out with the use of an adsorbing agent, for which use is optimally made of a highly dispersed silica filler SF-100 in an amount of 0.5 - 1 % of the total volume of the polymer powder being recovered. Furthermore, the given process is judiciously carried out under thermal action, in particular, at a temperature of 95-100 °C.

Inventors:
GAVRILIN SERGEY ANATOLIEVICH (RU)
Application Number:
PCT/RU2010/000610
Publication Date:
April 26, 2012
Filing Date:
October 21, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GAVRILIN SERGEY ANATOLIEVICH (RU)
International Classes:
C08J11/04; B02C15/00; B09B3/00; B29B17/04
Foreign References:
DE20107262U12001-08-30
SU1719056A11992-03-15
RU2111859C11998-05-27
RU2124945C11999-01-20
US20090169664A12009-07-02
Download PDF:
Claims:
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ рекуперации порошков полимеров, функционально являющихся технологическим отходом процесса селективного

5 лазерного спекания, заключающийся в том, что отработанный и утративший исходные физико-химические свойства порошок - технологический отход, обогащают порошком с физико-химическими свойствами, соизмеримыми с исходными, отличающийся тем, что порошок с физико-химическими свойствами, соизмеримыми с ю исходными, формируют непосредственно в объеме упомянутого технологического отхода, для чего последний подвергают процессу разрушения агрегатов из исходных мелкодисперсных частиц посредством диспергатора ударного действия - шаровой мельницы, в которой в качестве дробящих тел используют керамические шары

15 диаметром 15-20 мм.

2. Способ рекуперации порошков полимеров по п.1 , отличающийся тем, что процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществляют с использованием адсорбирующего агента, в качестве которого используют

20 высокодисперсную белую сажу БС-100 в количестве 0,5 - 1 % от общего объема рекуперируемого порошка полимера.

3. Способ рекуперации порошков полимеров по п.1 или п.2 отличающийся тем, что процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществляют при температуре 95-100 °С.

25

30

Description:
СПОСОБ РЕКУПЕРАЦИИ ПОРОШКОВ ПОЛИМЕРОВ,

Область техники

Изобретение относится к способам рекуперации порошков полимеров (в частности, тонкодисперсных порошков полиамидов) с целью их повторного использования в технологии селективного лазерного спекания (СЛС), реализующей послойное изготовление трехмерных прототипов по математическим моделям.

Уровень техники

Селективное лазерное спекание позволяет изготавливать трехмерные прототипы оригинала непосредственно по математическим моделям. В результате время, затраченное на изготовление опытного образца изделия по математической модели, уменьшается с нескольких недель до нескольких часов.

По этой технологии тонкий слой порошка равномерно распределяется по копируемой поверхности и затем сплавляется лазерной энергией, направленной к тем частям порошка, которые соответствуют текущему поперечному сечению формируемого изделия. Процесс многократно повторяется до завершения спекания всех слоев по компьютерной модели.

Детальное описание технологии СЛС широко известно из уровня техники (US, 4,863,538 A, US, 5,132,143 A, US, 4,944,817, US, 4,247,508 А)

При всех преимуществах технологии селективного лазерного спекания порошков полимеров для изготовления функциональных прототипов эта технология обладает и некоторыми недостатками.

Как известно, по данной технологии необходимо в любом случае заполнить весь объем рабочей камеры порошком полимера независимо от объема, размеров и количества изготавливаемых прототипов. На практике среднее отношение объема спеченного в формируемых изделиях порошка к неспеченному порошку составляет всего 1 :6. Остальные 85% объема порошка играют роль поддержки и остаются неиспользованными.

В процессе циклического нагревания и охлаждения полимерный порошок подвергается термоокислительной деструкции. Степень термоокислительной деструкции определяется температурой и временем нагрева порошка. Большую роль играет состав атмосферы рабочей камеры: а именно, содержание в ней окислителя - кислорода воздуха.

В зависимости от комбинации этих факторов порошок полимера через определенное время приходит в негодность, то есть, «стареет».

Старение проявляется в резком ухудшении механических свойств формируемых прототипов, снижении их точности и появлении шероховатой поверхности, напоминающей апельсиновую корку.

С целью повышения эффективности технологии и снижения затрат на сырье производителями оборудования селективного лазерного спекания дается рекомендация в добавлении после каждого цикла от 30 до 50 % свежего (ранее не использованного в технологическом процессе) порошка.

Результатом является прогрессивное нарастание отходов - то есть, количества непригодного к использованию отработанного порошка, что является основным недостатком рассматриваемой технологии.

Известен способ продления времени эксплуатации рециклируемого порошка путем нахождения минимально необходимых температур рабочей поверхности порошка и мощности лазера и, тем самым, снижения скорости термоокислительной деструкции технологического материала (NT. Sewell, М. Felstead et al. "A study of the degradation of Duraform PA due to cyclic processing.", VRAP 2007 17- 22 Oct Leiria Portugal, 2007r.)

