Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR SELECTIVE AND/OR UNSELECTIVE VAPORIZATION AND/OR DECOMPOSITION OF, PARTICULARLY, HYDROCARBON COMPOUNDS AND APPARATUS FOR CARRYING OUT SUCH A METHOD
Document Type and Number:
WIPO Patent Application WO/1994/008680
Kind Code:
A1
Abstract:
The invention relates to a method and an apparatus for selective and/or unselective vaporization and/or decomposition of, particularly, hydrocarbon compounds in liquid form, where the liquid is placed in an artificial gravitational field, and where a mechanical supply of energy is provided to the liquid in the artificial gravitational field. The apparatus comprises a process chamber (1) into which the liquid (6) is introduced. The process chamber (1) is rotatably mounted (2) for provision of an artificial gravitational field for the liquid (6) in the chamber, and in the process chamber (1) are provided means (5) for mechanically supplying energy to the liquid (6) when it is located in the gravitational field.

More Like This:
Inventors:
Ellingsen, Olav
Application Number:
PCT/NO1993/000148
Publication Date:
April 28, 1994
Filing Date:
October 04, 1993
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
Ellingsen, Olav
International Classes:
B01D1/14; B01D3/00; B01D3/08; B01D3/10; B01D3/30; C10G7/00; C10G7/06; C10G9/00; C10G9/06; C10G15/00; (IPC1-7): B01D3/08; B01D3/30; C10G7/06; C10G9/06
Foreign References:
US3963598A1976-06-15
US4094781A1978-06-13
Download PDF:
Claims:
P a t e n t C l a i m s
1. A method for selective and/or unselective vaporization and/or decomposition of, particularly, hydrocarbon compounds in liquid form, where the liquid is placed in an artificial gravitational field and supplied with energy produced by mechanical means, c h a r a c t e r i z e d i n that the mechanical supplying of energy to the liquid is carried out by bringing mechanical elements (15) into direct contact with the liquid (16) influenced by the artificial gravitational force, said liquid and said mechanical means being caused to move in relation to each other.
2. A method according to claim 1, c h a r a c t e r i z e d i n that hydrogen or another reactive gas is supplied to the process in order to react, at occurring pressure and temperature conditions, with other molecules in the process and to form new chemical compounds.
3. A method according to claim 1 or 2, c h a r a c t e r i z e d i n that the energy is supplied by bringing elements (5) having a rod or bar shape or another geometrical form into the liquid.
4. Apparatus for carrying out the selective and/or unselective vaporization and/or decomposition of, particularly, hydrocar¬ bon compounds in liquid form, comprising a process chamber (1) into which the liquid (6) is introduced, which process chamber (1) is rotatably mounted (2) for the provision of an artificial gravitational field for the liquid (6) in the chamber, said apparatus further comprising mechanical means for provision of energy to be supplied to the liquid in the chamber, c h a r a c t e r i z e d i n that the mechani cal means (5) are arranged in the rotatable process chamber (1) and are positioned and shaped for the direct mechanical supplying of energy to the liquid (6) when it is located in the artificial gravitational field.
5. Apparatus according to claim 4, c h a r a c t e r i z e d i n that the process chamber (1) is rotatably mounted (2) about its center axis.
6. Apparatus according to claim 4 or 5, c h a r a c t e r i z e d i n that said means for the mechanical supplying of energy comprise rod or bar shaped elements (5).
7. Apparatus according to claim 6, c h a r a c t e r i z e d i n that the rod or bar shaped elements (5) are mounted on a tubular shaft (4) centrally positioned within the process chamber (1) and/or another anchoring body that remains immobile in relation to the element generating the artificial gravitational field.
8. Apparatus according to one of the claims 47, c h a r a c t e r i z e d i n that the process chamber (39) is shaped with a terminal overflow edge (61) for solids accumulating in the liquid, said overflow edge being arranged in association with a stationary housing (51) connected to the chamber, into which housing the end of the chamber projects with peripheral blades (50) radially and axially exterior to the overflow edge (Fig. 5).
Description:
METHOD FOE SELECTIVE AND/OE UNSELECTIVE VAPO IZATION AND/OE DECOMPOSITION OF, PAETICULAELY, HYDEOCARBON COMPOUNDS AND APPAEATUS FOE CAEEYING OUT SUCH A METHOD.

