Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND SYSTEM FOR OPTIMIZED SELECTION OF A BICYCLE SADDLE PERTAINING TO A POPULATION OF DIFFERENT SADDLES
Document Type and Number:
WIPO Patent Application WO/2013/186699
Kind Code:
A1
Abstract:
A method for optimized selection of a bicycle saddle from a population of different bicycle saddles comprises the steps of providing a database (B) composed of a set (Ω) of physical elements (S1,) corresponding to the population of different saddles, subdividing the set (Ω) into a plurality of subsets (W-1, W2; F-1, F2; Q1, Q2;...) according to predetermined geometrical and/or functional characteristics, collecting a plurality of anatomical parameters (I, α, Lm,...) of a user to obtain corresponding data (D-1, D2, D3,...) and selecting one of the subsets (W-1, W2; F-1, F2; Q1, Q2;...) having corresponding optimized characteristics according to the data (D-1, D2, D3,...). The geometrical and/or functional characteristics are selected from the group comprising at least the maximum plan width (Umax), the presence and dimension of holes and/or superficial hollows (H) and the plan shape of the saddles. The parameters (I, α, Lm,...) are collected on the user in an upright position and with the legs stretched. A system for anthropometric determination of one or more optimized bicycle saddles.

Inventors:
BIGOLIN GIUSEPPE (IT)
Application Number:
PCT/IB2013/054775
Publication Date:
December 19, 2013
Filing Date:
June 11, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ERGOVIEW AG (CH)
International Classes:
A61B5/107; B62J1/00
Domestic Patent References:
WO2012010988A12012-01-26
Foreign References:
US20060218809A12006-10-05
US4928398A1990-05-29
US5060393A1991-10-29
US7284336B22007-10-23
Attorney, Agent or Firm:
MAROSCIA, Antonio (Contrà Porti 21, Vicenza, IT)
Download PDF:
Claims:
CLAIMS

1 . A method for the optimized selection of a bicycle saddle in a population of different saddles, comprising the following steps:

a) providing of a data base (B) formed by a set (Ω) of physical elements (S,) corresponding to the population of differentiated saddles;

b) subdividing said set (Ω) into a plurality of subsets (W-i, W2; F ; F2; Q-i, Q2;...) as a function of predetermined geometrical and/or functional characteristics;

c) collecting a plurality of anatomical parameters (I, a, Lm,...) of a user for determining corresponding data (Di , D2, D3,...);

d) selecting one of said subsets (W-i, W2; F ; F2; Q ; Q2;...) having corresponding optimized characteristics according to said data (D-i , D2, D3, ..);

wherein said geometrical and/or functional characteristics are chosen in the group comprising at least the maximum plane width (Umax), the presence and dimension of holes and/or superficial hollows (H) and the plane shape of the saddles; and

wherein said plurality of parameters (I, a, Lm,...) is collected on the user in a standing position and with the legs stretched.

2. Method as claimed in claim 1 , wherein said subdividing step b) is carried out by subdividing said set (Ω) in first subsets (W-i, W2) and second subsets (F-i , F2) according to said geometrical and/or functional characteristics.

3. Method as claimed in claim 1 or 2, wherein said collecting step c) comprises collecting a first anatomical parameter (I) of the user chosen in the group including at least the intertrochanterical distance (I) for obtaining a first data (D-i), and a second anatomical parameter (a) of the user chosen in the group including the inclination angle (a) of the sacral plate for obtaining a second data (D2).

4. Method as claimed in claim 3, wherein said selection step d) comprises the selection of one of said subsets (W-i, W2) having a first optimized characteristic on the strength of said first data (D-i) and the selection of one of said second subsets (Fi , F2) having a second optimized characteristic according to said second data (D2).

5. Method as claimed in claim 3, wherein said first anatomical parameter (I) is the intertrochanterical distance of the user and said first subsets (W-i , W2) comprise elements (S,) having optimal maximum width (Umax) according to said first data (D-i).

6. Method as claimed in claim 3, wherein said inclination angle (a) defining said second anatomical parameter is detected by the user with upstanding legs and with the torso bent forward, and wherein said second subsets (F-i , F2) comprise optimized elements (S,) having or not holes and/or superficial hollows (H) according to said second data (D2).

7. Method as claimed in claim 3, wherein said stage c) of collection of said first anatomical parameter (I) is detected the user in standing position at a predetermined front distance (dF) with reference to a pair of mirrors (6, 7) placed on a vertical plate (5) at a reciprocal minimum distance (dmin) and with a vertical centerline (V) and further detecting the user profile with respect to said pair of mirrors (6, 7).

