Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND COMPOSITIONS FOR VIRAL NANO-FISH
Document Type and Number:
WIPO Patent Application WO/2019/018700
Kind Code:
A1
Abstract:
Disclosed herein are methods of detecting a target viral nucleic acid sequence, determining the localization of the target viral nucleic acid sequence, and/or quantifying the number of target viral nucleic acid sequences in a cell. This method may be used on small target nucleic acid sequences, and may be referred to as Nano-FISH or viral Nano-FISH.

Inventors:
AKILESH SHREERAM (US)
STAMATOYANNOPOULOS JOHN A (US)
SULLIVAN ALESSANDRA (US)
KERWIN WILLIAM (US)
RAGOCZY TOBIAS (US)
ZRAZHEVSKIY PAVEL (US)
Application Number:
PCT/US2018/042973
Publication Date:
January 24, 2019
Filing Date:
July 19, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALTIUS INST FOR BIOMEDICAL SCIENCES (US)
International Classes:
C12Q1/6841; C12Q1/70
Domestic Patent References:
WO2015002978A22015-01-08
WO2014036525A12014-03-06
WO2013101893A12013-07-04
WO2014204727A12014-12-24
Foreign References:
DE4038293A11992-06-04
US20160046984A12016-02-18
US20100304994A12010-12-02
Other References:
JUERGEN REISINGER ET AL: "Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescencein situ hybridization", INTERNATIONAL JOURNAL OF CANCER, vol. 118, no. 7, 1 April 2006 (2006-04-01), pages 1603 - 1608, XP055008000, ISSN: 0020-7136, DOI: 10.1002/ijc.21498
B. J. BELIVEAU ET AL: "Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 109, no. 52, 11 December 2012 (2012-12-11), pages 21301 - 21306, XP055515127, ISSN: 0027-8424, DOI: 10.1073/pnas.1213818110
HANHUI MA ET AL: "Multicolor CRISPR labeling of chromosomal loci in human cells", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 112, no. 10, 10 March 2015 (2015-03-10), pages 3002 - 3007, XP055460312, ISSN: 0027-8424, DOI: 10.1073/pnas.1420024112
"Human Molecular Genetics", 1999, JOHN WILEY & SONS, INC.
STREUBEL ET AL.: "TAL effector RVD specificities and efficiencies", NATURE BIOTECHNOLOGY, vol. 30, no. 7, 2012, pages 593 - 595, XP002703655, DOI: doi:10.1038/nbt.2304
STREUBEL ET AL., NATURE BIOTECHNOLOGY, vol. 30, no. 7, 2012, pages 593 - 595
BRIONES ET AL., ANAL BIOANAL CHEM, vol. 402, 2012, pages 3071 - 3089
BELIVEAU ET AL.: "Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes", PNAS, vol. 109, no. 52, 2012, pages 21301 - 21306
ZHANG ET AL.: "Optimizing the Specificity of Nucleic Acid Hybridization", NATURE CHEMISTRY, vol. 4, 2012, pages 208 - 214, XP008165567, DOI: doi:10.1038/nchem.1246
GUO ET AL., ANAL. BIOANAL. CHEM., vol. 402, 2012, pages 3115 - 3125
KUBOTA ET AL., PLOS ONE, vol. 5, no. 9, 2010, pages e13003
OKAMOTO, CHEM. SOC. REV., vol. 40, 2011, pages 5815 - 5828
WANG ET AL., RNA, vol. 18, 2012, pages 166 - 175
CHEN ET AL.: "Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system", CELL, vol. 155, no. 7, 2013, pages 1479 - 1491, XP055181416, DOI: doi:10.1016/j.cell.2013.12.001
MA ET AL.: "Multicolor CRISPR labeling of chromosomal loci in human cells", PNAS, vol. 112, no. 10, 2015, pages 3002 - 3007, XP055460312, DOI: doi:10.1073/pnas.1420024112
Attorney, Agent or Firm:
RAMANATHAN, Renuka et al. (US)
Download PDF:
Claims:
CLAIMS WHAT IS CLAIMED IS:

1. A method comprising detecting a target nucleic acid sequence in a cell, wherein the target nucleic acid sequence comprises an exogenous viral nucleic acid sequence less than 10 kilobases in length, wherein the cell is an intact cell.

2. The method of claim 1, further comprising:

a) contacting a plurality of probes with the cell, wherein a first probe of the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides and a detectable label associated with a nucleotide of the oligonucleotide sequence;

b) hybridizing the first probe to a portion of the target nucleic acid sequence; and

c) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the target nucleic acid sequence.

3. The method of claims 2, wherein the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides.

4. The method of any one of claims 1-3, wherein the detectable label is indirectly attached to the nucleotide.

5. The method of any one of claims 1-3, wherein the detectable label is directly attached to the nucleotide.

6. The method of any one of claims 2-5, wherein the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

7. A method of detecting a target nucleic acid sequence, the method comprising:

a) contacting a plurality of probes with a cell, wherein a first probe of the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides and a detectable label associated with a nucleotide of the oligonucleotide sequence;

b) hybridizing the first probe to a portion of the target nucleic acid sequence; and

c) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the target nucleic acid sequence.

8. The method of claim 5, wherein the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides.

9. The method of any one of claims 7-8, wherein the detectable label is indirectly attached to the nucleotide.

10. The method of any one of claims 7-9, wherein the detectable label is directly attached to the nucleotide.

11. The method of any one of claims 7-10, wherein the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

12. The method of any one of claims 1-7, wherein the target nucleic acid sequence comprises an exogenous nucleic acid sequence.

13. The method of claim 12, wherein the exogenous nucleic acid sequence comprises a viral nucleic acid sequence.

14. The method of claim 13, wherein the viral nucleic acid sequence comprises a portion of a viral nucleic acid sequence from a vector.

15. The method of claim 14, wherein the vector comprises:

a) an integrating virus selected from:

(i) a retrovirus selected from:

(i) a lentivirus;

(ii) a gamma retrovirus selected from: a) Friend murine leukemia virus; b) Moloney murine leukemia virus; or

c) Murine type C retrovirus;

a foamy virus selected from:

a) Eastern chimpanzee simian

foamy virus;

b) Macaque simian foamy virus; or c) Feline foamy virus; or

b) a non-integrating virus selected from:

an adenovirus selected from:

(i) Human mastadeno virus D;

(ϋ) Human adenovirus 81;

(iii) Human mastadeno virus B;

(iv) Human adenovirus 71;

(v) Human adenovirus 69;

(vi) Human adenovirus 68;

(vii) Human adenovirus 67;

(viii) Human adenovirus 66;

(ix) Human adenovirus 65;

(x) Human adenovirus 64;

(xi) Human adenovirus 63;

(xii) Human adenovirus 62;

(xiii) Human adenovirus 61;

(xiv) Human adenovirus 58;

(xv) Human mastadeno virus C;

(xvi) Human adenovirus 56;

(xvii) Human adenovirus 55;

(xviii) Human adenovirus 54; or

(ii) an adeno-associated virus selected from:

(i) adeno-associated virus serotype 1;

(ii) adeno-associated virus serotype 2;

(iii) adeno-associated virus serotype 3;

(iv) adeno-associated virus serotype 4; (v) adeno- -associated virus serotype 5;

(vi) adeno- -associated virus serotype 6;

(vii) adeno- -associated virus serotype 7;

(viii) adeno- -associated virus serotype 8;

(ix) adeno- -associated virus serotype 9;

(x) adeno- -associated virus serotype 10

(xi) adeno- -associated virus serotype 11

(xii) adeno- -associated virus serotype 12:

(xiii) adeno- -associated virus serotype 13:

(xiv) pAAV-DJ (VPK-420-DJ (PN-

340001));

(xv) synthetically evolved adeno- associated viruses of any one of adeno-associated virus 1, adeno- associated virus 2, adeno-associated virus 3, adeno-associated virus 4, adeno-associated virus 5, adeno- associated virus 6, adeno-associated virus 7, adeno-associated virus 8, adeno-associated virus 9, adeno- associated virus 10, adeno-associated virus 11, adeno-associated virus 12, adeno-associated virus 13;

(xvi) a naturally occurring adeno- associated virus,

(xvii) synthetic adeno-associated virus comprising chimeras of any combination of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno- associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno-associated virus 7, adeno- associated virus 8, adeno-associated virus 9; adeno-associated virus 10;

adeno-associated virus 11; adeno- associated virus 12; adeno-associated virus 13; or

(iii) a human papillomavirus selected from:

(i) human papillomavirus 116.

16. The method of any one of claims 14-15, wherein the vector comprises NC 002077.1, NC 001401.2, NC 001729.1, NC OOl 829.1, AF085716.1, AF028704.1, NC 006260.1, NC_006261.1, AY530579.1, AY631965.1, AY631966.1, DQ813647.1, EU285562.1, VPK-420-DJ (PN-340001), LC314153.1, MF416150.1, KX827426.1,

LC066535.1, AB765926.1, LC177352.1, KT970440.1, KF268328.1, KF633445.1,

KY618678.1, KY618677.1, KY618676.1, KF268335.1, KF268207.1, KP641339.1,

JN226748.1, JN860678.1, AP012302.1, JN860676.1, AP012285.1, EF121005.1,

JN935766.1, JN162671.1, JF964962.1, HQ007053.1, JF799911.1, HQ883276.1,

HQ003817.1, HM770721.2, FJ643676.1, AB333801.2, FJ169625.1, NC_001362.1,

NC_001501.1, NC_001702.1, KX087159.1, MF280817.1, Y08851.1, or NC_013035.1.

17. The method of any one of claims 1-16, wherein the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of: SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof.

18. The method of any one of claims 1-17, wherein the exogenous nucleic acid sequence comprises a transgene nucleic acid sequence of an insert from the vector or portion thereof.

19. The method of claim 18, wherein the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises a therapeutic gene.

20. The method of any one of claims 18-19, wherein the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises Cas9, a chimeric antigen receptor (CAR), BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY.

21. The method of any one of claims 1-20, further comprising determining a number of insertions from the target nucleic acid sequence on a per cell basis.

22. The method of any one of claims 1-21, further comprising determining a distribution of insertions from the target nucleic acid sequence in a population of cells.

23. The method of any one of claims 21-22, further comprising correlating the number of insertions from the target nucleic acid sequence on a per cell basis to a property of the cell.

24. The method of claim 23, wherein the property of the cell comprises protein expression, mRNA transcript level, or cellular state.

25. The method of any one of claims 1-24, wherein the plurality of probes comprises at least one SEQ ID NO: 930 - SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403.

26. The method of any one of claims 1-25, wherein the first probe hybridizes to a plus strand of the target nucleic acid sequence and a second probe hybridizes to a minus strand of the target nucleic acid sequence.

27. The method of claim 26, wherein at least 1, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 3' end of the first probe are complementary to 5 nucleotides at a 5' end of the second probe of the plurality of probes.

28. The method of claim 26, wherein at least 1, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 5' end of the first probe are complementary to 5 nucleotides at a 3' end of the second probe of the plurality of probes.

29. The method of any one of claims 1-28, wherein the first probe comprises 100% identity to fewer than 300 sequences from a 16-mer database of genomic sequences from a species of the cell.

30. The method of any one of claims 1-29, wherein the first probe comprises more than 50% contiguous homology to fewer than 3 genomic sequences from a species of the cell.

31. The method of any one of claims 29-30, wherein the species is a human, a Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse.

32. The method of any one of claims 1-31, wherein the first probe of the plurality of probes comprises at least 30 and not more than 60 nucleotides.

33. The method of any one of claims 1-32, wherein the plurality of probes is not blocked with a blocking agent prior to the contacting the plurality of probes with the cell.

34. The method of claim 33, wherein the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof.

35. The method of any one of claims 1-34, wherein the cell comprises a mammalian cell or a eukaryotic cell.

36. The method of any one of claims 1-35, wherein the cell comprises a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T cell.

37. The method of any one of claims 1-36, wherein the cell comprises an engineered cell or a progenitor cell thereof.

38. The method of claim 37, wherein the engineered cell comprises a CD34+ cell or a T cell.

39. The method of claim .38, wherein the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene.

40. The method of claim 38, wherein the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR).

41. The method of any one of claims 1-40, wherein the cell is an intact cell.

42. The method of any one of claims 1-41, wherein the target nucleic acid sequence is a non-amplified nucleic acid sequence.

43. The method of any one of claims 1-42, wherein the detecting the target nucleic acid sequence comprises less than 48 hours.

44. The method of any one of claims 1-43, wherein the target nucleic acid sequence or portion thereof is at least 10 bases in length and no more than 12 kilobases in length, at least 10 bases in length and no more than 10 kilobases in length, at least 10 bases in length and no more than 8 kilobases in length, at least 10 bases in length and no more than 6 kilobases in length, at least 10 bases in length and no more than 4 kilobases in length, at least 10 bases in length and no more than 3 kilobases, at least 10 bases in length and no more than 2 kilobases, at least 10 bases in length and no more than 1.5 kilobases in length, at least 10 bases in length and no more than 1 kilobases in length, or at least 200 bases and no more than 4 kilobases in length.

45. The method of any one of claims 1-44, wherein the method comprises optically detecting the detectable label.

46. The method of any one of claims 1-45, wherein the target nucleic acid sequence comprises DNA.

47. The method of any one of claims 1-45, wherein the target nucleic acid sequence comprises RNA.

48. A composition comprising a plurality of probes, wherein a first probe of the plurality of probes is capable of hybridizing to a target nucleic acid sequence in a cell, and wherein the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof.

49. The composition of claim 48, wherein the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides; and a detectable label associated with a nucleotide of the oligonucleotide sequence

50. The composition of claim 49, wherein the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides.

51. The composition of any one of claims 48-50, wherein the detectable label is indirectly attached to the nucleotide.

52. The composition of any one of claims 48-51, wherein the detectable label is directly attached to the nucleotide.

53. The composition of any one of claims 49-52, wherein the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

54. A composition comprising a plurality of probes, wherein a first probe of the plurality of probes comprises:

an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides; and

a detectable label associated with a nucleotide of the oligonucleotide sequence.

55. The composition of claim 54, wherein the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides.

56. The composition of any one of claims 54-55, wherein the detectable label is indirectly attached to the nucleotide.

57. The composition of any one of claims 54-56, wherein the detectable label is directly attached to the nucleotide.

58. The composition of any one of claims 54-57, wherein the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

59. The composition of any one of claims 48-58, wherein the first probe is capable of hybridizing to a target nucleic acid sequence in a cell.

60. The composition of any one of claims 48-59, wherein the target nucleic acid sequence comprises an exogenous nucleic acid sequence.

61. The composition of claim 60, wherein the exogenous nucleic acid sequence comprises a viral nucleic acid sequence.

62. The composition of claim 61, wherein the viral nucleic acid sequence comprises a portion of a viral nucleic acid sequence from a vector.

63. The composition of claim 62, wherein the vector comprises:

a) an integrating virus selected from:

(i) a retrovirus selected from

(i) a lentivirus;

(ii) a gamma retrovirus selected from: a) Friend murine leukemia virus; b) Moloney murine leukemia virus; or

c) Murine type C retrovirus;

(iii) a foamy virus selected from:

a) Eastern chimpanzee simian

foamy virus;

b) Macaque simian foamy virus; or c) Feline foamy virus; or b) a non-integrating virus selected from:

(i) an adenovirus selected from: (i) Human mastadeno virus D;

(ϋ) Human adenovirus 81;

(iii) Human mastadeno virus B;

(iv) Human adenovirus 71;

(v) Human adenovirus 69;

(vi) Human adenovirus 68;

(vii) Human adenovirus 67;

(viii) Human adenovirus 66;

(ix) Human adenovirus 65;

(x) Human adenovirus 64;

(xi) Human adenovirus 63;

(xii) Human adenovirus 62;

(xiii) Human adenovirus 61;

(xiv) Human adenovirus 58;

(xv) Human mastadeno virus C;

(xvi) Human adenovirus 56;

(xvii) Human adenovirus 55;

(xviii) Human adenovirus 54; or

(ϋ) an adeno-associated virus selected from:

(i) adeno- -associated virus serotype l;

(ϋ) adeno- -associated virus serotype 2;

(iii) adeno- -associated virus serotype 3;

(iv) adeno- -associated virus serotype 4;

(v) adeno- -associated virus serotype 5;

(vi) adeno- -associated virus serotype 6;

(vii) adeno- -associated virus serotype 7;

(viii) adeno- -associated virus serotype 8;

(ix) adeno- -associated virus serotype 9;

(x) adeno- -associated virus serotype 10

(xi) adeno- -associated virus serotype 11

(xii) adeno- -associated virus serotype 12:

(xiii) adeno- -associated virus serotype 13:

(xiv) pAAV-DJ (VPK-420- DJ (PN-

340001)) (xv) synthetically evolved adeno- associated viruses of any one of adeno-associated virus 1, adeno- associated virus 2, adeno-associated virus 3, adeno-associated virus 4, adeno-associated virus 5, adeno- associated virus 6, adeno-associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno- associated virus 10; adeno-associated virus 11; adeno-associated virus 12; adeno-associated virus 13;

(xvi) a naturally occurring adeno- associated virus;

(xvii) synthetic adeno-associated virus comprising chimeras of any combination of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno- associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno-associated virus 7, adeno- associated virus 8, adeno-associated virus 9; adeno-associated virus 10; adeno-associated virus 11; adeno- associated virus 12; adeno-associated virus 13; or

(iii) a human papillomavirus selected from:

(i) human papillomavirus 116.

64. The composition of any one of claims 62-63, wherein the vector comprises NC_002077.1, NC_001401.2, NC_001729.1, NC_001829.1, AF085716.1, AF028704.1, NC_006260.1, NC_006261.1, AY530579.1, AY631965.1, AY631966.1, DQ813647.1, EU285562.1, VPK-420-DJ (PN-340001), LC314153.1, MF416150.1, KX827426.1, LC066535.1, AB765926.1, LC177352.1, KT970440.1, KF268328.1, KF633445.1,

KY618678.1, KY618677.1, KY618676.1, KF268335.1, KF268207.1, KP641339.1,

JN226748.1, JN860678.1, AP012302.1, JN860676.1, AP012285.1, EF121005.1,

JN935766.1, JN162671.1, JF964962.1, HQ007053.1, JF799911.1, HQ883276.1,

HQ003817.1, HM770721.2, FJ643676.1, AB333801.2, FJ169625.1, NC_001362.1,

NC_001501.1, NC_001702.1, KX087159.1, MF280817.1, Y08851.1, or NC_013035.1.

65. The composition of any one of claims 48-64, wherein the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof.

66. The composition of any one of claims 48-65, wherein the exogenous nucleic acid sequence comprises a transgene nucleic acid sequence of an insert from the vector or portion thereof.

67. The composition of claim 66, wherein the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises a therapeutic gene.

68. The composition of any one of claims 66-67, wherein the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises Cas9, a chimeric antigen receptor (CAR), BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY.

69. The composition of any one of claims 48-68, wherein the plurality of probes comprises at least one SEQ ID NO: 930 - SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403.

70. The composition of any one of claims 48-69, wherein the first probe is capable of hybridizing to a plus strand of the target nucleic acid sequence and a second probe is capable of hybridizing to a minus strand of the target nucleic acid sequence.

71. The composition of claim 70, wherein at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 3' end of the first probe are complementary to 5 nucleotides at a 5' end of the second probe of the plurality of probes.

72. The composition of claim 70, wherein at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 5' end of the first probe are complementary to 5 nucleotides at a 3' end of the second probe of the plurality of probes.

73. The composition of any one of claims 48-72, wherein the first probe comprises 100% identity to fewer than 300 sequences from a 16-mer database of genomic sequences from a species of the cell.

74. The composition of any one of claims 48-73, wherein the first probe comprises more than 50% contiguous homology to fewer than 3 genomic sequences from a species of the cell.

75. The composition of any one of claims 73-74, wherein the species is a human, a Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse.

76. The composition of any one of claims 48-75, wherein the first probe of the plurality of probes comprises at least 30 and not more than 60 nucleotides.

77. The composition of any one of claims 48-76, wherein the plurality of probes is not blocked with a blocking agent prior to contacting the plurality of probes with the cell.

78. The composition of claim 77, wherein the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof.

79. The composition of any one of claims 48-78, wherein the cell comprises a mammalian cell or a eukaryotic cell.

80. The composition of any one of claims 48-79, wherein the cell comprises a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T cell.

81. The composition of any one of claims 48-80, wherein the cell comprises an engineered cell or a progenitor cell thereof.

82. The composition of claim 81, wherein the engineered cell comprises a CD34+ cell or a T cell.

83. The composition of claim 82, wherein the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene.

84. The composition of claim 82, wherein the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR).

85. The composition of any one of claims 48-84, wherein the cell is an intact cell.

86. The composition of any one of claims 48-85, wherein the target nucleic acid sequence is a non-amplified nucleic acid sequence.

87. The composition of any one of claims 48-86, wherein the detecting the target nucleic acid sequence comprises less than 48 hours.

88. The composition of any one of claims 48-87, wherein the target nucleic acid sequence or portion thereof is at least 10 bases in length and no more than 12 kilobases in length, at least 10 bases in length and no more than 10 kilobases in length, at least 10 bases in length and no more than 8 kilobases in length, at least 10 bases in length and no more than 6 kilobases in length, at least 10 bases in length and no more than 4 kilobases in length, at least 10 bases in length and no more than 3 kilobases, at least 10 bases in length and no more than 2 kilobases, at least 10 bases in length and no more than 1.5 kilobases in length, at least 10 bases in length and no more than 1 kilobases in length, or at least 200 bases and no more than 4 kilobases in length.

89. The composition of any one of claims 48-88, wherein the target nucleic acid sequence comprises DNA.

90. The composition of any one of claims 48-88, wherein the target nucleic acid sequence comprises RNA.

91. The method of any one of claims 1-47, wherein the oligonucleotide sequence comprises at least 40 nucleotides.

92. The method of any one of claims 1-47 and 90, wherein the detectable label is a fluorescent dye molecule.

93. The method of any one of claims 1-47 and 90-91, wherein the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

94. The method of any one of claims 1-47 and 90-92, further comprising denaturing a DNA of the cell prior to contacting the plurality of probes with the cell.

95. The method of claim 93, wherein the denaturing the DNA of the cell comprises incubating the cell for 4.5 minutes in 70% formamide at a temperature of 78°C.

96. The method of any one of claims 1-47 and 90-94, further comprising hybridizing at least a portion of the plurality of probes to the target nucleic acid sequence.

97. The method of any one of claims 1-47 and 90-95, further comprising washing the cell after the contacting the plurality of probes with the cell.

98. The method of any one of claims 1-47 and 90-96, wherein the target nucleic acid sequence is introduced into the cell.

99. The method of any one of claims 1-47 and 90-98, wherein the target nucleic acid sequence is introduced into the cell.

100. The method of claim 98, wherein the introducing comprises electroporation, lipofection, transfection, microinjection, viral transduction, or use of a gene gun.

101. The method of any one of claims 1-47 and 90-99, further comprising:

a) contacting the cell with a second detectable label that binds to a portion of a cellular structure; and

b) detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine a spatial position of the exogenous nucleic acid sequence.

102. The method of any one of claims 1-47 and 90-100, further comprising determining a number of the target nucleic acid sequences present in the cell.

103. The method of any one of claims 1-47 and 90-101, further comprising correlating an expression level of a cell surface protein with the number of target nucleic acid sequences present in the cell, wherein the exogenous nucleic acid sequence encodes for the cell surface protein.

104. The method of any one of claims 100-102, further comprising optically detecting the second detectable label.

105. The method of any one of claims 1-47 and 90-103, wherein the nucleic acid sequence is integrated into the genome of the cell.

106. The method of any one of claims 1-47 and 90-104, wherein the cell is obtained from a tissue.

107. The method of any one of claims 1-47 and 90-105, wherein the cell is a live cell.

108. The method of any one of claims 1-47 and 90-106, wherein the first probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

109. The method of any one of claims 1-47 and 90-107, wherein the first probe comprises a GC content of from 25-70%.

110. The method of any one of claims 1-47 and 90-108, wherein the GC content of each probe within the plurality of probes varies by less than 5 to 10%.

111. The method of any one of claims 1-47 and 90-109, wherein the single detectable agent is located at the 5' end of the first probe or at any nucleotide of the first probe.

112. The method of any one of claims 1-47 and 90-110, wherein a signal to noise ratio of about 1.2-1.5 to 1, 1.5: 1, 4-8 to 1, or 5-10:1 is observed.

113. The method of any one of claims 1-47 and 90-111, wherein the plurality of probes binds endogenous and exogenous genes.

114. The method of any one of claims 1-47 and 90-112, wherein the target nucleic acid sequence is double stranded.

115. The method of any one of claims 1-47 and 90-113, wherein the cell is fixed with a fixation buffer prior to the contacting the plurality of probes with the cell.

116. The method of claim 114, wherein the fixation buffer comprises a 3 to 1 ratio of methanol to acetic acid.

117. The method of any one of claims 1-47 and 90-115, wherein the first probe comprises more than 75% contiguous homology to fewer than 1 genomic sequences from a species of the cell.

118. The method of any one of claims 1-47 and 90-116, wherein the contacting the plurality of probes with the cell comprises simultaneously contacting a plurality of cell populations with the plurality of probes.

119. The method of claim 117, wherein each of the plurality of cell populations is deposited in an individual well in a well plate.

120. The method of claim 118, wherein the well plate comprises at least 24 wells.

121. The method of any one of claims 117-119, wherein each of the plurality of cell populations is from a unique sample.

122. The method of any one of claims 117-120, wherein each of the plurality of cell populations is from an identical sample.

123. The method of any one of claims 117-121, wherein each of the plurality of cell populations is deposited in an individual well in up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates.

124. The method of any one of claims 1-47 and 90-122, wherein a probe set comprises the plurality of probes.

125. The method of claim 123, comprising providing a plurality of probe sets.

126. The method of any one of claims 1-47 and 90-124, wherein each probe set of the plurality of probe sets comprises a unique fluorophore and detects a unique exogenous nucleic acid sequence.

127. The method of any one of claims 1-47 and 90-125, further comprising determining a transduction efficacy of a vector by calculating the number of exogenous nucleic acid sequences in the cell.

128. The method of any one of claims 1-47 and 90-126, further comprising enriching for a cell population with a certain number of target nucleic acid sequences in each cell of a plurality of cells.

129. The method of any one of claims 1-47 and 90-127, further comprising correlating an expression level of a cell surface reporter gene with the number of target nucleic acid sequences present in the cell, wherein the target nucleic acid sequence comprises the cell surface reporter gene.

130. The method of any one of claims 1-47 and 90-128, wherein the detecting the target nucleic acid sequence comprises less than 48 hours.

131. The method of any one of claims 1-47 and 90-129, wherein the first probe comprises an amino acid sequence.

132. The method of any one of claims 1-47 and 90-130, wherein the second detectable label comprises a fluorescent dye molecule.

133. The method of any one of claims 1-47 and 90-131, wherein the method further comprises correlating a phenotype of the cell with the presence of the target nucleic acid sequence.

134. The method of claim 132, wherein the phenotype is a product expressed due to a genetic modification in the intact genetically modified cell, a quality of the product expressed due to the genetic modification in the intact genetically modified cell, or a combination thereof.

135. The method of any one of claims 132-133, wherein the phenotype is an increased or decreased expression of the product, an increase or a decrease in the quality of the product, or a combination thereof.

136. The method of any one of claims 1-47 and 90-134, further comprising determining a number or location of genetic modifications in the cell.

137. The method of any one of claims 133-135, wherein the product expressed is a transgene protein, RNA, or a secondary product of the genetic modification.

138. The method of any one of claims 1-47 and 90-136, further comprising:

selecting a first genetically modified cell comprising a phenotype of interest; determining a set of conditions used for a genetic modification of the first genetically modified cell; and

preparing a second genetically modified cell using the set of conditions for genetic modification.

139. The composition of any one of claims 48-90, wherein the detectable label is a fluorescent dye molecule.

140. The composition of any one of claims 48-90 and 139, wherein the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

141. The composition of any one of claims 48-90 and 139-140, wherein the target nucleic acid sequence is integrated into the genome of the cell.

142. The composition of any one of claims 48-90 and 139-141, wherein the cell is obtained from a tissue.

143. The composition of any one of claims 48-90 and 139-142, wherein the cell is a live cell.

144. The composition of any one of claims 48-90 and 139-143, wherein the first probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

145. The composition of any one of claims 48-90 and 139-144, wherein the first probe comprises a GC content of from 25-70%.

146. The composition of any one of claims 48-90 and 139-145, wherein the GC content of each probe within the plurality of probes varies by less than 5 to 10%.

147. The composition of any one of claims 48-90 and 139-146, wherein the single detectable label is located at the 5' end of the first probe or at any nucleotide of the first probe.

148. The composition of any one of claims 48-90 and 139-147, wherein the plurality of probes is capable of hybridizing to endogenous and exogenous genes.

149. The composition of any one of claims 48-90 and 139-148, wherein the target nucleic acid sequence is double stranded

150. The composition of any one of claims 48-90 and 139-149, wherein the first probe comprises more than 75% contiguous homology to fewer than 1 genomic sequence from a species of the cell.

151. The composition of any one of claims 48-90 and 139-150, wherein the target nucleic acid sequence is at least 200 nucleotides in length, 250 nucleotides in length, 300 nucleotides in length, 350 nucleotides in length, 400 nucleotides in length, 450 nucleotides in length, 500 nucleotides in length, 550 nucleotides in length, or 600 nucleotides in length.

152. The composition of any one of claims 48-90 and 139-151, wherein the plurality of probes comprises at least 8 and no more than 145 unique probes.

153. The method of any one of claims 1-47 and 90-137, wherein the target nucleic acid comprises a portion of a naturally occurring virus and the method of detecting the target nucleic acid sequence comprises detecting infection of the cell by the naturally occurring virus.

154. The method of claim 152, wherein the naturally occurring virus comprises HIV, RSV, malaria, or influenza.

155. The method of any one of claims 152-153, wherein the target nucleic acid comprises latent HIV insertions.

156. The method of any one of claims 1-47, 90-137, and 152-154, wherein the portion comprises a contiguous nucleic acid segment.

157. The composition of any one of claims 48-90 and 139-152, wherein the cell comprises a cell infected by a naturally occurring virus.

158. The composition of claim 157, wherein the naturally occurring virus comprises HIV, RSV, malaria, or influenza.

159. The composition of any one of claims 157-158, wherein the target nucleic acid comprises latent HIV insertions.

160. The composition of any one of claims 48-90, 139-152, and 157-159, wherein the portion comprises a contiguous nucleic acid segment.

161. The method of any one of claims 1-47, 90-137, and 152-155, further comprising:

a) providing the cell further comprising a second target nucleic acid sequence;

b) contacting the cell with a second plurality of probes comprising a second probe comprising a second detectable label and a probe sequence that binds to a portion of the second target nucleic acid sequence; and c) detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine the spatial position of the second target nucleic acid sequence.

162. The method of claim 160, wherein the second plurality of probes bound to the second target nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

163. The method of any one of claims 160-161, further comprising binding at least a portion of the second plurality of probes to the second target nucleic acid sequence.

164. The method of any one of claims 160-162, further comprising washing the cell after contacting the second target nucleic acid sequence with the second plurality of probes.

165. The method of any one of claims 160-163, wherein the probe sequence of at least one probe of the second plurality of probes comprises an oligonucleotide sequence.

166. The method of any one of claims 160-164, wherein the cell is an intact cell and further comprising:

a) providing the intact cell further comprising the second target nucleic acid sequence;

b) contacting the intact cell with the second plurality of probes, and

c) detecting a position of the first detectable label in the intact cell relative to the second detectable label, wherein the position is used to determine the spatial position of the target nucleic acid sequence to the second target nucleic acid sequence.

167. The method of any one of claims 160-165, wherein the probe sequence of at least one probe of the second plurality of probes comprises an amino acid sequence.

168. The method of any one of claims 1-47, 90-137, 152-155, and 160-166, wherein the target nucleic acid is less than 2.5 kilobases in length

169. A kit comprising a probe set and a set of instructions for the method of any one of claims 1-47, 90-137, 152-155, and 160-167.

170. The kit of claim 148, wherein the probe set comprises the composition of any one of claims 48-90, 139-152, and 157-160.

Description:
METHODS AND COMPOSITIONS FOR VIRAL NANO-FISH

CROSS-REFERENCE

[0001] This application claims the benefit of U.S. Provisional Application Nos. 62/659,687, filed April 18, 2018; 62/636,088, filed February 27, 2018; 62/583,427, filed November 8, 2017; and 62/534,669, filed July 19, 2017, which applications are incorporated herein by reference in their entirety for all purposes.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with the support of the United States government under NIH CEGS Contract number 5RM1HG007743-04 by NIH Centers of Excellence in Genomic Science.

BACKGROUND

[0003] Imaging techniques such as fluorescence in situ hybridization (FISH) allows for visualization of DNA or RNA regions, and/or assessment of gene expression, chromosome position, and/or protein localization. As such, data acquisition from large number of cells requires multiple fields of view and thereby presents challenges in obtaining high throughput and high resolution imaging data. This precludes the use of existing FISH techniques for accurate detection or spatial localization of smaller genomic sequences. As such, new FISH techniques are required to detect the localization of probes to small genomic sequences.

SUMMARY

[0004] In various aspects, the present disclosure provides a method comprising detecting a target nucleic acid sequence in a cell, wherein the target nucleic acid sequence comprises an exogenous viral nucleic acid sequence less than 10 kilobases in length, wherein the cell is an intact cell.

[0005] In some aspects, the method further comprises: a) contacting a plurality of probes with the cell, wherein a first probe of the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides and a detectable label associated with a nucleotide of the oligonucleotide sequence; b) hybridizing the first probe to a portion of the target nucleic acid sequence; and c) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the target nucleic acid sequence.

[0006] In some aspects, the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides. In some aspects, the detectable label is indirectly attached to the nucleotide. In some aspects, the detectable label is directly attached to the nucleotide. In some aspects, the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

[0007] In various aspects, the present disclosure provides a method of detecting a target nucleic acid sequence, the method comprising: a) contacting a plurality of probes with a cell, wherein a first probe of the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides and a detectable label associated with a nucleotide of the oligonucleotide sequence; b) hybridizing the first probe to a portion of the target nucleic acid sequence; and c) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the target nucleic acid sequence. In some aspects, the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides. In some aspects, the detectable label is indirectly attached to the nucleotide. In some aspects, the detectable label is directly attached to the nucleotide. In some aspects, the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

[0008] In some aspects, the target nucleic acid sequence comprises an exogenous nucleic acid sequence. In some aspects, the exogenous nucleic acid sequence comprises a viral nucleic acid sequence. In some further aspects, the viral nucleic acid sequence comprises a portion of a viral nucleic acid sequence from a vector.

[0009] In some aspects, the vector comprises an integrating virus or a non-integrating virus. In some aspects, the integrating virus is selected from a retrovirus. In some aspects, the retrovirus is selected from a lentivirus, a gamma retrovirus, or a foamy virus. In some aspects, the gamma retrovirus is selected from a Friend murine leukemia virus, a Moloney murine leukemia virus, or a Murine type C retrovirus. In further aspects a foamy virus is selected from an Eastern chimpanzee simian foamy virus, a Macaque simian foamy virus, or a Feline foamy virus. In some aspects, the non-integrating virus is selected from an adenovirus, an adeno-associated virus, or a human papillomavirus. In further aspects, the adenovirus is selected from Human mastadeno virus D; Human adenovirus 81 ; Human mastadeno virus B; Human adenovirus 71; Human adenovirus 69; Human adenovirus 68; Human adenovirus 67; Human adenovirus 66; Human adenovirus 65; Human adenovirus 64; Human adenovirus 63; Human adenovirus 62; Human adenovirus 61; Human adenovirus 58; Human mastadenovirus C; Human adenovirus 56; Human adenovirus 55; or Human adenovirus 54. In some aspects, an adeno-associated virus is selected from adeno-associated virus serotype 1; adeno-associated virus serotype 2; adeno-associated virus serotype 3;

adeno-associated virus serotype 4; adeno-associated virus serotype 5; adeno-associated virus serotype 6; adeno-associated virus serotype 7; adeno-associated virus serotype 8; adeno- associated virus serotype 9; adeno-associated virus serotype 10; adeno-associated virus serotype 11 ; adeno-associated virus serotype 12; adeno-associated virus serotype 13; pAAV- DJ (VPK-420-DJ (PN-340001)), synthetically evolved adeno-associated viruses of any one of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno- associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno-associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10, adeno- associated virus 11, adeno-associated virus 12, adeno-associated virus 13, a naturally occurring adeno-associated virus, or a synthetic adeno-associated virus comprising chimeras of any combination of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno-associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno- associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10; adeno-associated virus 11 ; adeno-associated virus 12; adeno-associated virus 13. In some aspects, the human papillomavirus is selected from human papillomavirus 116.

[0010] In further aspects, the vector comprises NC_002077.1, NC_001401.2, NC_001729.1, NC_001829.1, AF085716.1, AF028704.1, NC_006260.1, NC_006261.1, AY530579.1, AY631965.1, AY631966.1, DQ813647.1, EU285562.1, VPK-420-DJ (PN-340001),

LC314153.1, MF416150.1, KX827426.1, LC066535.1, AB765926.1, LC177352.1,

KT970440.1, KF268328.1, KF633445.1, KY618678.1, KY618677.1, KY618676.1,

KF268335.1, KF268207.1, KP641339.1, JN226748.1, JN860678.1, AP012302.1,

JN860676.1, AP012285.1, EF121005.1, JN935766.1, JN162671.1, JF964962.1,

HQ007053.1, JF799911.1, HQ883276.1, HQ003817.1, HM770721.2, FJ643676.1,

AB333801.2, FJ169625.1, NC_001362.1, NC_001501.1, NC_001702.1, KX087159.1, MF280817.1, Y08851.1, or NC_013035.1.

[0011] In further aspects, the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of: SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof.

[0012] In some aspects, the exogenous nucleic acid sequence comprises a transgene nucleic acid sequence of an insert from the vector or portion thereof. In some aspects, the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises a therapeutic gene. In some aspects, the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises Cas9, a chimeric antigen receptor (CAR), BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY. In some aspects, the method further comprises determining a number of insertions from the target nucleic acid sequence on a per cell basis.

[0013] In some aspects, the method further comprises determining a distribution of insertions from the target nucleic acid sequence in a population of cells. In some aspects, the method further comprises correlating the number of insertions from the target nucleic acid sequence on a per cell basis to a property of the cell. In some aspects, the property of the cell comprises protein expression, mRNA transcript level, or cellular state.

[0014] In some aspects, the plurality of probes comprises at least one SEQ ID NO: 930 - SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403. In some aspects, the first probe hybridizes to a plus strand of the target nucleic acid sequence and a second probe hybridizes to a minus strand of the target nucleic acid sequence. In some aspects, at least 1, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 3' end of the first probe are complementary to 5 nucleotides at a 5' end of the second probe of the plurality of probes.

[0015] In some aspects, at least 1, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides at a 5' end of the first probe are complementary to 5 nucleotides at a 3' end of the second probe of the plurality of probes. In some aspects, the first probe comprises 100% identity to fewer than 300 sequences from a 16-mer database of genomic sequences from a species of the cell.

[0016] In further aspects, the first probe comprises more than 50% contiguous homology to fewer than 3 genomic sequences from a species of the cell. In some aspects, the species is a human, a Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse. In some aspects, the first probe of the plurality of probes comprises at least 30 and not more than 60 nucleotides. In some aspects, the plurality of probes is not blocked with a blocking agent prior to the contacting the plurality of probes with the cell. In further aspects, the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof.

[0017] In some aspects, the cell comprises a mammalian cell or a eukaryotic cell. In further aspects, the cell comprises a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T cell. In still further aspects, the cell comprises an engineered cell or a progenitor cell thereof. In further aspects, the engineered cell comprises a CD34+ cell or a T cell. In some aspects, the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene. In some aspects, the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR). [0018] In some aspects, the cell is an intact cell. In some aspects, the target nucleic acid sequence is a non-amplified nucleic acid sequence. In some aspects, the detecting the target nucleic acid sequence comprises less than 48 hours. In some aspects, the target nucleic acid sequence or portion thereof is at least 10 bases in length and no more than 12 kilobases in length, at least 10 bases in length and no more than 10 kilobases in length, at least 10 bases in length and no more than 8 kilobases in length, at least 10 bases in length and no more than 6 kilobases in length, at least 10 bases in length and no more than 4 kilobases in length, at least 10 bases in length and no more than 3 kilobases, at least 10 bases in length and no more than 2 kilobases, at least 10 bases in length and no more than 1.5 kilobases in length, at least 10 bases in length and no more than 1 kilobases in length, or at least 200 bases and no more than 4 kilobases in length.

[0019] In some aspects, the method comprises optically detecting the detectable label. In some aspects, the target nucleic acid sequence comprises DNA. In other aspects, the target nucleic acid sequence comprises RNA.

[0020] In some aspects, the oligonucleotide sequence comprises at least 40 nucleotides. In some aspects, the detectable label is a fluorescent dye molecule. In some aspects, the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

[0021] In some aspects, the method further comprises denaturing a DNA of the cell prior to contacting the plurality of probes with the cell. In further aspects, the denaturing the DNA of the cell comprises incubating the cell for 4.5 minutes in 70% formamide at a temperature of 78°C. In some aspects, the method further comprises hybridizing at least a portion of the plurality of probes to the target nucleic acid sequence. In some aspects, the method further comprises washing the cell after the contacting the plurality of probes with the cell. In some aspects, the target nucleic acid sequence is introduced into the cell. In some aspects, the target nucleic acid sequence is introduced into the cell.

[0022] In further aspects, the introducing comprises electroporation, lipofection, transfection, microinjection, viral transduction, or use of a gene gun. In some aspects, the method further comprises: a) contacting the cell with a second detectable label that binds to a portion of a cellular structure; and b) detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine a spatial position of the exogenous nucleic acid sequence. [0023] In some aspects, the method further comprises determining a number of the target nucleic acid sequences present in the cell. In some aspects, the method further comprises correlating an expression level of a cell surface protein with the number of target nucleic acid sequences present in the cell, wherein the exogenous nucleic acid sequence encodes for the cell surface protein. In some aspects, the method further comprises optically detecting the second detectable label.

[0024] In some aspects, the nucleic acid sequence is integrated into the genome of the cell. In further aspects, the cell is obtained from a tissue. In still further aspects, the cell is a live cell. In some aspects, the first probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

[0025] In some aspects, the first probe comprises a GC content of from 25-70%. In further aspects, the GC content of each probe within the plurality of probes varies by less than 5 to 10%. In some aspects, the single detectable agent is located at the 5' end of the first probe or at any nucleotide of the first probe. In some aspects, a signal to noise ratio of about 1.2-1.5 to 1, 1.5: 1, 4-8 to 1, or 5-10: 1 is observed. In some aspects, the plurality of probes binds endogenous and exogenous genes. In some aspects, the target nucleic acid sequence is double stranded.

[0026] In some aspects, the cell is fixed with a fixation buffer prior to the contacting the plurality of probes with the cell. In further aspects, the fixation buffer comprises a 3 to 1 ratio of methanol to acetic acid. In some aspects, the first probe comprises more than 75% contiguous homology to fewer than 1 genomic sequences from a species of the cell.

[0027] In some aspects, the contacting the plurality of probes with the cell comprises simultaneously contacting a plurality of cell populations with the plurality of probes. In some aspects, each of the plurality of cell populations is deposited in an individual well in a well plate. In some aspects, the well plate comprises at least 24 wells. In some aspects, each of the plurality of cell populations is from a unique sample.

[0028] In other aspects, each of the plurality of cell populations is from an identical sample. In some aspects, each of the plurality of cell populations is deposited in an individual well in up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates. In some aspects, a probe set comprises the plurality of probes. In some aspects, the method comprises providing a plurality of probe sets. [0029] In some aspects, each probe set of the plurality of probe sets comprises a unique fluorophore and detects a unique exogenous nucleic acid sequence. In some aspects, the method further comprises determining a transduction efficacy of a vector by calculating the number of exogenous nucleic acid sequences in the cell. In some aspects, the method further comprises enriching for a cell population with a certain number of target nucleic acid sequences in each cell of a plurality of cells.

[0030] In some aspects, the method further comprises correlating an expression level of a cell surface reporter gene with the number of target nucleic acid sequences present in the cell, wherein the target nucleic acid sequence comprises the cell surface reporter gene. In some aspects, the detecting the target nucleic acid sequence comprises less than 48 hours. In some aspects, the first probe comprises an amino acid sequence.

[0031] In some aspects, the second detectable label comprises a fluorescent dye molecule. In some aspects, the method further comprises correlating a phenotype of the cell with the presence of the target nucleic acid sequence. In some aspects, the phenotype is a product expressed due to a genetic modification in the intact genetically modified cell, a quality of the product expressed due to the genetic modification in the intact genetically modified cell, or a combination thereof.

[0032] In some aspects, the phenotype is an increased or decreased expression of the product, an increase or a decrease in the quality of the product, or a combination thereof. In some aspects, the method further comprises determining a number or location of genetic

modifications in the cell. In some aspects, the product expressed is a transgene protein, RNA, or a secondary product of the genetic modification.

[0033] In some aspects, the method further comprises: selecting a first genetically modified cell comprising a phenotype of interest; determining a set of conditions used for a genetic modification of the first genetically modified cell; and preparing a second genetically modified cell using the set of conditions for genetic modification.

[0034] In some aspects, the target nucleic acid comprises a portion of a naturally occurring virus and the method of detecting the target nucleic acid sequence comprises detecting infection of the cell by the naturally occurring virus.

[0035] In further aspects, the naturally occurring virus comprises HIV, RSV, malaria, or influenza. In still further aspects, the target nucleic acid comprises latent HIV insertions. In some aspects, the portion comprises a contiguous nucleic acid segment.

[0036] In various aspects, the present disclosure provides a composition comprising a plurality of probes, wherein a first probe of the plurality of probes is capable of hybridizing to a target nucleic acid sequence in a cell, and wherein the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof.

In some aspects, the plurality of probes comprises an oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides; and a detectable label associated with a nucleotide of the oligonucleotide sequence. In some aspects, the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides. In some aspects, the detectable label is indirectly attached to the nucleotide. In some aspects, the detectable label is directly attached to the nucleotide. In some aspects, the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

[0037] In various aspects, the present disclosure provides a composition comprising a plurality of probes, wherein a first probe of the plurality of probes comprises: an

oligonucleotide sequence comprising at least 10 and not more than 10,000 nucleotides; and a detectable label associated with a nucleotide of the oligonucleotide sequence.

[0038] In some aspects, the oligonucleotide sequence comprises at least 20 and not more than 80 nucleotides. In some aspects, the detectable label is indirectly attached to the nucleotide. In some aspects, the detectable label is directly attached to the nucleotide. In some aspects, the nucleotide is a first nucleotide at the 3' end of the oligonucleotide sequence.

[0039] In some aspects, the first probe is capable of hybridizing to a target nucleic acid sequence in a cell. In some aspects, the target nucleic acid sequence comprises an exogenous nucleic acid sequence. In further aspects, the exogenous nucleic acid sequence comprises a viral nucleic acid sequence. In still further aspects, the viral nucleic acid sequence comprises a portion of a viral nucleic acid sequence from a vector.

[0040] In some aspects, the vector comprises an integrating virus or a non-integrating virus. In some aspects, the integrating virus is selected from a retrovirus. In some aspects, the retrovirus is selected from a lentivirus, a gamma retrovirus, or a foamy virus. In some aspects, the gamma retrovirus is selected from a Friend murine leukemia virus, a Moloney murine leukemia virus, or a Murine type C retrovirus. In further aspects a foamy virus is selected from an Eastern chimpanzee simian foamy virus, a Macaque simian foamy virus, or a Feline foamy virus. In some aspects, the non-integrating virus is selected from an adenovirus, an adeno-associated virus, or a human papillomavirus. In further aspects, the adenovirus is selected from Human mastadeno virus D; Human adenovirus 81 ; Human mastadeno virus B; Human adenovirus 71; Human adenovirus 69; Human adenovirus 68; Human adenovirus 67; Human adenovirus 66; Human adenovirus 65; Human adenovirus 64; Human adenovirus 63; Human adenovirus 62; Human adenovirus 61; Human adenovirus 58; Human mastadenovirus C; Human adenovirus 56; Human adenovirus 55; or Human adenovirus 54. In some aspects, an adeno-associated virus is selected from adeno-associated virus serotype 1; adeno-associated virus serotype 2; adeno-associated virus serotype 3;

adeno-associated virus serotype 4; adeno-associated virus serotype 5; adeno-associated virus serotype 6; adeno-associated virus serotype 7; adeno-associated virus serotype 8; adeno- associated virus serotype 9; adeno-associated virus serotype 10; adeno-associated virus serotype 11 ; adeno-associated virus serotype 12; adeno-associated virus serotype 13; pAAV- DJ (VPK-420-DJ (PN-340001)), synthetically evolved adeno-associated viruses of any one of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno- associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno-associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10, adeno- associated virus 11, adeno-associated virus 12, adeno-associated virus 13, a naturally occurring adeno-associated virus, or a synthetic adeno-associated virus comprising chimeras of any combination of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno-associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno- associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10; adeno-associated virus 11 ; adeno-associated virus 12; adeno-associated virus 13. In some aspects, the human papillomavirus is selected from human papillomavirus 116.

[0041] In some aspects, the vector comprises NC_002077.1, NC_001401.2, NC_001729.1, NC_001829.1, AF085716.1, AF028704.1, NC_006260.1, NC_006261.1, AY530579.1, AY631965.1, AY631966.1, DQ813647.1, EU285562.1, VPK-420-DJ (PN-340001),

LC314153.1, MF416150.1, KX827426.1, LC066535.1, AB765926.1, LC177352.1,

KT970440.1, KF268328.1, KF633445.1, KY618678.1, KY618677.1, KY618676.1,

KF268335.1, KF268207.1, KP641339.1, JN226748.1, JN860678.1, AP012302.1,

JN860676.1, AP012285.1, EF121005.1, JN935766.1, JN162671.1, JF964962.1,

HQ007053.1, JF799911.1, HQ883276.1, HQ003817.1, HM770721.2, FJ643676.1,

AB333801.2, FJ169625.1, NC_001362.1, NC_001501.1, NC_001702.1, KX087159.1, MF280817.1, Y08851.1, or NC_013035.1.

[0042] In further aspects, wherein the target nucleic acid sequence comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity to any one of SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, SEQ ID NO: 1405 - SEQ ID NO: 1458, or a portion thereof. In some aspects, the exogenous nucleic acid sequence comprises a transgene nucleic acid sequence of an insert from the vector or portion thereof.

[0043] In some aspects, the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises a therapeutic gene. In further aspects, the transgene nucleic acid sequence of the insert from the vector or portion thereof comprises Cas9, a chimeric antigen receptor (CAR), BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY. In some aspects, the plurality of probes comprises at least one SEQ ID NO: 930 - SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403. In some aspects, the first probe is capable of hybridizing to a plus strand of the target nucleic acid sequence and a second probe is capable of hybridizing to a minus strand of the target nucleic acid sequence.

[0044] In some aspects, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least

7, at least 8, at least 9, or at least 10 nucleotides at a 3' end of the first probe are

complementary to 5 nucleotides at a 5' end of the second probe of the plurality of probes. In some aspects, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least

8, at least 9, or at least 10 nucleotides at a 5' end of the first probe are complementary to 5 nucleotides at a 3' end of the second probe of the plurality of probes. In some aspects, the first probe comprises 100% identity to fewer than 300 sequences from a 16-mer database of genomic sequences from a species of the cell. In further aspects, the first probe comprises more than 50% contiguous homology to fewer than 3 genomic sequences from a species of the cell.

[0045] In further aspects, the species is a human, a Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse. In some aspects, the first probe of the plurality of probes comprises at least 30 and not more than 60 nucleotides. In some aspects, the plurality of probes is not blocked with a blocking agent prior to contacting the plurality of probes with the cell. In further aspects, the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof.

[0046] In some aspects, the cell comprises a mammalian cell or a eukaryotic cell. In further aspects, the cell comprises a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T cell. In still further aspects, the cell comprises an engineered cell or a progenitor cell thereof. In some aspects, the engineered cell comprises a CD34+ cell or a T cell. In further aspects, the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene. In further aspects, the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR). [0047] In some aspects, the cell is an intact cell. In some aspects, the target nucleic acid sequence is a non-amplified nucleic acid sequence. In some aspects, the detecting the target nucleic acid sequence comprises less than 48 hours. In some aspects, the target nucleic acid sequence or portion thereof is at least 10 bases in length and no more than 12 kilobases in length, at least 10 bases in length and no more than 10 kilobases in length, at least 10 bases in length and no more than 8 kilobases in length, at least 10 bases in length and no more than 6 kilobases in length, at least 10 bases in length and no more than 4 kilobases in length, at least 10 bases in length and no more than 3 kilobases, at least 10 bases in length and no more than 2 kilobases, at least 10 bases in length and no more than 1.5 kilobases in length, at least 10 bases in length and no more than 1 kilobases in length, or at least 200 bases and no more than 4 kilobases in length.

[0048] In some aspects, the target nucleic acid sequence comprises DNA. In other aspects, the target nucleic acid sequence comprises RNA.

[0049] In some aspects, the detectable label is a fluorescent dye molecule. In some aspects, the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

[0050] In some aspects, the target nucleic acid sequence is integrated into the genome of the cell. In some aspects, the cell is obtained from a tissue. In further aspects, the cell is a live cell. In some aspects, the first probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

[0051] In some aspects, the first probe comprises a GC content of from 25-70%. In further aspects, the GC content of each probe within the plurality of probes varies by less than 5 to 10%. In some aspects, the single detectable label is located at the 5' end of the first probe or at any nucleotide of the first probe. In some aspects, the plurality of probes is capable of hybridizing to endogenous and exogenous genes.

[0052] In some aspects, the target nucleic acid sequence is double stranded. In some aspects, the first probe comprises more than 75% contiguous homology to fewer than 1 genomic sequence from a species of the cell. In some aspects, the target nucleic acid sequence is at least 200 nucleotides in length, 250 nucleotides in length, 300 nucleotides in length, 350 nucleotides in length, 400 nucleotides in length, 450 nucleotides in length, 500 nucleotides in length, 550 nucleotides in length, or 600 nucleotides in length. In some aspects, the plurality of probes comprises at least 8 and no more than 145 unique probes.

[0053] In some aspects, the cell comprises a cell infected by a naturally occurring virus. In further aspects, the naturally occurring virus comprises HIV, RSV, malaria, or influenza. In some aspects, the target nucleic acid comprises latent HIV insertions. In some aspects, the portion comprises a contiguous nucleic acid segment.

[0054] In some aspects, the method further comprises: a) providing the cell further comprising a second target nucleic acid sequence; b) contacting the cell with a second plurality of probes comprising a second probe comprising a second detectable label and a probe sequence that binds to a portion of the second target nucleic acid sequence; and c) detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine the spatial position of the second target nucleic acid sequence.

[0055] In some aspects, the second plurality of probes bound to the second target nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

[0056] In some aspects, the method further comprises binding at least a portion of the second plurality of probes to the second target nucleic acid sequence. In some aspects, the method further comprises washing the cell after contacting the second target nucleic acid sequence with the second plurality of probes. In some aspects, the probe sequence of at least one probe of the second plurality of probes comprises an oligonucleotide sequence.

[0057] In some aspects, the cell is an intact cell and the method further comprises: a) providing the intact cell further comprising the second target nucleic acid sequence; b) contacting the intact cell with the second plurality of probes, and c) detecting a position of the first detectable label in the intact cell relative to the second detectable label, wherein the position is used to determine the spatial position of the target nucleic acid sequence to the second target nucleic acid sequence. In some aspects, the probe sequence of at least one probe of the second plurality of probes comprises an amino acid sequence. In some aspects, the target nucleic acid is less than 2.5 kilobases in length. [0058] In various aspects, the present disclosure provides a kit comprising a probe set and a set of instructions for any of the methods described herein. In some aspects, the probe set comprises the composition of any one of the compositions described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0059] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. Various aspects of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0060] FIG. 1 represents a conceptual illustration of methods described herein.

[0061] FIG. 2 illustrates a conceptual schematic of an exemplary computer server to be used for processing a method described herein.

[0062] FIG. 3A shows a two color SPDM image (experimental) of chromatin (blue) with DNA sensitive element sites (red), showing anti-colocalization of the DNA sensitive element sites with chromatin. Scale bars: 1000 nm, inserts: 100 nm. The bottom right panel shows chromatin (blue), the middle right panel shows DNA sensitive element sites (red), and the top right panel shows the overlay and the anti-colocalization of the DNA sensitive element with chromatin. FIG. 3B is the inset of FIG. 3A.

[0063] FIG. 4A and FIG. 4B illustrate the localization precision and nearest neighbor distances for DNA and DNase sensitive elements.

[0064] FIG. 5A and FIG. 5B illustrate multi-omics imaging via encoding of molecular information with ssDNA tags. FIG. 5A shows a schematic of simultaneous labeling and multiplexed imaging of mRNA and protein targets with multicolor QDots via DNA encoding. In general, each molecular target is encoded by target- specific ssDNA-tagged affinity molecule (e.g., an antibody, aptamer, oligonucleotide, etc.). The resulting array of target- bound ssDNA tags can be sequentially or simultaneously labeled by complementary imaging probes, enabling multiplexed imaging of all targets of interest (e.g., via fluorescence microscopy with hyperspectral imaging, HSI). FIG. 5B shows an exemplary multiplexed labeling of GAPDH and HSP90-alpha mRNA and corresponding proteins with QDots. DNA encoding methodology enables ssDNA tagging of mRNA targets via in situ hybridization and protein targets via immunorecognition by antibody-ssDNA bioconjugates. All ssDNA tags were simultaneously converted into distinctive optical signals by hybridization with complementary QDot-ssDNA' probes. Fluorescence microscopy with hyperspectral imaging (HIS) was employed for cell imaging and 4 individual QDot channels were unmixed.

Individual grayscale channels were false-colored and merged into a composite 4-color image. Scale bar, 50 μιη.

[0065] FIG. 6 shows a workflow for target encoding and labeling via in situ hybridization, immunorecognition, and multi-omics procedures. DNA encoding methodology allows for labeling of different types of targets (mRNA and proteins in this proof-of-concept study) under conditions optimized for selective target binding in separate steps. As a result, all targets are converted into a uniform array of intermediate ssDNA tags, which are then simultaneously labeled by complementary QDot-ssDNA' probes for multiplexed imaging.

[0066] FIG. 7 A and FIG. 7B illustrate a schematic and characterization of QDot-ssDNA probe preparation. FIG. 7 A shows amine crosslinking by a homobifunctional reagent BS3 used for covalent conjugation of 5' amine-terminated ssDNA oligonucleotides and PEG- coated amine-functionalized QDots. ssDNA is activated by an excess BS3, purified by desalting, and reacted with QDots overnight. QDot-ssDNA probes are purified from excess unbound ssDNA by ultrafiltration. Agarose gel electrophoresis in FIG. 7B shows an increase in QDot gel motility upon conjugation of negatively-charged ssDNA oligonucleotides, confirming successful preparation of QDot-ssDNA probes.

[0067] FIG. 8A and FIG. 8B show a schematic and characterization of antibody-ssDNA bioconjugate preparation via maleimide- mediated crosslinking. FIG. 8A shows rabbit anti- mouse IgG is partially reduced by treatment with TCEP to expose sulfhydryl groups for ssDNA conjugation. At the same time, 5' amine-terminated ssDNA oligonucleotides are activated by sulfo-SMCC. Mixing and a 4-hour incubation of activated ssDNA with reduced IgG yields ½IgG-ssDNA bioconjugates. PAGE analysis of bioconjugation products in FIG. 8B confirmed formation of primarily ½IgG with one ssDNA along with smaller fractions of ½IgG conjugated to two and three ssDNA tags.

[0068] FIG. 9 illustrates evaluation of a 6-color QDot panel for protein labeling via DNA encoding. FIG. 9A shows specific staining of β-tubulin via incubation with mouse anti-β- tubulin primary antibody and ssDNA-conjugated rabbit anti-mouse secondary antibody followed by immuno-labeling with anti-rabbit QDot655-2'Ab probes preserved functionality of 2'Ab-ssDNA bioconjugates. Consistent β-tubulin staining achieved via hybridization with complementary QDot-ssDNA probes in FIG. 9B confirmed successful preparation of a functional 6-color QDot-ssDNA panel. A lack of non-specific binding in FIG. 9C by QDot- ssDNA probes in control experiments that skipped incubation with primary and secondary antibodies corroborates the utility of such probes for highly specific target labeling via DNA encoding. True-color images for target staining (FIG. 9B) vs. control (FIG. 9C) were obtained at consistent exposure time for each QDot color. Scale bar, 50 μιη.

[0069] FIG. 10A, FIG. 10B, and FIG. IOC show a schematic and characterization of antibody- ssDN A bioconjugate preparation using the Thunder-Link oligo conjugation system. A 2-step amine crosslinking strategy as illustrated in FIG. 10A was employed for preparation of covalent antibody-ssDNA bioconjugates with intact IgG. Antibody and 5' amine- terminated ssDNA were simultaneously activated by respective activation reagents, purified via desalting, and reacted overnight, producing IgG with varying number of attached ssDNA tags. The reducing PAGE analysis of FIG. 10B highlights the presence of multiple higher- MW bands corresponding to heavy and light chains conjugated to varying number of ssDNA tags. In the four reaction conditions performed with goat anti-rabbit secondary antibodies, the relative volume ratios of activated IgG to ssDNA were 1) 50+50, 2) 50+30, 3) 50+20, and 4) 50+10. As expected, increasing amount of ssDNA in the reaction leads to more ssDNA tags being conjugated to each IgG molecule. In FIG. IOC, the staining of Lamin A via incubation with rabbit anti-Lamin A primary antibody and goat anti-rabbit 2'Ab-ssDNA bioconjugates followed by labeling with QDot605-ssDNA' probes confirmed the preserved specificity of ssDNA-tagged antibodies and successful antibody- ssDNA bioconjugation. At the same time, increasing non-specific binding by 2'Ab-ssDNA bioconjugates was observed with increasing number of ssDNA tags per IgG in a control experiment in which incubation with primary antibody was skipped. Thus, a volume ratio of Ab:ssDNA = 2: 1 in Thunder- Link reaction is considered optimal. All true-color images were obtained at consistent exposure for direct comparison of staining intensity. Scale bar, 250 μιη.

