Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND COMPOSITIONS FOR REDUCING GENETIC LIBRARY CONTAMINATION
Document Type and Number:
WIPO Patent Application WO/2014/028778
Kind Code:
A1
Abstract:
Embodiments include methods, compositions, and kits for creating genetic libraries useful for massively parallel genetic sequencing. Some embodiments are directed to methods of preventing the contamination of genetic libraries with material generated during the formation of other genetic libraries. In some embodiments, the methods employ adapters comprising universal priming sites. The methods can employ non-ligatable primers to generate non-ligatable amplification products so as to prevent unwanted ligation to adapters. In some embodiments, the non-ligatable primers contain uracil. Genetic material can be treated with uracil N glycosylase to prevent the unwanted ligation of uracil containing amplicons to adapters used for creating a second genetic library.

Inventors:
PROSEN DENNIS (US)
BANER JOHAN (SE)
HUNKAPILLER NATHAN (US)
HILL MATTHEW (US)
ZIMMERMANN BERNHARD (US)
Application Number:
PCT/US2013/055205
Publication Date:
February 20, 2014
Filing Date:
August 15, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NATERA INC (US)
International Classes:
C40B40/06; C07H21/04; C12P19/34; C40B30/04; C40B40/08
Other References:
ILLUMINA, INC., PAIRED-END SAMPLE PREPARATION GUIDE (1005063 REV. E)., February 2011 (2011-02-01), pages 3, XP055233466
VARLEY, KE ET AL.: "Nested Patch PCR Enables Highly Multiplexed Mutation Discovery", CANDIDATE GENES., 10 October 2008 (2008-10-10), pages 1845, XP002678933
HARISMENDY, O ET AL., METHOD FOR IMPROVING SEQUENCE COVERAGE UNIFORMITY OF TARGETED GENOMIC INTERVALS AMPLIFIED BY LR-PCR USING ILLUMINA GA SEQUENCING-BY-SYNTHESIS TECHNOLOGY., vol. 46, March 2009 (2009-03-01), pages 229 - 31, XP002748639
LO, YM.: "Non-Invasive Prenatal Diagnosis By Massively Parallel Sequencing Of Maternal Plasma", DNA., vol. 206, no. 4, June 2012 (2012-06-01), pages 269 - 120086, XP055078941
BENTLEY, DR ET AL.: "Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry.", NATURE., vol. 456, no. 6, 6 November 2008 (2008-11-06), pages 53 - 59, XP055233478
See also references of EP 2885445A4
Attorney, Agent or Firm:
BORTNER, Scott, R et al. (Inc.201 Industrial Road, Suite 41, San Carlos California, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method of making a genetic library comprising:

ligating a set of universal adapters to nucleic acid fragments in a sample preparation, the universal adapters having a first universal primer binding site and a second universal primer binding site;

amplifying a subset of the adapter modified nucleic acid fragments, wherein the amplification step comprises adding a primers capable of binding to the first universal binding site, and a plurality of different target-specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable primers whereby a set of partially selected amplicons are formed; and

amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding site, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable primers, whereby a set of non-ligatable amplification products are formed.

2. The method of claim 1 wherein the set of non-ligatable amplification products are sequenced in a massively parallel DNA sequencer.

3. The method of claim 1 wherein the primer capable of binding to the first universal priming site comprises a barcode sequence.

4. The method of claim 1 wherein the primer capable of binding to the first universal priming site is blocked at the 5' terminus. 5. The method of claim 1 wherein the nucleic acids are obtained from the blood of pregnant female.

6. The method of claim 1 wherein the target regions comprise a polymorphic region.

7. The method of claim 6 wherein the polymorphic region is a SNP.

8. The method of claim 1 wherein at least 1000 target specific primers are added.

9. The method of claim 1 wherein the universal adapters are Y- shaped adapters. 10. The method of claim 1 wherein the non-ligatable primer binding to the first universal primer site or the second universal primer site comprise a uracil.

1 1. A genetic library made by the methods of claims 1-10.

12. A method of making a genetic library comprising:

providing a genetic library comprising a plurality of amplified target regions having a first end and a second end, wherein a first universal priming site is joined to the first end and a second universal priming site is joined to the second end; and

amplifying the genetic library with a non-ligatable primer specific for the first universal priming site and a non-ligatable primer specific for the second universal priming site. 13. The method of claim 12 wherein the set of non-ligatable amplification products are sequenced in a massively parallel DNA sequencer.

14. The method of claim 12 wherein the primer capable of binding to the first universal priming site comprises a barcode sequence.

15. The method of claim 12 wherein the primer capable of binding to the first universal priming site is blocked at the 5' terminus.

16. The method of claim 12 wherein the nucleic acids are obtained from the blood of pregnant female.

17. The method of claim 12 wherein the target regions comprise a polymorphic region.

18. The method of claim 17 wherein the polymorphic region is a

SNP. 19. The method of claim 12 wherein at least 1000 target specific primers are added.

20. The method of claim 12 wherein the non-ligatable primer binding to the first universal primer site or the second universal primer site comprise a uracil.

21 A genetic library made by the methods of claims 12-20.

22. A method of making a genetic library comprising:

ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter having a first universal primer binding site and a second universal primer binding site;

amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable, whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primer capable of binding to the second universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable, whereby a set of non-ligatable amplification products are formed.

23. The method of claim 22 wherein the set of non-ligatable amplification products are sequenced in a massively parallel DNA sequencer.

24. The method of claim 22 wherein the primer capable of binding to the first universal priming site comprises a barcode sequence.

25. The method of claim 22 wherein the primer capable of binding to the first universal priming site is blocked at the 5' terminus.

26. The method of claim 22 wherein the nucleic acids are obtained from the blood of pregnant female.

27. The method of claim 22 wherein the target regions comprise a polymorphic region.

28. The method of claim 27 wherein the polymorphic region is a

SNP.

29. The method of claim 22 wherein at least 1000 target specific primers are added.

30. The method of claim 22 wherein the universal adapters are Y- shaped adapters.

31. The method of claim 22 wherein the non-ligatable primer binding to the first universal primer site or the second universal primer site comprise a uracil.

32. A genetic library made by the methods of claims 22-31.

33. A method of making a genetic library comprising:

ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter have a first universal primer binding site and a second universal primer binding site;

amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target-specific primers, whereby a set of partially selected amplicons are formed;

amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding site, and a plurality of different target-specific primers, whereby a set of selected amplicons is formed; and

amplifying the set of selected amplicons with primers specific for universal binding sites, wherein the primers are non-ligatable primers, whereby a set of non-ligatable amplicons are produced.

34. The method of claim 33 wherein the set of non-ligatable amplification products are sequenced in a massively parallel DNA sequencer.

35. The method of claim 33 wherein the primer capable of binding to the first universal priming site comprises a barcode sequence.

36. The method of claim 33, wherein the primer capable of binding to the first universal priming site is blocked at the 5' terminus. 37. The method of claim 33 wherein the nucleic acids are obtained from the blood of pregnant female.

38. The method of claim 33 wherein the target regions comprise a polymorphic region.

39. The method of claim 38 wherein the polymorphic region is a

SNP.

40. The method of claim 33 wherein at least 1000 target specific primers are added.

41. The method of claim 33 wherein the universal adapters are Y- shaped adapters.

42. The method of claim 33 wherein the non-ligatable primer binding to the first universal primer site or the second universal primer site comprise a uracil.

43. A genetic library made by the methods of claims 33-42.

44. A genetic library comprising a plurality of amplicons having 2 non-ligatable termini, wherein each amplicon comprises a polymorphic locus.

45. The genetic library of claim 44, wherein each amplicon comprises a universal priming site suitable for use with a clonal amplification procedure.

46. The genetic library of claim 44, wherein the genetic library comprises polymorphisms from at least 100 genetic loci.

47. The genetic library of claim 44, wherein the genetic library comprises polymorphisms from at least 1000 genetic loci. 48. The genetic library of claim 44, wherein the genetic library comprises polymorphisms from at least 5000 genetic loci.

49. The genetic library of claim 44, wherein the genetic library comprises polymorphisms from at least 10000 genetic loci.

47. The genetic library of claim 44, wherein the amplicons are derived from a genetic composition comprising a mixture of maternal and fetal DNA

44. A kit for making a genetic library comprising:

adapters comprising a first universal priming site and a second universal priming site;

a non-ligatable primer specific for the first universal priming site; and a non-ligatable primer specific for the second universal priming site.

45. The kit of claim 44 wherein the primer capable of binding to the first universal priming,

46. The kit of claim 44 wherein the universal adapters are Y-shaped adapters.

47. The kit of claim 44 wherein the non-ligatable primer binding to the first universal primer site or the second universal primer site comprise a uracil.

Description:
METHODS AND COMPOSITIONS FOR REDUCING GENETIC LIBRARY CONTAMINATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from US provisional patent application 61/683,331 filed August 15, 2012 and US provisional patent application 61/790,222 filed March 15, 2013, which are hereby incorporated by reference in their entirety.

FIELD

The application is in the field of molecular biology for the production of genetic libraries for sequencing.

BACKGROUND

In complex molecular biology procedures for manipulating or analyzing nucleic acids, it is important to prevent contamination from extraneous nucleic acids. This need to prevent contamination is particularly important for diagnostics assays producing information that is used to make clinical decisions. One example of a potential contamination problem relates to the generation of genetic libraries in which adapters are ligated on to nucleic acid fragments that are subsequently amplified in one or more amplification reactions, e.g., PCR. The amplification products can then be sequenced, e.g., in a massively parallel DNA sequencer. PCR products from one library generation procedure could accidently be subjected to adapter ligation and be erroneously incorporated into another library. This problem is particularly troublesome given the large amount of amplification that can take place during library generation.

SUMMARY

Methods and compositions for reducing genetic library contamination are disclosed herein.

According to aspects illustrated herein, there is disclosed a method of making a genetic library that includes ligating a set of 2 universal adapters to nucleic acid fragments in a sample preparation, the universal adapters having a first universal primer binding region on the first adapter and a second universal primer binding region on the second adapter; amplifying a subset of the adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable primers, whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable primers, whereby a set of non-ligatable amplification products are formed.

According to aspects illustrated herein, there is disclosed a method of making a genetic library that includes providing a genetic library comprising a plurality of amplified target regions having a first end and a second end, wherein a first universal priming site is joined to the first end and a second universal priming site is joined to the second end; and amplifying the genetic library with a non-ligatable primer specific for the first universal priming site and a non- ligatable primer specific for the second universal priming site.

According to aspects illustrated herein, there is disclosed a method of making a genetic library that includes ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter having a first universal primer binding region and a second universal primer binding region, respectively; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target- specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable, whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primer capable of binding to the second universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable, whereby a set of non-ligatable amplification products are formed.

According to aspects illustrated herein, there is disclosed a method of making a genetic library that includes ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter have a first universal primer binding region and a second universal primer binding region; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target-specific primers, whereby a set of partially selected amplicons are formed; amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding region, and a plurality of different target-specific primers, whereby a set of selected amplicons is formed; and amplifying the set of selected amplicons with primers specific for universal binding sites, wherein the primers are non-ligatable primers, whereby a set of non-ligatable amplicons are produced.

According to aspects illustrated herein, there is disclosed a kit for making a genetic library that includes adapters comprising a first universal priming site and a second universal priming site; a non-ligatable primer specific for the first universal priming site; and a non- ligatable primer specific for the second universal priming site. BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments. FIG. 1 : Graphical representation of direct multiplexed mini-PCR method. FIG. 2: Graphical representation of semi-nested mini-PCR method. FIG. 3 : Graphical representation of fully nested mini-PCR method. FIG. 4: Graphical representation of hemi-nested mini-PCR method. FIG. 5: Graphical representation of triply hemi-nested mini-PCR method. FIG. 6: Graphical representation of one-sided nested mini-PCR method. FIG. 7: Graphical representation of one-sided mini-PCR method.

FIG. 8: Graphical representation of reverse semi-nested mini-PCR method.

FIG. 9: Some possible workflows for semi-nested methods.

FIG. 10: Graphical representation of looped ligation adaptors.

FIG. 1 1 : Graphical representation of internally tagged primers.

FIG. 12: An example of some primers with internal tags.

FIG. 13 : Graphical representation of a method using primers with a ligation adaptor binding region.

FIG. 14 is a diagram showing the amplification of a nucleic acid fragment joined to two universal adapters 2 with a pair of non-ligatable primers 1 hybridized to universal binding regions 4 in the universal adapters. The primer arrow is used to indicate the direction of primer extension (5' to 3').

FIG. 15 is a diagram showing the amplification of a nucleic acid fragment joined to two universal adapters 2 with ligatable primers 5 hybridized to universal binding regions 4 in the universal adapters 2, followed by amplification with a pair of non-ligatable primers 1 hybridized to universal binding regions 4 in the universal adapters 2. The primer arrow is used to indicate the direction of primer extension (5' to 3').

FIG. 16 is a diagram showing the amplification of a nucleic acid fragment 3 joined to two universal adapters 2 with a non-ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 1 and a target specific primer (non-ligatable) 6 hybridized to a nucleic acid fragment 3, followed by amplification with a non- ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 2 and a target specific primer (non-ligatable) 6 hybridized to a nucleic acid fragment 1. The primer arrow is used to indicate the direction of primer extension (5' to 3'). FIG. 17 is a diagram showing the amplification of a nucleic acid fragment joined to two universal adapters 2 with ligatable primers 5 hybridized to universal binding regions 4in the universal adapters 2, followed by amplification with a non-ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 2 and a target specific primer 6 (non-ligatable) hybridized to a nucleic acid fragment 3, followed by amplification with a non- ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 2 and a target specific primer 6 (non-ligatable) hybridized to a nucleic acid fragment 3. The primer arrow is used to indicate the direction of primer extension (5' to 3')·

FIG. 18 is a diagram showing the amplification of a nucleic acid fragment 3 joined to two universal adapters 2 with non-ligatable primers 1 hybridized to universal binding regions 4 in the universal adapters 2, followed by amplification with a non- ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 2 and a target specific primer 6(non-ligatable) hybridized to a nucleic acid fragment 3, followed by amplification with a non- ligatable primer 1 hybridized to a universal binding region 4 in a universal adapter 1 and a target specific primer 6 (non-ligatable) hybridized to a nucleic acid fragment 3. The primer arrow is used to indicate the direction of primer extension (5' to 3')·

FIG. 19 is a diagram showing the amplification of a nucleic acid fragment joined to two universal adapters 2 with non-ligatable primers hybridized to the universal primer binding regions 4 on the universal adapters2. The first primer 7 comprises a barcode sequence 8, an additional region non- complementary to the adapter 9, and a region complementary to a universal primer binding region 10; the second primer 12 comprises a region non- complementary to the adapter 11 and a region complementary to a universal primer binding region 4. The primer arrow is used to indicate the direction of primer extension (5' to 3').

FIG. 20 is a diagram showing the amplification of a nucleic acid fragment joined to two universal adapters 2 with a pair of non-ligatable primers 1 hybridized to universal binding regions 4 in the universal adapters. Another amplification is performed on the firs amplification products with two non- ligatable primers wherein, the first primer 7 comprises a barcode sequence 8, an additional region non-complementary to the adapter 9, and a region

complementary to a universal primer binding region 10; the second primer 12 comprises a region non-complementary to the adapter 1 1 and a region complementary to a universal primer binding region 4. The primer arrow is used to indicate the direction of primer extension (5' to 3 ').

While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.

DETAILED DESCRIPTION

The presently disclosed embodiments include methods and compositions for making a genetic library. In various embodiments of the subject methods, non-ligatable primers are employed to reduce contamination or the potential for contamination of genetic libraries. The library can be in a form suitable of use with a massively parallel DNA sequencer. The specific embodiment of the library may be selected so as to be compatible with a specific commercially available DNA sequencer. For example, the HiSeq® system (Illumina) and the Ion Torrent® System (Life Technologies) utilize clonal amplification procedures that require the addition of universal priming sites to facilitate clonal amplification and sequencing primer binding. The subject methods can employ adapters compatible for use with such clonal amplification systems. One type of such genetic library comprises amplicons derived from a plurality of target regions of the genome (for example, regions of the genome comprising polymorphisms of interest). In some embodiments, the library comprises a plurality of amplicons derived from targeted regions of the genome, wherein the amplicons are not ligatable (or only partially ligatable) to the adapters used in the initial steps of library formation, thereby preventing the accidental ligation of amplicons generated for one library to adapters used for the creation of another library. If the library is not ligatable to the adapters, then contamination is prevented. If the library is only partially ligatable, e.g., only one universal priming site strand of the adapter can be joined to the library component, then subsequent amplification of contaminants will be linear (not exponential) and thus greatly reduced. Non-ligatable primers can be used in one or more amplification reactions used to prepare the genetic library prior to sequencing. It will readily be appreciated the person skilled in the art that the methods and compositions provided herein can be readily combined in numerous way that are not explicitly exemplified. It will also be appreciated that the subject methods and compositions can be adapted to practice with the methods an compositions described in US patent application 13/683,604 (published application

20130123120A1), titled "Highly Multiplex PCR Methods and Compositions", which is herein incorporated by reference.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding regions, the primer binding regions are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters, thereby positioning the nucleic acid fragment between two universal priming regions. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified fragments are then amplified with a set of primers, wherein at least one of the primers is a non-ligatable primer. In some embodiments, both of the primers are non-ligatable primers.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding regions, the primer binding regions are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified fragments may then be optionally amplified with primers specific for the universal priming sites (a pre-amplification step). The adapter modified fragments (or amplification products thereof) are then amplified with a set of primers, wherein at least one of the primers is a non-ligatable primer. In some embodiments, both of the primers are non-ligatable primers. One of the primers hybridizes to a universal priming site present on an adapter and the other primer is a target specific primer. The target specific primers can in some embodiments be ligatable primers, in other embodiments be non-ligatable primers, and in other embodiments a mixture of ligatable and non-ligatable primers. This semi-nested amplification results in the amplification of a subset of the adapter-modified nucleic acid fragments, i.e., a set of partially selected amplicons is produced. The set of partially selected amplicons is then amplified using a universal primer that is a non-ligatable primer and a second set of target specific primers. The second set of target specific primers can in some embodiments be ligatable primers, in other embodiments be non-ligatable primers, and in other embodiments a mixture of ligatable and non-ligatable primers. The combination of the two sets of target specific primers results in the generation of targeted amplicons that comprise universal priming sites useful for sequencing (e.g., clonal amplification or the annealing of sequencing primers) and having non- ligatable termini.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding regions, the primer binding regions are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified primers may then be optionally amplified with primers specific for the universal priming sites (a pre-amplification step). The adapter-modified fragments (or amplification products thereof) are then amplified with a set of primers. One of the primers in the set hybridizes to a universal priming site present on an adapter and the other primer is a target specific primer. This semi- nested amplification results in the amplification of a subset of the adapter- modified nucleic acid fragments, i.e., a set of partially selected amplicons is produced. The set of partially selected amplicons is then amplified using a universal primer and a second set of target specific primers. The combination of the two sets of target specific primers results in the generation of targeted amplicons that comprise universal priming sites. The target specific amplicons can then be further amplified with a pair of non-ligatable primers specific for the universal priming sites introduced by the adapters. Either one or both of these non-ligatable primers can comprise a barcoding sequence and sequences specific for the universal priming sites introduced by the adapters. Multiple barcoded target-specific amplicons with non-ligatable termini are produced.

An oligonucleotide primer that is blocked for ligation (also referred to as a non-ligatable primer) cannot be ligated to a second oligonucleotide in ligase- mediated reaction. T4 ligase is the most commonly used ligase for ligation reactions. In most case an oligonucleotide that is blocked for ligation with respect to a T4 will be blocked for ligation with respect to other ligases. Non- ligatable primers for use in the subject methods are extendable by a DNA polymerase, i.e., the oligonucleotide can function as a primer. Suitable non- ligatable primers for use in the subject methods, when extended by a DNA polymerase produce extension products that are also non- ligatable. The non- ligatable is defined as non-ligatable with respect to adapters used in generation of the library for use in subsequent sequencing or other forms of genetic analysis. Thus a non-ligatable primer (and extension products thereof) can be non-ligatable with respect to one adapter, but not another.

A ligase mediated reaction requires a free 5' phosphate on a first oligonucleotide and a free 3 ' hydroxyl at a second oligonucleotide, hybridized at adjacent positions on polynucleotide template. Some embodiments employ non- ligatable oligonucleotide primers. In some embodiments the structure of the 5' terminus phosphate or regions of the oligonucleotide near the 5' terminus can be modified so as to prevent the primer from participating in a ligation reaction. In some embodiments, the non-ligatable primers employed in the subject methods and compositions are blocked for ligation at the 5' terminus. In general, the form that ligation blocking modification of the oligonucleotides takes will be a function of the specific embodiment of the ligation reaction that is to be blocked. In other embodiments, the non-ligatable primers are modified so as comprise adducts that sterically hinder a ligation reaction. In other embodiments, the oligonucleotides may be chimeric molecules that comprise nucleotide analogs of naturally occurring bases or backbone, wherein the modifications interfere with ligation reactions. A ligation blocked primer (a non-ligatable primer) can be incapable of ligation at only one its two termini, thus the oligonucleotide may be capable of participating in a ligation reaction at the other terminus. In some embodiments, the non-ligatable primer will be missing a 5' phosphate group. In some embodiments, the non-ligatable primer will contain additional moieties at or near the 5' terminus, wherein the moiety serves to render the oligonucleotide non- ligatable. Oligonucleotides containing such modifications are commercially available. Examples of such moieties include 5' adenylation, 5' amino modifier CI 2, 5' amino modifier C6,5' amino modifier C6 dT, 5' azide (NHS Ester), 5' Biotin, 5' Biotin (azide), 5' biotin dT,5' biotin-TEG, 5' desthiobiotin-TEG, 5' digoxigenin (NHS Ester), 5' dithiol, 5' dual biotin, 5' hexynyl, 5' I-Linker 1.2, 5' PC biotin, 5' thiol modifier C6 S-S, 5' uni-link™ amino modifier, 5' C3 spacer,5' C3 spacer, 5' dspacer,5' PC spacer,5' spacer 18,5' spacer 9,5' 2'-fluoro A,5' 2'- fluoro C,5' 2'-fluoro G,5' 2'-fluoro U, 5' 2, 6-diaminopurine,5' 2-aminopurine,5' 5-bromo dU,5' 5-hydroxymethyl dC, 5' 5-methyl dC,5' 5-nitroindole, 5' deoxylnosine, 5' deoxyUridine, 5' inverted dideoxy-T, 5' isodC,5' isodG. It is a simple matter for person of ordinary skill in the art of molecular biology to test whether or not a given modification will have the desired degree of ligation blocked by testing a modified oligonucleotide (or extension product thereof) for its ability to be ligated to the adapter of interest. Ligation (or the absence thereof) cam readily be detected by gel electrophoresis, mass spectroscopy, or other well-known analytical techniques.

In some embodiments, the non-ligatable primers comprise abasic regions (lacking nucleotide bases). The absence of such bases can render non-ligatable the amplicons generated using such non-ligatable primers because the inability to replicate the sequence during amplification will result in the formation of amplicons not suitable for ligation to the adapters used in library generation.

In various embodiments of the non-ligatable primers, it may be useful to incorporate one of more exonuclease-resistant phosphate analogs to modify the phosphate backbone of the non- ligatable primer. Since it possible, under some conditions, for an exonuclease to partially digest a non-ligatable primer so as to render the primer ligatable, it is of interest to introduce the property of exonuclease resistance into the primer. Examples of such exonuclease resistant analogs include thiophosphates.

The terms non-ligatable primers and primers not capable of ligation also include oligonucleotides that are initially capable of being ligated, but can be modified (enzymatically or chemically) after a primer extension reaction so as to render the primers substantially incapable of being ligated. For example, such primers are initially capable of being ligated, but incorporate nucleotides that can are easily degraded (for the sake of convenience, referred to herein as degradable non-ligatable primers). In some embodiments, the degradation will be by means of an enzyme-mediated reaction. In other embodiments, the degradation will be by means of a chemical reaction that is not facilitated by an enzyme. For example, in some embodiments, a non-ligatable primer can comprise the nucleotide base uracil (one or more uracils, in sequence or scattered throughout the primer), thus rendering the oligonucleotide susceptible to degradation by the enzyme uracil N glycosylase (UNG). Information about using UNG can be found in US Patent 5,035,996. While methods such as those describe in US Patent 5,035,996 necessarily employ a PCR step include uracil triphosphate nucleotides, the subject methods do not require such a step. In the presently disclosed embodiments employing uracil containing non-ligatable primers (or other degradable nucleotides), the use of UNG (or another enzyme capable of degrading the specific degradable nucleotides selected).