8. Method as claimed in claim 7, wherein no reflection of the profile on said mirrors (6, 7) corresponds to said first data (D-i) associated to said first subset (W-i , W2), corresponding to a small size of the maximum width (Umax) of the saddle, while the reflection of the profile on said mirrors (6, 7) corresponds to said first data (D-i) associated to said first subset (W-i , W2), corresponding to a large size of the maximum width (Umax) of the saddle.

9. Method as claimed in claim 3, wherein said step c) of collection of said second anatomical parameter (a) is obtained by the user bending the torso with arms stretched downward and placing the hands tips in front of a vertical panel (8) having an horizontal landmark (9) placed at a predetermined height (h-i) from the ground.

1 0. Method as claimed in claim 9, wherein the failed attainment of said horizontal landmark (9) by the ends of the hands of the user corresponds to a second data (D2) associated to said second subset (F-i , F2) and corresponding to a saddle without holes and/or superficial hollows (H), whereas the attainment of said horizontal landmark (9) by hand tips of the user corresponds to a second data (D2) associated to said second subset (F-i, F2) and corresponding to a saddle having holes and/or superficial hollow (H).

1 1 . Method as claimed in claim 1 , wherein said subdivision step b) is obtained subdividing said set (Ω) in first subsets (W-i, W2), second subsets (F-i, F2, F3) and third subsets (Q-i , Q2) according to said geometrical and/or functional characteristics.

12. Method as claimed in claim 1 1 , wherein said collection step c) comprises the detection of a first anatomical parameter (I) of the user chosen in the group including at least the intertrochanterical distance (I) for obtaining a first data (D-i), of a second anatomical parameter (a) of the user chosen in the group including the inclination angle (a) of the sacral plate for obtaining a second data (D2) and of a third anatomical parameter (Lm) of the user chosen in the group including the average length of the peripheral extent of the thighs for obtaining a third data (D3).

13. Method as claimed in claim 12, wherein selection step d) comprises the selection of one of said first subsets (W-i, W2) having a first optimized characteristic according to said first data (D-i), the selection of one of said second subsets (F-i, F2, F3) having a second optimized characteristic according to said second data (D2), and the selection of one of said third subsets (Q-i, Q2) having a third optimized characteristic according to said third data (D3).

14. Method as claimed in claim 12 or 13, wherein the average length (Lm) of the peripheral extent of the thighs of the user defining a third anatomical parameter is detected at the gluteal fold of the user placed in a standing position and wherein said third subsets (Q-i, Q2) comprise elements (Si) having optimized plan shape according to said third data (D3).

15. Method as claimed in claim 14, wherein said third subsets (Qi, Q2) are determined through an anatomical formula or algorithm (XQ) obtained as a function of the ratio between the intertrochanterical distance (I) and the average length of the peripheral extent of the thighs of the user collected at the gluteal fold.

16. Method as claimed in one or more of the claims from 12 to 15, wherein said set (Ω) of elements (S,) defines a matrix that can be represented with a tridimensional diagram having as coordinated axes said first (I), said second (a) and said third (Lm) anatomical parameter.

17. A system for the anthropometric selection of an optimized bicyle saddle, for the actuation of the method according to the preceding claims from 1 1 to 16, comprising:

- first measurement means (1 1 ) for detecting a first anatomical parameter (I) of the user;

- second measurement means (12) for detecting a second anatomical parameter (a) of the user;

- third measurement means (13) for detecting a third anatomical parameter (Lm) of the user;

- converter means (14) for converting said first, second and third anatomical parameter (I, a, Lm) into a numerical format (D-i, D2, D3);

- memory means (15) for storing a database (B) formed by a set (Ω) of physical elements (S,) corresponding to saddles with different geometrical and/or functional characteristics and for memorizing said first, second and third numerical data (Di, D2, D3);

- processing and computing means (16) for calculating said first, second and third numerical data (D-i, D2, D3) and selecting one or more optimized saddles in said database (B) according to the method step of claim 1 1 .

18. System as claimed in claim 17, wherein said first measurement means (1 1 ) comprise a gauge device (17) with a graduated rod (18) having end longitudinally slidable tailpieces (19', 19") and designed to abut against the user hips of the standing user proximate to the intertrochanterical masses, wherein said tailpieces (19', 19") extent preferably perpendicularly to said rod (18) and preferably have handgrips (20', 20") for an operator.

19. System as claimed in claim 17 or 18, wherein said second measurement means (12) comprise an inclinometer (24) with a base (25) designed to lay on the sacral plate of the user with the torso bent forward.

20. System as claimed in claim 1 9, wherein said inclinometer (24) is a digital-device and comprise a box-like casing (27) above said base (25) and enclosing an electronic card connected to a digital display (28) for displaying the inclination angle (a).