[0070] FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D, and FIG. HE show multiplexed protein labeling via DNA encoding with a panel of antibody- ssDN A bioconjugates. Primary antibodies against HSP90-alpha, GAPDH, Lamin A, and β-tubulin were conjugated to ssDNA tags using Thunder-Link oligo conjugation system. Reducing PAGE shows consistent formation of IgG-ssDNA bioconjugates for all antibodies (FIG. HA). Conventional 2-step immunofluorescence with unmodified antibodies and QDot565-2'Ab probes shows characteristic staining pattern for the 4 proteins of interest (FIG. 11B). Protein labeling in FIG. llC with l'Ab-ssDNA bioconjugates and QDot565-2'Ab probes yielded staining patterns consistent with the unmodified antibodies of FIG. 11B, confirming the preservation of antigen-binding functionality of l'Ab-ssDNA. Single-color staining with l'Ab-ssDNA bioconjugates and complementary QDot-ssDNA' probes further corroborates successful ssDNA conjugation and preparation of an antibody-ssDNA panel suitable for protein labeling via DNA encoding (FIG. 11D). Multiplexed staining via DNA encoding yielded consistent staining patterns for all four proteins in respective spectral channels of the same hyperspectral image (HSI) (FIG. HE). Individual grayscale channels were false-colored for clarity. Scale bar, 50 μιη.

[0071] FIG. 12 shows characterization of mRNA labeling intensity and specificity via DNA encoding. GAPDH mRNA was labeled via indirect FISH procedure with 41nt FISH probe set (see TABLE 10) followed by staining with QDot605-ssDNA probes (left panels) or

AlexaFluor555-labeled streptavidin-ssDNA probes (right panels). Consistent characteristic punctuate staining pattern was observed with both complementary imaging probes (top row). At the same time, non-complementary probes (bottom row) failed to hybridize to mRNA in situ hybridization (ISH) probes, confirming staining specificity of the DNA encoding methodology. "Match" and "mismatch" true-color images were obtained at consistent exposure for direct comparison of staining intensity. Scale bar, 50 μιη.

[0072] FIG. 13A, FIG. 13B, FIG. 13C, and FIG. 13D illustrates the effect of a dsDNA spacer in an in situ hybridization (ISH) probe on mRNA labeling intensity. Physical separation of mRNA-recognition and QDot-binding portions of 41nt ssDNA ISH probes with a 16bp dsDNA spacer prevents formation of secondary structures, promotes hybridization to target mRNA, and reduces steric hindrance to QDot binding. As a result, a substantial increase in mRNA staining intensity was realized with such probes (FIG. 13A) in

comparison to 41nt ssDNA FISH probes (FIG. 13B). At the same time, longer 60nt ssDNA probes without pre-hybridized dsDNA spacers experienced greater degree of secondary structure formation, which interfered with mRNA and QDot binding and failed to produce robust mRNA staining (FIG. 13C) above non-specific QDot binding levels (FIG. 13D). All images were obtained with HSI and normalized for direct comparison of signal intensity. Scale bar, 50 μιη.

[0073] FIG. 14 shows multi-omics QDot staining via DNA encoding. Protein and mRNA targets were encoded with ssDNA tags in separate steps, each using conditions optimal for binding of a specific target type. Consequently, DNA sequence code was converted into an optical signal by hybridization with complementary QDot-ssDNA probes. Specifically, GAPDH mRNA was labeled with a 41nt in situ hybridization (ISH) probe set followed by labeling of β-tubulin with Ab-ssDNA bioconjugates. Finally, both ssDNA tags were simultaneously hybridized with respective QDot-ssDNA' probes. Clear microtubule staining pattern of β-tubulin (false-colored green) and punctuate pattern of GAPDH mRNA (false- colored red) were observed in dual-labeled specimen (top row), whereas only β-tubulin staining was present in a control specimen that was not hybridized with GAPDH FISH probe set (bottom row). Nuclei were counter- stained with DAPI (false-colored blue). Scale bar, 100 μιη.

[0074] FIG. 15 illustrates the heterogeneity in GAPDH RNAi following forward transfection with siRNA. Cells were seeded into a 24- well plate, allowed to attach, grown overnight, and then transfected with GAPDH siRNA (or non-targeting control siRNA) for 24 hrs. GAPDH mRNA was encoded via in situ hybridization (ISH) with mRNA ISH probes and then labeled with QDot605-ssDNA' probes. Imaging of different areas within the well highlights heterogeneity in GAPDH knock-down, likely resulting from heterogeneity in cell transfection with siRNA. Specifically, complete GAPDH mRNA degradation was observed throughout cells in the well center (top right panel), whereas cells at the crowded well edge still expressed regular levels of GAPDH mRNA (bottom right panel) consistent with GAPDH expression in cells transfected with control siRNA (left panels). Substantial number of non- transfected cells might explain an average silencing efficiency of 78% as determined by RT- PCR. Insets: control experiments showed lack of QDot non-specific binding in the absence of complementary ssDNA probes. All images were obtained with true-color camera at the same exposure time for direct comparison of signal intensity. Scale bar, 250 μιη.

[0075] FIG. 16 illustrates the heterogeneity in GAPDH RNAi following reverse transfection with siRNA. Cells were mixed with GAPDH siRNA (or non-targeting control siRNA) in suspension and then seeded to 24-well plate for transfection and growth for 24 hrs. GAPDH mRNA was encoded via in situ hybridization (ISH) with mRNA ISH probes and then labeled with QDot605-ssDNA' probes. As evident from imaging of different areas within the well, reverse transfection achieved a more uniform transfection and GAPDH knock-down compared to forward transfection (see FIG. 12). Complete GAPDH mRNA degradation was observed throughout majority of cells, with only occasional colonies with full GAPDH expression forming from non-transfected cells, which is consistent with an improved average silencing efficiency of 95% as determined by RT-PCR. Insets: control experiments showed lack of QDot non-specific binding in the absence of complementary ssDNA probes. All images were obtained with true-color camera at the same exposure time for direct comparison of signal intensity. Scale bar, 250 μιη.

[0076] FIG. 17 shows the comparison of RNAi effect on GAPDH mRNA expression following forward vs. reverse transfection with siRNA. Both transfection methods had no effect on GAPDH expression when non-targeting control siRNA was used (left panels) and yielded efficient GAPDH knock-down with GAPDH-targeting siRNA (middle panels), as evident from the lack of mRNA staining above non-specific QDot background (right panels). At the same time, small fraction of cells failed to get transfected and, as a result, expressed normal levels of GAPDH mRNA consistent with control experiments. This observation corroborates an all-on/all-off effect of RNAi regardless of the transfection method used. All images were obtained with hyperspectral imaging (HIS) and were normalized for direct comparison of signal intensity. Scale bar, 50 μιη.

[0077] FIG. 18 shows assessment of heterogeneity in cell transfection with siRNA. Dual- labeling of GAPDH and HSP90-alpha mRNA with QDots enables direct visualization of siRNA transfection effect at a single-cell level. Cells were either grown under regular culture conditions (FIG. 18A, FIG. 18B, and FIG. 18C), transfected with control non-targeting siRNA (FIG. 18D, FIG. 18E, and FIG. 18F), or transfected with GAPDH-targeting siRNA (FIG. 18G, FIG. 18H, and FIG. 181). After a 24-hour treatment with GAPDH siRNA, the majority of cells had completely degraded GAPDH mRNA, as evident from the lack of GAPDH mRNA staining (FIG. 18G). At the same time, HSP90-alpha mRNA not targeted by RNAi machinery remained unperturbed (FIG. 18H). Interestingly, a single cell in the field of view failed to transfect with GAPDH siRNA (FIG. 18G, FIG. 18H, and FIG. 181),

expressing regular levels of GAPDH mRNA consistent with cells treated with control siRNA (FIG. 18D, FIG. 18E, and FIG. 18F) and reference cells not transfected with siRNA (FIG. 18A, FIG. 18B, and FIG. 18C), suggesting an all-on/all-off effect of RNAi. Dual-color images were obtained with hyperspectral imaging (HIS) and were unmixed in QDot channels. Panels for individual channels (FIG. 18A, FIG. 18B, FIG. 18D, FIG. 18E, FIG. 18G, and FIG. 18H) were normalized for direct comparison of signal intensity. In merged 2-color images (FIG. 18C, FIG. 18F, and FIG. 181) The GAPDH channel was false-colored green and the HSP90-alpha channel was false-colored red. Scale bar, 50 μιη.

[0078] FIG. 19 shows assessment of GAPDH RNAi heterogeneity at mRNA and protein levels with multi-omics imaging. Dual labeling of GAPDH mRNA and protein 24 hrs post- transfection with GAPDH-targeting siRNA highlights heterogeneity in mRNA expression levels (bottom left panel) along with the lack of RNAi effect on the protein level (bottom middle panel) at this time point. Transfection with non-targeting control siRNA (top row) failed to affect GAPDH expression, yielding uniform mRNA and protein staining throughout all cells. Dual-color images were obtained with hyperspectral imaging (HSI), and individual channels were normalized for direct comparison of signal intensity. The GAPDH mRNA channel was false-colored red and the GAPDH protein channel was false-colored green in a composite 2-color image. Scale bar, 50 μιη.

[0079] FIG. 20A and FIG. 20B show assessment of disparity in RNAi kinetics at mRNA and protein levels. HeLa cells were transfected with GAPDH siRNA for 24 hours (FIG. 20A) and 48 hours (FIG. 20B). GAPDH and HSP90-alpha mRNA, along with corresponding proteins, were simultaneously assessed with QDot-based multi-omics imaging methodology.

Consistent with mRNA-only analysis, multi-omics imaging highlights complete and selective degradation of GAPDH mRNA 24 hours post-transfection, whereas GAPDH protein level remained nearly unperturbed (FIG. 20A). Lagging mRNA knock-down 48 hours post- transfection selective degradation of GAPDH protein was observed (FIG. 20B). All grayscale images were normalized to HSP90 protein channel for direct comparison of staining intensities. In a merged 4-color image the GAPDH protein channel was false-colored yellow, the HSP90-alpha protein channel was false-colored blue, the GAPDH mRNA channel was false-colored green, and the HSP90-alpha mRNA channel was false-colored red. Scale bar, 50 μιη.

[0080] FIG. 21A and FIG. 21B show multi-omics evaluation of GAPDH and HSP90-alpha expression at mRNA and protein levels under regular cell culture conditions. To provide a reference of normal GAPDH and HSP90 expression levels to RNAi experiments, cells were grown under regular cell culture conditions for 24 hrs (FIG. 21A) and 48 hrs (FIG. 21B). All targets of interest were labeled via a 2+2 encoding procedure to produce a 4-plex staining. Consistent with expected fast growth of HeLa cells, cell density increased with time.

However, GAPDH and HSP90 expression remained constant through 48 hrs of incubation, as evident from consistent intensity of mRNA and protein labeling. Multiplex images were obtained with hyperspectral imaging (HIS), and individual channels were normalized for direct comparison of signal intensity. The GAPDH mRNA channel was false-colored green, the HSP90 mRNA channel was false-colored red, the GAPDH protein channel was false- colored yellow, and the HSP90 protein channel was false-colored blue in a composite 4-color image. Scale bar, 50 μιη.

[0081] FIG. 22A and FIG. 22B show multi-omics evaluation of GAPDH and HSP90-alpha expression at mRNA and protein levels following transfection with a control (non-targeting) siRNA. To assess an effect of transfection on molecular expression profiles in reference to GAPDH RNAi experiments, cells were reverse transfected with non-targeting control siRNA for (FIG. 22A) 24 hrs and (FIG. 22B) 48 hrs. All targets of interest were labeled via a 2+2 encoding procedure to produce a 4-plex staining. Consistent with expected lack of RNAi with control siRNA, GAPDH and HSP90 expression remained constant through 48 hrs of incubation, as evident from consistent intensity of mRNA and protein labeling. Multiplex images were obtained with hyperspectral imaging (HSI), and individual channels were normalized for direct comparison of signal intensity. The GAPDH mRNA channel was false- colored green, the HSP90 mRNA channel was false-colored, the GAPDH protein channel was false-colored yellow, and the HSP90 protein channel was false-colored blue in a composite 4-color image. Scale bar, 50 μιη.

[0082] FIG. 23A and FIG. 23B show direct visualization of the effect and kinetics of GAPDH RNAi via single-plex labeling of individual protein and mRNA targets. To eliminate any potential effect of multi-omics labeling methodology and artifacts of hyperspectral (HSI) analysis, the GAPDH RNAi sample along with a reference sample and a control sample were performed on separate specimens in parallel (different wells of the same 24- well plate), followed by a single-plex labeling of individual targets and direct true-color imaging under consistent imaging conditions. Cells were reverse transfected for 24 hrs (FIG. 23A) and 48 hrs (FIG. 23B) prior to fixation and staining. Consistent with multi-omics analysis, single- plex imaging confirmed efficient and specific degradation of GAPDH mRNA within 24 hrs post-transfection, whereas the RNAi effect on GAPDH protein level can be observed only 48 hrs post-transfection. Scale bar, 50 μιη.

[0083] FIG. 24 shows the labeling of DNasel cut sites in a cell's nucleus using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay.

[0084] FIG. 25 shows a schematic of a detection agent comprising a probe, a detectable moiety, and a conjugating moiety.

[0085] FIG. 26 shows a flowchart for a method of detecting a nucleic acid sequence.

[0086] FIG. 27 shows a flowchart for a method of determining the spatial position of a nucleic acid sequence.

[0087] FIG. 28 shows a flowchart for a method of detecting the sequence position of a nucleic acid sequence.

[0088] FIG. 29 shows a flowchart for a method of detecting a nucleic acid in a sample relative to a control.

[0089] FIG. 30 shows a flowchart for a method of fluorescently detecting a target nucleic acid sequence.

[0090] FIG. 31 shows a flowchart for a method of analyzing a fluorescence image of one or more target nucleic acid sequences. [0091] FIG. 32 illustrates a conceptual schematic of an exemplary computer server to be used for processing one or more methods described herein.

[0092] FIG. 33 shows the use of Nano-FISH to detect a 1.8 kb nucleic acid sequence. FIG. 33A shows a schematic of the Nano-FISH experiment. FIG. 33B shows the application of the Nano-FISH strategy to detect a 1.8kb region encompassing the HS2 hypersensitive site of the β-globin locus control region (LCR) in triploid K562 erythro leukemia cells. FIG. 33C shows colocalization of the Nano-FISH signals (-1.8 kb target region) with those from standard BAC-derived probes (conventional DNA-FISH; -170 kb target region), confirming the specificity of the detected Nano-FISH signal. FIG. 33D shows the efficiency and resolution of detection using Nano-FISH may be tuned according to the number of probes being used. FIG. 33E shows a comparison of the size of detected FISH spots between conventional FISH, pooled HS 1-5 probes, and HS2 Nano-FISH. FIG. 33F shows a comparison of the intensity of detected FISH signals between conventional FISH, pooled HS 1-5 probes, and HS2 Nano-FISH. FIG. 33G shows Nano-FISH detected for genomic regions with varying size, such as a genomic region size ranging from about 800 bp to 2.1 kb.

[0093] FIG. 34 shows the use of Nano-FISH to perform fine structural analysis of specific genomic loci within the nucleus. FIG. 34A shows the distinct spots produced by Nano-FISH probes targeting specific loci on these chromosomes. To measure the relative localization of the detected loci, the relative radial distance (RRD), a normalized measure of the position of the detected spot with respect to the nuclear centroid, was calculated. FIG. 34B shows a schematic of the relative radial distance. FIG. 34C shows that the chromosome 18 Nano- FISH signals are closer to the nuclear periphery. The distributions were obtained across 2,396 chromosome 18 signals and 3,388 chromosome 19 signals. FIG. 34D shows radial histograms of the two target loci. The differences in the distribution of signals with respect to the nuclear centroid are readily apparent in the histograms.

[0094] FIG. 35 shows the use of Nano-FISH for examining the interaction of a gene enhancer with its target gene promoter. FIG. 35A shows two-color Nano-FISH in 786-0 and MCF-7 cells. The normalized inter- spot distance (NID) between these two genomic loci were compared. FIG. 35B shows a schematic of the normalized inter-spot distance. FIG. 35C shows that, on average, the spots are situated closer together in 786-0 cells compared to MCF-7 cells. FIG. 35D shows that, in spite of this, absolute colocalization (NID=0) was actually a rare event in both cell types.

[0095] FIG. 36 shows the use of Nano-FISH to detect small genomic structural variations such as small losses or gains of DNA. ZFN-mediated genome editing was used to generate a tri loid homozygous deletion of the β-globin locus control region (LCR, ~18kb) in K562 cells, as shown in FIG. 36A. Cells imbued with this deletion are referred to as ALCR. Probes targeting either the HS2 or HS3 hypersensitive sites within the deleted region were utilized to detect loss of LCR in the genome edited cells, as shown in FIG. 36B and FIG. 36C. For the converse scenario, using TALEN- mediated homology directed repair, a sequence encoding for eGFP was inserted into the AAVS 1 safe harbor locus on chromosome 19, as shown in FIG. 36D. This exogenously-derived sequenced was readily identified by Nano-FISH, as shown in FIG. 36E and FIG. 36F.

[0096] FIG. 37 shows the combination of Nano-FISH and super-resolution microscopy to obtain very fine-scale genome localization. FIG. 37A shows that these closely apposed loci are readily discernible as distinct spots by STED microscopy. Pair-wise measurements of other closely situated genomic segments such as HS 1-HS4 (~12kb) and HS2-HGB2 (~25kb) were also readily obtained and revealed non-linear compaction of the β-globin locus control region and the surrounding genome which contains its target genes, as shown in FIG. 37B. Importantly, the high-throughput STED microscopy approach enables calculation of the distribution of actual distances between these various loci, as shown in FIG. 37C.

[0097] FIG. 38 shows a series of experiments to determine the optimal operating parameters for a Nano-FISH experiment. FIG. 38A shows how the labeling efficiency of the Nano-FISH procedure depends on denaturation temperature. With increasing temperature, the efficiency of Nano-FISH labeling increases, until a plateau is reached at a temperature of 78°C. FIG. 38B shows that the Nano-FISH labeling procedure is repeatable across experiments. FIG. 38C shows Nano-FISH detected for genomic regions with varying size, such as a genomic region size ranging from about 800 bp to 2.1 kb. FIG. 38D shows how the labeling efficiency of the Nano-FISH experiment depends on the number of oligo probes used. The labeling efficiency increases with the number of oligo probes used, attaining a maximum efficiency when 30 oligo probes are utilized. FIG. 38E shows how the detected fluorescence spot size depends on the number of oligo probes. FIG. 38F shows how the intensity of the

fluorescence spot size depends on the number of oligo probes.

[0098] FIG. 39 shows a comparison of Nano-FISH and conventional FISH. FIG. 39A shows fluorescence images of β-globin lacking the LCR using conventional BAC probes (left panel), a pool of HS 1-5 probes (middle panel), and the HS2 Nano-FISH technique (right panel). FIG. 39B shows the size of the probe sets used for the BAC, HS 1-5, and HS2 experiments. As can be seen, the HS2 Nano-FISH experiment utilizes a significantly smaller nucleic acid sequence than conventional FISH techniques. FIG. 39C shows the labeling efficiency of the BAC, HS 1-5, and HS2 experiments. FIG. 39D shows the size of the FISH spots for the BAC, HS 1-5, and HS2 experiments. FIG. 39E shows the intensity of the FISH signals for the BAC, HS 1-5, and HS2 experiments.

[0099] FIG. 40 shows the use of Nano-FISH to probe lentiviral transduction across a cell population with a broad range of multiplicity of infection FIG. 40A shows lentiviral transduction across a population of cells with a broad range of MOI. FIG. 40B shows infection by the lentivirus, including reverse transcription and random integration into cells. FIG. 40C shows the use of Nano-FISH to assess the number of integrations in each cell in pools of cells. FIG. 40D shows the accumulation of statistics for integration of lentiviral nucleic acids as a function of MOI.

[0100] FIG. 41 shows the use of Nano-FISH combined with super-resolution imaging to probe the statistics of viral insertion. FIG. 41A shows the average number of viral insertions per cell as a function of viral concentration, probed using quantitative PCR (qPCR), a Nikon wide-field fluorescence microscope, and a Stellar Vision synthetic aperture optics (SAO) super-resolution microscope. FIG. 41B shows a histogram of the number of viral integrations in each cell imaged by the SAO super-resolution microscope.

[0101] FIG. 42 shows a schematic of using Nano-FISH characterization of sorted subpools enrich for a population with the desired distribution of viral integrations after viral transduction of a cell population.

[0102] FIG. 43 shows a workflow schematic of using Nano-FISH to characterize the number of viral integrations in cells after viral transduction, clonally expand cells with a known number of viral integrations, and then perform assays to detect biomarkers. The number of viral integrations is then correlated with the expression of biomarkers, which then is used as selectable or sortable maker for cells with that number of viral integrations.

[0103] FIG. 44 shows a schematic for improved clinical vector manufacture and production by using viral Nano-FISH to sort for the optimal number of viral integrations in transduced cells, such as cells transduced to express chimeric antigen receptor (CAR) T cells.

[0104] FIG. 45 shows a workflow schematic for improved quality control during the cell passage/expansion, cloning, and manufacture of cells after viral transduction for use as a therapy, such as for T cells transduced to express a CAR for cancer therapy.

[0105] FIG. 46 shows a schematic of a lentivirus vector indicating locations of probes along the lentivirus vector that may be used for detection of the corresponding lentivirus vector nucleic acid sequence using Nano-FISH. [0106] FIG. 47 A shows simultaneous visualization of lentiviral integrations using Nano- FISH and transgene (Cas9) protein production using an anti-Cas9 antibody.

[0107] FIG. 47B shows a graph of the cumulative distribution of the number of lentiviral integrations associated with the level of Cas9 expression from b.

[0108] FIG. 48 illustrates a flow chart depicting the image analysis steps of the present disclosure including data/image capture, autonomous pre-processing, and interactive data selection, quality control, and visualization.

[0109] FIG. 49 shows an example quality control browser panel where images can be analyzed for spots indicating viral insertions.

[0110] FIG. 50 illustrates an example experiment summary report with performance metrics.

[0111] FIG. 51 illustrates a map of the binding position of each of the oligonucleotide Nano- FISH probes disclosed in TABLE 14 to a CAR transfer plasmid.

[0112] FIG. 52 illustrates the probe selection strategy of the present disclosure.

[0113] FIG. 53 illustrates sub-sampling a cell population to enrich for a desirable viral copy number. Progenitor cells from cells transduced with a lentivirus were separated into 24 subpools in a 24 well plate.

[0114] FIG. 54 illustrates that each subpool was expanded to 500-800 cells/well and that cells from each subpool were imaged by the Nano-FISH methods of the present disclosure to characterize the number of viral sequence insertions. FIG. 54 additionally shows images of "Jackpot" cells, which contain 5+ viral insertions.

[0115] FIG. 55 illustrates stratification of cells from each subpool by "good" or "bad" viral insertion profiles.

[0116] FIG. 56 illustrates selection of subpools deemed to have a good viral insertion profile (mainly 1-2 viral insertions).

[0117] FIG. 57 illustrates Nano-FISH detection of viral insertions from a CD19 CAR transfer plasmid in T cells.

[0118] FIG. 57A illustrates a schematic of T cells transduced with the CD19 CAR transfer plasmid at a multiplicity of infection (MOI) of 0, 1.2, 2.4, and 4.8.

[0119] FIG. 57B illustrates fluorescence images of cell nuclei wherein the viral insertions are indicated by arrows and appear as punctate spots.

[0120] FIG. 57C illustrates the experiment summary report indicating the insertion rate, insertion rate R , and the sample size.

[0121] FIG. 58 illustrates Nano-FISH detection of viral insertions from a hPGK-EGFP-Cl vector and a gammaGlobin380-eGFP-Cl vector. [0122] FIG. 58A illustrates a schematic of CD34+ cells transduced with the hPGK-EGFP-Cl vector and a gammaGlobin380-eGFP-Cl vector with 0 ul, 20 μΐ, 60 μΐ, or 180 μΐ of virus. Samples also included cells transduced with 20 μΐ of virus with 35 nM of UM171 (a small molecule to stimulate replication of HSCs).

[0123] FIG. 58B illustrates fluorescence images of cell nuclei wherein the viral insertions are indicated by arrows and appear as punctate spots.

[0124] FIG. 58C illustrates the experiment summary report indicating the insertion rate.

[0125] FIG. 59 illustrates Nano-FISH detection of viral insertions in CD34+ cells. FIG. 59A illustrates a sample of CD34+ cells taken from a well of a 24-well plate after transduction with gammaGlobin380-eGFP-Cl vector at a multiplicity of infection (MOI) of 35 using retronectin and protamine sulfate. FIG. 59B illustrates the number of viral insertions per nucleus of cells from the sample in FIG. 59A as detected by probes to the lentivirus vector backbone and to eGFP using Nano-FISH. FIG. 59C shows fluorescent images of cell nuclei with 5-10 viral insertions per cell from the sample in FIG. 59A. Each circle/punctum indicates a viral insertion.

[0126] FIG. 60 illustrates Nano-FISH detection of viral insertions in T cells. FIG. 60A illustrates a sample of T cells taken from a well of a 24-well plate after CD19 CAR lentivirus vector transduction at a multiplicity of infection (MOI) of 10 using retronectin and protamine sulfate. FIG. 60B illustrates the number of viral insertions per nucleus of cells from the sample in FIG. 60A as detected by probes to the lentivirus vector backbone and to select regions of the CD 19 CAR using Nano-FISH. FIG. 60C shows fluorescent images of cell nuclei with 0-5+ viral insertions per cell from the sample in FIG. 60A. Each circle/punctum indicates a viral insertion.

[0127] FIG. 61 shows analysis of viral insertions in T cell nuclei using Nano-FISH. FIG. 61A shows fluorescent images of T cell nuclei after hPGK-eGFP-Cl vector transduction of T cells at a multiplicity of infection (MOI) of 10. A pink punctum indicates a viral insertion as detected by Nano-FISH. FIG. 61B illustrates the simultaneous detection of viral insertions and eGFP expression in T cell nuclei after hPGK-eGFP-Cl vector transduction of T cells at a MOI of 10 using retronectin and protamine sulfate. The viral insertions were detected using probes to the lentivirus backbone and to eGFP and are shown as pink puncta. The eGFP expression was detected using a rabbit anti-GFP primary antibody and a secondary anti-rabbit antibody labeled with Alexa-488 dye.

[0128] FIG. 62 shows the result of different exposure times to cytokines prior to

transduction. FIG. 62A shows the insertion rates for MOIs of 0, 25 (short exposure (24 hrs)), and 25 (long exposure (48 hrs)). FIG. 62B shows 25 randomly- selected nuclei from MOI 50 short-exposure (24 hrs, left) to cytokines, long exposure (48 hrs, middle) to cytokines, and MOI 0 (right).

[0129] FIG. 63 shows a representative set of four nuclei for each probe set tested in the K562 with a single CAR insertion (K562 single-insert clone), and a wild type negative control (K562 wild-type). The nuclei were DAPI stained and are shown in blue, and the Nano-FISH signal is shown in yellow. The three oligo probe sets (FIG. 63A - FIG. 63F, top three rows) showed clear, mostly singular spots and low background signal, whereas the nick- translated probes (FIG. 63G - FIG. 63J, bottom two rows) showed relatively high background signal, even in the negative control cells (FIG. 63, FIG. 63 J).

[0130] FIG. 64 shows a representative set of nine nuclei for each probe set tested in the K562 with a single CAR insertion (K562 single-insert clone), and a wild type negative control (K562 wild-type). The nuclei are DAPI stained and shown in blue, and the Nano- FISH signal is shown in yellow. The oligo probe sets (FIG. 64A - FIG. 64B, top row) showed clearly delineated, mostly singular spots and low background signal, whereas the nick-translated probes (FIG. 64C - FIG. 64F, middle and bottom row) showed relatively high background signal, even in the negative control cells.

[0131] FIG. 65 shows diagrams indicating the number of FISH spots per cell. FISH spots were automatically detected, and then thresholded based on visual inspection (magnitude 8 for Cy5 and magnitude 18 for Cy3 channels). The oligo probes (specific to CD 19 CAR + Hu, CD 19 CAR - Hu, and the vector backbone only) clearly distinguished single-insert cells from the negative, wild type control, whereas the positive and negative cells were indistinguishable with nick- translated probes. These results demonstrate the significantly higher signal accuracy for Nano-FISH compared to conventional nick translated probes.

[0132] FIG. 66 shows the resulting distribution of viral integrations observed in stimulated CD4+ T cells and CD34+ cells. Primary stimulated CD4+ T cells and CD34+ cells were transduced with Vesicular Stomatitis Virus Glycoprotein (VSVG)-enveloped lentiviral vectors at an MOI of 10. Post-transduction cells were harvested and profiled for lentiviral insertion with a vector only probe set of 60 backbone probes, more than 30 of those probes bind to the target vector backbone sequences used in the transductions. FIG. 66A shows the resulting distribution of viral integrations observed in T cells. The transduction efficacy of viral insertions followed a Poisson distribution with very few cells occurring with more than 5 integrations (0.3%). FIG. 66B shows randomly selected T cell nuclei with 5 or more clearly delineated spots per cell (0.3%), and T cell nuclei from the MOI 0 negative control experiment showing no spots per cell and low background signal. FIG. 66C shows the resulting distribution of viral integrations in CD34+ where a large number of cell with greater than five viral integrations were observed, and an unexpectedly large fraction of cells had zero integrations. FIG. 66D shows randomly selected CD34+ cell nuclei with 5 spots or more per cell (12%), and CD34+ cell nuclei from the MOI 0 negative control experiment showing no spots per cell and low background signal.

DETAILED DESCRIPTION

[0133] Cellular activation and extinction patterns can encode information on cell identity, maturation state, cellular memory, and disease state. Tissues are composites of cells which can have one or more morphologically distinct cell types. In some instances, all of the cells in a tissue are processed simultaneously, yielding compounded information with limited sensitivity for cellular activities and/or rare cell types. Alternative approaches employ disaggregation and sorting of tissue components but in the process can destroy cellular architecture and potentially introduce artifacts such as biological stressors and perturbations.

[0134] Described herein are methods of detecting a cellular regulatory element in situ utilizing various microscopy (e.g., super-resolution microscopy) techniques to determine the presence, absence, and/or activity of a regulatory element. Also described herein are methods of detecting different types of regulatory elements simultaneously utilizing a heterogeneous set of detection agents, and translating the molecular information from the different types of regulatory elements to determine the activity state of a cell. The activity state of a cell may correlate to a localization, expression level, and/or interaction state of a regulatory element. One or more of the methods described herein may further interpolate 2-dimensional images to generate 3-dimensional maps which enable detection of localization, interaction states, and activity of one or more regulatory elements. Intrinsic properties such as size, intensity, and location of a detection agent further may enable detection of a regulatory element. Described herein are methods of determining the localization of a regulatory element and measuring the activity of a regulatory element. The methods provided herein may avoid the introduction of artifacts such as biological stressors and perturbations or destroys cellular architecture.

Exemplary properties associated with the methods described herein are illustrated in FIG. 1.

[0135] One or more methods described herein may detect different types of regulatory elements, distinguish between different types of regulatory elements, and/or generate a map of a regulatory element (e.g., chromatin). For example, a regulatory element may be labeled by one or more different types of detection agents. The one or more different types of detection agents may include DNA detection agents, RNA detection agents, protein detection agents, or combinations thereof. The detection agent may comprise a probe portion, which may interact (e.g., hybridize) to a target site within the regulatory element, and optionally comprise a detectable moiety. The detectable moiety may include a fluorophore, such as a fluorescent dye or a quantum dot. The detection agent may be an unlabeled probe which can be further conjugated to an additional labeled probe. Upon labeling, the regulatory element may be detected by stochastic or deterministic super-resolution microscopy method. The stochastic super-resolution microscopy method may be a synthetic aperture optics (SAO) method. The SAO method may generate a detection profile, which can encompass fluorescent signal intensity, size, shape, or localization of the detection agent. Based on the detection profile, the activity state, the localization, expression level, and/or interaction state of the regulatory element may be determined. A map based on the detection profile of the regulatory element may also be generated, and may be correlated to cell type identification (e.g., cancerous cell identification). The regulatory element may be further analyzed in the presence of an exogenous agent or condition, such as a small molecule fragment or a drug, or under an environment such as a change in temperature, pH, nutrient, or a combination thereof. The perturbation of the activity state of the regulatory element in the presence of the exogenous agent or condition may be measured. A report may further be generated and provided to a user, such as a laboratory clinician or health care provider.

[0136] The systems and methods disclosed herein also relate to a novel nano scale

fluorescence in situ hybridization methodology (hereinafter referred to as "Nano-FISH") to reliably label and detect localized small (less than 12 kb in size) DNA segments in cells. In some cases, Nano-FISH can utilize defined pools or sets of synthetic fluorescent dye-labeled oligonucleotides (probe pools or probe sets) to reliably detect small genomic regions in large numbers of adherent or suspension cells in situ. In some instances, Nano-FISH can be conducted utilizing conventional wide-field microscopic imaging. In other embodiments, Nano-FISH can be conducted using imaging techniques (e.g., super-resolution imaging).

[0137] In some cases, Nano-FISH can be coupled with an automated image informatics pipeline to enable high-throughput detection and 2D and/or 3D spatial localization of small genomic DNA elements in situ in hundreds of, thousands of, or more individual cells per experiment. In some instances, to facilitate rigorous statistical analyses of the resulting large image data sets, a scalable image analysis software suite can reliably identify and

quantitatively annotate labeled loci on a single-cell basis.

[0138] In some cases, Nano-FISH can allow detection of the precise localization of specific regulatory genomic elements in 3D nuclear space, the identification of small-scale structural genomic variations (such as sequence gains or losses), the quantitation of spatial interactions between regulatory elements and their putative target gene(s), or the detection of genomic conformational changes that induce stimulus-dependent gene expression. In some instances, Nano-FISH can allow the visualization of the precise localization of a target nucleic acid sequence. The target nucleic acid sequence can be an endogenous nucleic acid sequence, a nucleic acid sequence derived from an exogenous source, or a combination thereof. An exogenous nucleic acid sequence can be introduced into a first cell and can be further detected in progeny of the first cell. An exogenous target nucleic acid sequence can be introduced to a cell through electroporation, lipofection, transfection, microinjection, viral transduction, or a gene gun. Non-limiting examples of vector systems that can be used to introduce a target nucleic acid sequence into a cell may include viral vector, episomal vector, naked RNA (recombinant or natural), naked DNA (recombinant or natural), bacterial artificial chromosome (BAC), and RNA/DNA hybrid systems used separately or in combination. Vector systems can be used without additional reagents meant to aid in the incorporation and/or expression of desired mutations. A non-limiting list of reagents meant to aid in the incorporation and/or expression of desired mutations can include Lipofectamine, FuGENE, FuGENE HD, calcium phosphate, HeLaMONSTER, Xtreme Gene. An

endogenous nucleic acid sequence can be a gene sequence or fragment thereof. An endogenous nucleic acid sequence can be a sequence in a chromosome. An endogenous nucleic acid sequence can be a nucleic acid sequence resulting from somatic chromosomal rearrangement, such as the nucleic acid sequence of a B cell receptor, T cell receptor, or fragment thereof. In some instances, Nano-FISH can allow the detection of the precise localization of exogenous nucleic acids inserted or integrated into a genome. In some embodiments, Nano-FISH can allow the detection of the precise localization of exogenous DNA inserted into a genome, as may be inserted by a genetic engineering technique or by viral infection or transduction. In some instances, Nano-FISH can allow the detection of an episomal nucleic acid sequence.

[0139] The systems and methods described herein can be useful in detecting or determining the presence, absence, identity, or quantity of a target nucleic acid sequence in a sample. In particular, the methods, compositions, and systems described herein can be used to efficiently detect, to identify, and to quantify a target nucleic acid sequence that is a short nucleic acid sequences. In some cases, a short nucleic acid sequence that can be detected or quantified using the disclosures of the present application may be from 1 kilobase (kb) in length to about 12 kb in length. A short nucleic acid sequence can be less than 1 kb. A short nucleic acid sequence can be less than 12 kb, less than 11 kb, less than 10 kb, less than 9 kb, less than 8 kb, less than 7 kb, less than 6 kb, less than 5 kb, less than 4 kb, less than 3 kb, less than 2.5 kb, less than 2 kb, less than 1.5 kb, less than 1.2 kb, less than 0.8 kb, or less than 0.5 kb. A short nucleic acid sequence can be from 240 nucleotides to 1 kb in length. A short nucleic acid sequence can be from 360 nucleotides to 1 kb in length. A short nucleic acid sequence can be from 240 nucleotides to 2 kb, 15 nucleotides to 2.5 kb, 240nucleotides to 3 kb, 15 nucleotides to 4 kb, 240 nucleotides to 5 kb, 15 nucleotides to 6 kb, 240nucleotides to 7 kb, 240 nucleotides to 8 kb, 240 nucleotides to 9 kb, 15 nucleotides to 10 kb, 240 nucleotides to 11 kb, or 240 nucleotides to 12 kb in length. A short nucleic acid sequence can be from 360 nucleotides to 2 kb, 360 nucleotides to 2.5 kb, 360 nucleotides to 3 kb, 360 nucleotides to 4 kb, 360 nucleotides to 5 kb, 360 nucleotides to 6 kb, 360 nucleotides to 7 kb, 360 nucleotides to 8 kb, 360 nucleotides to 9 kb, 360 nucleotides to 10 kb, 360 nucleotides to 11 kb, or 360 nucleotides to 12 kb in length.

[0140] Methods for the detection, identification, and/or quantification of a short nucleic acid sequence of a sample can comprise contacting the short nucleic acid sequence with a probe comprising a detectable label and determining the presence, absence, or quantity of probes bound to the target nucleic acid sequence. Determination of the sequence position of the short nucleic acid sequence relative to other nucleotides or another short nucleic acid sequence (for instance, using a second probe capable of binding to a second target sequence of the nucleic acid) can be a step in the methods described herein. The methods described herein can also comprise determining the spatial position of the short nucleic acid sequence. For example, Nano-FISH can be used to measure the normalized inter-spot distance between a first short nucleic acid sequence encoding an enhancer or portion thereof and a second nucleic acid encoding a promoter of a gene or portion thereof, which can be used to study changes in genome conformation that may be associated with gene function.

[0141] The methods described herein can comprise comparing the presence, absence, spatial position, sequence position, or quantity of a short nucleic acid sequence of a sample to a reference value. A non-limiting example of quantifying detection of a short nucleic acid sequence in a cell can comprise quantifying the number of copies of a nucleic acid sequence that has been incorporated into a modified cell (for example, a cell modified by the introduction of a nucleic acid sequence into the cell by genetic editing), which can be used as quality control for modified cells produced by cell engineering strategies.

[0142] The degree of precision and accuracy in nucleic acid sequence detection,

identification, and quantification made possible by the methods, compositions, and systems of the present disclosure can enable the detection of viral nucleic acid sequences, which commonly range from about 1 kb in length to about 10 kb in length. For example, viral genomes of the lentivirus family range from about 7.4 kb in length to about 9.8 kb in length, viral genomes of the papovavirus family (which includes papillomavirus) range from about 5.1 kb in length to about 7.8 kb in length, viral genomes of the parvovirus family ranges from about 4 kb in length to about 6 kb in length, and viral genomes of the circovirus family ranges from about 1.7 kb in length to about 2.3 kb in length.

[0143] Also described herein are methods, compositions, and systems useful in

characterizing and/or quantifying the presence, absence, position, or identity of a target nucleic acid sequence in a cell or sample derived therefrom relative to a reference nucleic acid sequence in the same cell or sample or relative to a control cell or sample. For example, improvements to the efficiency of detection and to a detection threshold, as described herein, can allow for the detection and characterization of short nucleic acid sequences (for instance, non-repeating nucleic acid sequence insertions) during analysis or validation of cell samples or cell lines.

[0144] Additionally, described herein, are methods, compositions, and systems for correlating protein expression with target nucleic acid sequence detection. For example, a target nucleic acid sequence can be associated with the expression of a target protein. Using Nano-FISH, the presence, absence, or quantity of the target nucleic acid sequence can be detected, and a detectable label may be used to detect a target protein expression, which therefore can allow for the correlation between the presence, absence, or quantity of the target nucleic acid sequence and the expression of the target protein.

[0145] The Nano-FISH methods as described herein can be used as a diagnostic for the detection, identification, and/or quantification of a short nucleic acid sequence of a sample. For example, Nano-FISH can be used as a diagnostic for HIV by detecting HIV nucleic acid sequences in a sample. The Nano-FISH methods as described herein can be used with therapeutics by detecting, identifying, and/or quantifying a short nucleic acid sequence of a sample. For example, Nano-FISH can be used with therapeutics in which a short nucleic acid sequence is integrated into a cell's DNA (e.g., chimeric antigen receptor T cell therapeutics) to determine, detect, identify, and/or quantify the short nucleic acid sequence integration. This can be important for any type of viral- mediated (e.g., lentiviral- mediated) transgene integration because these integrations can be heterogeneous (i.e., some cells do not get infected, others are infected multiple times), and integrations occur randomly in the genome (i.e., inactive sequences, or active genes). In contrast to Nano-FISH, existing methods to measure transgene integration and expression suffer from limitations including lacking single-cell resolution (qPCR), providing data about protein products without DNA

information (flow cell sorting), or being laborious (single-cell cloning).

[0146] Furthermore, the Nano-FISH compositions and methods as described herein can be used to determine the biodistribution of a target nucleic acid sequence (e.g., an exogenous nucleic acid sequence) in a cell population. Biodistribution, as used herein, can also be referred to as a population distribution or a cellular distribution. Specifically, biodistribution, population distribution, and cellular distribution can all describe determinating of the number of nucleic acid insertions on a per cell basis in a plurality of cells. In other words, the Nano- FISH compositions and methods of the present disclosure can be used to determine which cells of a given cell population comprise the target nucleic acid sequence and which cells do not. Using the visualization methods as described herein, the biodistribution of the target nucleic acid sequence (e.g., a viral insertion) in a cell population can be visualized and quantitatively assessed. In some embodiments, this method can be used to determine the transduction efficacy of a vector (e.g., a viral vector), thereby quantitating the distribution of nucleic acid insertions from a vector (e.g., a viral vector) in a population of cells on a per cell basis. The transduction efficacy of a vector may be limited by the expression of a cell surface receptor that an envelope protein of the vector binds to in order to facilitate transduction. Thus, the compositions and methods described herein can be used to determine the cells that express the receptor (i.e., target nucleic acid sequence is detected within the cell) and the cells that do not express the receptor (i.e., target nucleic acid sequence is not detected within the cell). Thus, the compositions and methods as described herein can be further used to test for novel envelope proteins that allow for higher transduction efficacy in cells that are currently not very susceptible to infection. For example, the compositions and methods as described herein can be used to screen for envelope proteins that exhibit optimal binding profiles across a cell population to ensure homogeneous transfection with an exogenous nucleic acid sequence (e.g. a CAR gene). Moreover, the compositions and methods as described herein can be used as a quality control tool to assess the efficacy and homogeneity of transfection within a clinically relevant cell population. For example, the clinical management of chimeric antigen receptor (CAR) T cell treatments currently lacks reliable, cost-effective, and easy-to- use quality control tools to assess the number of CAR gene insertions per cell within the engineered CAR T cell population. Thus, the Nano-FISH compositions and methods of the present disclosure can be used to increase the therapeutic efficacy and safety of cell (e.g., CAR T cell) therapies by providing more accurate and efficient methods for determining the presence of a target nucleic acid sequence in a cell or in a cell population.

[0147] Additionally, Nano-FISH is a significantly improved and distinct tool from

conventional FISH for numerous reasons related to control over design of the probe set, which enable the detection of short nucleic acid sequences at high throughput and at a high signal-to-noise ratio. For example, Nano-FISH shows short nucleic acid sequences as clearly delineated, mostly singular spots with low background signal. On the contrary, conventional probes, i.e., the nick-translated probes, show relatively high background signal even in negative control cells, demonstrating the high probability of non-specific conventional probe binding compared to the Nano-FISH oligonucleotide probes.

[0148] In some embodiments, Nano-FISH probe sets of the present disclosure can comprise one or more short oligonucleotide probes designed against a target, which allows for complete control over probe size. For example, using the Nano-FISH methods described herein, one or more oligonucleotide Nano-FISH probes of exact size can be designed against a transfer plasmid backbone. The oligonucleotide Nano-FISH probes of the present disclosure can be from 30 to 60 nucleotides in length, from 30 to 35 nucleotides in length, from 35 to 40 nucleotides in length, from 40 to 45 nucleotides in length, from 45 to 50 nucleotides in length, from 50 to 55 nucleotides in length or from 55 to 60 nucleotides. In certain

embodiments, the oligonucleotide Nano-FISH probes of the present disclosure can be 40 nucleotides in length. In contrast, conventional FISH techniques require the use of fosmids (varying in size from 40-50 kilobases), BACs (varying in size from varying in size from 100- 250 kilobases), or plasmids (varying in size from 5-10 kilobases), which are conventionally nick translated to incorporate hapten or fluorescently labeled-dUTP (or other nucleotide). The result of nick translating fosmids, BACs, and/or plasmids to obtain conventional FISH probes is the generation of a highly heterogeneous pool of probes of varying sizes. Conventional FISH probes average around 500 nucleotides in length but exhibit a size distribution from 100 bases to anywhere around 1.5 kilobases, which is up to 50 times larger than an oligonucleotide Nano-FISH probe. Alternatively, conventional probes can be generated by means of PCR with the incorporation of labeled nucleotides during the reaction. Thus, in contrast to the oligonucleotide Nano-FISH probes of this disclosure, there is poor control over the resulting probe size of nick translated conventional FISH probes made from fosmids, BACs, or plasmids.

[0149] In some embodiments, the Nano-FISH probes of the present disclosure are precisely controlled to introduce an exact number of fluorescent dye molecules per probe. For example, in some embodiments, each oligonucleotide Nano-FISH probe of the present disclosure can have exactly a detectable agent at the 3' end. The detectable agent can be any dye molecule, such as a Quasar Dye (e.g., Q570 and Q670). Oligonucleotide Nano-FISH probes of the present disclosure may be synthesized from the 3' to 5' end, and the fluorophore may be included on the first nucleotide at the 3 'end. In some embodiments, an oligonucleotide Nano- FISH probe of the present disclosure can have 2 fluorescent dye molecules. For example, a Nano-FISH oligonucleotide probe of the present disclosure with a size of 55 to 60 nucleotides can have 2 fluorescence dye molecules. In this case, the second dye molecule may be placed on an internal nucleotide or at the 5' end. Additionally, since the oligonucleotide Nano-FISH probes of the present disclosure directly incorporate a fluorophore at the 3 'end of each probe, the present disclosure provides a probe set that can be directly labeled and, thus, offers direct labeling and detection of a target nucleotide sequence without any need for signal

amplification.

[0150] In contrast, because conventional FISH probes can be nick translated to incorporate hapten-dUTPs or other labeled nucleotides for subsequent secondary detection by a fluorescent antibody/reagent, there is no control over the exact number of fluorescent dye molecules that are incorporated in a given probe. Thus, the resulting conventional FISH probes are a heterogeneous mixture with various degrees of fluorescent dye labels. Moreover, while some conventional FISH probes can directly incorporate a fluorescent dye, most conventional FISH probes contain Digoxigenin or biotin- labeled nucleotides, which are subsequently reacted to an antibody-fluorophore conjugate or a streptavidin- fluorophore conjugate. Thus, conventional FISH probes are indirectly labeled with a fluorophore. In contrast, the oligonucleotide Nano-FISH probes of the present disclosure are directly labeled with a fluorophore.

[0151] In some embodiments, the Nano-FISH probes of the present disclosure are designed to precisely target a desired strand of a target (e.g., the Watson strand, the Crick strand, or both strands). In contrast, since conventional FISH probes are nick translated as described above, the resulting probes are directed to both the Watson or the Crick strand. The "Watson strand" can be referred to herein as a "plus strand" or a "top strand" and the "Crick strand" can be referred to herein as a "minus strand" or a "bottom strand." Thus, the oligonucleotide Nano-FISH probes of the present disclosure can be more precisely targeted to a particular region on a particular strand of a target. Moreover, the oligonucleotide Nano-FISH probes of the present disclosure can be designed to overlap by at least 5 base pairs. For example a first oligonucleotide Nano-FISH probe can be designed to target the Watson strand of a target sequence and a second oligonucleotide Nano-FISH probe can be designed to target an adjacent region on the Crick strand of a target sequence. The first and second probe can overlap by at least 5 nucleotides, can be directly adjacent to each other, or can be spaced apart by at least several nucleotides. In some embodiments, the first and second probe can overlap by 5-20 nucleotides, 5-10 nucleotides, 10-15 nucleotides, or 15-20 nucleotides. Overlapping probes on the plus and minus strands can allow for the design and hybridization of larger probe sets to target smaller nucleic acid sequences.

[0152] Finally, the oligonucleotide Nano-FISH probes of the present disclosure are designed and selected according to certain criteria in order to precisely target and detect an exogenous sequence (e.g., a viral nucleic acid sequence), while minimizing off-target binding that would increase the background noise during imaging. For example, a target can be selected and the hg38 coordinates can be determined. Next, a tiling density can be selected from all on one strand, a fixed 2 base pair spacing between adjacent oligonucleotide Nano-FISH probes, or a spacing of 30 base pairs on each DNA strand with a 5 base pair overlap between the top and bottom strands at each end. In some embodiments, the overlap between two oligonucleotide Nano-FISH probes is from 5 base pairs to 15 base pairs. In some embodiments, the overlap between two oligonucleotide Nano-FISH probes is less than 15 base pairs. In some embodiments, oligonucleotide Nano-FISH probes of the present disclosure are tiled across a target to avoid steric hindrance between molecules. Next, oligonucleotide Nano-FISH probe sequences are tiled across regions of interest, such as the human genome or the human genome with an artificial extra chromosome representing the target (e.g., the CAR). In some embodiments, a program can be used to tile oligonucleotide Nano-FISH probes across the region of interest. As an example, a 40 base pair probe pool can be generated by tiling 40 base pair oligonucleotide probes at a predetermined spacing between oligonucleotides across a target sequence. The tiled 40 base pair probe pool can be designed to provide a minimum spacing of 2 base pairs between each consecutive oligonucleotide Nano-FISH probe.

[0153] Each oligonucleotide Nano-FISH probe in the resulting probe pool can be compared to a 16-mer database of genomic sequences to identify partial matches of probes to genomic sequences (e.g., hg38 human reference genome) that can result in off-target background staining, which would negatively affect the signal-to-noise ratio. An oligonucleotide Nano- FISH probe that comprises a total of 24 matches or less to the 16-mer database may be considered to be unique in the human genome and, thus, can be selected to move forward. Matches can refer to when an oligonucleotide Nano-FISH probe of the present disclosure has 100% identity to sequences from a database of genomic sequences (e.g., a 16-mer database). A probe with more than 300 matches to the 16-mer database of genomic sequences can be discarded from consideration as it generates too many non-target hits. In other words, oligonucleotide Nano-FISH probes of the present disclosure can comprise more than 50% contiguous homology to fewer than 3 genomic sequences from a species of a cell of interest. The number of matches of an oligonucleotide Nano-FISH probe can have to the 16-mer database of genomic sequences may depend on the size of the probe. For example, a 30 base pair long oligonucleotide Nano-FISH probe that exhibits a total of 14 matches or less to the 16-mer database may be considered to be unique in the human genome and, thus, may be selected to move forward. A 50 base pair long oligonucleotide Nano-FISH probe that exhibits a total of 34 matches or less to the 16-mer database may be considered to be unique in the human genome and, thus, may be selected to move forward. A 60 base pair long

oligonucleotide Nano-FISH probe that exhibits a total of 44 matches or less to the 16-mer database may be considered to be unique in the human genome and, thus, may be selected to move forward. Thus, an oligonucleotide Nano-FISH probe of the present disclosure between 30 to 60 base pairs in length may exhibit 14 to 44 matches or less to the 16-mer database and be considered unique in the human genome. Oligonucleotide Nano-FISH probes of the present disclosure have less than 300 matches to the 16-mer database of genomic sequences. Pools of at least 30 oligonucleotide Nano-FISH probes that satisfied all design criteria can be selected to carry forward.

[0154] Additional selection criteria that can be applied when selecting the oligonucleotide Nano-FISH probes of the present disclosure include percent GC content. For example, oligonucleotide Nano-FISH probes can have a percent GC content above at least 25%, from 25-70%, from 30-70%, from 30-35%, from 35-40%, from 40-45%, from 45-50%, from 50- 55%, from 55-60%, from 60-65%, or from 65-70%. In some embodiments, oligonucleotide Nano-FISH probes of the present disclosure are selected for use if they have less than 5 hits, less than 4 hits, less than 3 hits, less than 2 hits, or less than 1 hit of at least a 50% contiguous homology elsewhere in the human genome (e.g., by a BLAT search of each oligo against the genome (using the hg38 human reference genome)). In some embodiments, oligonucleotide Nano-FISH probes of the present disclosure comprise more than 50% contiguous homology to fewer than 3 genomic sequences from a species of a cell of interest. A BLAT search of each oligo against the genome may result in larger stretches of homology. A probe that exhibits less than 50% (-20 bases) homology may be considered to be unique and, thus, may be selected to move forward. In other words, a probe that comprises more than 50% contiguous homology to fewer than 3 sequences may be considered to be unique and, thus, may be selected move forward. When designing a probe set for enhanced resolution, the probe set can be designed to have a limited number of oligonucleotide Nano-FISH probes, such as 25-35 probes, that can be closely spaced. When designing a probe set for enhanced detection, the probe set can be designed include from 100-150 probes.

[0155] When using databases of genomic sequences, as described above, the database can comprise genomic sequences of a species of a cell of interest. For example, if the cell of interest is a human cell, the oligonucleotide Nano-FISH probes would be screened against a human genomic sequence database (e.g., k-mer databases or BLAT searches). Genomic databases of human, Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse can be used when the cell of interest is from, respectively, a human, Caenorhabditis elegans, a mouse, a rat, a dog, a pig, or a horse. In some embodiments, when using a database of human genomic sequences, as described above (e.g., k-mer databases or BLAT searches), the hg38 human reference genome can be used.

[0156] Additionally, oligonucleotide Nano-FISH probes of the present disclosure may be selected to not include a repetitive element. For example, a repetitive element may be short interspersed nuclear elements (SINE) including ALUs, long interspersed nuclear elements (LINE), long terminal repeat elements (LTR) including retroposons, DNA repeat elements, simple repeats (micro-satellites), low complexity repeats, satellite repeats, RNA repeats such as RNA, tRNA, rRNA, snRNA, scRNA, or srpRNA, or other repeats such as the class rolling circle (RC). Any one or more of the above design criteria may be used to select the oligonucleotide Nano-FISH probes that make up a probe set of the present disclosure. As described above, the process of comparing each oligonucleotide Nano-FISH probe against a 16-mer database of human genomic sequences may result in the selecting for probes that do not comprise repetitive elements. FIG. 52 illustrates the design criteria of the present disclosure used to select oligonucleotide Nano-FISH probes.

[0157] In contrast to the designed and selected oligonucleotide Nano-FISH probes of the present disclosure, conventional FISH probes that are nick translated are not filtered for low homology to human genomic sequences (e.g., using the hg38 human reference genome). As a result, conventional FISH techniques incorporate a step of blocking the FISH probes with a blocking agent such as Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof, which bind to any regions of the conventional FISH probes that are highly repetitive. The blocked conventional FISH probes are then incubated with cells. In contrast, the present oligonucleotide Nano-FISH probes can be directly incubated with cells for hybridization with a target sequence, without the need for a blocking agent. [0158] Furthermore, the size variation of conventional FISH probes (e.g., nick-translated FISH) probes can make it difficult to calculate the exact concentration of nick probes, resulting in inconsistencies and high variations when processing the fluorescence of probes. In contrast, the Nano-FISH probes of the present disclosure can have a defined molecular weight and sequence length, resulting in high quality fluorescent detection.

[0159] In some embodiments, a probe set is referred to herein as a "probe pool" or a

"plurality of probes." For example, an oligonucleotide Nano-FISH probe set can comprise from 20-200 oligonucleotide probes that differ in the sequence targeted by the probe. In some embodiments, the probe set can comprise 20-25 oligonucleotide Nano-FISH probes, 25-30 o igonucleotide Nano -FISH probes, 30-35 oligonucleotide Nano-FISH probes, 35-40 o igonucleotide Nano -FISH probes, 40-45 oligonucleotide Nano-FISH probes, 45-50 o igonucleotide Nano -FISH probes, 50-55 oligonucleotide Nano-FISH probes, 55-60 o igonucleotide Nano -FISH probes, 60-65 oligonucleotide Nano-FISH probes, 65-70 o igonucleotide Nano -FISH probes, 70-75 oligonucleotide Nano-FISH probes, 75-80 o igonucleotide Nano -FISH probes, 80-85 oligonucleotide Nano-FISH probes, 85-90 o igonucleotide Nano -FISH probes, 90-95 oligonucleotide Nano-FISH probes, 95-100 o igonucleotide Nano -FISH probes, 100-105 oligonucleotide Nano-FISH probes, 105- 110 o igonucleotide Nano -FISH probes, 110-115 oligonucleotide Nano-FISH probes, 115- 120 o igonucleotide Nano -FISH probes, 120-125 oligonucleotide Nano-FISH probes, 125- 130 o igonucleotide Nano -FISH probes, 130-135 oligonucleotide Nano-FISH probes, 135- 140 o igonucleotide Nano -FISH probes, 140-145 oligonucleotide Nano-FISH probes, 145- 150 o igonucleotide Nano -FISH probes, 150-155 oligonucleotide Nano-FISH probes, 155- 160 o igonucleotide Nano -FISH probes, 160-165 oligonucleotide Nano-FISH probes, 165- 170 o igonucleotide Nano -FISH probes, 170-175 oligonucleotide Nano-FISH probes, 175- 180 o igonucleotide Nano -FISH probes, 180-185 oligonucleotide Nano-FISH probes, 185- 190 o igonucleotide Nano -FISH probes, 190-195 oligonucleotide Nano-FISH probes, 195-200 o igonucleotide Nano -FISH probes, 30-60 oligonucleotide Nano-FISH probes, 20-150 o igonucleotide Nano -FISH probes, or 30-50 oligonucleotide Nano-FISH probes that differ the sequence targeted by the probe.

[0160] In some embodiments of the present disclosure, the Nano-FISH probe pool can comprise a universal Nano-FISH probe set that targets the backbone of a viral vector that integrates into a cell. In some embodiments, the universal Nano-FISH probe set can comprise from 20-100 probes that differ in the sequence targeted by the probe. In some embodiments, the universal Nano-FISH probe set can comprise from 100 probes that differ in the sequence targeted by the probe. In some embodiments, the universal Nano-FISH probe set can comprise from 80 probe that differ in the sequence targeted by the probe s. In some embodiments, the universal Nano-FISH probe set can comprise from 60 probes that differ in the sequence targeted by the probe. In some embodiments, the universal Nano-FISH probe set can comprise from 40 probes that differ in the sequence targeted by the probe. In some embodiments, the universal Nano-FISH probe set can comprise from 20 probes that differ in the sequence targeted by the probe. In some embodiments, the universal Nano-FISH probe set can comprises a certain amount (e.g., percentage) of probes that specifically recognize (such as to bind to or to hybridize with) a portion of the target nucleic acid sequence. In some embodiments, the target nucleic acid sequence can be less than 10 kilobases, less than 8 kilobases, less than 5 kilobases, or less than 2.5 kilobases. In some embodiments, a universal probe set for a viral vector backbone can be used when to detect viral vector integrations when from 2-100% of the probe pool of the universal probe set are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. For example, the universal Nano-FISH probe set can comprise 60 probes that differ in the sequence targeted by the probe, wherein the 60 Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In other instances, the universal Nano-FISH probe set can comprise 60 probes that differ in the sequence targeted by the probe, wherein 50 of these Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In other instances, the universal Nano-FISH probe set can comprise 60 probes that differ in the sequence targeted by the probe, wherein 40 of these Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In other instances, the universal Nano-FISH probe set can comprise 60 probes that differ in the sequence targeted by the probe, wherein 30 of these Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In other instances, the universal Nano-FISH probe set can comprise 60 probes, a wherein 20 of these Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In other instances, the universal Nano-FISH probe set can comprise 60 probes, wherein 10 Nano-FISH probes are expected to hybridize to the exact target nucleic acid sequence or viral vector backbone sequence. In some embodiments, the universal Nano-FISH probe set can specifically bind to various regions of the target nucleic acid sequence. In some embodiments, the universal Nano-FISH probe set can specifically bind to the backbone of a viral vector and be used to detect integrations of the viral vector irrespective of the viral vector payload. For example, a universal probe set can be used to detect lentivirus vector backbone integrations irrespective of the vector payload or therapeutic use of the lentivirus vector/payload. In some embodiments, the universal Nano-FISH probe set can specifically bind to a region of the target nucleic acid sequence that encodes a target protein (e.g., a CAR). In some embodiments, the universal Nano-FISH probe set can specifically bind to a region of a CAR gene. A universal probe set can comprise probes of SEQ ID NO: 1212 - SEQ ID NO: 1267. A universal probe set can comprise probes of SEQ ID NO: 930 - SEQ ID NO: 988 and SEQ ID NO: 1123.