The term "non-ligatable amplification product" refers to amplicons that lack termini capable of being ligated to the universal adapters used in the subject methods. Non-ligatable amplification products can be generated by PCR using non-ligatable primers.

The target specific primer pairs can be designed to target regions of the genome that comprise polymorphisms. A plurality of primers pairs may be used with each other in multiplexed PCR amplifications. The primer pairs can be selected so as to minimize the potential for the primers to bind to each other. The primer sets can be split into 2 pools, with one primer from each pair going into the 2 pools. The separate pools then may each separately be used in each of the two separate amplification procedures, each separate amplification reaction employing semi-nested PCR with a combination of target-specific primers and universal primers.

A universal adapter is an oligonucleotide adapter that can be ligated onto a polynucleotide fragment for analysis to as to facilitate the amplification of the fragment with primers in an amplification reaction, The universal adapter is double- stranded oligonucleotide capable of be ligated to the nucleic acid fragments for analysis. Universal adapters may contain a complementary region (forming a hybridized double- stranded region) and a non-complementary region (single- stranded). The universal adapter may be "Y" shaped (see for example, US Patent 6,346,399, US Patent 7,741,463, US Patent application US

2007/0172839A1, and PCT patent publication WO 2007/1 1 1937 Al), comprising non-self-complementary single-stranded regions, in addition to single- stranded regions, such adapters comprise a double-stranded region suitable for ligation to double-stranded nucleic acid fragments for analysis. Universal primer binding regions may be located in the single-stranded section, the double-stranded section, or a combination of both sections in embodiments of adapters having complementary and non-complementary regions.

In some embodiments the adapters may comprise a blunt end for ligation.

In some embodiments the adapters may comprise a sticky end for ligation. In some embodiments, the sticky end may comprise a 5' thymidine base overhang for use in TA cloning of sample fragments that have been modified on the 3' terminus with an added adenine (e.g., by Klenow or Taq). The universal adapters comprise a primer binding site. In embodiments employing "Y" shaped adapters, the primer binding site can be on the non-self-complementary regions.

The term "massively parallel sequencing" refers to high throughput next- generation sequencing such as those employed in MySeq (llumina), HiSeq (Illumina), Ion Torrent (Life Technologies), Genome Analyzer IIx (Illumina), GS Flex+ (Roche 454), and the like.

The term "fragment" as used herein with respect to nucleic acid, polynucleotides, genetic material, and the like is used to indicate that the genetic material is of size that permits amplification or other forms of genetic analysis. Such material can be isolated directed from the sources, and does not necessarily require an additional fragmentation step such a sonication or nuclease digestion. The term "nucleic acid fragment" is a polynucleotide.

The term "target-specific primer" refers to an oligonucleotide primer that can specifically hybridize to a preselected region of the genome. In some embodiments, the target-specific primer can additionally hybridize to a portion of one of the adapter sequences that is adjacent to the nucleic acid fragment (from the sample) that is ligated between the two adapters.

The term "partially selected" as used herein refers to the amplicons produced by an amplification process that employs one target specific primer and one primer specific for a universal priming site.

Target specific primers are oligonucleotide primers complementary to region of interest on a nucleic acid target. In some embodiments, target specific primers are complementary to genomic regions near polymorphism so as to provide for the production of amplicons comprising the polymorphism of interest. Examples of such polymorphisms include SNPs, insertions, deletions, repeats, and the like. The target specific primer is capable of specifically hybridizing to a pre-selected region of the sample nucleic acid fragment located between the universal adapters that have been ligated to. In some embodiments, the target specific primer can bind to both the sample nucleic acid fragment and an adjacent region of a joined adapter, e.g., a universal primer binding region.

A subset (i.e., a selected portion) of the nucleic acid fragments that have been ligated to the universal adapters can be amplified using with a pair of amplification primers. In some embodiments a target specific primer is used in combination a primer that binds to a universal priming site. Amplifications employing a target specific primer used in combination with a primer that binds to a universal priming site can be referred to, for the sake of convenience, as partially selective amplification (essentially semi-nested PCR). A plurality of different target specific primers can be used in combination with a single universal primer so as to provide for multiplexation. In some embodiments, between 1 and 5 target specific primers are used in combination. In some embodiments, between 1 and 10 target specific primers are used in combination. In some embodiments, between 10 and 100 target specific primers are used in combination. In some embodiments, between 100 and 500 target specific primers are used in combination. In some embodiments, between 500 and 1000 target specific primers are used in combination. In some embodiments, between 1000 and 5000 target specific primers are used in combination. In some embodiments, between 5000 and 10,000 target specific primers are used in combination. In some embodiments, between 10,000 and 20,000 target specific primers are used in combination. In some embodiments, over 20,000 target specific primers are used in combination.

The term "barcode" as used herein refers to a polynucleotide sequence that is used to identify a sample. By making use of barcodes multiple samples from different sources can be simultaneously analyzed on the same instrument, e.g., a DNA sequencer. Barcodes differ in nucleic acid sequence from one another. The barcode can be correlated with the sample source during library generation so as to provide for sample identification. For example, a genetic sample from a first patient can be amplified with a set of 10,000 different primer pairs, each containing barcode A and a genetic sample from a second patient can be amplified with a set of the same 10000 primer pair, each containing barcode B. The am licons are then mixed together and read on the same run of a massively parallel DNA sequencer; the identity of the patients can be determined by using the known correlation with the barcodes. Examples of barcodes can be found, among other places in WO 201 1/071923 A2; WO 2008/093098 A2; US 2006/0073506 Al .

The DNA that is inserted into the subject libraries can come from a variety of sources. The sources may be genomic DNA or cDNA. The DNA source may be human or non-human. The DNA source may be plant or animal. One source of interest is fetal DNA of from the blood the blood of a pregnant human female. DNA sample obtained from the blood of a pregnant human female, such sample can comprise a mixture of fetal DNA and maternal DNA. Such DNA samples form the blood of pregnant women may be analyzed for genetic abnormalities, including aneuploidy in the fetus present in the pregnant woman. Examples of genetic analysis techniques for fetal DNA obtained from maternal blood can be found in US patent applications US 201 1/0288780 Al, US 201 1/0178719 Al, and US 2012/0100548 Al.

The presently disclosed embodiments also include libraries made by the subject methods. The presently disclosed embodiments also include kits for performing the subject methods. The kits comprise ligation blocked primers and optionally other reagents necessary for carrying out the subject methods. Kit components include, but are not limited to, one or more of the following adapters, ligation blocked universal primers, target specific primers, enzymes. Kits can include instructions for carrying out the subject methods. Kits can also contain the reagents in pre-measured amounts to facilitate the performing of the subject methods.

One embodiment of a method of making a genetic library includes ligating a set of universal adapters to nucleic acid fragments in a sample preparation, the universal adapters having a first universal primer binding region on the first universal adapter and a second universal primer binding region on the second universal adapter; amplifying a subset of the adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target- specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable primers whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable primers, whereby a set of non-ligatable amplification products are formed.

Another embodiment of a method of making a genetic library includes providing a genetic library comprising a plurality of amplified target regions having a first end and a second end, wherein a first universal priming site is joined to the first end and a second universal priming site is joined to the second end; and amplifying the genetic library with a non-ligatable primer specific for the first universal priming site and a non-ligatable primer specific for the second universal priming site.

Another embodiment of a method of a making a genetic library includes ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter having a first universal primer binding region and a second universal primer binding region, respectively; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre- amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable, whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primer capable of binding to the second universal binding region, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable, whereby a set of non-ligatable amplification products are formed.

A method of making a genetic library includes ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter have a first universal primer binding region and a second universal primer binding region; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding region, and a plurality of different target- specific primers, whereby a set of partially selected amplicons are formed; amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding region, and a plurality of different target-specific primers, whereby a set of selected amplicons is formed; and amplifying the set of selected amplicons with primers specific for universal binding sites, wherein the primers are non-ligatable primers, whereby a set of non-ligatable amplicons are produced.

A kit for making a genetic library includes adapters comprising a first universal priming site and a second universal priming site; a non-ligatable primer specific for the first universal priming site; and a non-ligatable primer specific for the second universal priming site.

Various embodiments of the subject invention can be better understood by referring to the following outline of all patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. It will be appreciated that several of the above- disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or application.

The following is from the text of US provisional patent application 61/790,222 filed March 15, 2013. Definitions

Single Nucleotide Polymorphism (SNP) refers to a single nucleotide that may differ between the genomes of two members of the same species. The usage of the term should not imply any limit on the frequency with which each variant occurs.

Sequence refers to a DNA sequence or a genetic sequence. It may refer to the primary, physical structure of the DNA molecule or strand in an individual. It may refer to the sequence of nucleotides found in that DNA molecule, or the complementary strand to the DNA molecule. It may refer to the information contained in the DNA molecule as its representation in silico.

Locus refers to a particular region of interest on the DNA of an individual, which may refer to a SNP, the site of a possible insertion or deletion, or the site of some other relevant genetic variation. Disease-linked SNPs may also refer to disease-linked loci.

Polymorphic Allele, also "Polymorphic Locus " refers to an allele or locus where the genotype varies between individuals within a given species. Some examples of polymorphic alleles include single nucleotide

polymorphisms, short tandem repeats, deletions, duplications, and inversions.

Polymorphic Site refers to the specific nucleotides found in a polymorphic

region that vary between individuals.

Allele refers to the genes that occupy a particular locus.

Genetic Data also "Genotypic Data" refers to the data describing aspects of the genome of one or more individuals. It may refer to one or a set of loci, partial or entire sequences, partial or entire chromosomes, or the entire genome. It may refer to the identity of one or a plurality of nucleotides; it may refer to a set of sequential nucleotides, or nucleotides from different locations in the genome, or a combination thereof. Genotypic data is typically in silico, however, it is also possible to consider physical nucleotides in a sequence as chemically encoded genetic data. Genotypic Data may be said to be "on," "of," "at," "from" or "on" the individual(s). Genotypic Data may refer to output measurements from a genotyping platform where those measurements are made on genetic material.

Genetic Material also "Genetic Sample" refers to physical matter, such as tissue or blood, from one or more individuals comprising DNA or RNA

Noisy Genetic Data refers to genetic data with any of the following: allele

dropouts, uncertain base pair measurements, incorrect base pair measurements, missing base pair measurements, uncertain measurements of insertions or deletions, uncertain measurements of chromosome segment copy numbers, spurious signals, missing measurements, other errors, or combinations thereof. Confidence refers to the statistical likelihood that the called SNP, allele, set of alleles, ploidy call, or determined number of chromosome segment copies correctly represents the real genetic state of the individual.

Ploidy Calling, also "Chromosome Copy Number Calling," or "Copy Number Calling" (CNC), may refer to the act of determining the quantity and/or chromosomal identity of one or more chromosomes present in a cell.

Aneuploidy refers to the state where the wrong number of chromosomes (e.g., the wrong number of full chromosomes or the wrong number of chromosome segments, such as the presence of deletions or duplications of a chromosome segment) is present in a cell. In the case of a somatic human cell it may refer to the case where a cell does not contain 22 pairs of autosomal chromosomes and one pair of sex chromosomes. In the case of a human gamete, it may refer to the case where a cell does not contain one of each of the 23 chromosomes. In the case of a single chromosome type, it may refer to the case where more or less than two homologous but non-identical chromosome copies are present, or where there are two chromosome copies present that originate from the same parent. In some embodiments, the deletion of a chromosome segment is a microdeletion.

Ploidy State refers to the quantity and/or chromosomal identity of one or more chromosomes types in a cell.

Chromosome may refer to a single chromosome copy, meaning a single

molecule of DNA of which there are 46 in a normal somatic cell; an example is 'the maternally derived chromosome 18'. Chromosome may also refer to a chromosome type, of which there are 23 in a normal human somatic cell; an example is 'chromosome 18'.

Chromosomal Identity may refer to the referent chromosome number, i.e. the chromosome type. Normal humans have 22 types of numbered autosomal chromosome types, and two types of sex chromosomes. It may also refer to the parental origin of the chromosome. It may also refer to a specific chromosome inherited from the parent. It may also refer to other identifying features of a chromosome.

The State of the Genetic Material or simply "Genetic State" may refer to the identity of a set of SNPs on the DNA, to the phased haplotypes of the genetic material, and to the sequence of the DNA, including insertions, deletions, repeats and mutations. It may also refer to the ploidy state of one or more chromosomes, chromosomal segments, or set of chromosomal segments.

Allelic Data refers to a set of genotypic data concerning a set of one or more alleles. It may refer to the phased, haplotypic data. It may refer to SNP identities, and it may refer to the sequence data of the DNA, including insertions, deletions, repeats and mutations. It may include the parental origin of each allele.

Allelic State refers to the actual state of the genes in a set of one or more alleles.

It may refer to the actual state of the genes described by the allelic data.

Allelic Ratio or allele ratio, refers to the ratio between the amount of each allele at a locus that is present in a sample or in an individual. When the sample was measured by sequencing, the allelic ratio may refer to the ratio of sequence reads that map to each allele at the locus. When the sample was measured by an intensity based measurement method, the allele ratio may refer to the ratio of the amounts of each allele present at that locus as estimated by the measurement method.

Allele Count refers to the number of sequences that map to a particular locus, and if that locus is polymorphic, it refers to the number of sequences that map to each of the alleles. If each allele is counted in a binary fashion, then the allele count will be whole number. If the alleles are counted probabilistically, then the allele count can be a fractional number.

Allele Count Probability refers to the number of sequences that are likely to map to a particular locus or a set of alleles at a polymorphic locus, combined with the probability of the mapping. Note that allele counts are equivalent to allele count probabilities where the probability of the mapping for each counted sequence is binary (zero or one). In some embodiments, the allele count probabilities may be binary. In some embodiments, the allele count probabilities may be set to be equal to the DNA measurements.

Allelic Distribution, or 'allele count distribution' refers to the relative amount of each allele that is present for each locus in a set of loci. An allelic distribution can refer to an individual, to a sample, or to a set of measurements made on a sample. In the context of sequencing, the allelic distribution refers to the number or probable number of reads that map to a particular allele for each allele in a set of polymorphic loci. The allele measurements may be treated probabilistically, that is, the likelihood that a given allele is present for a give sequence read is a fraction between 0 and 1 , or they may be treated in a binary fashion, that is, any given read is considered to be exactly zero or one copies of a particular allele.

Allelic Distribution Pattern refers to a set of different allele distributions for different parental contexts. Certain allelic distribution patterns may be indicative of certain ploidy states.

Allelic Bias refers to the degree to which the measured ratio of alleles at a

heterozygous locus is different to the ratio that was present in the original sample of DNA. The degree of allelic bias at a particular locus is equal to the observed allelelic ratio at that locus, as measured, divided by the ratio of alleles in the original DNA sample at that locus. Allelic bias may be defined to be greater than one, such that if the calculation of the degree of allelic bias returns a value, x, that is less than 1 , then the degree of allelic bias may be restated as 1/x. Allelic bias maybe due to

amplification bias, purification bias, or some other phenomenon that affects different alleles differently.

Primer, also "PCR probe" refers to a single DNA molecule (a DNA oligomer) or a collection of DNA molecules (DNA oligomers) where the DNA molecules are identical, or nearly so, and where the primer contains a region that is designed to hybridize to a targeted locus (e.g., a targeted polymorphic locus or a nonpolymorphic locus), and may contain a priming sequence designed to allow PCR amplification. A primer may also contain a molecular barcode. A primer may contain a random region that differs for each individual molecule. The terms "test primer" and "candidate primer" are not meant to be limiting and may refer to any of the primers disclosed herein.

Library of primers refers to a population of two or more primers. In various embodiments, the library includes at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers. In various embodiments, the library includes at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer where each pair of test primers hybridize to a target locus. In some

embodiments, the library of primers includes at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different individual primers that each hybridize to a different target locus, wherein the individual primers are not part of primer pairs. In some embodiments, the library has both (i) primer pairs and (ii) individual primers (such as universal primers) that are not part of primer pairs.

Hybrid Capture Probe refers to any nucleic acid sequence, possibly modified, that is generated by various methods such as PCR or direct synthesis and intended to be complementary to one strand of a specific target DNA sequence in a sample. The exogenous hybrid capture probes may be added to a prepared sample and hybridized through a deanture- reannealing process to form duplexes of exogenous-endogenous fragments. These duplexes may then be physically separated from the sample by various means.

Sequence Read refers to data representing a sequence of nucleotide bases that were measured using a clonal sequencing method. Clonal sequencing may produce sequence data representing single, or clones, or clusters of one original DNA molecule. A sequence read may also have associated quality score at each base position of the sequence indicating the probability that nucleotide has been called correctly.

Mapping a sequence read is the process of determining a sequence read's

location of origin in the genome sequence of a particular organism. The location of origin of sequence reads is based on similarity of nucleotide sequence of the read and the genome sequence.

Matched Copy Error, also "Matching Chromosome Aneuploidy" (MCA), refers to a state of aneuploidy where one cell contains two identical or nearly identical chromosomes. This type of aneuploidy may arise during the formation of the gametes in meiosis, and may be referred to as a meiotic non-disjunction error. This type of error may arise in mitosis. Matching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are identical.

Unmatched Copy Error, also "Unique Chromosome Aneuploidy" (UCA), refers to a state of aneuploidy where one cell contains two chromosomes that are from the same parent, and that may be homologous but not identical. This type of aneuploidy may arise during meiosis, and may be referred to as a meiotic error. Unmatching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are from the same parent, and are homologous, but are not identical. Note that unmatching trisomy may refer to the case where two homologous chromosomes from one parent are present, and where some segments of the chromosomes are identical while other segments are merely homologous.

Homologous Chromosomes refers to chromosome copies that contain the same set of genes that normally pair up during meiosis.

Identical Chromosomes refers to chromosome copies that contain the same set of genes, and for each gene they have the same set of alleles that are identical, or nearly identical.

Allele Drop Out (ADO) refers to the situation where at least one of the base pairs in a set of base pairs from homologous chromosomes at a given allele is not detected.

Locus Drop Out (LDO) refers to the situation where both base pairs in a set of base pairs from homologous chromosomes at a given allele are not detected.

Homozygous refers to having similar alleles as corresponding chromosomal loci. Heterozygous refers to having dissimilar alleles as corresponding chromosomal loci.

Heterozygosity Rate refers to the rate of individuals in the population having heterozygous alleles at a given locus. The heterozygosity rate may also refer to the expected or measured ratio of alleles, at a given locus in an individual, or a sample of DNA.

Highly Informative Single Nucleotide Polymorphism (HISNP) refers to a SNP where the fetus has an allele that is not present in the mother's genotype. Chromosomal Region refers to a segment of a chromosome, or a full chromosome.

Segment of a Chromosome refers to a section of a chromosome that can range in size from one base pair to the entire chromosome.

Chromosome refers to either a full chromosome, or a segment or section of a chromosome.

Copies refers to the number of copies of a chromosome segment. It may refer to identical copies, or to non-identical, homologous copies of a

chromosome segment wherein the different copies of the chromosome segment contain a substantially similar set of loci, and where one or more of the alleles are different. Note that in some cases of aneuploidy, such as the M2 copy error, it is possible to have some copies of the given chromosome segment that are identical as well as some copies of the same chromosome segment that are not identical.

Haplotype refers to a combination of alleles at multiple loci that are typically inherited together on the same chromosome. Haplotype may refer to as few as two loci or to an entire chromosome depending on the number of recombination events that have occurred between a given set of loci. Haplotype can also refer to a set of single nucleotide polymorphisms (SNPs) on a single chromatid that are statistically associated.

Haplotypic Data, also "Phased Data" or "Ordered Genetic Data," refers to data from a single chromosome in a diploid or polyploid genome, i.e., either the segregated maternal or paternal copy of a chromosome in a diploid genome.

Phasing refers to the act of determining the haplotypic genetic data of an

individual given unordered, diploid (or polyploidy) genetic data. It may refer to the act of determining which of two genes at an allele, for a set of alleles found on one chromosome, are associated with each of the two homologous chromosomes in an individual.

Phased Data refers to genetic data where one or more haplotypes have been determined.

Hypothesis refers to a possible ploidy state at a given set of chromosomes, or a set of possible allelic states at a given set of loci. The set of possibilities may comprise one or more elements. Copy Number Hypothesis, also "Ploidy State Hypothesis " refers to a hypothesis concerning the number of copies of a chromosome in an individual. It may also refer to a hypothesis concerning the identity of each of the chromosomes, including the parent of origin of each chromosome, and which of the parent's two chromosomes are present in the individual. It may also refer to a hypothesis concerning which chromosomes, or chromosome segments, if any, from a related individual correspond genetically to a given chromosome from an individual.

Target Individual refers to the individual whose genetic state is being

determined. In some embodiments, only a limited amount of DNA is available from the target individual. In some embodiments, the target individual is a fetus. In some embodiments, there may be more than one target individual. In some embodiments, each fetus that originated from a pair of parents may be considered to be target individuals. In some embodiments, the genetic data that is being determined is one or a set of allele calls. In some embodiments, the genetic data that is being determined is a ploidy call.

Related Individual refers to any individual who is genetically related to, and thus shares haplotype blocks with, the target individual. In one context, the related individual may be a genetic parent of the target individual, or any genetic material derived from a parent, such as a sperm, a polar body, an embryo, a fetus, or a child. It may also refer to a sibling, parent or a grandparent.

Sibling refers to any individual whose genetic parents are the same as the

individual in question. In some embodiments, it may refer to a born child, an embryo, or a fetus, or one or more cells originating from a born child, an embryo, or a fetus. A sibling may also refer to a haploid individual that originates from one of the parents, such as a sperm, a polar body, or any other set of haplotypic genetic matter. An individual may be considered to be a sibling of itself.

Fetal refers to "of the fetus," or "of the region of the placenta that is genetically similar to the fetus". In a pregnant woman, some portion of the placenta is genetically similar to the fetus, and the free floating fetal DNA found in maternal blood may have originated from the portion of the placenta with a genotype that matches the fetus. Note that the genetic information in half of the chromosomes in a fetus is inherited from the mother of the fetus. In some embodiments, the DNA from these maternally inherited chromosomes that came from a fetal cell is considered to be "of fetal origin," not "of maternal origin."

DNA of Fetal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the fetus.

DNA of Maternal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the mother.

Child may refer to an embryo, a blastomere, or a fetus. Note that in the presently disclosed embodiments, the concepts described apply equally well to individuals who are a born child, a fetus, an embryo or a set of cells therefrom. The use of the term child may simply be meant to connote that the individual referred to as the child is the genetic offspring of the parents.

Parent refers to the genetic mother or father of an individual. An individual typically has two parents, a mother and a father, though this may not necessarily be the case such as in genetic or chromosomal chimerism. A parent may be considered to be an individual.

Parental Context refers to the genetic state of a given SNP, on each of the two relevant chromosomes for one or both of the two parents of the target.

Develop As Desired, also "Develop Normally " refers to a viable embryo

implanting in a uterus and resulting in a pregnancy, and/or to a pregnancy continuing and resulting in a live birth, and/or to a born child being free of chromosomal abnormalities, and/or to a born child being free of other undesired genetic conditions such as disease-linked genes. The term "develop as desired" is meant to encompass anything that may be desired by parents or healthcare facilitators. In some cases, "develop as desired" may refer to an unviable or viable embryo that is useful for medical research or other purposes.

Insertion into a Uterus refers to the process of transferring an embryo into the uterine cavity in the context of in vitro fertilization.

Maternal Plasma refers to the plasma portion of the blood from a female who is pregnant. Clinical Decision refers to any decision to take or not take an action that has an outcome that affects the health or survival of an individual. In the context of prenatal diagnosis, a clinical decision may refer to a decision to abort or not abort a fetus. A clinical decision may also refer to a decision to conduct further testing, to take actions to mitigate an undesirable phenotype, or to take actions to prepare for the birth of a child with abnormalities.

Diagnostic Box refers to one or a combination of machines designed to perform one or a plurality of aspects of the methods disclosed herein. In an embodiment, the diagnostic box may be placed at a point of patient care. In an embodiment, the diagnostic box may perform targeted

amplification followed by sequencing. In an embodiment the diagnostic box may function alone or with the help of a technician.

Informatics Based Method refers to a method that relies heavily on statistics to make sense of a large amount of data. In the context of prenatal diagnosis, it refers to a method designed to determine the ploidy state at one or more chromosomes or the allelic state at one or more alleles by statistically inferring the most likely state, rather than by directly physically measuring the state, given a large amount of genetic data, for example from a molecular array or sequencing. In an embodiment of the present disclosure, the informatics based technique may be one disclosed in this patent. In an embodiment of the present disclosure it may be PARENTAL SUPPORTTM.