21 . System as claimed in claim 20, wherein said third measurement means (1 3) comprise a measuring ribbon (29) in a flexible material, housed in a compartment (30) of said box-like casing (27), said measuring ribbon (29) having a graduated scale for measuring the length of the peripheral extent of each thigh, and a free end with a calibrated dynamometer (31 ) for repeating said measurement with a predetermined tension.

22. System as claimed in claim 21 , wherein an accessory (32) adapted to be associated with said inclinometer (24) for adjusting the inclination of a saddle, wherein said accessory (32) comprises a rod (33) with an end cross piecet (34) adapted to be slidably housed in a central groove (35) of said base (25) and a pair of retractable tailpieces (36, 37) arranged symmetrically with respect to said rod (33) at predetermined distance corresponding to the width of the saddle in correspondence of the BRP®(Biomechanical Reference Point) point.

Description:
METHOD AND SYSTEM FOR OPTIMIZED SELECTION OF A BICYCLE SADDLE PARTAING TO A POPULATION OF DIFFERENT SADDLES

Field of the invention

The present invention generally finds application in the field of human body support devices, and particularly relates to a method of optimized selection of a bicycle saddle according to anthropometric data.

The invention also relates to a system for carrying out the above method using suitable devices and equipment.

Background art

A multiplicity of saddles are known to be commercially available, which differ in terms geometrical, structural and/or functional characteristics.

Therefore, it is important for a user to be able to select the most appropriate saddle based not only on preferred seating conditions, but also on his/her own anatomical and anthropometric characteristics, such that the saddle can ensure optimal comfort and achievement of the required performance.

A method of selecting an optimized saddle according to the anatomic characteristics of a particular user is known, for instance, from US 7,284,336.

In this known method, the sit-bone distance of each particular user, i.e. the distance between his/her ischial tuberosities, is determined for proper selection of a saddle having a rear portion of appropriate width, which ensures proper support also to heavy-set users.

Particularly, the sit-bone distance is measured by making the saddle user sit on a gel-padded cushion, such that his/her ischial tuberosities leave temporary impressions for such measurement.

Saddle width selection also depends on the preferred posture of the user as he/she rides, such that users having the same sit-bone distance but different postures, e.g. with a substantially straight or forward-leaning torso, may be associated with saddles of different widths.

The above prior art method did not prove to be fully satisfactory, as it considers limited anatomic characteristics and does not allow selection of saddles having additional anthropometrically optimized characteristics, other than the maximum width.

Furthermore, the selection of a maximum saddle width also according to the user-preferred riding posture has a poor scientific value, and is a merely empirical aspect, that does not change the comfort conditions provided by saddles with different widths.

Disclosure of the invention

A general object of the present invention is to solve the above technical problem, by providing a method for optimized selection of a bicycle saddle that is particularly suitable and effective in both anthropometric and functional terms.

A particular object is to provide a method for optimized selection of a bicycle saddle that allows a saddle or a group of saddles to be singled out from a relatively wide population of saddles, as having particular geometrical and/or functional features optimized according to a plurality of anatomical parameters of the user.

Another object of the present invention is to provide a method for optimized selection of one or more bicycle saddles that allows each user to be associated with the best available saddle, irrespective of the posture assumed by the user as he/she rides the bicycle.

A further object of the present invention is to provide a method for optimized selection of a bicycle saddle that ensures the best comfort and the best conditions to achieve high performance, for each particular user.

Yet another object of the invention is to provide a system for optimized anthropometric selection of a bicycle saddle that ensures the utmost accuracy and reliability.

Another object of the invention is to provide a system for optimized anthropometric selection of a bicycle saddle that is quick and easy to use, preferably by the user him/herself, without requiring the assistance of any external personnel.

These and other objects, as better explained hereafter, are fulfilled by a method for optimized anthropometric selection of a bicycle saddle according to the main claim. Thanks to this sequence of measurements, and to the combination of data with geometrical and/or functional characteristics of the saddle, it is possible to obtain optimal and accurate determination of the saddle having all the technical characteristics that ensure comfort, irrespective of the riding posture assumed by the user.

In a further aspect, the invention relates to a system for optimized anthropometric selection of a bicycle saddle as defined in the independent claim 1 7.