[0161] In some embodiments, a single Nano-FISH probe can be at least 20 and no more than 80 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 30 and no more than 60 nucleotides in length. In some embodiments, a single Nano- FISH probe can be at least 40 and no more than 50 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 10 and no more than 100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 200 and no more than 300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 400 and no more than 500 nucleotides in length. In some embodiments, a single Nano- FISH probe can be at least 600 and no more than 700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 800 and no more than 900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 1000 and no more than 1100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 1200 and no more than 1300 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 1400 and no more than 1500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 1600 and no more than 1700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 1800 and no more than 1900 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 2000 and no more than 2100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 2200 and no more than 2300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 2400 and no more than 2500 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 2600 and no more than 2700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 2800 and no more than 2900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 3000 and no more than 3100 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 3200 and no more than 3300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 3400 and no more than 3500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 3600 and no more than 3700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 3800 and no more than 3900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 4000 and no more than 4100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 4200 and no more than 4300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 4400 and no more than 4500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 4600 and no more than 4700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 4800 and no more than 4900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 5000 and no more than 5100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 5200 and no more than 5300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 5400 and no more than 5500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 5600 and no more than 5700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 5800 and no more than 5900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 6000 and no more than 6100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 6200 and no more than 6300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 6400 and no more than 6500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 6600 and no more than 6700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 6800 and no more than 6900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 7000 and no more than 7100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 7200 and no more than 7300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 7400 and no more than 7500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 7600 and no more than 7700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 7800 and no more than 7900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 8000 and no more than 8100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 8200 and no more than 8300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 8400 and no more than 8500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 8600 and no more than 8700 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 8800 and no more than 8900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 9000 and no more than 9100 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 9200 and no more than 9300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 9400 and no more than 9500 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 9600 and no more than 9700 nucleotides in length. In some

embodiments, a single Nano-FISH probe can be at least 9800 and no more than 9900 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 10000 and no more than 10100 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 10200 and no more than 10300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 10 nucleotides in length and no more than 10300 nucleotides in length. In some embodiments, a single Nano-FISH probe can be at least 10 nucleotides in length and no more than 10,000 nucleotides in length.

[0162] Overall, the above described properties of the Nano-FISH probes of the present disclosure, can lead to increased precision in detecting a target sequence, especially detection of small target sequences that are less than 5 kilobases, and lower background signals stemming from off target probe-DNA interactions, as compared to conventional FISH probes. In other words, the Nano-FISH probes of the present disclosure can yield a better or higher signal-to-noise ratio than conventional FISH probes.

[0163] In some embodiments, 9 oligonucleotide-Nano-FISH probes of the present disclosure may be used to visualize insertions of an exogenous nucleic acid sequence in the nucleus at a signal to noise ratio of about 1.2-1.5 to 1. In some embodiments, 15 oligonucleotide-Nano- FISH probes of the present disclosure may be used to visualize insertions of an exogenous nucleic acid sequence in the nucleus at a signal to noise ratio of about 1.5: 1. In some embodiments, 30 oligonucleotide-Nano-FISH probes of the present disclosure may be used to visualize insertions of an exogenous nucleic acid sequence in the nucleus at a signal to noise ratio of about 4-8 to 1. In some embodiments, 60 oligonucleotide-Nano-FISH probes of the present disclosure may be used to visualize insertions of an exogenous nucleic acid sequence in the nucleus at a signal to noise ratio of about 5-10: 1. In some embodiments, 90

oligonucleotide Nano-FISH probes of the present disclosure may result in at least one detected allele (in a triploid cell background) in about 98% of cells. In some embodiments, 60 oligonucleotide Nano-FISH probes of the present disclosure may result in at least one detected allele (in a triploid cell background) in about 92% of cells. In some embodiments, 30 oligonucleotide Nano-FISH probes of the present disclosure may result in at least one detected allele (in a triploid cell background) in about 89% of cells. In some embodiments, 15 oligonucleotide Nano-FISH probes of the present disclosure may result in at least one detected allele (in a triploid cell background) in about 34% of cells.

[0164] In some embodiments, the target exogenous nucleic acid sequence does not need to be amplified prior to detection. Thus, the exogenous nucleic acid sequences of the present disclosure are non-amplified exogenous nucleic acid sequences. In some embodiments, the signal from the oligonucleotide Nano-FISH probes of the present disclosure does not need to be amplified prior to detection. Thus, the Nano-FISH methods of the present disclosure provide methods of non-signal amplified detection. In other words, the Nano-FISH methods of the present disclosure provide methods of direct, non-amplified signal detection.

[0165] The compositions and methods provided herein can also comprise a plurality of probe sets, wherein each probe set can contain any number of oligonucleotide Nano-FISH probes described above. Within a probe set, oligonucleotide Nano-FISH probes may all be labeled with the same fluorophore. Each probe set in the plurality of probe sets may be labeled with different fluorophores. Each probe set in the plurality of probe sets may further comprise oligonucleotide Nano-FISH probes for the detection of unique target sequences (e.g., exogenous or viral nucleic acid sequences). Thus, a plurality of probe sets can be used to detect multiple target sequences simultaneously, with each target sequence being labeled with a unique fluorophore.

Types of Regulatory Elements

[0166] A regulatory element may be DNA, RNA, a polypeptide, or a combination thereof. A regulatory element may be DNA. A regulatory element may be RNA. A regulatory element may be a polypeptide. A regulatory element may be any combination of DNA, RNA, and/or polypeptide (e.g., protein-protein complexes, protein-DNA/RNA complexes, and the like).

[0167] A regulatory element may be DNA. A regulatory element may be a single- stranded DNA regulatory element, a double- stranded DNA regulatory element, or a combination thereof. The DNA regulatory element may be single-stranded. The DNA regulatory element may be double-stranded. The DNA regulatory element may encompass a DNA fragment. The DNA regulatory element may encompass a gene. The DNA regulatory element may encompass a chromosome. The DNA regulatory element may include endogenous DNA regulatory elements (e.g., endogenous genes). The DNA regulatory element may include artificial DNA regulatory elements (e.g., foreign genes introduced into a cell).

[0168] A regulatory element may be RNA. A regulatory element may be a single- stranded RNA regulatory element, a double- stranded RNA regulatory element, or a combination thereof. The RNA regulatory element may be single-stranded. The RNA regulatory element may be double-stranded. The RNA regulatory element may include endogenous RNA regulatory elements. The RNA regulatory element may include artificial RNA regulatory elements. The RNA regulatory element may include micro RNA (miRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), messenger RNA (mRNA), pre-mRNA, transfer-messenger RNA (tmRNA), heterogeneous nuclear RNA (hnRNA), short interfering RNA (siRNA), or short hairpin RNA (shRNA). The RNA regulatory element may be a RNA fragment. The RNA regulatory element may be an anti- sense RNA.

[0169] An RNA regulatory element may be an enhancer RNA (eRNA). An enhancer RNA may be a non-coding RNA molecule transcribed from an enhancer region of a DNA molecule, and may be from about 50 base-pairs (bp) in length to about 3 kilo base pairs in length (e.g., about 100 bp in length, about 200 bp in length, about 500 bp in length, about 1 kb in length, about 1.5 kb in length, about 2 kb in length, or about 2.5 kb in length). An enhancer RNA may be a ID eRNA or an eRNA that may be unidirectionally transcribed. An enhancer RNA may also be a 2D eRNA or an eRNA that may be bidirectionally transcribed. An eRNA may be polyadenylated. Alternatively, an eRNA may be non-polyadenylated.

[0170] A regulatory element may be a DNasel hypersensitive site (DHS). DHS may be a region of chromatin unoccupied by transcription factors and which is sensitive to cleavage by the DNase I enzyme. The presence of DHS regions within a chromatin may demarcate transcription factory occupancy at a nucleotide resolution. The presence of DHS regions may further correlate with activation of cis-regulatory elements, such as an enhancer, promoter, silencer, insulator, or locus control region. DHS variation may be correlated to variation in gene expression in healthy or diseased cells (e.g., cancerous cells) and/or correlated to phenotypic traits.

[0171] A DHS pattern may encode memory of prior cell fate decisions and exposures. For example, upon differentiation, a DHS pattern of a progeny may encode transcription factor occupancy of its parent. Further, a DHS pattern of a cell may encode an environmentally- induced transcription factor occupancy from an earlier time point.

[0172] A DHS pattern may encode cellular maturity. An embryonic stem cell may encode a set of DHS s that may be transmitted combinatorially to a differentiated progeny, and this set of DHSs may be decreased with each cycle of differentiation. As such, the set of DHSs may be correlated with time, thereby allowing a DHS pattern to be correlated with cellular maturity.

[0173] A DHS pattern may also encode splicing patterns. Protein coding exons may be occupied by transcription factors, which may further be correlated with codon usage patterns and amino acid choice on evolutionary time scales and human fitness. A transcription factory occupancy may further modulate alternative splicing patterns, for example, by imposing sequence constraints at a splice junction. As such, a DHS pattern may encode transcription factor occupancy of one or more exons of interest and may provide additional information on alternative splicing patterns.

[0174] A DHS pattern may encode a cell type. For example, within each cell type, about 100,000 to about 250,000 DHSs may be detected. About 5% of the detected DHSs may be located within a transcription start site and the remaining DHSs may be detected at a distal site from the transcription start site. Each cell type may contain a distinct DHS pattern at the distal site and mapping the DHS pattern at the distal site may allow identification of a cell type. An overlap may further be present within two DHS patterns from two different cell types, for example, an overlap of a set of detected DHSs within the two DHS patterns. An overlap may be less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, or less than about 1% of the detected DHSs. The presence of an overlap may not affect the identification of a cell type.

[0175] A regulatory element may be a polypeptide. The polypeptide may be a protein or a polypeptide fragment. For example, a regulatory element may be a transcription factor, DNA- binding protein or functional fragment, RNA-binding protein or functional fragment, protein involved in chemical modification (e.g., involved in histone modification), or gene product. A regulatory element may be a transcription factor. A regulatory element may be a DNA or RNA-binding protein or functional fragment. A regulatory element may be a product of a gene transcript. A regulatory element may be a chromatin.

Methods of Detecting a Regulatory Element

[0176] Described herein is a method of detecting a regulatory element. The detection may encompass identification of the regulatory element, determining the presence or absence of the regulatory element, and/or determining the activity of the regulatory element. A method of detecting a regulatory element may include contacting a cell sample with a detection agent, binding the detection agent to the regulatory element, and analyzing a detection profile from the detection agent to determine the presence, absence, or activity of the regulatory element.

[0177] The method may involve utilizing one or more intrinsic properties associated with a detection agent to aid in detection of the regulatory element. The intrinsic properties may encompass the size of the detection agent, the intensity of the signal, and the location of the detection agent. The size of the detection agent may include the length of the probe and/or the size of the detectable moiety (e.g., the size of a fluorescent dye molecule) may modulate the specificity of interaction with a regulatory element. The intensity of the signal from the detection agent may correlate to the sensitivity of detection. For example, a detection agent with a molar extinction coefficient of about 0.5-5 x 106 M^cm "1 may have a higher intensity signal relative to a detection agent with a molar extinction coefficient outside of the 0.5-5 x 106 M^cm "1 range and may have lower attenuation due to scattering and absorption. Further, a detection agent with a longer excited state lifetime and a large Stoke shift (measured by the distance between the excitation and emission peaks) may further improve the sensitivity of detection. The location of the detection agent may, for example, provide the activity state of a regulatory element. A combination of intrinsic properties of the detection agent may be used to detect a regulatory element of interest.

[0178] A detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a regulatory element. As described herein, a detection agent may include a DNA probe portion, an RNA probe portion, a polypeptide probe portion, or a combination thereof. Sometimes, a DNA or RNA probe portion may be between about 10 and about 100 nucleotides in length, between about 15 and about 100 nucleotides in length, between about 20 and about 100 nucleotides in length, between about 20 and about 80 nucleotides in length, between about 20 and about 60 nucleotides in length, between about 25 and about 55 nucleotides in length, between about 30 and about 50 nucleotides in length, between about 15 and about 80 nucleotides in length, between about 15 and about 60 nucleotides in length, between about 20 and about 40 nucleotides in length, or between about 20 and about 30 nucleotides in length. Sometimes, a DNA or RNA probe portion may be about 10, about 15, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 80, about 90, about 100, or more nucleotides in length. A DNA or RNA probe portion may be a TALEN probe, ZFN probe, or a CRISPR probe. A DNA or RNA probe portion may be a padlock probe. A polypeptide probe may comprise a DNA-binding protein, a RNA-binding protein, a protein involved in the transcription/translation process, a protein that detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element (e.g., an antibody or binding fragment thereof).

[0179] A detection agent may comprise a DNA or RNA probe portion which may be between about 10 and about 100 nucleotides in length, between about 15 and about 100 nucleotides in length, between about 20 and about 100 nucleotides in length, between about 20 and about 80 nucleotides in length, between about 20 and about 60 nucleotides in length, between about 25 and about 55 nucleotides in length, between about 30 and about 50 nucleotides in length, between about 15 and about 80 nucleotides in length, between about 15 and about 60 nucleotides in length, between about 20 and about 40 nucleotides in length, or between about 20 and about 30 nucleotides in length. A detection agent may comprise a DNA or RNA probe portion which may be about 10, about 15, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 80, about 90, about 100, or more nucleotides in length.

[0180] A detection agent may comprise a DNA or RNA probe selected from a TALEN probe, a ZFN probe, or a CRISPR probe.

[0181] A set of detection agents may be used to detect a regulatory element. The set of detection agents may comprise about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 25, about 30, about 35, about 40, about 45, about 50, or more detection agents. Each of the detection agents within the set of detection agents may recognize and interact with a distinct region of a regulatory element. Sometimes, about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, or more detection agents may be used for detection of a regulatory element. About 1 or more detection agents may be used for detection of a regulatory element. About 2 or more detection agents may be used for detection of a regulatory element. About 3 or more detection agents may be used for detection of a regulatory element. About 4 or more detection agents may be used for detection of a regulatory element. About 5 or more detection agents as used for detection of a regulatory element. About 6 or more detection agents may be used for detection of a regulatory element. About 7 or more detection agents may be used for detection of a regulatory element. About 8 or more detection agents may be used for detection of a regulatory element. About 9 or more detection agents may be used for detection of a regulatory element. About 10 or more detection agents may be used for detection of a regulatory element. About 11 or more detection agents may be used for detection of a regulatory element. About 12 or more detection agents may be used for detection of a regulatory element. About 13 or more detection agents may be used for detection of a regulatory element. About 14 or more detection agents may be used for detection of a regulatory element. About 15 or more detection agents may be used for detection of a regulatory element. About 20 or more detection agents may be used for detection of a regulatory element.

[0182] A detection agent may comprise a polypeptide probe selected from a DNA-binding protein, a RNA-binding protein, a protein involved in the transcription/translation process, a protein that detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element (e.g., an antibody or binding fragment thereof).

[0183] A detectable moiety that is capable of generating a light may be directly conjugated or bound to a probe portion. A detectable moiety may be indirectly conjugated or bound to a probe portion by a conjugating moiety. As described herein, a detectable moiety may be a small molecule (e.g., a dye) which may be directly conjugated or bound to a probe portion. A detectable moiety may be a fluorescently labeled protein or molecule which may be attached to a conjugating moiety (e.g., a hapten group, an azido group, an alkyne group) of a probe.

[0184] A profile or a detection profile or signature may include the signal intensity, signal location, or size of the signal of the detection agent. The profile or the detection profile may comprise about 100 image frames, about 500 frames, about 1000 frames, about 2000 frames, about 5000 frames, about 10,000 frames, about 20,000 frames, about 30,000 frames, about 40,000 frames, about 50,000 frames, or more frames. Analysis of the profile or the detection profile may determine the activity of the regulatory element. The degree of activation may also be determined from the analysis of the profile or detection profile. Analysis of the profile or the detection profile may further determine the optical isolation and localization of the detection agents, which may correlate to the localization of the regulatory element. [0185] In additional cases, a detection agent may comprise a polypeptide probe selected from a DNA-binding protein, a RNA-binding protein, a protein involved in the

transcription/translation process or detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element (e.g., an antibody or binding fragment thereof).

[0186] Sometimes, a detectable moiety that is capable of generating a light is directly conjugated or bound to a probe portion. Other times, a detectable moiety is indirectly conjugated or bound to a probe portion by a conjugating moiety. As described elsewhere herein, a detectable moiety may be a small molecule (e.g., a dye) which may be directly conjugated or bound to a probe portion. Alternatively, a detectable moiety may be a fluorescently labeled protein or molecule which may be attached to a conjugating moiety (e.g., a hapten group, an azido group, an alkyne group) of a probe.

[0187] In some instances, a profile or a detection profile or signature may include the signal intensity, signal location, or size of the signal of the detection agent. Sometimes, the profile or the detection profile may comprise about 100 frames, 500 frames, 1000 frames, 2000 frames, 5000 frames, 10,000 frames, 20,000 frames, 30,000 frames, 40,000 frames, 50,000 frames or more images. Analysis of the profile or the detection profile may determine the activity of the regulatory element. In some cases, the degree of activation may also be determined from the analysis of the profile or detection profile. In additional cases, analysis of the profile or the detection profile may further determine the optical isolation and localization of the detection agents, which may correlate to the localization of the regulatory element.

A. Detection of DNA and/or RNA Regulatory Elements

[0188] A regulatory element may be DNA. Described herein is a method of detecting a DNA regulatory element, which may include contacting a cell sample with a detection agent, binding the detection agent to the DNA regulatory element, and analyzing a profile from the detection agent to determine the presence, absence, or activity of the DNA regulatory element.

[0189] A regulatory element may be RNA. Described herein is a method of detecting a RNA regulatory element, which may include contacting a cell sample with a detection agent, binding the detection agent to the RNA regulatory element, and analyzing a profile from the detection agent to determine the presence, absence, or activity of the RNA regulatory element. [0190] A regulatory element may be an enhancer RNA (eRNA). The presence of an eRNA may correlate to an activated regulatory element. For example, the production of an eRNA may correlate to the transcription of a target gene. As such, the detection of an eRNA element may indicate that a target gene downstream of the eRNA element may be activated.

[0191] Provided herein is a method of detecting an eRNA regulatory element, which may include contacting a cell sample with a detection agent, binding the detection agent to the eRNA regulatory element, and analyzing a profile from the detection agent to determine the presence, absence, or activity of the eRNA regulatory element. Described herein is an in situ method of detecting an activated regulatory DNA site, which may include incubating a sample with a set of detection agents (e.g., fluorescently-labeled probes), hybridizing the set of detection agents to at least one enhancer RNA (eRNA), and analyzing a profile (e.g., a fluorescent profile) from the set of detection agents to determine the presence of an eRNA, in which the presence of eRNA correlates to an activated regulatory DNA site.

B. Detection of a DNasel Hypersensitive Site, Generation of a DNasel

Hypersensitive Site Map, and Determination of a Cell Type Based on a DNasel Hypersensitive Site Profile

[0192] A regulatory element may be a DNasel hypersensitive site (DHS). A DNasel hypersensitive site may be an inactivated DNasel hypersensitive site. A DNasel

hypersensitive site may be an activated DNasel hypersensitive site. Described herein is a method of detecting a DHS, which may include contacting a cell sample with a detection agent, binding the detection agent to the DHS, and analyzing a profile from the detection agent to determine the presence, absence, or activity of the DHS.

[0193] The DHS may be an active DHS and may further contain a single stranded DNA region. The single stranded DNA region may be detected by S 1 nuclease. A method of detecting a DHS may further be extended to detect the presence of a single stranded DNA region within a DHS. Such a method, for example, may comprise contacting a cell sample with a detection agent, binding the detection agent to a single stranded region of a DHS, and analyzing a profile from the detection agent to determine the presence or absence of the single stranded region within a DHS.

[0194] Also described herein is a method of determining the activity level of a regulatory element, which may include incubating a cell sample with a set of detection agents (e.g., fluorescently labeled probes), in which each detection agent hybridizes to a DHS, measuring a signature (e.g., a fluorescent signature) from the set of detection agents, and based on the signature, determining a DHS profile, and comparing the DHS profile with a control, in which a correlation with the control indicates the activity level of the regulatory element in the cell sample. The signature (e.g., the fluorescent signature) may further correlate to a signal intensity (or a peak height). A set of signal intensities may be compiled into a DHS profile and compared with a control to generate a second DHS profile which comprises a set of relative signal intensities (or relative peak heights). The set of relative signal intensities may correlate to the activity level of a regulatory element.

[0195] Also described herein is a method of generating a DHS map, which may provide information on cell-to-cell variation in gene expression, memory of early developmental fate decisions which establish lineage hierarchies, quantitation of embryonic stem cell DHS sites which decreases with cell passage, and presence of oncogenic elements.

[0196] The location of a set of DHS sites may be correlated to a cell type. For example, the location of about 1, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, or more DHS sites may be correlated to a cell type. The location of about 1, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, or more DHS may be used to determine a cell type. The cell may be a normal cell or a cancerous cell. DHS variation may be used to determine the presence of cancerous cells in a sample. A method of determining a cell type (e.g., a cancerous cell) may include incubating a cell sample with a set of detection agents (e.g., fluorescently labeled probes), in which each detection agent hybridizes to a DHS, measuring a signature (e.g., a fluorescent signature) from the set of detection agents, and based on the signature, determining a DHS profile, and comparing the DHS profile with a control, in which a correlation with the control indicates the cell type of the sample.

[0197] A DHS site may be visualized through a terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End labeling (TUNEL) assay. A TUNEL assay may utilize a terminal

deoxynucleotidyl transferase (TdT) which may catalyze the addition of a dUTP at the site of a nick or strand break. A fluorescent moiety may further be conjugated to dUTP. A TUNEL assay may be utilized for visualization of a plurality of DHSs present in a cell. A TUNEL assay may be an assay as described in EXAMPLE 2.

[0198] The sequence of a DHS site may be detected in situ, by utilizing an in situ sequencing methodology. For example, the two ends of a padlock probe may be hybridized to a target regulatory element sequence and the two ends may be further ligated together by a ligase (e.g., T4 ligase) when bound to the target sequence. An amplification (e.g., a rolling circle amplification or RCA) may be performed utilizing a polymerase (e.g., φ29 polymerase), which may result in a single stranded DNA comprising at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, or more tandem copies of the target sequence. The amplified product at least about be sequenced by ligation in situ using partition sequencing compatible primers and labeled probes (e.g., fluorescently labeled probes). For example, each target sequence within the amplified product may bind to a primer and probe set resulting in a bright spot detectable by, e.g., an immunofluorescence microscopy. The labeled probe (e.g., the fluorescent label on the probe) may identify the nucleotide at the ligation site, thereby allowing the color detected to define the nucleotide at the respective ligation position.

Sometimes, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more rounds of ligation and detection may occur for detection of a DHS site.

[0199] A control as used herein may refer to a DHS profile generated from a regulatory element those activity level is known. A control may also refer to a DHS profile generated from an inactivated regulatory element. A control may further refer to a DHS profile generated from an activated or inactivated regulatory element from a specific cell type. For example, the cell type may be an epithelial cell, connective tissue cell, muscle cell, or nerve cell type. The cell may be a cell derived from heart, lung, kidney, stomach, intestines, liver, pancreas, brain, esophagus, and the like. The cell type may be a hormone- secreting cell, such as a pituitary cell, a gut and respiratory tract cell, thyroid gland cell, adrenal gland cell, Leydig cell of testes, Theca interna cell of ovarian follicle, Juxtaglomerular cell, Macula densa cell, Peripolar cell, or Mesangial cell type. The cell may be a blood cell or a blood progenitor cell. The cell may be an immune system cell, e.g., monocytes, dendritic cell, neutrophile granulocyte, eosinophil granulocyte, basophil granulocyte, hybridoma cell, mast cell, helper T cell, suppressor T cell, cytotoxic T cell, Natural Killer T cell, B cell, or natural killer cell.

C. Detection and Mapping of a Chromatin

[0200] A regulatory element may also be a chromatin. Provided herein is a method of detecting a chromatin, which may include contacting a cell sample with a detection agent, binding the detection agent to the chromatin, and analyzing a profile from the detection agent to determine the activity state of the chromatin. The activity level of a chromatin may be determined based on the presence or activity level of a nucleic acid of interest or the presence or absence of a chromatin associated protein. The activity level of a chromatin may be determined based on DHS locations. The one or more DHS locations on a chromatin may be used to map chromatin activity state. For example, one or more DHSs may be localized in a region and the surrounding chromatin may be decompacted and readily visualized relative to an inactive chromatin state when a DHS is not present. The one or more DHSs within a localized region may further form a localized DHS set and a plurality of localized DHS sets may further provide a global map or pattern of chromatin activity (e.g., an activity pattern).

[0201] Also included herein is a method of generating a chromatin map based on the pattern of DNasel hypersensitive sites, RNA regulatory elements (e.g., eRNA), chromatin associated proteins or gene products, or a combination thereof. The method of generating a chromatin map may be based on the pattern of DNasel hypersensitive sites. The method may comprise generating a 3-dimensional map from a detection profile (or a 2-dimensional detection profile). A chromatin map may provide information on the compaction of chromatin, the spatial structure, spacing of regulatory elements, and localization of the regulatory elements to globally map chromatin structure and accessibility.

[0202] A chromatin map for a cell type may also be generated, in which each cell type comprises a different chromatin pattern. Each cell type may be associated with at least one unique marker. The at least one unique marker (or fiduciary marker) may be a genomic sequence. The at least one unique marker (or fiduciary marker) may be DHS. A cell type may comprise about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 60, or more unique markers (or fiduciary markers). The cell type may be an epithelia cell, a connective tissue cell, a muscle cell, a nerve cell, a hormone- secreting cell, a blood cell, an immune system cell, or a stem cell type. The cell type may be a cancerous cell type.

[0203] A chromatin profile (e.g., based on DHSs) in the presence of an exogenous agent or condition may also be generated. The method may comprise incubating a cell sample with a set of fluorescently labeled probes specific to target sites (e.g., target DHSs) on a chromatin in the presence of an exogenous agent or condition; measuring a fluorescent signature of the set of fluorescently labeled probes; based on the fluorescent signature, generating a fluorescent profile of the chromatin; and comparing the fluorescent profile with a second fluorescent profile of a chromatin obtained from an equivalent sample incubated with an equivalent set of fluorescently labeled probes in the absence of the exogenous agent or condition, wherein a difference between the two sets of fluorescent profiles indicates a change in the chromatin density (e.g., changes in the presences or activation of DHSs) induced by the exogenous agent or condition. The exogenous agent or condition may comprise a small molecule or a drug. The exogenous agent may be a small molecule, such as a steroid. The exogenous agent or condition may comprise an environmental factor, such as a change in pH, temperature, nutrient, or a combination thereof.

Methods of Determining the Localization of a Regulatory Element

[0204] Also described herein is a method for determining the localization of a regulatory element. The localization of a regulatory element may provide an activity state of the regulatory element. The localization of a regulatory element may also provide an interaction state with at least one additional regulatory element. For example, the localization of a first regulatory element with respect to a second regulatory element may provide spatial coordinate and distance information between the two regulatory elements, and may further provide information regarding whether the two regulatory elements may interact with each other. The activity state of a regulatory element may include, for example, a transcription or translation initiation event, a translocation event, or an interaction event with one or more additional regulatory elements. The regulatory element may comprise DNA, RNA, polypeptides, or a combination thereof. The regulatory element may be DNA. The regulatory element may be RNA. The regulatory element may be an enhancer RNA (eRNA). The regulatory element may be a DNasel hypersensitive site (DHS). The DHS may be an inactive DHS or an active DHS. The regulatory element may be a polypeptide. The regulatory element may be chromatin.

[0205] The localization of a regulatory element may include contacting a regulatory element with a first set of detection agents, photobleaching the first set of detection agents for a first time point at a first wavelength to generate a second set of detection agents capable of generating a light at a second wavelength, detecting at least one burst generated by the second set of detection agents to generate a detection profile of the second set of detection agents, and analyzing the detection profile to determine the localization of the regulatory element.

[0206] A detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a regulatory element. Each detection agent within the first set of detection agents may have the same or a different detectable moiety. Each detection agent within the first set of detection agents may have the same detectable moiety. A detectable moiety may comprise a small molecule (e.g., a fluorescent dye). A detectable moiety may comprise a fluorescently labeled polypeptide, a fluorescently labeled nucleic acid probe, and/or a fluorescently labeled polypeptide complex.

[0207] Upon photobleaching, a second set of detection agents may be generated from the first set of detection agents, in which the second set may include detection agents that are capable of generating a burst of light detectable at a second wavelength. For example, bleaching of the set of detection agents may lead to about 50%, about 60%, about 70%, about 80%, about 90%, or more detection agents within the set to enter into an "OFF-state." An "OFF-state" may be a dark state in which the detectable moiety crosses from the singlet excited or "ON state" to the triplet state or "OFF-state" in which detection of light (e.g., fluorescence) may be low (e.g., less than 10%, less than 5%, less than 1%, or less than 0.5% of the light may be detected). The remainder of the detection agents that have not entered into the "OFF-state" may generate bursts of lights, or to cycle between a singlet excited state (or "ON-state") and a singlet ground state. As such, bleaching of the set of detection agents may generate about 40%, about 30%, about 20%, about 10%, about 5%, or less detection agents within the set that may generate bursts of lights. The bursts of lights may be detected stochastically, at a single burst level in which each burst of light correlates to a single detection agent.

[0208] A single wavelength may be used for photobleaching a set of detection agents. At least two wavelengths may be used for photobleaching a set of detection agents. A

wavelength at 491 nm may be used. A wavelength at 405 nm may be used in combination with the wavelength at 491 nm. The two wavelengths may be applied simultaneously to photobleach a set of detection agents. Alternatively, the two wavelengths may be applied sequentially to photobleach a set of detection agents.

[0209] The time for photobleaching a set of detection agents may be from about 10 seconds to about 4 hours. The time may be from about 30 seconds to about 3.5 hours, from about one minute to about 3 hours, from about 5 minutes to about 2 hours, from about 10 minutes to about 1 hours, from about one minutes to about 1 hour, from about 5 minutes to about 1 hour, or from about 30 minutes to about 2 hours. The time may be at least 10 seconds, at least 20 seconds, at least 30 seconds, at least 40 seconds, at least 50 seconds, at least 1 minute, at least 2 minutes, at least 3 minutes, at least 4 minutes, at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 30 minutes, at least 45 minutes, at least 1 hour, at least 1.5 hours, at least 2 hours, at least 2.5 hours, at least 3 hours, at least 3.5 hours, at least 4 hours, or more.

[0210] The concentration of the detection agents may be from about 5 nM to about 1 μΜ. The concentration of the detection agent may be from about 5 nM to about 900 nM, from about ΙΟηΜ to about 800 nM, from about 15 nM to about 700 nM, from about 20 nM to about 500 nM, from about 10 nM to about 500 nM, from about 10 nM to about 400 nM, from about 10 nM to about 300 nM, from about 10 nM to about 200 nM, from about 10 nM to about 100 nM, from about 50 nM to about 500 nM, from about 50 nM to about 400 nM, from about 50 nM to about 300 nM, from about 50 nM to about 200 nM, from about 100 nM to about 500 nM, from about 100 nM to about 300nM, or from about 100 nM to about 200 nM. The concentration of the detection agents may be about 10 nM, about 15 nM, about 20 nM, about 30 nM, about 40 nM, about 50 nM, about 60 nM, about 70 nM, about 80 nM, about 90 nM, about 100 nM, about 150 nM, about 200 nM, about 250 nM, about 300 nM, about 400 nM, about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM, or more.

[0211] The burst of lights from the set of detection agents may generate a detection profile. The detection profile may comprise about 100 image frames, about 500 frames, about 1000 frames, about 2000 frames, about 5000 frames, about 10,000 frames, about 20,000 frames, about 30,000 frames, about 40,000 frames, about 50,000 frames, or more. The detection profile may also include the signal intensity, signal location, or size of the signal. Analysis of the detection profile may determine the optical isolation and localization of the detection agents, which may correlate to the localization of the regulatory element.

[0212] The detection profile may comprise a chromatic aberration correction. The detection profile may comprise less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.1%, or 0% chromatic aberration. The detection profile may comprise less than 5% chromatic aberration. The detection profile may comprise less than 4% chromatic aberration. The detection profile may comprise less than 3% chromatic aberration. The detection profile may comprise less than 2% chromatic aberration. The detection profile may comprise less than 1% chromatic aberration. The detection profile may comprise less than 0.5% chromatic aberration. The detection profile may comprise less than 0.1% chromatic aberration. The detection profile may comprise 0% chromatic aberration.

[0213] More than one regulatory element may be detected at the same time. At least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more regulatory elements may be detected at the same time. Each of the regulatory elements may be detected by a set of detection agents. The detectable moiety between the different set of detection agents may be the same. For example, two different sets of detection agents may be used to detect two different regulatory elements and the detectable moieties from the two sets of detection agents may be the same. As such, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more regulatory elements may be detected at the same time at the same wavelength. Sometimes, the detectable moiety between the different set of detection agents may also be different. For example, two different sets of detection agents may be used to detect two different regulatory elements and the detectable moiety from one set of detection agents may be detected at a different wavelength from the detectable moiety of the second set of detection agents. As such, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more regulatory elements may be detected at the same time in which each of the regulatory elements may be detected at a different wavelength. The regulatory element may comprise DNA, RNA, polypeptides, or a combination thereof.

Methods of Measuring the Activity of a Regulatory Element

[0214] Also described herein is a method of measuring the activity of a target regulatory element. The method may include detection of a regulatory element and one or more products of the regulatory element. One or more products of the regulatory element may also include intermediate products or elements. The method may comprise contacting a cell sample with a first set and a second set of detection agents, in which the first set of detection agents interact with a target regulatory element within the cell and the second set of detection agents interact with at least one product of the target regulatory element, and analyzing a detection profile from the first set and the second set of detection agents, in which the presence or the absence of the at least one product indicates the activity of the target regulatory element.

[0215] As discussed herein, a detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a regulatory element. Each detection agent within the first set of detection agents may have the same or a different detectable moiety. Each detection agent within the first set of detection agents may have the same detectable moiety. A detectable moiety may comprise a small molecule (e.g., a fluorescent dye). A detectable moiety may comprise a fluorescently labeled polypeptide, a fluorescently labeled nucleic acid probe, and/or a fluorescently labeled polypeptide complex.

[0216] The method may also allow photobleaching of the first set and the second set of detection agents, thereby generating a subset of detection agents capable of generating a burst of light. A detection profile may be generated from the detection of a set of light bursts, in which the presence or the absence of the at least one product may indicate the activity of the target regulatory element.

[0217] The regulatory element may comprise DNA, RNA, polypeptides, or a combination thereof. The regulatory element may be DNA. The regulatory element may be RNA. The regulatory element may be an enhancer RNA (eRNA). The presence of an eRNA may correlate with target gene transcription that is downstream of eRNA. The regulatory element may be a DNasel hypersensitive site (DHS). The DHS may be an activated DHS. The pattern of the DHS on a chromatin may correlate to the activity of the chromatin. The regulatory element may be a polypeptide, e.g., a transcription factor, a DNA or RNA-binding protein or binding fragment thereof, or a polypeptide that is involved in chemical modification. The regulatory element may be chromatin.

Target Nucleic Acid Sequence

[0218] A target nucleic acid sequence may be a nucleic acid sequence of interest or may encode a DNA, RNA, or protein of interest or a portion thereof. A DNA, RNA, or protein of interest may be a DNA, RNA, or protein produced by a cell or contained within a cell. A target nucleic acid sequence may be incorporated into a structure of a cell. A target nucleic acid sequence may also be associated with a cell. For example, a target nucleic acid sequence may be in contact with the exterior of a cell. A target nucleic acid sequence may be unassociated with a structure of a cell. For example, a target nucleic acid sequence may be a circulating nucleic acid sequence. A target nucleic acid sequence or a portion thereof may be artificially constructed or modified. A target nucleic acid sequence may be a natural biological product. A target nucleic acid sequence may be a short nucleic acid sequence. A target nucleic acid sequence may be a nucleic acid sequence that is from a source that is exogenous to a cell. A target nucleic acid sequence may be an endogenous nucleic acid sequence. A target nucleic acid sequence may be a nucleic acid sequence that comprises a combination of an endogenous nucleic acid sequence and a nucleic acid sequence from a source that is exogenous to a cell. A target nucleic acid sequence may be a chromosomal nucleic acid sequence or fragment thereof. A target nucleic acid sequence may be an episomal nucleic sequence or fragment thereof. A target nucleic acid sequence may be a sequence resulting from somatic rearrangement or somatic hypermutation, such as a nucleic acid sequence from a T cell receptor, B cell receptor, or fragment thereof.

[0219] A nucleic acid of a cell or sample, which may comprise the target nucleic acid sequence, may comprise a deoxyribonucleic acid (DNA) or a ribonucleic acid (RNA), or a combination thereof. A nucleic acid may be a chromosome, an oligonucleotide, a plasmid, an artificial chromosome, or a fragment or portion thereof. A nucleic acid may comprise genomic DNA, episomal DNA, complementary DNA, mitochondrial DNA, recombinant DNA, cell-free DNA (cfDNA), messenger RNA (mRNA), pre-mRNA, microRNA (miRNA), transfer RNA (tRNA), transfer messenger RNA (tmRNA), ribosomal RNA (rRNA), heterogeneous nuclear RNA (hnRNA), short interfering RNA (siRNA), anti-sense RNA, or short hairpin RNA (shRNA). A nucleic acid may be single- stranded, double- stranded, or a combination thereof. [0220] A target nucleic acid sequence may comprise a naturally occurring nucleic acid sequence, an artificially constructed nucleic acid sequence (such as an artificially synthesized nucleic acid sequence), or a modified nucleic acid sequence (such as a naturally occurring nucleic acid sequence that has been altered or modified through a natural or artificial process).

[0221] A naturally occurring nucleic acid sequence may comprise a nucleic acid sequence present in a cellular sample. A naturally occurring nucleic acid sequence may comprise a nucleic acid sequence present in an unfixed cell. A naturally occurring nucleic acid sequence may comprise a nucleic acid sequence derived from a cellular sample. A nucleic acid sequence may also be derived from a virus (such as a viral nucleic acid sequence from a lentivirus or adenovirus).

[0222] A naturally occurring nucleic acid sequence may comprise a nucleic acid sequence present in an acellular sample. A naturally occurring nucleic acid sequence may comprise a nucleic acid sequence derived from an acellular sample. For example, a nucleic acid sequence may be a cell-free DNA sequence present in a bodily fluid (such as a sample of cerebrospinal fluid).

[0223] A nucleic acid may comprise a target nucleic acid sequence that is not endogenous to the source (exogenous) from which it was taken or in which it is analyzed.

[0224] A nucleic acid may be an artificially synthesized oligonucleotide.

[0225] A nucleic acid sequence may comprise one or more modifications. A modification may be a post-translational modification of a nucleic acid sequence or an epigenetic modification of nucleic acid sequence (e.g., modification to the methylation of a nucleic acid sequence). A modification may be a genetic modification. A genetic modification to a nucleic acid sequence may be an insertion, a deletion, or a substitution of a nucleic acid sequence. A nucleic acid sequence modification may comprise an insertion may comprise transformation, transduction, or transfection of a sample. For example, a nucleic acid sequence modification comprising an insertion may result from infection or transduction of a cell with a virus and subsequent incorporation of a viral nucleic acid sequence into a nucleic acid sequence of the cells, such as the cell's genomic DNA. The integrated viral nucleic acid sequence (viral integrant) or fragment thereof may be the target nucleic acid sequence. Modification of a nucleic acid sequence may be an artificial modification, resulting from, for instance, genetic engineering or intentional nucleic acid sequence modification during nucleic acid fabrication. A nucleic acid sequence may be the result of somatic rearrangement. [0226] A modification to a nucleic acid sequence comprising an insertion, deletion or substitution may comprise a difference between the nucleic acid sequence and a reference sequence. A reference sequence may be a nucleic acid sequence in a database, an artificial nucleic acid, a viral nucleic acid sequence, a nucleic acid sequence of the same cell, a nucleic acid sequence of a cell from the tissue, a nucleic acid sequence from a different tissue of the same subject, or a nucleic acid sequence from a subject of a different species.

[0227] A modification to a nucleic acid sequence may comprise a difference in 1 nucleotide (a single nucleotide polymorphism, SNP), at least 2 nucleotides, at least 3 nucleotides, at least 4 nucleotides, at least 5 nucleotides, at least 6 nucleotides, at least 7 nucleotides, at least 8 nucleotides, at least 9 nucleotides, at least 10 nucleotides, at least 25 nucleotides, at least 50 nucleotides, at least 100 nucleotides, at least 250 nucleotides, at least 500 nucleotides, at least 1,000 nucleotides, from 1 to 1,000 nucleotides, from 1 to 500 nucleotides, from 1 to 250 nucleotides, from 1 to 100 nucleotides, from 1 to 50 nucleotides, from 1 to 25 nucleotides, from 1 to 10 nucleotides, from 1 to 9 nucleotides, from 1 to 8 nucleotides, from 1 to 7 nucleotides, from 1 to 6 nucleotides, from 1 to 5 nucleotides, from 1 to 4 nucleotides, from 1 to 3 nucleotides, or from 1 to 2 nucleotides. Modification to a nucleic acid sequence comprising a difference in a plurality of nucleotides may comprise differences in two or more adjacent nucleotides or nucleotide sequences relative to a reference nucleic acid sequence. Modifications to a nucleic acid sequence comprising a difference in a plurality of nucleotides may also comprise differences in two or more non-adjacent nucleotides or nucleotide sequences (such as two or more modifications to the nucleic acid sequence that are separated by at least one nucleotide) relative to a reference nucleic acid sequence.

[0228] A target sequence may be assayed in situ or it may be isolated and/or purified from a cellular or acellular sample. For example, a target sequence comprising a nucleic acid may comprise a portion (a region) of genomic DNA located in situ in the nucleus of a fixed (intact) cell. A target sequence may comprise a nucleic acid sequence that is isolated from a sample (such as an aliquot of cerebrospinal fluid).

A. Target Viral Nucleic Acid Sequence

[0229] A target nucleic acid sequence may comprise a viral nucleic acid sequence or a portion thereof. In some embodiments, "portion" can also be referred to herein as a

"fragment." A portion of a viral nucleic acid sequence can be a segment of the full viral nucleic acid sequence. A portion of a viral nucleic acid sequence can be multiple segments from the full viral nucleic acid sequence, which have been stitched together. A viral nucleic acid sequence may comprise a nucleic acid sequence that is a naturally occurring viral nucleic acid sequence. For example, a viral nucleic acid sequence may comprise an unaltered viral nucleic acid sequence from a virus in nature.

[0230] A viral nucleic acid sequence may comprise a viral nucleic acid sequence that is not native to a viral nucleic acid found in nature. A viral nucleic acid sequence may be an artificial nucleic acid sequence. In some cases, a viral nucleic acid sequence may comprise a naturally occurring viral nucleic acid sequence that has been modified artificially. For example, a viral nucleic acid sequence may comprise a naturally occurring viral nucleic acid sequence to which at least one nucleotide has been added, removed, substituted or modified.

[0231] A viral nucleic acid sequence may comprise a DNA sequence or an RNA sequence.

[0232] A viral nucleic acid sequence may be a part of another nucleic acid sequence (such as an integrated viral nucleic acid sequence) or it may be unintegrated (such as a viral nucleic acid sequence of in a virally infected cell prior to integration of the viral nucleic acid sequence into a nucleic acid of the cell). An unintegrated viral nucleic acid sequence may comprise a naturally occurring or artificial viral nucleic acid sequence.

[0233] A viral nucleic acid sequence may comprise one or more nucleotide that is not native to viral nucleic acid. For example, a viral nucleic acid sequence may be modified using genetic engineering techniques.

[0234] A viral nucleic acid sequence may be greater than about 1 kilobase (kb) in length, greater than about 1.5 kb in length, greater than about 2 kb in length, greater than about 2.5 kb in length, greater than about 3 kb in length, greater than about 3.5 kb in length, greater than about 4 kb in length, greater than about 4.5 kb in length, greater than about 5 kb in length, greater than about 6 kb in length, greater than about 7 kb in length, greater than about 8 kb in length, greater than about 9 kb in length, greater than about 10 kb in length, greater than about 30 kb in length, greater than about 50 kb in length, greater than about 100 kb in length, greater than about 1000 kb in length, or greater than about 2000 kb in length.

[0235] A viral nucleic acid sequence may be from about 1 kb in length to about 2 kb in length, from about 1.5 kb in length to about 2.5 kb in length, from about 2 kb in length to about 3 kb in length, from about 2.5 kb in length to about 3.5 kb in length, from about 3 kb in length to about 4 kb in length, from about 3.5 kb in length to about 4.5 kb in length, from about 4 kb in length to about 5 kb in length, from about 5 kb in length to about 6 kb in length, from about 6 kb in length to about 7 kb in length, from about 7 kb in length to about 8 kb in length, from about 8 kb in length to about 9 kb in length, from about 9 kb in length to about 10 kb in length, from about 10 kb in length to about 30 kb in length, from about 30 kb in length to about 50 kb in length, from about 50 kb in length to about 100 kb in length, from about 100 kb in length to about 1000 kb in length, or from about 1000 kb in length to about 2000 kb in length in length.

[0236] A viral nucleic acid sequence may be a portion of a larger nucleic acid sequence. For example, a viral nucleic acid sequence may be inserted into a genomic DNA sequence (such as by viral infection or artificial genome editing).

[0237] A viral nucleic acid may comprise a gene or a non-coding region of a nucleic acid. A target sequence may comprise a cis-regulatory element, such as an enhancer, a promoter, a portion of a promoter (such as a minimal promoter), a silencer, an insulator, or a locus control region. A target sequence may also comprise a cis-regulatory element that is not endogenous to the cell or sample. For example, a target sequence may comprise a viral minimal promoter sequence, a viral gene, or a combination thereof.

[0238] A viral sequence may be assayed in situ or it may be isolated and/or purified from a cellular or acellular sample. For example, a target sequence comprising a nucleic acid may comprise a portion (a region) of genomic DNA located in situ in the nucleus of a fixed cell. A target sequence may comprise a nucleic acid sequence that is isolated from a sample (such as an aliquot of cerebrospinal fluid).

[0239] A viral sequence may be assayed in situ or it may be isolated and/or purified from a cellular or acellular sample. For example, a target sequence comprising a nucleic acid may comprise a portion (a region) of genomic DNA located in situ in the nucleus of a fixed cell. A target sequence may comprise a nucleic acid sequence that is isolated from a sample (such as an aliquot of cerebrospinal fluid).

[0240] A viral nucleic acid sequence may be from a virus. A viral nucleic acid sequence may be from a lentivirus, an adenovirus, an adeno-associated virus, or a retrovirus. A viral nucleic acid sequence may be from a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, or a retrovirus vector. A lentivirus may comprise a nucleic acid sequence with at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% homology to SEQ ID NO: 1282, or a fragment thereof. A viral nucleic acid sequence may be from HIV. A viral nucleic acid sequence may be from an HIV vector. HIV may comprise a nucleic acid sequence with at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% homology to SEQ ID NO: 1283, or a fragment thereof. A viral nucleic acid sequence may be from a p virus.

TABLE 1 - Lentivirus and HIV Nucleic Acid Sequences SEQ

ID Sequence

NO

ID CTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCG

NO: CTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACA

1282 ATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACG

GGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTA

CGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGT

AAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATG

ACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGG

AGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG

TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAG

TACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGC

TATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTT

GACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTG

GCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACG

CAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGCGCGTTTTGCC

TGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACT

AGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTG

TGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTC

AGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGG

AAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCA

AGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGC

TAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGA

TCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTA

AAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGC

CTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCC

TTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTA

TTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGAT

AGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCT

TCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAAT

ATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAA

GAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGT

TCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTAC

AGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGC

TATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTC

CAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGG

ATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAG

TTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGG

GACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGC

AAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAA

GTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATA

ATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGT

GAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACC

CCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGA

CAGAGACAGATCCATTCGATTAGTGAACGGATCGGCACTGCGTGCGCCAATTCTG

CAGACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGG

GTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAA

AGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGAC

AGCAGAGATCCAGTTTGGTTAATTAGCTAGCTAGGTCTTGAAAGGAGTGGGAATT

GGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGT

TGGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAA

ACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCG

CCAGAACACAGGACCGGTTCTAGAGCGCTGCCACCAAGCGACCTGCCGCCACAA

AGAAGGCTGGACAGGCTAAGAAGAAGAAAGATTACAAAGACGATGACGATAAG SEQ

ID Sequence

NO

GGATCCGGCGCAACAAACTTCTCTCTGCTGAAACAAGCCGGAGATGTCGAAGAG

AATCCTGGACCGATGGCCAAGCCTTTGTCTCAAGAAGAATCCACCCTCATTGAAA

GAGCAACGGCTACAATCAACAGCATCCCCATCTCTGAAGACTACAGCGTCGCCAG

CGCAGCTCTCTCTAGCGACGGCCGCATCTTCACTGGTGTCAATGTATATCATTTTA

CTGGGGGACCTTGTGCAGAACTCGTGGTGCTGGGCACTGCTGCTGCTGCGGCAGC

TGGCAACCTGACTTGTATCGTCGCGATCGGAAATGAGAACAGGGGCATCTTGAGC

CCCTGCGGACGGTGCCGACAGGTGCTTCTCGATCTGCATCCTGGGATCAAAGCCA

TAGTGAAGGACAGTGATGGACAGCCGACGGCAGTTGGGATTCGTGAATTGCTGCC

CTCTGGTTATGTGTGGGAGGGCTAAGAATTCGATATCAAGCTTATCGGTAATCAA

CCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCC

TTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCG

TATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGA

GTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCA

ACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGC

TTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCT

GGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATC

ATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGT

CCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTG

CTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGAT

CTCCCTTTGGGCCGCCTCCCCGCATCGATACCGTCGACCTCGAGACCTAGAAAAA

CATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGC

TAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTT

GGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGT

GGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCC

AGGGATCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAG

CAAGAGAAGGTAGAAGAAGCCAATGAAGGAGAGAACACCCGCTTGTTACACCCT

GTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTATTAGAGTGGAGGTTT

GACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGACTGTACTG

GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAA

CCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCC

GTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGG

AAAATCTCTAGCAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCT

AGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGG

TGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGA

GTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGG

ATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGA

GGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGG

CGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCC

AGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCC

GGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGC

TTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGG

CCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAA

TAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTT

TTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATT

TAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGG

AAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAG

TCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAA

AGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCC

CGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTT

TTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGT

ATCCATTTTCGGATCTGATCAGCACGTGTTGACAATTAATCATCGGCATAGTATAT SEQ

ID Sequence

NO

CGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAG

TGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACC

GACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCC

GGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACA

ACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTC

GGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATC

GGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGC

GTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTGCTACGAGATTTCGATTCCA

CCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTG

GATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGT

TTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAA

CTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCA

TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGC

CGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA

ATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA

TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCC

GCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATC

AGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGG

AAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCG

CGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCG

ACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTT

TCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT

ACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGT

AGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAAC

CCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAAC

CCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCA

GAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGG

CTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC

GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGT

ATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA

GGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTA

AAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGT

TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC

CATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCA

TCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT

TATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAA

CTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGT

TCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTC

ACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGA

GTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGAT

CGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTG

CATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTA

CTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCG

GCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCA

TTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATC

CAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCA

CCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAA

TAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGA

AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAA

AAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAC

SEQ GGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAA SEQ

ID Sequence

NO

ID CCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCC

NO: GTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGG

1283 AAAATCTCTAGCAGTGGCGCCCGAACAGGGACCTGAAAGCGAAAGGGAAACCAG

AGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCG

AGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGG

AGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGG

GAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATA

GTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAA

CATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAG

GATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCA

TCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAG

AGCAAAACAAAAGTAAGAAAAAAGCACAGCAAGCAGCAGCTGACACAGGACAC

AGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCCAGGGGCAAATG

GTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAG

AGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATCAGAAGGAGC

CACCCCACAAGATTTAAACACCATGCTAAACACAGTGGGGGGACATCAAGCAGC

CATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGT

GCATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGG

AAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAATAGGATGGATGAC

AAATAATCCACCTATCCCAGTAGGAGAAATTTATAAAAGATGGATAATCCTGGGA

TTAAATAAAATAGTAAGAATGTATAGCCCTACCAGCATTCTGGACATAAGACAAG

GACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGC

CGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCA

AAATGCGAACCCAGATTGTAAGACTATTTTAAAAGCATTGGGACCAGCGGCTACA

CTAGAAGAAATGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCA

AGAGTTTTGGCTGAAGCAATGAGCCAAGTAACAAATTCAGCTACCATAATGATGC

AGAGAGGCAATTTTAGGAACCAAAGAAAGATTGTTAAGTGTTTCAATTGTGGCAA

AGAAGGGCACACAGCCAGAAATTGCAGGGCCCCTAGGAAAAAGGGCTGTTGGAA

ATGTGGAAAGGAAGGACACCAAATGAAAGATTGTACTGAGAGACAGGCTAATTT

TTTAGGGAAGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGC

AGACCAGAGCCAACAGCCCCACCAGAAGAGAGCTTCAGGTCTGGGGTAGAGACA

ACAACTCCCCCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTT

CCCTCAGGTCACTCTTTGGCAACGACCCCTCGTCACAATAAAGATAGGGGGGCAA

CTAAAGGAAGCTCTATTAGATACAGGAGCAGATGATACAGTATTAGAAGAAATG

AGTTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATC

AAAGTAAGACAGTATGATCAGATACTCATAGAAATCTGTGGACATAAAGCTATA

GGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAATCTGTTGA

CTCAGATTGGTTGCACTTTAAATTTTCCCATTAGCCCTATTGAGACTGTACCAGTA

AAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTGACAGAA

GAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAGATGGAAAAGGAAGGGAA

AATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAG

AAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAG

AGAACTCAAGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGCAGGGTTAA

AAAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTTCAGTTCC

CTTAGATGAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGTATAAACAAT

GAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGA

TCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAAC

AAAATCCAGACATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGA

CTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAGCTGAGACAACATCTGTT

GAGGTGGGGACTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCT

TTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAGTGCTG

CCAGAAAAAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGGGAAATTG

AATTGGGCAAGTCAGATTTACCCAGGGATTAAAGTAAGGCAATTATGTAAACTCC SEQ

ID Sequence

NO

TTAGAGGAACCAAAGCACTAACAGAAGTAATACCACTAACAGAAGAAGCAGAGC

TAGAACTGGCAGAAAACAGAGAGATTCTAAAAGAACCAGTACATGGAGTGTATT

ATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAAGGCCAAT

GGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAAACAGGAAAATATGC

AAGAATGAGGGGTGCCCACACTAATGATGTAAAACAATTAACAGAGGCAGTGCA

AAAAATAACCACAGAAAGCATAGTAATATGGGGAAAGACTCCTAAATTTAAACT

GCCCATACAAAAGGAAACATGGGAAACATGGTGGACAGAGTATTGGCAAGCCAC

CTGGATTCCTGAGTGGGAGTTTGTTAATACCCCTCCCTTAGTGAAATTATGGTACC

AGTTAGAGAAAGAACCCATAGTAGGAGCAGAAACCTTCTATGTAGATGGGGCAG

CTAACAGGGAGACTAAATTAGGAAAAGCAGGATATGTTACTAATAGAGGAAGAC

AAAAAGTTGTCACCCTAACTGACACAACAAATCAGAAGACTGAGTTACAAGCAA

TTTATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTAACAGACTCACA

ATATGCATTAGGAATCATTCAAGCACAACCAGATCAAAGTGAATCAGAGTTAGTC

AATCAAATAATAGAGCAGTTAATAAAAAAGGAAAAGGTCTATCTGGCATGGGTA

CCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATTAGTCAGTGCT

GGAATCAGGAAAGTACTATTTTTAGATGGAATAGATAAGGCCCAAGATGAACAT

GAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTGCCACCTG

TAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGAGAAG

CCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACA

TTTAGAAGGAAAAGTTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAA

GCAGAAGTTATTCCAGCAGAAACAGGGCAGGAAACAGCATATTTTCTTTTAAAAT

TAGCAGGAAGATGGCCAGTAAAAACAATACATACTGACAATGGCAGCAATTTCA

CCGGTGCTACGGTTAGGGCCGCCTGTTGGTGGGCGGGAATCAAGCAGGAATTTGG

AATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGAATAAAGAATTA

AAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATCTTAAGACAGCAGTA

CAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTAC

AGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAA

TTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCA

GAAATCCACTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTGAAGGGGCAG

TAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAGA

TCATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGAC

AGGATGAGGATTAGAACATGGAAAAGTTTAGTAAAACACCATATGTATGTTTCAG

GGAAAGCTAGGGGATGGTTTTATAGACATCACTATGAAAGCCCTCATCCAAGAAT

AAGTTCAGAAGTACACATCCCACTAGGGGATGCTAGATTGGTAATAACAACATAT

TGGGGTCTGCATACAGGAGAAAGAGACTGGCATTTGGGTCAGGGAGTCTCCATA

GAATGGAGGAAAAAGAGATATAGCACACAAGTAGACCCTGAACTAGCAGACCAA

CTAATTCATCTGTATTACTTTGACTGTTTTTCAGACTCTGCTATAAGAAAGGCCTT

ATTAGGACACATAGTTAGCCCTAGGTGTGAATATCAAGCAGGACATAACAAGGT

AGGATCTCTACAATACTTGGCACTAGCAGCATTAATAACACCAAAAAAGATAAA

GCCACCTTTGCCTAGTGTTACGAAACTGACAGAGGATAGATGGAACAAGCCCCAG

AAGACCAAGGGCCACAGAGGGAGCCACACAATGAATGGACACTAGAGCTTTTAG

AGGAGCTTAAGAATGAAGCTGTTAGACATTTTCCTAGGATTTGGCTCCATGGCTT

AGGGCAACATATCTATGAAACTTATGGGGATACTTGGGCAGGAGTGGAAGCCAT

AATAAGAATTCTGCAACAACTGCTGTTTATCCATTTTCAGAATTGGGTGTCGACAT

AGCAGAATAGGCGTTACTCGACAGAGGAGAGCAAGAAATGGAGCCAGTAGATCC

TAGACTAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTAAAACTGCTTGTACCAAT

TGCTATTGTAAAAAGTGTTGCTTTCATTGCCAAGTTTGTTTCATAACAAAAGCCTT

AGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCTCATCAGAA

CAGTCAGACTCATCAAGCTTCTCTATCAAAGCAGTAAGTAGTACATGTAATGCAA

CCTATACCAATAGTAGCAATAGTAGCATTAGTAGTAGCAATAATAATAGCAATAG

TTGTGTGGTCCATAGTAATCATAGAATATAGGAAAATATTAAGACAAAGAAAAAT

AGACAGGTTAATTGATAGACTAATAGAAAGAGCAGAAGACAGTGGCAATGAGAG

TGAAGGAGAAATATCAGCACTTGTGGAGATGGGGGTGGAGATGGGGCACCATGC SEQ

ID Sequence

NO

TCCTTGGGATGTTGATGATCTGTAGTGCTACAGAAAAATTGTGGGTCACAGTCTA

TTATGGGGTACCTGTGTGGAAGGAAGCAACCACCACTCTATTTTGTGCATCAGAT

GCTAAAGCATATGATACAGAGGTACATAATGTTTGGGCCACACATGCCTGTGTAC

CCACAGACCCCAACCCACAAGAAGTAGTATTGGTAAATGTGACAGAAAATTTTAA

CATGTGGAAAAATGACATGGTAGAACAGATGCATGAGGATATAATCAGTTTATG

GGATCAAAGCCTAAAGCCATGTGTAAAATTAACCCCACTCTGTGTTAGTTTAAAG

TGCACTGATTTGAAGAATGATACTAATACCAATAGTAGTAGCGGGAGAATGATAA

TGGAGAAAGGAGAGATAAAAAACTGCTCTTTCAATATCAGCACAAGCATAAGAG

TAATGATACTACCAGCTATAAGTTGACAAGTTGTAACACCTCAGTCATTACACAG

GCCTGTCCAAAGGTATCCTTTGAGCCAATTCCCATACATTATTGTGCCCCGGCTGG

TTTTGCGATTCTAAAATGTAATAATAAGACGTTCAATGGAACAGGACCATGTACA

AATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTAGTATCAACTCAAC

TGCTGTTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGTCAATTT

CACGGACAATGCTAAAACCATAATAGTACAGCTGAACACATCTGTAGAAATTAAT

TGTACAAGACCCAACAACAATACAAGAAAAAGAATCCGTATCCAGAGAGGACCA

GGGAGAGCATTTGTTACAATAGGAAAAATAGGAAATATGAGACAAGCACATTGT

AACATTAGTAGAGCAAAATGGAATAACACTTTAAAACAGATAGCTAGCAAATTA

AGAGAACAATTTGGAAATAATAAAACAATAATCTTTAAGCAATCCTCAGGAGGG

GACCCAGAAATTGTAACGCACAGTTTTAATTGTGGAGGGGAATTTTTCTACTGTA

ATTCAACACAACTGTTTAATAGTACTTGGTTTAATAGTACTTGGAGTACTGAAGG

GTCAAATAACACTGAAGGAAGTGACACAATCACCCTCCCATGCAGAATAAAACA

AATTATAAACATGTGGCAGAAAGTAGGAAAAGCAATGTATGCCCCTCCCATCAGT

GGACAAATTAGATGTTCATCAAATATTACAGGGCTGCTATTAACAAGAGATGGTG

GTAATAGCAACAATGAGTCCGAGATCTTCAGACCTGGAGGAGGAGATATGAGGG

ACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAG

GAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCA

GTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGG

GCGCAGCCTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGT

GCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAA

CTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGAT

ACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTG

CACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATT

TGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGC

TTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAA

GAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAA

ATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTT

AAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCA

CCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAG

GAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGA

ACGGATCCTTGGCACTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGCTAC

CACCGCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGAACTTCTGGGAC

GCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAATCTCCTACAGTATTGGAGTCA

GGAACTAAAGAATAGTGCTGTTAGCTTGCTCAATGCCACAGCCATAGCAGTAGCT

GAGGGGACAGATAGGGTTATAGAAGTAGTACAAGGAGCTTGTAGAGCTATTCGC

CACATACCTAGAAGAATAAGACAGGGCTTGGAAAGGATTTTGCTATAAGATGGG

TGGCAAGTGGTCAAAAAGTAGTGTGATTGGATGGCCTACTGTAAGGGAAAGAAT

GAGACGAGCTGAGCCAGCAGCAGATAGGGTGGGAGCAGCATCTCGAGACCTGGA

AAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGCTTGTGCC

TGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTA

CCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAG

AAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTG

ATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACC SEQ

ID Sequence

NO

AGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCA

GTTGAGCCAGATAAGATAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTA

CACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGG

AGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGT

ACTTCAAGAACTGCTGACATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTT

TCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTG

CATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGA

GCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCT

TGCCTTGAGTGCTTC

Detection Agents

[0241] Detection agents may be utilized to detect nucleic acid sequence of interest. A detection agent may comprise a probe portion. The probe portion may include a probe, or a combination of probes. The probe portion may comprise a nucleic acid molecule, a

polypeptide, or a combination thereof. The detection agents may further comprise a detectable moiety. The detectable moiety may comprise a fluorophore. A fluorophore may be a molecule that may absorb light at a first wavelength and transmit or emit light at a second wavelength. The fluorophore may be a small molecule (such as a dye) or a fluorescent polypeptide. The detectable moiety may be a fluorescent small molecule (such as a dye). The detectable moiety may not contain a fluorescent polypeptide. The detection agent may further comprise a conjugating moiety. The conjugating moiety may allow attachment of the detection agent to a nucleic acid sequence of interest. The detection agent may comprise a probe that is synthesized with direct dye incorporation at the 3' end.