Primary Genetic Data refers to the analog intensity signals that are output by a genotyping platform. In the context of SNP arrays, primary genetic data refers to the intensity signals before any genotype calling has been done. In the context of sequencing, primary genetic data refers to the analog measurements, analogous to the chromatogram, that comes off the sequencer before the identity of any base pairs have been determined, and before the sequence has been mapped to the genome.

Secondary Genetic Data refers to processed genetic data that are output by a genotyping platform. In the context of a SNP array, the secondary genetic data refers to the allele calls made by software associated with the SNP array reader, wherein the software has made a call whether a given allele is present or not present in the sample. In the context of sequencing, the secondary genetic data refers to the base pair identities of the sequences have been determined, and possibly also where the sequences have been mapped to the genome.

Non-Invasive Prenatal Diagnosis (NPD), or also "Non-Invasive Prenatal

Screening" (NPS), refers to a method of determining the genetic state of a fetus that is gestating in a mother using genetic material found in the mother's blood, where the genetic material is obtained by drawing the mother's intravenous blood.

Preferential Enrichment of DNA that corresponds to a locus, or preferential enrichment of DNA at a locus, refers to any method that results in the percentage of molecules of DNA in a post-enrichment DNA mixture that correspond to the locus being higher than the percentage of molecules of DNA in the pre-enrichment DNA mixture that correspond to the locus. The method may involve selective amplification of DNA molecules that correspond to a locus. The method may involve removing DNA molecules that do not correspond to the locus. The method may involve a combination of methods. The degree of enrichment is defined as the percentage of molecules of DNA in the post-enrichment mixture that correspond to the locus divided by the percentage of molecules of DNA in the pre-enrichment mixture that correspond to the locus. Preferential enrichment may be carried out at a plurality of loci. In some

embodiments of the present disclosure, the degree of enrichment is greater than 20. In some embodiments of the present disclosure, the degree of enrichment is greater than 200. In some embodiments of the present disclosure, the degree of enrichment is greater than 2,000. When preferential enrichment is carried out at a plurality of loci, the degree of enrichment may refer to the average degree of enrichment of all of the loci in the set of loci.

Amplification refers to a method that increases the number of copies of a

molecule of DNA.

Selective Amplification may refer to a method that increases the number of copies of a particular molecule of DNA, or molecules of DNA that correspond to a particular region of DNA. It may also refer to a method that increases the number of copies of a particular targeted molecule of DNA, or targeted region of DNA more than it increases non-targeted molecules or regions of DNA. Selective amplification may be a method of preferential enrichment.

Universal Priming Sequence refers to a DNA sequence that may be appended to a population of target DNA molecules, for example by ligation, PCR, or ligation mediated PCR. Once added to the population of target molecules, primers specific to the universal priming sequences can be used to amplify the target population using a single pair of amplification primers. Universal priming sequences are typically not related to the target sequences.

Universal Adapters, or 'ligation adaptors' or 'library tags' are DNA molecules containing a universal priming sequence that can be covalently linked to the 5-prime and 3-prime end of a population of target double stranded DNA molecules. The addition of the adapters provides universal priming sequences to the 5-prime and 3-prime end of the target population from which PCR amplification can take place, amplifying all molecules from the target population, using a single pair of amplification primers.

Targeting refers to a method used to selectively amplify or otherwise

preferentially enrich those molecules of DNA that correspond to a set of loci, in a mixture of DNA.

Joint Distribution Model refers to a model that defines the probability of events defined in terms of multiple random variables, given a plurality of random variables defined on the same probability space, where the probabilities of the variable are linked. In some embodiments, the degenerate case where the probabilities of the variables are not linked may be used.

The presently disclosed embodiments include methods and compositions for making a genetic library. In various embodiments of the subject methods and compositions, non-ligatable primers are employed to reduce contamination of libraries or reduce the potential for library contamination. Embodiments of the provided genetic libraries have non-ligatable termini, thereby reducing the possibility of such library components from being unintentionally incorporated into other genetic libraries. The library can be in a form suitable for use with a massively parallel DNA sequencer. The specific embodiment of the library may be selected so as to be compatible with a specific commercially available DNA sequencer. For example, the HiSeq® system (Illumina) and the Ion Torrent® System (Life Technologies) utilize clonal amplification procedures that require the addition of universal priming sites to facilitate clonal amplification and sequencing primer binding. The subject methods can employ adapters compatible for use with such clonal amplification systems, e.g., bridge PCR, emulsion PCR, polonies, and the like. One type of such genetic library comprises amplicons derived from a plurality of target regions of the genome (for example, regions of the genome comprising polymorphisms of interest). In some embodiments, the library comprises a plurality of amplicons derived from targeted regions of the genome, wherein the amplicons are not ligatable (or only partially ligatable) to the adapters used in the initial steps of library formation, thereby preventing the accidental ligation of amplicons generated for one library to adapters used for the creation of another library. If the library is not ligatable to the adapters, then contamination is prevented. If the library is only partially ligatable, e.g., only one universal priming site strand of the adapter can be joined to the library component, then subsequent amplification of contaminants will be linear (not exponential) and thus greatly reduced.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding sites, the primer binding sites are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified fragments are then amplified with a set of primers, wherein at least one of the primers is a non-ligatable primer. In some embodiments, both of the primers are non-ligatable primers.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding sites, the primer binding sites are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified primers may then be optionally amplified with primers specific for the universal priming sites (a pre-amplification step). The adapter modified fragments (or amplification products thereof) are then amplified with a set of primers, wherein at least one of the primers is a non-ligatable primer. In some embodiments, both of the primers are non-ligatable primers. One of the primers hybridizes to a universal priming site present on an adapter and the other primer is a target specific primer. The target specific primers can in some embodiments be ligatable primers, in other embodiments be non-ligatable primers, and in other embodiments a mixture of ligatable and non-ligatable primers. This semi-nested amplification results in the amplification of a subset of the adapter-modified nucleic acid fragments, i.e., a set of partially selected amplicons is produced.

The set of partially selected amplicons is then amplified using a universal primer that is a non-ligatable primer and a second set of target specific primers. The second set of target specific primers can in some embodiments be ligatable primers, in other embodiments be non-ligatable primers, and in other embodiments a mixture of ligatable and non-ligatable primers. The combination of the two sets of target specific primers results in the generation of targeted amplicons that comprise universal priming sites useful for sequencing (e.g., clonal amplification or the annealing of sequencing primers) and having non- ligatable termini.

In some embodiments, nucleic acid fragments are ligated to a pair of adapters containing universal primer binding sites, the primer binding sites are oriented so as to enable the amplification of the nucleic acid fragments located between the adapters. The adapters are joined to both ends of the nucleic acid fragments. The adapters may be the same or different than each other. The adapter modified primers may then be optionally amplified with a primer pair specific for the universal priming sites (a pre-amplification step). The adapter modified fragments (or amplification products thereof) are then amplified with a set of primers. One of the primers in the second set hybridizes to a universal priming site present on an adapter and the other primer is a target specific primer. This semi-nested amplification results in the amplification of a subset of the adapter-modified nucleic acid fragments, i.e., a set of partially selected amplicons is produced. The set of partially selected amplicons is then amplified using a universal primer and a second set of target specific primers. The combination of the two sets of target specific primers results in the generation of targeted amplicons that comprise universal priming sites. The target specific amplicons can then be further amplified with a pair of non-ligatable primers specific for the universal priming sites introduced by the adapters. Either one or both of these non-ligatable primers can comprise a barcoding sequence

(sometime referred to as an index sequence) and sequences specific for the universal priming sites introduced by the adapters. Multiple barcoded target- specific amplicons with non-ligatable termini are produced. Barcode regions can be located so as to be amplified in amplification reactions employing pairs of universal primers or universal primers used in conjunction with target-specific primers. In some embodiments, barcode sequences are present in adapters. I some embodiments, barcode sequences are present in primers. The primers that contain barcode sequences can be non-ligatable primers or ligatable primers. The primers containing barcode sequences can be universal primers or target- specific primers. In some embodiments of the invention, barcode sequence are added by primers that are used to add universal priming sites that are used to enable clonal amplification.

Embodiments of the invention in which only the primers that bind to universal binding sites are non-ligatable primers can be advantageous because non-ligatable primers are typically more expensive to make or buy than conventional primers. Removing the need to make many sequence-specific non- ligatable primers can significantly reduce costs.

An oligonucleotide primer that is blocked for ligation (also referred to as a non-ligatable primer) cannot be ligated to a second oligonucleotide in ligase- mediated reaction at a significant rate. T4 DNA ligase is the most commonly used ligase for ligation reactions. In most case an oligonucleotide that is blocked for ligation with respect to a T4 will be blocked for ligation with respect to other ligases. Non- ligatable primer for use in the subject methods are extendable by a DNA polymerase, i.e., the oligonucleotide can function as a primer. Suitable non-ligatable primers for use in the subject methods, when extended by a DNA polymerase produce extension products that are also non- ligatable. A non- ligatable primer is defined as non-ligatable with respect to the adapters used in generation of the library for use in subsequent sequencing or other forms of genetic analysis. Thus a non-ligatable primer (and extension products thereof) can be non-ligatable with respect to one type of adapter, but not another type. A ligase mediated reaction requires a free 5' phosphate on a first oligonucleotide and a free 3 ' hydroxyl at a second oligonucleotide, hybridized at adjacent positions on a polynucleotide template. In some embodiments the structure of the 5' terminus phosphate or regions of the oligonucleotide near the 5' terminus can be modified so as to prevent the primer from participating in a ligation reaction. In some embodiments, the non-ligatable primers employed in the subject methods and compositions are blocked for ligation at the 5' terminus. In general, the form that ligation blocking modification of the oligonucleotides takes will be a function of the specific embodiment of the ligation reaction that is to be blocked. In other embodiments the non-ligatable primers are modified so as comprise adducts that sterically hinder a ligation reaction. In other embodiments, the oligonucleotides may be chimeric molecules that comprise nucleotide analogs of naturally occurring bases or backbone, wherein the modifications interfere with ligation reactions. A ligation blocked primer (a non- ligatable primer) can be incapable of ligation at only one its two termini, thus the oligonucleotide may be capable of participating in a ligation reaction at the other terminus. In some embodiments, the non-ligatable primer will be missing a 5' phosphate group. In some embodiments, the non-ligatable primer will contain additional moieties at or near the 5' terminus, wherein the moiety serves to render the oligonucleotide non- ligatable. Oligonucleotides containing such modifications are commercially available. Examples of such moieties include 5' adenylation, 5' amino modifier CI 2, 5' amino modifier C6,5' amino modifier C6 dT, 5' azide (NHS Ester), 5' Biotin, 5' Biotin (azide), 5' biotin dT,5' biotin-TEG, 5' desthiobiotin-TEG, 5' digoxigenin (NHS Ester), 5' dithiol, 5' dual biotin, 5' hexynyl, 5' I-Linker 1.2, 5' PC biotin, 5' thiol modifier C6 S-S, 5' uni-link™ amino modifier, 5' C3 spacer,5' C3 spacer, 5' dspacer,5' PC spacer,5' spacer 18,5' spacer 9,5' 2'-fluoro A,5' 2'-fluoro C,5' 2'-fluoro G,5' 2'-fluoro U, 5' 2, 6- diaminopurine,5' 2-aminopurine,5' 5-bromo dU,5' 5-hydroxymethyl dC, 5' 5- methyl dC,5' 5-nitroindole, 5' deoxylnosine, 5' deoxyUridine, 5' inverted dideoxy-T, 5' isodC,5' isodG. It is a simple matter for person of ordinary skill in the art of molecular biology to test whether or not a given modification will have the desired degree of ligation blocked by testing a modified oligonucleotide (or extension product thereof) for its ability to be ligated to the adapter of interest. Ligation (or the absence thereof) cam readily be detected by gel electrophoresis, mass spectroscopy, or other well-known analytical techniques.

In some embodiments, the non-ligatable primers comprise abasic regions (lacking nucleotide bases). The absence of such bases can render non-ligatable the amplicons generated using such non-ligatable primers because the inability to replicate the sequence during amplification will result in the formation of amplicons not suitable for ligation to the adapters used in library generation.

In various embodiments of the non-ligatable primers, it may be useful to incorporate one of more exonuclease-resistant phosphate analogs to modify the phosphate backbone of the non- ligatable primer. Since it possible, under some conditions, for an exonuclease to partially digest a non-ligatable primer so as to render the primer ligatable, it is of interest to introduce the property of exonuclease resistance into the primer. Examples of such exonuclease resistant analogs include thiophosphates.

The terms non-ligatable primers and primers not capable of ligation also include oligonucleotides that are initially capable of being ligated, but incorporate nucleotides that can are easily degraded (for the sake of

convenience, referred to herein as degradable non-ligatable primers). In some embodiments, the degradation will be by means of an enzyme -mediated reaction. In other embodiments, the degradation will be by means of a chemical reaction that is not facilitated by an enzyme. For example, in some embodiments, a non- ligatable primer can comprise the nucleotide base uracil, thus rendering the oligonucleotide susceptible to degradation by the enzyme uracil N glycosylase (U G). After U G treatment, an endonuc lease, such as endonuc lease IV to cleave at the abasic site created by UNG treatment. Information about using UNG can be found in US Patent 5,035,996. While methods such as those describe in US Patent 5,035,996 necessarily employ a PCR step include uracil triphosphate nucleotides, the subject methods do not require such a step. In the presently disclosed embodiments employing uracil containing non-ligatable primers (or other degradable nucleotides), the use of UNG (or another enzyme capable of degrading the specific degradable nucleotides selected). Non- ligatable primers may contain one or more uracil bases, the uracil may be located at any position within the non-ligatable primer. Position the uracil bases internally will reduce the possibility of the degraded termini being accidently phosphorylated (thereby making them ligatable).

The term "non-ligatable amplification product" refers to amplicons that lack termini capable of being ligated to the universal adapters used in the subject methods. Non-ligatable amplification products can be generated by PCR using non-ligatable primers.

The term "pre-amplification" as used herein refers to a amplification reaction comprising the use of a pair of universal primers to amplify adapter modified nucleic acid fragments. Pre-amplification reactions are no designed to enrich for a specific set of nucleic acid fragments.

The term "clonal amplification" refers to the amplification of a single

DNA molecule, wherein the amplification takes place in an area that is sufficiently isolated physically so as to enable the amplification products of different individual molecule starting templates to remain in physical isolation, thereby permitting their separate sequencing. Clonal amplification methods such as bridge PCR and emulsion PCR are used in many massively parallel sequencing systems.

The target specific primer pairs can be designed to target regions of the genome that comprise polymorphisms. A plurality of primers pairs may be used with each other in multiplexed PCR amplifications. The primer pairs can be selected so as to minimize the potential for the primers to bind to each other.

The primer sets can be split into 2 pools, with one primer from each pair going into the 2 pools. The separate pools then may each separately be used in each of the two separate amplification procedures, each separate amplification reaction employing semi-nested PCR with a combination of target-specific primers and universal primers.

A universal adapter is an oligonucleotide adapter that can be ligated onto a polynucleotide fragment for analysis to as to facilitate the amplification of the fragment with primers in an amplification reaction not requiring knowledge of the base pair sequence between the adapters. In some embodiments the universal adapter is double- stranded oligonucleotide. The universal adapter may be "Y" shaped (see for example, US Patent 6,346,399 and PCT patent publication WO 2007/1 1 1937 Al), comprising non- complementary single- stranded regions, in addition to single-stranded regions, such adapters comprise a double-stranded region suitable for ligation to double-stranded nucleic acid fragments for analysis. Y shaped adapters are particularly useful, in part because the same Y adapter can be ligated to both ends of a nucleic acid fragment in a preparation of nucleic acid fragments derived from a sample, thereby simplifying sequencing in both orientations. The Y-shaped adapters sold under the name TRUSEQ® by Illumina Inc., (San Diego, CA) are an example of a Y shaped adapter.

In some embodiments the adapters may comprise a blunt end for ligation. In some embodiments the adapters may comprise a sticky end for ligation. The universal adapters comprise at least one primer binding site that may be used with a universal primer. In embodiments employing "Y" shaped adapters, the primer binding site can be on the non-self-complementary regions. Each strand of the non-complementary region of the Y -shaped adapter can comprise a primer site capable of binding a universal primer. In some embodiments, the sticky end may comprise a 5' thymidine base overhang for use in TA cloning of sample fragments that have been modified on the 3 ' terminus with an added adenine (e.g., by Klenow or Taq). A description of TA cloning can be found in US Patent 5,487,993.

The term "massively parallel sequencing" refers to high throughput next- generation sequencing such as those employed in MySeq ® (llumina), HiSeq ® (Illumina), Ion Torrent ® (Life Technologies), Genome Analyzer IIx ® (Illumina), GS Flex+ ® (Roche 454), and the like. Such high throughput next generation sequencing techniques typically determine the sequence of a large number of nucleotide fragments in parallel; however, the term as used herein (unless specifically indicated otherwise) covers other potential high throughput sequencing techniques, e.g., single molecule sequencing, that are not necessarily performed in parallel.

The term "target-specific primer" refers to an oligonucleotide primer that can specifically hybridize to a preselected region of the genome. In some embodiments, the target-specific primer can additionally hybridize to a portion of one of the adapter sequences that is adjacent to the nucleic acid fragment (from the sample) that is ligated between the two adapters. A target-specific primer can comprise a universal primer binding positioned so as to permit the amplification of the partially selected amplification products in a subsequent amplification reaction.

The term "partially selected" as used herein refers to the amplicons produced by an amplification process that employs one target specific primer and one primer specific for a universal priming site. The selection of the subset of fragments is attributable to the sequence specificity of the target specific primer.

Target specific primers are oligonucleotide primers complementary to region of interest on a nucleic acid target. In some embodiments, target specific primers are complementary to genomic regions near polymorphism so as to provide for the production of amplicons comprising the polymorphism of interest. Examples of such polymorphisms include SNPs, insertions, deletions, repeats, and the like. The target specific primer is capable of specifically hybridizing to a pre-selected region of the sample nucleic acid fragment located between the universal adapters that have been ligated to the nucleic acid fragment for analysis.

A subset (i.e., a selected portion) of the nucleic acid fragments that have been ligated to the universal adapters can be amplified using with a pair of amplification primers. In some embodiments a target specific primer is used in combination a primer that binds to a universal priming site. Amplifications employing a target specific primer used in combination with a primer that binds to a universal priming site can be referred to, for the sake of convenience, as partially selective amplification (a form of semi-nested PCR). A plurality of different target specific primers can be used in combination with a single universal primer so as to provide for multiplexation. In some embodiments, between 1 and 5 target specific primers are used in combination. In some embodiments, between 1 and 10 target specific primers are used in combination. In some embodiments, between 10 and 100 target specific primers are used in combination. In some embodiments, between 100 and 500 target specific primers are used in combination. In some embodiments, between 500 and 1000 target specific primers are used in combination. In some embodiments, between 1000 and 5000 target specific primers are used in combination. In some embodiments, between 5000 and 10,000 target specific primers are used in combination. In some embodiments, between 10,000 and 20,000 target specific primers are used in combination. In some embodiments, between 15,000 and 20,000 target specific primers are used in combination. In some embodiments, between 20,000 and 25,000 target specific primers are used in combination. In some embodiments, between 25,000 and 30,000 target specific primers are used in combination. In some embodiments, between 30,000 and 40,000 target specific primers are used in combination. In some embodiments, between 40,000 and 50,000 target specific primers are used in combination. In some embodiments, over 50,000 target specific primers are used in combination.

The term "barcode" as used herein refers to a polynucleotide sequence that is used to identify a sample. Another term for barcode is "molecular barcode" or "index sequence" By making use of barcodes multiple samples from different sources can be simultaneously analyzed on the same instrument, e.g., a DNA sequencer. Barcodes differ in nucleic acid sequence from one another. The barcode can be correlated with the sample source during library generation so as to provide for sample identification. For example, a genetic sample from a first patient can be amplified with a set of 10,000 different primer pairs, each containing barcode A and a genetic sample from a second patient can be amplified with a set of the same 10000 primer pair, each containing barcode B. The amplicons are then mixed together and read on the same run of a massively parallel DNA sequencer; the identity of the patients can be determined by using the known correlation with the barcodes. Examples of barcodes can be found, among other places in WO 201 1/071923 A2; WO 2008/093098 A2; US 2006/0073506A1.

The DNA that is inserted into the subject libraries can come from a variety of sources. The sources may be genomic DNA or cDNA. The DNA source may be human or non-human. The DNA source may be plant or animal. One source of interest is fetal DNA from the blood the blood of a pregnant human female. DNA sample obtained from the blood of a pregnant human female, such sample can comprise a mixture of fetal DNA and maternal DNA. Such DNA samples from the blood of pregnant women may be analyzed for genetic abnormalities, including aneuploidy in the fetus present in the pregnant woman. Examples of genetic analysis techniques for fetal DNA obtained from maternal blood can be found in US patent applications US 201 1/0288780 Al, US 201 1/0178719 Al, and US 2012/0100548 Al, which are herein incorporated by reference.

The presently disclosed embodiments also include libraries made by the subject methods. The presently disclosed embodiments also include kits for performing the subject methods. The kits comprise ligation blocked primers and optionally other reagents necessary for carrying out the subject methods. Kit components include, but are not limited to, one or more of the following adapters, ligation blocked universal primers, target specific primers, enzymes. Kits can include instructions for carrying out the subject methods. Kits can also contain the reagents in pre-measured amounts to facilitate the performing of the subject methods.

A method of making a genetic library includes ligating a set of universal adapters to nucleic acid fragments in a sample preparation, the universal adapters having a first universal primer binding site and a second universal primer binding site; amplifying a subset of the adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding site, and a plurality of different target-specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable primers whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding site, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable primers, whereby a set of non-ligatable amplification products are formed.

A method of making a genetic library includes providing a genetic library comprising a plurality of amplified target regions having a first end and a second end, wherein a first universal priming site is joined to the first end and a second universal priming site is joined to the second end; and amplifying the genetic library with a non-ligatable primer specific for the first universal priming site and a non-ligatable primer specific for the second universal priming site.

A method of a making a genetic library includes ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter having a first universal primer binding site and a second universal primer binding site; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding site, and a plurality of different target- specific primers, wherein the primers capable of binding to the first universal priming site are non-ligatable, whereby a set of partially selected amplicons are formed; and amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primer capable of binding to the second universal binding site, and a plurality of different target-specific primers, wherein the primers capable of binding to the second universal priming site are non-ligatable, whereby a set of non-ligatable amplification products are formed.

Embodiments of methods of making a genetic library include ligating a first universal adapter and a second universal adapter to a set of nucleic acid fragments from a nucleic sample preparation, the first universal adapter and the second universal adapter have a first universal primer binding site and a second universal primer binding site; amplifying (1) a subset of the adapter modified nucleic acid fragments or (2) a subset of pre-amplified adapter modified nucleic acid fragments, wherein the amplification step comprises adding primers capable of binding to the first universal binding site, and a plurality of different target- specific primers, whereby a set of partially selected amplicons are formed; amplifying the set of partially selected genetic amplicons, wherein the amplification step comprises adding a primers capable of binding to the second universal binding site, and a plurality of different target-specific primers, whereby a set of selected amplicons is formed; and amplifying the set of selected amplicons with primers specific for universal binding sites, wherein the primers are non-ligatable primers, whereby a set of non-ligatable amplicons are produced.

A kit for making a genetic library includes adapters comprising a first universal priming site and a second universal priming site; a non-ligatable primer specific for the first universal priming site; and a non-ligatable primer specific for the second universal priming site. Design of Multiplex PCR Primers

A relatively small number of primers in a library of primers are responsible for a substantial amount of the amplified primer dimers that form during multiplex PCR reactions. Methods have been developed to select the most undesirable primers for removal from a library of candidate primers. By reducing the amount of primer dimers to a negligible amount (-0.1% of the PCR products), these methods allow the resulting primer libraries to simultaneously amplify a large number of target loci in a single multiplex PCR reaction.

Because the primers hybridize to the target loci and amplify them rather than hybridizing to other primers and forming amplified primer dimers, the number of different target loci that can be amplified is increased. It was also discovered that using lower primer concentrations and much longer annealing times than normal increases the likelihood that the primers hybridize to the target loci instead of hybridizing to each other and forming primer dimers.