Недостатком этого способа является его низкая эффективность, поскольку температурный режим и мощность лазера являются взаимозависимыми величинами и их вариации сильно ограниченны.

Известен способ рекуперации тонкодисперсных порошков полиамидов марки РА 2200 (Krassimir Dotchev, /Department of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK/, Wan Yusoff, /International Islamic University, Kuala Lumpur, Malaysia/ "Recycling of polyamide 12 based powders in the laser sintering process". Rapid Prototyping Journal, Vol. 15 Iss: 3, pp.192 - 203).

Согласно данного способа устанавливается корреляция между показателем текучести расплава полимера и появлением эффекта «апельсиновой корки» на уровне 26-28 грамм/10 мин. Также было установлено, что старение материала определяется не числом эксплуатационных циклов, а общим временем пребывания материала в условиях высокой температуры.

Восстановление исходных свойств технологического материала осуществляют путем смешения отработанного порошка со свежим. Пропорция смешения определяется показателем текучести расплава отработанного порошка. Это дает возможность экономить свежий порошок и не подвергать переработке рециркулируемый порошок без необходимости.

К недостаткам этого технического решения следует отнести необходимость смешения отработанного (то есть, участвовавшего в технологическом процессе) порошка со свежим порошком в пропорциях до 50%, что также приводит к возникновению отходов и не решает задачу полностью.

Раскрытие изобретения

В основу заявленного изобретения была поставлена задача рекуперации (восстановления исходных, технологически необходимых свойств) мелкодисперсных порошков полиамидов участвовавших в процессе СЛС без добавления свежего порошка.

Технический результат - повышение точности и качества формируемых методом СЛС изделий (прототипов) при значительной экономии технологического сырья и минимизации отходов производства.

Поставленный технический результат достигается посредством того, что в способе рекуперации порошков полимеров, функционально являющихся технологическим отходом процесса селективного лазерного спекания, заключающемся в том, что отработанный и утративший исходные физико-химические свойства порошок - технологический отход, обогащают порошком с физико-химическими свойствами, соизмеримыми с исходными, согласно изобретению, порошок с физико-химическими свойствами, соизмеримыми с исходными, формируют непосредственно в объеме упомянутого технологического отхода, для чего последний подвергают процессу разрушения агрегатов из исходных мелкодисперсных частиц посредством диспергатора ударного действия - шаровой мельницы, в которой в качестве дробящих тел используют керамические шары диаметром 15-20 мм.

Целесообразно процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществлять с использованием адсорбирующего агента, в качестве которого оптимально использовать высокодисперсную белую сажу БС-100 в количестве 0,5 - 1 % от общего объема рекуперируемого порошка полимера.

Разумно процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществлять при температуре 95-100 °С.

Лучший вариант осуществления изобретения

Изобретение иллюстрируется графическими материалами. Фиг. 1 - микрофотография образца исходного порошка полиамида с частицами округлой формы до начала процесса СЛС.

Фиг. 2 - микрофотография того же образца /порошка/, но после 60 часов его пребывания в рабочем цикле в установке СЛС при 5 температурах 150° - 170°С.

Фиг. 3 - фотография прототипа (изделия), изготовленного из порошка показанного на фиг. 2.

Фиг. 4 - микрофотография иллюстрирующая результат помола отработанного порошка (технологического отхода) в течение 24 часов ю согласно заявленного способа.

Фиг. 5 - фотография прототипа (изделия), изготовленного из порошка показанного на фиг. 4.

Из уровня техники известно, что прочность прототипов, изготовленных методом селективного лазерного спекания, 15 определяется, в первую очередь, наличием микродефектов в материале после спекания. В частности, наличие неспеченных частиц и пустот около них снижает прочность материала ниже допустимого уровня (Hadi Zarringhalam, /Materials Solutions, Birmingham, UK/, Candice Majewski, /Rapid Manufacturing Research Group, Loughborough University, 20 Loughborough, UK/, Neil Hopkinson, /Rapid Manufacturing Research Group, Loughborough University, Loughborough, UK/, Degree of particle melt in Nylon-12 selective laser-sintered parts", Rapid Prototyping Journal, Vol. 15 Iss: 2, pp.126 - 132).

Для получения максимально прочных прототипов необходимо 25 добиться равномерного сплавления (спекания) массы технологического материала.

Следует отметить, что во всех перечисленных известных технических решениях применяются стандартизованные в полимерной промышленности способы изучения свойств полимеров, которые зо характеризуют поведение полимера в массе, а не в порошкообразном состоянии. В то время, как применяемые в СЛС технологиях порошки полимеров имеют размер частиц от 40 до 80 мкм и, как результат, развитую внешнюю поверхность.