[0242] FIG. 25 shows a schematic of a detection agent 100 for use with a Nano-FISH procedure. The detection agent may comprise a probe portion 110, as described herein. The detection agent may comprise a detectable moiety 120, as described herein.

A. Probes

[0243] A detection agent may comprise a probe portion. A probe portion may comprise a probe or a combination of probes. A probe may be a nucleic acid probe, a polypeptide probe, or a combination thereof. A probe portion may be an unconjugated probe that does not contain a detectable moiety. A probe portion may be a conjugated probe which comprises a single probe with a detectable moiety, or two or more probes in which at least one probe may be an unconjugated probe bound to at least a second probe which comprises a detectable moiety.

[0244] A probe may be a nucleic acid probe. The nucleic acid probe may be a DNA probe, a RNA probe, or a combination thereof. The nucleic acid probe may be a DNA probe. The nucleic acid probe may be a RNA probe. The nucleic acid probe may be a double stranded nucleic acid probe, a single stranded nucleic acid probe, or may contain single- stranded and/or double stranded portions. The nucleic acid probe may further comprise overhangs on one or both termini, may further comprises blunt ends on one or both termini, or may further form a hairpin.

[0245] The nucleic acid probe may be at least 10, at least 15, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29, at least 30, at least 31, at least 32, at least 33, at least 34, at least 35, at least 36, at least 37, at least 38, at least 39, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 70, at least 80, at least 90, at least 100, or more nucleotides in length. The nucleic acid probe may be about 10, about 15, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 80, about 90, or about 100 nucleotides in length. The nucleic acid probe may be about 20 nucleotides in length. The nucleic acid probe may be about 21 nucleotides in length. The nucleic acid probe may be about 22 nucleotides in length. The nucleic acid probe may be about 23 nucleotides in length. The nucleic acid probe may be about 24 nucleotides in length. The nucleic acid probe may be about 25 nucleotides in length. The nucleic acid probe may be about 26 nucleotides in length. The nucleic acid probe may be about 27 nucleotides in length. The nucleic acid probe may be about 28 nucleotides in length. The nucleic acid probe may be about 29 nucleotides in length. The nucleic acid probe may be about 30 nucleotides in length. The nucleic acid probe may be about 31 nucleotides in length. The nucleic acid probe may be about 32 nucleotides in length. The nucleic acid probe may be about 33 nucleotides in length. The nucleic acid probe may be about 34 nucleotides in length. The nucleic acid probe may be about 35 nucleotides in length. The nucleic acid probe may be about 36 nucleotides in length. The nucleic acid probe may be about 37 nucleotides in length. The nucleic acid probe may be about 38 nucleotides in length. The nucleic acid probe may be about 39 nucleotides in length. The nucleic acid probe may be about 40 nucleotides in length. The nucleic acid probe may be about 45 nucleotides in length. The nucleic acid probe may be about 50 nucleotides in length. The nucleic acid probe may be about 55 nucleotides in length. The nucleic acid probe may be about 60 nucleotides in length.

[0246] TABLE 2 lists exemplary nucleotide sequences according to the present disclosure. TABLE 2 - Exemplary Probe Nucleotide Sequences

% GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 43 AGAGTAATCTTCAACAATCCTTGGTCTAAACACACACAAG 38

SEQ ID NO: 44 CCCAGGGACCCACGCCAAGCTCACCGCACCTTCCACCAAA 65

SEQ ID NO: 45 AGCTCCTGTACTAGCTGGTGGGGTGTGGAGCACACAGCCC 63

SEQ ID NO: 46 TCACACAGGGAAAGTGAGGCTTGGTGGTTGATTTGAGCAA 48

SEQ ID NO: 47 CCTTCCAACAGCCGTGTGAGACAAGAGGTCTTATCCTCTT 50

SEQ ID NO: 48 ACAAGGGTCACTGAGCACATGCCATGTGTTGGGCACAGTG 55

SEQ ID NO: 49 GTCTCCTAAGTCTCATTCTTTTCTTAGGATTCTTCAGATC 38

SEQ ID NO: 50 TCCGCCTAAGTAAAACATAAAATTACTTAAGCTGCGTAAA 33

SEQ ID NO: 51 CATTTTGACCTGATTATCTTTGTCTATAAGTCTTAAGCCA 33

SEQ ID NO: 52 CCGGTTCCTCCACCCTCACTGCCCCAACAACTGAAAGAAG 58

SEQ ID NO: 53 ACAGTGTGTTGAAAGAATCCATAACTCTTTCTTTCCAGCC 40

SEQ ID NO: 54 GAAGTTTCATCTTTATCAAAATCTCCATTCCCAGGCGGAC 43

SEQ ID NO: 55 AAGTCCATTTTTTTAAGCTTTGCGCTTCAGCTCCAGAACA 40

SEQ ID NO: 56 TCTTCGTTATGAATACAAATAGGAAAACAATCAGACCCAA 33

SEQ ID NO: 57 TCCTCGGGGCATTCTAGAACCGTAGCAGACCTGCTTACAT 53

SEQ ID NO: 58 TCCTTATGTGGGAAAATAAAGAGGATAGACAGATTTGATT 33

SEQ ID NO: 59 AGCTGCGAGTCCCTAACAGACTTCCAGGACAGCTGAAAAA 50

SEQ ID NO: 60 AGGACAAGGGAGAGACGCCCACCCGCCTCTGTCAGGGATA 63

SEQ ID NO: 61 AATCCATGAGGGTGACATACACATCCTTACTGTTCCCACA 45

SEQ ID NO: 62 ACTTCCTTCCCTGAGATGCCCATCCTTTGATTCTGGGATT 48

SEQ ID NO: 63 GCTCCCGGATAAATTAATTACCGTGACCCTGAGCTGCTTC 50

SEQ ID NO: 64 TAGACTAAGAGAATCTAATTTGTGGCAAAGATCTTGAGTG 35

SEQ ID NO: 65 TGAAGGATGACTAAGAGCTTCCCTATAAACCCCATACTGG 45

SEQ ID NO: 66 AGCCAGGACTATAGAGTTTCAGAAAAGGGAGAAAATTCTA 38

SEQ ID NO: 67 TGCTGCTAATTTAAGTTTCTGGCAAGTCAAAATAAATCTC 33

SEQ ID NO: 68 CGAAAACCATCAATTAACTAGAATGATCAGGAAATTGCGT 35

SEQ ID NO: 69 TTTATTTAGTCCCCAGGGTGTATGAAGTGCTCTTCCAGGC 48

SEQ ID NO: 70 GGTCCTTCTTGGTACCGATATTGCCATATTGGCTGGACAT 48

SEQ ID NO: 71 TGGCTTGGTAGGATGCACTCACATGGGCTGTAGTAATACT 48

SEQ ID NO: 72 TATCACCAGCATAACTTGTGGTTCTTCAGCCAGTAATTTC 40

SEQ ID NO: 73 GAACAACTGGGTATCTACAGGCAAAGAAATGAACCTTGAC 43

SEQ ID NO: 74 TAGGTACTGTTGTGTCCCTATATATTTGACTTGGTAATAA 33

SEQ ID NO: 75 TATGTGAACATCGGTGAATATCATAATTTATTATGCAAAC 28

SEQ ID NO: 76 AGCTGAACACTCTTTGTGGTCCTCTTGAAGCCTAGAATTA 43

SEQ ID NO: 77 CCCCACCTCACTGCCCCCCAGTTCTGACTCACGGTGTCCC 68

SEQ ID NO: 78 ACTCCCATCACCTGGCCAGCTTGGCTGTCCCCTGACCCAC 65

SEQ ID NO: 79 GGCTGCCCAGCTGCCCAGCAGCAAAACTGCATAGGAACTC 60

SEQ ID NO: 80 GCCCAGGACGCCAAGTGTCACCACCCTCTCCCCAGGCAGG 70

SEQ ID NO: 81 CACAAGGTCAGCTCCACCCGTGGGTCAGTGTGCCCCAGAT 63

SEQ ID NO: 82 GGAGACAAAACGGGCACCCAGCCCAGTCATGCCCGTGCCT 65

SEQ ID NO: 83 CTGAAATCAGTCAGCAGTTTCGGTGAGTCTGCAGCTGACA 50

SEQ ID NO: 84 CGCCACATTTGGGGCTGGGAGAGATGTCACAGGGGCTGAC 63

SEQ ID NO: 85 CACATGTTCTCTGCATAGGTTTTTAAGCAGCCAGCAGCTG 48

SEQ ID NO: 86 TTTAAAATGAAAACCCACACTTCCAAAATAGCACTTGAGT 33 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 87 AACATGTTTGTGTAATTAAGCATTTTAAAATCATAACCAT 23

SEQ ID NO 88 TGCTTATCTGTGCTTTTTATGTTCCACCCCCCCACCACCA 50

SEQ ID NO 89 ATTAATAATAATTCTGTGTTTATGGGGATTGCAGATACAT 28

SEQ ID NO 90 CCAGCTTTGTGTCTTCATGACCCAACTGGAGTAAGAATGG 48

SEQ ID NO 91 AAAGACCTCATTTGCAGCATGGTTAGCAGTGTCAAACATT 40

SEQ ID NO 92 TCTCGTAGCACTGGCTGCAGCCGGCCTGTGTGTGCCCACC 68

SEQ ID NO 93 GCCTTCATCCTGAACGGCTGACCAGCGGAAACAAAAGATC 53

SEQ ID NO 94 ATGGCCAGATAACAGTGTTTAGACATGTCTTTGATGTTTT 35

SEQ ID NO 95 CCCTGACTGTGTAAGGGGTCTCTCTCCATGGGGAATAGAG 55

SEQ ID NO 96 CTGAGCTTAGCTTCTACTGTGCTGTTAATTTCAGGCAAGA 43

SEQ ID NO 97 AGATCAATAATATTTGCATTAGCTACTTACATCAGTCTCT 30

SEQ ID NO 98 TAATTGCAGAAAACTTATAAAGCATGGAAGAATACAAAAC 28

SEQ ID NO 99 AAACAAATTCCTCTACCTGGACATGACTGTTGTTAGCATT 38

SEQ ID NO 100 GGGAGATTCTTCATATCCTTTTAATGTAGATATGCACATT 33

SEQ ID NO 101 ACAAAAAAGGCTATCATATTGTACATATAACTTTGCTGTA 28

SEQ ID NO 102 TCTGCTAGGAACCTGTACCCATGTCATTACTGTAAGCATT 43

SEQ ID NO 103 ACTACTCAAATTTTAGTATCTGCAGATATCAGATATCCTT 30

SEQ ID NO 104 TGAAATGGTATTGTTGCCCTTTCTGATTAGTAAAGTATAC 33

SEQ ID NO 105 TTATAATCTAGCAAGGTTAGAGATCATGGATCACTTTCAG 35

SEQ ID NO 106 ACAGCTTGCCTCCGATAAGCCAGAATTCCAGAGCTTCTGG 53

SEQ ID NO 107 TCAATCAACCTGATAGCTTAGGGGATAAACTAATTTGAAG 35

SEQ ID NO 108 GATCATGAAGGATGAAAGAATTTCACCAATATTATAATAA 25

SEQ ID NO 109 TTTAGCCATCTGTATCAATGAGCAGATATAAGCTTTACAC 35

SEQ ID NO 110 AGGGGTAGATTATTTATGCTGCCCATTTTTAGACCATAAA 35

SEQ ID NO 111 CACTACCATTTCACAATTCGCACTTTCTTTCTTTGTCCTT 38

SEQ ID NO 112 GCTCCATCAAATCATAAAGGACCCACTTCAAATGCCATCA 43

SEQ ID NO 113 TCCTACTTTCAGGAACTTCTTTCTCCAAACGTCTTCTGCC 45

SEQ ID NO 114 AATTCTATTTTTTCTTCAACGTACTTTAGGCTTGTAATGT 28

SEQ ID NO 115 TAAGATGCAAATAGTAAGCCTGAGCCCTTCTGTCTAACTT 40

SEQ ID NO 116 CTGTGTTTCAGAATAAAATACCAACTCTACTACTCTCATC 35

SEQ ID NO 117 GAAACCATGTTTATCTCAGGTTTACAAATCTCCACTTGTC 38

SEQ ID NO 118 CTTTGGAAAAGTAATCAGGTTTAGAGGAGCTCATGAGAGC 43

SEQ ID NO 119 GCTGAATCCCCAACTCCCAATTGGCTCCATTTGTGGGGGA 55

SEQ ID NO 120 GGTGTTATGAACTTAACGCTTGTGTCTCCAGAAAATTCAC 40

SEQ ID NO 121 AGTTAATGCACGTTAATAAGCAAGAGTTTAGTTTAATGTG 30

SEQ ID NO 122 TAATTGAGAAGGCAGATTCACTGGAGTTCTTATATAATTG 33

SEQ ID NO 123 CACGGTCAGATGAAAATATAGTGTGAAGAATTTGTATAAC 33

SEQ ID NO 124 CACAAGTCAGCATCAGCGTGTCATGTCTCAGCAGCAGAAC 53

SEQ ID NO 125 GGAGGTGGGGACTTAGGTGAAGGAAATGAGCCAGCAGAAG 55

SEQ ID NO 126 GTCACAGCATTTCAAGGAGGAGACCTCATTGTAAGCTTCT 45

SEQ ID NO 127 AAAGAGGTGAAATTAATCCCATACCCTTAAGTCTACAGAC 38

SEQ ID NO 128 CTTTACTAAGGAACTTTTCATTTTAAGTGTTGACGCATGC 35

SEQ ID NO 129 CAGGTTTTTCTTTCCACGGTAACTACAATGAAGTGATCCT 40

SEQ ID NO 130 GCTCTACAGGGAGGTTGAGGTGTTAGAGATCAGAGCAGGA 53 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 131 TACTATTTCCAACGGCATCTGGCTTTTCTCAGCCCTTGTG 48

SEQ ID NO 132 AAGGTTTAGGCAGGGATAGCCATTCTATTTTATTAGGGGC 43

SEQ ID NO 133 AGGGGCTCAACGAAGAAAAAGTGTTCCAAGCTTTAGGAAG 45

SEQ ID NO 134 GGGCTGAACCCCCTTCCCTGGATTGCAGCACAGCAGCGAG 65

SEQ ID NO 135 CTGACGTCATAATCTACCAAGGTCATGGATCGAGTTCAGA 45

SEQ ID NO 136 GAAGGTAGAGCTCTCCTCCAATAAGCCAGATTTCCAGAGT 48

SEQ ID NO 137 CACCAATATTATTATAATTCCTATCAACCTGATAGGTTAG 30

SEQ ID NO 138 AGATATAAGCCTTACACAGGATTATGAAGTCTGAAAGGAT 35

SEQ ID NO 139 ACATGTATCTTTCTGGTCTTTTAGCCGCCTAACACTTTGA 40

SEQ ID NO 140 CAAAGAACAAGTGCAATATGTGCAGCTTTGTTGCGCAGGT 45

SEQ ID NO 141 TATTATTATGTGAGTAACTGGAAGATACTGATAAGTTGAC 30

SEQ ID NO 142 TAAAAATCTTTCTCACCCATCCTTAGATTGAGAGAAGTCA 35

SEQ ID NO 143 TTGGGTTCACCTCAGTCTCTATAATCTGTACCAGCATACC 45

SEQ ID NO 144 CACACCCATCTCACAGATCCCCTATCTTAAAGAGACCCTA 48

SEQ ID NO 145 ATGGAACCCAACCAGACTCTCAGATATGGCCAAAGATCTA 45

SEQ ID NO 146 GACACCAGTCTCTGACACATTCTTAAAGGTCAGGCTCTAC 48

SEQ ID NO 147 AGAGATTCAAAAGATTCACTTGTTTAGGCCTTAGCGGGCT 43

SEQ ID NO 148 TCCTTAGTCTGAGGAGGAGCAATTAAGATTCACTTGTTTA 38

SEQ ID NO 149 TAAATGGGGAAGTTGTTTGAAAACAGGAGGGATCCTAGAT 40

SEQ ID NO 150 GGGTTTATACATGACTTTTAGAACACTGCCTTGGTTTTTG 38

SEQ ID NO 151 AACTCTTAAAAGATATTGCCTCAAAAGCATAAGAGGAAAT 30

SEQ ID NO 152 AAATCGAGGAATAAGACAGTTATGGATAAGGAGAAATCAA 33

SEQ ID NO 153 TCAGTTAGGATTTAATCAATGTCAGAAGCAATGATATAGG 33

SEQ ID NO 154 CTTGAAAACACTTGAAATTGCTTGTGTAAAGAAACAGTTT 30

SEQ ID NO 155 ATAATCTTCAGAGGAAAGTTTTATTCTCTGACTTATTTAA 25

SEQ ID NO 156 AGATTCCTTCTGTCATTTTGCCTCTGTTCGAATACTTTCT 38

SEQ ID NO 157 ATTTCAGCTTCTAAACTTTATTTGGCAATGCCTTCCCATG 38

SEQ ID NO 158 GCAGGAGTTTGTTTTCTTCTGCTTCAGAGCTTTGAATTTA 38

SEQ ID NO 159 ACATATCAACGGCACTGGTTCTTTATCTAACTCTCTGGCA 43

SEQ ID NO 160 TTATGCTTCCCTGAAACAATACCACCTGCTATTCTCCACT 43

SEQ ID NO 161 TTCTCACTCCCTACCACTGAGGACAAGTTTATGTCCTTAG 45

SEQ ID NO 162 TTAGAGATTATGTCATTACCAGAGTTAAAATTCTATAATG 25

SEQ ID NO 163 GGTCATTCTTAGAATAGTAATCCAGCCAATAGTACAGGTT 38

SEQ ID NO 164 CAGGCAATAAGGGCTTTTTAAGCAAAACAGTTGTGATAAA 35

SEQ ID NO 165 ATGATGGGCACTGAAGGTTAAAACTTGAGTCTGTCAACTT 40

SEQ ID NO 166 AACTCATAAATATCCCATTTTCCGCTGAAATATAGCTTTA 30

SEQ ID NO 167 CCTGGTTTCTTTGACCTTTTGGGACCTTGAGTAAGTAAAG 43

SEQ ID NO 168 CTTCATTTATTTTCATGATTAAAATTCTAAGAAATTCTTG 20

SEQ ID NO 169 TTTTTAATTAAATTGCATTGCCTAATGTATTTATGAACTA 20

SEQ ID NO 170 CATAGAAATAAAACAATACTCTGAAGTAGTTCAGAATGTG 30

SEQ ID NO 171 CAATTTATATAAAGAGTTAATTCAAATGAGACTATTTTAA 18

SEQ ID NO 172 AGGGCTTTGAATCTTATGTCTAGAAATTTTGAAAAACCTC 33

SEQ ID NO 173 TATATGCTAAGATTCCACCTCTAGTGCTAGAACTGAGAAG 40

SEQ ID NO 174 TGACTTGGTGATCTTTTTTAAATTCTGAAACAACAGCAAC 33 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 175 AGCTAAGGACTTTTTCTTGCCTATGCATGCTATCTTCAGT 40

SEQ ID NO 176 TGATTATTTAGTATTGAAACTATAACATAGTATGTTTCCT 23

SEQ ID NO 177 AAAAAATGTGTATTTCTCTGGAGAAGGTTAAAACTGAGGA 33

SEQ ID NO 178 CAAGTGAGCAAGGCTTAAATGGAAGAAGCAATGATCTCGT 43

SEQ ID NO 179 CCACCTTCATTAACGAGATCATCCATCATGAGGAAATATG 40

SEQ ID NO 180 ACCAGGCCCCCTCTGTTTTGTGTCACTAAGGGTGAGGATG 55

SEQ ID NO 181 ATGATTTTTCCCTCCCCCGGGCTTCTTTTAGCCATCAATA 45

SEQ ID NO 182 TAGCCCCACAGGAGTTTGTTCTGAAAGTAAACTTCCACAA 43

SEQ ID NO 183 AAGCTTATTGAGGCTAAGGCATCTGTGAAGGAAAGAAACA 40

SEQ ID NO 184 CTCTAAACCACTATGCTGCTAGAGCCTCTTTTCTGTACTC 45

SEQ ID NO 185 CTCATTCAGACACTAGTGTCACCAGTCTCCTCATATACCT 45

SEQ ID NO 186 TATTTTCTTCTTCTTGCTGGTTTAGTCATGTTTTCTGGGA 35

SEQ ID NO 187 GGCAAACCCATTATTTTTTTCTTTAGACTTGGGATGGTGA 38

SEQ ID NO 188 TGGGCAGCGTCAGAAACTGTGTGTGGATATAGATAAGAGC 48

SEQ ID NO 189 GACTATGCTGAGCTGTGATGAGGGAGGGGCCTAGCTAAAG 55

SEQ ID NO 190 TGAGAGTCAGAATGCTCCTGCTATTGCCTTCTCAGTCCCC 53

SEQ ID NO 191 TTGGTTTCTACACAAGTAGATACATAGAAAAGGCTATAGG 35

SEQ ID NO 192 TGTTTGAGAGTCCTGCATGATTAGTTGCTCAGAAATGCCC 45

SEQ ID NO 193 TTACAAATATGTGATTATCATCAAAACGTGAGGGCTAAAG 33

SEQ ID NO 194 CAGATAACTTGCAAGTCCTAGGATACCAGGAAAATAAATT 35

SEQ ID NO 195 AGCATTATGTCTGTCTGTCATTGTTTTTCATCCTCTTGTA 35

SEQ ID NO 196 TTCACAGTTACCCACACAGGTGAACCCTTTTAGCTCTCCT 48

SEQ ID NO 197 GAATGTTTCTTTCCTCTCAGGATCAGAGTTGCCTACATCT 43

SEQ ID NO 198 AATGCACCAAGACTGGCCTGAGATGTATCCTTAAGATGAG 45

SEQ ID NO 199 TCCCAGTAGCACCCCAAGTCAGATCTGACCCCGTATGTGA 55

SEQ ID NO 200 GTGTCCTCTAACAGCACAGGCCTTTTGCCACCTAGCTGTC 55

SEQ ID NO 201 GGCAAACAAGGTTTGTTTTCTTTTCCTGTTTTCATGCCTT 38

SEQ ID NO 202 TTCCATATCCTTGTTTCATATTAATACATGTGTATAGATC 28

SEQ ID NO 203 AAATCTATACACATGTATTAATAAAGCCTGATTCTGCCGC 35

SEQ ID NO 204 AGGTATAGAGGCCACCTGCAAGATAAATATTTGATTCACA 38

SEQ ID NO 205 CTAATCATTCTATGGCAATTGATAACAACAAATATATATA 23

SEQ ID NO 206 ATAATATATTCTAGAATATGTCACATTCTGTCTCAGGCAT 30

SEQ ID NO 207 TTTCTTTATGATGCCGTTTGAGGTGGAGTTTTAGTCAGGT 40

SEQ ID NO 208 AGCTTCTCCTTTTTTTTGCCATCTGCCCTGTAAGCATCCT 45

SEQ ID NO 209 GGGACCCAGATAGGAGTCATCACTCTAGGCTGAGAACATC 53

SEQ ID NO 210 CACACACCCTAAGCCTCAGCATGACTCATCATGACTCAGC 53

SEQ ID NO 211 CTGTGCTTGAGCCAGAAGGTTTGCTTAGAAGGTTACACAG 48

SEQ ID NO 212 AACTGCTCATGCTTGGACTATGGGAGGTCACTAATGGAGA 48

SEQ ID NO 213 CAGAAATGTAACAGGAACTAAGGAAAAACTGAAGCTTATT 33

SEQ ID NO 214 CAGAGATGAGGATGCTGGAAGGGATAGAGGGAGCTGAGCT 55

SEQ ID NO 215 AAAAGTATAGTAATCATTCAGCAAATGGTTTTGAAGCACC 33

SEQ ID NO 216 GTATCTTATTCCCCACAAGAGTCCAAGTAAAAAATAACAG 35

SEQ ID NO 217 GAAAAGAATGTTTCTCTCACTGTGGATTATTTTAGAGAGT 33

SEQ ID NO 218 AATGGTCAAGATTTTTTTAAAAATTAAGAAAACATAAGTT 18 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 219 CTTGAGAAATGAAAATTTATTTTTTTGTTGGAGGATACCC 30

SEQ ID NO: 220 TCTATCTCCCATCAGGGCAAGCTGTAAGGAACTGGCTAAG 50

SEQ ID NO: 221 AGTGAGACAGAGTGACTTAGTCTTAGAGGCCCCACTGGTA 50

SEQ ID NO: 222 GATGAGAAGGCACCTTCATCACTCATCACAGTCAGCTCTG 50

SEQ ID NO: 223 TCTCCTCTCTCCTTTCTCATCAGAAATTTCATAAGTCTAC 38

SEQ ID NO: 224 GTCAGGCAGATCACATAAGAAAAGAGGATGCCAGTTAAGG 45

SEQ ID NO: 225 GTTGCTGTTAGACAATTTCATCTGTGCCCTGCTTAGGAGC 48

SEQ ID NO: 226 TCTTTAATGAAAGCTAAGCTTTCATTAAAAAAAGTCTAAC 25

SEQ ID NO: 227 TGCATTCGACTTTGACTGCAGCAGCTGGTTAGAAGGTTCT 48

SEQ ID NO: 228 GAGGAGGGTCCCAGCCCATTGCTAAATTAACATCAGGCTC 53

SEQ ID NO: 229 ACTGGCAGTATATCTCTAACAGTGGTTGATGCTATCTTCT 40

SEQ ID NO: 230 CTTGCCTGCTACATTGAGACCACTGACCCATACATAGGAA 48

SEQ ID NO: 231 ATAGCTCTGTCCTGAACTGTTAGGCCACTGGTCCAGAGAG 53

SEQ ID NO: 232 CATCTCCTTTGATCCTCATAATAACCCTATGAGATAGACA 38

SEQ ID NO: 233 TATTACTCTTACTTTATAGATGATGATCCTGAAAACATAG 28

SEQ ID NO: 234 CAAGGCACTTGCCCCTAGCTGGGGGTATAGGGGAGCAGTC 63

SEQ ID NO: 235 GTAGTAGTAGAATGAAAAATGCTGCTATGCTGTGCCTCCC 45

SEQ ID NO: 236 CTTTCCCATGTCTGCCCTCTACTCATGGTCTATCTCTCCT 50

SEQ ID NO: 237 CCTGGGAGTCATGGACTCCACCCAGCACCACCAACCTGAC 63

SEQ ID NO: 238 CCACCTATCTGAGCCTGCCAGCCTATAACCCATCTGGGCC 60

SEQ ID NO: 239 TAGCTGGTGGCCAGCCCTGACCCCACCCCACCCTCCCTGG 73

SEQ ID NO: 240 TCTGATAGACACATCTGGCACACCAGCTCGCAAAGTCACC 53

SEQ ID NO: 241 GGGTCTTGTGTTTGCTGAGTCAAAATTCCTTGAAATCCAA 40

SEQ ID NO: 242 TTAGAGACTCCTGCTCCCAAATTTACAGTCATAGACTTCT 40

SEQ ID NO: 243 GGCTGTCTCCTTTATCCACAGAATGATTCCTTTGCTTCAT 43

SEQ ID NO: 244 CCATCCATCTGATCCTCCTCATCAGTGCAGCACAGGGCCC 60

SEQ ID NO: 245 GCAGTAGCTGCAGAGTCTCACATAGGTCTGGCACTGCCTC 58

SEQ ID NO: 246 ATGTCCGACCTTAGGCAAATGCTTGACTCTTCTGAGCTCA 48

SEQ ID NO: 247 TGTCATGGCAAAATAAAGATAATAATAGTGTTTTTTTATG 23

SEQ ID NO: 248 TAGCGTGAGGATGGAAAACAATAGCAAAATTGATTAGACT 35

SEQ ID NO: 249 AAGGTCTCAACAAATAGTAGTAGATTTTATCGTCCATTAA 30

SEQ ID NO: 250 TCCCTCTCCTCTCTTACTCATCCCATCACGTATGCCTCTT 50

SEQ ID NO: 251 TTCCCTTACCTATAATAAGAGTTATTCCTCTTATTATATT 25

SEQ ID NO: 252 TTATAGTGATTCTGGATATTAAAGTGGGAATGAGGGGCAG 40

SEQ ID NO: 253 CTAACGAAGAAGATGTTTCTCAAAGAAGCCATTCTCCCCA 43

SEQ ID NO: 254 GATCATCTCAGCAGGGTTCAGGAAGATAAAGGAGGATCAA 45

SEQ ID NO: 255 TGTTGAGGTGGGAGGACCGCTTGAGCCTGGGAAGTGCAAG 60

SEQ ID NO: 256 AGTGAGCCGAGATTTTGCCACTACACTCCCATTTGGGTGA 50

SEQ ID NO: 257 GTGAGACCCTTTCTCAAAAACAAACTAATTAAAAAACCCT 33

SEQ ID NO: 258 TTTACAGATGAAGAAACTGAGTCATACAACTACTAAGAGA 33

SEQ ID NO: 259 GAGTCACTAATCACTCAGGTGGTCTGGCTCCAGCATCTGT 53

SEQ ID NO: 260 TTAATCTCTGCTCTATACTGCCCAAGACTTTTATAAAGTC 35

SEQ ID NO: 261 GTTGAGTCACTGAAATGAGTTATTGGGATGGCTGTGTGGG 48

SEQ ID NO: 262 GTGCTAAGTTCTTTCCTAAAGGTATGTGAGAATACAAAGG 38 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 263 AAGCATCCTCCTTTTTACACACGTGAACTAGTGCATGCAA 43

SEQ ID NO: 264 GACACTCAGTGGGCCTGGGTGAAGGTGAGAATTTTATTGC 50

SEQ ID NO: 265 TGAGAGCCTCTGGGGACATCTTGCCAGTCAATGAGTCTCA 53

SEQ ID NO: 266 CAATTTCCTTCTCAGTCTTGGAGTAACAGAAGCTCATGCA 43

SEQ ID NO: 267 ATAAACGGAAATTTTGTATTGAAATGAGAGCCATTGGAAA 30

SEQ ID NO: 268 TTACTCCAGACTCCTACTTATAAAAAGAGAAACTGAGGCT 38

SEQ ID NO: 269 GAAGGGTGGGGACTTTCTCAGTATGACATGGAAATGATCA 45

SEQ ID NO: 270 TGGATTCAAAGCTCCTGACTTTCTGTCTAGTGTATGTGCA 43

SEQ ID NO: 271 GCCCCTTTTCCTCTAACTGAAAGAAGGAAAAAAAAATGGA 38

SEQ ID NO: 272 AAAATATTCTACATAGTTTCCATGTCACAGCCAGGGCTGG 43

SEQ ID NO: 273 TCTCCTGTTATTTCTTTTAAAATAAATATATCATTTAAAT 15

SEQ ID NO: 274 AAATAAGCAAACCCTGCTCGGGAATGGGAGGGAGAGTCTC 53

SEQ ID NO: 275 GTCCACCCCTTCTCGGCCCTGGCTCTGCAGATAGTGCTAT 60

SEQ ID NO: 276 GCCCTGACAGAGCCCTGCCCATTGCTGGGCCTTGGAGTGA 65

SEQ ID NO: 277 GCCTAGTAGAGAGGCAGGGCAAGCCATCTCATAGCTGCTG 58

SEQ ID NO: 278 GGAGAGAGAAAAGGGCTCATTGTCTATAAACTCAGGTCAT 43

SEQ ID NO: 279 ATTCTTATTCTCACACTAAGAAAAAGAATGAGATGTCTAC 30

SEQ ID NO: 280 ACCCTGCGTCCCCTCTTGTGTACTGGGGTCCCCAAGAGCT 63

SEQ ID NO: 281 AAAAGTGATGGCAAAGTCATTGCGCTAGATGCCATCCCAT 45

SEQ ID NO: 282 TATAAACCTGCATTTGTCTCCACACACCAGTCATGGACAA 43

SEQ ID NO: 283 CCTCCTCCCAGGTCCACGTGCTTGTCTTTGTATAATACTC 50

SEQ ID NO: 284 AATTTCGGAAAATGTATTCTTTCAATCTTGTTCTGTTATT 25

SEQ ID NO: 285 TTTCAATGGCTTAGTAGAAAAAGTACATACTTGTTTTCCC 33

SEQ ID NO: 286 ATTGACAATAGACAATTTCACATCAATGTCTATATGGGTC 33

SEQ ID NO: 287 TGTTTGCTGTGTTTGCAAAAACTCACAATAACTTTATATT 28

SEQ ID NO: 288 CTACTCTAAGAAAGTTACAACATGGTGAATACAAGAGAAA 33

SEQ ID NO: 289 TTACAAGTCCAGAAAATAAAAGTTATCATCTTGAGGCCTC 35

SEQ ID NO: 290 TTCTAGGAATAATATCAATATTACAAAATTAATCTAACAA 18

SEQ ID NO: 291 GAACAGCAATGAGATAATGTGTACAAAGTACCCAGACCTA 40

SEQ ID NO: 292 GTAGAGCATCAAGGAAGCGCATTGCGGAGCAGTTTTTTGT 48

SEQ ID NO: 293 TTGTTTTTGTATTCTGTTTCGTGAGGCAAGGTTTCACTCT 38

SEQ ID NO: 294 TCCAGGCTGGAGTGCAGTGGCAAGATCATGTCTCACTGCA 55

SEQ ID NO: 295 TGACCTCCTGAGCTCAAGGGATCCTCCCATTTCGGCCTCC 60

SEQ ID NO: 296 TAGCTGGGACTACAGGTGTACATCACATGCCTGGCTAATT 48

SEQ ID NO: 297 TTTTTTTTTTAAGTAGAGACGAGGTCTTGCTATGTTGTCC 35

SEQ ID NO: 298 TAATATCAAACTCTTGAGCTCAAGCAGTCCTCCCACTTCT 43

SEQ ID NO: 299 TGGAGGTATCCAGTATGAAATTTAGATAATACCTGCCTTC 38

SEQ ID NO: 300 GTTGAAATTAGAACTTAATGATATAATGCATCAATGAACT 25

SEQ ID NO: 301 ATAGTTCCTAGCACAAAGTAAGAATCCTTTCAATGTGTGT 35

SEQ ID NO: 302 GTGTATGTATTTATCTGTTATTAATAGGAATCTTATGGGC 30

SEQ ID NO: 303 TCTCACTTAATCCTTATTAATAACTATGAAGCAGGTATTT 28

SEQ ID NO: 304 GAGTTTTCCAAGTGAGTTAAGTATAGCTTGTAATACTTAA 30

SEQ ID NO: 305 ATATCCACAGGTTACATAGCTAGTATATAACTGAGAAATA 30

SEQ ID NO: 306 TATTTATATTATAAAACATTCTAACAATACAGATGTATAT 15 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 307 TAAAAAACTGAAAGGGCTCATGCAACCCTACCTTCTCAAT 40

SEQ ID NO: 308 CTTCTTCACTTAGAAAAAACCAGCCTTAGCTGTCTGCTAT 40

SEQ ID NO: 309 CCTTTCAAAATATACTTCTGAGAAATGAGAGAGAGAAATG 33

SEQ ID NO: 310 GGGTAGAAGGAAGGAAGATAGGGTAAGAGACAGGGAAGGA 50

SEQ ID NO: 311 TGGGGAAAGAAATTAAATTATTCTTTTCTCTGTCTCTTGA 30

SEQ ID NO: 312 GCTCTTTCCATTACATTGAATCAAAGGTAATGTTGCCATT 35

SEQ ID NO: 313 GACTCTTGAAATAAAGAAAGACCGATGTATGAAATAATTT 28

SEQ ID NO: 314 AGTCTATGGCATTTTCAAAATGCAAGGTGATGTCTTACTA 35

SEQ ID NO: 315 GCCTTTGCTTTATTATTAGAAATGGGGAAGTGAGTATAGA 35

SEQ ID NO: 316 TTATCAGGAGATATATTAGGAAAAAGGGAAACTGGAGAAA 33

SEQ ID NO: 317 GAGGAGTATCCAGATGTCCTGTCCCTGTAAGGTGGGGGCA 58

SEQ ID NO: 318 CCTTCAATCAAAAGGGCTCCTTAACAACTTCCTTGCTTGG 45

SEQ ID NO: 319 CCACCATCTTGGACCATTAGCTCCACAGGTATCTTCTTCC 50

SEQ ID NO: 320 AGTGGTCATAACAGCAGCTTCAGCTACCTCTCTAAAGAGT 45

SEQ ID NO: 321 CCAGATATAGGTCAGGAAATATAATCCACTAATAAAAAGA 30

SEQ ID NO: 322 CATTTTGACTGTAGTTGTTTGTTTTTTGTCATTGTGACTA 30

SEQ ID NO: 323 TAACATTCTCACTCTTTCATCAGTAATCACTCAGGTTATT 33

SEQ ID NO: 324 GACCAACAGACTGTGGGAAAAATCAGAGAAGGAGGCATCC 50

SEQ ID NO: 325 GCTTACTAGCCTAAACTGAAATTGCTATAGCAGAGTGAAC 40

SEQ ID NO: 326 AGGTTTACAGATATTTTCCACAAAGAGTAAAAGGATTGAA 30

SEQ ID NO: 327 TCTCCAGATCAATGCATAGGAAATAATAATGGACCATAAA 33

SEQ ID NO: 328 ATATTATGACGAACAACATTAGGATAAGTCCATATCAATT 28

SEQ ID NO: 329 ATCCAGTCATAAGCACAGACTACGTGAAGCACGTCCAAGT 48

SEQ ID NO: 330 GCAGGAGAAATGAGAGGAGCAAGAAAGAGGAGCCATTTGA 48

SEQ ID NO: 331 GAATAGCAGAAAAAGGAAAGGCAAGTCATATTAACAAATG 33

SEQ ID NO: 332 TCATGCCAACAGTACAGATAACTCTGCTAATAAAGGTAGA 38

SEQ ID NO: 333 TAATACAGGTAGTAGCAGATATCTACATAGTAGTTAAAGG 33

SEQ ID NO: 334 GGCCATCAGTACAGAAGATTCCATAAAGGAGAACCTAAAG 43

SEQ ID NO: 335 AGAATAATTTGTCAGAAGCTTAAAAGCTGAACTCTGAGGC 38

SEQ ID NO: 336 AACTACAATATCCTTTTGACTGTGGAAAGGGTGGTGAAAG 40

SEQ ID NO: 337 GTTCAAGGACATTTGAGCCAACATAGAGAGGAACATTGGC 45

SEQ ID NO: 338 TGAGGGATATCTGTCCTGATGTTGTCCAGGATGGTGATGA 48

SEQ ID NO: 339 CATATAAATAACGTAGAGAAAACAGGAGGGGATAGAGATC 38

SEQ ID NO: 340 CAAAGAGGCATCAAAGATAGGGATGTTTGTAAGGATGAAA 38

SEQ ID NO: 341 CTGTTCTTCTCTGAGTAGCCAAGCTCAGCTTGGTTCAAGC 50

SEQ ID NO: 342 CATACTGTGGATCTGTAGCAAATTCCCCCTGAAAACCCAG 48

SEQ ID NO: 343 TCTGACCCTCACATTCAAGTTCTGAGGAAGGGCCACTGCC 55

SEQ ID NO: 344 GCCTTGAGATACCTGGTCCTTATTCCTTGGACTTTGGCAA 48

SEQ ID NO: 345 ATAGGGCTTGTTTTAGGGAGAAACCTGTTCTCCAAACTCT 43

SEQ ID NO: 346 CTGGTGTCCATACTCTGAATGGGAAGAATGATGGGATTAC 45

SEQ ID NO: 347 AGCAGGAGAGGATCAACCCCATACTCTGAATCTAAGAGAA 45

SEQ ID NO: 348 TCAGATCCCTGGATGCAAGCCAGGTCTGGAACCATAGGCA 55

SEQ ID NO: 349 CTCCTCCCTACCACCTTTAGCCATAAGGAAACATGGAATG 48

SEQ ID NO: 350 GACACAAACCTGGGCCTTTCAATGCTATAACCTTTCTTGA 43 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 351 CTACCTGACTTCTGAGTCAGGATTTATAAGCCTTGTTACT 40

SEQ ID NO: 352 TGAACCAACAAGCATCGAAGCAATAATGAGACTGCCCGCA 48

SEQ ID NO: 353 GAAAAGCAATAATCCATTTTTCATGGTATCTCATATGATA 28

SEQ ID NO: 354 TAACACTTATCTCTCTGAACTTTGGGCTTTTAATATAGGA 33

SEQ ID NO: 355 TTTTCTGACTGTCTAATCTTTCTGATCTATCCTGGATGGC 40

SEQ ID NO: 356 ATCTTCATCGAATTTGGGTGTTTCTTTCTAAAAGTCCTTT 33

SEQ ID NO: 357 GAAATTACAAATGCTAAAGCAAACCCAAACAGGCAGGAAT 38

SEQ ID NO: 358 ATTAGGCATCTTACAGTTTTTAGAATCCTGCATAGAACTT 33

SEQ ID NO: 359 TACAATATTTGACTCTTCAGGTTAAACATATGTCATAAAT 25

SEQ ID NO: 360 AACATTCAGTGAAGTGAAGGGCCTACTTTACTTAACAAGA 38

SEQ ID NO: 361 TCTTTTCCTATCAGTGGTTTACAAGCCTTGTTTATATTTT 30

SEQ ID NO: 362 TATTTTTGTTCTGAGAATATAGATTTAGATACATAATGGA 23

SEQ ID NO: 363 CAAAATCTAACACAAAATCTAGTAGAATCATTTGCTTACA 28

SEQ ID NO: 364 AGAATTTATGACTTGTGATATCCAAGTCATTCCTGGATAA 33

SEQ ID NO: 365 TTACACTAGAAAATAGCCACAGGCTTCCTGCAAGGCAGCC 50

SEQ ID NO: 366 AGTTTGAACACTTGTTATGGTCTATTCTCTCATTCTTTAC 33

SEQ ID NO: 367 ACTTCGTGAGAGATGAGGCAGAGGTACACTACGAAAGCAA 48

SEQ ID NO: 368 TCTTGAGAATGAGCCTCAGCCCTGGCTCAAACTCACCTGC 55

SEQ ID NO: 369 AATAGGATGTCTGTGCTCCAAGTTGCCAGAGAGAGAGATT 45

SEQ ID NO: 370 ATTAAAGATCCCTCCTGCTTAATTAACATTCACAAGTAAC 33

SEQ ID NO: 371 ACTTAAAGTAGCGATACCCTTTCACCCTGTCCTAATCACA 43

SEQ ID NO: 372 TCTCAGGTGTTAACTTTATAGTGAGGACTTTCCTGCCATA 40

SEQ ID NO: 373 ATAGTTTCATATAAATGGGTTCCTCATCATCTATGGGTAC 35

SEQ ID NO: 374 GGTATTTACATTTGCCATTCCCTATGCCCTAAATATTTAA 33

SEQ ID NO: 375 TATTGATATTCCTTGAAAATTCTAAGCATCTTACATCTTT 25

SEQ ID NO: 376 CTTTTATTCTCCCCTTCACCGAATCTCATCCTACATTGGC 45

SEQ ID NO: 377 TAGTGTCCCAAATTTTATAATTTAGGACTTCTATGATCTC 30

SEQ ID NO: 378 ATATGGTCACCTCTTTGTTCAAAGTCTTCTGATAGTTTCC 38

SEQ ID NO: 379 ACAATCTTCCTGCTTCTACCACTGCCCCACTACAATTTCT 45

SEQ ID NO: 380 AGTCACTGTCACCACCACCTAAATTATAGCTGTTGACTCA 43

SEQ ID NO: 381 CTGACCCCTTGCCTTCACCTCCAATGCTACCACTCTGGTC 58

SEQ ID NO: 382 AGAAAATCCTGTTGGTTTTTCGTGAAAGGATGTTTTCAGA 35

SEQ ID NO: 383 ACATATACTCACAGCCAGAAATTAGCATGCACTAGAGTGT 40

SEQ ID NO: 384 ACCCAAAGACTCACTTTGCCTAGCTTCAAAATCCTTACTC 43

SEQ ID NO: 385 TGAGGTAGAGACTGTGATGAACAAACACCTTGACAAAATT 38

SEQ ID NO: 386 TCCATATCCACCCACCCAGCTTTCCAATTTTAAAGCCAAT 43

SEQ ID NO: 387 AAGGTATGATGTGTAGACAAGCTCCAGAGATGGTTTCTCA 43

SEQ ID NO: 388 CTCTGGTCAGCATCCAAGAAATACTTGATGTCACTTTGGC 45

SEQ ID NO: 389 AACTGTGAACTTCCTTCAGCTAGAGGGGCCTGGCTCAGAA 53

SEQ ID NO: 390 TGATTGTTCTCTGACTTATCTACCATTTTCCCTCCTTAAA 35

SEQ ID NO: 391 AAACAAAACCCATCAAATTCCCTGACCGAACAGAATTCTG 40

SEQ ID NO: 392 CAGAGGTCACAGCCTAAACATCAAATTCCTTGAGGTGCGG 50

SEQ ID NO: 393 GAAGGCAGGTGTGGCTCTGCAGTGTGATTGGGTACTTGCA 55

SEQ ID NO: 394 CATGGAGGAAAAACTCATCAGGGATGGAGGCACGCCTCTA 53 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 395 AGCTTGTTAAATTGAATTCTATCCTTCTTATTCAATTCTA 25

SEQ ID NO: 396 CATAGTTGTCAGCACAATGCCTAGGCTATAGGAAGTACTC 45

SEQ ID NO: 397 GCAGATATAGCTTGATGGCCCCATGCTTGGTTTAACATCC 48

SEQ ID NO: 398 CTAAATAACTAGAATACTCTTTATTTTTTCGTATCATGAA 23

SEQ ID NO: 399 AGTGTTTAAAGGGTGATATCAGACTAAACTTGAAATATGT 30

SEQ ID NO: 400 GGATGGGTCTAGAAAGACTAGCATTGTTTTAGGTTGAGTG 43

SEQ ID NO: 401 TGCTGCCAACATTAACAGTCAAGAAATACCTCCGAATAAC 40

SEQ ID NO: 402 TATTGTGAGAGGTCTGAATAGTGTTGTAAAATAAGCTGAA 33

SEQ ID NO: 403 TTACAACATGATGGCTTGTTGTCTAAATATCTCCTAGGGA 38

SEQ ID NO: 404 CTAAGTAGAAGGGTACTTTCACAGGAACAGAGAGCAAAAG 43

SEQ ID NO: 405 GTCTTGTATTGCCCAGTGACATGCACACTGGTCAAAAGTA 45

SEQ ID NO: 406 CCCTATGTCTTCCCTGATGGGCTAGAGTTCCTCTTTCTCA 50

SEQ ID NO: 407 AAAGTTTCCCCAAATTTTACCAATGCAAGCCATTTCTCCA 38

SEQ ID NO: 408 AACTGCAGATTCTCTGCATCTCCCTTTGCCGGGTCTGACA 53

SEQ ID NO: 409 TAGTGCTGTGGTGCTGTGATAGGTACACAAGAAATGAGAA 43

SEQ ID NO: 410 TAACTAGCGTCAAGAACTGAGGGCCCTAAACTATGCTAGG 48

SEQ ID NO: 411 CATTGGCTCCGTCTTCATCCTGCAGTGACCTCAGTGCCTC 58

SEQ ID NO: 412 TGTTTATGTGTTATAGTGTTCATTTACTCTTCTGGTCTAA 30

SEQ ID NO: 413 CCTTTGACCCCTTGGTCAAGCTGCAACTTTGGTTAAAGGG 50

SEQ ID NO: 414 TTCTCTTGGGTTACAGAGATTGTCATATGACAAATTATAA 30

SEQ ID NO: 415 TGGAAGTTGTGGTCCAAGCCACAGTTGCAGACCATACTTC 50

SEQ ID NO: 416 CTGCCCTGTGGCCCTTGCTTCTTACTTTTACTTCTTGTCG 50

SEQ ID NO: 417 AACTCAGATATTGTGGATGCGAGAAATTAGAAGTAGATAT 33

SEQ ID NO: 418 TACAGAACCACCAAGTAGTAAGGCTAGGATGTAGACCCAG 48

SEQ ID NO: 419 TGAGCTCTCCTACTGTCTACATTACATGAGCTCTTATTAA 38

SEQ ID NO: 420 AAGCTAATAAGTAGACAATTAGTAATTAGAAGTCAGATGG 30

SEQ ID NO: 421 AGCCCAATGTACTTGTAGTGTAGATCAACTTATTGAAAGC 38

SEQ ID NO: 422 CCAATACTCAGAAGTAGATTATTACCTCATTTATTGATGA 30

SEQ ID NO: 423 GCTAGAATCAAATTTAAGTTTATCATATGAGGCCGGGCAC 40

SEQ ID NO: 424 TAATACTAATGATAAGTAACACCTCTTGAGTACTTAGTAT 28

SEQ ID NO: 425 ATGGTAATTCTGTGAGATATGTATTATTGAACATACTATA 25

SEQ ID NO: 426 TGAAAGAGAAGTGGGAATTAATACTTACTGAAATCTTTCT 30

SEQ ID NO: 427 GAGAGACACGAGGAAATAGTGTAGATTTAGGCTGGAGGTA 45

SEQ ID NO: 428 GTTGAGAGGGAAACAAGATGGTGAAGGGACTAGAAACCAC 48

SEQ ID NO: 429 CAAGGTTCTGAACATGAGAAATTTTTAGGAATCTGCACAG 38

SEQ ID NO: 430 TGCCATCTAAAAAAATCTGACTTCACTGGAAACATGGAAG 38

SEQ ID NO: 431 GGGATCCTCTCTTAAGTGTTTCCTGCTGGAATCTCCTCAC 50

SEQ ID NO: 432 GTTTCCTTCATGTGACAGGGAGCCTCCTGCCCCGAACTTC 58

SEQ ID NO: 433 TTGGATAAGAGTAGGGAAGAACCTAGAGCCTACGCTGAGC 50

SEQ ID NO: 434 ATCTGGGGCTTTGTGAAGACTGGCTTAAAATCAGAAGCCC 48

SEQ ID NO: 435 ACCGCAATGCTTCCTGCCCATTCAGGGCTCCAGCATGTAG 58

SEQ ID NO: 436 TATGGGGAAGCAGGGTATGAAAGAGCTCTGAATGAAATGG 45

SEQ ID NO: 437 GGTTGCATGAATCAGATTATCAACAGAAATGTTGAGACAA 35

SEQ ID NO: 438 AATGCAGGCCTAGGCATGACTGAAGGCTCTCTCATAATTC 48 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 439 TAACGTTTTCTTGTCTGCTACCCCATCATATGCACAACAA 40

SEQ ID NO: 440 TTAATTCCCAAACTCATATAGCTCTGAGAAAGTCTATGCT 35

SEQ ID NO: 441 CCCTATAGGGGATTTCTACCCTGAGCAAAAGGCTGGTCTT 50

SEQ ID NO: 442 TCCTCACCATATAGAAAGCTTTTAACCCATCATTGAATAA 33

SEQ ID NO: 443 TAAGCTGTCTAGCAAAAGCAAGGGCTTGGAAAATCTGTGA 43

SEQ ID NO: 444 AGGATTAGAAGATTCTTCTGTGTGTAAGAATTTCATAAAC 30

SEQ ID NO: 445 ATTATCTTCTGGAATAGGGAATCAAGTTATATTATGTAAC 28

SEQ ID NO: 446 CTCTCTGGTTGACTGTTAGAGTTCTGGCACTTGTCACTAT 45

SEQ ID NO: 447 TCTTCAGTTAGATGGTTAACTTTGTGAAGTTGAAAACTGT 33

SEQ ID NO: 448 CTACACCATGTGGAGAAGGGGTGGTGGTTTTGATTGCTGC 53

SEQ ID NO: 449 ACTTTCCTAACCTGAGCCTAACATCCCTGACATCAGGAAA 45

SEQ ID NO: 450 TACACTTTATTCGTCTGTGTCCTGCTCTGGGATGATAGTC 45

SEQ ID NO: 451 TACTCTTTGCATTCCACTGTTTTTCCTAAGTGACTAAAAA 33

SEQ ID NO: 452 AAAGGCCTCCCAGGCCAAGTTATCCATTCAGAAAGCATTT 45

SEQ ID NO: 453 TATTGACATGTACTTCTTGGCAGTCTGTATGCTGGATGCT 43

SEQ ID NO: 454 TTTGGTCCTAATTATGTCTTTGCTCACTATCCAATAAATA 30

SEQ ID NO: 455 GTTAAAAAAACTACCTCTCAACTTGCTCAAGCATACACTC 38

SEQ ID NO: 456 TAATTAGTGCTTTGCATAATTAATCATATTTAATACTCTT 20

SEQ ID NO: 457 ACTAGTGTTCTGTACTTTATGCCCATTCATCTTTAACTGT 35

SEQ ID NO: 458 GTATTTTTTGTTTAACTGCAATCATTCTTGCTGCAGGTGA 35

SEQ ID NO: 459 GCAGTGACTTATAAATGCTAACTACTCTAGAAATGTTTGC 35

SEQ ID NO: 460 TTATAAGCATGATTACAGGAGTTTTAACAGGCTCATAAGA 33

SEQ ID NO: 461 AGTATCCCTCAAGTAGTGTCAGGAATTAGTCATTTAAATA 33

SEQ ID NO: 462 AGTCACCCATTTGGTATATTAAAGATGTGTTGTCTACTGT 35

SEQ ID NO: 463 TGGTCATAAAACATTGAATTCTAATCTCCCTCTCAACCCT 38

SEQ ID NO: 464 ACAGTTGAAAAGACCTAAGCTTGTGCCTGATTTAAGCCTT 40

SEQ ID NO: 465 CAACTACAGGGCCTTGAACTGCACACTTTCAGTCCGGTCC 55

SEQ ID NO: 466 GTGGTTCTTTGAAGAGACTTCCACCTGGGAACAGTTAAAC 45

SEQ ID NO: 467 TGGAGGAAATATTTATCCCCAGGTAGTTCCCTTTTTGCAC 43

SEQ ID NO: 468 GCCTGGTGCTTTTGGTAGGGGAGCTTGCACTTTCCCCCTT 58

SEQ ID NO: 469 TCTCATTTCTTTGAGAACTTCAGGGAAAATAGACAAGGAC 38

SEQ ID NO: 470 CAAACTTTTCAAGCCTTCTCTAATCTTAAAGGTAAACAAG 33

SEQ ID NO: 471 TCAACAAAGGAGAAAAGTTTGTTGGCCTCCAAAGGCACAG 45

SEQ ID NO: 472 GATGCAACAGACCTTGGAAGCATACAGGAGAGCTGAACTT 48

SEQ ID NO: 473 CATCTGAGATCCCAGCTTCTAAGACCTTCAATTCTCACTC 45

SEQ ID NO: 474 TATCTTAACAGTGAGTGAACAGGAAATCTCCTCTTTTCCC 40

SEQ ID NO: 475 AACTCATGCTTTGTAGATGACTAGATCAAAAAATTTCAGC 33

SEQ ID NO: 476 TCAAAGGAAGTCAAAAGATGTGAAAAACAATTTCTGACCC 35

SEQ ID NO: 477 TGCCTTCACTTAAGTAATCAATTCCTAGGTTATATTCTGA 33

SEQ ID NO: 478 CCCTACCTTGTTCAAAATGTTCCTGTCCAGACCAAAGTAC 45

SEQ ID NO: 479 GCACTTACAAATTATACTACGCTCTATACTTTTTGTTTAA 28

SEQ ID NO: 480 CTTTAGTTTCATTTCAAACAATCCATACACACACAGCCCT 38

SEQ ID NO: 481 TAGGGACCACAGGGTTAAGGGGGCAGTAGAATTATACTCC 50

SEQ ID NO: 482 CTCACAATTAAGCTAAGCAGCTAAGAGTCTTGCAGGGTAG 45 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 483 GTTGAAAGACAGAGAGGATGGGGTGCTATGCCCCAAATCA 50

SEQ ID NO: 484 GCTTGTCTAATTTTATATATCACCCTACTGAACATGACCC 38

SEQ ID NO: 485 AATATTGTACACGTACACCAAAGCATCATGTTGTACCCCA 40

SEQ ID NO: 486 TGTGAAGTGGTGGATTTGTTAATTAGCCTTATTTAACCAT 33

SEQ ID NO: 487 TGACACATATGACATTTTAACTATGTTCCAGATTTTTGAA 28

SEQ ID NO: 488 GCAAGGAATCATTCAATGTTTTCTAAATCTATTACTGCAT 30

SEQ ID NO: 489 CATTTTCATAGGTTTTCCTCGATTGATCATTATTCATGAT 30

SEQ ID NO: 490 AAAGTGATCAAGATATTTTTAGTTCAGGCTCCAAAATTTT 28

SEQ ID NO: 491 CTTTACAGGCCGAGAAAAATGAATCTGAATTCCTGACCTC 43

SEQ ID NO: 492 TCCACTCAAGGCCTACATTCTGCTATAATGCAATTTCAAG 40

SEQ ID NO: 493 AACTGCTTAAAATTAATGGCACAAGTCATGTTTTTGATGT 30

SEQ ID NO: 494 CTGACTGTGACGTAGCAATAAAGAAACCCACGTTTCATAT 40

SEQ ID NO: 495 CTGGCCCACTGCTTGGAGGAGAGCACTCAGGACCATGAAC 60

SEQ ID NO: 496 TTCTGAAATGATAAAGTCAATCACAGGAAGGCACCTGGAC 43

SEQ ID NO: 497 ATCATTCTCTTTCCCTTCCTCTATGTGGCAGAAAGTAAAA 38

SEQ ID NO: 498 GGAGATAATAATGTGTTACTCCCTAAGGCAGAGTGCCCTT 45

SEQ ID NO: 499 CAATTAACTTGGCCATGTGACTGGTTGTGACTAAAATAAT 35

SEQ ID NO: 500 CACTAAATCAATATACTTCTCAACAATTTCCAACAGCCCT 35

SEQ ID NO: 501 CTAGGCTCCTGAGTTTGCTGGGGATGCGAAGAACCCTTAT 53

SEQ ID NO: 502 CCGAGGACCCCGCACTCGGAGCCGCCAGCCGGCCCCACCG 83

SEQ ID NO: 503 TTGGAAGCACAGGGTGTGGGATAATGCTAATTACTAGTGA 43

SEQ ID NO: 504 GTTCAGTATGCCTTTGATTTTACAATAATATTCCTGTTAT 28

SEQ ID NO: 505 AGATTCCATGAAGTATTACAGCATTTGGTAGTCTTTTTGC 35

SEQ ID NO: 506 TATTTGCTCTGAAATAAGACATAATTTGGGGTGAGAAAGC 35

SEQ ID NO: 507 ACTCATGATATTTGGCTCTAGAATACATGCTCTGAATCAT 35

SEQ ID NO: 508 TCCAAGATGAAGTGGCTACTAACTGACAGAGGGCATAATT 43

SEQ ID NO: 509 TATTCACAGTAACTCTGTGCCTCAAGTACTATTGTAATAC 35

SEQ ID NO: 510 ACATCCTCAATCTACACACTAGGATAGTATAAAAGTAATA 30

SEQ ID NO: 511 GTCTACCCATATGTGACCTTCATGTCTTTGCTCTAAGCCC 48

SEQ ID NO: 512 CGTGTAATCCTTGACAATGTCATCTCATCTATTTATTCCC 38

SEQ ID NO: 513 TCTGAAAGAGACTAACCTTCCCTCGCTTTGCAGAGAAAGA 45

SEQ ID NO: 514 ATGCATGGATTCTCTTGAAAAAATGTTTCTGCCATGATGT 35

SEQ ID NO: 515 TAGTTGAAGACCTACTGTGTTCAGGGCCGTGAGCCAGGGC 58

SEQ ID NO: 516 CAACGTGGAGAGCTGTCCTGGCACCATTTCTTCCTGCTGT 55

SEQ ID NO: 517 ATCCTCAAAGGAGCCTGGCTTGGGCTAACAAGGAAGAACT 50

SEQ ID NO: 518 TGCCTGGGACCCTGCCCCAAGCAAAGTAATAATCTGAATG 50

SEQ ID NO: 519 CTGGTGTGTCCAGTGTGATCCCTGCACCCATGCCCGGAGC 65

SEQ ID NO: 520 CTGCCCCCTGCAGCAGGGAAGGGGCTCTGGAAGGGTCTGA 68

SEQ ID NO: 521 TAGCTGCTGCCCCACTATGCACCATCGCTTATCTGTTCTT 50

SEQ ID NO: 522 GAAACCCGAAAAATGTCCTGGTCCTCTTCTTAAGTCTGGG 48

SEQ ID NO: 523 GCTGAGAACATGACTCTGCTTGGCGTTCCATTTAATTGAC 45

SEQ ID NO: 524 GAGAGGGTGTGCATTTGAAGTATAGATTTGTTAAACATAG 35

SEQ ID NO: 525 CATCAGGCAAAAATACTTCGATGGGACTGTGTTCTTTCAG 43

SEQ ID NO: 526 TCTAAAGTGATGTAATGTTGCCACGGAAATTCTAATCCCT 38 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 527 CGTGCAGAACCAGCTCTGTCTTCCCAGACACTGTCGCTTT 55