During the PCR amplification and sequencing of 19,488 target loci in a genomic sample, 99.4-99.7% of the sequencing reads mapped to the genome, of those, 99.99% of the mapped to targeted loci. For plasma samples with 10 million sequencing reads, typically at least 19,350 of the 19,488 targeted loci (99.3 %) were amplified and sequenced. Being able to simultaneously amplify such a large number of target loci at once greatly decreases the amount of time and the amount of DNA required to analyze thousands of target loci. For example, DNA from a single cell is sufficient to simultaneously analyze thousands of target loci, which is important for applications in which the amount of DNA is low, such as genetic testing of a single cell from an embryo prior to in vitro fertilization or genetic testing of a forensic sample with little DNA. In addition, being able to analyze the target loci in one reaction volume (such as in one chamber or well) rather than splitting the sample into multiple different reactions reduces variability that can occur between reactions. In addition, methods have been developed to use reference standards to correct for amplification bias that may occur between different target loci. For example, differences in amplification efficiency between target loci due to factors such as GC content may cause differing amounts of PCR products to be produced for target loci that are actually present in the same amount. The use of reference standards similar to the target loci allows the detection of such amplification bias so that it can be corrected for during the quantitation of the target loci.

During sequencing of PCR products, artifacts such as primer dimers are detected and thus inhibit the detection of target amplicons. Because of this limitation, microarrays with hybridization probes are often used for detection since microarrays are less sensitive to interference from primer dimers. The high level of multiplexing with minimal non-target amplicons that has now been achieved allows PCR followed by sequencing to be used as an alternative to microarrays.

The multiplex-PCR methods of the invention can be in a variety of applications, such as genotyping, detection of chromosomal abnormalities (such as a fetal chromosome aneuploidy), gene mutation and polymorphism (such as single nucleotide polymorphisms, SNPs) analysis, gene deletion analysis, determination of paternity, analysis of genetic differences among populations, forensic analysis, measuring predisposition to disease, quantitative analysis of mRNA, and detection and identification of infectious agents (such as bacteria, parasite, and viruses). The multiplex PCR methods can also be used for noninvasive prenatal testing, such as paternity testing or the detection of fetal chromosome abnormalities.

Exemplary Primer Design Methods

Highly multiplexed PCR can often result in the production of a very high proportion of product DNA that results from unproductive side reactions such as primer dimer formation. In an embodiment, the particular primers that are most likely to cause unproductive side reactions may be removed from the primer library to give a primer library that will result in a greater proportion of amplified DNA that maps to the genome. The step of removing problematic primers, that is, those primers that are particularly likely to firm dimers has unexpectedly enabled extremely high PCR multiplexing levels for subsequent analysis by sequencing. In systems such as sequencing, where performance significantly degrades by primer dimers and/or other mischief products, greater than 10, greater than 50, and greater than 100 times higher multiplexing than other described multiplexing has been achieved. Note this is opposed to probe based detection methods, e.g. microarrays, TAQMAN, PCR etc. where an excess of primer dimers will not affect the outcome appreciably. Also note that the general belief in the art is that multiplexing PCR for sequencing is limited to about 100 assays in the same well. Fluidigm and Rain Dance offer platforms to perform 48 or 1000s of PCR assays in parallel reactions for one sample.

There are a number of ways to choose primers for a library where the amount of non-mapping primer dimer or other primer mischief products are minimized. Empirical data indicate that a small number of 'bad' primers are responsible for a large amount of non-mapping primer dimer side reactions. Removing these 'bad' primers can increase the percent of sequence reads that map to targeted loci. One way to identify the 'bad' primers is to look at the sequencing data of DNA that was amplified by targeted amplification; those primer dimers that are seen with greatest frequency can be removed to give a primer library that is significantly less likely to result in side product DNA that does not map to the genome. There are also publicly available programs that can calculate the binding energy of various primer combinations, and removing those with the highest binding energy will also give a primer library that is significantly less likely to result in side product DNA that does not map to the genome.

In some embodiments for selecting primers, an initial library of candidate primers is created by designing one or more primers or primer pairs to candidate target loci. A set of candidate target loci (such as SNPs) can selected based on publically available information about desired parameters for the target loci, such as frequency of the SNPs within a target population or the heterozygosity rate of the SNPs. In one embodiment, the PCR primers may be designed using the Primer3 program (the worldwide web at primer3.sourceforge.net; libprimer3 release 2.2.3, which is hereby incorporated by reference in its entirety). If desired, the primers can be designed to anneal within a particular annealing temperature range, have a particular range of GC contents, have a particular size range, produce target amplicons in a particular size range, and/or have other parameter characteristics. Starting with multiple primers or primer pairs per candidate target locus increases the likelihood that a primer or prime pair will remain in the library for most or all of the target loci. In one embodiment, the selection criteria may require that at least one primer pair per target locus remains in the library. That way, most or all of the target loci will be amplified when using the final primer library. This is desirable for applications such as screening for deletions or duplications at a large number of locations in the genome or screening for a large number of sequences (such as polymorphisms or other mutations) associated with a disease or an increased risk for a disease. If a primer pair from the library would produces a target amplicon that overlaps with a target amplicon produced by another primer pair, one of the primer pairs may be removed from the library to prevent interference.

In some embodiments, an "undesirability scores" (higher score representing least desirability) is calculated (such as calculation on a computer) for most or all of the possible combinations of two primers from a library of candidate primers. In various embodiments, an undesirability score is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library. Each undesirability score is based at least in part on the likelihood of dimer formation between the two candidate primers. If desired, the undesirability score may also be based on one or more other parameters selected from the group consisting of heterozygosity rate of the target locus, disease prevalence associated with a sequence (e.g., a polymorphism) at the target locus, disease penetrance associated with a sequence (e.g., a polymorphism) at the target locus, specificity of the candidate primer for the target locus, size of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, amplification efficiency of the target amplicon, and size of the target amplicon. If multiple factors are considered, the undesirability score may be calculated based on a weighted average of the various parameters. The parameters may be assigned different weights based on their importance for the particular application that the primers will be used for. In some embodiments, the primer with the highest

undesirability score is removed from the library. If the removed primer is a member of a primer pair that hybridizes to one target locus, then the other member of the primer pair may be removed from the library. The process of removing primers may be repeated as desired. In some embodiments, the selection method is performed until the undesirability scores for the candidate primer combinations remaining in the library are all equal to or below a minimum threshold. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number.

In various embodiments, after the undesirability scores are calculated, the candidate primer that is part of the greatest number of combinations of two candidate primers with an undesirability score above a first minimum threshold is removed from the library. This step ignores interactions equal to or below the first minimum threshold since these interactions are less significant. If the removed primer is a member of a primer pair that hybridizes to one target locus, then the other member of the primer pair may be removed from the library. The process of removing primers may be repeated as desired. In some embodiments, the selection method is performed until the undesirability scores for the candidate primer combinations remaining in the library are all equal to or below the first minimum threshold. If the number of candidate primers remaining in the library is higher than desired, the number of primers may be reduced by decreasing the first minimum threshold to a lower second minimum threshold and repeating the process of removing primers. If the number of candidate primers remaining in the library is lower than desired, the method can be continued by increasing the first minimum threshold to a higher second minimum threshold and repeating the process of removing primers using the original candidate primer library, thereby allowing more of the candidate primers to remain in the library. In some embodiments, the selection method is performed until the undesirability scores for the candidate primer combinations remaining in the library are all equal to or below the second minimum threshold, or until the number of candidate primers remaining in the library is reduced to a desired number.

If desired, primer pairs that produce a target amplicon that overlaps with a target amplicon produced by another primer pair can be divided into separate amplification reactions. Multiple PCR amplification reactions may be desirable for applications in which it is desirable to analyze all of the candidate target loci (instead of omitting candidate target loci from the analysis due to overlapping target amplicons).

These selection methods minimize the number of candidate primers that have to be removed from the library to achieve the desired reduction in primer dimers. By removing a smaller number of candidate primers from the library, more (or all) of the target loci can be amplified using the resulting primer library.

Multiplexing large numbers of primers imposes considerable constraint on the assays that can be included. Assays that unintentionally interact result in spurious amplification products. The size constraints of miniPCR may result in further constraints. In an embodiment, it is possible to begin with a very large number of potential SNP targets (between about 500 to greater than 1 million) and attempt to design primers to amplify each SNP. Where primers can be designed it is possible to attempt to identify primer pairs likely to form spurious products by evaluating the likelihood of spurious primer duplex formation between all possible pairs of primers using published thermodynamic parameters for DNA duplex formation. Primer interactions may be ranked by a scoring function related to the interaction and primers with the worst interaction scores are eliminated until the number of primers desired is met. In cases where SNPs likely to be heterozygous are most useful, it is possible to also rank the list of assays and select the most heterozygous compatible assays. Experiments have validated that primers with high interaction scores are most likely to form primer dimers. At high multiplexing it is not possible to eliminate all spurious interactions, but it is essential to remove the primers or pairs of primers with the highest interaction scores in silico as they can dominate an entire reaction, greatly limiting amplification from intended targets. We have performed this procedure to create multiplex primer sets of up to and in some cases more than 10,000 primers. The improvement due to this procedure is substantial, enabling amplification of more than 80%, more than 90%, more than 95%, more than 98%, and even more than 99% on target products as determined by sequencing of all PCR products, as compared to 10% from a reaction in which the worst primers were not removed. When combined with a partial semi-nested approach as previously described, more than 90%, and even more than 95% of amplicons may map to the targeted sequences.

Note that there are other methods for determining which PCR probes are likely to form dimers. In an embodiment, analysis of a pool of DNA that has been amplified using a non-optimized set of primers may be sufficient to determine problematic primers. For example, analysis may be done using sequencing, and those dimers which are present in the greatest number are determined to be those most likely to form dimers, and may be removed.

This method has a number of potential application, for example to SNP genotyping, heterozygosity rate determination, copy number measurement, and other targeted sequencing applications. In an embodiment, the method of primer design may be used in combination with the mini-PCR method described elsewhere in this document. In some embodiments, the primer design method may be used as part of a massive multiplexed PCR method.

The use of tags on the primers may reduce amplification and sequencing of primer dimer products. In some embodiments, the primer contains an internal region that forms a loop structure with a tag. In particular embodiments, the primers include a 5' region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3 ' region that is specific for the target locus. In some embodiments, the loop region may lie between two binding regions where the two binding regions are designed to bind to contiguous or neighboring regions of template DNA. In various embodiments, the length of the 3' region is at least 7 nucleotides. In some embodiments, the length of the 3' region is between 7 and 20 nucleotides, such as between 7 to 15 nucleotides, or 7 to 10 nucleotides, inclusive. In various embodiments, the primers include a 5 ' region that is not specific for a target locus (such as a tag or a universal primer binding site) followed by a region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3 ' region that is specific for the target locus. Tag-primers can be used to shorten necessary target-specific sequences to below 20, below 15, below 12, and even below 10 base pairs. This can be serendipitous with standard primer design when the target sequence is fragmented within the primer binding site or, or it can be designed into the primer design. Advantages of this method include: it increases the number of assays that can be designed for a certain maximal amplicon length, and it shortens the "non-informative" sequencing of primer sequence. It may also be used in combination with internal tagging (see elsewhere in this document).

In an embodiment, the relative amount of nonproductive products in the multiplexed targeted PCR amplification can be reduced by raising the annealing temperature. In cases where one is amplifying libraries with the same tag as the target specific primers, the annealing temperature can be increased in comparison to the genomic DNA as the tags will contribute to the primer binding. In some embodiments we are using considerably lower primer concentrations than previously reported along with using longer annealing times than reported elsewhere. In some embodiments the annealing times may be longer than 3 minutes, longer than 5 minutes, longer than 8 minutes, longer than 10 minutes, longer than 15 minutes, longer than 20 minutes, longer than 30 minutes, longer than 60 minutes, longer than 120 minutes, longer than 240 minutes, longer than 480 minutes, and even longer than 960 minutes. In an embodiment, longer annealing times are used than in previous reports, allowing lower primer concentrations. In various embodiments, longer than normal extension times are used, such as greater than 3, 5, 8, 10, or 15 minutes. In some embodiments, the primer concentrations are as low as 50 nM, 20 nM, 10 nM, 5 nM, 1 nM, and lower than 1 uM. This surprisingly results in robust performance for highly multiplexed reactions, for example 1,000-plex reactions, 2,000-plex reactions, 5,000-plex reactions, 10,000-plex reactions, 20,000-plex reactions, 50,000-plex reactions, and even 100,000-plex reactions. In an embodiment, the amplification uses one, two, three, four or five cycles run with long annealing times, followed by PCR cycles with more usual annealing times with tagged primers.

To select target locations, one may start with a pool of candidate primer pair designs and create a thermodynamic model of potentially adverse interactions between primer pairs, and then use the model to eliminate designs that are incompatible with other the designs in the pool.

After the selection process, the primers remaining in the library may be used in any of the methods of the invention.

Exemplary Primer Libraries

In one aspect, the invention features libraries of primers, such as primers selected from a library of candidate primers using any of the methods of the invention. In some embodiments, the library includes primers that

simultaneously hybridize (or are capable of simultaneously hybridizing) to or that simultaneously amplify (or are capable of simultaneously amplifying) at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci in one reaction volume. In various embodiments, the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) between 1,000 to 2,000; 2,000 to 5,000; 5,000 to 7,500; 7,500 to 10,000; 10,000 to 20,000; 20,000 to 25,000; 25,000 to 30,000; 30,000 to 40,000; 40,000 to 50,000; 50,000 to 75,000; or 75,000 to 100,000 different target loci in one reaction volume, inclusive. In various embodiments, the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) between 1 ,000 to 100,000 different target loci in one reaction volume, such as between 1,000 to 50,000; 1,000 to 30,000; 1,000 to 20,000; 1,000 to 10,000; 2,000 to 30,000; 2,000 to 20,000; 2,000 to 10,000; 5,000 to 30,000; 5,000 to 20,000; or 5,000 to 10,000 different target loci, inclusive. In some embodiments, the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that less than 60, 40, 30, 20, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, or 0.5% of the amplified products are primer dimers. The various embodiments, the amount of amplified products that are primer dimers is between 0.5 to 60%, such as between 0.1 to 40%, 0.1 to 20%, 0.25 to 20%, 0.25 to 10%, 0.5 to 20%, 0.5 to 10%, 1 to 20%, or 1 to 10%, inclusive. In some embodiments, the primers simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the amplified products are target amplicons. In various embodiments, the amount of amplified products that are target amplicons is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 98%, 90 to 99.5%, or 95 to 99.5%, inclusive. In some embodiments, the primers simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the targeted loci are amplified. In various embodiments, the amount target loci that are amplified is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 99%, 90 to 99.5%, 95 to 99.9%, or 98 to 99.99% inclusive. In some embodiments, the library of primers includes at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer where each pair of test primers hybridize to a target locus. In some embodiments, the library of primers includes at least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 individual primers that each hybridize to a different target locus, wherein the individual primers are not part of primer pairs.

In various embodiments, the concentration of each primer is less than

100, 75, 50, 25, 20, 10, 5, 2, or 1 nM, or less than 500, 100, 10, or 1 uM. In various embodiments, the concentration of each primer is between 1 uM to 100 nM, such as between 1 uM to 1 nM, 1 to 75 nM, 2 to 50 nM or 5 to 50 nM, inclusive. In various embodiments, the GC content of the primers is between 30 to 80%, such as between 40 to 70%, or 50 to 60%, inclusive. In some embodiments, the range of GC content of the primers is less than 30, 20, 10, or 5%. In some embodiments, the range of GC content of the primers is between 5 to 30%, such as 5 to 20% or 5 to 10%, inclusive. In some embodiments, the melting temperature (Tm) of the test primers is between 40 to 80 °C, such as 50 to 70 °C, 55 to 65 °C, or 57 to 60.5 °C, inclusive. In some embodiments, the Tm is calculated using the Primer3 program (libprimer3 release 2.2.3) using the built-in SantaLucia parameters (the world wide web at primer3.sourceforge.net). In some embodiments, the range of melting temperature of the primers is less than 15, 10, 5, 3, or 1 °C. In some embodiments, the range of melting temperature of the primers is between 1 to 15 °C, such as between 1 to 10 °C, 1 to 5 °C, or 1 to 3 °C, inclusive. In some embodiments, the length of the primers is between 15 to 100 nucleotides, such as between 15 to 75 nucleotides, 15 to 40 nucleotides, 17 to 35 nucleotides, 18 to 30 nucleotides, 20 to 65 nucleotides, inclusive. In some embodiments, the range of the length of the primers is less than 50, 40, 30, 20, 10, or 5 nucleotides. In some embodiments, the range of the length of the primers is between 5 to 50 nucleotides, such as 5 to 40 nucleotides, 5 to 20 nucleotides, or 5 to 10 nucleotides, inclusive. In some embodiments, the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive.

These primer libraries can be used in any of the methods of the invention. Exemplary Primer Kits

In one aspect, the invention features a kit (such as kits for amplifying target loci in a nucleic acid sample) the includes any of the primer libraries of the invention. In some embodiments, a kit may be formulated that comprises a plurality of primers designed to achieve the methods described in this disclosure. The primers may be outer forward and reverse primers, inner forward and reverse primers as disclosed herein, they could be primers that have been designed to have low binding affinity to other primers in the kit as disclosed in the section on primer design, they could be hybrid capture probes or pre- circularized probes as described in the relevant sections, or some combination thereof. In an embodiment, a kit may be formulated for determining a ploidy status of a target chromosome in a gestating fetus designed to be used with the methods disclosed herein, the kit comprising a plurality of inner forward primers and optionally the plurality of inner reverse primers, and optionally outer forward primers and outer reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the target sites (e.g., polymorphic sites) on the target chromosome, and optionally additional chromosomes. In an embodiment, the primer kit may be used in combination with the diagnostic box described elsewhere in this document. In some embodiments, the kit includes instructions for using the library to amplify the target loci.

Exemplary Multiplex PCR Methods

In one aspect, the invention features methods of amplifying target loci in a nucleic acid sample that involve (i) contacting the nucleic acid sample with a library of primers that simultaneously hybridize to least 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture; and (ii) subjecting the reaction mixture to primer extension reaction conditions (such as PCR conditions) to produce amplified products that include target amplicons. In some embodiments, the method also includes determining the presence or absence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, the method also includes determining the sequence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the targeted loci are amplified. In various embodiments, less than 60, 50, 40, 30, 20, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, or 0.05% of the amplified products are primer dimers.

In an embodiment, a method disclosed herein uses highly efficient highly multiplexed targeted PCR to amplify DNA followed by high throughput sequencing to determine the allele frequencies at each target locus. The ability to multiplex more than about 50 or 100 PCR primers in one reaction volume in a way that most of the resulting sequence reads map to targeted loci is novel and non-obvious. One technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner involves designing primers that are unlikely to hybridize with one another. The PCR probes, typically referred to as primers, are selected by creating a thermodynamic model of potentially adverse interactions between at least 500; at least 1,000; at least 2,000; at least 5,000; at least 7,500; at least 10,000; at least 20,000; at least 25,000; at least 30,000; at least 40,000; at least 50,000; at least 75,000; or at least 100,000 potential primer pairs, or unintended interactions between primers and sample DNA, and then using the model to eliminate designs that are incompatible with other the designs in the pool. Another technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner is using a partial or full nesting approach to the targeted PCR. Using one or a combination of these approaches allows multiplexing of at least 300, at least 800, at least 1,200, at least 4,000 or at least 10,000 primers in a single pool with the resulting amplified DNA comprising a majority of DNA molecules that, when sequenced, will map to targeted loci. Using one or a combination of these approaches allows multiplexing of a large number of primers in a single pool with the resulting amplified DNA comprising greater than 50%, greater than 60%, greater than 67%, greater than 80%, greater than 90%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, greater than 99%, or greater than 99.5% DNA molecules that map to targeted loci.

In some embodiments the detection of the target genetic material may be done in a multiplexed fashion. The number of genetic target sequences that may be run in parallel can range from one to ten, ten to one hundred, one hundred to one thousand, one thousand to ten thousand, ten thousand to one hundred thousand, one hundred thousand to one million, or one million to ten million. Prior attempts to multiplex more than 100 primers per pool have resulted in significant problems with unwanted side reactions such as primer-dimer formation.

Targeted PCR

In some embodiments, PCR can be used to target specific locations of the genome. In plasma samples, the original DNA is highly fragmented (typically less than 500 bp, with an average length less than 200 bp). In PCR, both forward and reverse primers anneal to the same fragment to enable amplification.

Therefore, if the fragments are short, the PCR assays must amplify relatively short regions as well. Like MIPS, if the polymorphic positions are too close the polymerase binding site, it could result in biases in the amplification from different alleles. Currently, PCR primers that target polymorphic regions, such as those containing SNPs, are typically designed such that the 3 ' end of the primer will hybridize to the base immediately adjacent to the polymorphic base or bases. In an embodiment of the present disclosure, the 3' ends of both the forward and reverse PCR primers are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele. The number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3 ' end of the primer is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases. The forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.

PCR assay can be generated in large numbers, however, the interactions between different PCR assays makes it difficult to multiplex them beyond about one hundred assays. Various complex molecular approaches can be used to increase the level of multiplexing, but it may still be limited to fewer than 100, perhaps 200, or possibly 500 assays per reaction. Samples with large quantities of DNA can be split among multiple sub-reactions and then recombined before sequencing. For samples where either the overall sample or some subpopulation of DNA molecules is limited, splitting the sample would introduce statistical noise. In an embodiment, a small or limited quantity of DNA may refer to an amount below 10 pg, between 10 and 100 pg, between 100 pg and 1 ng, between 1 and 10 ng, or between 10 and 100 ng. Note that while this method is particularly useful on small amounts of DNA where other methods that involve splitting into multiple pools can cause significant problems related to introduced stochastic noise, this method still provides the benefit of minimizing bias when it is run on samples of any quantity of DNA. In these situations a universal pre- amplification step may be used to increase the overall sample quantity. Ideally, this pre-amplification step should not appreciably alter the allelic distributions.

In an embodiment, a method of the present disclosure can generate PCR products that are specific to a large number of targeted loci, specifically 1 ,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids. Currently, performing multiplex PCR reactions of more than 5 to 10 targets presents a major challenge and is often hindered by primer side products, such as primer dimers, and other artifacts. When detecting target sequences using microarrays with hybridization probes, primer dimers and other artifacts may be ignored, as these are not detected. However, when using sequencing as a method of detection, the vast majority of the sequencing reads would sequence such artifacts and not the desired target sequences in a sample. Methods described in the prior art used to multiplex more than 50 or 100 reactions in one reaction volume followed by sequencing will typically result in more than 20%, and often more than 50%, in many cases more than 80% and in some cases more than 90% off-target sequence reads.

In general, to perform targeted sequencing of multiple (n) targets of a sample (greater than 50, greater than 100, greater than 500, or greater than 1,000), one can split the sample into a number of parallel reactions that amplify one individual target. This has been performed in PCR multiwell plates or can be done in commercial platforms such as the FLUIDIGM ACCESS ARRAY (48 reactions per sample in microfluidic chips) or DROPLET PCR by RAIN DANCE TECHNOLOGY (100s to a few thousands of targets). Unfortunately, these split-and-pool methods are problematic for samples with a limited amount of DNA, as there are often not enough copies of the genome to ensure that there is one copy of each region of the genome in each well. This is an especially severe problem when polymorphic loci are targeted, and the relative proportions of the alleles at the polymorphic loci are needed, as the stochastic noise introduced by the splitting and pooling will cause very poorly accurate measurements of the proportions of the alleles that were present in the original sample of DNA. Described here is a method to effectively and efficiently amplify many PCR reactions that is applicable to cases where only a limited amount of DNA is available. In an embodiment, the method may be applied for analysis of single cells, body fluids, mixtures of DNA such as the free floating DNA found in maternal plasma, biopsies, environmental and/or forensic samples.

In an embodiment, the targeted sequencing may involve one, a plurality, or all of the following steps, a) Generate and amplify a library with adaptor sequences on both ends of DNA fragments, b) Divide into multiple reactions after library amplification, c) Generate and optionally amplify a library with adaptor sequences on both ends of DNA fragments, d) Perform 1000- to 10,000- plex amplification of selected targets using one target specific "Forward" primer per target and one tag specific primer, e) Perform a second amplification from this product using "Reverse" target specific primers and one (or more) primer specific to a universal tag that was introduced as part of the target specific forward primers in the first round, f) Perform a 1000-plex preamplification of selected target for a limited number of cycles, g) Divide the product into multiple aliquots and amplify subpools of targets in individual reactions (for example, 50 to 500-plex, though this can be used all the way down to singleplex. h) Pool products of parallel subpools reactions, i) During these amplifications primers may carry sequencing compatible tags (partial or full length) such that the products can be sequenced.