Именно изменение свойств поверхности микрочастиц и приводит к таким отрицательным последствиям, как снижение прочности и 5 точности формируемых прототипов, появлению «апельсиновой корки»

Термоокислительная деструкция полимера начинается на его поверхности и развивается вглубь массы полимера. В условиях высокой температуры и при постоянном перемешивании поверхность порошка многократно контактирует с атмосферой рабочей камеры, что является ю причиной ускоренной деструкции поверхностного слоя с образованием олигомерной фазы с пониженной температурой плавления.

Внутри частицы идет обратный процесс - рост молекулярной массы. Это подтверждается уменьшением показателя текучести расплава. С увеличением молекулярной массы следует ожидать 15 увеличение прочности материала, а не уменьшение, как это показывает эксперимент. Таким образом, показатель текучести расплава является лишь косвенным (сопутствующим) параметром процесса.

Заявленный способ заключается в восстановлении утраченной в процессе эксплуатации дисперсности порошков полимеров без 20 добавления исходного порошка.

Более детально, способ рекуперации порошков полимеров, функционально являющихся технологическим отходом процесса селективного лазерного спекания, заключается в том, что отработанный и утративший исходные физико-химические свойства порошок -

25 технологический отход, обогащают порошком с физико-химическими свойствами, соизмеримыми с исходными. Отличительными особенностями заявленного способа является то, что порошок с физико-химическими свойствами, соизмеримыми с исходными, формируют непосредственно в объеме упомянутого технологического зо отхода. Для этого последний подвергают процессу разрушения агрегатов из исходных мелкодисперсных частиц посредством диспергатора ударного действия - шаровой мельницы, в которой в качестве дробящих тел используют керамические шары диаметром 15- 20 мм.

Целесообразно процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществлять с использованием адсорбирующего агента, в качестве которого используют высокодисперсную белую сажу БС-100 в количестве 0,5 - 1 % от общего объема рекуперируемого порошка полимера.

Разумно процесс разрушения агрегатов из исходных мелкодисперсных частиц осуществлять при температуре 95-100 °С.

На микрофотографии по фиг.1 хорошо просматриваются раздельные частицы округлой формы исходного порошка полиамида до начала процесса СЛС. Его насыпная плотность составляет 580 кг/мЗ.

На микрофотографии по фиг. 2 показан тот же образец, но после

60 часов пребывания в рабочем цикле в установке селективного лазерного спекания при температурах 150° - 170°С. Насыпная плотность уменьшилась и составила 480 кг/мЗ.

На последней из рассмотренных микрофотографий (фиг.2) хорошо видны крупные вторичные агрегаты, состоящие из спекшихся воедино первичных частиц. Образования имеют неправильную вытянутую форму и, как результат, не могут также компактно упаковываться при спекании как округлые частицы. Это подтверждается снижением насыпной плотности порошка. Изготовленный из этого порошка прототип (фотография по фиг.З) имеет рыхлую, со множеством пор, структуру, поверхность которой внешне напоминает апельсиновую корку.

Ранее было отмечено, что плотность первичной упаковки частиц полимера предопределяет прочность конечного изделия. У порошка с большей насыпной плотностью вероятность возникновения дефектов ниже.

Таким образом, в задачу восстановления свойств порошка входит, в первую очередь, разрушение вторичных агрегатов 5 (образующихся в технологическом процессе СЛС) до исходного и/или соизмеримого с исходным, состояния.

Данная задача, согласно заявленного изобретения, решается путем разрушения агрегатов, состоящих из исходных частиц механическим путем,

ю Таким образом, предлагаемый способ заключается в восстановлении утраченной в процессе СЛС дисперсности порошков полимеров.

Пример конкретной реализации заявленного способа (практический эксперимент).

15 Разрушение агрегатов из исходных частиц осуществлялось на диспергаторе ударного действия - шаровой мельнице. В качестве дробящих тел применялись керамические шары диаметра 15-20 мм.

Результат помола порошка в течение 24 часов показан на микрофотографии по фиг.4.

20 Хорошо видно, что вторичные агрегаты разрушены. Насыпная плотность рекуперированного порошка составила 560 кг/мЗ.

Трехмерный прототип из рекуперированного порошка показан на фотографии по фиг.5.

Качество поверхности и точность построения формы оригинала 25 восстановлены.

Для улучшения полноты помола в рекуперируемый порошок полимера в качестве адсорбирующего агента добавляли высокодисперсную белую сажа БС-100 в количестве 0,5% и 1 % от общего объема рекуперируемого порошка. Аналогичная вышеуказанной зо насыпная плотность (560 кг/мЗ) достигалась за 20 часов в обоих случаях. Для увеличения скорости помола процесс проводили при температуре 95°-100°С.

Аналогичная насыпная плотность (560 кг/мЗ) достигалась за 12 часов.

Промышленная применимость

Таким образом, заявленный способ может быть широко использован при рекуперации порошков полимеров (в частности, тонкодисперсных порошков полиамидов) с целью их повторного использования в технологии селективного лазерного спекания (СЛС), реализующей послойное изготовление трехмерных прототипов по математическим моделям.