Brief description of the drawings

Further characteristics and advantages of the invention will be more apparent from the detailed description of a few preferred, non-exclusive embodiments of a method and a system for optimized selection of a bicycle saddle according to the invention, which are described as non-limiting examples with the help of the annexed drawings, in which:

FIG. 1 is a flow chart of a general implementation of the selection method of the invention;

FIG. 2 is a perspective view of a first embodiment of a selection system for carrying out the method of the invention;

FIG. 3 is a top view of the system of FIG. 2;

FIG. 4 is a front view of the system of FIG. 2;

FIG. 5 is a side view of the system of FIG. 2;

FIGS. 6 to 9 show various steps of the method that uses the system as shown in FIGS. 2 to 5;

FIG. 1 0 shows a flow chart of a particular implementation of the selection method of the invention;

FIG. 1 1 is a three-dimensional view of the set of physical elements corresponding to saddles that belong to a given initial population;

FIG. 1 2 is a plan view of a few saddles that belong to a set of physical elements that can be used for carrying out the method;

FIG. 1 3 is a flow diagram of the selection method as schematically shown in FIG. 1 0;

FIG. 14 is a general view of the system of the invention; FIG. 1 5 is a schematic perspective view of a first step for measuring a first characteristic of the method of FIG. 10;

FIG. 1 6 is a schematic perspective view of a second step for measuring a second characteristic of the method of FIG. 10;

FIG. 17 is a schematic perspective view of a third step for measuring a third characteristic of the method of FIG. 1 0;

FIG. 1 8 is a perspective view of a first detail of the system of Fig. 14 in two different operating positions;

FIG. 1 9 is an exploded perspective view of the detail of FIG. 1 8;

FIG. 20 is a perspective view of a second detail of the system of FIG.

14;

FIG. 21 is a partially exploded perspective view of the detail of FIG.

20;

FIG. 22 shows side and top views of a detail of the system of FIG. 14 in an operation sequence.

Detailed description of exemplary embodiments

FIG. 1 schematically shows a method for optimized selection of a bicycle saddle from a population P of different saddles, provided according to special geometrical and/or functional characteristics.

As used herein, the term "provided" and its derivatives means that the saddles have been previously prepared and may be physically available in a store or other business premises for immediate delivery to the user, or be simply offered in a catalogue, for delivery upon order.

As shown in FIG. 1 2, each saddle in the population P generally has a substantially rigid shell T with a pad, not shown, associated therewith, as well as a protective cover C defining a seating surface.

The shell T with the cover X defines a longitudinal axis L and has a typical plan shape defining an enlarged rear portion R at which the saddle has its maximum width and a tapered front portion F, or nose, of minimum width. The front portion F is connected to the rear portion R via a central connecting portion M having curved side edges W with outwardly facing concavities and a predetermined radius of curvature r. Furthermore, one or more saddles S, of the population P may have a hole H, at least at its central portion M, which extends through all the parts of the saddle S,, from the shell F to the cover C, or possibly a superficial hollow, whose known purpose is to reduce the pressure exerted by the saddle on the crotch of the user.

Bearing this in mind, the selection method of the invention comprises a preliminary step a) of providing a database B composed of a set Ω of physical elements, whose general element is generally referenced S,, corresponding to the different bicycle saddles of the population P.

The method includes a second step b) of subdividing the set Ω into subsets according to predetermined geometrical and/or functional characteristics. Conveniently, this subdividing step b) may be obtained by subdividing the set (Ω) into first subsets W-i , W 2 and second subsets F-i , F 2 according to the geometrical and/or functional characteristics of the saddle.

Particularly, the geometrical and/or functional features that are considered to partition the saddles S, of the database B into subsets W n , F n are at least the maximum width U ma x, the presence of holes and/or superficial hollows of the saddle and, if any, the dimension a of these holes and/or hollows and their plan shape.

The method includes a third step c) of collecting a plurality of anatomical parameters of the user, particularly at least a first anatomical value I and a second anatomical value a for determining respective data Di , D 2 .

In a simple implementation of the method, the first collected anatomical value I is the intratrochanteric distance of the user, that is the distance between the greater trochanters of each femur of the user.

This measurement was found to be strictly associated with the overall size of the pelvis, whereby as the intertrochanteric distance I increases, a saddle shall be provided in which the rear portion R, having the maximum width Umax has a relatively high value.

Therefore, the first numerical value D may be given by this measured distance I, whereby the first subset W-i , W 2 of physical elements will be represented by saddles Si having an optimized width U ma x according to the first value D-i.

The second anatomical parameter a collected at step c) will be the inclination angle of the sacral plate of the user, the second value D 2 being associated with such angle.

A peculiar feature of the invention is that the anatomical parameters are collected from a user in a standing position with straight legs, which means that no effort is required from the user, and that no particular bearing or support structure is needed.

The method further comprises a step d) of selecting one of said subsets W-i, W 2 ; F-i, F 2 from the set Ω provided at the start.

The selected subset comprises the saddles having a first characteristic optimized according to the corresponding values Di, D 2 ....