Highly Multiplexed PCR

Disclosed herein are methods that permit the targeted amplification of over a hundred to tens of thousands of target sequences (e.g., SNP loci) from a nucleic acid sample such as genomic DNA obtained from plasma. The amplified sample may be relatively free of primer dimer products and have low allelic bias at target loci. If during or after amplification the products are appended with sequencing compatible adaptors, analysis of these products can be performed by sequencing.

Performing a highly multiplexed PCR amplification using methods known in the art results in the generation of primer dimer products that are in excess of the desired amplification products and not suitable for sequencing. These can be reduced empirically by eliminating primers that form these products, or by performing in silico selection of primers. However, the larger the number of assays, the more difficult this problem becomes.

One solution is to split the 5000-plex reaction into several lower-plexed amplifications, e.g. one hundred 50-plex or fifty 100-plex reactions, or to use microfluidics or even to split the sample into individual PCR reactions.

However, if the sample DNA is limited, such as in non-invasive prenatal diagnostics from pregnancy plasma, dividing the sample between multiple reactions should be avoided as this will result in bottlenecking.

Described herein are methods to first globally amplify the plasma DNA of a sample and then divide the sample up into multiple multiplexed target enrichment reactions with more moderate numbers of target sequences per reaction. In an embodiment, a method of the present disclosure can be used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising one or more of the following steps: generating and amplifying a library from a mixture of DNA where the molecules in the library have adaptor sequences ligated on both ends of the DNA fragments, dividing the amplified library into multiple reactions, performing a first round of multiplex

amplification of selected targets using one target specific "forward" primer per target and one or a plurality of adaptor specific universal "reverse" primers. In an embodiment, a method of the present disclosure further includes performing a second amplification using "reverse" target specific primers and one or a plurality of primers specific to a universal tag that was introduced as part of the target specific forward primers in the first round. In an embodiment, the method may involve a fully nested, hemi-nested, semi-nested, one sided fully nested, one sided hemi-nested, or one sided semi-nested PCR approach. In an embodiment, a method of the present disclosure is used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising performing a multiplex preamplification of selected targets for a limited number of cycles, dividing the product into multiple aliquots and amplifying subpools of targets in individual reactions, and pooling products of parallel subpools reactions. Note that this approach could be used to perform targeted amplification in a manner that would result in low levels of allelic bias for 50-500 loci, for 500 to 5,000 loci, for 5,000 to 50,000 loci, or even for 50,000 to 500,000 loci. In an embodiment, the primers carry partial or full length sequencing compatible tags.

The workflow may entail (1) extracting DNA such as plasma DNA, (2) preparing fragment library with universal adaptors on both ends of fragments, (3) amplifying the library using universal primers specific to the adaptors, (4) dividing the amplified sample "library" into multiple aliquots, (5) performing multiplex (e.g. about 100-plex, 1,000, or 10,000-plex with one target specific primer per target and a tag-specific primer) amplifications on aliquots, (6) pooling aliquots of one sample, (7) barcoding the sample, (8) mixing the samples and adjusting the concentration, (9) sequencing the sample. The workflow may comprise multiple sub-steps that contain one of the listed steps (e.g. step (2) of preparing the library step could entail three enzymatic steps (blunt ending, dA tailing and adaptor ligation) and three purification steps). Steps of the workflow may be combined, divided up or performed in different order (e.g. bar coding and pooling of samples).

It is important to note that the amplification of a library can be performed in such a way that it is biased to amplify short fragments more efficiently. In this manner it is possible to preferentially amplify shorter sequences, e.g. mono- nucleosomal DNA fragments as the cell free fetal DNA (of placental origin) found in the circulation of pregnant women. Note that PCR assays can have the tags, for example sequencing tags, (usually a truncated form of 15-25 bases). After multiplexing, PCR multiplexes of a sample are pooled and then the tags are completed (including bar coding) by a tag-specific PCR (could also be done by ligation). Also, the full sequencing tags can be added in the same reaction as the multiplexing. In the first cycles targets may be amplified with the target specific primers, subsequently the tag-specific primers take over to complete the SQ-adaptor sequence. The PCR primers may carry no tags. The sequencing tags may be appended to the amplification products by ligation.

In an embodiment, highly multiplex PCR followed by evaluation of amplified material by clonal sequencing may be used for various applications such as the detection of fetal aneuploidy. Whereas traditional multiplex PCRs evaluate up to fifty loci simultaneously, the approach described herein may be used to enable simultaneous evaluation of more than 50 loci simultaneously, more than 100 loci simultaneously, more than 500 loci simultaneously, more than 1,000 loci simultaneously, more than 5,000 loci simultaneously, more than 10,000 loci simultaneously, more than 50,000 loci simultaneously, and more than 100,000 loci simultaneously. Experiments have shown that up to, including and more than 10,000 distinct loci can be evaluated simultaneously, in a single reaction, with sufficiently good efficiency and specificity to make non-invasive prenatal aneuploidy diagnoses and/or copy number calls with high accuracy. Assays may be combined in a single reaction with the entirety of a sample such as a cfDNA sample isolated from maternal plasma, a fraction thereof, or a further processed derivative of the cfDNA sample. The sample (e.g., cfDNA or derivative) may also be split into multiple parallel multiplex reactions. The optimum sample splitting and multiplex is determined by trading off various performance specifications. Due to the limited amount of material, splitting the sample into multiple fractions can introduce sampling noise, handling time, and increase the possibility of error. Conversely, higher multiplexing can result in greater amounts of spurious amplification and greater inequalities in

amplification both of which can reduce test performance.

Two crucial related considerations in the application of the methods described herein are the limited amount of original sample (e.g., plasma) and the number of original molecules in that material from which allele frequency or other measurements are obtained. If the number of original molecules falls below a certain level, random sampling noise becomes significant, and can affect the accuracy of the test. Typically, data of sufficient quality for making noninvasive prenatal aneuploidy diagnoses can be obtained if measurements are made on a sample comprising the equivalent of 500-1000 original molecules per target locus. There are a number of ways of increasing the number of distinct measurements, for example increasing the sample volume. Each manipulation applied to the sample also potentially results in losses of material. It is essential to characterize losses incurred by various manipulations and avoid, or as necessary improve yield of certain manipulations to avoid losses that could degrade performance of the test. In an embodiment, it is possible to mitigate potential losses in subsequent steps by amplifying all or a fraction of the original sample (e.g., cfDNA sample). Various methods are available to amplify all of the genetic material in a sample, increasing the amount available for downstream procedures. In an embodiment, ligation mediated PCR (LM-PCR) DNA fragments are amplified by PCR after ligation of either one distinct adaptors, two distinct adapters, or many distinct adaptors. In an embodiment, multiple displacement amplification (MDA) phi-29 polymerase is used to amplify all DNA isothermally. In DOP-PCR and variations, random priming is used to amplify the original material DNA. Each method has certain characteristics such as uniformity of amplification across all represented regions of the genome, efficiency of capture and amplification of original DNA, and amplification performance as a function of the length of the fragment.

In an embodiment LM-PCR may be used with a single heteroduplexed adaptor having a 3-prime tyrosine. The heteroduplexed adaptor enables the use of a single adaptor molecule that may be converted to two distinct sequences on 5-prime and 3-prime ends of the original DNA fragment during the first round of PCR. In an embodiment, it is possible to fractionate the amplified library by size separations, or products such as AMPURE, TASS or other similar methods. Prior to ligation, sample DNA may be blunt ended, and then a single adenosine base is added to the 3-prime end. Prior to ligation the DNA may be cleaved using a restriction enzyme or some other cleavage method. During ligation the 3- prime adenosine of the sample fragments and the complementary 3-prime tyrosine overhang of adaptor can enhance ligation efficiency. The extension step of the PCR amplification may be limited from a time standpoint to reduce amplification from fragments longer than about 200 bp, about 300 bp, about 400 bp, about 500 bp or about 1,000 bp. Since longer DNA found in the maternal plasma is nearly exclusively maternal, this may result in the enrichment of fetal DNA by 10-50% and improvement of test performance. A number of reactions were run using conditions as specified by commercially available kits; the resulted in successful ligation of fewer than 10% of sample DNA molecules. A series of optimizations of the reaction conditions for this improved ligation to approximately 70%. Mini-PCR

The following Mini-PCR method is desirable for samples containing short nucleic acids, digested nucleic acids, or fragmented nucleic acids, such as cfDNA. Traditional PCR assay design results in significant losses of distinct fetal molecules, but losses can be greatly reduced by designing very short PCR assays, termed mini-PCR assays. Fetal cfDNA in maternal serum is highly fragmented and the fragment sizes are distributed in approximately a Gaussian fashion with a mean of 160 bp, a standard deviation of 15 bp, a minimum size of about 100 bp, and a maximum size of about 220 bp. The distribution of fragment start and end positions with respect to the targeted polymorphisms, while not necessarily random, vary widely among individual targets and among all targets collectively and the polymorphic site of one particular target locus may occupy any position from the start to the end among the various fragments originating from that locus. Note that the term mini-PCR may equally well refer to normal PCR with no additional restrictions or limitations.

During PCR, amplification will only occur from template DNA fragments comprising both forward and reverse primer sites. Because fetal cfDNA fragments are short, the likelihood of both primer sites being present the likelihood of a fetal fragment of length L comprising both the forward and reverse primers sites is ratio of the length of the amplicon to the length of the fragment. Under ideal conditions, assays in which the amplicon is 45, 50, 55, 60, 65, or 70 bp will successfully amplify from 72%, 69%, 66%, 63%, 59%, or 56%, respectively, of available template fragment molecules. The amplicon length is the distance between the 5-prime ends of the forward and reverse priming sites. Amplicon length that is shorter than typically used by those known in the art may result in more efficient measurements of the desired polymorphic loci by only requiring short sequence reads. In an embodiment, a substantial fraction of the amplicons should be less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp.

Note that in methods known in the prior art, short assays such as those described herein are usually avoided because they are not required and they impose considerable constraint on primer design by limiting primer length, annealing characteristics, and the distance between the forward and reverse primer.

Also note that there is the potential for biased amplification if the 3- prime end of the either primer is within roughly 1-6 bases of the polymorphic site. This single base difference at the site of initial polymerase binding can result in preferential amplification of one allele, which can alter observed allele frequencies and degrade performance. All of these constraints make it very challenging to identify primers that will amplify a particular locus successfully and furthermore, to design large sets of primers that are compatible in the same multiplex reaction. In an embodiment, the 3' end of the inner forward and reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases. Ideally, the number of bases may be between 6 and 10 bases, but may equally well be between 4 and 15 bases, between three and 20 bases, between two and 30 bases, or between 1 and 60 bases, and achieve substantially the same end.

Multiplex PCR may involve a single round of PCR in which all targets are amplified or it may involve one round of PCR followed by one or more rounds of nested PCR or some variant of nested PCR. Nested PCR consists of a subsequent round or rounds of PCR amplification using one or more new primers that bind internally, by at least one base pair, to the primers used in a previous round. Nested PCR reduces the number of spurious amplification targets by amplifying, in subsequent reactions, only those amplification products from the previous one that have the correct internal sequence. Reducing spurious amplification targets improves the number of useful measurements that can be obtained, especially in sequencing. Nested PCR typically entails designing primers completely internal to the previous primer binding sites, necessarily increasing the minimum DNA segment size required for amplification. For samples such as maternal plasma cfDNA, in which the DNA is highly fragmented, the larger assay size reduces the number of distinct cfDNA molecules from which a measurement can be obtained. In an embodiment, to offset this effect, one may use a partial nesting approach where one or both of the second round primers overlap the first binding sites extending internally some number of bases to achieve additional specificity while minimally increasing in the total assay size.

In an embodiment, a multiplex pool of PCR assays are designed to amplify potentially heterozygous SNP or other polymorphic or non-polymorphic loci on one or more chromosomes and these assays are used in a single reaction to amplify DNA. The number of PCR assays may be between 50 and 200 PCR assays, between 200 and 1,000 PCR assays, between 1,000 and 5,000 PCR assays, or between 5,000 and 20,000 PCR assays (50 to 200-plex, 200 to 1 ,000- plex, 1,000 to 5,000-plex, 5,000 to 20,000-plex, more than 20,000-plex respectively). In an embodiment, a multiplex pool of about 10,000 PCR assays (10,000-plex) are designed to amplify potentially heterozygous SNP loci on chromosomes X, Y, 13, 18, and 21 and 1 or 2 and these assays are used in a single reaction to amplify cfDNA obtained from a material plasma sample, chorion villus samples, amniocentesis samples, single or a small number of cells, other bodily fluids or tissues, cancers, or other genetic matter. The SNP frequencies of each locus may be determined by clonal or some other method of sequencing of the amplicons. Statistical analysis of the allele frequency distributions or ratios of all assays may be used to determine if the sample contains a trisomy of one or more of the chromosomes included in the test. In another embodiment the original cfDNA samples is split into two samples and parallel 5,000-plex assays are performed. In another embodiment the original cfDNA samples is split into n samples and parallel (~10,000/n)-plex assays are performed where n is between 2 and 12, or between 12 and 24, or between 24 and 48, or between 48 and 96. Data is collected and analyzed in a similar manner to that already described. Note that this method is equally well applicable to detecting translocations, deletions, duplications, and other chromosomal abnormalities.

In an embodiment, tails with no homology to the target genome may also be added to the 3-prime or 5-prime end of any of the primers. These tails facilitate subsequent manipulations, procedures, or measurements. In an embodiment, the tail sequence can be the same for the forward and reverse target specific primers. In an embodiment, different tails may be used for the forward and reverse target specific primers. In an embodiment, a plurality of different tails may be used for different loci or sets of loci. Certain tails may be shared among all loci or among subsets of loci. For example, using forward and reverse tails corresponding to forward and reverse sequences required by any of the current sequencing platforms can enable direct sequencing following amplification. In an embodiment, the tails can be used as common priming sites among all amplified targets that can be used to add other useful sequences. In some embodiments, the inner primers may contain a region that is designed to hybridize either upstream or downstream of the targeted locus (e.g., a polymorphic locus). In some embodiments, the primers may contain a molecular barcode. In some embodiments, the primer may contain a universal priming sequence designed to allow PCR amplification.

In an embodiment, a 10,000-plex PCR assay pool is created such that forward and reverse primers have tails corresponding to the required forward and reverse sequences required by a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA. In addition, included 5-prime to the sequencing tails is an additional sequence that can be used as a priming site in a subsequent PCR to add nucleotide barcode sequences to the amplicons, enabling multiplex sequencing of multiple samples in a single lane of the high throughput sequencing instrument.

In an embodiment, a 10,000-plex PCR assay pool is created such that reverse primers have tails corresponding to the required reverse sequences required by a high throughput sequencing instrument. After amplification with the first 10,000-plex assay, a subsequent PCR amplification may be performed using a another 10,000-plex pool having partly nested forward primers (e.g. 6- bases nested) for all targets and a reverse primer corresponding to the reverse sequencing tail included in the first round. This subsequent round of partly nested amplification with just one target specific primer and a universal primer limits the required size of the assay, reducing sampling noise, but greatly reduces the number of spurious amplicons. The sequencing tags can be added to appended ligation adaptors and/or as part of PCR probes, such that the tag is part of the final amplicon.

Fetal fraction affects performance of the test. There are a number of ways to enrich the fetal fraction of the DNA found in maternal plasma. Fetal fraction can be increased by the previously described LM-PCR method already discussed as well as by a targeted removal of long maternal fragments. In an embodiment, prior to multiplex PCR amplification of the target loci, an additional multiplex PCR reaction may be carried out to selectively remove long and largely maternal fragments corresponding to the loci targeted in the subsequent multiplex PCR. Additional primers are designed to anneal a site a greater distance from the polymorphism than is expected to be present among cell free fetal DNA fragments. These primers may be used in a one cycle multiplex PCR reaction prior to multiplex PCR of the target polymorphic loci. These distal primers are tagged with a molecule or moiety that can allow selective recognition of the tagged pieces of DNA. In an embodiment, these molecules of DNA may be covalently modified with a biotin molecule that allows removal of newly formed double stranded DNA comprising these primers after one cycle of PCR. Double stranded DNA formed during that first round is likely maternal in origin.

Removal of the hybrid material may be accomplish by the used of magnetic streptavidin beads. There are other methods of tagging that may work equally well. In an embodiment, size selection methods may be used to enrich the sample for shorter strands of DNA; for example those less than about 800 bp, less than about 500 bp, or less than about 300 bp. Amplification of short fragments can then proceed as usual.

The mini-PCR method described in this disclosure enables highly multiplexed amplification and analysis of hundreds to thousands or even millions of loci in a single reaction, from a single sample. At the same, the detection of the amplified DNA can be multiplexed; tens to hundreds of samples can be multiplexed in one sequencing lane by using barcoding PCR. This multiplexed detection has been successfully tested up to 49-plex, and a much higher degree of multiplexing is possible. In effect, this allows hundreds of samples to be genotyped at thousands of SNPs in a single sequencing run. For these samples, the method allows determination of genotype and heterozygosity rate and simultaneously determination of copy number, both of which may be used for the purpose of aneuploidy detection. This method is particularly useful in detecting aneuploidy of a gestating fetus from the free floating DNA found in maternal plasma. This method may be used as part of a method for sexing a fetus, and/or predicting the paternity of the fetus. It may be used as part of a method for mutation dosage. This method may be used for any amount of DNA or RNA, and the targeted regions may be SNPs, other polymorphic regions, non- polymorphic regions, and combinations thereof.

In some embodiments, ligation mediated universal-PCR amplification of fragmented DNA may be used. The ligation mediated universal-PCR amplification can be used to amplify plasma DNA, which can then be divided into multiple parallel reactions. It may also be used to preferentially amplify short fragments, thereby enriching fetal fraction. In some embodiments the addition of tags to the fragments by ligation can enable detection of shorter fragments, use of shorter target sequence specific portions of the primers and/or annealing at higher temperatures which reduces unspecific reactions.

The methods described herein may be used for a number of purposes where there is a target set of DNA that is mixed with an amount of

contaminating DNA. In some embodiments, the target DNA and the contaminating DNA may be from individuals who are genetically related. For example, genetic abnormalities in a fetus (target) may be detected from maternal plasma which contains fetal (target) DNA and also maternal (contaminating) DNA; the abnormalities include whole chromosome abnormalities (e.g.

aneuploidy) partial chromosome abnormalities (e.g. deletions, duplications, inversions, translocations), polynucleotide polymorphisms (e.g. STRs), single nucleotide polymorphisms, and/or other genetic abnormalities or differences. In some embodiments, the target and contaminating DNA may be from the same individual, but where the target and contaminating DNA are different by one or more mutations, for example in the case of cancer, (see e.g. H. Mamon et al. Preferential Amplification of Apoptotic DNA from Plasma: Potential for Enhancing Detection of Minor DNA Alterations in Circulating DNA. Clinical Chemistry 54:9 (2008). In some embodiments, the DNA may be found in cell culture (apoptotic) supernatant. In some embodiments, it is possible to induce apoptosis in biological samples (e.g., blood) for subsequent library preparation, amplification and/or sequencing. A number of enabling workflows and protocols to achieve this end are presented elsewhere in this disclosure.

In some embodiments, the target DNA may originate from single cells, from samples of DNA consisting of less than one copy of the target genome, from low amounts of DNA, from DNA from mixed origin (e.g. pregnancy plasma: placental and maternal DNA; cancer patient plasma and tumors: mix between healthy and cancer DNA, transplantation etc.), from other body fluids, from cell cultures, from culture supernatants, from forensic samples of DNA, from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.

In some embodiments, a short amplicon size may be used. Short amplicon sizes are especially suited for fragmented DNA (see e.g. A. Sikora, et si. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem. 2010 Jan;56(l): 136-8.)

The use of short amplicon sizes may result in some significant benefits. Short amplicon sizes may result in optimized amplification efficiency. Short amplicon sizes typically produce shorter products, therefore there is less chance for nonspecific priming. Shorter products can be clustered more densely on sequencing flow cell, as the clusters will be smaller. Note that the methods described herein may work equally well for longer PCR amplicons. Amplicon length may be increased if necessary, for example, when sequencing larger sequence stretches. Experiments with 146-plex targeted amplification with assays of 100 bp to 200 bp length as first step in a nested-PCR protocol were run on single cells and on genomic DNA with positive results.

In some embodiments, the methods described herein may be used to amplify and/or detect SNPs, copy number, nucleotide methylation, mRNA levels, other types of RNA expression levels, other genetic and/or epigenetic features. The mini-PCR methods described herein may be used along with next- generation sequencing; it may be used with other downstream methods such as microarrays, counting by digital PCR, real-time PCR, Mass-spectrometry analysis etc.

In some embodiment, the mini-PCR amplification methods described herein may be used as part of a method for accurate quantification of minority populations. It may be used for absolute quantification using spike calibrators. It may be used for mutation / minor allele quantification through very deep sequencing, and may be run in a highly multiplexed fashion. It may be used for standard paternity and identity testing of relatives or ancestors, in human, animals, plants or other creatures. It may be used for forensic testing. It may be used for rapid genotyping and copy number analysis (CN), on any kind of material, e.g. amniotic fluid and CVS, sperm, product of conception (POC). It may be used for single cell analysis, such as genotyping on samples biopsied from embryos. It may be used for rapid embryo analysis (within less than one, one, or two days of biopsy) by targeted sequencing using min-PCR.

In some embodiments, it may be used for tumor analysis: tumor biopsies are often a mixture of health and tumor cells. Targeted PCR allows deep sequencing of SNPs and loci with close to no background sequences. It may be used for copy number and loss of heterozygosity analysis on tumor DNA. Said tumor DNA may be present in many different body fluids or tissues of tumor patients. It may be used for detection of tumor recurrence, and/or tumor screening. It may be used for quality control testing of seeds. It may be used for breeding, or fishing purposes. Note that any of these methods could equally well be used targeting non-polymorphic loci for the purpose of ploidy calling.

Some literature describing some of the fundamental methods that underlie the methods disclosed herein include: (1) Wang HY, Luo M,

Tereshchenko IV, Frikker DM, Cui X, Li JY, Hu G, Chu Y, Azaro MA, Lin Y, Shen L, Yang Q, Kambouris ME, Gao R, Shih W, Li H. Genome Res. 2005 Feb;15(2):276-83. Department of Molecular Genetics, Microbiology and Immunology/The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA. (2) High-throughput genotyping of single nucleotide polymorphisms with high sensitivity. Li H,

Wang HY, Cui X, Luo M, Hu G, Greenawalt DM, Tereshchenko IV, Li JY, Chu Y, Gao R. Methods Mol Biol. 2007;396 - PubMed PMID: 18025699. (3) A method comprising multiplexing of an average of 9 assays for sequencing is described in: Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes. Varley KE, Mitra RD. Genome Res. 2008 Nov; 18(1 1): 1844- 50. Epub 2008 Oct 10. Note that the methods disclosed herein allow

multiplexing of orders of magnitude more than in the above references.

Targeted PCR Variants - Nesting

There are many workflows that are possible when conducting PCR; some workflows typical to the methods disclosed herein are described. The steps outlined herein are not meant to exclude other possible steps nor does it imply that any of the steps described herein are required for the method to work properly. A large number of parameter variations or other modifications are known in the literature, and may be made without affecting the essence of the invention. One particular generalized workflow is given below followed by a number of possible variants. The variants typically refer to possible secondary PCR reactions, for example different types of nesting that may be done (step 3). It is important to note that variants may be done at different times, or in different orders than explicitly described herein. Examples that use polymorphic loci for illustration can be readily adapted for the amplification of nonpolymorphic loci if desired.

1. The DNA in the sample may have ligation adapters, often referred to as library tags or ligation adaptor tags (LTs), appended, where the ligation adapters contain a universal priming sequence, followed by a universal amplification. In an embodiment, this may be done using a standard protocol designed to create sequencing libraries after fragmentation. In an embodiment, the DNA sample can be blunt ended, and then an A can be added at the 3' end. A Y-adaptor with a T-overhang can be added and ligated. In some embodiments, other sticky ends can be used other than an A or T overhang. In some embodiments, other adaptors can be added, for example looped ligation adaptors. In some embodiments, the adaptors may have tag designed for PCR amplification.

2. Specific Target Amplification (STA): Pre-amplification of hundreds to thousands to tens of thousands and even hundreds of thousands of targets may be multiplexed in one reaction volume. STA is typically run from 10 to 30 cycles, though it may be run from 5 to 40 cycles, from 2 to 50 cycles, and even from 1 to 100 cycles. Primers may be tailed, for example for a simpler workflow or to avoid sequencing of a large proportion of dimers. Note that typically, dimers of both primers carrying the same tag will not be amplified or sequenced efficiently. In some embodiments, between 1 and 10 cycles of PCR may be carried out; in some embodiments between 10 and 20 cycles of PCR may be carried out; in some embodiments between 20 and 30 cycles of PCR may be carried out; in some embodiments between 30 and 40 cycles of PCR may be carried out; in some embodiments more than 40 cycles of PCR may be carried out. The amplification may be a linear amplification. The number of PCR cycles may be optimized to result in an optimal depth of read (DOR) profile. Different DOR profiles may be desirable for different purposes. In some embodiments, a more even distribution of reads between all assays is desirable; if the DOR is too small for some assays, the stochastic noise can be too high for the data to be too useful, while if the depth of read is too high, the marginal usefulness of each additional read is relatively small.