SEQ ID NO: 528 ACCCCTGAGCACCTCAGTGTCCGTGACTGTGGAGCGGAGG 65

SEQ ID NO: 529 CTGCCTGGGACACGTACGGCTGCCCAGTGATCCTGAGCGC 68

SEQ ID NO: 530 CACAGCCGGATGGTGTGGGAGCTGGCACTGCCGGGGCTCC 73

SEQ ID NO: 531 CGTCTTGGCAGAGGCTCCCTGTCATCAAGGACCTGAGGTT 58

SEQ ID NO: 532 GACCCCACAAAGATGAGCGGGTCCCCTTCCCAATTTTCGG 58

SEQ ID NO: 533 TCAGGAAGCCGGTGCTCAGCAAACTTATCTGAAGCTCTTG 50

SEQ ID NO: 534 GAGGCTGCAGAGGAACATCGTTTGGTCAAATGTGAAATGT 45

SEQ ID NO: 535 CTAGCTTCTAGAAAGTGCTGCCAATTTGGGGACCAAGGGA 50

SEQ ID NO: 536 GGAAACACTTCTTTTTCCCTTGACAAAGGACATCCTCTGC 45

SEQ ID NO: 537 GCATGTGCATAAACACTCGTGTGTGTGTCCTTTTATCCCA 45

SEQ ID NO: 538 CCAAATCTCTATACATGTCCATAGAGAGAGGCAGACGTAT 43

SEQ ID NO: 539 GGGTTGAAGACAAGGGGCTCAGAGCTTGCTTTTTATACAC 48

SEQ ID NO: 540 AGATTCATCTTCATGGCAGGACTTCAGGCAAGAGAGGCCC 53

SEQ ID NO: 541 CTCACCCCTTAGCAGGACCCTGACGGAACTGGGTACAGGC 63

SEQ ID NO: 542 GGTTGGGAGACAATGGGTGGCCCCTCGGTGTGGTGTCCTC 65

SEQ ID NO: 543 AGAGTCTAGAGGGCCCGTGGGGACGGGAGTCCTGGGAACC 68

SEQ ID NO: 544 GCGGCATGTCCGGCTTCACCCTGCCCAGAATCACAGCCTC 65

SEQ ID NO: 545 ATGGTTAAAAAATTCTCCTACTTAAGACTCCCAGACCCCT 40

SEQ ID NO: 546 TGAGATTCCAGGGCTGGTTCCACAACGGCCGGCATCGGCC 65

SEQ ID NO: 547 CTGAGTCACTAACAAAGCTCAGGCCTGACCACAGGACATT 50

SEQ ID NO: 548 GGCTGGCCTACCTGCCACGGGGCCAGGGCTGGGTGCTTTC 73

SEQ ID NO: 549 GGGCTCTGGACGCTGGAGGCCTGAGGCTGCACCCCAGGTT 70

SEQ ID NO: 550 ACAGTGGCCACTCACCCACTGGGCCCACATCCCCACAGGC 68

SEQ ID NO: 551 ACTCTGCCAGCCTTTGATGCCTCGCTGAGACAGAGGGTCT 58

SEQ ID NO: 552 AGCCGGGGCTCTGGCCCCATCCAGGGGCTCCCCCAGCAGC 78

SEQ ID NO: 553 CCTTGGAAGTCAGTCAGCAGGTCAGGACACAGTTCAGCCC 58

SEQ ID NO: 554 TTACATGCAGTTGGTCTTCTCCTGTGAATGGGGAAACTGA 45

SEQ ID NO: 555 CTGCATCACAGAACAGCTGCATTTCTAATGTCAGGCTTCT 45

SEQ ID NO: 556 CAGCCTGGGAGGCTTGTCAACCTCCTTTGACAAGCACGCC 60

SEQ ID NO: 557 AGAAACTGGGGCTCCAGGGCATGGAGGCTGCCTGTGGCCA 65

SEQ ID NO: 558 TCCCGGCCTGGAGGAAGTCTTATTAGCCTCATTTCATGGA 50

SEQ ID NO: 559 TCCTGCCAGCCCCCTCACGCTCACGAATTCAGTCCCAGGG 65

SEQ ID NO: 560 AATTCTAAAGGTGAAGGGACGTCTACACCCCCAACAAAAC 45

SEQ ID NO: 561 GGAAATATTAGTCCCCTCTGCCTGGGACAAGACCACCGAA 53

SEQ ID NO: 562 AAACACACCTCTGAATGGAAAGCTGAGAAACAGTGATCTC 43

SEQ ID NO: 563 ACTGCACCCCCTCCCTTCCCGTGCCGGCAATTTAACCGGG 65

SEQ ID NO: 564 TGCCTTCCTACCTTGACCAGTCGGTCCTTGCGGGGGTCCC 65

SEQ ID NO: 565 ATTTCCTTCATCTTGTCCTTCTAGCCTGGAGACTCTTCGG 48

SEQ ID NO: 566 AATGCCCGAAAATTCCAGCAGCAGCCCAAGATGGTGGCCA 55

SEQ ID NO: 567 CGTTGCAAATGCCCAAGGGGGTAACCCTAAAAGTTAAAGG 48

SEQ ID NO: 568 ACACAACCCCTGTGCAAGTTTCATTCCGGCGCACAGGGGC 60

SEQ ID NO: 569 TGCAAGAACTAATTTAGCATGCAAGGACGGGGAGGACCGG 53

SEQ ID NO: 570 GCCACGAGGGCACCCACGGGCGGACAGACGGCCAAAGAAT 68 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 571 ACCCCATATCCAAGCCGGCAGAATGGGCGCATTTCCAAGA 55

SEQ ID NO: 572 GCCTGGGGAGACCACGAGAAGGGGTGACTGGGGCGCGGCG 75

SEQ ID NO: 573 CTGCAGTAGGGGACAACTAGGAAGGCCGGCAGGCCACACG 65

SEQ ID NO: 574 GAGTGGGTCCCCCGGGATTTAGGGGGTGAGGTGGAGGTGG 68

SEQ ID NO: 575 TCCCCGCCAGGGAAGAGGGGTGCAGGGGGCCCCGTCCGCC 80

SEQ ID NO: 576 TGAGGCGCCGCGCCTGCCCTGCGGCGGAGTTGCCCCTGTA 75

SEQ ID NO: 577 AAACGCCGGGAGCAGCGAGGGGCAGAGCCCAAAAGCCATC 65

SEQ ID NO: 578 TTGTTAAGCAAAGATCAAAGCCCGGCAGAGAATGGGAGCG 50

SEQ ID NO: 579 CAACTTCAACAAAACTCCCCTGTAGTCCGTGTGACGTTAC 48

SEQ ID NO: 580 CTGCTACTGCGCCGACAGCCCTCTGGAGGCTCCAGGACTT 65

SEQ ID NO: 581 GCTCTTCTGCCCCTCGCCGGAGCGTGCGGACTCTGCTGCT 70

SEQ ID NO: 582 TCCGCGCTCGGCTCTCGCTTCTGCTGCCCCGCGCTCCCTC 75

SEQ ID NO: 583 TTTCCACTTCGCAGCACAGGAGCTGGTGTTCCATGGCTGG 58

SEQ ID NO: 584 GGTCGTTGAGGAGGTTGGCATCGGGGTACGCGCGGCGGAT 68

SEQ ID NO: 585 TGTCCTACTTCAAATGTGTGCAGAAGGAGGTCCTGCCGTC 53

SEQ ID NO: 586 TCGGGCGGCTCTCTTAAGACTTCCCTGCAACTTGTTGCCC 58

SEQ ID NO: 587 ACCCACGTTTCTTTGCTACTCACCCCCCTCCCTTCTCTCC 58

SEQ ID NO: 588 CTAGAACTTTGAAGTTTGCCGTGGTGTTTCTAGGGATCCG 48

SEQ ID NO: 589 AGAAGGGGGTCCGGGAGGGGTGCCTTCGGGAGAAGCCAGT 68

SEQ ID NO: 590 CAGGGGCACCCCAATGGGCCCGAGGGTGCGGGCTGGCAGG 78

SEQ ID NO: 591 GGGTGCGCTTTGTGTCCCCCGCCTGCGCCCCAGCCCGGCT 78

SEQ ID NO: 592 GCCTCAGCGGCCGGGAGCCGCCAACTCCGGGGGGAGGGGG 83

SEQ ID NO: 593 AAAGTGCAGTAATACCCTTGATCAGAGTTGATGACTTGAA 38

SEQ ID NO: 594 GAGAGAAATAAAGTAGTTGCTCTATTTGTAAATTGAAAAG 28

SEQ ID NO: 595 GGTAGCAGTGATTGCTGTATATTTGTGAAAAGGAGGCAAG 43

SEQ ID NO: 596 TGCTGATAATGGAAGTGCAGTGGGTTAGCTTTGTTTCCAT 43

SEQ ID NO: 597 CCGTTCTACCGTGACTAGTATGGAATTGTGGGAACCAGAA 48

SEQ ID NO: 598 TTAACATCAGTGTCAACTGCAGTGTTGTTTCTGAGTAATA 35

SEQ ID NO: 599 CATAACTCCATGCTCTCAAACCAATCACTCCTTCATTCAT 40

SEQ ID NO: 600 TTCTCCTATGCTGCACCAGAAAGGGTTTTGTGGGTTATCA 45

SEQ ID NO: 601 ATCGTTCAGCATCTTTAGGAAATATCCAGAGACTGCATTG 40

SEQ ID NO: 602 TTTATTAAGAGCAAAAAAAGCCTGTTTCGTTAGCCAGTCA 35

SEQ ID NO: 603 TTGTTCATATGCCTAACTTAATAAATTCTTCATACAGAAA 25

SEQ ID NO: 604 ATAACTTTTAAACCCAAACACCTAGAGATTTCATTATGTA 28

SEQ ID NO: 605 TTCTTACCATTAAGTCTTCCAAATGATAATTTATTATAAA 20

SEQ ID NO: 606 TATGTAAGGACAACTTCATTATATGCTTGAAGAAATTGTT 28

SEQ ID NO: 607 AATCTTAAAAGTGACACTAGTCACATTCCACACGGTTAAA 35

SEQ ID NO: 608 ATTTTGAAAACTATTCCTTTATCTGGAATGAATGTAAACC 28

SEQ ID NO: 609 TTGCATTAAGGGCACCAGAAACTTATAGAAAACCAAAAAG 35

SEQ ID NO: 610 TAAAAGACAGTGAACTGAACAGTAATTAACATTACATCCA 30

SEQ ID NO: 611 CAAAAAACTGTGTTTATCATATACCAAACATTTTCAAGTT 25

SEQ ID NO: 612 TCTCAGGATATTTTGTTCTCTGACACAAATACACCAGTCA 38

SEQ ID NO: 613 TAGCTTTACATCTCAGAATGAATCAATGTGGGGGCAGAAA 40

SEQ ID NO: 614 AGACCTATATACCTATAGTGCCTAATAGACAATAAGCCAC 38 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 615 TCTCTCCCCTGCCTAGACTAAGGTAAGTGGGTCTTACCTT 50

SEQ ID NO: 616 CATCCTGCTTTTAAAACCCTTAGTGCTCAGCGGCTTGTCT 48

SEQ ID NO: 617 AGCTTATAAACTTCAGAGTAATGTAGCACAAATGTCTGTC 35

SEQ ID NO: 618 AACTTGAAATAAAACTTTAAACGTTGATTGATTCTTTCCC 28

SEQ ID NO: 619 GACAGGCTTAGAGTCCATAACAAACAATCTTAGCTGGAAA 40

SEQ ID NO: 620 TGCTCAACAACACTTGTGGAAGAGCAGGGCAAGCTATTTC 48

SEQ ID NO: 621 TTACAACATCACTGTAGACATTACTTTTACCCACAGTGCC 40

SEQ ID NO: 622 ATCCTAGTTGTATATACTTCTTGGATAAAGTATCTTCGTA 30

SEQ ID NO: 623 ATTTTTGGGGAGTGCCATTCCTGCAGGTCTTGAAGACAGG 50

SEQ ID NO: 624 CACACAGCCAATGAAACTGACAGAGCCAATGCAACCAAAA 45

SEQ ID NO: 625 ACGACTTCAATCAAGAGAAACAGGCAGGTCAGAGTGTGAA 45

SEQ ID NO: 626 CTGGTTATCAGGGTTCATAGCACATAGGTTTGACAACCAC 45

SEQ ID NO: 627 TTTATTATTCAGCTGGGTAAGCCAAGTGACAGTCTTCCCC 45

SEQ ID NO: 628 GTTTTATTCTAGGAATCAACTGCTTTCTAAAAATGTCTAA 28

SEQ ID NO: 629 TTTACTGATGGTACTTATTCCCCCAATTATTGATTATTGA 30

SEQ ID NO: 630 GCATTTAGGAATATTCAATATTGATACTAAGGTCATCTTT 28

SEQ ID NO: 631 TACTCTGTAATGTAGTAATCTTTATGAAGAAATAAATTTG 23

SEQ ID NO: 632 ATTTTGAAAAAATGTTTCACTGCATTTTACTATACAAGCT 25

SEQ ID NO: 633 ACCACACATTCATCAAAAAATACCTCAAAGAAAATTCTGC 33

SEQ ID NO: 634 GTTGTCACAATAAACTCAGTACTGAGTAAAATATCACAAA 30

SEQ ID NO: 635 GAGTATATATTGTATTACTTACCTGATGCGCAAAGACCCA 38

SEQ ID NO: 636 AAAATGACAGCAACATAGGTGCCACCTGAGGTCCACATCT 48

SEQ ID NO: 637 TGGAGAGAGTGGGGTTAATCTGTTACTACACTTTGCTACT 43

SEQ ID NO: 638 ATTTCCATCATTTTGTCTTTCAGTAAGCATGTACGAAGTA 33

SEQ ID NO: 639 GAGATGAAGATGGTACATCAGTAGGGAGCCCCTCTACTGG 53

SEQ ID NO: 640 TCTAATTCATCAAAGTATTCTGGGTTGATTCCAGGTACGT 38

SEQ ID NO: 641 ACAAACTCGTTTTGTACAGAGAGGAAAATATTAAAACACC 33

SEQ ID NO: 642 ATGTTAATTATAAACACTGTTATAAGTTTTACAAATGTAA 18

SEQ ID NO: 643 TCCACTGGCAGAGAGAATATATGTTTCCATTACGGTCCCA 45

SEQ ID NO: 644 TCAAAGGTTTTCTATCACGTTTTCTATTATTTACTCACAT 28

SEQ ID NO: 645 AAAAACAAGAGTCACACAACCTATGCTCCACAATATCTGC 40

SEQ ID NO: 646 ATAGGTTATTCTACAATCGACACCAACTATCAGCGGCTTT 40

SEQ ID NO: 647 ATTGAATTAAATGATGGCTTGATTATCCAGGAATCAGCCA 35

SEQ ID NO: 648 CTTACCATAACAGAGTAATCTCTAGCTTATTCCAAGGATA 35

SEQ ID NO: 649 ACCTAAAATTTAACTAGAATCACTTTTCAATGAAGCTGCT 30

SEQ ID NO: 650 TAAACTAAGAGCCTTTGATCTTGCCTTATTCTGATAAAAT 30

SEQ ID NO: 651 AAATAATAATTCACAAGGAAATCCTTATTGTTTATTTAAA 18

SEQ ID NO: 652 GTAATATGTAGGTTAAACAGAAATGTTGGTTGAATCATGT 30

SEQ ID NO: 653 TGCAGACACTAATCAAACCAAACAGGGCCAATTAAAATTG 38

SEQ ID NO: 654 TAAAGTGCAATGGGACAGAGCAACTTCATTTTCACAAACA 38

SEQ ID NO: 655 TAATCTAATTGCCAGAAATGCTTGCCCATTGCAATGGGAG 43

SEQ ID NO: 656 AGTTGACAATGACTGCTTAGTTTAGGGTTTTGAAGTAAAC 35

SEQ ID NO: 657 CAGATGGCAGGTATTCTGTGAATTAACACTGATGCTTCTG 43

SEQ ID NO: 658 AGTCAAGTTCAGAAATGATCTGTTATGACCCCATGAAACG 40 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 659 GGGATGCTCTGATACATCATTCAGTAAAATGATAGAAAAA 33

SEQ ID NO: 660 TAGCTGTATTGCTTGATAGCTTCATAGCTTGATAACCATT 35

SEQ ID NO: 661 TTTTAGCAGGGAATTAACACAGGTATATAAATGAAGAAAA 28

SEQ ID NO: 662 TTGATTGTTTATGAAGCTGAGATTGTTTACTGGTTTCGAG 35

SEQ ID NO: 663 TCTGTGTTTTTATGTTTGGGAACATGAGGGAATCAGTTCT 38

SEQ ID NO: 664 TTCTTAAGCTTTCATTTTTCCAGTGGTGAATGTAGAGAGA 35

SEQ ID NO: 665 ACGGTAACTGAATAAACTTAAGAACTGAGGTAAAGTTTTC 33

SEQ ID NO: 666 TCAATATGTAAAATTGATCAATTCAGACACCTTTATATGG 28

SEQ ID NO: 667 TGTCTCTTTCATGCTGTAAATAGAGCATTGCATGAAAGAT 35

SEQ ID NO: 668 TTCATAGCACAGTTTATAAACCTAAGAAAGCAAAGATGAA 30

SEQ ID NO: 669 AACCAAGCAGGATTCTATGACTAAAAAAGTGTATTTGTAT 30

SEQ ID NO: 670 AGATAGAGAATTTCAAAGAAACCATCTTTATCAGCTGCAC 35

SEQ ID NO: 671 CCAAGAATGAAAAGATGCACTAATTCGACTGAAAGCCAAG 40

SEQ ID NO: 672 TCATAGTTGAGACATATAACAACCATAAAGGTCCGCATAT 35

SEQ ID NO: 673 AGGAAAGGGTGGAAAGGCAAGCAGCGGGGAGTGTTGGCTG 60

SEQ ID NO: 674 CTATAAATTGACCTATCCTGTAAAAAAGGATGTCACAGCA 35

SEQ ID NO: 675 ACAATTGACCTAAGACTGTAAATTGTAAATTGACTATAAA 25

SEQ ID NO: 676 GCAAGACTGGGTATACTATTAATAGGAAAAAATGAACTTC 33

SEQ ID NO: 677 ATTGCTTTGATATTGATTGAATCACAGAGAAAATCCTAAG 30

SEQ ID NO: 678 TAGATTATGCTGGCAAATCTCAGTGATCAGAGAATTATAT 33

SEQ ID NO: 679 ATTCAGAAATGGAATAGGAAGATATTTATGTGCCATCCTG 35

SEQ ID NO: 680 GTTTGAATTATTATTCAAACAGTGTATGTTTGTTTGTACT 25

SEQ ID NO: 681 AATGCAACAGAGACAGGTATTTATAGCATCTGTTTTCCAT 35

SEQ ID NO: 682 TTTAATATCCAAATATGTATGGACACATACAATTGTACAT 25

SEQ ID NO: 683 ACGTCTACCGTCATTTTCGTAATTATTCGGTTTCCCTGTC 43

SEQ ID NO: 684 GGAGCGCTCCTGCGCGCCTTGTTCGTTAGGATTTATTTTT 50

SEQ ID NO: 685 GGTGGCTCCCTAATGCCTGCTCGTTTCAGGTCTCAGCTCT 58

SEQ ID NO: 686 CCTTAGTGTGTTGAGGACGCTGCAGAAGGTACAGAGGAGA 53

SEQ ID NO: 687 GACCAGATGGTAGGACAGTCATTCTCCTCTGCGTCTCCGC 58

SEQ ID NO: 688 CGTGAGGCATGGAGTTTTTGTCCTGCCCCTGCCTGGTTAG 58

SEQ ID NO: 689 TTTAAGTCTCTGGCACCGTGCATAGCAGAATTGGTTGGGA 48

SEQ ID NO: 690 TCTTTCTCCAAGTGCCTCTATGTTGGCACATCTCTGAAAT 43

SEQ ID NO: 691 TGCGTCCCGGCCAGGTAAGCAGCTTCCCTCTCAGCTGCCT 65

SEQ ID NO: 692 GGGTGTATGTAGCTGGCAGAAGTGGGACTTGGTCGCAACC 58

SEQ ID NO: 693 CGTGGCGAGTGGGCGGTAGCTGCTCGTAGAGCGTGTGAAA 63

SEQ ID NO: 694 GTTGGCCCTAAAAGTTATCATTCATGCTAGTTTGACCAAT 38

SEQ ID NO: 695 AAGTGGGAGGAGCTGGGCAAGAAAGTCCACCCCTTTTTCT 53

SEQ ID NO: 696 GCCGAGCCGAAGTCATCTGCCAATCAAAACAGCCACAGGG 58

SEQ ID NO: 697 CGCGTACCTAATGGGAGACAGACAGGTGCCTTTAAAGCGG 55

SEQ ID NO: 698 TGGGGAAAGCGGAGGAAGGCATGGAGTGTGGGCGTTAGGG 63

SEQ ID NO: 699 GCATATTCTGCCTTGAAGTCATTGGTTGGTCCTGGAAGTG 48

SEQ ID NO: 700 AATTGGTCTGGGGGAGGAGCTACGACAGTCCAGGGGCGGG 65

SEQ ID NO: 701 GTGTCGTGCTGATTGGATGTATCCGCCCCCCTCTCTTAAA 53

SEQ ID NO: 702 CAACACGCCAGCGCGAGGACCCGAACGTCAATCAAGAGAC 60 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 703 GCGTTCGATTGGCCTCCCGCGCAGGCTGCTAGGATTGGCT 65

SEQ ID NO: 704 CCCTGCCCCCTTTCGCGGATTGGGTGATCGCTCCAAGGCG 68

SEQ ID NO: 705 CTGACCCTTGGAGGCTTTCTATTGGTTCCTGGCAGGGATG 55

SEQ ID NO: 706 TCCCGAATATAGGCCAGTCATTGCTCCTGCTGAACGTCGC 55

SEQ ID NO: 707 CCCCTCCTCTCTTCTCGTCTCTGGCGCCGACCCGCCCCCG 75

SEQ ID NO: 708 GCTCAAGGGAGGCCGCGGCGTCTGCCGATGGCTCCGCGGA 75

SEQ ID NO: 709 TGGGGGAGTGGGCCCGGGGTTGTTCTGACGACGGGGGTCG 73

SEQ ID NO: 710 CCCGGGCGCTATCGCGATAGCGGCGCGAAGCGGAAGTGGG 73

SEQ ID NO: 711 CGGGGGAGGCGAGCGCCCGCCGCCTTTTTCTCGCGCCCCG 80

SEQ ID NO: 712 CACAGGAGCTGGCGCCGCCGCTGAGGAGCGTATCGCGACA 70

SEQ ID NO: 713 GTTGCCGACTCGCGCTCTCGGCTTCTGCTCCGGGGCTTCT 68

SEQ ID NO: 714 ACTCGGAGCTCGGATCCCAGTGTGGACCTGGACTCGAATC 60

SEQ ID NO: 715 GGCTCCTCCTTGTTCCGAGCCCGAAGGCCCGCCCCTTCAC 70

SEQ ID NO: 716 CTTTCCGGAGCCCGTCTGTTCCCCTTCGGGTCCAAAGCTT 60

SEQ ID NO: 717 GACCCCGCCTCATTCCTCACGGCGAGCTCCAGACCCCGCC 73

SEQ ID NO: 718 AGAACTCAAGCTCCCGATTGTGCCCGAAGGAACCCGAAGG 58

SEQ ID NO: 719 ACTATTGCCGAAGTGAGCCGAAGTTTGTGGCCCCGCTTCC 58

SEQ ID NO: 720 ACATGTGGCTCCGCCCACACTGGCCTCAGCTCTCCGTTCT 63

SEQ ID NO: 721 ACAGTGACCCTAAGGACTCGACTACCTCCGAAGAAAGCCG 55

SEQ ID NO: 722 CTTGTACCCAACTATCTACGAAGTAAACCGAAGCTTGTGG 45

SEQ ID NO: 723 TATCTGGCGAACCTGTTGACTCCGCCTATCATCCTAGCGT 53

SEQ ID NO: 724 GGCAAGTCGCTTTCGCCCCGCCCCCTTGTAAATACTCATG 58

SEQ ID NO: 725 CTCCTCTACTTGGGAACTTGAGGATCGTCACCCTGGCCCG 60

SEQ ID NO: 726 TTGGCTCCGCCCCACTGAGCGCACCTCCCTCTGCCGCTTC 70

SEQ ID NO: 727 TCCTTGCTCCACCCCCTCATGCCGACACCCTCGTCAACTT 60

SEQ ID NO: 728 TCCACCGATAGAACCAGCGAGTCACCTCATAAACAGTAAT 45

SEQ ID NO: 729 CGCTCAGTCCGCCTCCTTGCCTCCCTTCAGAATGTCCCAC 63

SEQ ID NO: 730 GCCGTCCACTCTCCGCTCGGGCGGGCTCACCCCAATTGGG 73

SEQ ID NO: 731 CGACCGAACCCCACAGCCGAAAGCCCCGCCCCCTGGACAC 73

SEQ ID NO: 732 CTCCGAGCGCCAGCGCACCCCAGTTGGGGAGTTCCCGCCC 75

SEQ ID NO: 733 AGCCCCGCCTCCTCCCGGACGCAATAGGTTCGGCGTTCGG 70

SEQ ID NO: 734 AGCAATTTGACGTTCGGGTGTTCTCGGCTCGGCCGAATCC 58

SEQ ID NO: 735 TGCCCCCTCCCGAGCACAGGAAGTTCGGCGTTCGGGCGTC 70

SEQ ID NO: 736 TTTCGGACCTCCTCGCTCTCAGACTCCCACAGTACAAAAC 53

SEQ ID NO: 737 CGAGCCTTCGCTCCTCCTCTTTCCGAACGACTGTGATTCG 58

SEQ ID NO: 738 GAGGCTAAGGCACCGCCGAGGCCACACCCTCTTCCGGACG 70

SEQ ID NO: 739 GCGTCCCCCTTCGGGTGTTCCCGTCAGCGGTCAGAAGCTC 68

SEQ ID NO: 740 CCTTACAAAGGTCCATTTTGGCACCACCCTCTTGCAAAGT 48

SEQ ID NO: 741 GGAGCGTGAAAAACAAACCTCCGCAAGCGCGGCGACACGC 63

SEQ ID NO: 742 ACCCGCTCTGTGCCCGCACTGCCGTACCTACCATTGCGCC 68

SEQ ID NO: 743 GGTCCTCAGCATCTGCATATGTAGCCCCTCCCGCTGGTCA 60

SEQ ID NO: 744 CCCAACCCCTACCCCCAATCCATCTTAGAGCTGATTCTCT 53

SEQ ID NO: 745 ACTCCAGTGATTCTTCCTTATGCTAGGGACTCGAGGACCC 53

SEQ ID NO: 746 GAGAATTGAGAAGTCAGTGTGGGAGGGGATGTCCCAGTAC 53 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 747 TTTCTGGTTCGCGTTGGCTGCATTGTGGAGCTGAGGGATG 55

SEQ ID NO: 748 TAGCTTCTTAATCTCCTTCTTTAGGTCAGCCTCATACTTT 38

SEQ ID NO: 749 TTCTCCCTGGGACCCAGCAGTCCACTCTCCCAGTTCCCTC 63

SEQ ID NO: 750 AAAGTCAGACCTCAGGACCCAGGAACTGGGGCCCACAGCT 60

SEQ ID NO: 751 TCTTGATTTGGTCCCTCAGCCGCTGCAGATGGGAAAAGCA 53

SEQ ID NO: 752 TAAGCTGCCTCTTGTCCTTGATCTCGTTGGACGCTACCCA 53

SEQ ID NO: 753 GGCTCTGGGCTCCTACCGTCTCAATGAGCTTGCGGTTGTC 60

SEQ ID NO: 754 TGAGGACCTCTGGGGTCTGGCCGCTCTGCCTCCGCCCCTT 70

SEQ ID NO: 755 CTGCCTCTTCACTTCCCTTAGGTGCAGAAACCTTACTTCT 48

SEQ ID NO: 756 CGACCTGAGCCTCGTGACCCTACTTTCTGAGCTCTGAGTC 58

SEQ ID NO: 757 TCAAAGGTGGGAAAGGAGCTGACTAAGGGCCAGCAGACAC 55

SEQ ID NO: 758 CCGTTCCATTTGCTGTAGAGAGTGCAGTTGGCAGGGGGGC 60

SEQ ID NO: 759 GCTGTAAGCTTTGGTTTTGGTCTCTCGTTCCACAACTTTG 45

SEQ ID NO: 760 CCAACTCACCGTGAGCCACTGGCCAACCTCTTCCTTCTCC 60

SEQ ID NO: 761 CCAGGGCTCAGGATCCTCAGAGTTCACCTCCTCTTCTCTA 55

SEQ ID NO: 762 GTCCACCTGCATGTTGAGCGTGTCGATGGTATTCTAGGGG 55

SEQ ID NO: 763 GCGTGTCTGCACTGACAGTGACTCCACTTCACTCTCAAAC 53

SEQ ID NO: 764 TGTCGGGTCTCCCTCACTCACATCCTTGTCGCCCTTCTTC 58

SEQ ID NO: 765 CTGCTGGCCAGCCCATTCCCATGCCCATCCCCATCCCAAA 63

SEQ ID NO: 766 GAATCCAGGCCCCAACTCCCAGGAGCATAAATGACTGGCC 58

SEQ ID NO: 767 TCTCAAATCCCTAATCCCGGCTGTTGGCCCTGTCCGCCTG 60

SEQ ID NO: 768 CCTGCCCCACGCGTGCAGCTGCTAAGCCCTCCCAATCCTG 68

SEQ ID NO: 769 CCCAGACACCCAGGGGACCCTGAGATTCTGTCTGACCTCC 63

SEQ ID NO: 770 CTTCCCCCAAGTCGCTCCTCTTCACAAAGGCCCCACGGTC 63

SEQ ID NO: 771 CCTCTGGGTGCCAGGAGGCCTCTTGCCATGGGTGTCCTTC 65

SEQ ID NO: 772 CTGCCTTGTCTCTACCCACTGTGCTCTCCCTAGGACCAGG 60

SEQ ID NO: 773 GGCGAGGGGGAGGTCCTGCAGCTGCTCGCGTGGGCTGCCC 78

SEQ ID NO: 774 TGCGCTCGATCTCATCCTTCAGTTCGTAGCCCACCTGGGG 60

SEQ ID NO: 775 TCACCTGCTTCACAGGCGGCGGCTCCTGCCACTTGTCGAA 63

SEQ ID NO: 776 CTCGCTTCTTCCGCTGTCCATCCAGGGGCGCAGGCAGCGG 70

SEQ ID NO: 777 CCCATGCCTACCGGACCCCCAGGGCCCCTCACCTGCGGCC 78

SEQ ID NO: 778 AGTCGGCTGGGAGGAGGACGCCGGCTTCTCCCCTCCATGA 68

SEQ ID NO: 779 ATCTTGCGGTACCTGGGGACGGGTGGGTGGGCGGCGCCAG 73

SEQ ID NO: 780 TTGGCCTGCTTCCGGATCTCCGTCAGCCCCAGCCGCTCCT 68

SEQ ID NO: 781 GGAGGGCGCTCTGGGAGTCTGACCTCTCCGAAGCTCATAC 63

SEQ ID NO: 782 AGGAGGCAGAGGGCGGTGGCGGCTGGCTGGCTGTGGGGTT 73

SEQ ID NO: 783 AGACATGAGCCAGGGCCACAGGACGAGAGGAGGGGCGGTG 68

SEQ ID NO: 784 CCAAGGGCCGCGAGGGTCGCTTTGGGGCTGAATGGATGGA 65

SEQ ID NO: 785 GATGGGAAGCCGCGGGGGCTCTAAGCAGCGGAGACACAGG 68

SEQ ID NO: 786 GGAGCCTCTGGGCAGGGAGGAACCGGCCAAGGAGCCCGGG 75

SEQ ID NO: 787 GGCGGGGCCCAGGGACGGGGCGGCCGTGCAGCAGGGCACT 83

SEQ ID NO: 788 CTGCAGGACCAAGGGGATGACGCTGGGATAACAGAGGAGA 58

SEQ ID NO: 789 CAGAACAGGTTTAATAGGATGAGGTGGCCTCTGAGTTCGG 50

SEQ ID NO: 790 CCATTCCTTCCTTACTCGTGTGGGTCGGGGGATGTCAGGA 58 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 791 GGCCCGGTCCCAGCACTGCTCTGTGAGCTCAGAGTTGGGA 65

SEQ ID NO: 792 TGGGGGCCCACACACGCGGGGGATGCCGGGGAGCCTGAGA 75

SEQ ID NO: 793 CACGGGCACCTGCTCCGGTACCCACTCGGCCCGGCTGAGG 75

SEQ ID NO: 794 CTCCACCAGCCGGAAGCCCAGCGGTCACCAGCCGGCCGGT 75

SEQ ID NO: 795 AGGCGTCCTCCTCGATCTAGGGGGAAGAGGAGGCGCCCTG 68

SEQ ID NO: 796 ACTTGCCCAGGTGGCCCAGGCTGAATCCCAGGTCCTCCTG 65

SEQ ID NO: 797 TGGCCTCGTTTACCTGTGTCTGCCGCACACGCCCACTGCC 65

SEQ ID NO: 798 GTCTGGCCCATACCTGCAGCGTCTTGGAGATCCTGGCCTT 60

SEQ ID NO: 799 GCTCCCCCCACCTTGTGTCCCTCGGTCCCCAGCCCCACCT 73

SEQ ID NO: 800 TGCAGGGTCCGCTGTGGGGAGGACAGGGAGGCTGCGATCT 68

SEQ ID NO: 801 TCGCGGATGGTGGACTTCCCGCCATATACGACGCTCTGCT 60

SEQ ID NO: 802 AGTGGGGTGAAGGCCACGCTGGAGGCCGTGCCCGAGGAGC 73

SEQ ID NO: 803 CGGCTGCTGAGCCTAACCACCTCCTGGGCTTCTTTCCAGC 63

SEQ ID NO: 804 GCTCATGGTATCCCTACCGCAGGCAATCTGTGGACAGCAC 58

SEQ ID NO: 805 CTGAATGTCACCTGAAGGGTCACAGAAGCTACTCACAGGG 53

SEQ ID NO: 806 TTAAGTGTTCTCAATATGAGATTAGCTGGAGCCGCCTAAT 40

SEQ ID NO: 807 GAAGATCCATCTGTTGGAAGCCAGAGGACTAGTGGGAAAC 50

SEQ ID NO: 808 CCCCCACAGGGATCTGACACACAACTTAGGTTGTCAGCCA 55

SEQ ID NO: 809 GCCCAGCTTCCCAAGTCCTGCCTGGACACCGCCCCATGGA 68

SEQ ID NO: 810 AATCACCTTCATGCTTAAAACACTCACACTGATTTCCAGC 40

SEQ ID NO: 811 CCTCTTGGGGACCTGGGTGACCTTACTCACCCTCATGGCT 60

SEQ ID NO: 812 GTTGCTGTGGACAGGCTTGGAGCCGTTTTTGGCTGGAGAC 58

SEQ ID NO: 813 GGAGGGGTAGGTGGGCGGCACAGCTGGGGACTGAGGGTGC 73

SEQ ID NO: 814 GCCAGGAGTGGTGCTCAAGGCAGAGGCAGCAGGCGGGGGG 73

SEQ ID NO: 815 CAGGGCACTTGGGGGTGCTGCGGGGGCGGGGACCCCATTG 75

SEQ ID NO: 816 GGTGCCCGAGTTGTGGCTGGGAGCTGGACTGGCCTTGGGG 70

SEQ ID NO: 817 CTGCTTGCCAGCCCCTCCACCGGCACTGCTGTTACTACTG 63

SEQ ID NO: 818 GCCCCCCACCCCGCTGCCTCCTCACTCACTGGTGGCGCCA 75

SEQ ID NO: 819 CGGGCTGTCTGCCACAACTGAGCTGTAACCTGGGAACAAA 55

SEQ ID NO: 820 GCTGGCATTGTTGCCCCCACTGCTGCTCAAAGCCACCTCT 60

SEQ ID NO: 821 AGGTGGGTTGTGGGGGCCGGAAGGGGGGCCCAAGGCCTGG 75

SEQ ID NO: 822 TCCCAACCCTGCCGATGGCCGAGACACTCACGAGGTGCTG 65

SEQ ID NO: 823 GGGGGTGAGGCGCCTGCGCCTCTCTGTTTCAAAAGGCTGC 65

SEQ ID NO: 824 ATTCCCAGCAGCAAGGGCGGGGGGTTCAGAACCCACCGAT 63

SEQ ID NO: 825 GGGGGTGTAACACCCGAGGGAGATGGAGGATAGCGCTTGG 63

SEQ ID NO: 826 CAAAGCAGGGAGGCTGATGTAGTTTCCTTGCTGGAAAGAA 48

SEQ ID NO: 827 CTTCCACTTAGATGAGAACGTATTTTAGAATGTTCTGAAG 35

SEQ ID NO: 828 TAACAGAAATGGGGAGGAAAGGGTATGGGGCTCTTGAGAA 48

SEQ ID NO: 829 AAACAGTGACCCTCCGGTGGCAGTCAATTGGCCTCAGGCA 58

SEQ ID NO: 830 GCAGAGGAATAAGGACTTCGGGACAATTCACTTTGAAAAG 43

SEQ ID NO: 831 GACCCAGTGGAATGGTCTGAGCTAAGATTTGAAGGAGTGG 50

SEQ ID NO: 832 TGCACACTGATCTTTCTTAGGGCATTCTTCGGGAAACAGG 48

SEQ ID NO: 833 GGCTCAGGATGAACAGCAACAGGGGTTGGGATGATCACTG 55

SEQ ID NO: 834 GATCATGGAGATGTGATCTAGGGAACAAAGCCAGAGAAGG 48 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 835 AGGCATTCCCACGGTGTGAGGTCAGATTGGGCAGGGCCTA 60

SEQ ID NO: 836 AGAGCCAGCACTTGCTGTTCCACACATACTAGATCAGTCT 48

SEQ ID NO: 837 TGGACAACCCCCTCCCACACCCAGAGCTGTGGAAGGGGAG 65

SEQ ID NO: 838 CACCTAGATGCTGACCAAGGCCCTCCCCATGCTGCTGGAG 63

SEQ ID NO: 839 ATAAAGCCTTCATTCTCCAGGACCCCGCCCTTGCCCTGTT 55

SEQ ID NO: 840 AGGTGGTGAGTTTGGGGCTGGGGGGCCTCCCTGAGGAGCC 70

SEQ ID NO: 841 GAGAGAACCAGGTCCCACATGCTGACACAGGTGTCCACGG 60

SEQ ID NO: 842 ATCCCCCCAATCTCACCAGTGCACCCCACAGACAAGGCGA 60

SEQ ID NO: 843 AAGGGCTTCAGCATAAGAGTCAGAACCCGCCCCCCTTCCT 58

SEQ ID NO: 844 TGTGGGCTGAAGGGACGAGGCTGGGGCACTGGGTGGGAGG 70

SEQ ID NO: 845 TTGCAATGTGGAAGAGTCAGGGGCACATTGTCTGGGCTGA 53

SEQ ID NO: 846 TAAGTGGGAGGGAGCGGGGACCTAGTGTGGGCATGAGGAC 63

SEQ ID NO: 847 GGAGCAGGGATTTGGCTGGGCAATGGAGAGAAAGGTCTGA 55

SEQ ID NO: 848 ACACAGAGATGCCCAGGAACTTGCTCTTTAGTAAAGCAGC 48

SEQ ID NO: 849 TGGAGAGAGGTCCTTGAAAGGTTTTGAACCCCATAAAGAG 45

SEQ ID NO: 850 TCAGGAGGCAGCCCAGTGATAGGGTCCAAGGAACCAGTGG 60

SEQ ID NO: 851 ACAGTCTACTGACTTTTCCTATTCAGCTGTGAGCATTCAA 40

SEQ ID NO: 852 CTGTCCCCTGGACCTTGACACCTGGCTCCCCAACCCTGTC 65

SEQ ID NO: 853 AGGAAACCCAGATTCCACCAGACACTTCCTTCTTCCCCCC 55

SEQ ID NO: 854 GGCTATCTGGCCTGAGACAACAAATGCTGCCTCCCACCCT 58

SEQ ID NO: 855 GTCTGGCACTGGGACTTTCAGAACTCCTCCTTCCCTGACT 55

SEQ ID NO: 856 TTGCCCCAGACCCGTCATTCAATGGCTAGCTTTTTCCATG 50

SEQ ID NO: 857 AAAAACACGAGCACCCCCAACCACAACGGCCAGTTCTCTG 55

SEQ ID NO: 858 TTAACCTTGGACATGGTAAACCATCCAAAACCTTCCTCTC 43

SEQ ID NO: 859 AGCAACTAAACCTCTCCACTGGGCACTTATCCTTGGTTTC 48

SEQ ID NO: 860 GAACCTCTTATTCTCTTAGAACCCACAGCTGCCACCACAG 50

SEQ ID NO: 861 TCCCTTCTCCCAGTGTAAGACCCCAAATCACTCCAAATGA 48

SEQ ID NO: 862 CAACCCCCAACCCGATGCCTGCTTCAGATGTTTCCCATGT 55

SEQ ID NO: 863 CATAAACCTGGCTCCTAAAGGCTAAATATTTTGTTGGAGA 38

SEQ ID NO: 864 CTGCTGACCTGCCCTCCCAGGTCAGAATCATCCTCATGCA 58

SEQ ID NO: 865 TGTTCTCCAGACCTGTGCACTCTATCTGTGCAACAGAGAT 48

SEQ ID NO: 866 CGTGCAGCAAACAATGTGGAATTCCAATAACCCCCCACTC 50

SEQ ID NO: 867 AAATATGAGTCTCCCAAAGTTCCCTAGCATTTCAAAATCC 38

SEQ ID NO: 868 CATCATAAAAAGATCTTGTGGTCCACAGATCCTCTAGCCC 45

SEQ ID NO: 869 CTCCCAACCCAGAATCCAGCTCCACAGATACATTGCTACT 50

SEQ ID NO: 870 CACTCTGAGACCAGAAACTAGAACTTTTATTCCTCATGCT 40

SEQ ID NO: 871 CACCAGCACTCAGGAGATTGTGAGACTCCCTGATCCCTGC 58

SEQ ID NO: 872 TGCCTAGATCCTTTGCACTCCAAGACCCAGTGTGCCCTAA 53

SEQ ID NO: 873 GGGGGTGGGTACGATCCCCGATTCTTCATACAAAGCCTCA 55

SEQ ID NO: 874 GGACAAAGGCAGAGGAGACACGCCCAGGATGAAACAGAAA 53

SEQ ID NO: 875 TGGATGCACCAGGCCCTGTAGCTCATGGAGACTTCATCTA 53

SEQ ID NO: 876 GGGAGAGCTAGCACTTGCTGTTCTGCAATTACTAGATCAC 48

SEQ ID NO: 877 GGCTGGACAACCCCCTCCCACACCCAGAGCTGTGGAAGGG 68

SEQ ID NO: 878 TGGCACCCAGAGGCTGACCAAGGCCCTCCCCATGCTGCTG 68 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 879 CCTATAAAACCTTCATTCCCCAGGACTCCGCCCCTGCCCT 58

SEQ ID NO: 880 TGCAGGTGGTAAGCTTGGGGCTGGGGAGCCTCCCCCAGGA 68

SEQ ID NO: 881 AGGAAGACAACCGGGACCCACATGGTGACACAGCTCTCCG 60

SEQ ID NO: 882 CAACCATGGCCCCTCTCACCAATCCACGTCACGGACAGGG 63

SEQ ID NO: 883 TCAGCTTGACAGTCAGGGCTGGCTCCCTCTCCTGCATCCC 63

SEQ ID NO: 884 TCCCTGTCTGGGCTGGGGTGCTGGGTTGGGGGGGAAAGAG 68

SEQ ID NO: 885 TGTGGGAGTGAGGACTGTTGCAATATGGAGGGGCTGGGGG 60

SEQ ID NO: 886 GGGAGAAAGTTCTGGGGTAAGTGGGAGGGAGCGGGGACCT 63

SEQ ID NO: 887 TTGTGGGGCTCAAAACCTCCAAGGACCTCTCTCAATGCCA 53

SEQ ID NO: 888 TGCCCAACCCTATCCCAGAGACCTTGATGCTTGGCCTCCC 60

SEQ ID NO: 889 TCTTGCCCTAGGATACCCAGATGCCAACCAGACACCTCCT 55

SEQ ID NO: 890 TTCCTAGCCAGGCTATCTGGCCTGAGACAACAAATGGGTC 53

SEQ ID NO: 891 TCTTAGCCCCAGACTCTTCATTCAGTGGCCCACATTTTCC 50

SEQ ID NO: 892 AGGAAAAACATGAGCATCCCCAGCCACAACTGCCAGCTCT 53

SEQ ID NO: 893 CCCCTTCAGAGTTACTGACAAACAGGTGGGCACTGAGACT 53

SEQ ID NO: 894 TGGAAAGTTAGCTTATTTGTTTGCAAGTCAGTAAAATGTC 33

SEQ ID NO: 895 GACTCAGGAGTCTCATGGACTCTGCCAGCATTCACAAAAC 50

SEQ ID NO: 896 ATGCTGTCTGCTAAGCTGTGAGCAGTAAAAGCCTTTGCCT 48

SEQ ID NO: 897 GATTTGGGGGGGGCAAGGTGTACTAATGTGAACATGAACC 50

SEQ ID NO: 898 GTGTGCACAGCATCCACCTAGACTGCTCTGGTCACCCTAC 58

SEQ ID NO: 899 AGGATTCCTAATCTCAGGTTTCTCACCAGTGGCACAAACC 48

SEQ ID NO: 900 CAAAGGCTGAGCAGGTTTGCAAGTTGTCCCAGTATAAGAT 45

SEQ ID NO: 901 GTCAAGGACAATCGATACAATATGTTCCTCCAGAGTAGGT 43

SEQ ID NO: 902 GCAAGATGATATCTCTCTCAGATCCAGGCTTGCTTACTGT 45

SEQ ID NO: 903 TCTGTGTGTCTTCTGAGCAAAGACAGCAACACCTTTTTTT 40

SEQ ID NO: 904 AACGTTGAGACTGTCCTGCAGACAAGGGTGGAAGGCTCTG 55

SEQ ID NO: 905 CATAAATAAGCAGGATGTGACAGAAGAAGTATTTAATGGT 33

SEQ ID NO: 906 GCTGCCAGACACAGTCGATCGGGACCTAGAACCTTGGTTA 55

SEQ ID NO: 907 GGGATCCTGAGCGCTGCCTTATTCTGGGTTTGGCAGTGGA 58

SEQ ID NO: 908 TCACTCAAACCCAGAAGTTCTGATCCCCAGCCATGCCCCT 55

SEQ ID NO: 909 AGCCTCTTCCTCCTTTGAAATTCAAGAGGGTGGACCCACT 50

SEQ ID NO: 910 GGAGCTGGGACCTTACCAGTCTCCTCCCTCATTGACCTAA 55

SEQ ID NO: 911 GAGGATATGAGATTCTTAGGCCATTCCCACATCAGTACCT 45

SEQ ID NO: 912 TACCCAGAACTCTACCCCTCAGGATTCCAGCACCTTCTTC 53

SEQ ID NO: 913 GCCTCTGCCCTTCAGGGGCCAAAGAGCCTTAAGCCACAAA 58

SEQ ID NO: 914 ATCCCATTACTATCACCCCAAACCCTGGACCTAATGGTTC 48

SEQ ID NO: 915 AATGGGCAACCCTCGATCCTCAGACTCTTGAGGAATCAAG 50

SEQ ID NO: 916 GATACCCTCAAGTGGAGTAAGGATTAGGTGGCAAGATGGA 48

SEQ ID NO: 917 GTGCTTGCCCAGGGGCACCTTCATGGAGCTAGAAGGGCTG 63

SEQ ID NO: 918 GATGACACCCAAGGCCTCTGGGGCATCTTTCATGCTCAGA 55

SEQ ID NO: 919 TGCTGGCCACACCCTCAGAGTGTGGATGCTGGATGATGAG 58

SEQ ID NO: 920 GAGGCACGCTGCAGGGATAGTCACAGCAACATGACGTCAT 55

SEQ ID NO: 921 AGAGGAGGATGTCGGCAGCTCTACGGTTGGCAGGTGGCTG 63

SEQ ID NO: 922 GACACTAGGCCTCAGCCTGGCACCATGCAGGCCACTCCCA 65 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 923 ACTTTTGAGTCCTGGATCCCTATGATTCCAGGCTCCCTGT 50

SEQ ID NO 924 CCTTGAGATTTCATGGATGGTGACATATGGCCATTCTCTA 43

SEQ ID NO 925 AAAACCCATAAGTTCAGGTCCCTGTGCCCTCCACCCAGAA 53

SEQ ID NO 926 TCGTATCTGGGAGACTCACTTGGGAGAGCAATAGACTTGG 50

SEQ ID NO 927 TACAAGATGTGGTGGAGATAAGGCTGATGCTGGCACAGTG 50

SEQ ID NO 928 GTACACACCATGGTGTTCATCAGGGCCCTGGGTAGTCCCT 58

SEQ ID NO 929 GCTGTGACCTCACAGGAGTCCGTGCCTCCACCCCCTACTC 65

SEQ ID NO 991 TTGGCTGACCTGATTGCTGTGTCCTGTGTCAGCTGCTGCT 55

SEQ ID NO 992 ATGTACCATTTGCCCCTGGATGTTCTGCACTATAGGGTAA 45

SEQ ID NO 993 TACTTTTACCCATGCATTTAAAGTTCTAGGTGATATGGCC 38

SEQ ID NO 994 AAACATGGGTATCACTTCTGGGCTGAAAGCCTTCTCTTCT 45

SEQ ID NO 995 GGTGTTTAAATCTTGTGGGGTGGCTCCTTCTGATAATGCT 45

SEQ ID NO 996 CATTTGCATGGCTGCTTGATGTCCCCCCACTGTGTTTAGC 53

SEQ ID NO 997 CATCTGGCCTGGTGCAATAGGCCCTGCATGCACTGGATGC 60

SEQ ID NO 998 GGTACTAGTAGTTCCTGCTATGTCACTTCCCCTTGGTTCT 48

SEQ ID NO 999 GATAGGTGGATTATTTGTCATCCATCCTATTTGTTCCTGA 38

SEQ ID NO 1000 GTCCAGAATGCTGGTAGGGCTATACATTCTTACTATTTTA 38

SEQ ID NO 1001 GTCTACATAGTCTCTAAAGGGTTCCTTTGGTCCTTGTCTT 43

SEQ ID NO 1002 CTCCTGTGAAGCTTGCTCGGCTCTTAGAGTTTTATAGAAC 45

SEQ ID NO 1003 CGCATTTTGGACCAACAAGGTTTCTGTCATCCAATTTTTT 38

SEQ ID NO 1004 TCCTACTCCCTGACATGCTGTCATCATTTCTTCTAGTGTA 43

SEQ ID NO 1005 GCTCATTGCTTCAGCCAAAACTCTTGCCTTATGGCCGGGT 53

SEQ ID NO 1006 ATTGCCTCTCTGCATCATTATGGTAGCTGAATTTGTTACT 38

SEQ ID NO 1007 GCCACAATTGAAACACTTAACAATCTTTCTTTGGTTCCTA 35

SEQ ID NO 1008 TTTCCTAGGGGCCCTGCAATTTCTGGCTGTGTGCCCTTCT 55

SEQ ID NO 1009 CCCAGACCTGAAGCTCTCTTCTGGTGGGGCTGTTGGCTCT 60

SEQ ID NO 1010 GTCTATCGGCTCCTGCTTCTGAGGGGGAGTTGTTGTCTCT 55

SEQ ID NO 1011 GCCAAAGAGTGACCTGAGGGAAGTTAAAGGATACAGTTCC 48

SEQ ID NO 1012 CCTTTAGTTGCCCCCCTATCTTTATTGTGACGAGGGGTCG 53

SEQ ID NO 1013 CTTCTAATACTGTATCATCTGCTCCTGTATCTAATAGAGC 38

SEQ ID NO 1014 GTATCTGATCATACTGTCTTACTTTGATAAAACCTCCAAT 33

SEQ ID NO 1015 CTAATACTGTACCTATAGCTTTATGTCCACAGATTTCTAT 33

SEQ ID NO 1016 TCAACAGATTTCTTCCAATTATGTTGACAGGTGTAGGTCC 40

SEQ ID NO 1017 TTGGGCCATCCATTCCTGGCTTTAATTTTACTGGTACAGT 43

SEQ ID NO 1018 CAAATACTGGAGTATTGTATGGATTTTCAGGCCCAATTTT 35

SEQ ID NO 1019 CTTCCCAGAAGTCTTGAGTTCTCTTATTAAGTTCTCTGAA 38

SEQ ID NO 1020 CTGAAAAATATGCATCACCCACATCCAGTACTGTTACTGA 40

SEQ ID NO 1021 TGGTAAATGCAGTATACTTCCTGAAGTCTTCATCTAAGGG 40

SEQ ID NO 1022 ACTGATATCTAATCCCTGGTGTCTCATTGTTTATACTAGG 38

SEQ ID NO 1023 ATATTGCTGGTGATCCTTTCCATCCCTGTGGAAGCACATT 45

SEQ ID NO 1024 GTTTTCTAAAAGGCTCTAAGATTTTTGTCATGCTACTTTG 33

SEQ ID NO 1025 ACAAATCATCCATGTATTGATAGATAACTATGTCTGGATT 30

SEQ ID NO 1026 TTTTTGTTCTATGCTGCCCTATTTCTAAGTCAGATCCTAC 38

SEQ ID NO 1027 TGGTAAGTCCCCACCTCAACAGATGTTGTCTCAGCTCCTC 53 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 1028 TAGGCTGTACTGTCCATTTATCAGGATGGAGTTCATAACC 43

SEQ ID NO 1029 GTATGTCATTGACAGTCCAGCTGTCTTTTTCTGGCAGCAC 48

SEQ ID NO 1030 GGTAAATCTGACTTGCCCAATTCAATTTCCCCACTAACTT 40

SEQ ID NO 1031 TTCCTCTAAGGAGTTTACATAATTGCCTTACTTTAATCCC 35

SEQ ID NO 1032 CTGCTTCTTCTGTTAGTGGTATTACTTCTGTTAGTGCTTT 38

SEQ ID NO 1033 CTGCTATTAAGTCTTTTGATGGGTCATAATACACTCCATG 38

SEQ ID NO 1034 AAATTTGATATGTCCATTGGCCTTGCCCCTGCTTCTGTAT 43

SEQ ID NO 1035 CTGTTAATTGTTTTACATCATTAGTGTGGGCACCCCTCAT 40

SEQ ID NO 1036 ATGTTTCCTTTTGTATGGGCAGTTTAAATTTAGGAGTCTT 33

SEQ ID NO 1037 GAATCCAGGTGGCTTGCCAATACTCTGTCCACCATGTTTC 50

SEQ ID NO 1038 ATAATTTCACTAAGGGAGGGGTATTAACAAACTCCCACTC 40

SEQ ID NO 1039 AGGTTTCTGCTCCTACTATGGGTTCTTTCTCTAACTGGTA 43

SEQ ID NO 1040 TTCCTAATTTAGTCTCCCTGTTAGCTGCCCCATCTACATA 43

SEQ ID NO 1041 TTGCTTGTAACTCAGTCTTCTGATTTGTTGTGTCAGTTAG 38

SEQ ID NO 1042 CTATGTTTACTTCTAATCCCGAATCCTGCAAAGCTAGATA 38

SEQ ID NO 1043 GTTGTGCTTGAATGATTCCTAATGCATATTGTGAGTCTGT 38

SEQ ID NO 1044 GCTCTATTATTTGATTGACTAACTCTGATTCACTTTGATC 33

SEQ ID NO 1045 TCCAATTACTGTGATATTTCTCATGTTCATCTTGGGCCTT 38

SEQ ID NO 1046 TTGCTACTACAGGTGGCAGGTTAAAATCACTAGCCATTGC 45

SEQ ID NO 1047 CTCCTTTTAGCTGACATTTATCACAGCTGGCTACTATTTC 40

SEQ ID NO 1048 CTACCAGGATAACTTTTCCTTCTAAATGTGTACAATCTAG 35

SEQ ID NO 1049 GAATAACTTCTGCTTCTATATATCCACTGGCTACATGAAC 38

SEQ ID NO 1050 ACCAACAGGCGGCCCTAACCGTAGCACCGGTGAAATTGCT 58

SEQ ID NO 1051 GGGGATTGTAGGGAATTCCAAATTCCTGCTTGATTCCCGC 50

SEQ ID NO 1052 TCTTAAGATGTTCAGCCTGATCTCTTACCTGTCCTATAAT 38

SEQ ID NO 1053 CTACTATTCTTTCCCCTGCACTGTACCCCCCAATCCCCCC 58

SEQ ID NO 1054 TCCAGAGGAGCTTTGCTGGTCCTTTCCAAAGTGGATTTCT 48

SEQ ID NO 1055 TTATGTCACTATTATCTTGTATTACTACTGCCCCTTCACC 38

SEQ ID NO 1056 CCTGTCTACTTGCCACACAATCATCACCTGCCATCTGTTT 48

SEQ ID NO 1057 CATATGGTGTTTTACTAAACTTTTCCATGTTCTAATCCTC 33

SEQ ID NO 1058 GTGATGTCTATAAAACCATCCCCTAGCTTTCCCTGAAACA 43

SEQ ID NO 1059 GATGTGTACTTCTGAACTTATTCTTGGATGAGGGCTTTCA 40

SEQ ID NO 1060 ACCCCAATATGTTGTTATTACCAATCTAGCATCCCCTAGT 40

SEQ ID NO 1061 GTCAAAGTAATACAGATGAATTAGTTGGTCTGCTAGTTCA 35

SEQ ID NO 1062 GTGTCCTAATAAGGCCTTTCTTATAGCAGAGTCTGAAAAA 38

SEQ ID NO 1063 CTTGTTATGTCCTGCTTGATATTCACACCTAGGGCTAACT 43

SEQ ID NO 1064 TGTTATTAATGCTGCTAGTGCCAAGTATTGTAGAGATCCT 38

SEQ ID NO 1065 CAGTTTCGTAACACTAGGCAAAGGTGGCTTTATCTTTTTT 38

SEQ ID NO 1066 GTGGCCCTTGGTCTTCTGGGGCTTGTTCCATCTATCCTCT 55

SEQ ID NO 1067 CCTCTAAAAGCTCTAGTGTCCATTCATTGTGTGGCTCCCT 48

SEQ ID NO 1068 GCCAAATCCTAGGAAAATGTCTAACAGCTTCATTCTTAAG 38

SEQ ID NO 1069 TATCCCCATAAGTTTCATAGATATGTTGCCCTAAGCCATG 40

SEQ ID NO 1070 GTTGTTGCAGAATTCTTATTATGGCTTCCACTCCTGCCCA 45

SEQ ID NO 1071 TCTGCTATGTCGACACCCAATTCTGAAAATGGATAAACAG 40 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO 1072 ACTGGCTCCATTTCTTGCTCTCCTCTGTCGAGTAACGCCT 53

SEQ ID NO 1073 GGCTGACTTCCTGGATGCTTCCAGGGCTCTAGTCTAGGAT 55

SEQ ID NO 1074 GAGATGCCTAAGGCTTTTGTTATGAAACAAACTTGGCAAT 38

SEQ ID NO 1075 TGATGAGCTCTTCGTCGCTGTCTCCGCTTCTTCCTGCCAT 55

SEQ ID NO 1076 ACTTACTGCTTTGATAGAGAAGCTTGATGAGTCTGACTGT 40

SEQ ID NO 1077 GCTACTATTGCTACTATTGGTATAGGTTGCATTACATGTA 35

SEQ ID NO 1078 CTGTCTTCTGCTCTTTCTATTAGTCTATCAATTAACCTGT 35

SEQ ID NO 1079 TCATCAACATCCCAAGGAGCATGGTGCCCCATCTCCACCC 58

SEQ ID NO 1080 CATAATAGACTGTGACCCACAATTTTTCTGTAGCACTACA 38

SEQ ID NO 1081 CACAAAATAGAGTGGTGGTTGCTTCCTTCCACACAGGTAC 48

SEQ ID NO 1082 AAACATTATGTACCTCTGTATCATATGCTTTAGCATCTGA 33

SEQ ID NO 1083 CTTGTGGGTTGGGGTCTGTGGGTACACAGGCATGTGTGGC 60

SEQ ID NO 1084 AACTGATTATATCCTCATGCATCTGTTCTACCATGTCATT 35

SEQ ID NO 1085 GTGGGGTTAATTTTACACATGGCTTTAGGCTTTGATCCCA 43

SEQ ID NO 1086 TAGTATCATTCTTCAAATCAGTGCACTTTAAACTAACACA 30

SEQ ID NO 1087 CTCCTTTCTCCATTATCATTCTCCCGCTACTACTATTGGT 43

SEQ ID NO 1088 TTGTCAACTTATAGCTGGTAGTATCATTATCTATTGGTAT 30

SEQ ID NO 1089 ATACCTTTGGACAGGCCTGTGTAATGACTGAGGTGTTACA 45

SEQ ID NO 1090 TTCCATGTGTACATTGTACTGTGCTGACATTTGTACATGG 40

SEQ ID NO 1091 GACTGCCATTTAACAGCAGTTGAGTTGATACTACTGGCCT 45

SEQ ID NO 1092 CCGTGAAATTGACAGATCTAATTACTACCTCTTCTTCTGC 40

SEQ ID NO 1093 CTACAGATGTGTTCAGCTGTACTATTATGGTTTTAGCATT 35

SEQ ID NO 1094 CTATTGTAACAAATGCTCTCCCTGGTCCTCTCTGGATACG 48

SEQ ID NO 1095 TACTAATGTTACAATGTGCTTGTCTCATATTTCCTATTTT 28

SEQ ID NO 1096 ATTTGCTAGCTATCTGTTTTAAAGTGTTATTCCATTTTGC 30

SEQ ID NO 1097 TAAAACTGTGCGTTACAATTTCTGGGTCCCCTCCTGAGGA 48

SEQ ID NO 1098 ACAGTTGTGTTGAATTACAGTAGAAAAATTCCCCTCCACA 38

SEQ ID NO 1099 ACCCTTCAGTACTCCAAGTACTATTAAACCAAGTACTATT 35

SEQ ID NO 1100 TGCATGGGAGGGTGATTGTGTCACTTCCTTCAGTGTTATT 45

SEQ ID NO 1101 ATGAACATCTAATTTGTCCACTGATGGGAGGGGCATACAT 43

SEQ ID NO 1102 TATTACCACCATCTCTTGTTAATAGCAGCCCTGTAATATT 35

SEQ ID NO 1103 TATCTCCTCCTCCAGGTCTGAAGATCTCGGACTCATTGTT 48

SEQ ID NO 1104 GTGGTAGCTGAAGAGGCACAGGCTCCGCAGATCGTCCCAG 63

SEQ ID NO 1105 TTCCACAATCCTCGTTACAATCAAGAGTAAGTCTCTCAAG 40

SEQ ID NO 1106 CCACCAATATTTGAGGGCTTCCCACCCCCTGCGTCCCAGA 60

SEQ ID NO 1107 AGCACTATTCTTTAGTTCCTGACTCCAATACTGTAGGAGA 40

SEQ ID NO 1108 CCCCTCAGCTACTGCTATGGCTGTGGCATTGAGCAAGCTA 55

SEQ ID NO 1109 AGCTCTACAAGCTCCTTGTACTACTTCTATAACCCTATCT 40

SEQ ID NO 1110 ACACTACTTTTTGACCACTTGCCACCCATCTTATAGCAAA 40

SEQ ID NO 1111 TCAGCTCGTCTCATTCTTTCCCTTACAGTAGGCCATCCAA 48

SEQ ID NO 1112 TCCAGGTCTCGAGATGCTGCTCCCACCCTATCTGCTGCTG 60

SEQ ID NO 1113 TTGGTAGCTGCTGTATTGCTACTTGTGATTGCTCCATGTT 43

SEQ ID NO 1114 GTCATTGGTCTTAAAGGTACCTGAGGTGTGACTGGAAAAC 45

SEQ ID NO 1115 TCTTGTCTTCTTTGGGAGTGAATTAGCCCTTCCAGTCCCC 50 % GC

SEQ ID NO Nucleotide Sequence

Content

SEQ ID NO: 1116 GGGAAGTAGCCTTGTGTGTGGTAGATCCACAGATCAAGGA 50

SEQ ID NO: 1117 GGATATCTGACCCCTGGCCCTGGTGTGTAGTTCTGCTAAT 53

SEQ ID NO: 1118 GGCTCAACTGGTACTAGCTTGTAGCACCATCCAAAGGTCA 50

SEQ ID NO: 1119 AAGCTGGTGTTCTCTCCTTTATTGGCCTCTTCTATCTTAT 40

SEQ ID NO: 1120 CTCTCCGGGTCATCCATCCCATGCAGGCTCACAGGGTGTA 60

SEQ ID NO: 1121 TGAAATGCTAGGCGGCTGTCAAACCTCCACTCTAACACTT 48

SEQ ID NO: 1122 CAGTTCTTGAAGTACTCCGGATGCAGCTCTCGGGCCACGT 58

[0247] A nucleic acid probe may be a non- labeled probe, or a probe that does not contain a detectable moiety. A non-labeled probe may further interact with a labeled probe (e.g., a labeled nucleic acid probe). A non- labeled probe may hybridize with a labeled nucleic acid probe. A non-labeled probe may also interact with a labeled polypeptide probe. The labeled polypeptide probe may be a protein that recognizes a sequence within the non- labeled probe.