Conveniently, the selection step d) may include the selection of one of the first subsets W-i, W 2 having a first characteristic optimized according to the first value D and the selection of one of the second subsets F-i, F 2 having a second characteristic optimized according to the second value D 2 .

At the end of the steps a) to d), one or more saddles S, having geometrical and functional characteristics optimized for a particular user may be singled out from the initially provided set Ω.

Alternatively, the method may provide a group of different saddles, but having the above characteristics in common, which will give user a wider choice, also based on additional requirements such as cost or aesthetics.

FIGS. 6 to 9 show a first system 1 for the user to autonomously carry out the step c) of the method for optimized selection of a saddle, as described above. This first system 1 is particularly suitable for selecting a saddle for non-competitive sports and/or tourist and/or urban use, e.g. in trekking bikes and/or citybikes.

As shown in FIGS. 2 to 5, the system 1 comprises a structure consisting of a base or platform 2 in which two pairs of footprints or shapes 3, 4 are imprinted or applied to define the position of the user's feet during acquisition of the parameters I and a. A vertical plate 5 is fixed to the platform and has a pair of mirrors 6, 7 disposed at a minimum distance d m in from each other and with a vertical center line V.

The step c) of collecting the first anatomical parameter I may be performed by placing a standing user at a predetermined front distance dF from the pair of mirrors 6, 7 to detect the profile of his/her hips with respect to the mirrors 6, 7.

No reflection of the profile on the pair of mirrors 6, 7 corresponds to a first value D associated with one of the first subsets W-i, W 2 , i.e. a small size of the maximum width U ma x of the saddle.

Conversely, the reflection of the profile on the pair of mirrors 6, 7 corresponds to a first value D associated with the other of the first subsets W-i, W 2 , i.e. a large size of the maximum width U max of the saddle.

Experimental tests showed that, when the user is placed at a front distance dF of about 30 cm from the plate and the mirrors 6, 7 are at a minimum distance d m i n of about 24 cm from each other, the limit value of the intertrochanteric distance I that can generate a reflection is about 34 cm.

Therefore, if the intertrochanteric profile is not reflected by the mirrors 6, 7, then the first value Di associated with one of the first subsets W-i, W 2 corresponds to small size of the saddle.

If the intertrochanteric profile is reflected by the mirrors 6, 7, then the first value Di associated with the other of the first subsets W-i, W 2 corresponds to a large size of the saddle.

The system 1 further comprises an additional vertical panel 8 joined to the platform 2 and placed at the side of the plate 5. The panel 8 has a horizontal landmark 9 placed at a predetermined height hi from the ground.

The step c) of detecting the second anatomical parameter a may be obtained by having the user bent the torso with arms stretched downwards and placed the hand tips before the panel comprising the landmark 9.

Failed attainment of the horizontal landmark 9 by the user's hand tips determines the second value D 2 associated with one of the second subsets F-i , F 2 , corresponding to a saddle without holes and/or superficial hollows H.

Conversely, the attainment of the horizontal landmark 9 by the user's hand tips determines the second value D 2 associated with the other of the second subsets F-i , F 2 , corresponding to a saddle having holes and/or superficial hollows H.

Conveniently, the horizontal landmark 9 may be placed at a height from the ground hi of 20 cm or so.

FIG. 1 0 schematically shows a second method for optimized selection of a saddle from a population P of competition saddles.

In the step b) of the second method the set Ω is partitioned into first subsets Wi , W 2 , second subsets Fi , F 2 , F 3 and third subsets Qi , Q 2 according to geometrical and/or functional characteristics.

The step c) may include collection of a first anatomical parameter I of the user selected from the group comprising at least the intertrochanteric distance to obtain the first value D-i , a second anatomical parameter a of the user selected from the group comprising the inclination angle a of the sacral plate to obtain the second value D 2 and of a third anatomical parameter L m of the user selected from the group comprising the average length of the peripheral extent of the thighs to obtain a third value D 3 .

Conveniently, the selection step d) includes the selection of one of the first subsets W-i , W 2 having a first characteristic optimized according to the first value D-i , the selection of one of the second subsets F-i , F 2 , F 3 having a second characteristic optimized according to the second value D 2 , and the selection of one of the third subsets Qi , Q 2 having a characteristic optimized according to the third value D 3 .

Furthermore, the geometrical and/or functional characteristics that are considered to partition the saddles S, of the database B into subsets W n , F n , Q n are the maximum width U ma x, the presence of holes and/or superficial hollows H of the saddle S and, if any, their dimension a and their plan shape.

The third anatomical parameter L m may consist of the length of the average extent of the user's thighs as detected from the gluteal fold and the third subset Q n will comprise the saddles S 3 of the second selected subset F n , whose plan shape is optimized according to the third value D 3 .