Primer tails may improve the detection of fragmented DNA from universally tagged libraries. If the library tag and the primer-tails contain a homologous sequence, hybridization can be improved (for example, melting temperature (TM) is lowered) and primers can be extended if only a portion of the primer target sequence is in the sample DNA fragment. In some

embodiments, 13 or more target specific base pairs may be used. In some embodiments, 10 to 12 target specific base pairs may be used. In some embodiments, 8 to 9 target specific base pairs may be used. In some

embodiments, 6 to 7 target specific base pairs may be used. In some

embodiments, STA may be performed on pre-amplified DNA, e.g. MDA, RCA, other whole genome amplifications, or adaptor-mediated universal PCR. In some embodiments, STA may be performed on samples that are enriched or depleted of certain sequences and populations, e.g. by size selection, target capture, directed degradation.

3. In some embodiments, it is possible to perform secondary multiplex PCRs or primer extension reactions to increase specificity and reduce undesirable products. For example, full nesting, semi-nesting, hemi-nesting, and/or subdividing into parallel reactions of smaller assay pools are all techniques that may be used to increase specificity. Experiments have shown that splitting a sample into three 400-plex reactions resulted in product DNA with greater specificity than one 1,200-plex reaction with exactly the same primers. Similarly, experiments have shown that splitting a sample into four 2,400-plex reactions resulted in product DNA with greater specificity than one 9,600-plex reaction with exactly the same primers. In an embodiment, it is possible to use target-specific and tag specific primers of the same and opposing directionality.

4. In some embodiments, it is possible to amplify a DNA sample (dilution, purified or otherwise) produced by an STA reaction using tag-specific primers and "universal amplification", i.e. to amplify many or all pre-amplified and tagged targets. Primers may contain additional functional sequences, e.g. barcodes, or a full adaptor sequence necessary for sequencing on a high throughput sequencing platform.

These methods may be used for analysis of any sample of DNA, and are especially useful when the sample of DNA is particularly small, or when it is a sample of DNA where the DNA originates from more than one individual, such as in the case of maternal plasma. These methods may be used on DNA samples such as a single or small number of cells, genomic DNA, plasma DNA, amplified plasma libraries, amplified apoptotic supernatant libraries, or other samples of mixed DNA. In an embodiment, these methods may be used in the case where cells of different genetic constitution may be present in a single individual, such as with cancer or transplants.

Protocol variants (variants and/or additions to the workflow above)

Direct multiplexed mini-PCR: Specific target amplification (STA) of a plurality of target sequences with tagged primers is shown in Figure 1. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with PCR primers hybridized. 104 denotes the final PCR product. In some embodiments, STA may be done on more than 100, more than 200, more than 500, more than 1,000, more than 2,000, more than 5,000, more than 10,000, more than 20,000, more than 50,000, more than 100,000 or more than 200,000 targets. In a subsequent reaction, tag-specific primers amplify all target sequences and lengthen the tags to include all necessary sequences for sequencing, including sample indexes. In an embodiment, primers may not be tagged or only certain primers may be tagged. Sequencing adaptors may be added by conventional adaptor ligation. In an embodiment, the initial primers may carry the tags.

In an embodiment, primers are designed so that the length of DNA amplified is unexpectedly short. Prior art demonstrates that ordinary people skilled in the art typically design 100+ bp amplicons. In an embodiment, the amplicons may be designed to be less than 80 bp. In an embodiment, the amplicons may be designed to be less than 70 bp. In an embodiment, the amplicons may be designed to be less than 60 bp. In an embodiment, the amplicons may be designed to be less than 50 bp. In an embodiment, the amplicons may be designed to be less than 45 bp. In an embodiment, the amplicons may be designed to be less than 40 bp. In an embodiment, the amplicons may be designed to be less than 35 bp. In an embodiment, the amplicons may be designed to be between 40 and 65 bp.

An experiment was performed using this protocol using 1200-plex amplification. Both genomic DNA and pregnancy plasma were used; about 70% of sequence reads mapped to targeted sequences. Details are given elsewhere in this document. Sequencing of a 1042-plex without design and selection of assays resulted in >99% of sequences being primer dimer products.

Sequential PCR: After STA1 multiple aliquots of the product may be amplified in parallel with pools of reduced complexity with the same primers. The first amplification can give enough material to split. This method is especially good for small samples, for example those that are about 6- 100 pg, about 100 pg to 1 ng, about 1 ng to 10 ng, or about 10 ng to 100 ng. The protocol was performed with 1200-plex into three 400-plexes. Mapping of sequencing reads increased from around 60 to 70 % in the 1200-plex alone to over 95%.

Semi-nested mini-PCR: (see Figure 2) After STA 1 a second STA is performed comprising a multiplex set of internal nested Forward primers (103 B, 105 b) and one (or few) tag-specific Reverse primers (103 A). 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized. 104 denotes the PCR product from 103. 105 denotes the product from 104 with nested Forward primer b hybridized, and Reverse tag A already part of the molecule from the PCR that occurred between 103 and 104. 106 denotes the final PCR product. With this workflow usually greater than 95% of sequences map to the intended targets. The nested primer may overlap with the outer Forward primer sequence but introduces additional 3 '-end bases. In some embodiments it is possible to use between one and 20 extra 3' bases. Experiments have shown that using 9 or more extra 3' bases in a 1200-plex designs works well.

Fully nested mini-PCR: (see Figure 3) After STA step 1, it is possible to perform a second multiplex PCR (or parallel m.p. PCRs of reduced complexity) with two nested primers carrying tags (A, a, B, b). 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized. 104 denotes the PCR product from 103. 105 denotes the product from 104 with nested Forward primer b and nested Reverse primer a hybridized. 106 denotes the final PCR product. In some embodiments, it is possible to use two full sets of primers. Experiments using a fully nested mini-PCR protocol were used to perform 146-plex amplification on single and three cells without step 102 of appending universal ligation adaptors and amplifying.

Hemi-nested mini-PCR: (see Figure 4) It is possible to use target DNA that has and adaptors at the fragment ends. STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A). A second STA can be performed using a universal tag-specific

Forward primer and target specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT. 105 denotes the product from 104 with Forward primer B hybridized. 106 denotes the final PCR product. In this workflow, target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers. Note that in this example, primers A and B may be considered to be first primers, and primers 'a' and 'b' may be considered to be inner primers. This method is a big

improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non- targeted DNA, however, after second round there is typically a big improvement.

Triply hemi-nested mini-PCR: (see Figure 5) It is possible to use target DNA that has and adaptor at the fragment ends. STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A) and (a). A second STA can be performed using a universal tag- specific Forward primer and target specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT. 105 denotes the product from 104 with Forward primer B hybridized. 106 denotes the PCR product from 105 that was amplified using Reverse primer A and Forward primer B. 107 denotes the product from 106 with Reverse primer 'a' hybridized. 108 denotes the final PCR product. Note that in this example, primers 'a' and B may be considered to be inner primers, and A may be considered to be a first primer. Optionally, both A and B may be considered to be first primers, and 'a' may be considered to be an inner primer. The designation of reverse and forward primers may be switched. In this workflow, target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers. This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non- targeted DNA, however, after second round there is typically a big improvement.

One-sided nested mini-PCR: (see Figure 6) It is possible to use target DNA that has an adaptor at the fragment ends. STA may also be performed with a multiplex set of nested Forward primers and using the ligation adapter tag as the Reverse primer. A second STA may then be performed using a set of nested Forward primers and a universal Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT. 105 denotes the product from 104 with nested Forward primer a hybridized. 106 denotes the final PCR product. This method can detect shorter target sequences than standard PCR by using overlapping primers in the first and second STAs. The method is typically performed off a sample of DNA that has already undergone STA step 1 above - appending of universal tags and amplification; the two nested primers are only on one side, other side uses the library tag. The method was performed on libraries of apoptotic supematants and pregnancy plasma. With this workflow around 60% of sequences mapped to the intended targets. Note that reads that contained the reverse adaptor sequence were not mapped, so this number is expected to be higher if those reads that contain the reverse adaptor sequence are mapped

One-sided mini-PCR: It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 7). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA with Forward Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT, and which is the final PCR product. This method can detect shorter target sequences than standard PCR. However it may be relatively unspecific, as only one target specific primer is used. This protocol is effectively half of the one sided nested mini PCR

Reverse semi-nested mini-PCR: It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 8). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA with Reverse Primer B hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer B and ligation adaptor tag Forward primer LT. 105 denotes the PCR product 104 with hybridized Forward Primer A, and inner Reverse primer 'b'. 106 denotes the PCR product that has been amplified from 105 using Forward primer A and Reverse primer 'b', and which is the final PCR product. This method can detect shorter target sequences than standard PCR.

There also may be more variants that are simply iterations or combinations of the above methods such as doubly nested PCR, where three sets of primers are used. Another variant is one-and-a-half sided nested mini-PCR, where STA may also be performed with a multiplex set of nested Forward primers and one (or few) tag-specific Reverse primer.

Note that in all of these variants, the identity of the Forward primer and the Reverse primer may be interchanged. Note that in some embodiments, the nested variant can equally well be run without the initial library preparation that comprises appending the adapter tags, and a universal amplification step. Note that in some embodiments, additional rounds of PCR may be included, with additional Forward and/or Reverse primers and amplification steps; these additional steps may be particularly useful if it is desirable to further increase the percent of DNA molecules that correspond to the targeted loci.

Nesting Workflows

There are many ways to perform the amplification, with different degrees of nesting, and with different degrees of multiplexing. In Figure 9, a flow chart is given with some of the possible workflows. Note that the use of 10,000-plex PCR is only meant to be an example; these flow charts would work equally well for other degrees of multiplexing.

Looped ligation adaptors

When adding universal tagged adaptors for example for the purpose of making a library for sequencing, there are a number of ways to ligate adaptors. One way is to blunt end the sample DNA, perform A-tailing, and ligate with adaptors that have a T-overhang. There are a number of other ways to ligate adaptors. There are also a number of adaptors that can be ligated. For example, a Y-adaptor can be used where the adaptor consists of two strands of DNA where one strand has a double strand region, and a region specified by a forward primer region, and where the other strand specified by a double strand region that is complementary to the double strand region on the first strand, and a region with a reverse primer. The double stranded region, when annealed, may contain a T- overhang for the purpose of ligating to double stranded DNA with an A overhang.

In an embodiment, the adaptor can be a loop of DNA where the terminal regions are complementary, and where the loop region contains a forward primer tagged region (LFT), a reverse primer tagged region (LRT), and a cleavage site between the two (See Figure 10). 101 refers to the double stranded, blunt ended target DNA. 102 refers to the A-tailed target DNA. 103 refers to the looped ligation adaptor with T overhang ' and the cleavage site 'Z'. 104 refers to the target DNA with appended looped ligation adaptors. 105 refers to the target DNA with the ligation adaptors appended cleaved at the cleavage site. LFT refers to the ligation adaptor Forward tag, and the LRT refers to the ligation adaptor Reverse tag. The complementary region may end on a T overhang, or other feature that may be used for ligation to the target DNA. The cleavage site may be a series of uracils for cleavage by UNG, or a sequence that may be recognized and cleaved by a restriction enzyme or other method of cleavage or just a basic amplification. These adaptors can be uses for any library preparation, for example, for sequencing. These adaptors can be used in combination with any of the other methods described herein, for example the mini-PCR amplification methods.

Internally Tagged Primers

When using sequencing to determine the allele present at a given polymorphic locus, the sequence read typically begins upstream of the primer binding site (a), and then to the polymorphic site (X). Tags are typically configured as shown in Figure 1 1, left. 101 refers to the single stranded target DNA with polymorphic locus of interest 'X', and primer 'a' with appended tag 'b'. In order to avoid nonspecific hybridization, the primer binding site (region of target DNA complementary to 'a') is typically 18 to 30 bp in length.

Sequence tag 'b' is typically about 20 bp; in theory these can be any length longer than about 15 bp, though many people use the primer sequences that are sold by the sequencing platform company. The distance 'd' between 'a' and 'X' may be at least 2 bp so as to avoid allele bias. When performing multiplexed PCR amplification using the methods disclosed herein or other methods, where careful primer design is necessary to avoid excessive primer interaction, the window of allowable distance 'd' between 'a' and 'X' may vary quite a bit: from 2 bp to 10 bp, from 2 bp to 20 bp, from 2 bp to 30 bp, or even from 2 bp to more than 30 bp. Therefore, when using the primer configuration shown in Figure 1 1, left, sequence reads must be a minimum of 40 bp to obtain reads long enough to measure the polymorphic locus, and depending on the lengths of 'a' and 'd' the sequence reads may need to be up to 60 or 75 bp. Usually, the longer the sequence reads, the higher the cost and time of sequencing a given number of reads, therefore, minimizing the necessary read length can save both time and money. In addition, since, on average, bases read earlier on the read are read more accurately than those read later on the read, decreasing the necessary sequence read length can also increase the accuracy of the measurements of the polymorphic region.

In an embodiment, termed internally tagged primers, the primer binding site (a) is split in to a plurality of segments (a', a", a'"....), and the sequence tag (b) is on a segment of DNA that is in the middle of two of the primer binding sites, as shown in Figure 11, 103. This configuration allows the sequencer to make shorter sequence reads. In an embodiment, a' + a" should be at least about 18 bp, and can be as long as 30, 40, 50, 60, 80, 100 or more than 100 bp. In an embodiment, a" should be at least about 6 bp, and in an embodiment is between about 8 and 16 bp. All other factors being equal, using the internally tagged primers can cut the length of the sequence reads needed by at least 6 bp, as much as 8 bp, 10 bp, 12 bp, 15 bp, and even by as many as 20 or 30 bp. This can result in a significant money, time and accuracy advantage. An example of internally tagged primers is given in Figure 12.

Primers with ligation adaptor binding region

One issue with fragmented DNA is that since it is short in length, the chance that a polymorphism is close to the end of a DNA strand is higher than for a long strand (e.g. 101, Figure 10). Since PCR capture of a polymorphism requires a primer binding site of suitable length on both sides of the

polymorphism, a significant number of strands of DNA with the targeted polymorphism will be missed due to insufficient overlap between the primer and the targeted binding site. In an embodiment, the target DNA 101 can have ligation adaptors appended 102, and the target primer 103 can have a region (cr) that is complementary to the ligation adaptor tag (It) appended upstream of the designed binding region (a) (see Figure 13); thus in cases where the binding region (region of 101 that is complementary to a) is shorter than the 18 bp typically required for hybridization, the region (cr) on the primer than is complementary to the library tag is able to increase the binding energy to a point where the PCR can proceed. Note that any specificity that is lost due to a shorter binding region can be made up for by other PCR primers with suitably long target binding regions. Note that this embodiment can be used in combination with direct PCR, or any of the other methods described herein, such as nested PCR, semi nested PCR, hemi nested PCR, one sided nested or semi or hemi nested PCR, or other PCR protocols.

When using the sequencing data to determine ploidy in combination with an analytical method that involves comparing the observed allele data to the expected allele distributions for various hypotheses, each additional read from alleles with a low depth of read will yield more information than a read from an allele with a high depth of read. Therefore, ideally, one would wish to see uniform depth of read (DOR) where each locus will have a similar number of representative sequence reads. Therefore, it is desirable to minimize the DOR variance. In an embodiment, it is possible to decrease the coefficient of variance of the DOR (this may be defined as the standard deviation of the DOR / the average DOR) by increasing the annealing times. In some embodiments the annealing temperatures may be longer than 2 minutes, longer than 4 minutes, longer than ten minutes, longer than 30 minutes, and longer than one hour, or even longer. Since annealing is an equilibrium process, there is no limit to the improvement of DOR variance with increasing annealing times. In an embodiment, increasing the primer concentration may decrease the DOR variance.

Exemplary Whole Genome Amplification Methods

In some embodiments, a method of the present disclosure may involve amplifying DNA, such as the use of whole genome application to amplify a nucleic acid sample before amplifying just the target loci. Amplification of the DNA, a process which transforms a small amount of genetic material to a larger amount of genetic material that comprises a similar set of genetic data, can be done by a wide variety of methods, including, but not limited to polymerase chain reaction (PCR). One method of amplifying DNA is whole genome amplification (WGA). There are a number of methods available for WGA: ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), and multiple displacement amplification (MDA). In LM-PCR, short DNA sequences called adapters are ligated to blunt ends of DNA. These adapters contain universal amplification sequences, which are used to amplify the DNA by PCR. In DOP-PCR, random primers that also contain universal amplification sequences are used in a first round of annealing and PCR. Then, a second round of PCR is used to amplify the sequences further with the universal primer sequences. MDA uses the phi-29 polymerase, which is a highly processive and non-specific enzyme that replicates DNA and has been used for single-cell analysis. The major limitations to amplification of material from a single cell are (1) necessity of using extremely dilute DNA concentrations or extremely small volume of reaction mixture, and (2) difficulty of reliably dissociating DNA from proteins across the whole genome. Regardless, single- cell whole genome amplification has been used successfully for a variety of applications for a number of years. There are other methods of amplifying DNA from a sample of DNA. The DNA amplification transforms the initial sample of DNA into a sample of DNA that is similar in the set of sequences, but of much greater quantity. In some cases, amplification may not be required.

In some embodiments, DNA may be amplified using a universal amplification, such as WGA or MDA. In some embodiments, DNA may be amplified by targeted amplification, for example using targeted PCR, or circularizing probes. In some embodiments, the DNA may be preferentially enriched using a targeted amplification method, or a method that results in the full or partial separation of desired from undesired DNA, such as capture by hybridization approaches. In some embodiments, DNA may be amplified by using a combination of a universal amplification method and a preferential enrichment method. A fuller description of some of these methods can be found elsewhere in this document.

Exemplary Enrichment and Sequencing Methods

In an embodiment, a method disclosed herein uses selective enrichment techniques that preserve the relative allele frequencies that are present in the original sample of DNA at each target loci (e.g., each polymorphic locus) from a set of target loci (e.g., polymorphic loci). While enrichment is particularly advantageous for methods for analyzing polymorphic loci, these enrichment methods can be readily adapted for nonpolymorphic loci if desired. In some embodiments the amplification and/or selective enrichment technique may involve PCR such as ligation mediated PCR, fragment capture by hybridization, Molecular Inversion Probes, or other circularizing probes. In some

embodiments, methods for amplification or selective enrichment may involve using probes where, upon correct hybridization to the target sequence, the 3- prime end or 5-prime end of a nucleotide probe is separated from the polymorphic site of the allele by a small number of nucleotides. This separation reduces preferential amplification of one allele, termed allele bias. This is an improvement over methods that involve using probes where the 3-prime end or 5-prime end of a correctly hybridized probe are directly adjacent to or very near to the polymorphic site of an allele. In an embodiment, probes in which the hybridizing region may or certainly contains a polymorphic site are excluded. Polymorphic sites at the site of hybridization can cause unequal hybridization or inhibit hybridization altogether in some alleles, resulting in preferential amplification of certain alleles. These embodiments are improvements over other methods that involve targeted amplification and/or selective enrichment in that they better preserve the original allele frequencies of the sample at each polymorphic locus, whether the sample is pure genomic sample from a single individual or mixture of individuals.

The use of a technique to enrich a sample of DNA at a set of target loci followed by sequencing as part of a method for non- invasive prenatal allele calling or ploidy calling may confer a number of unexpected advantages. In some embodiments of the present disclosure, the method involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORTTM (PS). The ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus. There are many methods that may be used to measure the genetic data of the individual and/or the related individuals as part of embodied methods. In an embodiment, a method for enriching the concentration of a set of targeted alleles is disclosed herein, the method comprising one or more of the following steps: targeted amplification of genetic material, addition of loci specific oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by

hybridization, and detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods. In some cases the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.

For example, a universal amplification step of the DNA prior to targeted amplification may confer several advantages, such as removing the risk of bottlenecking and reducing allelic bias. The DNA may be mixed an

oligonucleotide probe that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to allow the circularization of the probe. After circularization, an exonuclease may be added to digest to non-circularized genetic material, followed by detection of the circularized probe. The DNA may be mixed with PCR primers that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to complete PCR amplification. Amplified or unamplified DNA may be targeted by hybrid capture probes that target a set of loci; after hybridization, the probe may be localized and separated from the mixture to provide a mixture of DNA that is enriched in target sequences.

The use of a method to target certain loci followed by sequencing as part of a method for allele calling or ploidy calling may confer a number of unexpected advantages. Some methods by which DNA may be targeted, or preferentially enriched, include using circularizing probes, linked inverted probes (LIPs, MIPs), capture by hybridization methods such as SURESELECT, and targeted PCR or ligation-mediated PCR amplification strategies.

In some embodiments, a method of the present disclosure involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORTTM (PS), which is described further herein.

PARENTAL SUPPORTTM is an informatics based approach to manipulating genetic data, aspects of which are described herein. The ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus followed by a clinical decision based on the actionable data. The algorithms behind the PS method take the measured genetic data of the target individual, often an embryo or fetus, and the measured genetic data from related individuals, and are able to increase the accuracy with which the genetic state of the target individual is known. In an embodiment, the measured genetic data is used in the context of making ploidy determinations during prenatal genetic diagnosis. In an embodiment, the measured genetic data is used in the context of making ploidy determinations or allele calls on embryos during in vitro fertilization. There are many methods that may be used to measure the genetic data of the individual and/or the related individuals in the aforementioned contexts. The different methods comprise a number of steps, those steps often involving amplification of genetic material, addition of oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by

hybridization, detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods. In some cases the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.

Note that in theory it is possible to target any number loci in the genome, anywhere from one loci to well over one million loci. If a sample of DNA is subjected to targeting, and then sequenced, the percentage of the alleles that are read by the sequencer will be enriched with respect to their natural abundance in the sample. The degree of enrichment can be anywhere from one percent (or even less) to ten-fold, a hundred-fold, a thousand- fold or even many million- fold. In the human genome there are roughly 3 billion base pairs, and nucleotides, comprising approximately 75 million polymorphic loci. The more loci that are targeted, the smaller the degree of enrichment is possible. The fewer the number of loci that are targeted, the greater degree of enrichment is possible, and the greater depth of read may be achieved at those loci for a given number of sequence reads.

In an embodiment of the present disclosure, the targeting or preferential may focus entirely on SNPs. In an embodiment, the targeting or preferential may focus on any polymorphic site. A number of commercial targeting products are available to enrich exons. Surprisingly, targeting exclusively SNPs, or exclusively polymorphic loci, is particularly advantageous when using a method for NPD that relies on allele distributions. There are also published methods for NPD using sequencing, for example U.S. Patent 7,888,017, involving a read count analysis where the read counting focuses on counting the number of reads that map to a given chromosome, where the analyzed sequence reads do not focused on regions of the genome that are polymorphic. Those types of methodology that do not focus on polymorphic alleles would not benefit as much from targeting or preferential enrichment of a set of alleles.

In an embodiment of the present disclosure, it is possible to use a targeting method that focuses on SNPs to enrich a genetic sample in

polymorphic regions of the genome. In an embodiment, it is possible to focus on a small number of SNPs, for example between 1 and 100 SNPs, or a larger number, for example, between 100 and 1,000, between 1,000 and 10,000, between 10,000 and 100,000 or more than 100,000 SNPs. In an embodiment, it is possible to focus on one or a small number of chromosomes that are correlated with live trisomic births, for example chromosomes 13, 18, 21, X and Y, or some combination thereof. In an embodiment, it is possible to enrich the targeted SNPs by a small factor, for example between 1.01 fold and 100 fold, or by a larger factor, for example between 100 fold and 1,000,000 fold, or even by more than 1,000,000 fold. In an embodiment of the present disclosure, it is possible to use a targeting method to create a sample of DNA that is preferentially enriched in polymorphic regions of the genome. In an embodiment, it is possible to use this method to create a mixture of DNA with any of these characteristics where the mixture of DNA contains maternal DNA and also free floating fetal DNA. In an embodiment, it is possible to use this method to create a mixture of DNA that has any combination of these factors. For example, the method described herein may be used to produce a mixture of DNA that comprises maternal DNA and fetal DNA, and that is preferentially enriched in DNA that corresponds to 200 SNPs, all of which are located on either chromosome 18 or 21 , and which are enriched an average of 1000 fold. In another example, it is possible to use the method to create a mixture of DNA that is preferentially enriched in 10,000

SNPs that are all or mostly located on chromosomes 13, 18, 21, X and Y, and the average enrichment per loci is greater than 500 fold. Any of the targeting methods described herein can be used to create mixtures of DNA that are preferentially enriched in certain loci. In some embodiments, a method of the present disclosure further includes measuring the DNA in the mixed fraction using a high throughput DNA sequencer, where the DNA in the mixed fraction contains a disproportionate number of sequences from one or more chromosomes, wherein the one or more chromosomes are taken from the group comprising chromosome 13, chromosome 18, chromosome 21, chromosome X, chromosome Y and combinations thereof.