A labeled probe may include a nucleic acid portion and a polypeptide tag portion and the polypeptide tag portion may further interact with a molecule comprising a detectable moiety.

For example, a non-labeled probe may be a nucleic acid probe comprising a streptavidin

which may interact with a biotinylated molecule comprising a detectable moiety.

[0248] A nucleic acid probe may comprise about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% sequence specificity or sequence complementarity to a target site of a regulatory element. A nucleic acid probe may comprise about 95%, about 96%, about

97%, about 98%, about 99%, or about 100% sequence specificity or sequence

complementarity to a target nucleic acid sequence. A nucleic acid probe may comprise about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% sequence specificity or sequence complementarity to a target viral nucleic acid sequence The hybridization may be a high stringent hybridization condition.

[0249] A nucleic acid probe may hybridize with a genomic sequence that is present in low or single copy numbers (e.g., genomic sequences that are not repetitive elements). As used

herein, repetitive element refers to a DNA sequence that is present in many identical or

similar copies in the genome. Repetitive elements are not intended to refer to a DNA

sequence that is present on each copy of the same chromosome (e.g., a DNA sequence that is present only once, but is found on both copies of chromosome 11, would not be considered a repetitive element, and would be considered a sequence that is present in the genome as one copy). The genome may consist of three broad sequence components: single copy or at least very low copy number DNA (approximately 60% of the human genome); moderately

repetitive elements (approximately 30% of the human genome); and highly repetitive elements (approximately 10% of the human genome). For a review, see Human Molecular Genetics, Chapter 7 (1999), John Wiley & Sons, Inc.

[0250] A nucleic acid probe may have reduced off-target interaction. For example, "off- target" or "off-target interaction" may refer to an instance in which a nucleic acid probe against a given target hybridizes or interact with another target site (e.g., a different DNA sequence, RNA sequence, or a cellular protein or other moiety).

[0251] A nucleic acid probe may further be cross-linked to a target site of a regulatory element. For example, the nucleic acid probe may be cross-linked by a photo-crosslinking means such as UV or by a chemical cross-linking means such as by formaldehyde, or through a reactive group within the nucleic acid probe. Reactive group may include sulfhydryl- reactive linkers such as bismaleimidohexane (BMH), and the like.

[0252] A nucleic acid probe may include natural or unnatural nucleotide analogues or bases or a combination thereof. The unnatural nucleotide analogues or bases may comprise modifications at one or more of ribose moiety, phosphate moiety, nucleoside moiety, or a combination thereof. The unnatural nucleotide analogues or bases may comprise 2'-0- methyl, 2' -O-methoxyethyl (2'-0-MOE), 2' -O-aminopropyl, 2'-deoxy, T-deoxy-2'-fluoro, 2'- O-aminopropyl (2'-0-AP), 2'-0-dimethylaminoethyl (2'-0-DMAOE), 2'-0- dimethylaminopropyl (2'-0-DMAP), T-O- dimethylaminoethyloxyethyl (2'-0-DMAEOE), or 2'-0-N-methylacetamido (2'-0-NMA) modified, locked nucleic acid (LNA), ethylene nucleic acid (ENA), peptide nucleic acid (PNA), , 5'- anhydrohexitol nucleic acids (HNA), morpholino, methylphosphonate nucleotides, thiolphosphonate nucleotides, or 2'-fluoro N3- P5'-phosphoramidites. The nucleic acid probes may further comprise one or more abasic sites. The abasic site may further be functionalized with a detectable moiety.

[0253] A nucleic acid probe may comprise a Transcription Activator-Like Effector (TALE) sequence. A TALE may comprise a DNA-binding module which includes a variable number of about 33-35 amino acid residue repeats. Each amino acid repeat recognizes one base pair through two adjacent amino acids (such as at amino acid positions 12 and 13 of the repeat). As such, the amino acid repeat may also be referred to as repeat- variable diresidue (RVD).

[0254] A TALE probe described herein may comprise between about 1 to about 50 TALE repeat modules. A TALE probe described herein may comprise between about 5 and about 45, between about 8 and about 45, between about 10 and about 40, between about 12 and about 35, between about 15 and about 30, between about 20 and about 30, between about 8 and about 40, between about 8 and about 35, between about 8 and about 30, between about 10 and about 35, between about 10 and about 30, between about 10 and about 25, between about 10 and about 20, or between about 15 and about 25 TAL effector repeat modules.

[0255] A TALE probe described herein may comprise about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, or about 50 TALE repeat modules. A TALE probe described herein may comprise about 5 TALE repeat modules. A TALE probe described herein may comprise about 10 TALE repeat modules. A TALE probe described herein may comprise about 11 TALE repeat modules. A TALE probe described herein may comprise about 12 TALE repeat modules. A TALE probe described herein may comprise about 13 TALE repeat modules. A TALE probe described herein may comprise about 14 TALE repeat modules. A TALE probe described herein may comprise about 15 TALE repeat modules. A TALE probe described herein may comprise about 16 TALE repeat modules. A TALE probe described herein may comprise about 17 TALE repeat modules. A TALE probe described herein may comprise about 18 TALE repeat modules. A TALE probe described herein may comprise about 19 TALE repeat modules. A TALE probe described herein may comprise about 20 TALE repeat modules. A TALE probe described herein may comprise about 21 TALE repeat modules. A TALE probe described herein may comprise about 22 TALE repeat modules. A TALE probe described herein may comprise about 23 TALE repeat modules. A TALE probe described herein may comprise about 24 TALE repeat modules. A TALE probe described herein may comprise about 25 TALE repeat modules. A TALE probe described herein may comprise about 26 TALE repeat modules. A TALE probe described herein may comprise about 27 TALE repeat modules. A TALE probe described herein may comprise about 28 TALE repeat modules. A TALE probe described herein may comprise about 29 TALE repeat modules. A TALE probe described herein may comprise about 30 TALE repeat modules. A TALE probe described herein may comprise about 35 TALE repeat modules. A TALE probe described herein may comprise about 40 TALE repeat modules. A TALE probe described herein may comprise about 45 TALE repeat modules. A TALE probe described herein may comprise about 50 TALE repeat modules.

[0256] A TAL effector repeat module may be a wild-type TALE DNA-binding module or a modified TALE DNA-binding repeat module enhanced for specific recognition of a nucleotide. A TALE probe described herein may comprise one or more wild-type TALE DNA-binding module. A TALE probe described herein may comprise one or more modified TAL effector DNA-binding repeat module enhanced for specific recognition of a nucleotide. A modified TALE DNA-binding repeat module may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more mutations that may enhance the repeat module for specific recognition of a nucleic acid sequence (e.g., a target sequence). In some cases, a modified TALE DNA- binding repeat module is modified at amino acid position 2, 3, 4, 11, 12, 13, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, or 35. In some cases, a modified TALE DNA-binding repeat module is modified at amino acid positions 12 or 13.

[0257] A TALE repeat module may be a repeat module-like domain or RVD-like domain. A RVD-like domain has a sequence different from naturally occurring polynucleotide repeat module comprising RVD (RVD domain) but have a similar function and/or global structure. Non- limiting examples of RVD-like domains include protein domains selected from Puf RNA binding protein or Ankyrin super- family.

[0258] A TALE repeat module may comprise a RVD domain of TABLE 3. A TALE probe described herein may comprise one or more RVD domains selected from TABLE 3.

Sometimes, A TALE probe described herein may comprise up to 1, up to 2, up to 3, up to 4, up to 5, up to 6, up to 7, up to 8, up to 9, up to 10, up to 11, up to 12, up to 13, up to 14, up to 15, up to 16, up to 17, up to 18, up to 19, up to 20, up to 21, up to 22, up to 23, up to 24, up to 25, up to 26, up to 27, up to 28, up to 29, up to 30, up to 31, up to 32, up to 33, up to 34, up to 35, up to 36, up to 37, up to 38, up to 39, up to 40, up to 45, up to 50, up to 60, up to 70, up to 80, up to 90, or up to 100 RVD domains selected from TABLE 3.

TABLE 3

RVD Nucleotide

NA G

SN G or A

SH G

YG T

IS -

*Denotes a gap in the repeat sequence corresponding to a lack of an amino acid residue at the second position of the RVD.

[0259] An RVD domain may recognize or interact with one nucleotide. An RVD domain may recognize or interact with more than one nucleotide. The efficiency of a RVD domain at recognizing a nucleotide is ranked as "strong", "intermediate" or "weak". The ranking may be according to a ranking described in Streubel et ah, "TAL effector RVD specificities and efficiencies," Nature Biotechnology 30(7): 593-595 (2012). The ranking of RVD may be as illustrated in TABLE 4, based on the ranking provided in Streubel et al. Nature

Biotechnology 30(7): 593-595 (2012).

TABLE 4

*Denotes a gap in the repeat sequence corresponding to a lack of an amino acid residue at the second position of the RVD.

[0260] A TALE DNA-binding domain may further comprise a C-terminal truncated TALE DNA-binding repeat module. A C-terminal truncated TALE DNA-binding repeat module may be between about 18 and about 40 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be between about 20 and about 40, between about 22 and about 38, between about 24 and about 35, between about 28 and about 32, between about 25 and about 40, between about 25 and about 38, between about 25 and about 30, between about 28 and about 40, or between about 28 and about 35 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29, at least 30, at least 31, at least 32, at least 33, at least 34, at least 35, at least 36, at least 37, at least 38, at least 39, or more residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36 about 37, about 38, about 39, or about 40 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 18 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 19 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 20 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 21 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 22 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 23 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 24 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 25 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 26 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 27 residues in length. A C-terminal truncated TALE DNA- binding repeat module may be about 28 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 29 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 30 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 31 residues in length. A C- terminal truncated TALE DNA-binding repeat module may be about 32 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 33 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 34 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 35 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 36 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 37 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 38 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 39 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be about 40 residues in length. A C-terminal truncated TALE DNA-binding repeat module may be a RVD domain of TABLE 3.

[0261] A TALE DNA-binding domain may further comprise an N-terminal cap. An N- terminal cap may be a polypeptide portion flanking the DNA-binding repeat module. An N- terminal cap may be any length and may comprise from about 0 to about 136 amino acid residues in length. An N-terminal cap may be about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120, or about 130 amino acid residues in length. An N-terminal cap may modulate structural stability of the DNA-binding repeat modules. An N-terminal cap may modulate nonspecific interactions. An N-terminal cap may decrease nonspecific interaction. An N-terminal cap may reduce off-target effect. As used here, off-target effect refers to the interaction of a TALE protein with a sequence that is not the target sequence of interest. An N-terminal cap may further comprise a wild-type N-terminal cap sequence of a TALE protein or may comprise a modified N-terminal cap sequence.

[0262] A TALE DNA-binding domain may further comprise a C-terminal cap sequence. A C-terminal cap sequence may be a polypeptide portion flanking the C-terminal truncated TALE DNA-binding repeat module. A C-terminal cap may be any length and may comprise from about 0 to about 278 amino acid residues in length. A C-terminal cap may be about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 60, about 80, about 100, about 150, about 200, or about 250 amino acid residues in length. A C-terminal cap may further comprise a wild-type C-terminal cap sequence of a TALE protein, or may comprise a modified C-terminal cap sequence.

[0263] A nuclease domain may be linked to a TALE DNA-binding domain either directly or through a linker. A linker may be between about 1 and about 50 amino acid residues in length. A linker may be from about 5 to about 45, from about 5 to about 40, from about 5 to about 35, from about 5 to about 30, from about 5 to about 25, from about 5 to about 20, from about 5 to about 15, from about 10 to about 40, from about 10 to about 35, from about 10 to about 30, from about 10 to about 25, from about 10 to about 20, from about 12 to about 40, from about 12 to about 35, from about 12 to about 30, from about 12 to about 25, from about 12 to about 20, from about 14 to about 40, from about 14 to about 35, from about 14 to about 30, from about 14 to about 25, from about 14 to about 20, from about 14 to about 16, from about 15 to about 40, from about 15 to about 35, from about 15 to about 30, from about 15 to about 25, from about 15 to about 20, from about 15 to about 18, from about 18 to about 40, from about 18 to about 35, from about 18 to about 30, from about 18 to about 25, from about 18 to about 24, from about 20 to about 40, from about 20 to about 35, from about 20 to about 30, or from about 25 to about 30 amino acid residues in length.

[0264] A linker for linking a nuclease domain to a TALE DNA-binding domain may be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 35, about 40, about 45, or about 50 amino acid residues in length. A linker may be about 10 amino acid residues in length. A linker may be about 11 amino acid residues in length. A linker may be about 12 amino acid residues in length. A linker may be about 13 amino acid residues in length. A linker may be about 14 amino acid residues in length. A linker may be about 15 amino acid residues in length. A linker may be about 16 amino acid residues in length. A linker may be about 17 amino acid residues in length. A linker may be about 18 amino acid residues in length. A linker may be about 19 amino acid residues in length. A linker may be about 20 amino acid residues in length. A linker may be about 21 amino acid residues in length. A linker may be about 22 amino acid residues in length. A linker may be about 23 amino acid residues in length. A linker may be about 24 amino acid residues in length. A linker may be about 25 amino acid residues in length. A linker may be about 26 amino acid residues in length. A linker may be about 27 amino acid residues in length. A linker may be about 28 amino acid residues in length. A linker may be about 29 amino acid residues in length. A linker may be about 30 amino acid residues in length.

[0265] A TALE probe may be designed to recognize each strand of a double- stranded segment of DNA by engineering the TALE to include a sequence of repeat- variable diresidue subunits that may comprise about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, or about 40 amino acid repeats capable of associating with specific DNA sequences, such that the detectable label of the TALE probe is located at the target nucleic acid sequence.

[0266] A nucleic acid probe may be a locked nucleic acid probe (such as a labeled locked nucleic acid probe), a labeled or unlabeled peptide nucleic acid (PNA) probe, a labeled or unlabeled oligonucleotide, an oligopaint, an ECHO probe, a molecular beacon probe, a padlock (or molecular inversion probe), a labeled or unlabeled toe-hold probe, a labeled TALE probe, a labeled ZFN probe, or a labeled CRISPR probe.

[0267] A nucleic acid probe may be a labeled or unlabeled locked nucleic acid probe or a labeled or unlabeled peptide nucleic acid probe. Locked nucleic acid probes and peptide nucleic acid probes are known to those of skill in the art and are described in Briones et al., Anal Bioanal Chem (2012) 402:3071-3089.

[0268] A nucleic acid probe may be a padlock (or molecular inversion probe). A padlock probe may be hybridized to a target regulatory element sequence in which the two ends may correspond to the target sequence. A padlock probe may be ligated together by a ligase (such as T4 ligase) when bound to the target sequence. An amplification (such as a rolling circle amplification or RCA) may be performed utilizing for example φ29 polymerase, which may result in a single stranded DNA comprising multiple tandem copies of the target sequence.

[0269] A nucleic acid probe may be an oligopaint as described in U.S. Publication No.

2010/0304994; and in Beliveau, et al., "Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes," PNAS 109(52): 21301-21306 (2012). Oligopaint may refer to detectably labeled polynucleotides that have sequences

complementary to an oligonucleotide sequence (such as a portion of a DNA sequence, like a particular chromosome or sub-chromosomal region of a particular chromosome). Oligopaints may be generated from synthetic probes and arrays that are, optionally, computationally patterned (rather than using natural DNA sequences and/or chromosomes as a template).

[0270] A nucleic acid probe can be a labeled or unlabeled toe-hold probe. Toe-hold probes are known to those of skill in the art as described in Zhang et al., Optimizing the Specificity of Nucleic Acid Hybridization, Nature Chemistry 4: 208-214 (2012).

[0271] A nucleic acid probe may be a molecular beacon. Molecular beacons may be hairpin shaped molecules with an internally quenched fluorophore whose fluorescence is restored when they bind to a target nucleic acid sequence. Molecular beacons are known to those of skill in the art as described in Guo et al., Anal. Bioanal. Chem. (2012) 402:3115-3125.

[0272] A nucleic acid probe may be an ECHO probe. ECHO probes may be sequence- specific, hybridization- sensitive, quencher-free fluorescent probes for RNA detection, which may be designed using the concept of fluorescence quenching caused by intramolecular excitonic interaction of fluorescent dyes. ECHO probes are known to those of skill in the art as described in Kubota et al., PLoS ONE, Vol. 5, Issue 9, el3003 (2010); or Okamoto, Chem. Soc. Rev., 2011, 40, 5815-5828, Wang et al., RNA (2012), 18: 166-175.

[0273] A probe may be a clustered regularly interspaced palindromic repeat (CRISPR) probe. The CRISPR system may use a Cas9 protein to recognize DNA sequences, in which the target specificity may be solely determined by a small guide (sg) RNA and a protospacer adjacent motif (PAM). Upon binding to target DNA, the Cas9-sgRNA complex may generate a DNA double- stranded break. For imaging applications, a Cas9 protein may be replaced with an endonuclease-deactivated Cas9 (dCas9) protein. For example, imaging a cell, such as by fluorescence in situ hybridization (FISH), may be achieved by synthesizing a dCas9 within the cell, synthesizing RNA within the cell to bind genomic DNA and to complex with the dCas9 forming a dCas9/RNA complex, labeling the dCas9/RNA complex, and imaging the labeled dCas9/RNA complex within the live cell bound to genomic DNA. The endonuclease-deactivated Cas9 may be synthesized in vivo by using an integrated construct, a transiently transfected construct, by injection into the cell of a syncitia of nuclei or via electroporation into cells and/or nuclei.

[0274] A probe may comprise an endonuclease-deactivated Cas9 (dCas9) protein as described in Chen et al., "Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system," Cell 155(7): 1479-1491 (2013); or Ma et al., "Multicolor CRISPR labeling of chromosomal loci in human cells," PNAS 112(10): 3002-3007 (2015). The dCas9 protein may be further labeled with a detectable moiety.

[0275] The RNA of the Cas9/RNA complex may be synthesized in vivo by using an integrated construct, a transiently transfected construct, by injection into the cell of a syncitia of nuclei or via electroporation into cells and/or nuclei. The Cas9/RNA complex may be labeled by making a fusion protein that includes Cas9 and a reporter, by injection of RNA that has been attached to a reporter into the cell or by a syncitia of nuclei including RNA that has been attached to a reporter, by electroporation into cells or nuclei or by indirect labeling of the RNA by hybridization with a labeled secondary oligonucleotide. The label may be a conditional reporter, based on the binding of Cas9/RNA to the target nucleic acid. The label may be quenched and may then be activated upon the Cas9/RNA complex binding to the target nucleic acid.

[0276] A probe may be a transcription activator-like effector nuclease (TALEN) probe. TALENs are engineered restriction enzymes generated by fusing the TALE DNA binding domain to a Fokl DNA cleavage domain. A Fokl DNA cleavage domain may comprise an endonuclease-deactivated Fokl domain. A nucleic acid probe may be a TALEN probe comprising an endonuclease-deactivated Fokl domain.

[0277] A probe may be a zinc-finger nuclease (ZFN) probe. Similar to TALEN, a zinc-finger nuclease is an engineered restriction enzyme generated by fusing a zinc finger DNA-binding domain to a zinc finger nuclease. A zinc finger nuclease may comprise an endonuclease- deactivated zinc finger nuclease. A nucleic acid probe may be a ZFN probe comprising an endonuclease-deactivated zinc finger nuclease.

[0278] A probe disclosed herein may be a polypeptide probe. A polypeptide probe may include a protein or a binding fragment thereof that interacts with a target site (such as a nucleic acid target site or a protein target) of interest. A polypeptide probe may comprise a DNA-binding protein, a RNA-binding protein, a protein involved in the

transcription/translation process or detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element.

[0279] A polypeptide probe may be a DNA-binding protein. The DNA-binding protein may be a transcription factor that modulates the transcription process, polymerases, or histones. A DNA-binding protein may comprise a zinc finger domain, a helix-turn-helix domain, a leucine zipper domain (such as a basic leucine zipper domain), a high mobility group box (HMG-box) domain, and the like. The DNA-binding protein may interact with a nucleic acid region in a sequence specific manner. The DNA-binding protein may interact with a nucleic acid region in a sequence non-specific manner. The DNA-binding protein may interact with single- stranded DNA. The DNA-binding protein may interact with double- stranded DNA. The DNA-binding protein probe may further comprise a detectable moiety.

[0280] A polypeptide probe may be a RNA-binding protein. The RNA-binding protein may participate in forming ribonucleoprotein complexes. The RNA-binding protein may modulate post-transcription such as in splicing, polyadenylation, mRNA stabilization, mRNA localization, or in translation. A RNA-binding protein may comprise a RNA recognition motif (RRM), dsRNA binding domain, zinc finger domain, K-Homology domain (KH domain), and the like. The RNA-binding protein may interact with single- stranded RNA. The RNA-binding protein may interact with double- stranded RNA. The RNA-binding protein probe may further comprise a detectable moiety.

[0281] A polypeptide probe may be a protein that may detect an open or relaxed portion of a chromatin. The polypeptide probe may be a modified enzyme that lacks cleavage activity. The modified enzyme may be an enzyme that recognizes DNA or RNA (double- stranded or single- stranded). Examples of modified enzymes may be obtained from oxidoreductases, transferases, hydrolases, lyases, isomerases, or ligases. A modified enzyme may be an endonuclease (such as a deactivated restriction endonuclease such as the TALEN or CRISPR probes described herein).

[0282] A polypeptide probe may be an antibody or binding fragment thereof. The antibody or binding fragment thereof may be a protein interacting partner of a product of a regulatory element. The antibody or binding fragment thereof may comprise a humanized antibody or binding fragment thereof, murine antibody or binding fragment thereof, chimeric antibody or binding fragment thereof, monoclonal antibody or binding fragment thereof, monovalent Fab', divalent Fab2, F(ab)'3 fragments, single-chain variable fragment (scFv), bis-scFv, (scFv)2, diabody, minibody, nanobody, triabody, tetrabody, disulfide stabilized Fv protein (dsFv), single-domain antibody (sdAb), Ig NAR, camelid antibody or binding fragment thereof, or a chemically modified derivative thereof. The antibody or binding fragment thereof may further comprise a detectable moiety.

[0283] Multiple probes may be used together in a probe set to detect a nucleic acid sequence using Nano-FISH. A probe set can also be referred to herein as a "probe pool." The probe set may be designed for the detection of the target nucleic acid sequence. For example, the probe set may be optimized for probes based on GC content, 16mer base matches (for determining binding specificity of the probe), and their predicted melting temperature when hybridized. The 16mer base matches may have a total of 24 matches to the 16mer database. In some embodiments, probe sets with greater than 100 16-mer database matches may be discarded.

[0284] Exemplary probe nucleotide sequences are shown in TABLE 2, TABLE 5, and TABLE 14 for probe sets for different target sequences. Some exemplary probe sequences may be target sequences located in the GREB 1 promoter of chromosome 2, ER iDHS l of chromosome 2, ER iDHS2 of chromosome 2, HBGlup of chromosome 11, HBG2 up of chromosome 11, HS l of chromosome 11, HS2 of chromosome 11, HS3 of chromosome 11, HS4 of chromosome 11, HS5 of chromosome 11, HS l Lflank of chromosome 11, HS l 2flank of chromosome 11, HS2 3 flank of chromosome 11, HS3 4flank of chromosome 11, HS4 5 flank of chromosome 11, HS5 Rflank of chromosome 11, CCNDl SNP of chromosome 11, CCNDl CTL of chromosome 11, the CCNDl promoter of chromosome 11, Chromosome 18 deadl of chromosome 18, Chromosome 18 dead2 of chromosome 18, Chromosome dead3 of chromosome 18, CNOT promoter of chromosome 19, CNOT interl of chromosome 19, CNOT inter2 of chromosome 19, CNOT inter3 of chromosome 19, TSEN promoter of chromosome 19, KLK2 promoter of chromosome 19, KLK3 promoter of chromosome 19, or KLK eRNA of chromosome 19. GREB 1 is gene that may be induced by estrogen stimulation of MCF-7 breast cancer cells. ER iDHS l and ER iDHS2 are DHS that may be induced by estrogen stimulation of MCF-7 breast cancer cells. HBGlup and HBG2up are hemoglobin genes expressed in K562 erthyro leukemia cells. HS l, HS2, HS3, HS4, and HS5 are hypersensitive sits in the beta-globin locus control region, and HS l Lflank, HS2 3flank, HS3 4flank, HS4 5flank, HS5 Rflank are sequences in the intervening regions between HS 1-HS5. CCND SNP is an enhancer for the CCNDl gene, CCNDl CTL is a control region adjacent to the CCNDl SNP, and the CCNDl promoter is the promoter region of the CCNDl gene. Chromosome 18 deadl, Chromosome 18 dead 2, and Chromosome 18 dead3 are non- hypersensitive regions of chromosome 18. The CNOT promoter is the promoter (active region) of CNOT. The TSEN promoter is the promoter (active region) of TSEN. The KLK2 promoter is the promoter KLK2. The KLK3 promoter is the promoter of KLK3. KLK eRNA is an enhancer for the KLK2 gene and/or the KLK3 gene, and which may also enhance RNA. For example, a probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 1 - SEQ ID NO: 39 may be used to detect the GREB 1 promoter in chromosome 2. A Q570 labeled probe set comprising probes with SEQ ID NO: 7 - SEQ ID NO: 35 may be used to detect the GREB 1 promoter in chromosome 2. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 40 - SEQ ID NO: 72 may be used to detect the ER iDHS 1 in chromosome 2. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 73 - SEQ ID NO: 104 may be used to detect the ER iDHS 2 in chromosome 2. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 105 - SEQ ID NO: 134 may be used to detect the HBGlup in chromosome 11. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 135 - SEQ ID NO: 164 may be used to detect the HBG2up in chromosome 11. A probe set comprising at least nine different Q570/670 labeled probes selected from the group consisting of SEQ ID NO: 165 - SEQ ID NO: 194 may be used to detect HS 1 in chromosome 11. A probe set comprising at least nine different Q570/670 labeled probes selected from the group consisting of SEQ ID NO: 195 - SEQ ID NO: 224 may be used to detect HS2 in chromosome 11. A probe set comprising at least nine different Q570/670 labeled probes selected from the group consisting of SEQ ID NO: 225 - SEQ ID NO: 254 may be used to detect HS3 in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 255 - SEQ ID NO: 298 may be used to detect HS4 in chromosome 11. A probe set comprising at least nine different Q570/670 labeled probes selected from the group consisting of SEQ ID NO: 299 - SEQ ID NO: 340 may be used to detect HS5 in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 341 - SEQ ID NO: 370 may be used to detect HS 1 Lflank in chromosome 11. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 371 - SEQ ID NO: 400 may be used to detect HS 1 2flank in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 401 - SEQ ID NO: 430 may be used to detect HS2 3flank in chromosome 11. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 431 - SEQ ID NO: 460 may be used to detect HS3 4flank in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 461 - SEQ ID NO: 484 may be used to detect HS4 5flank in chromosome 11. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 485 - SEQ ID NO: 514 may be used to detect HS5 Rflank in chromosome 11. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 515 - SEQ ID NO: 544 may be used to detect CCND1 SNP in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 545, SEQ ID NO: 539 - SEQ ID NO: 544, or SEQ ID NO: 546 - SEQ ID NO: 564 may be used to detect CCND1 CTL in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 559 - SEQ ID NO: 592 may be used to detect the CCND1 promoter in chromosome 11. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 593 - SEQ ID NO: 622 may be used to detect Chromosome 18 deadl in chromosome 18. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 623 - SEQ ID NO: 652 may be used to detect Chromosome 18 dead2 in chromosome 18. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 653 - SEQ ID NO: 682 may be used to detect Chromosome 18 dead3 in chromosome 18. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 683 - SEQ ID NO: 712 may be used to detect the CNOT3 promoter in chromosome 19. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 713 - SEQ ID NO: 742 may be used to detect the TSEN34 promoter in chromosome 19. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 743 - SEQ ID NO: 772 may be used to detect CNOT3 interl in chromosome 19. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 773 - SEQ ID NO: 802 may be used to detect CNOT3 inter2 in chromosome 19. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 803 - SEQ ID NO: 832 may be used to detect CNOT3 inter3 in chromosome 19. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 833 - SEQ ID NO: 862 may be used to detect the KLK2 promoter in chromosome 19. A probe set comprising at least nine different Q570 labeled probes selected from the group consisting of SEQ ID NO: 863 - SEQ ID NO: 892 may be used to detect the KLK3 promoter in chromosome 19. A probe set comprising at least nine different Q670 labeled probes selected from the group consisting of SEQ ID NO: 893 - SEQ ID NO: 929 may be used to detect KLK eRNA in chromosome 19. A probe set comprising at least nine different probes labeled with a detection agent selected from the group consisting of SEQ ID NO: 930 - SEQ ID NO: 988 or SEQ ID NO: 1123 may be used to detect a lentiviral nucleic acid sequence. A probe set comprising at least nine different probes labeled with a detection agent selected from the group consisting of SEQ ID NO: 991 - SEQ ID NO: 1122 or SEQ ID NO: 965 - SEQ ID NO: 987 may be used to detect an HIV nucleic acid sequence. A probe set comprising at least nine different probes labeled with a detection agent selected from the group consisting of SEQ ID NO: 989 - SEQ ID NO: 990 or SEQ ID NO: 1124 - SEQ ID NO: 1211 may be used to detect the Cas9 gene payload.

TABLE 5 below shows probes of the present disclosure that target the lentivirus backbone or a Cas9 gene payload region of a lentivirus encoding for Cas9. FIG. 46 shows a vector map of where each of the probes described in TABLE 5 are designed to bind.

TABLE 5 - Lentivirus/Cas9 Vector Targeting Probes

SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

G

SEQ ID ATAGCGTAAAAGGAGCAAC lentiCas9_13- Lentivirus vector 35 NO: 942 ATAGTTAAGAATACCAGTC WPRE backbone

AA

SEQ ID AAGCAATAGCATGATACAA lentiCas9_14- Lentivirus vector 40 NO: 943 AGGCATTAAAGCAGCGTAT WPRE backbone

CC

SEQ ID ACCAGGATTTATACAAGGA lentiCas9_15- Lentivirus vector 40 NO: 944 GGAGAAAATGAAAGCCATA WPRE backbone

CG

SEQ ID GTTGCCTGACAACGGGCCA lentiCas9_16- Lentivirus vector 53 NO: 945 CAACTCCTCATAAAGAGAC WPRE backbone

AG

SEQ ID CAGTGGGGGTTGCGTCAGC lentiCas9_17- Lentivirus vector 63 NO: 946 AAACACAGTGCACACCACG WPRE backbone

CC

SEQ ID AAGTCCCGGAAAGGAGCTG lentiCas9_18- Lentivirus vector 60 NO: 947 ACAGGTGGTGGCAATGCCC WPRE backbone

CA

SEQ ID CGGCGATGAGTTCCGCCGT lentiCas9_19- Lentivirus vector 65 NO: 948 GGCAATAGGGAGGGGGAAA WPRE backbone

GC

SEQ ID TGCCCAACAGCCGAGCCCC lentiCas9_20- Lentivirus vector 70 NO: 949 TGTCCAGCAGCGGGCAAGG WPRE backbone

CA

SEQ ID GAAAGGACGATGATTTCCC lentiCas9_21- Lentivirus vector 50 NO: 950 CGACAACACCACGGAATTG WPRE backbone

TC

SEQ ID TCCCGCGCAGAATCCAGGT lentiCas9_22- Lentivirus vector 65 NO: 951 GGCAACACAGGCGAGCAGC WPRE backbone

CA

SEQ ID GGTCCGCTGGATTGAGGGC lentiCas9_23- Lentivirus vector 63 NO: 952 CGAAGGGACGTAGCAGAAG WPRE backbone

GA

SEQ ID GCGGAAGAGGCCGCAGAGC lentiCas9_24- Lentivirus vector 78 NO: 953 CGGCAGCAGGCCGCGGGAA WPRE backbone

GG

SEQ ID CCCAAAGGGAGATCCGACT lentiCas9_25- Lentivirus vector 63 NO: 954 CGTCTGAGGGCGAAGGCGA WPRE backbone

AG

SEQ ID TTGCTCCATGTTTTTCTAGG lentiCas9_post- Lentivirus vector 50 NO: 955 TCTCGAGGTCGACGGTATCG WPRE-to- backbone

LTR_0

SEQ ID AGGCACAATCAGCATTGGT lentiCas9_post- Lentivirus vector 45 NO: 956 AGCTGCTGTATTGCTACTTG WPRE-to- backbone

T LTR_1

SEQ ID CAGCTGCCTTGTAAGTCATT lentiCas9_post- Lentivirus vector 48 NO: 957 GGTCTTAAAGGTACCTGAG WPRE-to- backbone

G LTR_3

SEQ ID ACAGATCAAGGATATCTTGT lentiCas9_post- Lentivirus vector 40 NO: 958 CTTCGTTGGGAGTGAATTAG WPRE-to- backbone

LTR_5

SEQ ID AGTTCTGCCAATCAGGGAA lentiCas9_post- Lentivirus vector 48 SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

NO: 959 GTAGCCTTGTGTGTGGTAGA WPRE-to- backbone

T LTR_6

SEQ ID ATCCAAAGGTCAGTGGATA lentiCas9_post- Lentivirus vector 53 NO: 960 TCTGATCCCTGGCCCTGGTG WPRE-to- backbone

T LTR_7

SEQ ID CTTCTACCTTCTCTTGCTCA lentiCas9_post- Lentivirus vector 45 NO: 961 ACTGGTACTAGCTTGTAGCA WPRE-to- backbone

LTR_8

SEQ ID TCACAGGGTGTAACAAGCG lentiCas9_post- Lentivirus vector 53 NO: 962 GGTGTTCTCTCCTTCATTGG WPRE-to- backbone

C LTR_9

SEQ ID ACTCTAATACTTCTCTCTCC lentiCas9_post- Lentivirus vector 50 NO: 963 GGGTCATCCATCCCATGCAG WPRE-to- backbone

LTR_10

SEQ ID CTCGGGCCATGTGATGAAA lentiCas9_post- Lentivirus vector 55 NO: 964 TGCTAGGCGGCTGTCAAAC WPRE-to- backbone

CT LTR_11

SEQ ID GCGCGCTTCAGCAAGCCGA lentiCas9pack_0 Lentivirus vector 68 NO: 965 GTCCTGCGTCGAGAGAGCT backbone

CC

SEQ ID TTTTGGCGTACTCACCAGTC lentiCas9pack_l Lentivirus vector 65 NO: 966 GCCGCCCCTCGCCTCTTGCC backbone

SEQ ID CTCGCACCCATCTCTCTCCT lentiCas9pack_2 Lentivirus vector 55 NO: 967 TCTAGCCTCCGCTAGTCAAA backbone

SEQ ID CCCATAGTGCTTCCTGCTGC lentiCas9RRE_l Lentivirus vector 55 NO: 968 TCCCAAGAACCCAAGGAAC 5 backbone

A

SEQ ID AATAATTGTCTGGCCTGTAC lentiCas9RRE_l Lentivirus vector 50 NO: 969 CGTCAGCGTCATTGACGCTG 6 backbone

SEQ ID ATAGCCCTCAGCAAATTGTT lentiCas9RRE_l Lentivirus vector 48 NO: 970 CTGCTGCTGCACTATACCAG 7 backbone

SEQ ID ATGCCCCAGACTGTGAGTTG lentiCas9RRE_l Lentivirus vector 55 NO: 971 CAACAGATGCTGTTGCGCCT 8 backbone

SEQ ID AGGTATCTTTCCACAGCCAG lentiCas9RRE_l Lentivirus vector 53 NO: 972 GATTCTTGCCTGGAGCTGCT 9 backbone

SEQ ID TTTCCAGAGCAACCCCAAAT lentiCas9RRE_2 Lentivirus vector 53 NO: 973 CCCCAGGAGCTGTTGATCCT 0 backbone

SEQ ID TTCCCATCGCGATCTAATTC lentiCas9tween_ Lentivirus vector 50 NO: 974 TCCCCCGCTTAATACTGACG 3 backbone

SEQ ID TGCGAATCGTTCTAGCTCCC lentiCas9tween_ Lentivirus vector 48 NO: 975 TGCTTGCCCATACTATATGT 5 backbone

SEQ ID TTGTCTACAGCCTTCTGATG lentiCas9tween_ Lentivirus vector 43 NO: 976 TTTCTAACAGGCCAGGATTA 6 backbone

SEQ ID TTCTGATCCTGTCTGAAGGG lentiCas9tween_ Lentivirus vector 50 NO: 977 ATGGTTGTAGCTGTCCCAGT 7 backbone

SEQ ID TAAAGCTTCCTTGGTGTCTT lentiCas9tween_ Lentivirus vector 38 NO: 978 TTATCTCTATCCTTTGATGC 9 backbone

SEQ ID ATATCTCCTCCTCCAGGTCT lentiCas9tween_ Lentivirus vector 58 NO: 979 GAAGATCAGCGGCCGCTTG 11 backbone

C

SEQ ID CTCTTTGCCTTGGTGGGTGC lentiCas9tween_ Lentivirus vector 45 NO: 980 TACTCCTAATGGTTCAATTT 13 backbone

SEQ ID CTCCAACTAGCATTCCAAGG lentiCas9tween_ Lentivirus vector 50 SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

NO: 981 CACAGCAGTGGTGCAAATG 21 backbone

A

SEQ ID ATCCAGGTCGTGTGATTCCA lentiCas9tween_ Lentivirus vector 40 NO: 982 AATCTGTTCCAGAGATTTAT 22 backbone

SEQ ID TGTATTAAGCTTGTGTAATT lentiCas9tween_ Lentivirus vector 33 NO: 983 GTTAATTTCTCTGTCCCACT 23 backbone

SEQ ID TCATTCTTTTCTTGCTGGTTT lentiCas9tween_ Lentivirus vector 35 NO: 984 TGCGATTCTTCAATTAAGG 24 backbone

SEQ ID GAATATCCCTGCCTAACTCT lentiCas9tween_ Lentivirus vector 38 NO: 985 ATTCACTATAGAAAGTACA 28 backbone

G

SEQ ID GGTCCCCTCGGGGTTGGGA lentiCas9tween_ Lentivirus vector 60 NO: 986 GGTGGGTCTGAAACGATAA 29 backbone

TG

SEQ ID CGCAGTGCCGATCCGTTCAC lentiCas9tween_ Lentivirus vector 53 NO: 987 TAATCGAATGGATCTGTCTC 31 backbone

SEQ ID AATTGTGGATGAATACTGCC lentiCas9tween_ Lentivirus vector 43 NO: 988 ATTTGTCTGCAGAATTGGCG 32 backbone

SEQ ID TGATAATTTTCAGCAGATCG Cas9_42 Cas9 gene 50 NO: 989 TGGTATGTGCCCAGGGAGG payload

C

SEQ ID CCAGATTGGCAATGTGCTCG Cas9_51 Cas9 gene 63 NO: 990 TGCAGGCTATCGCCCTGGCC payload

SEQ ID TTTCCCCTGCACTGTACCCC lentiCas9cPPT_3 Lentivirus vector 53 NO: 1123 CCAATCCCCCCTTTTCTTTT 3 backbone

SEQ ID TGGTGCCGATGTCCAGGCC Cas9_0 Cas9 gene 55 NO: 1124 GATGCTGTACTTCTTGTCCA payload

T

SEQ ID GCACCTTGTACTCGTCGGTG Cas9_l Cas9 gene 63 NO: 1125 ATCACGGCCCAGCCCACAG payload

A

SEQ ID TGTGCCGGTCGGTGTTGCCC Cas9_2 Cas9 gene 55 NO: 1126 AGCACCTTGAATTTCTTGCT payload

SEQ ID CGCTGTCGAACAGCAGGGC Cas9_3 Cas9 gene 55 NO: 1127 TCCGATCAGGTTCTTCTTGA payload

T

SEQ ID TTCTGGCGGTTCTCTTCAGC Cas9_4 Cas9 gene 63 NO: 1128 CGGGTGGCCTCGGCTGTTTC payload

SEQ ID CTTGCAGATAGCAGATCCG Cas9_5 Cas9 gene 50 NO: 1129 GTTCTTCCGTCTGGTGTATC payload

T

SEQ ID AGAAGCTGTCGTCCACCTTG Cas9_6 Cas9 gene 53 NO: 1130 GCCATCTCGTTGCTGAAGAT payload

SEQ ID CCTCGTCCACGATGTTGCCG Cas9_8 Cas9 gene 65 NO: 1131 AAGATGGGGTGCCGCTCGT payload

G

SEQ ID TTCTCAGGTGGTAGATGGTG Cas9_9 Cas9 gene 55 NO: 1132 GGGTACTTCTCGTGGTAGGC payload

SEQ ID TCAGCCGCAGGTCGGCCTTG Cas9_10 Cas9 gene 63 NO: 1133 TCGGTGCTGTCCACCAGTTT payload

SEQ ID AGTGGCCCCGGAACTTGAT Cas9_l l Cas9 gene 60 NO: 1134 CATGTGGGCCAGGGCCAGA payload

TA SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

SEQ ID CCACGTCGCTGTTGTCGGGG Cas9_12 Cas9 gene 65 NO: 1135 TTCAGGTCGCCCTCGATCAG payload

SEQ ID ACAGCTGGTTGTAGGTCTGC Cas9_13 Cas9 gene 53 NO: 1136 ACCAGCTGGATGAACAGCT payload

T

SEQ ID CCTTGGCGTCCACGCCGCTG Cas9_14 Cas9 gene 65 NO: 1137 GCGTTGATGGGGTTTTCCTC payload

SEQ ID TTTCCAGCCGTCTGCTCTTG Cas9_15 Cas9 gene 55 NO: 1138 CTCAGTCTGGCAGACAGGA payload

T

SEQ ID ACAGGCCATTCTTCTTCTCG Cas9_16 Cas9 gene 63 NO: 1139 CCGGGCAGCTGGGCGATCA payload

G

SEQ ID GCTGCAGTTTGGCATCCTCG Cas9_18 Cas9 gene 58 NO: 1140 GCCAGGTCGAAGTTGCTCTT payload

SEQ ID CCAGCAGGTTGTCCAGGTC Cas9_19 Cas9 gene 60 NO: 1141 GTCGTCGTAGGTGTCCTTGC payload

T

SEQ ID TGGCGGCCAGAAACAGGTC Cas9_20 Cas9 gene 65 NO: 1142 GGCGTACTGGTCGCCGATCT payload

G

SEQ ID CTCTCAGGATGTCGCTCAGC Cas9_21 Cas9 gene 60 NO: 1143 AGGATGGCGTCGGACAGGT payload

T

SEQ ID TCATAGAGGCGCTCAGGGG Cas9_22 Cas9 gene 60 NO: 1144 GGCCTTGGTGATCTCGGTGT payload

T

SEQ ID TCAGCAGGGTCAGGTCCTG Cas9_23 Cas9 gene 58 NO: 1145 GTGGTGCTCGTCGTATCTCT payload

T

SEQ ID CAATGTAGCCGGCGTAGCC Cas9_25 Cas9 gene 55 NO: 1146 GTTCTTGCTCTGGTCGAAGA payload

A

SEQ ID GCTTGATGAACTTGTAGAAC Cas9_26 Cas9 gene 55 NO: 1147 TCTTCCTGGCTGGCTCCGCC payload

SEQ ID TCACGAGCAGTTCCTCGGTG Cas9_27 Cas9 gene 55 NO: 1148 CCGTCCATCTTTTCCAGGAT payload

SEQ ID GCAGCTCTCCCAGGTGGATC Cas9_29 Cas9 gene 65 NO: 1149 TGGTGGGGGATGCTGCCGTT payload

SEQ ID TCAGGAATGGGTAAAAATC Cas9_30 Cas9 gene 53 NO: 1150 TTCCTGCCGCCGCAGAATGG payload

C

SEQ ID TGCGGAAGGTCAGGATCTT Cas9_31 Cas9 gene 53 NO: 1151 CTCGATCTTTTCCCGGTTGT payload

c

SEQ ID ATCTGCTGTTTCCCCTGGCC Cas9_32 Cas9 gene 63 NO: 1152 AGAGGGCCCACGTAGTAGG payload

G

SEQ ID AGGGGGTGATGGTTTCCTCG Cas9_33 Cas9 gene 58 NO: 1153 CTCTTTCTGGTCATCCAGGC payload

SEQ ID TCTGGGCGGAAGCGCCCTT Cas9_34 Cas9 gene 60 NO: 1154 GTCCACCACTTCCTCGAAGT payload

T SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

SEQ ID TGGGCAGGTTCTTATCGAAG Cas9_35 Cas9 gene 50 NO: 1155 TTGGTCATCCGCTCGATGAA payload

SEQ ID AGTACTCGTACAGCAGGCT Cas9_36 Cas9 gene 58 NO: 1156 GTGCTTGGGCAGCACCTTCT payload

C

SEQ ID CGGTCACGTATTTCACTTTG Cas9_37 Cas9 gene 48 NO: 1157 GTCAGCTCGTTATACACGGT payload

SEQ ID TTTTCTGCTCGCCGCTCAGG Cas9_38 Cas9 gene 58 NO: 1158 AAGGCGGGCTTTCTCATTCC payload

SEQ ID TCACTTTCCGGTTGGTCTTG Cas9_39 Cas9 gene 55 NO: 1159 AACAGCAGGTCCACGATGG payload

C

SEQ ID ACTCGATTTTCTTGAAGTAG Cas9_40 Cas9 gene 43 NO: 1160 TCCTCTTTCAGCTGCTTCAC payload

SEQ ID TGAACCGATCTTCCACGCCG Cas9_41 Cas9 gene 55 NO: 1161 GAGATTTCCACGGAGTCGA payload

A

SEQ ID GAATGTCCTCGTTTTCCTCA Cas9_43 Cas9 gene 48 NO: 1162 TTGTCCAGGAAGTCCTTGTC payload

SEQ ID CTCTGTCCTCAAACAGTGTC Cas9_44 Cas9 gene 50 NO: 1163 AGGGTCAGCACGATATCTTC payload

SEQ ID CGAACAGGTGGGCATAGGT Cas9_45 Cas9 gene 53 NO: 1164 TTTCAGCCGTTCCTCGATCA payload

T

SEQ ID CGGTGTATCTCCGCCGCTTC Cas9_46 Cas9 gene 55 NO: 1165 AGCTGCTTCATCACTTTGTC payload

SEQ ID CCCGGATGCCGTTGATCAGC Cas9_47 Cas9 gene 68 NO: 1166 TTCCGGCTCAGCCTGCCCCA payload

SEQ ID CGGACTTCAGGAAATCCAG Cas9_48 Cas9 gene 53 NO: 1167 GATTGTCTTGCCGGACTGCT payload

T

SEQ ID CGTCGTGGATCAGCTGCATG Cas9_49 Cas9 gene 55 NO: 1168 AAGTTTCTGTTGGCGAAGCC payload

SEQ ID ACACCTGGGCTTTCTGGATG Cas9_50 Cas9 gene 50 NO: 1169 TCCTCTTTAAAGGTCAGGCT payload

SEQ ID TCACTGTCTGCAGGATGCCC Cas9_52 Cas9 gene 60 NO: 1170 TTCTTAATGGCGGGGCTGCC payload

SEQ ID GCTTGTGCCGGCCCATCACT Cas9_53 Cas9 gene 63 NO: 1171 TTCACGAGCTCGTCCACCAC payload

SEQ ID TGGTCTGGTTCTCTCTGGCC Cas9_54 Cas9 gene 50 NO: 1172 ATTTCGATCACGATGTTCTC payload

SEQ ID TCCGCTTCATTCTCTCGCGG Cas9_55 Cas9 gene 55 NO: 1173 CTGTTCTTCTGTCCCTTCTG payload

SEQ ID CTTTCAGGATCTGGCTGCCC Cas9_56 Cas9 gene 55 NO: 1174 AGCTCTTTGATGCCCTCTTC payload

SEQ ID ACAGCTTCTCGTTCTGCAGC Cas9_57 Cas9 gene 58 NO: 1175 TGGGTGTTTTCCACGGGGTG payload

SEQ ID GGTCCACGTACATATCCCGC Cas9_58 Cas9 gene 55 NO: 1176 CCATTCTGCAGGTAGTACAG payload

SEQ ID GGTCCACATCGTAGTCGGA Cas9_59 Cas9 gene 58 NO: 1177 CAGCCGGTTGATGTCCAGTT payload

C SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

SEQ ID TGTCGATGGAGTCGTCCTTC Cas9_60 Cas9 gene 53 NO: 1178 AGAAAGCTCTGAGGCACGA payload

T

SEQ ID CGCTCTTGCCCCGGTTCTTG Cas9_61 Cas9 gene 60 NO: 1179 TCGCTTCTGGTCAGCACCTT payload

SEQ ID AGTTCTTCATCTTCTTCACG Cas9_62 Cas9 gene 50 NO: 1180 ACCTCTTCGGAGGGCACGTT payload

SEQ ID TTCTCTGGGTAATCAGCTTG Cas9_63 Cas9 gene 58 NO: 1181 GCGTTCAGCAGCTGCCGCC payload

A

SEQ ID CGCTCAGGCCGCCTCTCTCG Cas9_64 Cas9 gene 63 NO: 1182 GCCTTGGTCAGATTGTCGAA payload

SEQ ID TTTCCACCAGCTGTCTCTTG Cas9_65 Cas9 gene 53 NO: 1183 ATGAAGCCGGCCTTATCCA payload

G

SEQ ID GGGAGTCCAGGATCTGTGC Cas9_66 Cas9 gene 60 NO: 1184 CACGTGCTTTGTGATCTGCC payload

G

SEQ ID CCCGGATCAGCTTGTCATTC Cas9_67 Cas9 gene 48 NO: 1185 TCGTCGTACTTAGTGTTCAT payload

SEQ ID AATCGGACACCAGCTTGGA Cas9_68 Cas9 gene 50 NO: 1186 CTTCAGGGTGATCACTTTCA payload

C

SEQ ID CCACGACGGCGTTCAGGTA Cas9_70 Cas9 gene 68 NO: 1187 GGCGTCGTGGGCGTGGTGG payload

TA

SEQ ID ACTCGCTTTCCAGCTTAGGG Cas9_71 Cas9 gene 50 NO: 1188 payload

SEQ ID TCATCTTCCGCACGTCGTAC Cas9_72 Cas9 gene 55 NO: 1189 ACCTTGTAGTCGCCGTACAC payload

SEQ ID ACTTGGCGGTAGCCTTGCCG Cas9_73 Cas9 gene 60 NO: 1190 ATTTCCTGCTCGCTCTTGGC payload

SEQ ID TCTCGGTCTTGAAAAAGTTC Cas9_74 Cas9 gene 38 NO: 1191 ATGATGTTGCTGTAGAAGA payload

A

SEQ ID CGATCAGAGGCCGCTTCCG Cas9_75 Cas9 gene 68 NO: 1192 GATCTCGCCGTTGGCCAGG payload

GT

SEQ ID GGCCCTTATCCCACACGATC Cas9_76 Cas9 gene 60 NO: 1193 TCCCCGGTTTCGCCGTTTGT payload

SEQ ID CTTGGGGCATGCTCAGCACT Cas9_77 Cas9 gene 58 NO: 1194 TTCCGCACGGTGGCAAAAT payload

C

SEQ ID TGAAGCCGCCTGTCTGCACC Cas9_78 Cas9 gene 50 NO: 1195 TCGGTCTTTTTCACGATATT payload

SEQ ID TCAGCTTATCGCTGTTCCTC Cas9_79 Cas9 gene 48 NO: 1196 TTGGGCAGGATAGACTCTTT payload

SEQ ID AGCCGCCGTACTTCTTAGGG Cas9_80 Cas9 gene 58 NO: 1197 TCCCAGTCCTTCTTTCTGGC payload

SEQ ID TCTCGAAGCTGCTTCTTTCC Cas9_83 Cas9 gene 50 NO: 1198 ATGATGGTGATCCCCAGTA payload

G

SEQ ID CTTCTTTGTAGCCCTTGGCT Cas9_84 Cas9 gene 48 SEQ ID Nucleotide Sequence Sequence Name Probe target % GC NO Content

NO: 1199 TCCAGAAAGTCGATGGGAT payload

T

SEQ ID ACAGGGAGTACTTAGGCAG Cas9_85 Cas9 gene 45 NO: 1200 CTTGATGATCAGGTCCTTTT payload

T

SEQ ID CGGCAGAGGCCAGCATTCT Cas9_86 Cas9 gene 63 NO: 1201 CTTCCGGCCGTTTTCCAGCT payload

C

SEQ ID ATTTGGAGGGCAGGGCCAG Cas9_87 Cas9 gene 55 NO: 1202 TTCGTTTCCCTTCTGCAGTT payload

c

SEQ ID TCAGCTTCTCATAGTGGCTG Cas9_88 Cas9 gene 53 NO: 1203 GCCAGGTACAGGAAGTTCA payload

C

SEQ ID CCACAAACAGCTGTTTCTGC Cas9_89 Cas9 gene 55 NO: 1204 TCATTATCCTCGGGGGAGCC payload

SEQ ID TGATCTGCTCGATGATCTCG Cas9_90 Cas9 gene 53 NO: 1205 TCCAGGTAGTGCTTGTGCTG payload

SEQ ID CCAGATTAGCGTCGGCCAG Cas9_91 Cas9 gene 55 NO: 1206 GATCACTCTCTTGGAGAACT payload

C

SEQ ID TGGGCTTATCCCGGTGCTTG Cas9_92 Cas9 gene 55 NO: 1207 TTGTAGGCGGACAGCACTTT payload

SEQ ID TCAGGGTAAACAGGTGGAT Cas9_93 Cas9 gene 50 NO: 1208 GATATTCTCGGCCTGCTCTC payload

T

SEQ ID TGGTGTCAAAGTACTTGAA Cas9_94 Cas9 gene 55 NO: 1209 GGCGGCAGGGGCTCCCAGA payload

TT

SEQ ID CCAGCACCTCTTTGGTGCTG Cas9_95 Cas9 gene 58 NO: 1210 GTGTACCTCTTCCGGTCGAT payload

SEQ ID TCTCGTACAGGCCGGTGATG Cas9_96 Cas9 gene 63 NO: 1211 CTCTGGTGGATCAGGGTGG payload

C

[0285] In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect nucleic acid insertions stemming from a lentiCas9-Blast vector, as set forth in SEQ ID NO: 1284. In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect viral insertions stemming from a target nucleic acid that shares at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity with SEQ ID NO: 1284. In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect nucleic insertions stemming from a CAR transfer plasmid, as set forth in SEQ ID NO: 1285. In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect viral insertions stemming from a target nucleic acid that shares at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity with SEQ ID NO: 1285. TABLE 6 shows nucleic acid sequences of a lentivirus vector and a CAR transfer plasmid. In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect nucleic acid insertions stemming from a lentivirus vector encoding for a gene of interest. The gene of interest can be a therapeutic gene, such as nucleic acid sequences encoding for: CTLA-4, BTLA, TIM-3, CCR5, CXCR4, TCR, B2M, a chimeric antigen receptor (CAR), genes responsible for bioprotein production, albumin in the liver, the hemoglobin subunit beta gene, the hemoglobin subunit alpha 1 gene, transthyretin (TTR), CCR5, glucocorticoid (GR), T cell receptor (TCR), CD52, BCL11A, alpha-L iduronidase (IDUA), iduronate-2-sulfatase (IDS), Factor 9, PD- I TCR-A/TCR-B, TCR/CS- 1, TCR, CEP290, TCR/B2M, CBLB, TGFbR, dystrophin, CFTR, serpinal, IL2Rg, or HBV.