The invention relates to a method for selective and/or unselective vaporization and/or decomposition of, particular¬ ly, hydrocarbon compounds in liquid form.

The invention also relates to an apparatus for carrying out selective and/or unselective vaporization and/or decomposi¬ tion of, particularly, hydrocarbon compounds in liquid form, comprising a process chamber into which the liquid is conducted and where there are provided means for supplying energy to the liquid.

It is proposed, according to the invention, to place the liquid in an artificial field of gravity and to provide a mechanical supply of energy to the liquid in the artificial gravitational field.

In connection with the new apparatus, it is proposed according to the invention that the process chamber be rotatably mounted for the provision of an artificial gravita¬ tional field for the liquid in the chamber, and that means be provided within the process chamber for mechanically supplying energy to the liquid when it is located in the gravitational field.

The invention thus relates to a method for mechanically supplying energy to liquids by bringing them into an artificial gravitational field. The process may be so intense that it is possible to achieve a partial evaporation of liquid compounds such as, for example, oil and water and, beyond this, to obtain a previously unknown method for the decomposition of molecular compounds which would otherwise be done in so-called "crackers" at high pressure and tempera¬ ture. In addition, the method enables the achievement of the fusion of certain molecules such as carbon and hydrogen in

oil, for example, so that the oil will be composed of lighter hydrocarbon compounds.

All known techniques for separating various substances in admixture with each other, e.g., oil and water, seek to utilize different typical characteristics of the substances. In a gravel pit the separation of sand and stones is done simply by utilizing the size difference between them. The most predominant difference between the substances used in, e.g., various types of centrifuges is the difference in specific gravity between the substances. These specific gravity differences may, however, be very small. With oil and water, for example, the specific gravity ratio is 0.9:1. This makes the separation of such compounds potentially very difficult. Particularly with small amounts of dispersed oil it is often extremely difficult to separate oil from the water by means of centrifuges.

Thus, to facilitate the separation, particularly of oil and water mixtures representing a grave polution problem, it would be easier if there were physical properties in the substances that were more distinctive than the specific gravity. With regard to water mixed with other liquid matter and particularly oil, there are several physical conditions that provide greater differences, but which are all the more difficult to use for separation tasks. Such physical properties are thermal and electrical conductivity, calorific capacity, specific heat and, not least, vaporizing heat for various substances. One may, for example, set up the following table for such physical properties:

Water Oil

Specific gravity kg/m 3 1.00 0.90

Coefficient of thermal conductivity W/m°C: 0.70 0.17

Mean specific heat kJ/kg°C: 4.22 2.75

Vaporizing heat kJ/kg: 2,257 275

Evaporation temperature °C: 100 150-500

What is distinctive here is the difference in vaporizing heat, and it is primarily this difference that we seek to exploit in the present invention. If we consider two equally large units V of oil and water and supply these with exactly the same power P, the volume V of oil will evaporate first, in accordance with the following observation with the same initial temperature t=20°C:

Amount of energy for evaporation of the water is: Q v = V-[(100-20)-4.2+2257] = 2,593V kJ

For the oil, when calculated with a mean evaporation temperature of (150+500)/2=325°C, this is: Q 2 = V[325-20] -2.75+275] = 1,114V kJ

This shows that 2.593/1.114 = 2.33 times more energy is required to evaporate the same amount of water as oil, and the oil will consequently evaporate 2.33 times faster than the water.

The evaporation temperature shown for the oil is the range for typical unrefined crude oil. If the oil is refined, i.e., cracked to lighter oil fractions, the evaporation will be easier. The same is the case if one were to concentrate the energy supply to the highest possible degree on the oil and to the least possible degree on the water.