Once again, all the anatomical parameters I, a, L m will be collected from the user in a standing position, or with his/her torso bending forward, depending on the parameter to be measured, but never in a sitting position.

The saddles of the third subset Q n from which selection may be made, may differ regarding one or more of the above mentioned geometrical and/or functional characteristics, but will not be excessively differentiated from one another, thereby allowing selection to be made from a wider range, while still allowing anthropometric selection of a saddle having optimized characteristics.

Pressure of the crotch on the saddle was experimentally found to be affected by different rotations of the pelvis in the sagittal plane and not by different inclinations of the torso, such pressure causing discomfort and even pain.

Therefore, the second selection method, as shown in FIG. 1 0, will measure pelvic anteversion from the Adams test position. This position allows the sacral plate to be exposed, allowing determination of its inclination, which strongly depends on the extension of ischiocrural muscles, i.e. the rear muscles of the thigh belonging to the rear muscle chain.

In a preferred embodiment of the method, the measured average length of the peripheral extent of the thigh will be related to the measured value of the intertrochanteric distance I that was previously detected for the same user using a predetermined formula or algorithm, to obtain an anatomical index XQ, which will allow optimal selection of the third subset Q n of saddles S 3 which, as mentioned above, may also consist of a single saddle.

Particularly, the anatomical index XQ is proportional to the ratio of the intertrochanteric distance I and the average length of the average extent of the thighs of the user, which is measured from the gluteal fold, less a corrective constant designed to account for the male and female anatomy.

The value of this index XQ may be used to select saddles having standard plan shapes or saddles having a narrow connecting portion M with concave side edges E and a sufficiently small maximum transverse width G, slightly greater than the maximum width of the means for connection of the saddle to the seat post, not shown, such that a narrow portion is defined at the user's thighs, for reducing compression and rubbing of the inner surface of the thighs against the lateral edges E and for allowing the rider's position to move toward smaller-width saddle portions, to facilitate extension of the thigh on the pelvis.

This will ensure contact of ischial tuberosities with the saddle pad, which is the maximum comfort area, where the saddle is larger and padded.

By way of example and without limitation, saddles may be as disclosed in the International patent WO201 201 0988. Saddles of this type are particularly suitable for users having a relatively great average length of the thigh extent with respect to their build, and hence a lower anatomical index XQ, for whom a standard-profile saddle would cause excessive rubbing of the interior of the thigh and restrict the extension of the thigh from the pelvis.

Conversely, narrow-profile saddles will increase both comfort and pedaling performance even for users with a small anatomical index XQ who might need a saddle with a relatively small maximum width U ma x-

FIG. 1 1 schematically shows a matrix or diagram of three-dimensional distribution of the database B of physical elements of the saddles that have been provided, as belonging to the population P.

The set Ω may define a matrix that can be represented as a three- dimensional diagram having said anatomical parameters I, a, L m , as coordinate axes, as schematically shown in FIG. 1 1 .

For example, the set may be partitioned into two first subsets W-i, W 2 according to the maximum width value U ma x that can be detected at the wider rear portion W. One of these first subsets, referenced Wi comprises saddles Si having a smaller maximum width U max than that of the other first subset W 2 , which will include saddles S, having maximum widths U max in a range of relatively high values.

Preferably, there may be a first subset Wi having saddles S, with a maximum width of a predetermined smaller value, for example substantially close to 1 30 mm, whereas the other first subset W 2 will comprise saddles having a maximum width U ma x of a predetermined greater value, for example substantially close to 140 mm.

The saddles S, of the first subset with the smaller maximum width value Wi are deemed to be optimized for users having an intertrochanteric distance I smaller than a predetermined reference value, i.e. substantially ranging from 310 mm to 350 mm, preferably from 330 mm to 340 mm, and more preferably of about 336 mm.

The saddles S, of the first subset W 2 with the greater maximum width value Um a x are deemed to be optimized for users having an intertrochanteric distance I greater than said reference value.

It shall be understood that more than the two first subsets with different maximum widths U max of the saddles may be defined in the set Ω, to improve the optimization degree.

Each of the first subsets Wi, W 2 may have two or more second subsets F-i, F 2 , F 3 , ... defined therein, differing in the presence and/or dimension a of a hole H or a superficial hollow of the saddle.

For example, each of the first subsets Wi, W 2 may comprise three second subsets Fi, F 2 , F 3 , one Fi comprising saddles S, without holes and/or hollows H, another F 2 comprising saddles S, with a hole H having a relatively small plan dimension a, and the last F 3 comprising saddles S, with a hole H having a relatively large plan dimension.