TABLE 6 - Nucleic Acid Sequences of Lentivirus Vector and CAR Transfer Plasmid

SEQ ID NO Nucleotide Sequence

GACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGT

GTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAG

GTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGA

CGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGA

CGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGC

GGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGG

CCGAGGAGCAGGACTGACACGTGCTACGAGATTTCGATTCCACCGCCG

CCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCT

GGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACC

CCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCA

TCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGG

TTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACC

TCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGA

AATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATA

AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATT

GCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAG

CTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT

GGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTC

GGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTAT

CCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGG

CCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT

TCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAA

GTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTT

CCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTA

CCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCA

TAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA

GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT

ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG

TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACA

CTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT

TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCT

GGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAA

AAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCT

CAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCA

AAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAA

TCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGC

TTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCA

TAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCT

TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCAC

CGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAG

CGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATT

GTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCA

ACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG

TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATG

ATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGAT

CGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGC

AGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT

GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGG

CGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCA

CATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGG

CGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAA

CCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCG

TTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGA SEQ ID NO Nucleotide Sequence

TATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATAT

TTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTC

CCCGAAAAGTGCCACCTGACGTCGACGGATCGGGAGATCTCCCGATCC

CCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG

CCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGC

GAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCA

TGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTAC

GGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAGT

AATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCG

TTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC

CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAA

TAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTG

CCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTA

TTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACA

TGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCAT

CGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGG

ATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGT

CAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATG

TCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACG

GTGGGAGGTCTATATAAGCAGCGCGTTTTGCCTGTACTGGGTCTCTCT

GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACC

CACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGT

GTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTT

TTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTG

AAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCT

TGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTA

CGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGC

GAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAA

AATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATA

TAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGC

CTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACA

ACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATAC

AGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACA

CCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAA

GACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGA

GATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGT

AAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAG

TGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTT

GGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGAC

GCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCA

GAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACT

CACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGG

AAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTG

GAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTA

ATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGG

GACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAA

GAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATT

AGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCT

GTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTT

AAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGG

ATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACC

CGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGA

GACAGATCCATTCGATTAGTGAACGGATCGGCACTGCGTGCGCCAATT SEQ ID NO Nucleotide Sequence

CTGCAGACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGG

GGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCA

ACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCA

AAATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGTTAAT

TAGCTAGCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTC

AGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGA

GGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAA

CAACGGGTTTGCCGCCAGAACACAGGACCGGTTCTAGAGCGCTGCCA

CCATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCT

GTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAA

ATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACC

TGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACC

CGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACC

GGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTG

GACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAG

GATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGA

GGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGA

AACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTG

GCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGC

GACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCT

GGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCA

GCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGC

AGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAA

TGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAA

CTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGA

GCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATC

GGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGAC

GCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAA

GGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCACC

AGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGA

AGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGC

TACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAA

GCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGC

TGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGC

AGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGG

CGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGAT

CGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGC

CAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAA

ACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCC

GCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCC

AACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACC

GTGTATAACGAGCTGACCAAAGTGAAATACGTGACCGAGGGAATGAG

AAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACC

TGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAG

GACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGC

GTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTG

AAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGA

CATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGA

GATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACA

AAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGG

CTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAA

GACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTT SEQ ID NO Nucleotide Sequence

CATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCA

GAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTG

CCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACA

GTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCC

CGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGA

AGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGG

CATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAA

ACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAAT

GGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTC

CGACTACGATGTGGACCATATCGTGCCTCAGAGCTTTCTGAAGGACGA

CTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAACCGGGGCA

AGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAAC

TACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTC

GACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAA

GGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAA

AGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGAC

GAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTC

CAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCG

CGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGT

CGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGT

TCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCC

AAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTA

CAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGG

CGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGG

AGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTG

CTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGCAGAC

AGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATA

AGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGC

TTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCCAAAGTG

GAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTACTGGG

GATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACT

TTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATC

AAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAG

AATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCC

TGCCCTCCAAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGA

AGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTG

GAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGA

GTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCT

GTCCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCG

AGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCG

CCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCA

CCAAAGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGC

CTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAAGCG

ACCTGCCGCCACAAAGAAGGCTGGACAGGCTAAGAAGAAGAAAGATT

ACAAAGACGATGACGATAAGGGATCCGGCGCAACAAACTTCTCTCTG

CTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGATGGCCAA

GCCTTTGTCTCAAGAAGAATCCACCCTCATTGAAAGAGCAACGGCTAC

AATCAACAGCATCCCCATCTCTGAAGACTACAGCGTCGCCAGCGCAGC

TCTCTCTAGCGACGGCCGCATCTTCACTGGTGTCAATGTATATCATTTT

ACTGGGGGACCTTGTGCAGAACTCGTGGTGCTGGGCACTGCTGCTGCT

GCGGCAGCTGGCAACCTGACTTGTATCGTCGCGATCGGAAATGAGAA

CAGGGGCATCTTGAGCCCCTGCGGACGGTGCCGACAGGTGCTTCTCGA

TCTGCATCCTGGGATCAAAGCCATAGTGAAGGACAGTGATGGACAGC

CGACGGCAGTTGGGATTCGTGAATTGCTGCCCTCTGGTTATGTGTGGG SEQ ID NO Nucleotide Sequence

AGGGCTAAGAATTCGATATCAAGCTTATCGGTAATCAACCTCTGGATT

ACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTT

TACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCT

TCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTC

TCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTG

CACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCAC

CTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACG

GCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG

CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCC

TTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGT

CCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCG

CGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCT

CAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCGATACCGT

CGACCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATAC

AGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGG

AGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGA

GACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATC

TGTGGATCTACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACA

CACCAGGGCCAGGGATCAGATATCCACTGACCTTTGGATGGTGCTACA

AGCTAGTACCAGTTGAGCAAGAGAAGGTAGAAGAAGCCAATGAAGGA

GAGAACACCCGCTT

SEQ ID NO: 1285 TGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGT

GGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACAC

CAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGC

TAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAG

AACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCG

GAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCAT

CACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATAT

CGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGT

GGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATA

AGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTG

AGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA

ATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGT

GACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAA

ATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAA

CCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCAC

GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGA

CTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATT

AAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCC

AGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCA

GGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAG

AAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACA

GGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTAT

TGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGA

CAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAA

GCGGCCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGAC

AATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACC

ATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAG

AAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAG

CAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAG

GCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTG

AGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGC

ATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAA SEQ ID NO Nucleotide Sequence

GGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTG

CACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGA

ACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTA

ACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACC

AGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCA

AGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAA

TTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTT

GCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTA

TCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAA

GGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTC

GATTAGTGAACGGATCTCGACGGTATCGCCTTTAAAAGAAAAGGGGG

GATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAA

CAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAA

AATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTATCGATGA

GTAATTCATACAAAAGGACTCGCCCCTGCCTTGGGGAATCCCAGGGAC

CGTCGTTAAACTCCCACTAACGTAGAACCCAGAGATCGCTGCGTTCCC

GCCCCCTCACCCGCCCGCTCTCGTCATCACTGAGGTGGAGAAGAGCAT

GCGTGAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCAC

AGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCT

AGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGG

GTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTAT

GGCCCTTGCGTGCCTTGAATTACTTCCACGCCCCTGGCTGCAGTACGT

GATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAG

GCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTG

GCTTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGC

CTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGA

CCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCC

GGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGA

GCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCC

TGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGC

GGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGC

CGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGC

TCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTT

TCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCC

GTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTA

GGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGG

GTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTG

CGCCGCCACCATGGCCTTACCAGTGACCGCCTTGCTCCTGCCGCTGGC

CTTGCTGCTCCACGCCGCCAGGCCGGACATCCAGATGACACAGACTAC

ATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAG

GGCAAGTCAGGACATTAGTAAATATTTAAATTGGTATCAGCAGAAACC

AGATGGAACTGTTAAACTCCTGATCTACCATACATCAAGATTACACTC

AGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTATTC

TCTCACCATTAGCAACCTGGAGCAAGAAGATATTGCCACTTACTTTTG

CCAACAGGGTAATACGCTTCCGTACACGTTCGGAGGGGGGACCAAGC

TGGAGATCACAGGTGGCGGTGGCTCGGGCGGTGGTGGGTCGGGTGGC

GGCGGATCTGAGGTGAAACTGCAGGAGTCAGGACCTGGCCTGGTGGC

GCCCTCACAGAGCCTGTCCGTCACATGCACTGTCTCAGGGGTCTCATT

ACCCGACTATGGTGTAAGCTGGATTCGCCAGCCTCCACGAAAGGGTCT SEQ ID NO Nucleotide Sequence

GGAGTGGCTGGGAGTAATATGGGGTAGTGAAACCACATACTATAATT

CAGCTCTCAAATCCAGACTGACCATCATCAAGGACAACTCCAAGAGCC

AAGTTTTCTTAAAAATGAACAGTCTGCAAACTGATGACACAGCCATTT

ACTACTGTGCCAAACATTATTACTACGGTGGTAGCTATGCTATGGACT

ACTGGGGCCAAGGAACCTCAGTCACCGTCTCCTCAACCACGACGCCAG

CGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGT

CCCTGCGCCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCAC

ACGAGGGGGCTGGACTTCGCCTGTGATTTCTGGGTGCTGGTCGTTGTG

GGCGGCGTGCTGGCCTGCTACAGCCTGCTGGTGACAGTGGCCTTCATC

ATCTTTTGGGTGAGGAGCAAGCGGAGCAGACTGCTGCACAGCGACTA

CATGAACATGACCCCCCGGAGGCCTGGCCCCACCCGGAAGCACTACC

AGCCCTACGCCCCTCCCAGGGATTTCGCCGCCTACCGGAGCAAACGGG

GCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGAGACCAG

TACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCCAGAA

GAAGAAGAAGGAGGATGTGAACTGAGAGTGAAGTTCAGCAGGAGCG

CAGACGCCCCCGCGTACAAGCAGGGCCAGAACCAGCTCTATAACGAG

CTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACG

TGGCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTC

AGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCC

TACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGC

ACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACG

ACGCCCTTCACATGCAGGCCCTGCCCCCTCGCGAGGGCAGAGGCAGCC

TGCTGACATGTGGCGACGTGGAAGAGAACCCTGGCCCCATGTGGCTGC

AGAGCCTGCTGCTCTTGGGCACTGTGGCCTGCAGCATCTCTCGCAAAG

TGTGTAACGGAATAGGTATTGGTGAATTTAAAGACTCACTCTCCATAA

ATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCG

ATCTCCACATCCTGCCGGTGGCATTTAGGGGTGACTCCTTCACACATA

CTCCTCCTCTGGATCCACAGGAACTGGATATTCTGAAAACCGTAAAGG

AAATCACAGGGTTTTTGCTGATTCAGGCTTGGCCTGAAAACAGGACGG

ACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACCAAGC

AACATGGTCAGTTTTCTCTTGCAGTCGTCAGCCTGAACATAACATCCTT

GGGATTACGCTCCCTCAAGGAGATAAGTGATGGAGATGTGATAATTTC

AGGAAACAAAAATTTGTGCTATGCAAATACAATAAACTGGAAAAAAC

TGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAGGT

GAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCC

CCCGAGGGCTGCTGGGGCCCGGAGCCCAGGGACTGCGTCTCTTGCCGG

AATGTCAGCCGAGGCAGGGAATGCGTGGACAAGTGCAACCTTCTGGA

GGGTGAGCCAAGGGAGTTTGTGGAGAACTCTGAGTGCATACAGTGCC

ACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGG

GGACCAGACAACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCAC

TGCGTCAAGACCTGCCCGGCAGGAGTCATGGGAGAAAACAACACCCT

GGTCTGGAAGTACGCAGACGCCGGCCATGTGTGCCACCTGTGCCATCC

AAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAAC

GAATGGGCCTAAGATCCCGTCCATCGCCACTGGGATGGTGGGGGCCCT

CCTCTTGCTGCTGGTGGTGGCCCTGGGGATCGGCCTCTTCATGTAATA

ATCTAGACCGCGTCTGGAACAATCAACCTCTGGATTACAAAATTTGTG

AAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGG

ATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCT

TTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGA

GTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGC

TGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCT

TTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATC

GCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACT

GACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTG SEQ ID NO Nucleotide Sequence

CTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACG

TCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCC

GGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGG

ATCTCCCTTTGGGCCGCCTCCCCGCCTGGAATTAATTCTGCAGTCGAG

ACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACC

AATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGG

TTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGC

AGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGAGGGGACTGGAAG

GGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCT

ACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGC

CAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTAC

CAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACC

AGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGA

GAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTG

GCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCT

TGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTG

GGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGC

GGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAG

CTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCT

GGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCT

AGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAA

AGAAATGAATATCAGAGAGTGAGAGGCCTTGACATTGCTAGCGTTTTA

CCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTT

CCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCC

GGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT

CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCT

GTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCG

GTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCG

CTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGT

AATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT

GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTT

GCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAA

TCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGAT

ACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGAC

CCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG

GCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCG

TTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC

GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGAC

ACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA

GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC

TACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAG

CCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA

ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACG

CGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGG

TCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATG

AGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGA

AGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGT

TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTC

GTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATAC

GGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACC

CACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAA

GGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGT

CTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATA SEQ ID NO Nucleotide Sequence

GTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCT

CGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGC

GAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCG

GTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCA

TGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAG

ATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATA

GTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAA

TACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACG

TTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAG

TTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACT

TTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGC

AAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCT

TCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAG

CGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCC

GCGCACATTTCCCCGAAAAGTGCCACCTGACGTCGACGGATCGGGAG

ATCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGC

GTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCAACTGGAT

AACTCAAGCTAACCAAAATCATCCCAAACTTCCCACCCCATACCCTAT

TACCACTGCCAATTACCTGTGGTTTCATTTACTCTAAACCTGTGATTCC

TCTGAATTATTTTCATTTTAAAGAAATTGTATTTGTTAAATATGTACTA

CAAACTTAGTAGTTTTTAAAGAAATTGTATTTGTTAAATATGTACTACA

AACTTAGTAGT

[0286] In some embodiments, a probe set of the present disclosure comprising a plurality of probes can be used to detect target nucleic acid insertions stemming from an integrating virus or a non-integrating virus. In some embodiments, the target nucleic acid can be from an integrating virus, such as a retrovirus. In some embodiments, the target nucleic acid can be from a retrovirus, which is selected from a lentivirus, a gamma retrovirus, or a foamy virus. In some embodiments, the target nucleic acid can be from a non-integrating virus, which can be selected from an adenovirus or an adeno-associated virus.

[0287] In some embodiments, the target nucleic acid can be from an adeno-associated virus, which can be selected from adeno-associated virus serotype 1, adeno-associated virus serotype 2, adeno-associated virus serotype 3, adeno-associated virus serotype 4, adeno- associated virus serotype 5, adeno-associated virus serotype 6, adeno-associated virus serotype 7, adeno-associated virus serotype 8, adeno-associated virus serotype 9, or a synthetic adeno-associated virus with an evolved capsid protein. In some embodiments, the target nucleic acid can be from a lentivirus, for example, a gamma380:GFP lentivirus transfer plasmid, as set forth in SEQ ID NO: 1405. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 1, for example as set forth in SEQ ID NO: 1406. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 2, for example, as set forth in SEQ ID NO: 1407. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 3, for example, as set forth in SEQ ID NO: 1408. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 4, for example, as set forth in SEQ ID NO: 1409. In some

embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno- associated virus 5, for example, as set forth in SEQ ID NO: 1410. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 6, for example, as set forth in SEQ ID NO: 1411. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 7, for example, as set forth in SEQ ID NO: 1412. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 8, for example, as set forth in SEQ ID NO: 1413. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 9, for example, as set forth in SEQ ID NO: 1414. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 10, for example, as set forth in SEQ ID NO: 1415. In some

embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno- associated virus 11, for example, as set forth in SEQ ID NO: 1416. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 12, for example, as set forth in SEQ ID NO: 1417. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises adeno-associated virus 13, for example, as set forth in SEQ ID NO: 1418. In some embodiments, the target nucleic acid can be from an adeno-associated virus comprises the pAAV DJ vector, also referred to herein as VPK-520-DJ (PN-340001), for example, as set forth in SEQ ID NO: 1419.

[0288] In some aspects, an adeno-associated virus is selected from adeno-associated virus serotype 1 ; adeno-associated virus serotype 2; adeno-associated virus serotype 3; adeno- associated virus serotype 4; adeno-associated virus serotype 5; adeno-associated virus serotype 6; adeno-associated virus serotype 7; adeno-associated virus serotype 8; adeno- associated virus serotype 9; adeno-associated virus serotype 10; adeno-associated virus serotype 11 ; adeno-associated virus serotype 12; adeno-associated virus serotype 13; pAAV- DJ (VPK-420-DJ (PN-340001)), synthetically evolved adeno-associated viruses of any one of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno- associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno-associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10, adeno- associated virus 11, adeno-associated virus 12, adeno-associated virus 13, a naturally occurring adeno-associated virus, or a synthetic adeno-associated virus comprising chimeras of any combination of adeno-associated virus 1, adeno-associated virus 2, adeno-associated virus 3, adeno-associated virus 4, adeno-associated virus 5, adeno-associated virus 6, adeno- associated virus 7, adeno-associated virus 8, adeno-associated virus 9; adeno-associated virus 10; adeno-associated virus 11 ; adeno-associated virus 12; adeno-associated virus 13. In some aspects, the human papillomavirus is selected from human papillomavirus 116.

[0289] In some embodiments, the target nucleic acid can be from an adenovirus, as set forth in the following examples. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1420. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1421. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1422. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1423. In some embodiments, the target nucleic acid can be from a Human adenovirus 81, for example, as set forth in SEQ ID NO: 1424. In some embodiments, the target nucleic acid can be from a Human mastadenovirus B, for example, as set forth in SEQ ID NO: 1425. In some embodiments, the target nucleic acid can be from a Human mastadenovirus B, for example, as set forth in SEQ ID NO: 1426. In some embodiments, the target nucleic acid can be from a Human mastadenovirus B, for example, as set forth in SEQ ID NO: 1427. In some embodiments, the target nucleic acid can be from a Human

mastadenovirus B, for example, as set forth in SEQ ID NO: 1428. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1429. In some embodiments, the target nucleic acid can be from a Human

mastadenovirus D, for example, as set forth in SEQ ID NO: 1430. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1431. In some embodiments, the target nucleic acid can be from a Human

mastadenovirus D, for example, as set forth in SEQ ID NO: 1432, Human adenovirus 71, for example, as set forth in SEQ ID NO: 1433. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1434. In some embodiments, the target nucleic acid can be from a Human adenovirus 69, for example, as set forth in SEQ ID NO: 1435. In some embodiments, the target nucleic acid can be from a Human adenovirus 68, for example, as set forth in SEQ ID NO: 1436. In some embodiments, the target nucleic acid can be from a Human adenovirus 67, for example, as set forth in SEQ ID NO: 1437. In some embodiments, the target nucleic acid can be from a Human adenovirus 66, for example, as set forth in SEQ ID NO: 1438. In some embodiments, the target nucleic acid can be from a Human adenovirus 65, for example, as set forth in SEQ ID NO: 1439. In some embodiments, the target nucleic acid can be from a Human adenovirus 64, for example, as set forth in SEQ ID NO: 1440. In some embodiments, the target nucleic acid can be from a Human adenovirus 63, for example, as set forth in SEQ ID NO: 1441. In some embodiments, the target nucleic acid can be from a Human adenovirus 62, for example, as set forth in SEQ ID NO: 1442. In some embodiments, the target nucleic acid can be from a Human adenovirus 61, for example, as set forth in SEQ ID NO: 1443. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1444. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1445. In some embodiments, the target nucleic acid can be from a Human adenovirus 58, for example, as set forth in SEQ ID NO: 1446. In some embodiments, the target nucleic acid can be from a Human mastadenovirus C, for example, as set forth in SEQ ID NO: 1447. In some embodiments, the target nucleic acid can be from a Human adenovirus 56, for example, as set forth in SEQ ID NO: 1448. In some embodiments, the target nucleic acid can be from a Human adenovirus 55, for example, as set forth in SEQ ID NO: 1449. In some embodiments, the target nucleic acid can be from a Human adenovirus 54, for example, as set forth in SEQ ID NO: 1450. In some embodiments, the target nucleic acid can be from a Human mastadenovirus D, for example, as set forth in SEQ ID NO: 1451.

[0290] In some embodiments, the target nucleic acid can be from a gamma retrovirus, as set forth in the following examples. In some embodiments, the target nucleic acid can be from a Friend murine leukemia virus, for example, as set forth in SEQ ID NO: 1452. In some embodiments, the target nucleic acid can be from a Moloney murine leukemia virus, for example, as set forth in SEQ ID NO: 1453. In some embodiments, the target nucleic acid can be from a Murine type C retrovirus, for example, as set forth in SEQ ID NO: 1453.

[0291] In some embodiments, the target nucleic acid can be from a foamy virus, as set forth in the following examples. In some embodiments, the target nucleic acid can be from an Eastern chimpanzee simian foamy virus, for example, as set forth in SEQ ID NO: 1456. In some embodiments, the target nucleic acid can be from Macaque simian foamy virus, for example, as set forth in SEQ ID No: 1456 In some embodiments, the target nucleic acid can be from Feline foamy virus, for example, as set forth in SEQ ID NO: 1457.

[0292] In some embodiments, the target nucleic acid can be from a papillomavirus, as set forth in the following examples. In some embodiments, the target nucleic acid can be from Human papillomavirus 116, for example, as set forth in SEQ ID NO: 1458. [0293] In some embodiments, the nucleic acid sequence comprises at least a fragment at least 60%, at least 65%, at least70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, at least 99%, or at least 100% sequence identity to any one of SEQ ID NO: 1405 - SEQ ID NO: 1458.

[0294] TABLE 7 shows nucleic acid sequences of a various vectors, of which probes of the present disclosure can recognize in transfected cells.

TABLE 7 - Nucleic Acid Sequences of Vectors

SEQ

ID Sequence

NO

ACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT

AATGTATCTTATCATGTCTGGCTCTAGCTATCCCGCCCCTAACTCCGCCCAGTTCC

CCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCT

AGGCTTTTGCGTCGAGACGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGC

GCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCA

ACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAG

GCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGC

GACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGC

GTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTC

CTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCT

TTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGG

GTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC

GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTC

AACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTA

TTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAAT

ATTAACGTTTACAATTTCCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC

CCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACAT

TTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCAC

CCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGT

GGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCC

GAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTAT

TATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCA

GAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCAT

GACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGC

CAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCA

CAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA

AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC

GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTA

ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTT

CCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCG

GTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTA

CACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGA

TAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATAT

CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAG

CGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCG

CGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTG

CCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCG

CAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGA

ACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGC

TGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACC

GGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTT

GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAA

GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGG

GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCT

TTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCT

CGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGT

TCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT

CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCG

AACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATAC SEQ

ID Sequence

NO

GCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACA

GGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC

TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT

GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTAC

GCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAGCTGCAAGCT

TAATGTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAACGATGAGTTA

GCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGT

AAGGTGGTACGATCGTGCCTTATTAGGAAGGCAACAGACGGGTCTGACATGGAT

TGGACGAACCACTGAATTGCCGCATTGCAGAGATATTGTATTTAAGTGCCTAGCT

CGATACAATAAACGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCT

GGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTC

AAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACC

CTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACCTGAAA

GCGAAAGGGAAACCAGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGC

ACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAG

CGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGA

GAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAA

TATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTT

AATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTA

CAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTA

GCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCT

TTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGC

GGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGT

GAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACC

AAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAG

CTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCCTCAAT

GACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAA

CAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTG

GGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGG

ATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGC

TGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCAC

ACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACAC

TCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTG

GAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTG

TGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATA

GTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTAT

CGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAG

AAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGA

TCTCGACGGTATCGGTTAACTTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGT

GCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATT

ACAAAAACAAATTACAAAAATTCAAAATTTTATCGATCACGAGACTAGCCTCGA

GCTGTGTGTGGAACTGCTGAAGGGTGCTTCCTTTTATTCTTCATCCCTAGCCAGC

CGCCGGCCCCTGGCCTCACTGGATACTCTAAGACTATTGGTCAAGTTTGCCTTGT

CAAGGCTATTGGTCAAGGCAAGGCTGGCCAACCCATGGGTGGAGTTTAGCCAGG

GACCGTTTCAGACAGATATTTGCATTGAGATAGTGTGGGGAAGGGGCCCCCAAG

CCAGGACTTCTTTTGTCAGCCGTTTTTTACCTTCTTGTCTCTAGCTCCAGTGAGGA AGCGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGG GGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAG CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTT CATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTG ACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGAC SEQ

ID Sequence

NO

TTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA

AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC

CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATC

CTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCC

GACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGA

GGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGA

CGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAG

CAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC

CGCCGGGATCACTCTCGGCATGGACGAGCT

SEQ TTGCCCACTCCCTCTCTGCGCGCTCGCTCGCTCGGTGGGGCCTGCGGACCAAAGG ID TCCGCAGACGGCAGAGCTCTGCTCTGCCGGCCCCACCGAGCGAGCGAGCGCGCA NO: GAGAGGGAGTGGGCAACTCCATCACTAGGGGTAATCGCGAAGCGCCTCCCACGC 1406 TGCCGCGTCAGCGCTGACGTAAATTACGTCATAGGGGAGTGGTCCTGTATTAGCT

GTCACGTGAGTGCTTTTGCGACATTTTGCGACACCACGTGGCCATTTAGGGTATA

TATGGCCGAGTGAGCGAGCAGGATCTCCATTTTGACCGCGAAATTTGAACGAGC

AGCAGCCATGCCGGGCTTCTACGAGATCGTGATCAAGGTGCCGAGCGACCTGGA

CGAGCACCTGCCGGGCATTTCTGACTCGTTTGTGAGCTGGGTGGCCGAGAAGGA

ATGGGAGCTGCCCCCGGATTCTGACATGGATCTGAATCTGATTGAGCAGGCACC

CCTGACCGTGGCCGAGAAGCTGCAGCGCGACTTCCTGGTCCAATGGCGCCGCGT

GAGTAAGGCCCCGGAGGCCCTCTTCTTTGTTCAGTTCGAGAAGGGCGAGTCCTA

CTTCCACCTCCATATTCTGGTGGAGACCACGGGGGTCAAATCCATGGTGCTGGGC

CGCTTCCTGAGTCAGATTAGGGACAAGCTGGTGCAGACCATCTACCGCGGGATC

GAGCCGACCCTGCCCAACTGGTTCGCGGTGACCAAGACGCGTAATGGCGCCGGA

GGGGGGAACAAGGTGGTGGACGAGTGCTACATCCCCAACTACCTCCTGCCCAAG

ACTCAGCCCGAGCTGCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCC

TGTTTGAACCTGGCCGAGCGCAAACGGCTCGTGGCGCAGCACCTGACCCACGTC

AGCCAGACCCAGGAGCAGAACAAGGAGAATCTGAACCCCAATTCTGACGCGCCT

GTCATCCGGTCAAAAACCTCCGCGCGCTACATGGAGCTGGTCGGGTGGCTGGTG

GACCGGGGCATCACCTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGTAC

ATCTCCTTCAACGCCGCTTCCAACTCGCGGTCCCAGATCAAGGCCGCTCTGGACA

ATGCCGGCAAGATCATGGCGCTGACCAAATCCGCGCCCGACTACCTGGTAGGCC

CCGCTCCGCCCGCGGACATTAAAACCAACCGCATCTACCGCATCCTGGAGCTGA

ACGGCTACGAACCTGCCTACGCCGGCTCCGTCTTTCTCGGCTGGGCCCAGAAAA

GGTTCGGGAAGCGCAACACCATCTGGCTGTTTGGGCCGGCCACCACGGGCAAGA

CCAACATCGCGGAAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTCAACT

GGACCAATGAGAACTTTCCCTTCAATGATTGCGTCGACAAGATGGTGATCTGGT

GGGAGGAGGGCAAGATGACGGCCAAGGTCGTGGAGTCCGCCAAGGCCATTCTC

GGCGGCAGCAAGGTGCGCGTGGACCAAAAGTGCAAGTCGTCCGCCCAGATCGA

CCCCACCCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGG

GAACAGCACCACCTTCGAGCACCAGCAGCCGTTGCAGGACCGGATGTTCAAATT

TGAACTCACCCGCCGTCTGGAGCATGACTTTGGCAAGGTGACAAAGCAGGAAGT

CAAAGAGTTCTTCCGCTGGGCGCAGGATCACGTGACCGAGGTGGCGCATGAGTT

CTACGTCAGAAAGGGTGGAGCCAACAAAAGACCCGCCCCCGATGACGCGGATA

AAAGCGAGCCCAAGCGGGCCTGCCCCTCAGTCGCGGATCCATCGACGTCAGACG

CGGAAGGAGCTCCGGTGGACTTTGCCGACAGGTACCAAAACAAATGTTCTCGTC

ACGCGGGCATGCTTCAGATGCTGTTTCCCTGCAAGACATGCGAGAGAATGAATC

AGAATTTCAACATTTGCTTCACGCACGGGACGAGAGACTGTTCAGAGTGCTTCCC

CGGCGTGTCAGAATCTCAACCGGTCGTCAGAAAGAGGACGTATCGGAAACTCTG

TGCCATTCATCATCTGCTGGGGCGGGCTCCCGAGATTGCTTGCTCGGCCTGCGAT

CTGGTCAACGTGGACCTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACC

AGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAG

GGCATTCGCGAGTGGTGGGACTTGAAACCTGGAGCCCCGAAGCCCAAAGCCAAC

CAGCAAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTC SEQ

ID Sequence

NO

GGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCAGC

GGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAATCC

GTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGA

TACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGCGGGT

TCTCGAACCTCTCGGTCTGGTTGAGGAAGGCGCTAAGACGGCTCCTGGAAAGAA

ACGTCCGGTAGAGCAGTCGCCACAAGAGCCAGACTCCTCCTCGGGCATCGGCAA

GACAGGCCAGCAGCCCGCTAAAAAGAGACTCAATTTTGGTCAGACTGGCGACTC

AGAGTCAGTCCCCGATCCACAACCTCTCGGAGAACCTCCAGCAACCCCCGCTGC

TGTGGGACCTACTACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAA

CGAAGGCGCCGACGGAGTGGGTAATGCCTCAGGAAATTGGCATTGCGATTCCAC

ATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGCACCTGGGCCTTGCCCAC

CTACAATAACCACCTCTACAAGCAAATCTCCAGTGCTTCAACGGGGGCCAGCAA

CGACAACCACTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGATTTCAACAGA

TTCCACTGCCACTTTTCACCACGTGACTGGCAGCGACTCATCAACAACAATTGGG

GATTCCGGCCCAAGAGACTCAACTTCAAACTCTTCAACATCCAAGTCAAGGAGG

TCACGACGAATGATGGCGTCACAACCATCGCTAATAACCTTACCAGCACGGTTC

AAGTCTTCTCGGACTCGGAGTACCAGCTTCCGTACGTCCTCGGCTCTGCGCACCA

GGGCTGCCTCCCTCCGTTCCCGGCGGACGTGTTCATGATTCCGCAATACGGCTAC

CTGACGCTCAACAATGGCAGCCAAGCCGTGGGACGTTCATCCTTTTACTGCCTGG

AATATTTCCCTTCTCAGATGCTGAGAACGGGCAACAACTTTACCTTCAGCTACAC

CTTTGAGGAAGTGCCTTTCCACAGCAGCTACGCGCACAGCCAGAGCCTGGACCG

GCTGATGAATCCTCTCATCGACCAATACCTGTATTACCTGAACAGAACTCAAAAT

CAGTCCGGAAGTGCCCAAAACAAGGACTTGCTGTTTAGCCGTGGGTCTCCAGCT

GGCATGTCTGTTCAGCCCAAAAACTGGCTACCTGGACCCTGTTATCGGCAGCAG

CGCGTTTCTAAAACAAAAACAGACAACAACAACAGCAATTTTACCTGGACTGGT

GCTTCAAAATATAACCTCAATGGGCGTGAATCCATCATCAACCCTGGCACTGCTA

TGGCCTCACACAAAGACGACGAAGACAAGTTCTTTCCCATGAGCGGTGTCATGA

TTACAGACGAAGAGGAAATTAAAGCCACTAACCCTGTGGCCACCGAAAGATTTG

GGACCGTGGCAGTCAATTTCCAGAGCAGCAGCACAGACCCTGCGACCGGAGATG

TGCATGCTATGGGAGCATTACCTGGCATGGTGTGGCAAGATAGAGACGTGTACC

TGCAGGGTCCCATTTGGGCCAAAATTCCTCACACAGATGGACACTTTCACCCGTC

TCCTCTTATGGGCGGCTTTGGACTCAAGAACCCGCCTCCTCAGATCCTCATCAAA

AACACGCCTGTTCCTGCGAATCCTCCGGCGGAGTTTTCAGCTACAAAGTTTGCTT

CATTCATCACCCAATACTCCACAGGACAAGTGAGTGTGGAAATTGAATGGGAGC

TGCAGAAAGAAAACAGCAAGCGCTGGAATCCCGAAGTGCAGTACACATCCAATT

ATGCAAAATCTGCCAACGTTGATTTTACTGTGGACAACAATGGACTTTATACTGA

GCCTCGCCCCATTGGCACCCGTTACCTTACCCGTCCCCTGTAATTACGTGTTAAT

CAATAAACCGGTTGATTCGTTTCAGTTGAACTTTGGTCTCCTGTCCTTCTTATCTT

ATCGGTTACCATGGTTATAGCTTACACATTAACTGCTTGGTTGCGCTTCGCGATA

AAAGACTTACGTCATCGGGTTACCCCTAGTGATGGAGTTGCCCACTCCCTCTCTG

CGCGCTCGCTCGCTCGGTGGGGCCTGCGGACCAAAGGTCCGCAGACGGCAGAGC

TCTGCTCTGCCGGCCCCACCGAGCGAGCGAGCGCGCAGAGAGGGAGTGGGCAA

SEQ TTGGCCACTCCCTCTATGCGCACTCGCTCGCTCGGTGGGGCCTGGCGACCAAAGG ID TCGCCAGACGGACGTGCTTTGCACGTCCGGCCCCACCGAGCGAGCGAGTGCGCA NO: TAGAGGGAGTGGCCAACTCCATCACTAGAGGTATGGCAGTGACGTAACGCGAAG 1407 CGCGCGAAGCGAGACCACGCCTACCAGCTGCGTCAGCAGTCAGGTGACCCTTTT

GCGACAGTTTGCGACACCACGTGGCCGCTGAGGGTATATATTCTCGAGTGAGCG

AACCAGGAGCTCCATTTTGACCGCGAAATTTGAACGAGCAGCAGCCATGCCGGG

GTTCTACGAGATTGTCCTGAAGGTCCCGAGTGACCTGGACGAGCGCCTGCCGGG

CATTTCTAACTCGTTTGTTAACTGGGTGGCCGAGAAGGAATGGGACGTGCCGCC

GGATTCTGACATGGATCCGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGA

AAAGCTTCAGCGCGAGTTCCTGGTGGAGTGGCGCCGCGTGAGTAAGGCCCCGGA SEQ

ID Sequence

NO

CTGATTGAGACCATCGGGGTCAAATCCATGGTGGTCGGCCGCTACGTGAGCCAG

ATTAAAGAGAAGCTGGTGACCCGCATCTACCGCGGGGTCGAGCCGCAGCTTCCG

AACTGGTTCGCGGTGACCAAAACGCGAAATGGCGCCGGGGGCGGGAACAAGGT

GGTGGACGACTGCTACATCCCCAACTACCTGCTCCCCAAGACCCAGCCCGAGCT

CCAGTGGGCGTGGACTAACATGGACCAGTATTTAAGCGCCTGTTTGAATCTCGC

GGAGCGTAAACGGCTGGTGGCGCAGCATCTGACGCACGTGTCGCAGACGCAGG

AGCAGAACAAAGAGAATCAGAACCCCAATTCTGACGCGCCGGTCATCAGGTCAA

AAACCTCAGCCAGGTACATGGAGCTGGTCGGGTGGCTGGTGGACCGCGGGATCA

CGTCAGAAAAGCAATGGATTCAGGAGGACCAGGCCTCGTACATCTCCTTCAACG

CCGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCGCTGGACAATGCCTCCAAGA

TCATGAGCCTGACAAAGACGGCTCCGGACTACCTGGTGGGCAGCAACCCGCCGG

AGGACATTACCAAAAATCGGATCTACCAAATCCTGGAGCTGAACGGGTACGATC

CGCAGTACGCGGCCTCCGTCTTCCTGGGCTGGGCGCAAAAGAAGTTCGGGAAGA

GGAACACCATCTGGCTCTTTGGGCCGGCCACGACGGGTAAAACCAACATCGCGG

AAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTAAACTGGACCAATGAGA

ACTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGGAGGGCA

AGATGACGGCCAAGGTCGTGGAGAGCGCCAAGGCCATTCTGGGCGGAAGCAAG

GTGCGCGTGGACCAAAAGTGCAAGTCATCGGCCCAGATCGAACCCACTCCCGTG

ATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACAGCACCACC

TTCGAGCATCAGCAGCCGCTGCAGGACCGGATGTTTGAATTTGAACTTACCCGCC

GTTTGGACCATGACTTTGGGAAGGTCACCAAACAGGAAGTAAAGGACTTTTTCC

GGTGGGCTTCCGATCACGTGACTGACGTGGCTCATGAGTTCTACGTCAGAAAGG

GTGGAGCTAAGAAACGCCCCGCCTCCAATGACGCGGATGTAAGCGAGCCAAAA

CGGGAGTGCACGTCACTTGCGCAGCCGACAACGTCAGACGCGGAAGCACCGGC

GGACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCT

TTTACGCATGGTCAAAGAGACTGTGGGGAATGCTTCCCTGGAATGTCAGAATCT

CAACCCGTTTCTGTCGTCAAAAAGAAGACTTATCAGAAACTGTGTCCAATTCATC

ATATCCTGGGAAGGGCACCCGAGATTGCCTGTTCGGCCTGCGATTTGGCCAATGT

GGACTTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACCAGGTATGGCTG

CTGACGGTTATCTTCCAGATTGGCTCGAGGACAACCTTTCTGAAGGCATTCGTGA

GTGGTGGGCTCTGAAACCTGGAGTCCCTCAACCCAAAGCGAACCAACAACACCA

GGACAACCGTCGGGGTCTTGTGCTTCCGGGTTACAAATACCTCGGACCCGGTAA

CGGACTCGACAAAGGAGAGCCGGTCAACGAGGCGGACGCGGCAGCCCTCGAAC

ACGACAAAGCTTACGACCAGCAGCTCAAGGCCGGTGACAACCCGTACCTCAAGT

ACAACCACGCCGACGCCGAGTTTCAGGAGCGTCTTCAAGAAGATACGTCTTTTG

GGGGCAACCTTGGCAGAGCAGTCTTCCAGGCCAAAAAGAGGATCCTTGAGCCTC

TTGGTCTGGTTGAGGAAGCAGCTAAAACGGCTCCTGGAAAGAAGGGGGCTGTAG

ATCAGTCTCCTCAGGAACCGGACTCATCATCTGGTGTTGGCAAATCGGGCAAAC

AGCCTGCCAGAAAAAGACTAAATTTCGGTCAGACTGGAGACTCAGAGTCAGTCC

CAGACCCTCAACCTCTCGGAGAACCACCAGCAGCCCCCACAAGTTTGGGATCTA

ATACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAGGGTGCCG

ATGGAGTGGGTAATTCCTCAGGAAATTGGCATTGCGATTCCCAATGGCTGGGCG

ACAGAGTCATCACCACCAGCACCAGAACCTGGGCCCTGCCCACTTACAACAACC

ATCTCTACAAGCAAATCTCCAGCCAATCAGGAGCTTCAAACGACAACCACTACT

TTGGCTACAGCACCCCTTGGGGGTATTTTGACTTTAACAGATTCCACTGCCACTT

CTCACCACGTGACTGGCAGCGACTCATTAACAACAACTGGGGATTCCGGCCCAA

GAAACTCAGCTTCAAGCTCTTCAACATCCAAGTTAGAGGGGTCACGCAGAACGA

TGGCACGACGACTATTGCCAATAACCTTACCAGCACGGTTCAAGTGTTTACGGA

CTCGGAGTATCAGCTCCCGTACGTGCTCGGGTCGGCGCACCAAGGCTGTCTCCCG

CCGTTTCCAGCGGACGTCTTCATGGTCCCTCAGTATGGATACCTCACCCTGAACA

ACGGAAGTCAAGCGGTGGGACGCTCATCCTTTTACTGCCTGGAGTACTTCCCTTC SEQ

ID Sequence

NO

GCAGATGCTAAGGACTGGAAATAACTTCCAATTCAGCTATACCTTCGAGGATGT

ACCTTTTCACAGCAGCTACGCTCACAGCCAGAGTTTGGATCGCTTGATGAATCCT

CTTATTGATCAGTATCTGTACTACCTGAACAGAACGCAAGGAACAACCTCTGGA

ACAACCAACCAATCACGGCTGCTTTTTAGCCAGGCTGGGCCTCAGTCTATGTCTT

TGCAGGCCAGAAATTGGCTACCTGGGCCCTGCTACCGGCAACAGAGACTTTCAA

AGACTGCTAACGACAACAACAACAGTAACTTTCCTTGGACAGCGGCCAGCAAAT

ATCATCTCAATGGCCGCGACTCGCTGGTGAATCCAGGACCAGCTATGGCCAGTC

ACAAGGACGATGAAGAAAAATTTTTCCCTATGCACGGCAATCTAATATTTGGCA

AAGAAGGGACAACGGCAAGTAACGCAGAATTAGATAATGTAATGATTACGGAT

GAAGAAGAGATTCGTACCACCAATCCTGTGGCAACAGAGCAGTATGGAACTGTG

GCAAATAACTTGCAGAGCTCAAATACAGCTCCCACGACTGGAACTGTCAATCAT

CAGGGGGCCTTACCTGGCATGGTGTGGCAAGATCGTGACGTGTACCTTCAAGGA

CCTATCTGGGCAAAGATTCCTCACACGGATGGACACTTTCATCCTTCTCCTCTGA

TGGGAGGCTTTGGACTGAAACATCCGCCTCCTCAAATCATGATCAAAAATACTC

CGGTACCGGCAAATCCTCCGACGACTTTCAGCCCGGCCAAGTTTGCTTCATTTAT

CACTCAGTACTCCACTGGACAGGTCAGCGTGGAAATTGAGTGGGAGCTACAGAA

AGAAAACAGCAAACGTTGGAATCCAGAGATTCAGTACACTTCCAACTACAACAA

GTCTGTTAATGTGGACTTTACTGTAGACACTAATGGTGTTTATAGTGAACCTCGC

CCTATTGGAACCCGGTATCTCACACGAAACTTGTGAATCCTGGTTAATCAATAAA

CCGTTTAATTCGTTTCAGTTGAACTTTGGCTCTTGTGCACTTCTTTATCTTTATCTT

GTTTCCATGGCTACTGCGTAGATAAGCAGCGGCCTGCGGCGCTTGCGCTTCGCGG

TTTACAACTGCTGGTTAATATTTAACTCTCGCCATACCTCTAGTGATGGAGTTGG

CCACTCCCTCTATGCGCACTCGCTCGCTCGGTGGGGCCTGGCGACCAAAGGTCGC

CAGACGGACGTGCTTTGCACGTCCGGCCCCACCGAGCGAGCGAGTGCGCATAGA

GGGAGTGGCCAA

SEQ TTGGCCACTCCCTCTATGCGCACTCGCTCGCTCGGTGGGGCCTGGCGACCAAAGG ID TCGCCAGACGGACGTGCTTTGCACGTCCGGCCCCACCGAGCGAGCGAGTGCGCA NO: TAGAGGGAGTGGCCAACTCCATCACTAGAGGTATGGCAGTGACGTAACGCGAAG 1408 CGCGCGAAGCGAGACCACGCCTACCAGCTGCGTCAGCAGTCAGGTGACCCTTTT

GCGACAGTTTGCGACACCACGTGGCCGCTGAGGGTATATATTCTCGAGTGAGCG

AACCAGGAGCTCCATTTTGACCGCGAAATTTGAACGAGCAGCAGCCATGCCGGG

GTTCTACGAGATTGTCCTGAAGGTCCCGAGTGACCTGGACGAGCGCCTGCCGGG

CATTTCTAACTCGTTTGTTAACTGGGTGGCCGAGAAGGAATGGGACGTGCCGCC

GGATTCTGACATGGATCCGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGA

AAAGCTTCAGCGCGAGTTCCTGGTGGAGTGGCGCCGCGTGAGTAAGGCCCCGGA

CTGATTGAGACCATCGGGGTCAAATCCATGGTGGTCGGCCGCTACGTGAGCCAG

ATTAAAGAGAAGCTGGTGACCCGCATCTACCGCGGGGTCGAGCCGCAGCTTCCG

AACTGGTTCGCGGTGACCAAAACGCGAAATGGCGCCGGGGGCGGGAACAAGGT

GGTGGACGACTGCTACATCCCCAACTACCTGCTCCCCAAGACCCAGCCCGAGCT

CCAGTGGGCGTGGACTAACATGGACCAGTATTTAAGCGCCTGTTTGAATCTCGC

GGAGCGTAAACGGCTGGTGGCGCAGCATCTGACGCACGTGTCGCAGACGCAGG

AGCAGAACAAAGAGAATCAGAACCCCAATTCTGACGCGCCGGTCATCAGGTCAA

AAACCTCAGCCAGGTACATGGAGCTGGTCGGGTGGCTGGTGGACCGCGGGATCA

CGTCAGAAAAGCAATGGATTCAGGAGGACCAGGCCTCGTACATCTCCTTCAACG

CCGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCGCTGGACAATGCCTCCAAGA

TCATGAGCCTGACAAAGACGGCTCCGGACTACCTGGTGGGCAGCAACCCGCCGG

AGGACATTACCAAAAATCGGATCTACCAAATCCTGGAGCTGAACGGGTACGATC

CGCAGTACGCGGCCTCCGTCTTCCTGGGCTGGGCGCAAAAGAAGTTCGGGAAGA

GGAACACCATCTGGCTCTTTGGGCCGGCCACGACGGGTAAAACCAACATCGCGG

AAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTAAACTGGACCAATGAGA

ACTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGGAGGGCA

AGATGACGGCCAAGGTCGTGGAGAGCGCCAAGGCCATTCTGGGCGGAAGCAAG SEQ

ID Sequence

NO

GTGCGCGTGGACCAAAAGTGCAAGTCATCGGCCCAGATCGAACCCACTCCCGTG

ATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACAGCACCACC

TTCGAGCATCAGCAGCCGCTGCAGGACCGGATGTTTGAATTTGAACTTACCCGCC

GTTTGGACCATGACTTTGGGAAGGTCACCAAACAGGAAGTAAAGGACTTTTTCC

GGTGGGCTTCCGATCACGTGACTGACGTGGCTCATGAGTTCTACGTCAGAAAGG

GTGGAGCTAAGAAACGCCCCGCCTCCAATGACGCGGATGTAAGCGAGCCAAAA

CGGGAGTGCACGTCACTTGCGCAGCCGACAACGTCAGACGCGGAAGCACCGGC

GGACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCT

TTTACGCATGGTCAAAGAGACTGTGGGGAATGCTTCCCTGGAATGTCAGAATCT

CAACCCGTTTCTGTCGTCAAAAAGAAGACTTATCAGAAACTGTGTCCAATTCATC

ATATCCTGGGAAGGGCACCCGAGATTGCCTGTTCGGCCTGCGATTTGGCCAATGT

GGACTTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACCAGGTATGGCTG

CTGACGGTTATCTTCCAGATTGGCTCGAGGACAACCTTTCTGAAGGCATTCGTGA

GTGGTGGGCTCTGAAACCTGGAGTCCCTCAACCCAAAGCGAACCAACAACACCA

GGACAACCGTCGGGGTCTTGTGCTTCCGGGTTACAAATACCTCGGACCCGGTAA

CGGACTCGACAAAGGAGAGCCGGTCAACGAGGCGGACGCGGCAGCCCTCGAAC

ACGACAAAGCTTACGACCAGCAGCTCAAGGCCGGTGACAACCCGTACCTCAAGT

ACAACCACGCCGACGCCGAGTTTCAGGAGCGTCTTCAAGAAGATACGTCTTTTG

GGGGCAACCTTGGCAGAGCAGTCTTCCAGGCCAAAAAGAGGATCCTTGAGCCTC

TTGGTCTGGTTGAGGAAGCAGCTAAAACGGCTCCTGGAAAGAAGGGGGCTGTAG

ATCAGTCTCCTCAGGAACCGGACTCATCATCTGGTGTTGGCAAATCGGGCAAAC

AGCCTGCCAGAAAAAGACTAAATTTCGGTCAGACTGGAGACTCAGAGTCAGTCC

CAGACCCTCAACCTCTCGGAGAACCACCAGCAGCCCCCACAAGTTTGGGATCTA

ATACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAGGGTGCCG

ATGGAGTGGGTAATTCCTCAGGAAATTGGCATTGCGATTCCCAATGGCTGGGCG

ACAGAGTCATCACCACCAGCACCAGAACCTGGGCCCTGCCCACTTACAACAACC

ATCTCTACAAGCAAATCTCCAGCCAATCAGGAGCTTCAAACGACAACCACTACT

TTGGCTACAGCACCCCTTGGGGGTATTTTGACTTTAACAGATTCCACTGCCACTT

CTCACCACGTGACTGGCAGCGACTCATTAACAACAACTGGGGATTCCGGCCCAA

GAAACTCAGCTTCAAGCTCTTCAACATCCAAGTTAGAGGGGTCACGCAGAACGA

TGGCACGACGACTATTGCCAATAACCTTACCAGCACGGTTCAAGTGTTTACGGA

CTCGGAGTATCAGCTCCCGTACGTGCTCGGGTCGGCGCACCAAGGCTGTCTCCCG

CCGTTTCCAGCGGACGTCTTCATGGTCCCTCAGTATGGATACCTCACCCTGAACA

ACGGAAGTCAAGCGGTGGGACGCTCATCCTTTTACTGCCTGGAGTACTTCCCTTC

GCAGATGCTAAGGACTGGAAATAACTTCCAATTCAGCTATACCTTCGAGGATGT

ACCTTTTCACAGCAGCTACGCTCACAGCCAGAGTTTGGATCGCTTGATGAATCCT

CTTATTGATCAGTATCTGTACTACCTGAACAGAACGCAAGGAACAACCTCTGGA

ACAACCAACCAATCACGGCTGCTTTTTAGCCAGGCTGGGCCTCAGTCTATGTCTT

TGCAGGCCAGAAATTGGCTACCTGGGCCCTGCTACCGGCAACAGAGACTTTCAA

AGACTGCTAACGACAACAACAACAGTAACTTTCCTTGGACAGCGGCCAGCAAAT

ATCATCTCAATGGCCGCGACTCGCTGGTGAATCCAGGACCAGCTATGGCCAGTC

ACAAGGACGATGAAGAAAAATTTTTCCCTATGCACGGCAATCTAATATTTGGCA

AAGAAGGGACAACGGCAAGTAACGCAGAATTAGATAATGTAATGATTACGGAT

GAAGAAGAGATTCGTACCACCAATCCTGTGGCAACAGAGCAGTATGGAACTGTG

GCAAATAACTTGCAGAGCTCAAATACAGCTCCCACGACTGGAACTGTCAATCAT

CAGGGGGCCTTACCTGGCATGGTGTGGCAAGATCGTGACGTGTACCTTCAAGGA

CCTATCTGGGCAAAGATTCCTCACACGGATGGACACTTTCATCCTTCTCCTCTGA

TGGGAGGCTTTGGACTGAAACATCCGCCTCCTCAAATCATGATCAAAAATACTC

CGGTACCGGCAAATCCTCCGACGACTTTCAGCCCGGCCAAGTTTGCTTCATTTAT

CACTCAGTACTCCACTGGACAGGTCAGCGTGGAAATTGAGTGGGAGCTACAGAA

AGAAAACAGCAAACGTTGGAATCCAGAGATTCAGTACACTTCCAACTACAACAA

GTCTGTTAATGTGGACTTTACTGTAGACACTAATGGTGTTTATAGTGAACCTCGC SEQ

ID Sequence

NO

CCTATTGGAACCCGGTATCTCACACGAAACTTGTGAATCCTGGTTAATCAATAAA

CCGTTTAATTCGTTTCAGTTGAACTTTGGCTCTTGTGCACTTCTTTATCTTTATCTT

GTTTCCATGGCTACTGCGTAGATAAGCAGCGGCCTGCGGCGCTTGCGCTTCGCGG

TTTACAACTGCTGGTTAATATTTAACTCTCGCCATACCTCTAGTGATGGAGTTGG

CCACTCCCTCTATGCGCACTCGCTCGCTCGGTGGGGCCTGGCGACCAAAGGTCGC

CAGACGGACGTGCTTTGCACGTCCGGCCCCACCGAGCGAGCGAGTGCGCATAGA

GGGAGTGGCCAA

SEQ TTGGCCACTCCCTCTATGCGCGCTCGCTCACTCACTCGGCCCTGGAGACCAAAGG ID TCTCCAGACTGCCGGCCTCTGGCCGGCAGGGCCGAGTGAGTGAGCGAGCGCGCA NO: TAGAGGGAGTGGCCAACTCCATCATCTAGGTTTGCCCACTGACGTCAATGTGAC 1409 GTCCTAGGGTTAGGGAGGTCCCTGTATTAGCAGTCACGTGAGTGTCGTATTTCGC

GGAGCGTAGCGGAGCGCATACCAAGCTGCCACGTCACAGCCACGTGGTCCGTTT

GCGACAGTTTGCGACACCATGTGGTCAGGAGGGTATATAACCGCGAGTGAGCCA

GCGAGGAGCTCCATTTTGCCCGCGAATTTTGAACGAGCAGCAGCCATGCCGGGG

TTCTACGAGATCGTGCTGAAGGTGCCCAGCGACCTGGACGAGCACCTGCCCGGC

ATTTCTGACTCTTTTGTGAGCTGGGTGGCCGAGAAGGAATGGGAGCTGCCGCCG

GATTCTGACATGGACTTGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGAA

AAGCTGCAACGCGAGTTCCTGGTCGAGTGGCGCCGCGTGAGTAAGGCCCCGGAG

GCCCTCTTCTTTGTCCAGTTCGAGAAGGGGGACAGCTACTTCCACCTGCACATCC

TGGTGGAGACCGTGGGCGTCAAATCCATGGTGGTGGGCCGCTACGTGAGCCAGA

TTAAAGAGAAGCTGGTGACCCGCATCTACCGCGGGGTCGAGCCGCAGCTTCCGA

ACTGGTTCGCGGTGACCAAGACGCGTAATGGCGCCGGAGGCGGGAACAAGGTG

GTGGACGACTGCTACATCCCCAACTACCTGCTCCCCAAGACCCAGCCCGAGCTC

CAGTGGGCGTGGACTAACATGGACCAGTATATAAGCGCCTGTTTGAATCTCGCG

GAGCGTAAACGGCTGGTGGCGCAGCATCTGACGCACGTGTCGCAGACGCAGGA

GCAGAACAAGGAAAACCAGAACCCCAATTCTGACGCGCCGGTCATCAGGTCAA

AAACCTCCGCCAGGTACATGGAGCTGGTCGGGTGGCTGGTGGACCGCGGGATCA

CGTCAGAAAAGCAATGGATCCAGGAGGACCAGGCGTCCTACATCTCCTTCAACG

CCGCCTCCAACTCGCGGTCACAAATCAAGGCCGCGCTGGACAATGCCTCCAAAA

TCATGAGCCTGACAAAGACGGCTCCGGACTACCTGGTGGGCCAGAACCCGCCGG

AGGACATTTCCAGCAACCGCATCTACCGAATCCTCGAGATGAACGGGTACGATC

CGCAGTACGCGGCCTCCGTCTTCCTGGGCTGGGCGCAAAAGAAGTTCGGGAAGA

GGAACACCATCTGGCTCTTTGGGCCGGCCACGACGGGTAAAACCAACATCGCGG

AAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTGAACTGGACCAATGAGA

ACTTTCCGTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGGAGGGCA

AGATGACGGCCAAGGTCGTAGAGAGCGCCAAGGCCATCCTGGGCGGAAGCAAG

GTGCGCGTGGACCAAAAGTGCAAGTCATCGGCCCAGATCGACCCAACTCCCGTG

ATCGTCACCTCCAACACCAACATGTGCGCGGTCATCGACGGAAACTCGACCACC

TTCGAGCACCAACAACCACTCCAGGACCGGATGTTCAAGTTCGAGCTCACCAAG

CGCCTGGAGCACGACTTTGGCAAGGTCACCAAGCAGGAAGTCAAAGACTTTTTC

CGGTGGGCGTCAGATCACGTGACCGAGGTGACTCACGAGTTTTACGTCAGAAAG

GGTGGAGCTAGAAAGAGGCCCGCCCCCAATGACGCAGATATAAGTGAGCCCAA

GCGGGCCTGTCCGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTCCGGT

GGACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGTATGAATCT

CTTCACGCACGGGGTCATGGACTGTGCCGAGTGCTTCCCCGTGTCAGAATCTCAA

CCCGTGTCTGTCGTCAGAAAGCGGACGTATCAGAAACTGTGTCCGATTCATCAC

ATCATGGGGAGGGCGCCCGAGGTGGCCTGCTCGGCCTGCGAACTGGCCAATGTG

GACTTGGATGACTGTGACATGGAACAATAAATGACTCAAACCAGATATGACTGA

CGGTTACCTTCCAGATTGGCTAGAGGACAACCTCTCTGAAGGCGTTCGAGAGTG

GTGGGCGCTGCAACCTGGAGCCCCTAAACCCAAGGCAAATCAACAACATCAGGA

CAACGCTCGGGGTCTTGTGCTTCCGGGTTACAAATACCTCGGACCCGGCAACGG

ACTCGACAAGGGGGAACCCGTCAACGCAGCGGACGCGGCAGCCCTCGAGCACG SEQ

ID Sequence

NO

ACAAGGCCTACGACCAGCAGCTCAAGGCCGGTGACAACCCCTACCTCAAGTACA

ACCACGCCGACGCGGAGTTCCAGCAGCGGCTTCAGGGCGACACATCGTTTGGGG

GCAACCTCGGCAGAGCAGTCTTCCAGGCCAAAAAGAGGGTTCTTGAACCTCTTG

GTCTGGTTGAGCAAGCGGGTGAGACGGCTCCTGGAAAGAAGAGACCGTTGATTG

AATCCCCCCAGCAGCCCGACTCCTCCACGGGTATCGGCAAAAAAGGCAAGCAGC

CGGCTAAAAAGAAGCTCGTTTTCGAAGACGAAACTGGAGCAGGCGACGGACCC

CCTGAGGGATCAACTTCCGGAGCCATGTCTGATGACAGTGAGATGCGTGCAGCA

GCTGGCGGAGCTGCAGTCGAGGGCGGACAAGGTGCCGATGGAGTGGGTAATGC

CTCGGGTGATTGGCATTGCGATTCCACCTGGTCTGAGGGCCACGTCACGACCACC

AGCACCAGAACCTGGGTCTTGCCCACCTACAACAACCACCTCTACAAGCGACTC

GGAGAGAGCCTGCAGTCCAACACCTACAACGGATTCTCCACCCCCTGGGGATAC

TTTGACTTCAACCGCTTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCA

TCAACAACAACTGGGGCATGCGACCCAAAGCCATGCGGGTCAAAATCTTCAACA

TCCAGGTCAAGGAGGTCACGACGTCGAACGGCGAGACAACGGTGGCTAATAAC

CTTACCAGCACGGTTCAGATCTTTGCGGACTCGTCGTACGAACTGCCGTACGTGA

TGGATGCGGGTCAAGAGGGCAGCCTGCCTCCTTTTCCCAACGACGTCTTTATGGT

GCCCCAGTACGGCTACTGTGGACTGGTGACCGGCAACACTTCGCAGCAACAGAC

TGACAGAAATGCCTTCTACTGCCTGGAGTACTTTCCTTCGCAGATGCTGCGGACT

GGCAACAACTTTGAAATTACGTACAGTTTTGAGAAGGTGCCTTTCCACTCGATGT

ACGCGCACAGCCAGAGCCTGGACCGGCTGATGAACCCTCTCATCGACCAGTACC

TGTGGGGACTGCAATCGACCACCACCGGAACCACCCTGAATGCCGGGACTGCCA

CCACCAACTTTACCAAGCTGCGGCCTACCAACTTTTCCAACTTTAAAAAGAACTG

GCTGCCCGGGCCTTCAATCAAGCAGCAGGGCTTCTCAAAGACTGCCAATCAAAA

CTACAAGATCCCTGCCACCGGGTCAGACAGTCTCATCAAATACGAGACGCACAG

CACTCTGGACGGAAGATGGAGTGCCCTGACCCCCGGACCTCCAATGGCCACGGC

TGGACCTGCGGACAGCAAGTTCAGCAACAGCCAGCTCATCTTTGCGGGGCCTAA

ACAGAACGGCAACACGGCCACCGTACCCGGGACTCTGATCTTCACCTCTGAGGA

GGAGCTGGCAGCCACCAACGCCACCGATACGGACATGTGGGGCAACCTACCTGG

CGGTGACCAGAGCAACAGCAACCTGCCGACCGTGGACAGACTGACAGCCTTGGG

AGCCGTGCCTGGAATGGTCTGGCAAAACAGAGACATTTACTACCAGGGTCCCAT

TTGGGCCAAGATTCCTCATACCGATGGACACTTTCACCCCTCACCGCTGATTGGT

GGGTTTGGGCTGAAACACCCGCCTCCTCAAATTTTTATCAAGAACACCCCGGTAC

CTGCGAATCCTGCAACGACCTTCAGCTCTACTCCGGTAAACTCCTTCATTACTCA

GTACAGCACTGGCCAGGTGTCGGTGCAGATTGACTGGGAGATCCAGAAGGAGCG

GTCCAAACGCTGGAACCCCGAGGTCCAGTTTACCTCCAACTACGGACAGCAAAA

CTCTCTGTTGTGGGCTCCCGATGCGGCTGGGAAATACACTGAGCCTAGGGCTATC

GGTACCCGCTACCTCACCCACCACCTGTAATAACCTGTTAATCAATAAACCGGTT

TATTCGTTTCAGTTGAACTTTGGTCTCCGTGTCCTTCTTATCTTATCTCGTTTCCAT

GGCTACTGCGTACATAAGCAGCGGCCTGCGGCGCTTGCGCTTCGCGGTTTACAA

CTGCCGGTTAATCAGTAACTTCTGGCAAACCAGATGATGGAGTTGGCCACATTA

GCTATGCGCGCTCGCTCACTCACTCGGCCCTGGAGACCAAAGGTCTCCAGACTG

CCGGCCTCTGGCCGGCAGGGCCGAGTGAGTGAGCGAGCGCGCATAGAGGGAGT

GGCCAA

SEQ CTCTCCCCCCTGTCGCGTTCGCTCGCTCGCTGGCTCGTTTGGGGGGGTGGCAGCT ID CAAAGAGCTGCCAGACGACGGCCCTCTGGCCGTCGCCCCCCCAAACGAGCCAGC NO: GAGCGAGCGAACGCGACAGGGGGGAGAGTGCCACACTCTCAAGCAAGGGGGTT 1410 TTGTAAGCAGTGATGTCATAATGATGTAATGCTTATTGTCACGCGATAGTTAATG