Described herein are three methods: multiplex PCR, targeted capture by hybridization, and linked inverted probes (LIPs), which may be used to obtain and analyze measurements from a sufficient number of polymorphic loci from a maternal plasma sample in order to detect fetal aneuploidy; this is not meant to exclude other methods of selective enrichment of targeted loci. Other methods may equally well be used without changing the essence of the method. In each case the polymorphism assayed may include single nucleotide polymorphisms (SNPs), small indels, or STRs. A preferred method involves the use of SNPs. Each approach produces allele frequency data; allele frequency data for each targeted locus and/or the joint allele frequency distributions from these loci may be analyzed to determine the ploidy of the fetus. Each approach has its own considerations due to the limited source material and the fact that maternal plasma consists of mixture of maternal and fetal DNA. This method may be combined with other approaches to provide a more accurate determination. In an embodiment, this method may be combined with a sequence counting approach such as that described in US Patent 7,888,017. The approaches described could also be used to detect fetal paternity noninvasively from maternal plasma samples. In addition each approach may be applied to other mixtures of DNA or pure DNA samples to detect the presence or absence of aneuploid chromosomes, to genotype a large number of SNP from degraded DNA samples, to detect segmental copy number variations (CNVs), to detect other genotypic states of interest, or some combination thereof.

Accurately Measuring the Allelic Distributions in a Sample

Current sequencing approaches can be used to estimate the distribution of alleles in a sample. One such method involves randomly sampling sequences from a pool DNA, termed shotgun sequencing. The proportion of a particular allele in the sequencing data is typically very low and can be determined by simple statistics. The human genome contains approximately 3 billion base pairs. So, if the sequencing method used make 100 bp reads, a particular allele will be measured about once in every 30 million sequence reads.

In an embodiment, a method of the present disclosure is used to determine the presence or absence of two or more different haplotypes that contain the same set of loci in a sample of DNA from the measured allele distributions of loci from that chromosome. The different haplotypes could represent two different homologous chromosomes from one individual, three different homologous chromosomes from a trisomic individual, three different homologous haplotypes from a mother and a fetus where one of the haplotypes is shared between the mother and the fetus, three or four haplotypes from a mother and fetus where one or two of the haplotypes are shared between the mother and the fetus, or other combinations. Alleles that are polymorphic between the haplotypes tend to be more informative, however any alleles where the mother and father are not both homozygous for the same allele will yield useful information through measured allele distributions beyond the information that is available from simple read count analysis.

Shotgun sequencing of such a sample, however, is extremely inefficient as it results in many sequences for regions that are not polymorphic between the different haplotypes in the sample, or are for chromosomes that are not of interest, and therefore reveal no information about the proportion of the target haplotypes. Described herein are methods that specifically target and/or preferentially enrich segments of DNA in the sample that are more likely to be polymorphic in the genome to increase the yield of allelic information obtained by sequencing. Note that for the measured allele distributions in an enriched sample to be truly representative of the actual amounts present in the target individual, it is critical that there is little or no preferential enrichment of one allele as compared to the other allele at a given loci in the targeted segments. Current methods known in the art to target polymorphic alleles are designed to ensure that at least some of any alleles present are detected. However, these methods were not designed for the purpose of measuring the unbiased allelic distributions of polymorphic alleles present in the original mixture. It is non- obvious that any particular method of target enrichment would be able to produce an enriched sample wherein the measured allele distributions would accurately represent the allele distributions present in the original unamplified sample better than any other method. While many enrichment methods may be expected, in theory, to accomplish such an aim, an ordinary person skilled in the art is well aware that there is a great deal of stochastic or deterministic bias in current amplification, targeting and other preferential enrichment methods. One embodiment of a method described herein allows a plurality of alleles found in a mixture of DNA that correspond to a given locus in the genome to be amplified, or preferentially enriched in a way that the degree of enrichment of each of the alleles is nearly the same. Another way to say this is that the method allows the relative quantity of the alleles present in the mixture as a whole to be increased, while the ratio between the alleles that correspond to each locus remains essentially the same as they were in the original mixture of DNA. For some reported methods, preferential enrichment of loci can result in allelic biases of more than 1%, more than 2%, more than 5% and even more than 10%. This preferential enrichment may be due to capture bias when using a capture by hybridization approach, or amplification bias which may be small for each cycle, but can become large when compounded over 20, 30 or 40 cycles. For the purposes of this disclosure, for the ratio to remain essentially the same means that the ratio of the alleles in the original mixture divided by the ratio of the alleles in the resulting mixture is between 0.95 and 1.05, between 0.98 and 1.02, between 0.99 and 1.01, between 0.995 and 1.005, between 0.998 and 1.002, between 0.999 and 1.001, or between 0.9999 and 1.0001. Note that the calculation of the allele ratios presented here may not be used in the

determination of the ploidy state of the target individual, and may only a metric to be used to measure allelic bias.

In an embodiment, once a mixture has been preferentially enriched at the set of target loci, it may be sequenced using any one of the previous, current, or next generation of sequencing instruments that sequences a clonal sample (a sample generated from a single molecule; examples include ILLUMINA GAIIx, ILLUMINA HISEQ, LIFE TECHNOLOGIES SOLiD, 5500XL). The ratios can be evaluated by sequencing through the specific alleles within the targeted region. These sequencing reads can be analyzed and counted according the allele type and the rations of different alleles determined accordingly. For variations that are one to a few bases in length, detection of the alleles will be performed by sequencing and it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. The total number of captured molecules assayed for the genotype can be increased by increasing the length of the sequencing read. Full sequencing of all molecules would guarantee collection of the maximum amount of data available in the enriched pool. However, sequencing is currently expensive, and a method that can measure allele distributions using a lower number of sequence reads will have great value. In addition, there are technical limitations to the maximum possible length of read as well as accuracy limitations as read lengths increase. The alleles of greatest utility will be of one to a few bases in length, but theoretically any allele shorter than the length of the sequencing read can be used. While allele variations come in all types, the examples provided herein focus on SNPs or variants contained of just a few neighboring base pairs. Larger variants such as segmental copy number variants can be detected by

aggregations of these smaller variations in many cases as whole collections of SNP internal to the segment are duplicated. Variants larger than a few bases, such as STRs require special consideration and some targeting approaches work while others will not.

There are multiple targeting approaches that can be used to specifically isolate and enrich a one or a plurality of variant positions in the genome.

Typically, these rely on taking advantage of the invariant sequence flanking the variant sequence. There are reports by others related to targeting in the context of sequencing where the substrate is maternal plasma (see, e.g., Liao et al., Clin. Chem. 201 1 ; 57(1): pp. 92- 101). However, these approaches use targeting probes that target exons, and do not focus on targeting polymorphic regions of the genome. In an embodiment, a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on polymorphic regions. In an embodiment, a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on SNPs. In some embodiments of the present disclosure, the targeted polymorphic sites consist of at least 10% SNPs, at least 20% SNPs, at least 30% SNPs, at least 40% SNPs, at least 50% SNPs, at least 60% SNPs, at least 70% SNPs, at least 80% SNPs, at least 90% SNPs, at least 95% SNPs, at least 98% SNPs, at least 99% SNPs, at least 99.9% SNPs, or exclusively SNPs.

In an embodiment, a method of the present disclosure can be used to determine genotypes (base composition of the DNA at specific loci) and relative proportions of those genotypes from a mixture of DNA molecules, where those DNA molecules may have originated from one or a number of genetically distinct individuals. In an embodiment, a method of the present disclosure can be used to determine the genotypes at a set of polymorphic loci, and the relative ratios of the amount of different alleles present at those loci. In an embodiment the polymorphic loci may consist entirely of SNPs. In an embodiment, the polymorphic loci can comprise SNPs, single tandem repeats, and other polymorphisms. In an embodiment, a method of the present disclosure can be used to determine the relative distributions of alleles at a set of polymorphic loci in a mixture of DNA, where the mixture of DNA comprises DNA that originates from a mother, and DNA that originates from a fetus. In an embodiment, the joint allele distributions can be determined on a mixture of DNA isolated from blood from a pregnant woman. In an embodiment, the allele distributions at a set of loci can be used to determine the ploidy state of one or more chromosomes on a gestating fetus.

In an embodiment, the mixture of DNA molecules could be derived from

DNA extracted from multiple cells of one individual. In an embodiment, the original collection of cells from which the DNA is derived may comprise a mixture of diploid or haploid cells of the same or of different genotypes, if that individual is mosaic (germline or somatic). In an embodiment, the mixture of DNA molecules could also be derived from DNA extracted from single cells. In an embodiment, the mixture of DNA molecules could also be derived from DNA extracted from mixture of two or more cells of the same individual, or of different individuals. In an embodiment, the mixture of DNA molecules could be derived from DNA isolated from biological material that has already liberated from cells such as blood plasma, which is known to contain cell free DNA. In an embodiment, the this biological material may be a mixture of DNA from one or more individuals, as is the case during pregnancy where it has been shown that fetal DNA is present in the mixture. In an embodiment, the biological material could be from a mixture of cells that were found in maternal blood, where some of the cells are fetal in origin. In an embodiment, the biological material could be cells from the blood of a pregnant which have been enriched in fetal cells.

Circularizing Probes

Some embodiments of the present disclosure involve the use of "Linked

Inverted Probes" (LIPs), which have been previously described in the literature, to amplify the target loci before or after amplification using primers that are not LIPs in the multiplex PCR methods of the invention. LIPs is a generic term meant to encompass technologies that involve the creation of a circular molecule of DNA, where the probes are designed to hybridize to targeted region of DNA on either side of a targeted allele, such that addition of appropriate polymerases and/or ligases, and the appropriate conditions, buffers and other reagents, will complete the complementary, inverted region of DNA across the targeted allele to create a circular loop of DNA that captures the information found in the targeted allele. LIPs may also be called pre-circularized probes, pre-circularizing probes, or circularizing probes. The LIPs probe may be a linear DNA molecule between 50 and 500 nucleotides in length, and in an embodiment between 70 and 100 nucleotides in length; in some embodiments, it may be longer or shorter than described herein. Others embodiments of the present disclosure involve different incarnations, of the LIPs technology, such as Padlock Probes and Molecular Inversion Probes (MIPs).

One method to target specific locations for sequencing is to synthesize probes in which the 3' and 5' ends of the probes anneal to target DNA at locations adjacent to and on either side of the targeted region, in an inverted manner, such that the addition of DNA polymerase and DNA ligase results in extension from the 3' end, adding bases to single stranded probe that are complementary to the target molecule (gap-fill), followed by ligation of the new 3' end to the 5' end of the original probe resulting in a circular DNA molecule that can be subsequently isolated from background DNA. The probe ends are designed to flank the targeted region of interest. One aspect of this approach is commonly called MIPS and has been used in conjunction with array

technologies to determine the nature of the sequence filled in. One drawback to the use of MIPs in the context of measuring allele ratios is that the hybridization, circularization and amplification steps do not happed at equal rates for different alleles at the same loci. This results in measured allele ratios that are not representative of the actual allele ratios present in the original mixture.

In an embodiment, the circularizing probes are constructed such that the region of the probe that is designed to hybridize upstream of the targeted polymorphic locus and the region of the probe that is designed to hybridize downstream of the targeted polymorphic locus are covalently connected through a non-nucleic acid backbone. This backbone can be any biocompatible molecule or combination of biocompatible molecules. Some examples of possible biocompatible molecules are poly(ethylene glycol), polycarbonates, polyurethanes, polyethylenes, polypropylenes, sulfone polymers, silicone, cellulose, fluoropolymers, acrylic compounds, styrene block copolymers, and other block copolymers.

In an embodiment of the present disclosure, this approach has been modified to be easily amenable to sequencing as a means of interrogating the filled in sequence. In order to retain the original allelic proportions of the original sample at least one key consideration must be taken into account. The variable positions among different alleles in the gap-fill region must not be too close to the probe binding sites as there can be initiation bias by the DNA polymerase resulting in differential of the variants. Another consideration is that additional variations may be present in the probe binding sites that are correlated to the variants in the gap-fill region which can result unequal amplification from different alleles. In an embodiment of the present disclosure, the 3' ends and 5' ends of the pre-circularized probe are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele. The number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3 ' end and/or 5' of the pre-circularized probe is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases, twenty to thirty bases, or thirty to sixty bases. The forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site. Circularizing probes can be generated in large numbers with current DNA synthesis technology allowing very large numbers of probes to be generated and potentially pooled, enabling interrogation of many loci simultaneously. It has been reported to work with more than 300,000 probes. Two papers that discuss a method involving circularizing probes that can be used to measure the genomic data of the target individual include: Porreca et al., Nature Methods, 2007 4(1 1), pp. 931-936.; and also Turner et al., Nature Methods, 2009, 6(5), pp. 315-316. The methods described in these papers may be used in combination with other methods described herein. Certain steps of the method from these two papers may be used in combination with other steps from other methods described herein.

In some embodiments of the methods disclosed herein, the genetic material of the target individual is optionally amplified, followed by

hybridization of the pre-circularized probes, performing a gap fill to fill in the bases between the two ends of the hybridized probes, ligating the two ends to form a circularized probe, and amplifying the circularized probe, using, for example, rolling circle amplification. Once the desired target allelic genetic information is captured by circularizing appropriately designed oligonucleotide probes, such as in the LIPs system, the genetic sequence of the circularized probes may be being measured to give the desired sequence data. In an embodiment, the appropriately designed oligonucleotides probes may be circularized directly on unamplified genetic material of the target individual, and amplified afterwards. Note that a number of amplification procedures may be used to amplify the original genetic material, or the circularized LIPs, including rolling circle amplification, MDA, or other amplification protocols. Different methods may be used to measure the genetic information on the target genome, for example using high throughput sequencing, Sanger sequencing, other sequencing methods, capture-by-hybridization, capture-by-circularization, multiplex PCR, other hybridization methods, and combinations thereof.

Once the genetic material of the individual has been measured using one or a combination of the above methods, an informatics based method, such as the PARENTAL SUPPORTTM method, along with the appropriate genetic measurements, can then be used to determination the ploidy state of one or more chromosomes on the individual, and/or the genetic state of one or a set of alleles, specifically those alleles that are correlated with a disease or genetic state of interest. Note that the use of LIPs has been reported for multiplexed capture of genetic sequences, followed by genotyping with sequencing. However, the use of sequencing data resulting from a LIPs-based strategy for the amplification of the genetic material found in a single cell, a small number of cells, or extracellular DNA, has not been used for the purpose of determining the ploidy state of a target individual.

Applying an informatics based method to determine the ploidy state of an individual from genetic data as measured by hybridization arrays, such as the ILLUMINA INFINIUM array, or the AFFYMETRIX gene chip has been described in documents references elsewhere in this document. However, the method described herein shows improvements over methods described previously in the literature. For example, the LIPs based approach followed by high throughput sequencing unexpectedly provides better genotypic data due to the approach having better capacity for multiplexing, better capture specificity, better uniformity, and low allelic bias. Greater multiplexing allows more alleles to be targeted, giving more accurate results. Better uniformity results in more of the targeted alleles being measured, giving more accurate results. Lower rates of allelic bias result in lower rates of miscalls, giving more accurate results. More accurate results result in an improvement in clinical outcomes, and better medical care.

It is important to note that LIPs may be used as a method for targeting specific loci in a sample of DNA for genotyping by methods other than sequencing. For example, LIPs may be used to target DNA for genotyping using SNP arrays or other DNA or RNA based microarrays.

Ligation-mediated PCR

Ligation-mediated PCR may be used to amplify the target loci before or after PCR amplification using primers that are not ligated. Ligation-mediated PCR is a method of PCR used to preferentially enrich a sample of DNA by amplifying one or a plurality of loci in a mixture of DNA, the method comprising: obtaining a set of primer pairs, where each primer in the pair contains a target specific sequence and a non-target sequence, where the target specific sequence is preferably designed to anneal to a target region, one upstream and one downstream from the polymorphic site, and which can be separated from the polymorphic site by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1-20, 21- 30, 31-40, 41-50, 51-100, or more than 100; polymerization of the DNA from the 3-prime end of upstream primer to the fill the single strand region between it and the 5-prime end of the downstream primer with nucleotides complementary to the target molecule; ligation of the last polymerized base of the upstream primer to the adjacent 5-prime base of the downstream primer; and amplification of only polymerized and ligated molecules using the non-target sequences contained at the 5-prime end of the upstream primer and the 3-prime end of the downstream primer. Pairs of primers to distinct targets may be mixed in the same reaction. The non-target sequences serve as universal sequences such that of all pairs of primers that have been successfully polymerized and ligated may be amplified with a single pair of amplification primers.

Capture by Hybridization

In some embodiments, a method of the present disclosure may involve using any of the following capture by hybridization methods in addition to using multiplex PCR to amplify the target loci. Preferential enrichment of a specific set of sequences in a target genome can be accomplished in a number of ways. Elsewhere in this document is a description of how LIPs can be used to target a specific set of sequences, but in all of those applications, other targeting and/or preferential enrichment methods can be used equally well for the same ends. One example of another targeting method is the capture by hybridization approach. Some examples of commercial capture by hybridization technologies include AGILENT'S SURE SELECT and ILLUMINA's TRUSEQ. In capture by hybridization, a set of oligonucleotides that is complimentary or mostly complimentary to the desired targeted sequences is allowed to hybridize to a mixture of DNA, and then physically separated from the mixture. Once the desired sequences have hybridized to the targeting oligonucleotides, the effect of physically removing the targeting oligonucleotides is to also remove the targeted sequences. Once the hybridized oligos are removed, they can be heated to above their melting temperature and they can be amplified. Some ways to physically remove the targeting oligonucleotides is by covalently bonding the targeting oligos to a solid support, for example a magnetic bead, or a chip. Another way to physically remove the targeting oligonucleotides is by covalently bonding them to a molecular moiety with a strong affinity for another molecular moiety. An example of such a molecular pair is biotin and streptavidin, such as is used in SURE SELECT. Thus that targeted sequences could be covalently attached to a biotin molecule, and after hybridization, a solid support with streptavidin affixed can be used to pull down the biotinylated oligonucleotides, to which are hybridized to the targeted sequences.

Hybrid capture involves hybridizing probes that are complementary to the targets of interest to the target molecules. Hybrid capture probes were originally developed to target and enrich large fractions of the genome with relative uniformity between targets. In that application, it was important that all targets be amplified with enough uniformity that all regions could be detected by sequencing, however, no regard was paid to retaining the proportion of alleles in original sample. Following capture, the alleles present in the sample can be determined by direct sequencing of the captured molecules. These sequencing reads can be analyzed and counted according the allele type. However, using the current technology, the measured allele distributions the captured sequences are typically not representative of the original allele distributions.

In an embodiment, detection of the alleles is performed by sequencing. In order to capture the allele identity at the polymorphic site, it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. Since the capture molecules are often of variable lengths upon sequencing cannot be guaranteed to overlap the variant positions unless the entire molecule is sequenced. However, cost considerations as well as technical limitations as to the maximum possible length and accuracy of sequencing reads make sequencing the entire molecule unfeasible. In an embodiment, the read length can be increased from about 30 to about 50 or about 70 bases can greatly increase the number of reads that overlap the variant positions within the targeted sequences.

Another way to increase the number of reads that interrogate the position of interest is to decrease the length of the probe, as long as it does not result in bias in the underlying enriched alleles. The length of the synthesized probe should be long enough such that two probes designed to hybridize to two different alleles found at one locus will hybridize with near equal affinity to the various alleles in the original sample. Currently, methods known in the art describe probes that are typically longer than 120 bases. In a current embodiment, if the allele is one or a few bases then the capture probes may be less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases, and this is sufficient to ensure equal enrichment from all alleles. When the mixture of DNA that is to be enriched using the hybrid capture technology is a mixture comprising free floating DNA isolated from blood, for example maternal blood, the average length of DNA is quite short, typically less than 200 bases. The use of shorter probes results in a greater chance that the hybrid capture probes will capture desired DNA fragments. Larger variations may require longer probes. In an embodiment, the variations of interest are one (a SNP) to a few bases in length. In an embodiment, targeted regions in the genome can be preferentially enriched using hybrid capture probes wherein the hybrid capture probes are of a length below 90 bases, and can be less than 80 bases, less than 70 bases, less than 60 bases, less than 50 bases, less than 40 bases, less than 30 bases, or less than 25 bases. In an embodiment, to increase the chance that the desired allele is sequenced, the length of the probe that is designed to hybridize to the regions flanking the polymorphic allele location can be decreased from above 90 bases, to about 80 bases, or to about 70 bases, or to about 60 bases, or to about 50 bases, or to about 40 bases, or to about 30 bases, or to about 25 bases.

There is a minimum overlap between the synthesized probe and the target molecule in order to enable capture. This synthesized probe can be made as short as possible while still being larger than this minimum required overlap. The effect of using a shorter probe length to target a polymorphic region is that there will be more molecules that overlap the target allele region. The state of fragmentation of the original DNA molecules also affects the number of reads that will overlap the targeted alleles. Some DNA samples such as plasma samples are already fragmented due to biological processes that take place in vivo. However, samples with longer fragments by benefit from fragmentation prior to sequencing library preparation and enrichment. When both probes and fragments are short (-60-80 bp) maximum specificity may be achieved relatively few sequence reads failing to overlap the critical region of interest.

In an embodiment, the hybridization conditions can be adjusted to maximize uniformity in the capture of different alleles present in the original sample. In an embodiment, hybridization temperatures are decreased to minimize differences in hybridization bias between alleles. Methods known in the art avoid using lower temperatures for hybridization because lowering the temperature has the effect of increasing hybridization of probes to unintended targets. However, when the goal is to preserve allele ratios with maximum fidelity, the approach of using lower hybridization temperatures provides optimally accurate allele ratios, despite the fact that the current art teaches away from this approach. Hybridization temperature can also be increased to require greater overlap between the target and the synthesized probe so that only targets with substantial overlap of the targeted region are captured. In some embodiments of the present disclosure, the hybridization temperature is lowered from the normal hybridization temperature to about 40°C, to about 45°C, to about 50°C, to about 55°C, to about 60°C, to about 65, or to about 70°C.

In an embodiment, the hybrid capture probes can be designed such that the region of the capture probe with DNA that is complementary to the DNA found in regions flanking the polymorphic allele is not immediately adjacent to the polymorphic site. Instead, the capture probe can be designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the portion of the capture probe that will be in van der Waals contact with the polymorphic site by a small distance that is equivalent in length to one or a small number of bases. In an embodiment, the hybrid capture probe is designed to hybridize to a region that is flanking the polymorphic allele but does not cross it; this may be termed a flanking capture probe. The length of the flanking capture probe may be less than about 120 bases, less than about 1 10 bases, less than about 100 bases, less than about 90 bases, and can be less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, or less than about 25 bases. The region of the genome that is targeted by the flanking capture probe may be separated by the polymorphic locus by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1-20, or more than 20 base pairs.

Description of a targeted capture based disease screening test using targeted sequence capture. Custom targeted sequence capture, like those currently offered by AGILENT (SURE SELECT), ROCHE-NIMBLEGEN, or ILLUMINA. Capture probes could be custom designed to ensure capture of various types of mutations. For point mutations, one or more probes that overlap the point mutation should be sufficient to capture and sequence the mutation.

For small insertions or deletions, one or more probes that overlap the mutation may be sufficient to capture and sequence fragments comprising the mutation. Hybridization may be less efficient between the probe-limiting capture efficiency, typically designed to the reference genome sequence. To ensure capture of fragments comprising the mutation one could design two probes, one matching the normal allele and one matching the mutant allele. A longer probe may enhance hybridization. Multiple overlapping probes may enhance capture. Finally, placing a probe immediately adjacent to, but not overlapping, the mutation may permit relatively similar capture efficiency of the normal and mutant alleles.

For Simple Tandem Repeats (STRs), a probe overlapping these highly variable sites is unlikely to capture the fragment well. To enhance capture a probe could be placed adjacent to, but not overlapping the variable site. The fragment could then be sequenced as normal to reveal the length and composition of the STR.