The saddles S, with no hole H are particularly suitable for users for whom the detected angle of rotation a is smaller than a predetermined minimum value, e.g. ranging from 40 ° to 55 °, preferably from 45 ° to 52 ° and more preferably substantially of about 49 °.

The saddles S, with a hole or superficial hollow H having a relatively small dimension a are particularly suitable for users for whom the detected angle of rotation a ranges from the above mentioned predetermined minimum value and a predetermined maximum value, e.g. from 55 ° to 75 °, preferably from 60 ° to 70 ° and more preferably substantially of about 67 °.

The saddles S, with a hole or superficial hollow H having a relatively large dimension a are particularly suitable for users for whom the detected rotation angle a is greater than said predetermined maximum value.

Thus, a user, either a man or a woman, having a high inclination angle a of the sacral plate, involving the risk of excessive compression exerted on the crotch, will tend to select a saddle S, having a relatively large hole H, ensuring the presence of an appropriately sized area where no compression is exerted on the crotch.

Finally, each of the second subsets F-i , F 2 , F 3 may have two or more third subsets Qi , Q2,... defined therein, differing in the plan shape of the saddles.

For example, two third subsets Qi , Q2, may be defined, one of which

Qi comprises standard-profile saddles S,, whereas the other third subset Q 2 will comprise narrow-profile saddles S,.

Standard-profile saddles S, are deemed to be optimal for a user having an anatomical index XQ that is higher than a predetermined reference value XQ r , e.g. ranging from 3 to 4, preferably from 3.5 to 3.8 and more preferably of about 3.72.

Narrow-profile saddles S, are deemed to be optimal for a user having an anatomical index XQ that is lower than said reference value.

In each subset, saddles may be further differentiated according to further geometrical and/or functional characteristics.

For example, each saddle S, may be associated with a parameter C t adapted to assess its comfort degree, which may result from the combination of multiple physical, i.e. either chemical or mechanical properties, in either static or dynamic conditions.

For example, a parameter C t may be established as a function of bending strength at three points, expressed as N, resulting from a 5 mm displacement imparted at the point BRP®, substantially coinciding with the axial position of the saddle in which its width is about 70 mm, of the thickness of the finished saddle pad coinciding with the ischial region, i.e. the rear portion designed for buttock support, and of the finished saddle density or hardness of the pad, as measured with a Shore LX-C durometer, at the ischial tuberosity support points. FIG. 1 3 shows a flow chart of a method of the invention, with the saddles arranged in subsets, according to the three-dimensional diagram of FIG. 1 1 .

Nevertheless, it will be appreciated that the set Ω may be also organized otherwise than as described above, and two or more first subsets Fi, F 2 , F 3 may be provided, differing in the hole H or two or more first subsets Q-i, Q 2 may be provided, mutually differing in their plan shape. Thus, the second and third subsets will differ in another of the remaining characteristics, according to a different combination.

As a result, the first anatomical parameter to be measured may be the inclination angle a of the sacral plate, i.e. the average length L m of the peripheral extent of the thigh, instead of the intertrochanteric distance.

The second and third parameters may consist of any other of the remaining anatomical parameters, according to any possible detection sequence.

FIG. 14 shows a second system 1 0 for implementing the step c) of the method as shown in FIG. 1 0.

Particularly, FIGS. 15 to 17 show certain exemplary and non-limiting operating modes of the present invention, for detection of the anatomical parameters I, a, L m respectively.

The second system 10 essentially comprises first measuring means 1 1 for detecting the first value Di indicative of the intertrochanteric distance I on a standing user, second measuring means 1 2 for detecting the second value D 2 indicative of the inclination angle a of the sacral plate in the sagittal plane of the user standing with his/her torso leaning forward, and third measuring means 1 2 for detecting a third value D 3 indicative of the length L m of the average extent of the user's thighs, as measured in the standing position.

Converter means 14 are also provided, such as transducers for conversion of said first, second and third values Di, D 2 , D 3 into a digital format.

The system is complemented by processing means, such as conventional desktop or laptop PCs, i.e. a dedicated computer containing a microprocessor, one or more RAM and/or mass memory units and I/O interface means and an operating system, such as Windows® or Linux®.

Particularly, the memory units 15 may store both the database B of a set Ω of physical elements S, corresponding to bicycle saddles having different geometrical and/or functional characteristics, and the values D-i , D 2 , D 3 .

A program may be installed in the microprocessor 16, to process such digitized values Di, D 2 , D 3 , thereby also allowing calculation of the above described anatomical index XQ, and automatic anthropometric selection of the user-optimized saddle from the database B.