The invention aims to use all these physical properties together with a decomposition of oil in order to achieve a reduction in the evaporation temperature. This is done by placing the liquid mixture, here concentrating on oil/water, into a rotating container (drum) whereby the centrifugal force will hurl the mixture against the walls and supply it with a g force expressed through g=v^/r = /s^ where v = the peripheral speed and r is the radius of the container. On insertion of a rod down into the rotating liquid ring, a

hydrodynamic energy transfer will take place. If the area of the rod inserted into the liquid is A and the average specific gravity of the liquid is μ, the power transfer is expressed as P=A , vμ*vv = Auv 3 Watt. This means that the energy transfer increases by the third power of the peri¬ pheral speed. Adjusted for the revolutions n per min., the expression is P=Au(π2rn/60) 3 Watt.

Since the mass is placed in a rotating system which subjects it to the same gravitational forces as in a centrifuge, the difference in specific gravity between the oil and the water also will be manifested by the fact that the water is moved furthest out against the container's wall and the oil moves toward the center, i.e., the interior liquid surface. This means that on insertion of the rod so far down into the liquid that it is only the oil which is substantially touched, the major portion of the energy transfer will take place there, allowing the oil to be evaporated off first.

Due to the strong gravitational field that can be established in such a system, it is possible to provide an exceptionally high specific energy supply per surface unit. It has been shown in trials that over a specific peripheral speed range, there also occurs, in addition to the evaporation, a decomposition of the hydrocarbons into lighter fractions at a temperature up to 50 lower than with pure thermal decomposition. This is explained by the fact that, in addition to the thermal stimulation causing the molecules to oscillate, there are also provided vibrations caused by the mechanical working of the liquid through the effect of the rod inserted therein. This phenomenon, which has not been demonstrated previously, will hereafter be referred to as thermomechanical decomposition.

In other respects, this phenomenon renders the invention useful for the decomposition of hydrocarbons in petroleum products, the method thus paving the way for the direct

refining and/or pretreating of oil or oil residue from oi refineries. At the same time that it is possible t decompose various hydrocarbon compounds having the genera formula C n H n +2-z in lighter compounds, it is also possible t form lighter compounds from the carbon compounds in petroleu which under normal conditions form coke, by introducin hydrogen into the process chamber so that it reacts with th carbon and forms the above mentioned compounds.

In an oil refinery the crude oil is typically heated up t form hydrocarbon gas using gas as an energy source an distilled in a distillation column where a number of ligh fractions are removed from the oil. The heavier fraction constituting about 25 of the crude oil are withdrawn at th bottom end of the distillation column. If the crude oil i a light oil having small amounts of nitrogen, sulphur, heav metals and wax, the distillation residue may be furthe processed in a so-called cracker. This is an enormous uni which, for a typical refinery with a capacity of 150,00 barrels of oil per day, costs about 4 billion norwegia kroner. In the cracker the residue together with variou catalysts is subjected to varying pressure and a temperatur of about 550°C. The decomposed residue is then vaporize using gas as the energy source and conducted into a ne distillation column where the individual fractions ar removed as in the first distillation column.

If the crude oil is heavy, i.e., contains elements of th aforementioned "contaminants", the residue must be pretreate before being fed into the cracker. The pretreatment consists, inter alia, of "hydrogenating" the residue by adding hydroge in order to form lighter compounds and, otherwise, to succee in removing as much of the "contaminants" as possible. Fo the same refinery such a unit would typically cost 2 billio norwegian kroner.

With the process in the present invention, it is possible to use the apparatus both for pretreatment of the residue and as a direct cracking unit. Since the oil in the process emerges as a decomposed oil gas, the gas stream may be conducted directly into the distillation column or into a condenser where the gases are condensed down to liquid. The process would thus replace the above mentioned cracker and pretreater of the residue.

The process is described in more detail in the following drawings:

Fig. 1 is a schematic presentation of the process. 1 is the rotating drum which, mounted on bearings 2, is driven by a rotating energy source 3. Within drum 1 is disposed a tubular shaft 4 securely anchored at one end thereof. On the end projecting into the drum are arranged a plurality of arms 5 having a breadth b and extending a distance n down into the liquid 6 in the drum. Against wall 7 of the drum is disposed a rotating stuffing box 8 having an aperture 9 therein for connection of a gas pipe 10. In tubular shaft 4 is also provided a second pipe 11 that passes down into the liquid 6. At this end of the pipe is provided a 90° bend 12 with its opening toward the direction of rotation of the drum, ensuring that if the liquid level in the drum rises up to the bend, the liquid will be pumped out of the drum by the centrifugal force. In other words, the pipe func¬ tions as a level regulator and discharge pipe for the liquid to be tapped out from the process.