For large deletions, a series of overlapping probes, a common approach currently used in exon capture systems may work. However, with this approach it may be difficult to determine whether or not an individual is heterozygous. Targeting and evaluating SNPs within the captured region could potentially reveal loss of heterozygosity across the region indicating that an individual is a carrier. In an embodiment, it is possible to place non- overlapping or singleton probes across the potentially deleted region and use the number of fragments captured as a measure of heterozygosity. In the case where an individual caries a large deletion, one-half the number of fragments are expected to be available for capture relative to a non-deleted (diploid) reference locus. Consequently, the number of reads obtained from the deleted regions should be roughly half that obtained from a normal diploid locus. Aggregating and averaging the sequencing read depth from multiple singleton probes across the potentially deleted region may enhance the signal and improve confidence of the diagnosis. The two approaches, targeting SNPs to identify loss of heterozygosity and using multiple singleton probes to obtain a quantitative measure of the quantity of underlying fragments from that locus can also be combined. Either or both of these strategies may be combined with other strategies to better obtain the same end.

If during testing cfDNA detection of a male fetus, as indicated by the presence of the Y-chromosome fragments, captured and sequenced in the same test, and either an X- linked dominant mutation where mother and father are unaffected, or a dominant mutation where mother is not affected would indicated heighted risk to the fetus. Detection of two mutant recessive alleles within the same gene in an unaffected mother would imply the fetus had inherited a mutant allele from father and potentially a second mutant allele from mother. In all cases, follow-up testing by amniocentesis or chorionic villus sampling may be indicated.

A targeted capture based disease screening test could be combined with a targeted capture based non-invasive prenatal diagnostic test for aneuploidy.

There are a number of ways to decrease depth of read (DOR) variability: for example, one could increase primer concentrations, one could use longer targeted amplification probes, or one could run more STA cycles (such as more than 25, more than 30, more than 35, or even more than 40)

Exemplary Methods of Determining the Number of DNA Molecules in a Sample A method is described herein to determine the number of DNA molecules in a sample by generating a uniquely identified molecule for each original DNA molecules in the sample during the first round of DNA amplification. Described here is a procedure to accomplish the above end followed by a single molecule or clonal sequencing method.

The approach entails targeting one or more specific loci and generating a tagged copy of the original molecules such manner that most or all of the tagged molecules from each targeted locus will have a unique tag and can be distinguished from one another upon sequencing of this barcode using clonal or single molecule sequencing. Each unique sequenced barcode represents a unique molecule in the original sample. Simultaneously, sequencing data is used to ascertain the locus from which the molecule originates. Using this information one can determine the number of unique molecules in the original sample for each locus. This method can be used for any application in which quantitative evaluation of the number of molecules in an original sample is required.

Furthermore, the number of unique molecules of one or more targets can be related to the number of unique molecules to one or more other targets to determine the relative copy number, allele distribution, or allele ratio.

Alternatively, the number of copies detected from various targets can be modeled by a distribution in order to identify the mostly likely number of copies of the original targets. Applications include but are not limited to detection of insertions and deletions such as those found in carriers of Duchenne Muscular Dystrophy; quantitation of deletions or duplications segments of chromosomes such as those observed in copy number variants; chromosome copy number of samples from born individuals; chromosome copy number of samples from unborn individuals such as embryos or fetuses.

The method can be combined with simultaneous evaluation of variations contained in the targeted by sequence. This can be used to determine the number of molecules representing each allele in the original sample. This copy number method can be combined with the evaluation of SNPs or other sequence variations to determine the chromosome copy number of born and unborn individuals; the discrimination and quantification of copies from loci which have short sequence variations, but in which PCR may amplifies from multiple target regions such as in carrier detection of Spinal Muscle Atrophy; determination of copy number of different sources of molecules from samples consisting of mixtures of different individual such as in detection of fetal aneuploidy from free floating DNA obtained from maternal plasma.

In an embodiment, the method as it pertains to a single target locus may comprise one or more of the following steps: (1) Designing a standard pair of oligomers for PCR amplification of a specific locus. (2) Adding, during synthesis, a sequence of specified bases with no or minimal complementarity to the target locus or genome to the 5' end of the one of the target specific oligomer. This sequence, termed the tail, is a known sequence, to be used for subsequent amplification, followed by a sequence of random nucleotides. These random nucleotides comprise the random region. The random region comprises a randomly generated sequence of nucleic acids that probabilistically differ between each probe molecule. Consequently, following synthesis, the tailed oligomer pool will consists of a collection of oligomers beginning with a known sequence followed by unknown sequence that differs between molecules, followed by the target specific sequence. (3) Performing one round of amplification (denaturation, annealing, extension) using only the tailed oligomer. (4) adding exonuclease to the reaction, effectively stopping the PCR reaction, and incubating the reaction at the appropriate temperature to remove forward single stranded oligos that did not anneal to temple and extend to form a double stranded product. (5) Incubating the reaction at a high temperature to denature the exonuclease and eliminate its activity. (6) Adding to the reaction a new oligonucleotide that is complementary to tail of the oligomer used in the first reaction along with the other target specific oligomer to enable PCR

amplification of the product generated in the first round of PCR. (7) Continuing amplification to generate enough product for downstream clonal sequencing. (8) Measuring the amplified PCR product by a multitude of methods, for example, clonal sequencing, to a sufficient number of bases to span the sequence.

In an embodiment, a method of the present disclosure involves targeting multiple loci in parallel or otherwise. Primers to different target loci can be generated independently and mixed to create multiplex PCR pools. In an embodiment, original samples can be divided into sub-pools and different loci can be targeted in each sub-pool before being recombined and sequenced. In an embodiment, the tagging step and a number of amplification cycles may be performed before the pool is subdivided to ensure efficient targeting of all targets before splitting, and improving subsequent amplification by continuing amplification using smaller sets of primers in subdivided pools.

One example of an application where this technology would be particularly useful is non-invasive prenatal aneuploidy diagnosis where the ratio of alleles at a given locus or a distribution of alleles at a number of loci can be used to help determine the number of copies of a chromosome present in a fetus. In this context, it is desirable to amplify the DNA present in the initial sample while maintaining the relative amounts of the various alleles. In some circumstances, especially in cases where there is a very small amount of DNA, for example, fewer than 5,000 copies of the genome, fewer than 1,000 copies of the genome, fewer than 500 copies of the genome, and fewer than 100 copies of the genome, one can encounter a phenomenon called bottlenecking. This is where there are a small number of copies of any given allele in the initial sample, and amplification biases can result in the amplified pool of DNA having significantly different ratios of those alleles than are in the initial mixture of DNA. By applying a unique or nearly unique set of barcodes to each strand of DNA before standard PCR amplification, it is possible to exclude n- 1 copies of DNA from a set of n identical molecules of sequenced DNA that originated from the same original molecule.

For example, imagine a heterozygous SNP in the genome of an individual, and a mixture of DNA from the individual where ten molecules of each allele are present in the original sample of DNA. After amplification there may be 100,000 molecules of DNA corresponding to that locus. Due to stochastic processes, the ratio of DNA could be anywhere from 1 :2 to 2: 1, however, since each of the original molecules was tagged with a unique tag, it would be possible to determine that the DNA in the amplified pool originated from exactly 10 molecules of DNA from each allele. This method would therefore give a more accurate measure of the relative amounts of each allele than a method not using this approach. For methods where it is desirable for the relative amount of allele bias to be minimized, this method will provide more accurate data.

Association of the sequenced fragment to the target locus can be achieved in a number of ways. In an embodiment, a sequence of sufficient length is obtained from the targeted fragment to span the molecule barcode as well a sufficient number of unique bases corresponding to the target sequence to allow unambiguous identification of the target locus. In another embodiment, the molecular bar-coding primer that contains the randomly generated molecular barcode can also contain a locus specific barcode (locus barcode) that identifies the target to which it is to be associated. This locus barcode would be identical among all molecular bar-coding primers for each individual target and hence all resulting amplicons, but different from all other targets. In an embodiment, the tagging method described herein may be combined with a one-sided nesting protocol.

In an embodiment, the design and generation of molecular barcoding primers may be reduced to practice as follows: the molecular barcoding primers may consist of a sequence that is not complementary to the target sequence followed by random molecular barcode region followed by a target specific sequence. The sequence 5' of molecular barcode may be used for subsequence PCR amplification and may comprise sequences useful in the conversion of the amplicon to a library for sequencing. The random molecular barcode sequence could be generated in a multitude of ways. The preferred method synthesize the molecule tagging primer in such a way as to include all four bases to the reaction during synthesis of the barcode region. All or various combinations of bases may be specified using the IUPAC DNA ambiguity codes. In this manner the synthesized collection of molecules will contain a random mixture of sequences in the molecular barcode region. The length of the barcode region will determine how many primers will contain unique barcodes. The number of unique sequences is related to the length of the barcode region as NL where N is the number of bases, typically 4, and L is the length of the barcode. A barcode of five bases can yield up to 1024 unique sequences; a barcode of eight bases can yield 65536 unique barcodes. In an embodiment, the DNA can be measured by a sequencing method, where the sequence data represents the sequence of a single molecule. This can include methods in which single molecules are sequenced directly or methods in which single molecules are amplified to form clones detectable by the sequence instrument, but that still represent single molecules, herein called clonal sequencing.

Exemplary Methods and Reagents for Quantification of Amplification Products

Quantitation of specific nucleic acid sequences of interest is typically done by quantitative real-time PCR techniques such as TAQMAN (LIFE TECHNOLOGIES), INVADER probes (THIRD WAVE TECHNOLOGIES), and the like. Such techniques suffer from numerous shortcomings such as limited ability to achieve the simultaneous analysis of multiple sequences in parallel (multiplexation) and the ability to provide accurate quantitative data for only a narrow range of possible amplification cycles (e.g., when the logarithm of PCR amplification production quantity versus the number of cycles is in the linear range). DNA sequencing techniques, particularly high throughput next- generation sequencing techniques (often referred to as massively parallel sequencing techniques) such as those employed in MYSEQ (ILLUMINA), HISEQ (ILLUMINA), ION TORRENT (LIFE TECHNOLOGIES), GENOME ANALYZER ILX (ILLUMINA), GS FLEX+ (ROCHE 454) etc., can be used for by quantitative measurements of the number of copies of sequence of interest present in sample, thereby providing quantitative information about the starting materials, e.g., copy number or transcription levels. High throughput genetic sequencers are amenable to the use of bar coding (i.e., sample tagging with distinctive nucleic acid sequences) so as to identify specific samples from individuals thereby permitting the simultaneous analysis of multiple samples in a single run of the DNA sequencer. The number of times a given region of the genome in a library preparation (or other nucleic preparation of interest) is sequenced (number of reads) will be proportional to the number of copies of that sequence in the genome of interest (or expression level in the case of cDNA containing preparations). However, the preparation and sequencing of genetic libraries (and similar genome derived preparations) can introduce numerous biases that interfere with obtaining an accurate quantitative reading for the nucleic acid sequence of interest. For example, different nucleic acid sequences can amplify with different efficiencies during nucleic amplification steps that take place during the genetic library preparation or sample preparation.

The problem with differential amplification efficiencies can be mitigated by using certain embodiments of the subject invention. The subject invention includes various methods and compositions that relate to the use of standards for inclusion in amplification processes that can be used to improve the accuracy of quantitation. The invention is of use in, among other areas, the detection of aneuploidy in a fetus by analyzing free floating fetal DNA in maternal blood, as described herein and as described, among other places, U.S. Patent No.

8,008,018; U.S. Patent No. 7,332,277; PCT Published Application WO

2012/078792A2; and PCT Published Application WO 201 1/146632 Al, which are each herein incorporated by reference in its entirety Embodiments of the invention are also of use in the detection of aneuploidy in an in vitro generated embryos. Commercially significant aneuploidies that may be detected include aneuploidy of the human chromosomes 13, 18, 21 , X and Y.

Embodiments of the invention may be used with either human or non- human nucleic acids, and may be applied to both animal and plant derived nucleic acids. Embodiments of the invention may also be used to detect and/or quantitate alleles for other genetic disorders characterized by deletions or insertions. The deletion containing alleles can be detected in suspected carriers of the allele of interest.

One embodiment of the subject invention includes standards that are present in a known quantity (relative or absolute). For example, consider a genetic library made from a genetic source that is diploid for chromosome 8 (containing locus A) and triploid for chromosome 21 (containing locus B). A genetic library can be produced from this sample that will contain sequences in quantities that are a function of the number of chromosomes present in the sample, e.g., 200 copies of locus A and 300 copies of locus B. However, if locus A amplifies much more efficiently than locus B, after PCR there may be 60,000 copies of the A amplicon and 30,000 copies of the B amplicon, thus obscuring the true chromosomal copy number of the initial genomic sample when analysis by high throughput DNA sequencing (or other quantitative nucleic acid detection techniques). To mitigate this problem a standard sequence for locus A is employed, wherein the standard sequence amplifies with essentially the same efficiency as locus A. Similarly, a standard sequence for locus B is created, wherein the standard sequence amplifies with the essentially the same efficiency as locus B. A standard sequence of locus A and a standard sequence for locus B are added to the mixture prior to PCR (or other amplification techniques). These standard sequences are present in known quantities, either relative quantities or absolute quantities. Thus if a 1 : 1 mixture of standard sequence A and standard sequence B were added (prior to amplification) to the mixture in the previous example, 3000 copies of the standard A amplicon would be produced and 1000 copies of the standard B amplicon would be produced, showing that locus A is amplified 3 times more efficiently than locus B, under the same set of conditions.

In various embodiments one or more selected regions of a genome containing a SNP (or other polymorphism) of interest can be specifically amplified and subsequently sequenced. This target specific amplification can take place during the formation of a genetic library for sequencing. The library can contain numerous targeted regions for amplification. In some embodiments at least 10; 100, 500; 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000;

30,000; 40,000; 50,000; 75,000; or 100,000 regions of interest. Examples of such libraries are described herein and can be found in U.S. Patent Application No. 2012/0270212, filed November 18, 201 1, which is herein incorporated by reference in its entirety.

Many high throughput DNA sequencing techniques require the modification of the genetic starting material, e.g., the litigation of universal priming sites and/or barcodes, so as to form libraries to facilitate the clonal amplification of small nucleic acid fragments prior to performing subsequent sequencing reactions. In some embodiments, one or more standard sequences are added during genetic library formation or added to a precursor component of a genetic library prior to amplification of the library. The standard sequences can be selected so as to mimic (yet be distinguishable based on nucleotide base sequence) target genomic fragments to be prepared for sequencing by a high throughput genetic sequencing technique. In one embodiment, the standard sequence can be identical to the target genomic fragment excepting one, two, three, four to ten, or eleven to twenty nucleotides. In some embodiments, when the target genetic sequence contains a SNP, the standard sequence can be identical to the SNP excepting the nucleotide at the polymorphic base, which may be chosen to be one of the four nucleotides that is not observed at that location in nature. The standard sequences can be used in a highly multiplexed analysis of multiple target loci (such as polymorphic loci). Standard sequences can be added during the process of library formation (prior to amplification) in known quantities (relative or absolute) so as to provide a standard metric for greater accuracy in determining the amount of target sequence of interest in the sample of analysis. The combination of knowledge of the known quantities of the standard sequences used in conjunction with the knowledge of the ploidy level formation of library for sequencing formed from a genome of previously characterized ploidy level, e.g., known to be diploid for all autosomal chromosomes, can be used to calibrate the amplification properties of each standard sequence with respect to its corresponding target sequence and account for variations between batches of mixtures comprising multiple standard sequences. Given that it is often necessary to simultaneously analyze a large number of loci, it is useful to produce a mixture comprising a large set standard sequences. Embodiments of the invention include mixtures comprising multiple standard sequences. Ideally the amount of each standard sequence in the mixture is known with high precision. However, it is extremely difficult to achieve this ideal because as a practical matter there is a significant amount of variation in the quantity of each standard sequence in the mixture, particularly for mixtures comprising a large number of different synthetic oligonucleotides. This variation has numerous sources, e.g., variations in in vitro oligonucleotide synthesis reaction efficiencies between batch, inaccuracies in volume measurement, variations in pipetting, Furthermore, this variation can occur between different batches of that theoretically contain the exact same set of standard sequences in the exact same amounts. Accordingly, it is of interest to calibrate each batch of standard sequences independently. Batches of standard sequences can be calibrated against reference genomes of known chromosomal composition. Batched of standard sequences can be calibrated by sequencing the batch of standard sequences with minimal or no amplifications steps included in the sequencing protocol. Embodiments of the invention include calibrated mixtures of different standard sequences. Other embodiments of the invention include methods of calibrating mixtures of different standard sequences and calibrated mixtures of different standard sequences made by the subject methods.

Various embodiments of the subject mixtures of standard sequences and methods for using them can comprise at least 10; 100, 500; 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 or more standards sequences, as well as various intermediate amounts. The number of the standard sequences can be the same as the number of target sequences selected for analysis during the generation of a targeted library for DNA sequencing. However, in some embodiments, it may be advantageous to use a lower number of standard sequences than the number of targeted regions in the library being constructed. It may be advantageous to use the lower number so as avoid coming up against the limits of the sequencing capacity of the high throughput DNA sequencer being employed. The number of standard sequences can be 50% or less than the number of targeted regions, 40% or less than the number of targeted regions, be 30% or less than the number of targeted regions, 20% or less than the number of targeted regions, be 10% or less than the number of targeted regions, 5% or less than the number of targeted regions, 1% or less than the number of targeted regions, as well as various intermediate values. For example, if a genetic library is created using 15,000 pairs of primers targeted to specific SNP containing loci, a suitable a mixture containing 1500 standard sequences corresponding to 1500 of the 15,000 targeted loci can be added prior to the amplification step of library constructions.

The amount of standard sequences added during library construction can vary considerably among different embodiments. In some embodiments, the amount of each standard sequence can be approximately the same as the predicted amount of the target sequence present in the genomic material sample used for library preparation. In other embodiments, the amount of each standard sequence can be greater or less than the predicted amount of the target sequence present in the genomic material sample used for library preparation. While the initial relative amounts of the target sequence and the standard sequence are not critical for the function of the invention, it is preferable that the amount be within the range 100 times greater to 100 times less than the amount of the target sequence present in the genomic material sample used for library preparation. Excessive amounts of standard may use too much sequencing capacity of the DNA sequencer in a given run of the instrument. Using too low an amount of standard sequences will produce insufficient data to aid in the analysis of variation in amplification efficiency.

The standard sequences may be selected to be very similar in nucleotide base sequence to the amplified regions of interest; preferably the standard sequence has the exact same primer-binding sites as the analyzed genomic region, i.e., the "target sequence." The standard sequence must be

distinguishable from the corresponding target sequence at a given locus. For the sake of convenience, this distinguishable region of the standard sequence will be referred to as a "marker sequence." In some embodiments, the marker sequence region of the target sequences contains the polymorphic region, e.g., a SNP, and can be flanked on both sides by primer binding regions. The standard sequence may be selected to closely match the GC content of the corresponding target sequence. In some embodiments, the primer binding regions of the standard sequence are flanked by universal priming sites. These universal priming sites are selected to match universal priming sites used in a genomic library for analysis. In other embodiments, the standard sequences do not have universal priming sites and the universal priming sites are added during the creation of a library. Standard sequences are typically provided in single stranded form. A standard sequence is defined with respect to a corresponding target sequence and the sequence specific reagents used to amplify the target sequence. In some embodiments, the target sequence contains the polymorphism of interest, e.g., a SNP, a deletion, or insertion, present in the nucleic acid sample for analysis. The standard sequence is a synthetic polynucleotide that is similar in nucleotide base sequence to the target sequence, but is nonetheless distinguishable from the target sequence by virtue of at least one nucleotide base difference, thereby providing a mechanism for distinguishing amplicon sequences derived from the standard sequence form amplicon sequences derived from the target sequence. Standard sequences are selected so as to have essentially the same amplification properties as the corresponding target sequence when amplified with the same set of amplification reagents, e.g., PCR primers. In some embodiments, the standard sequences can have the same primer sequence binding sites than the corresponding target sequences. In other embodiments, the standard sequences can have a different primer sequence binding sites than the corresponding target sequences. In some embodiments, the standard sequences can be selected to produce amplicons that have the same length as the length of amplicons produced from the corresponding target sequences. In other embodiments, the standard sequences can be selected to produce amplicons that have the slightly different lengths than the length of amplicons produced from the corresponding target sequences.

After the amplification reactions have been completed, the library is sequenced on a high throughput DNA sequencer where individual molecule are clonally amplified and sequenced. The number of sequence reads for each allele of the target sequence is counted, also counted are the number of sequence reads for the standard sequence corresponding to the target sequence. The process is also carried out for at least one other pair of target sequences and corresponding standard sequences. Consider for example, locus A, XAlreads for allele 1 of locus A are produced; XA2 reads for allele 2 of locus A are produced, and XAC reads for standard sequence A are produced. The ratio of ( XA1 plus XA2) to XAC is determined for each locus of interest. As discussed earlier, the process can be performed on a reference genome, e.g., a genome that is known to be diploid for all chromosomes. The process can be repeated many times in order to provide a large number of read values so as to determine a mean number of reads and the standard deviation in the number of reads. The process is performed with a mixture comprising a large number of different standard sequences corresponding to different loci. By assuming that (1) XA1 plus XA2 corresponds to the known number of chromosome, e.g., 2 for the normal human female genome and (2) the standard sequences have similar amplification (and detectability) properties as their corresponding natural loci, the relative amounts of the different standard sequences in the multiplex standard mixture can be determined. The calibrated multiplex standard sequence mixture can then be used to adjust for the variability in amplification efficiency between the different loci in a multiplex amplification reaction.

Other embodiments of the invention include methods and compositions for measuring the copy number of specific genes of interest, including duplications and mutant genes characterized by large deletions that would interfere with quantitation by sequencing. Sequencing would have problems detecting alleles having such deletions. Standard sequences included the amplification process can be used to reduce this problem.

In one embodiment of the invention the target sequence for analysis is a gene having a wild type (i.e. functional) form and a mutant form characterized by a deletion. Exemplary of such genes is SMN1, an allele having deletion being responsible for the genetic disease spinal muscular atrophy (SMA). It is of interest to detect an individual carrying the mutant form of the gene by means of high throughput genetic sequencing techniques. The application of such techniques to the detection of deletion mutations can be problematic because, among other reasons, the lack of sequences observed in sequencing (as opposed to detecting a simple point mutation or SNP). Such embodiments employ (1) a pair of amplification primers specific for the gene of interest, where in the amplification primers will amplify the gene of interest (or a portion thereof) and will not significantly amplify the mutant allele, (2) a standard sequence corresponding to the wild type allele of the gene of interest(i.e., a target sequence), but differing by at least one detectable nucleotide base, (3) a pair of amplification primers specific for a second target sequence that serves as a reference sequence, and (4) a standard sequence corresponding to the reference sequence. In one embodiment of the invention is provided a method for measuring the number of copies of the gene of interest, where in the gene of interest has one meaning allele that comprises a deletion. The method can employ amplification reagent specific for the gene of interest, e.g., PCR primers, that are specific for the gene of interest by amplifying at least a portion of the gene of interest, or the entire gene of interest, or a region adjacent to the gene of interest, while not amplifying the deletion comprising allele of the gene of interest. Additionally the subject method employs a standard sequence corresponding to the gene of interest, wherein the standard sequence differs by at least one nucleotide base from the gene of interest (so that the sequence of the standard sequence can be readily distinguished from the naturally occurring gene of interest). Typically, the standard sequence will contain the same primer binding sites as the gene of interest so as to minimize any amplification discrimination between the gene of interest and the standard sequence corresponding to the gene of interest. The reaction will also comprises amplification reagents specific for a reference sequence. The reference sequence is a sequence of known (or at least assumed to be known) copy number in the genome to be analyzed. The reaction further comprises a standard sequence corresponding to the reference sequence. Typically, the standard sequence corresponding to the reference sequence will contain the same primer binding sites as the reference sequence so as to minimize any amplification discrimination between the reference sequence and the standard sequence corresponding to the reference sequence.

All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. While the methods of the present disclosure have been described in connection with the specific embodiments thereof, it will be understood that it is capable of further modification. Furthermore, this application is intended to cover any variations, uses, or adaptations of the methods of the present disclosure, including such departures from the present disclosure as come within known or customary practice in the art to which the methods of the present disclosure pertain, and as fall within the scope of the appended claims. For example, any of the methods disclosed herein for DNA can be readily adapted for RNA by including a reverse transcription step to convert the RNA into DNA. Examples that use polymorphic loci for illustration can be readily adapted for the amplification of nonpolymorphic loci if desired.