As better shown in FIG. 14, the first measuring means 1 1 may include a gauge device 17 having a graduated rod 18 with end tailpieces 19', 19" being slidingly mounted thereto, for abutment against the hips of the standing user, at the trochanteric masses.

Preferably, the end tailpieces 19', 19" extend perpendicular to the rod 18 and have handgrips 20', 20" for an operator.

In practice, the gauge device 17 is substantially C shaped for partially encircling the user and detecting the intertrochanteric distance I.

The two tailpieces 19', 19" have a curved free end 21 ', 21 " which is designed to abut the trochanteric masses and allow the distance I to be directly read on the graduated scale 22 associated with the rod 18 at a specially provided index. For this purpose, one of the two sliding tailpieces 19' may be equipped with a reading window 23 having such index.

FIGS. 20 to 21 are more detailed views of an inclinometer device 24 that is part of the second measuring means 12 and is adapted to detect the inclination angle a of the sacral plate of the user.

Particularly, the inclinometer 24 comprises a base 25 which is designed to lay on the sacral plate of the user and a sensitive element for measuring the inclination angle a, not shown.

Conveniently, the base 25 is associated to indicator means 26 that show the detected measurement which, in a preferred, non-limiting configuration of the present invention, may be of digital type.

For example, the inclinometer 24 comprises a box-like casing 27 mounted above the base 25 and having an electronic card, not shown, therein, connected to a digital display 28 for displaying the detected inclination angle a.

The third measuring means 1 3 may include a flexible measuring ribbon 29 or any other similar measuring instrument, having a graduated scale, not necessarily with the International System scale, which is adapted to encircle the user's thigh and measure the length of its peripheral extent in the desired area.

Advantageously, the measuring ribbon 29 may be housed in a compartment 30 of the box-like casing 27 of the inclinometer 24, such that it may be unwound by overcoming the force of elastic return means, and may have a calibrated dynamometer 31 for measuring with at a predetermined constant and repeatable tension.

In a particularly advantageous aspect, the invention provides an accessory 32 adapted to be associated with the inclinometer 24 and to measure the inclination of a saddle S for adjustment thereof.

Particularly, the accessory 32 comprises a rod 33 with an end crosspiece 34, adapted to be slidingly received in a lower central groove 35 formed in the base 25 of the inclinometer 24.

Thus, the rod 33 will have three distinct support points, allowing the accessory 32 to be used on any kind of saddle, even on saddles having a seating surface with particularly deep concavities and hollows.

The rod 33 comprises a pair of retractable tailpieces 36, 37 symmetrically arranged with respect to the rod 33.

The rod 33 is designed to be laid on the top surface C of a saddle S, with the tailpieces 36, 37 designed to abut the side edges E of the saddle proximate to its narrow section M.

Preferably, in the operating extracted position of the two tailpieces, the latter have a predetermined transverse distance therebetween of about 70 mm, thereby defining a 70 mm-width area in the saddle, which corresponds to the BRP point {Biomechianical Reference Point) required for the above mentioned comfort index determining test.

Furthermore, the tailpieces 36, 37 are configured to prevent insertion of the rod 33 when the tailpieces 36, 37 are in the retracted position, thereby preventing the use of the inclinometer 24 for measuring the inclination of the saddle S when the inclinometer 24 itself is in a configuration adapted for measurement of the inclination angle a of the sacral plate.

Advantageously, the measuring ribbon 29 that is housed in the compartment 30 of the box-like enclosure 27 may be used, if required, to measure the distance of the saddle S from the handlebar, at the same time as the inclination of the saddle S is being measured

Therefore, the accessory 32 associated with the inclinometer 24 and with the measuring ribbon 29 is a multifunctional instrument that allows both anthropometric selection of the best saddle for a user and achievement of an optimal adjustment of the angular position of the saddle and its longitudinal position with respect to the frame of the bicycle.

Finally, the gauge device 1 7 may be used for to measure the width of the user's shoulders, to also afford optimal selection of a handlebar from a number of handlebars having different widths.

Therefore, the system so configured is a multifunctional system that allows customization of the saddle and most of the bicycle frame, thereby providing an anthropometrically optimized bicycle.

The method and system of the invention are susceptible to a number of changes or variants, within the inventive concept disclosed in the appended claims. All the details thereof may be replaced by other technically equivalent parts, and the materials may vary depending on different needs, without departure from the scope of the invention.

For example, all the above described measuring means 1 1 , 1 2, 1 3 may be replaced by other means allowing the required measurements to be made, and may be of either analog or digital type, possibly of electronic or laser measurement type, or the like.

While the method and system have been described with particular reference to the accompanying figures, the numerals referred to in the disclosure and claims are only used for the sake of a better intelligibility of the invention and shall not be intended to limit the claimed scope in any manner.