The feed liquid to be processed is conducted into tubular shaft 4 from tank 13 by pump 14 through pipe 15. The gases that evaporate in the process chamber are fed through a pipe to a condenser 10, which may also be a conventional distil¬ lation column for the separation of different oil fractions.

The condensate is discharged from pipe 16. The condensation heat is removed from the system by the heat exchanger 17, which is cooled with water.

Figs. 2 and 3 are a partially intersected elevation and a top view of a practical embodiment of the process. The machinery is mounted on a skid 18. The container (drum) 19 is mounted on two bearing blocks 20 via a rotating stuffing box 21 at the drive end and a stuffing box 22 at the other end of the drum. The drum is driven by a motor 23 with a gear transmission 24 that may be arranged in a number of ways. On the central tubular shaft 25 are arranged a row of arms 26 projecting down into the liquid 27. On the central tubular shaft are also provided a level regulator pipe 28 and a separate feed-in pipe 29 which leads toward the end plate 30 of the drum. The feed is pumped in by pump 31. By this arrangement the vapor and gases are conducted into the central tubular shaft via apertures 32 therein and are fed further into the condenser 33. The condensate is withdrawn from pipe 34 with the aid of circulation pump 35, and the condensation heat is removed by heat exchanger 36, which is cooled with water supplied by pump 37. The process is otherwise regulated by associated electronic equipment situated in control cabinet 38.

Figs. 4, 5 and 6 are a top view and two side views (schema¬ tic) of another practical embodiment of a unit for treating fluid containing solids which are not removable by evaporation. Such solids may be residues from catalysts and other mineral contami¬ nants. Drum 39 is here mounted at the drive end with bearings 40 and is driven by the motor 41 via V-belt pulleys 42 and 43 and V-belts 44. The central tubular shaft 45 with its arms 46 is attached to a

hopper 47 in which is put the liquid that is to be pumped in. This liquid is fed into drum 39 by a screw mechanism disposed in central tubular shaft 45 by the motor 48 via the sprocket wheel arrangement 49. At the outlet of drum 39 are provided a row of blades 50 projecting into a housing 51 attached with a bubble cap 52 to the central tubular shaft. On housing 51 is, in addition, provided a gas-tight stuffing box arrangement 53. The vapors and gases leave the drum via aperture 54 and are fed to the condenser 55 through the pipe. The condensate is withdrawn with the aid of circulation pump 57 through pipe 58. The condensation heat is removed through heat exchanger 59, which is cooled with water supplied by pump 60. The solids accumulating in the liquid in the drum are sent over the edge 61 as a result of continuous infeeding of liquid and are hurled against housing 51 by blades 50 and further out through a rotating gate 62 driven by motor 63. All components are mounted on a machine skid 64 together with a control cabinet, not shown.

To test the process a small pilot model of about 50 kW was constructed. This was tested with a residue substance from oil shale production in Estonia, called "fushi" in Eussian. This consists of unrefined shale oil and finely divided minerals together with water, phenols and other contaminants. Despite the fact that the oil has a final boiling point of about 650°C, it was possible to attain recovery of the oil at 250°C together with a reduction of the final boiling point to about 500°C. The analytical data for the results are given in the following table.

Oil shale and "fushi"

Eef. 1: Oil shale

Eef. 8: Primary oil "fushi"

Eef. 11: Secondary oil shale

Eef. 1 8 11

Benzo (a) pyrene ppm

Phenols ppm 42/126 oil/water

Eesorcinol oil ppm 1230/180 m- and p-cresol ppm <10 Distillation °C

IP (initial boiling point) 151

20$ 320

50 400

80 492

FP (final boiling point) 548 Process temperature about 250°C.

The invention is described above as an apparatus where the process chamber is brought into rotation about its center axis in order to establish the artificial gravitational field. The invention is not limited to this structural embodiment. The essential feature is that there may be established an artificial gravitational field where the liquid is mechanically supplied with energy. In this respect, hurling devices could also be relevant alternatives.