ATTAACAGTCATGTGATGTGTTTTATCCAATAGGAAGAAAGCGCGCGTATGAGT

TCTCGCGAGACTTCCGGGGTATAAAAGACCGAGTGAACGAGCCCGCCGCCATTC

TTTGCTCTGGACTGCTAGAGGACCCTCGCTGCCATGGCTACCTTCTATGAAGTCA

TTGTTCGCGTCCCATTTGACGTGGAGGAACATCTGCCTGGAATTTCTGACAGCTT

TGTGGACTGGGTAACTGGTCAAATTTGGGAGCTGCCTCCAGAGTCAGATTTAAA

TTTGACTCTGGTTGAACAGCCTCAGTTGACGGTGGCTGATAGAATTCGCCGCGTG SEQ

ID Sequence

NO

TTCCTGTACGAGTGGAACAAATTTTCCAAGCAGGAGTCCAAATTCTTTGTGCAGT

TTGAAAAGGGATCTGAATATTTTCATCTGCACACGCTTGTGGAGACCTCCGGCAT

CTCTTCCATGGTCCTCGGCCGCTACGTGAGTCAGATTCGCGCCCAGCTGGTGAAA

GTGGTCTTCCAGGGAATTGAACCCCAGATCAACGACTGGGTCGCCATCACCAAG

GTAAAGAAGGGCGGAGCCAATAAGGTGGTGGATTCTGGGTATATTCCCGCCTAC

CTGCTGCCGAAGGTCCAACCGGAGCTTCAGTGGGCGTGGACAAACCTGGACGAG

TATAAATTGGCCGCCCTGAATCTGGAGGAGCGCAAACGGCTCGTCGCGCAGTTT

CTGGCAGAATCCTCGCAGCGCTCGCAGGAGGCGGCTTCGCAGCGTGAGTTCTCG

GCTGACCCGGTCATCAAAAGCAAGACTTCCCAGAAATACATGGCGCTCGTCAAC

TGGCTCGTGGAGCACGGCATCACTTCCGAGAAGCAGTGGATCCAGGAAAATCAG

GAGAGCTACCTCTCCTTCAACTCCACCGGCAACTCTCGGAGCCAGATCAAGGCC

GCGCTCGACAACGCGACCAAAATTATGAGTCTGACAAAAAGCGCGGTGGACTAC

CTCGTGGGGAGCTCCGTTCCCGAGGACATTTCAAAAAACAGAATCTGGCAAATT

TTTGAGATGAATGGCTACGACCCGGCCTACGCGGGATCCATCCTCTACGGCTGGT

GTCAGCGCTCCTTCAACAAGAGGAACACCGTCTGGCTCTACGGACCCGCCACGA

CCGGCAAGACCAACATCGCGGAGGCCATCGCCCACACTGTGCCCTTTTACGGCT

GCGTGAACTGGACCAATGAAAACTTTCCCTTTAATGACTGTGTGGACAAAATGC

TCATTTGGTGGGAGGAGGGAAAGATGACCAACAAGGTGGTTGAATCCGCCAAG

GCCATCCTGGGGGGCTCAAAGGTGCGGGTCGATCAGAAATGTAAATCCTCTGTT

CAAATTGATTCTACCCCTGTCATTGTAACTTCCAATACAAACATGTGTGTGGTGG

TGGATGGGAATTCCACGACCTTTGAACACCAGCAGCCGCTGGAGGACCGCATGT

TCAAATTTGAACTGACTAAGCGGCTCCCGCCAGATTTTGGCAAGATTACTAAGC

AGGAAGTCAAGGACTTTTTTGCTTGGGCAAAGGTCAATCAGGTGCCGGTGACTC

ACGAGTTTAAAGTTCCCAGGGAATTGGCGGGAACTAAAGGGGCGGAGAAATCTC

TAAAACGCCCACTGGGTGACGTCACCAATACTAGCTATAAAAGTCTGGAGAAGC

GGGCCAGGCTCTCATTTGTTCCCGAGACGCCTCGCAGTTCAGACGTGACTGTTGA

TCCCGCTCCTCTGCGACCGCTCAATTGGAATTCAAGGTATGATTGCAAATGTGAC

TATCATGCTCAATTTGACAACATTTCTAACAAATGTGATGAATGTGAATATTTGA

ATCGGGGCAAAAATGGATGTATCTGTCACAATGTAACTCACTGTCAAATTTGTCA

TGGGATTCCCCCCTGGGAAAAGGAAAACTTGTCAGATTTTGGGGATTTTGACGA

TGCCAATAAAGAACAGTAAATAAAGCGAGTAGTCATGTCTTTTGTTGATCACCCT

CCAGATTGGTTGGAAGAAGTTGGTGAAGGTCTTCGCGAGTTTTTGGGCCTTGAA

GCGGGCCCACCGAAACCAAAACCCAATCAGCAGCATCAAGATCAAGCCCGTGGT

CTTGTGCTGCCTGGTTATAACTATCTCGGACCCGGAAACGGTCTCGATCGAGGAG

AGCCTGTCAACAGGGCAGACGAGGTCGCGCGAGAGCACGACATCTCGTACAAC

GAGCAGCTTGAGGCGGGAGACAACCCCTACCTCAAGTACAACCACGCGGACGCC

GAGTTTCAGGAGAAGCTCGCCGACGACACATCCTTCGGGGGAAACCTCGGAAAG

GCAGTCTTTCAGGCCAAGAAAAGGGTTCTCGAACCTTTTGGCCTGGTTGAAGAG

GGTGCTAAGACGGCCCCTACCGGAAAGCGGATAGACGACCACTTTCCAAAAAGA

AAGAAGGCTCGGACCGAAGAGGACTCCAAGCCTTCCACCTCGTCAGACGCCGAA

GCTGGACCCAGCGGATCCCAGCAGCTGCAAATCCCAGCCCAACCAGCCTCAAGT

TTGGGAGCTGATACAATGTCTGCGGGAGGTGGCGGCCCATTGGGCGACAATAAC

CAAGGTGCCGATGGAGTGGGCAATGCCTCGGGAGATTGGCATTGCGATTCCACG

TGGATGGGGGACAGAGTCGTCACCAAGTCCACCCGAACCTGGGTGCTGCCCAGC

TACAACAACCACCAGTACCGAGAGATCAAAAGCGGCTCCGTCGACGGAAGCAA

CGCCAACGCCTACTTTGGATACAGCACCCCCTGGGGGTACTTTGACTTTAACCGC

TTCCACAGCCACTGGAGCCCCCGAGACTGGCAAAGACTCATCAACAACTACTGG

GGCTTCAGACCCCGGTCCCTCAGAGTCAAAATCTTCAACATTCAAGTCAAAGAG

GTCACGGTGCAGGACTCCACCACCACCATCGCCAACAACCTCACCTCCACCGTC

CAAGTGTTTACGGACGACGACTACCAGCTGCCCTACGTCGTCGGCAACGGGACC

GAGGGATGCCTGCCGGCCTTCCCTCCGCAGGTCTTTACGCTGCCGCAGTACGGTT

ACGCGACGCTGAACCGCGACAACACAGAAAATCCCACCGAGAGGAGCAGCTTC

TTCTGCCTAGAGTACTTTCCCAGCAAGATGCTGAGAACGGGCAACAACTTTGAG SEQ

ID Sequence

NO

TTTACCTACAACTTTGAGGAGGTGCCCTTCCACTCCAGCTTCGCTCCCAGTCAGA

ACCTGTTCAAGCTGGCCAACCCGCTGGTGGACCAGTACTTGTACCGCTTCGTGAG

CACAAATAACACTGGCGGAGTCCAGTTCAACAAGAACCTGGCCGGGAGATACGC

CAACACCTACAAAAACTGGTTCCCGGGGCCCATGGGCCGAACCCAGGGCTGGAA

CCTGGGCTCCGGGGTCAACCGCGCCAGTGTCAGCGCCTTCGCCACGACCAATAG

GATGGAGCTCGAGGGCGCGAGTTACCAGGTGCCCCCGCAGCCGAACGGCATGAC

CAACAACCTCCAGGGCAGCAACACCTATGCCCTGGAGAACACTATGATCTTCAA

CAGCCAGCCGGCGAACCCGGGCACCACCGCCACGTACCTCGAGGGCAACATGCT

CATCACCAGCGAGAGCGAGACGCAGCCGGTGAACCGCGTGGCGTACAACGTCG

GCGGGCAGATGGCCACCAACAACCAGAGCTCCACCACTGCCCCCGCGACCGGCA

CGTACAACCTCCAGGAAATCGTGCCCGGCAGCGTGTGGATGGAGAGGGACGTGT

ACCTCCAAGGACCCATCTGGGCCAAGATCCCAGAGACGGGGGCGCACTTTCACC

CCTCTCCGGCCATGGGCGGATTCGGACTCAAACACCCACCGCCCATGATGCTCAT

CAAGAACACGCCTGTGCCCGGAAATATCACCAGCTTCTCGGACGTGCCCGTCAG

CAGCTTCATCACCCAGTACAGCACCGGGCAGGTCACCGTGGAGATGGAGTGGGA

GCTCAAGAAGGAAAACTCCAAGAGGTGGAACCCAGAGATCCAGTACACAAACA

ACTACAACGACCCCCAGTTTGTGGACTTTGCCCCGGACAGCACCGGGGAATACA

GAACCACCAGACCTATCGGAACCCGATACCTTACCCGACCCCTTTAACCCATTCA

TGTCGCATACCCTCAATAAACCGTGTATTCGTGTCAGTAAAATACTGCCTCTTGT

GGTCATTCAATGAATAACAGCTTACAACATCTACAAAACCTCCTTGCTTGAGAGT

GTGGCACTCTCCCCCCTGTCGCGTTCGCTCGCTCGCTGGCTCGTTTGGGGGGGTG

GCAGCTCAAAGAGCTGCCAGACGACGGCCCTCTGGCCGTCGCCCCCCCAAACGA

GCCAGCGAGCGAGCGAACGCGACAGGGGGGAGAG

SEQ TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGG ID TCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCA NO: GAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGA 1411 CGTGAATTACGTCATAGGGTTAGGGAGGTCCTGTATTAGAGGTCACGTGAGTGT

TTTGCGACATTTTGCGACACCATGTGGTCACGCTGGGTATTTAAGCCCGAGTGAG

CACGCAGGGTCTCCATTTTGAAGCGGGAGGTTTGAACGCGCAGCGCCATGCCGG

GGTTTTACGAGATTGTGATTAAGGTCCCCAGCGACCTTGACGAGCATCTGCCCGG

CATTTCTGACAGCTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAGTTGCCGCC

AGATTCTGACATGGATCTGAATCTGATTGAGCAGGCACCCCTGACCGTGGCCGA

GAAGCTGCAGCGCGACTTCCTGGTCCAGTGGCGCCGCGTGAGTAAGGCCCCGGA

GGCCCTCTTCTTTGTTCAGTTCGAGAAGGGCGAGTCCTACTTCCACCTCCATATT

CTGGTGGAGACCACGGGGGTCAAATCCATGGTGCTGGGCCGCTTCCTGAGTCAG

ATTAGGGACAAGCTGGTGCAGACCATCTACCGCGGGATCGAGCCGACCCTGCCC

AACTGGTTCGCGGTGACCAAGACGCGTAATGGCGCCGGAGGGGGGAACAAGGT

GGTGGACGAGTGCTACATCCCCAACTACCTCCTGCCCAAGACTCAGCCCGAGCT

GCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCGTGTTTAAACCTGGC

CGAGCGCAAACGGCTCGTGGCGCACGACCTGACCCACGTCAGCCAGACCCAGGA

GCAGAACAAGGAGAATCTGAACCCCAATTCTGACGCGCCTGTCATCCGGTCAAA

AACCTCCGCACGCTACATGGAGCTGGTCGGGTGGCTGGTGGACCGGGGCATCAC

CTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGTACATCTCCTTCAACGC

CGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCTCTGGACAATGCCGGCAAGAT

CATGGCGCTGACCAAATCCGCGCCCGACTACCTGGTAGGCCCCGCTCCGCCCGC

CGACATTAAAACCAACCGCATTTACCGCATCCTGGAGCTGAACGGCTACGACCC

TGCCTACGCCGGCTCCGTCTTTCTCGGCTGGGCCCAGAAAAGGTTCGGAAAACG

CAACACCATCTGGCTGTTTGGGCCGGCCACCACGGGCAAGACCAACATCGCGGA

AGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTCAACTGGACCAATGAGAA

CTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGGAGGGCAA

GATGACGGCCAAGGTCGTGGAGTCCGCCAAGGCCATTCTCGGCGGCAGCAAGGT

GCGCGTGGACCAAAAGTGCAAGTCGTCCGCCCAGATCGATCCCACCCCCGTGAT

CGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACAGCACCACCTT SEQ

ID Sequence

NO

CGAGCACCAGCAGCCGTTGCAGGACCGGATGTTCAAATTTGAACTCACCCGCCG

TCTGGAGCATGACTTTGGCAAGGTGACAAAGCAGGAAGTCAAAGAGTTCTTCCG

CTGGGCGCAGGATCACGTGACCGAGGTGGCGCATGAGTTCTACGTCAGAAAGGG

TGGAGCCAACAAGAGACCCGCCCCCGATGACGCGGATAAAAGCGAGCCCAAGC

GGGCCTGCCCCTCAGTCGCGGATCCATCGACGTCAGACGCGGAAGGAGCTCCGG

TGGACTTTGCCGACAGGTACCAAAACAAATGTTCTCGTCACGCGGGCATGCTTC

AGATGCTGTTTCCCTGCAAAACATGCGAGAGAATGAATCAGAATTTCAACATTT

GCTTCACGCACGGGACCAGAGACTGTTCAGAATGTTTCCCCGGCGTGTCAGAAT

CTCAACCGGTCGTCAGAAAGAGGACGTATCGGAAACTCTGTGCCATTCATCATC

TGCTGGGGCGGGCTCCCGAGATTGCTTGCTCGGCCTGCGATCTGGTCAACGTGG

ATCTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACCAGGTATGGCTGCCG

ATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCGAGTG

GTGGGACTTGAAACCTGGAGCCCCGAAACCCAAAGCCAACCAGCAAAAGCAGG

ACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTCAACG

GACTCGACAAGGGGGAGCCCGTCAACGCGGCGGATGCAGCGGCCCTCGAGCAC

GACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAATCCGTACCTGCGGTAT

AACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTTTGGG

GGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGAGGGTTCTCGAACCTTTT

GGTCTGGTTGAGGAAGGTGCTAAGACGGCTCCTGGAAAGAAACGTCCGGTAGAG

CAGTCGCCACAAGAGCCAGACTCCTCCTCGGGCATTGGCAAGACAGGCCAGCAG

CCCGCTAAAAAGAGACTCAATTTTGGTCAGACTGGCGACTCAGAGTCAGTCCCC

GACCCACAACCTCTCGGAGAACCTCCAGCAACCCCCGCTGCTGTGGGACCTACT

ACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAAGGCGCCGA

CGGAGTGGGTAATGCCTCAGGAAATTGGCATTGCGATTCCACATGGCTGGGCGA

CAGAGTCATCACCACCAGCACCCGAACATGGGCCTTGCCCACCTATAACAACCA

CCTCTACAAGCAAATCTCCAGTGCTTCAACGGGGGCCAGCAACGACAACCACTA

CTTCGGCTACAGCACCCCCTGGGGGTATTTTGATTTCAACAGATTCCACTGCCAT

TTCTCACCACGTGACTGGCAGCGACTCATCAACAACAATTGGGGATTCCGGCCC

AAGAGACTCAACTTCAAGCTCTTCAACATCCAAGTCAAGGAGGTCACGACGAAT

GATGGCGTCACGACCATCGCTAATAACCTTACCAGCACGGTTCAAGTCTTCTCGG

ACTCGGAGTACCAGTTGCCGTACGTCCTCGGCTCTGCGCACCAGGGCTGCCTCCC

TCCGTTCCCGGCGGACGTGTTCATGATTCCGCAGTACGGCTACCTAACGCTCAAC

AATGGCAGCCAGGCAGTGGGACGGTCATCCTTTTACTGCCTGGAATATTTCCCAT

CGCAGATGCTGAGAACGGGCAATAACTTTACCTTCAGCTACACCTTCGAGGACG

TGCCTTTCCACAGCAGCTACGCGCACAGCCAGAGCCTGGACCGGCTGATGAATC

CTCTCATCGACCAGTACCTGTATTACCTGAACAGAACTCAGAATCAGTCCGGAA

GTGCCCAAAACAAGGACTTGCTGTTTAGCCGGGGGTCTCCAGCTGGCATGTCTGT

TCAGCCCAAAAACTGGCTACCTGGACCCTGTTACCGGCAGCAGCGCGTTTCTAA

AACAAAAACAGACAACAACAACAGCAACTTTACCTGGACTGGTGCTTCAAAATA

TAACCTTAATGGGCGTGAATCTATAATCAACCCTGGCACTGCTATGGCCTCACAC

AAAGACGACAAAGACAAGTTCTTTCCCATGAGCGGTGTCATGATTTTTGGAAAG

GAGAGCGCCGGAGCTTCAAACACTGCATTGGACAATGTCATGATCACAGACGAA

GAGGAAATCAAAGCCACTAACCCCGTGGCCACCGAAAGATTTGGGACTGTGGCA

GTCAATCTCCAGAGCAGCAGCACAGACCCTGCGACCGGAGATGTGCATGTTATG

GGAGCCTTACCTGGAATGGTGTGGCAAGACAGAGACGTATACCTGCAGGGTCCT

ATTTGGGCCAAAATTCCTCACACGGATGGACACTTTCACCCGTCTCCTCTCATGG

GCGGCTTTGGACTTAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACGCCTGT

TCCTGCGAATCCTCCGGCAGAGTTTTCGGCTACAAAGTTTGCTTCATTCATCACC

CAGTATTCCACAGGACAAGTGAGCGTGGAGATTGAATGGGAGCTGCAGAAAGA

AAACAGCAAACGCTGGAATCCCGAAGTGCAGTATACATCTAACTATGCAAAATC

TGCCAACGTTGATTTCACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCC

ATTGGCACCCGTTACCTCACCCGTCCCCTGTAATTGTGTGTTAATCAATAAACCG

GTTAATTCGTGTCAGTTGAACTTTGGTCTCATGTCGTTATTATCTTATCTGGTCAC SEQ

ID Sequence

NO

CATAGCAACCGGTTACACATTAACTGCTTAGTTGCGCTTCGCGAATACCCCTAGT GATGGAGTTGCCCACTCCCTCTATGCGCGCTCGCTCGCTCGGTGGGGCCGGCAG AGCAGAGCTCTGCCGTCTGCGGACCTTTGGTCCGCAGGCCCCACCGAGCGAGCG AGCGCGCATAGAGGGAGTGGGCAA

SEQ TTGGCCACTCCCTCTATGCGCGCTCGCTCGCTCGGTGGGGCCTGCGGACCAAAGG ID TCCGCAGACGGCAGAGCTCTGCTCTGCCGGCCCCACCGAGCGAGCGAGCGCGCA NO: TAGAGGGAGTGGCCAACTCCATCACTAGGGGTACCGCGAAGCGCCTCCCACGCT 1412 GCCGCGTCAGCGCTGACGTAAATCACGTCATAGGGGAGTGGTCCTGTATTAGCT

GTCACGTGAGTGCTTTTGCGACATTTTGCGACACCACGTGGCCATTTGAGGTATA

TATGGCCGAGTGAGCGAGCAGGATCTCCATTTTGACCGCGAAATTTGAACGAGC

AGCAGCCATGCCGGGTTTCTACGAGATCGTGATCAAGGTGCCGAGCGACCTGGA

CGAGCACCTGCCGGGCATTTCTGACTCGTTTGTGAACTGGGTGGCCGAGAAGGA

ATGGGAGCTGCCCCCGGATTCTGACATGGATCTGAATCTGATCGAGCAGGCACC

CCTGACCGTGGCCGAGAAGCTGCAGCGCGACTTCCTGGTCCAATGGCGCCGCGT

GAGTAAGGCCCCGGAGGCCCTGTTCTTTGTTCAGTTCGAGAAGGGCGAGAGCTA

CTTCCACCTTCACGTTCTGGTGGAGACCACGGGGGTCAAGTCCATGGTGCTAGGC

CGCTTCCTGAGTCAGATTCGGGAGAAGCTGGTCCAGACCATCTACCGCGGGGTC

GAGCCCACGCTGCCCAACTGGTTCGCGGTGACCAAGACGCGTAATGGCGCCGGC

GGGGGGAACAAGGTGGTGGACGAGTGCTACATCCCCAACTACCTCCTGCCCAAG

ACCCAGCCCGAGCTGCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCG

TGTTTGAACCTGGCCGAACGCAAACGGCTCGTGGCGCAGCACCTGACCCACGTC

AGCCAGACGCAGGAGCAGAACAAGGAGAATCTGAACCCCAATTCTGACGCGCC

CGTGATCAGGTCAAAAACCTCCGCGCGCTACATGGAGCTGGTCGGGTGGCTGGT

GGACCGGGGCATCACCTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGT

ACATCTCCTTCAACGCCGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCGCTGG

ACAATGCCGGCAAGATCATGGCGCTGACCAAATCCGCGCCCGACTACCTGGTGG

GGCCCTCGCTGCCCGCGGACATTAAAACCAACCGCATCTACCGCATCCTGGAGC

TGAACGGGTACGATCCTGCCTACGCCGGCTCCGTCTTTCTCGGCTGGGCCCAGAA

AAAGTTCGGGAAGCGCAACACCATCTGGCTGTTTGGGCCCGCCACCACCGGCAA

GACCAACATTGCGGAAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTCAA

CTGGACCAATGAGAACTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTG

GTGGGAGGAGGGCAAGATGACGGCCAAGGTCGTGGAGTCCGCCAAGGCCATTC

TCGGCGGCAGCAAGGTGCGCGTGGACCAAAAGTGCAAGTCGTCCGCCCAGATCG

ACCCCACCCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACG

GGAACAGCACCACCTTCGAGCACCAGCAGCCGTTGCAGGACCGGATGTTCAAAT

TTGAACTCACCCGCCGTCTGGAGCACGACTTTGGCAAGGTGACGAAGCAGGAAG

TCAAAGAGTTCTTCCGCTGGGCCAGTGATCACGTGACCGAGGTGGCGCATGAGT

TCTACGTCAGAAAGGGCGGAGCCAGCAAAAGACCCGCCCCCGATGACGCGGAT

ATAAGCGAGCCCAAGCGGGCCTGCCCCTCAGTCGCGGATCCATCGACGTCAGAC

GCGGAAGGAGCTCCGGTGGACTTTGCCGACAGGTACCAAAACAAATGTTCTCGT

CACGCGGGCATGATTCAGATGCTGTTTCCCTGCAAAACGTGCGAGAGAATGAAT

CAGAATTTCAACATTTGCTTCACACACGGGGTCAGAGACTGTTTAGAGTGTTTCC

CCGGCGTGTCAGAATCTCAACCGGTCGTCAGAAAAAAGACGTATCGGAAACTCT

GCGCGATTCATCATCTGCTGGGGCGGGCGCCCGAGATTGCTTGCTCGGCCTGCG

ACCTGGTCAACGTGGACCTGGACGACTGCGTTTCTGAGCAATAAATGACTTAAA

CCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTG

AGGGCATTCGCGAGTGGTGGGACCTGAAACCTGGAGCCCCGAAACCCAAAGCC

AACCAGCAAAAGCAGGACAACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTAC

CTCGGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCA

GCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAA

TCCGTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGA SEQ

ID Sequence

NO

AGATACGTCATTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGCG

GGTTCTCGAACCTCTCGGTCTGGTTGAGGAAGGCGCTAAGACGGCTCCTGCAAA

GAAGAGACCGGTAGAGCCGTCACCTCAGCGTTCCCCCGACTCCTCCACGGGCAT

CGGCAAGAAAGGCCAGCAGCCCGCCAGAAAGAGACTCAATTTCGGTCAGACTG

GCGACTCAGAGTCAGTCCCCGACCCTCAACCTCTCGGAGAACCTCCAGCAGCGC

CCTCTAGTGTGGGATCTGGTACAGTGGCTGCAGGCGGTGGCGCACCAATGGCAG

ACAATAACGAAGGTGCCGACGGAGTGGGTAATGCCTCAGGAAATTGGCATTGCG

ATTCCACATGGCTGGGCGACAGAGTCATTACCACCAGCACCCGAACCTGGGCCC

TGCCCACCTACAACAACCACCTCTACAAGCAAATCTCCAGTGAAACTGCAGGTA

GTACCAACGACAACACCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTT

TAACAGATTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCATCAACAAC

AACTGGGGATTCCGGCCCAAGAAGCTGCGGTTCAAGCTCTTCAACATCCAGGTC

AAGGAGGTCACGACGAATGACGGCGTTACGACCATCGCTAATAACCTTACCAGC

ACGATTCAGGTATTCTCGGACTCGGAATACCAGCTGCCGTACGTCCTCGGCTCTG

CGCACCAGGGCTGCCTGCCTCCGTTCCCGGCGGACGTCTTCATGATTCCTCAGTA

CGGCTACCTGACTCTCAACAATGGCAGTCAGTCTGTGGGACGTTCCTCCTTCTAC

TGCCTGGAGTACTTCCCCTCTCAGATGCTGAGAACGGGCAACAACTTTGAGTTCA

GCTACAGCTTCGAGGACGTGCCTTTCCACAGCAGCTACGCACACAGCCAGAGCC

TGGACCGGCTGATGAATCCCCTCATCGACCAGTACTTGTACTACCTGGCCAGAAC

ACAGAGTAACCCAGGAGGCACAGCTGGCAATCGGGAACTGCAGTTTTACCAGGG

CGGGCCTTCAACTATGGCCGAACAAGCCAAGAATTGGTTACCTGGACCTTGCTTC

CGGCAACAAAGAGTCTCCAAAACGCTGGATCAAAACAACAACAGCAACTTTGCT

TGGACTGGTGCCACCAAATATCACCTGAACGGCAGAAACTCGTTGGTTAATCCC

GGAGTCCTGATTTTTGGAAAAACTGGAGCAACTAACAAAACTACATTGGAAAAT

GTGTTAATGACAAATGAAGAAGAAATTCGTCCTACTAATCCTGTAGCCACGGAA

GAATACGGGATAGTCAGCAGCAACTTACAAGCGGCTAATACTGCAGCCCAGACA

CAAGTTGTCAACAACCAGGGAGCCTTACCTGGCATGGTCTGGCAGAACCGGGAC

GTGTACCTGCAGGGTCCCATCTGGGCCAAGATTCCTCACACGGATGGCAACTTTC

ACCCGTCTCCTTTGATGGGCGGCTTTGGACTTAAACATCCGCCTCCTCAGATCCT

GATCAAGAACACTCCCGTTCCCGCTAATCCTCCGGAGGTGTTTACTCCTGCCAAG

TTTGCTTCGTTCATCACACAGTACAGCACCGGACAAGTCAGCGTGGAAATCGAG

TGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATTCAGTACAC

CTCCAACTTTGAAAAGCAGACTGGTGTGGACTTTGCCGTTGACAGCCAGGGTGTT

TACTCTGAGCCTCGCCCTATTGGCACTCGTTACCTCACCCGTAATCTGTAATTGC

ATGTTAATCAATAAACCGGTTGATTCGTTTCAGTTGAACTTTGGTCTCCTGTGCTT

CTTATCTTATCGGTTTCCATAGCAACTGGTTACACATTAACTGCTTGGGTGCGCTT

CACGATAAGAACACTGACGTCACCGCGGTACCCCTAGTGATGGAGTTGGCCACT

CCCTCTATGCGCGCTCGCTCGCTCGGTGGGGCCTGCGGACCAAAGGTCCGCAGA

CGGCAGAGCTCTGCTCTGCCGGCCCCACCGAGCGAGCGAGCGCGCATAGAGGGA

GTGGCCAA SEQ

ID Sequence

NO

SEQ CAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTAGCGCGAAGCGCCTCCCACG ID CTGCCGCGTCAGCGCTGACGTAAATTACGTCATAGGGGAGTGGTCCTGTATTAG NO: CTGTCACGTGAGTGCTTTTGCGGCATTTTGCGACACCACGTGGCCATTTGAGGTA 1413 TATATGGCCGAGTGAGCGAGCAGGATCTCCATTTTGACCGCGAAATTTGAACGA

GCAGCAGCCATGCCGGGCTTCTACGAGATCGTGATCAAGGTGCCGAGCGACCTG

GACGAGCACCTGCCGGGCATTTCTGACTCGTTTGTGAACTGGGTGGCCGAGAAG

GAATGGGAGCTGCCCCCGGATTCTGACATGGATCGGAATCTGATCGAGCAGGCA

CCCCTGACCGTGGCCGAGAAGCTGCAGCGCGACTTCCTGGTCCAATGGCGCCGC

GTGAGTAAGGCCCCGGAGGCCCTCTTCTTTGTTCAGTTCGAGAAGGGCGAGAGC

TACTTTCACCTGCACGTTCTGGTCGAGACCACGGGGGTCAAGTCCATGGTGCTAG

GCCGCTTCCTGAGTCAGATTCGGGAAAAGCTTGGTCCAGACCATCTACCCGCGG

GGTCGAGCCCCACCTTGCCCAACTGGTTCGCGGTGACCAAAGACGCGGTAATGG

CGCCGGCGGGGGGGAACAAGGTGGTGGACGAGTGCTACATCCCCAACTACCTCC

TGCCCAAGACTCAGCCCGAGCTGCAGTGGGCGTGGACTAACATGGAGGAGTATA

TAAGCGCGTGCTTGAACCTGGCCGAGCGCAAACGGCTCGTGGCGCAGCACCTGA

CCCACGTCAGCCAGACGCAGGAGCAGAACAAGGAGAATCTGAACCCCAATTCTG

ACGCGCCCGTGATCAGGTCAAAAACCTCCGCGCGCTATATGGAGCTGGTCGGGT

GGCTGGTGGACCGGGGCATCACCTCCGAGAAGCAGTGGATCCAGGAGGACCAG

GCCTCGTACATCTCCTTCAACGCCGCCTCCAACTCGCGGTCCCAGATCAAGGCCG

CGCTGGACAATGCCGGCAAGATCATGGCGCTGACCAAATCCGCGCCCGACTACC

TGGTGGGGCCCTCGCTGCCCGCGGACATTACCCAGAACCGCATCTACCGCATCCT

CGCTCTCAACGGCTACGACCCTGCCTACGCCGGCTCCGTCTTTCTCGGCTGGGCT

CAGAAAAAGTTCGGGAAACGCAACACCATCTGGCTGTTTGGACCCGCCACCACC

GGCAAGACCAACATTGCGGAAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGC

GTCAACTGGACCAATGAGAACTTTCCCTTCAATGATTGCGTCGACAAGATGGTG

ATCTGGTGGGAGGAGGGCAAGATGACGGCCAAGGTCGTGGAGTCCGCCAAGGC

CATTCTCGGCGGCAGCAAGGTGCGCGTGGACCAAAAGTGCAAGTCGTCCGCCCA

GATCGACCCCACCCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATT

GACGGGAACAGCACCACCTTCGAGCACCAGCAGCCTCTCCAGGACCGGATGTTT

AAGTTCGAACTCACCCGCCGTCTGGAGCACGACTTTGGCAAGGTGACAAAGCAG

GAAGTCAAAGAGTTCTTCCGCTGGGCCAGTGATCACGTGACCGAGGTGGCGCAT

GAGTTTTACGTCAGAAAGGGCGGAGCCAGCAAAAGACCCGCCCCCGATGACGC

GGATAAAAGCGAGCCCAAGCGGGCCTGCCCCTCAGTCGCGGATCCATCGACGTC

AGACGCGGAAGGAGCTCCGGTGGACTTTGCCGACAGGTACCAAAACAAATGTTC

TCGTCACGCGGGCATGCTTCAGATGCTGTTTCCCTGCAAAACGTGCGAGAGAAT

GAATCAGAATTTCAACATTTGCTTCACACACGGGGTCAGAGACTGCTCAGAGTG

TTTCCCCGGCGTGTCAGAATCTCAACCGGTCGTCAGAAAGAGGACGTATCGGAA

ACTCTGTGCGATTCATCATCTGCTGGGGCGGGCTCCCGAGATTGCTTGCTCGGCC

TGCGATCTGGTCAACGTGGACCTGGATGACTGTGTTTCTGAGCAATAAATGACTT

AAACCAGGTATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCT

CTGAGGGCATTCGCGAGTGGTGGGCGCTGAAACCTGGAGCCCCGAAGCCCAAAG

CCAACCAGCAAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGT

ACCTCGGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACG

CAGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGAC

AATCCGTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAA

GAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAG

CGGGTTCTCGAACCTCTCGGTCTGGTTGAGGAAGGCGCTAAGACGGCTCCTGGA

AAGAAGAGACCGGTAGAGCCATCACCCCAGCGTTCTCCAGACTCCTCTACGGGC

ATCGGCAAGAAAGGCCAACAGCCCGCCAGAAAAAGACTCAATTTTGGTCAGACT

GGCGACTCAGAGTCAGTTCCAGACCCTCAACCTCTCGGAGAACCTCCAGCAGCG

CCCTCTGGTGTGGGACCTAATACAATGGCTGCAGGCGGTGGCGCACCAATGGCA

GACAATAACGAAGGCGCCGACGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGC

GATTCCACATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCC SEQ

ID Sequence

NO

CTGCCCACCTACAACAACCACCTCTACAAGCAAATCTCCAACGGGACATCGGGA

GGAGCCACCAACGACAACACCTACTTCGGCTACAGCACCCCCTGGGGGTATTTT

GACTTTAACAGATTCCACTGCCACTTTTCACCACGTGACTGGCAGCGACTCATCA

ACAACAACTGGGGATTCCGGCCCAAGAGACTCAGCTTCAAGCTCTTCAACATCC

AGGTCAAGGAGGTCACGCAGAATGAAGGCACCAAGACCATCGCCAATAACCTC

ACCAGCACCATCCAGGTGTTTACGGACTCGGAGTACCAGCTGCCGTACGTTCTCG

GCTCTGCCCACCAGGGCTGCCTGCCTCCGTTCCCGGCGGACGTGTTCATGATTCC

CCAGTACGGCTACCTAACACTCAACAACGGTAGTCAGGCCGTGGGACGCTCCTC

CTTCTACTGCCTGGAATACTTTCCTTCGCAGATGCTGAGAACCGGCAACAACTTC

CAGTTTACTTACACCTTCGAGGACGTGCCTTTCCACAGCAGCTACGCCCACAGCC

AGAGCTTGGACCGGCTGATGAATCCTCTGATTGACCAGTACCTGTACTACTTGTC

TCGGACTCAAACAACAGGAGGCACGGCAAATACGCAGACTCTGGGCTTCAGCCA

AGGTGGGCCTAATACAATGGCCAATCAGGCAAAGAACTGGCTGCCAGGACCCTG

TTACCGCCAACAACGCGTCTCAACGACAACCGGGCAAAACAACAATAGCAACTT

TGCCTGGACTGCTGGGACCAAATACCATCTGAATGGAAGAAATTCATTGGCTAA

CAGCGATGTCATGCTCACCAGCGAGGAAGAAATCAAAACCACTAACCCTGTGGC

TACAGAGGAATACGGTATCGTGGCAGATAACTTGCAGCAGCAAAACACGGCTCC

TCAAATTGGAACTGTCAACAGCCAGGGGGCCTTACCCGGTATGGTCTGGCAGAA

CCGGGACGTGTACCTGCAGGGTCCCATCTGGGCCAAGATTCCTCACACGGACGG

CAACTTCCACCCGTCTCCGCTGATGGGCGGCTTTGGCCTGAAACATCCTCCGCCT

CAGATCCTGATCAAGAACACGCCTGTACCTGCGGATCCTCCGACCACCTTCAACC

AGTCAAAGCTGAACTCTTTCATCACGCAATACAGCACCGGACAGGTCAGCGTGG

AAATTGAATGGGAGCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCCGAGATC

CAGTACACCTCCAACTACTACAAATCTACAAGTGTGGACTTTGCTGTTAATACAG

AAGGCGTGTACTCTGAACCCCGCCCCATTGGCACCCGTTACCTCACCCGTAATCT

GTAATTGCCTGTTAATCAATAAACCGGTTGATTCGTTTCAGTTGAACTTTGGTCT

CTGCG

SEQ

ID Sequence

NO

SEQ ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTTAGTGAAGGA ID ATTCGCGAGTGGTGGGCTTTGAAACCTGGAGCCCCTCAACCCAAGGCAAATCAA NO: CAACATCAAGACAACGCTCGAGGTCTTGTGCTTCCGGGTTACAAATACCTTGGA 1414 CCCGGCAACGGACTCGACAAGGGGGAGCCGGTCAACGCAGCAGACGCGGCGGC

CCTCGAGCACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGAGACAACCCGT

ACCTCAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATA

CGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTC

TTGAACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGA

GGCCTGTAGAGCAGTCTCCTCAGGAACCGGACTCCTCCGCGGGTATTGGCAAAT

CGGGTGCACAGCCCGCTAAAAAGAGACTCAATTTCGGTCAGACTGGCGACACAG

AGTCAGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTG

TGGGATCTCTTACAATGGCTTCAGGTGGTGGCGCACCAGTGGCAGACAATAACG

AAGGTGCCGATGGAGTGGGTAGTTCCTCGGGAAATTGGCATTGCGATTCCCAAT

GGCTGGGGGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCT

ACAACAATCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAA

ATGACAACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAG

ATTCCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGG

GGATTCCGGCCTAAGCGACTCAACTTCAAGCTCTTCAACATTCAGGTCAAAGAG

GTTACGGACAACAATGGAGTCAAGACCATCGCCAATAACCTTACCAGCACGGTC

CAGGTCTTCACGGACTCAGACTATCAGCTCCCGTACGTGCTCGGGTCGGCTCACG

AGGGCTGCCTCCCGCCGTTCCCAGCGGACGTTTTCATGATTCCTCAGTACGGGTA

TCTGACGCTTAATGATGGAAGCCAGGCCGTGGGTCGTTCGTCCTTTTACTGCCTG

GAATATTTCCCGTCGCAAATGCTAAGAACGGGTAACAACTTCCAGTTCAGCTAC

GAGTTTGAGAACGTACCTTTCCATAGCAGCTACGCTCACAGCCAAAGCCTGGAC

CGACTAATGAATCCACTCATCGACCAATACTTGTACTATCTCTCAAAGACTATTA

ACGGTTCTGGACAGAATCAACAAACGCTAAAATTCAGTGTGGCCGGACCCAGCA

ACATGGCTGTCCAGGGAAGAAACTACATACCTGGACCCAGCTACCGACAACAAC

GTGTCTCAACCACTGTGACTCAAAACAACAACAGCGAATTTGCTTGGCCTGGAG

CTTCTTCTTGGGCTCTCAATGGACGTAATAGCTTGATGAATCCTGGACCTGCTAT

GGCCAGCCACAAAGAAGGAGAGGACCGTTTCTTTCCTTTGTCTGGATCTTTAATT

TTTGGCAAACAAGGAACTGGAAGAGACAACGTGGATGCGGACAAAGTCATGAT

AACCAACGAAGAAGAAATTAAAACTACTAACCCGGTAGCAACGGAGTCCTATG

GACAAGTGGCCACAAACCACCAGAGTGCCCAAGCACAGGCGCAGACCGGCTGG

GTTCAAAACCAAGGAATACTTCCGGGTATGGTTTGGCAGGACAGAGATGTGTAC

CTGCAAGGACCCATTTGGGCCAAAATTCCTCACACGGACGGCAACTTTCACCCTT

CTCCGCTGATGGGAGGGTTTGGAATGAAGCACCCGCCTCCTCAGATCCTCATCA

AAAACACACCTGTACCTGCGGATCCTCCAACGGCCTTCAACAAGGACAAGCTGA

ACTCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGA

GCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCGGAGATCCAGTACACTTCCA

ACTATTACAAGTCTAATAATGTTGAATTTGCTGTTAATACTGAAGGTGTATATAG

TGAACCCCGCCCCATTGGCACCAGATACCTGACTCGTAATCTGTAA SEQ

ID Sequence

NO

SEQ ATGCCGGGCTTCTACGAGATCGTGATCAAGGTGCCGAGCGACCTGGACGAGCAC ID CTGCCGGGCATTTCTGACTCGTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAG NO: CTGCCCCCGGATTCTGACATGGATCGGAATCTGATCGAGCAGGCACCCCTGACC 1415 GTGGCCGAGAAGCTGCAGCGCGACTTCCTGGTCCACTGGCGCCGCGTGAGTAAG

GCCCCGGAGGCCCTCTTCTTTGTTCAGTTCGAGAAGGGCGAGTCCTACTTTCACC

TGCACGTTCTGGTCGAGACCACGGGGGTCAAGTCCATGGTCCTGGGCCGCTTCCT

GAGTCAGATCAGAGACAGGCTGGTGCAGACCATCTACCGCGGGGTAGAGCCCAC

GCTGCCCAACTGGTTCGCGGTGACCAAGACGCGAAATGGCGCCGGCGGGGGGA

ACAAGGTGGTGGACGAGTGCTACATCCCCAACTACCTCCTGCCCAAGACGCAGC

CCGAGCTGCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCGTGTCTGA

ACCTCGCGGAGCGTAAACGGCTCGTGGCGCAGCACCTGACCCACGTCAGCCAGA

CGCAGGAGCAGAACAAGGAGAATCTGAACCCGAATTCTGACGCGCCCGTGATCA

GGTCAAAAACCTCCGCGCGCTACATGGAGCTGGTCGGGTGGCTGGTGGACCGGG

GCATCACCTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGTACATCTCCT

TCAACGCCGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCGCTGGACAATGCCG

GAAAGATCATGGCGCTGACCAAATCCGCGCCCGACTACCTGGTAGGCCCGTCCT

TACCCGCGGACATTAAGGCCAACCGCATCTACCGCATCCTGGAGCTCAACGGCT

ACGACCCCGCCTACGCCGGCTCCGTCTTCCTGGGCTGGGCGCAGAAAAAGTTCG

GTAAAAGGAATACAATTTGGCTGTTCGGGCCCGCCACCACCGGCAAGACCAACA

TCGCGGAAGCCATCGCCCACGCCGTGCCCTTCTACGGCTGCGTCAACTGGACCA

ATGAGAACTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGG

AGGGCAAGATGACCGCCAAGGTCGTGGAGTCCGCCAAGGCCATTCTGGGCGGA

AGCAAGGTGCGCGTCGACCAAAAGTGCAAGTCCTCGGCCCAGATCGACCCCACG

CCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATCGACGGGAACAGC

ACCACCTTCGAGCACCAGCAGCCCCTGCAGGACCGCATGTTCAAGTTCGAGCTC

ACCCGCCGTCTGGAGCACGACTTTGGCAAGGTGACCAAGCAGGAAGTCAAAGA

GTTCTTCCGCTGGGCTCAGGATCACGTGACTGAGGTGACGCATGAGTTCTACGTC

AGAAAGGGCGGAGCCACCAAAAGACCCGCCCCCAGTGACGCGGATATAAGCGA

GCCCAAGCGGGCCTGCCCCTCAGTTGCGGAGCCATCGACGTCAGACGCGGAAGC

ACCGGTGGACTTTGCGGACAGGTACCAAAACAAATGTTCTCGTCACGCGGGCAT

GCTTCAGATGCTGTTTCCCTGCAAGACATGCGAGAGAATGAATCAGAATTTCAA

CGTCTGCTTCACGCACGGGGTCAGAGACTGCTCAGAGTGCTTCCCCGGCGCGTC

AGAATCTCAACCTGTCGTCAGAAAAAAGACGTATCAGAAACTGTGCGCGATTCA

TCATCTGCTGGGGCGGGCACCCGAGATTGCGTGTTCGGCCTGCGATCTCGTCAAC

GTGGACTTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACCAGGTATGGCT

GCTGACGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCG

AGTGGTGGGACCTGAAACCTGGAGCCCCCAAGCCCAAGGCCAACCAGCAGAAG

CAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTC

AACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCAGCGGCCCTCGA

GCACGACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAATCCGTACCTGCG

GTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTT

TGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGCGGGTTCTCGAACC

TCTCGGTCTGGTTGAGGAAGCTGCTAAGACGGCTCCTGGAAAGAAGAGACCGGT

AGAACCGTCACCTCAGCGTTCCCCCGACTCCTCCACGGGCATCGGCAAGAAAGG

CCAGCAGCCCGCTAAAAAGAGACTGAACTTTGGGCAGACTGGCGAGTCAGAGTC

AGTCCCCGACCCTCAACCAATCGGAGAACCACCAGCAGGCCCCTCTGGTCTGGG

ATCTGGTACAATGGCTGCAGGCGGTGGCGCTCCAATGGCAGACAATAACGAAGG

CGCCGACGGAGTGGGTAGTTCCTCAGGAAATTGGCATTGCGATTCCACATGGCT

GGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAA

CAACCACCTCTACAAGCAAATCTCCAACGGGACATCGGGAGGAAGCACCAACG

ACAACACCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATT

CCACTGCCACTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGG

ATTCCGGCCAAAAAGACTCAGCTTCAAGCTCTTCAACATCCAGGTCAAGGAGGT SEQ

ID Sequence

NO

CACGCAGAATGAAGGCACCAAGACCATCGCCAATAACCTTACCAGCACGATTCA

GGTATTTACGGACTCGGAATACCAGCTGCCGTACGTCCTCGGCTCCGCGCACCA

GGGCTGCCTGCCTCCGTTCCCGGCGGATGTCTTCATGATTCCCCAGTACGGCTAC

CTGACACTGAACAATGGAAGTCAAGCCGTAGGCCGTTCCTCCTTCTACTGCCTGG

AATATTTTCCATCTCAAATGCTGCGAACTGGAAACAATTTTGAATTCAGCTACAC

CTTCGAGGACGTGCCTTTCCACAGCAGCTACGCACACAGCCAGAGCTTGGACCG

ACTGATGAATCCTCTCATTGACCAGTACCTGTACTACTTATCCAGAACTCAGTCC

ACAGGAGGAACTCAAGGTACCCAGCAATTGTTATTTTCTCAAGCTGGGCCTGCA

AACATGTCGGCTCAGGCCAAGAACTGGCTGCCTGGACCTTGCTACCGGCAGCAG

CGAGTCTCCACGACACTGTCGCAAAACAACAACAGCAACTTTGCTTGGACTGGT

GCCACCAAATATCACCTGAACGGAAGAGACTCTCTGGTGAATCCCGGTGTCGCC

ATGGCAACCCACAAGGACGACGAGGAACGCTTCTTCCCGTCGAGCGGAGTCCTG

ATGTTTGGAAAACAGGGTGCTGGAAGAGACAATGTGGACTACAGCAGCGTTATG

CTAACAAGCGAAGAAGAAATTAAAACCACTAACCCTGTAGCCACAGAACAATA

CGGCGTGGTGGCTGACAACTTGCAGCAAGCCAATACAGGGCCTATTGTGGGAAA

TGTCAACAGCCAAGGAGCCTTACCTGGCATGGTCTGGCAGAACCGAGACGTGTA

CCTGCAGGGTCCCATCTGGGCCAAGATTCCTCACACGGACGGCAACTTTCACCC

GTCTCCTCTGATGGGCGGCTTTGGACTTAAACACCCGCCTCCACAGATCCTGATC

AAGAACACGCCGGTACCTGCGGATCCTCCAACAACGTTCAGCCAGGCGAAATTG

GCTTCCTTCATCACGCAGTACAGCACCGGACAGGTCAGCGTGGAAATCGAGTGG

GAGCTGCAGAAGGAGAACAGCAAACGCTGGAACCCAGAGATTCAGTACACTTC

AAACTACTACAAATCTACAAATGTGGACTTTGCTGTCAATACAGAGGGAACTTA

TTCTGAGCCTCGCCCCATTGGTACTCGTTATCTGACACGTAATCTGTAA

SEQ ATGCCGGGCTTCTACGAGATCGTGATCAAGGTGCCGAGCGACCTGGACGAGCAC ID CTGCCGGGCATTTCTGACTCGTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAG NO: CTGCCCCCGGATTCTGACATGGATCGGAATCTGATCGAGCAGGCACCCCTGACC 1416 GTGGCCGAGAAGCTGCAGCGCGACTTCCTGGTCCACTGGCGCCGCGTGAGTAAG

GCCCCGGAGGCCCTCTTCTTTGTTCAGTTCGAGAAGGGCGAGTCCTACTTCCACC

TCCACGTTCTCGTCGAGACCACGGGGGTCAAGTCCATGGTCCTGGGCCGCTTCCT

GAGTCAGATCAGAGACAGGCTGGTGCAGACCATCTACCGCGGGGTCGAGCCCAC

GCTGCCCAACTGGTTCGCGGTGACCAAGACGCGAAATGGCGCCGGCGGGGGGA

ACAAGGTGGTGGACGAGTGCTACATCCCCAACTACCTCCTGCCCAAGACCCAGC

CCGAGCTGCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCGTGTCTAA

ACCTCGCGGAGCGTAAACGGCTCGTGGCGCAGCACCTGACCCACGTCAGCCAGA

CGCAGGAGCAGAACAAGGAGAATCTGAACCCGAATTCTGACGCGCCCGTGATCA

GGTCAAAAACCTCCGCGCGCTACATGGAGCTGGTCGGGTGGCTGGTGGACCGGG

GCATCACCTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGTACATCTCCT

TCAACGCCGCCTCCAACTCGCGGTCCCAGATCAAGGCCGCGCTGGACAATGCCG

GAAAGATCATGGCGCTGACCAAATCCGCGCCCGACTACCTGGTAGGCCCGTCCT

TACCCGCGGACATTAAGGCCAACCGCATCTACCGCATCCTGGAGCTCAACGGCT

ACGACCCCGCCTACGCCGGCTCCGTCTTCCTGGGCTGGGCGCAGAAAAAGTTCG

GTAAACGCAACACCATCTGGCTGTTTGGGCCCGCCACCACCGGCAAGACCAACA

TCGCGGAAGCCATAGCCCACGCCGTGCCCTTCTACGGCTGCGTGAACTGGACCA

ATGAGAACTTTCCCTTCAACGATTGCGTCGACAAGATGGTGATCTGGTGGGAGG

AGGGCAAGATGACCGCCAAGGTCGTGGAGTCCGCCAAGGCCATTCTGGGCGGA

AGCAAGGTGCGCGTGGACCAAAAGTGCAAGTCCTCGGCCCAGATCGACCCCACG

CCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATCGACGGGAACAGC

ACCACCTTCGAGCACCAGCAGCCGCTGCAGGACCGCATGTTCAAGTTCGAGCTC

ACCCGCCGTCTGGAGCACGACTTTGGCAAGGTGACCAAGCAGGAAGTCAAAGA

GTTCTTCCGCTGGGCTCAGGATCACGTGACTGAGGTGGCGCATGAGTTCTACGTC SEQ

ID Sequence

NO

AGAAAGGGCGGAGCCACCAAAAGACCCGCCCCCAGTGACGCGGATATAAGCGA

GCCCAAGCGGGCCTGCCCCTCAGTTCCGGAGCCATCGACGTCAGACGCGGAAGC

ACCGGTGGACTTTGCGGACAGGTACCAAAACAAATGTTCTCGTCACGCGGGCAT

GCTTCAGATGCTGTTTCCCTGCAAGACATGCGAGAGAATGAATCAGAATTTCAA

CGTCTGCTTCACGCACGGGGTCAGAGACTGCTCAGAGTGCTTCCCCGGCGCGTC

AGAATCTCAACCCGTCGTCAGAAAAAAGACGTATCAGAAACTGTGCGCGATTCA

TCATCTGCTGGGGCGGGCACCCGAGATTGCGTGTTCGGCCTGCGATCTCGTCAAC

GTGGACTTGGATGACTGTGTTTCTGAGCAATAAATGACTTAAACCAGGTATGGCT

GCTGACGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCG

AGTGGTGGGACCTGAAACCTGGAGCCCCGAAGCCCAAGGCCAACCAGCAGAAG

CAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTC

AACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCAGCGGCCCTCGA

GCACGACAAGGCCTACGACCAGCAGCTCAAAGCGGGTGACAATCCGTACCTGCG

GTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTT

TGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGAGGGTACTCGAACC

TCTGGGCCTGGTTGAAGAAGGTGCTAAAACGGCTCCTGGAAAGAAGAGACCGTT

AGAGTCACCACAAGAGCCCGACTCCTCCTCGGGCATCGGCAAAAAAGGCAAAC

AACCAGCCAGAAAGAGGCTCAACTTTGAAGAGGACACTGGAGCCGGAGACGGA

CCCCCTGAAGGATCAGATACCAGCGCCATGTCTTCAGACATTGAAATGCGTGCA

GCACCGGGCGGAAATGCTGTCGATGCGGGACAAGGTTCCGATGGAGTGGGTAAT

GCCTCGGGTGATTGGCATTGCGATTCCACCTGGTCTGAGGGCAAGGTCACAACA

ACCTCGACCAGAACCTGGGTCTTGCCCACCTACAACAACCACTTGTACCTGCGTC

TCGGAACAACATCAAGCAGCAACACCTACAACGGATTCTCCACCCCCTGGGGAT

ATTTTGACTTCAACAGATTCCACTGTCACTTCTCACCACGTGACTGGCAAAGACT

CATCAACAACAACTGGGGACTACGACCAAAAGCCATGCGCGTTAAAATCTTCAA

TATCCAAGTTAAGGAGGTCACAACGTCGAACGGCGAGACTACGGTCGCTAATAA

CCTTACCAGCACGGTTCAGATATTTGCGGACTCGTCGTATGAGCTCCCGTACGTG

ATGGACGCTGGACAAGAGGGGAGCCTGCCTCCTTTCCCCAATGACGTGTTCATG

GTGCCTCAATATGGCTACTGTGGCATCGTGACTGGCGAGAATCAGAACCAAACG

GACAGAAACGCTTTCTACTGCCTGGAGTATTTTCCTTCGCAAATGTTGAGAACTG

GCAACAACTTTGAAATGGCTTACAACTTTGAGAAGGTGCCGTTCCACTCAATGTA

TGCTCACAGCCAGAGCCTGGACAGACTGATGAATCCCCTCCTGGACCAGTACCT

GTGGCACTTACAGTCGACTACCTCTGGAGAGACTCTGAATCAAGGCAATGCAGC

AACCACATTTGGAAAAATCAGGAGTGGAGACTTTGCCTTTTACAGAAAGAACTG

GCTGCCTGGGCCTTGTGTTAAACAGCAGAGATTCTCAAAAACTGCCAGTCAAAA

TTACAAGATTCCTGCCAGCGGGGGCAACGCTCTGTTAAAGTATGACACCCACTA

TACCTTAAACAACCGCTGGAGCAACATCGCGCCCGGACCTCCAATGGCCACAGC

CGGACCTTCGGATGGGGACTTCAGTAACGCCCAGCTTATATTCCCTGGACCATCT

GTTACCGGAAATACAACAACTTCAGCCAACAATCTGTTGTTTACATCAGAAGAA

GAAATTGCTGCCACCAACCCAAGAGACACGGACATGTTTGGCCAGATTGCTGAC

AATAATCAGAATGCTACAACTGCTCCCATAACCGGCAACGTGACTGCTATGGGA

GTGCTGCCTGGCATGGTGTGGCAAAACAGAGACATTTACTACCAAGGGCCAATT

TGGGCCAAGATCCCACACGCGGACGGACATTTTCATCCTTCACCGCTGATTGGTG

GGTTTGGACTGAAACACCCGCCTCCCCAGATATTCATCAAGAACACTCCCGTACC

TGCCAATCCTGCGACAACCTTCACTGCAGCCAGAGTGGACTCTTTCATCACACAA

TACAGCACCGGCCAGGTCGCTGTTCAGATTGAATGGGAAATTGAAAAGGAACGC

TCCAAACGCTGGAATCCTGAAGTGCAGTTTACTTCAAACTATGGGAACCAGTCTT

CTATGTTGTGGGCTCCTGATACAACTGGGAAGTATACAGAGCCGCGGGTTATTG

GCTCTCGTTATTTGACTAATCATTTGTAA SEQ

ID Sequence

NO

SEQ TTGCGACAGTTTGCGACACCATGTGGTCACAAGAGGTATATAACCGCGAGTGAG ID CCAGCGAGGAGCTCCATTTTGCCCGCGAAGTTTGAACGAGCAGCAGCCATGCCG NO: GGGTTCTACGAGGTGGTGATCAAGGTGCCCAGCGACCTGGACGAGCACCTGCCC 1417 GGCATTTCTGACTCCTTTGTGAACTGGGTGGCCGAGAAGGAATGGGAGTTGCCC

CCGGATTCTGACATGGATCAGAATCTGATTGAGCAGGCACCCCTGACCGTGGCC

GAGAAGCTGCAGCGCGAGTTCCTGGTGGAATGGCGCCGAGTGAGTAAATTTCTG

GAGGCCAAGTTTTTTGTGCAGTTTGAAAAGGGGGACTCGTACTTTCATTTGCATA

TTCTGATTGAAATTACCGGCGTGAAATCCATGGTGGTGGGCCGCTACGTGAGTC

AGATTAGGGATAAACTGATCCAGCGCATCTACCGCGGGGTCGAGCCCCAGCTGC

CCAACTGGTTCGCGGTCACAAAGACCCGAAATGGCGCCGGAGGCGGGAACAAG

GTGGTGGACGAGTGCTACATCCCCAACTACCTGCTCCCCAAGGTCCAGCCCGAG

CTTCAGTGGGCGTGGACTAACATGGAGGAGTATATAAGCGCCTGTTTGAACCTC

GCGGAGCGTAAACGGCTCGTGGCGCAGCACCTGACGCACGTCTCCCAGACCCAG

GAGGGCGACAAGGAGAATCTGAACCCGAATTCTGACGCGCCGGTGATCCGGTCA

AAAACCTCCGCCAGGTACATGGAGCTGGTCGGGTGGCTGGTGGACAAGGGCATC

ACGTCCGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCGTACATCTCCTTCAAC

GCGGCCTCCAACTCCCGGTCGCAGATCAAGGCGGCCCTGGACAATGCCTCCAAA

ATCATGAGCCTCACCAAAACGGCTCCGGACTATCTCATCGGGCAGCAGCCCGTG

GGGGACATTACCACCAACCGGATCTACAAAATCCTGGAACTGAACGGGTACGAC

CCCCAGTACGCCGCCTCCGTCTTTCTCGGCTGGGCCCAGAAAAAGTTTGGAAAG

CGCAACACCATCTGGCTGTTTGGGCCCGCCACCACCGGCAAGACCAACATCGCG

GAAGCCATCGCCCACGCGGTCCCCTTCTACGGCTGCGTCAACTGGACCAATGAG

AACTTTCCCTTCAACGACTGCGTCGACAAAATGGTGATTTGGTGGGAGGAGGGC

AAGATGACCGCCAAGGTCGTAGAGTCCGCCAAGGCCATTCTGGGCGGCAGCAAG

GTGCGCGTGGACCAAAAATGCAAGGCCTCTGCGCAGATCGACCCCACCCCCGTG

ATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACAGCACCACC

TTCGAGCACCAGCAGCCCCTGCAGGACCGGATGTTCAAGTTTGAACTCACCCGC

CGCCTCGACCACGACTTTGGCAAGGTCACCAAGCAGGAAGTCAAGGACTTTTTC

CGGTGGGCGGCTGATCACGTGACTGACGTGGCTCATGAGTTTTACGTCACAAAG

GGTGGAGCTAAGAAAAGGCCCGCCCCCTCTGACGAGGATATAAGCGAGCCCAA

GCGGCCGCGCGTGTCATTTGCGCAGCCGGAGACGTCAGACGCGGAAGCTCCCGG

AGACTTCGCCGACAGGTACCAAAACAAATGTTCTCGTCACGCGGGTATGCTGCA

GATGCTCTTTCCCTGCAAGACGTGCGAGAGAATGAATCAGAATTCCAACGTCTG

CTTCACGCACGGTCAGAAAGATTGCGGGGAGTGCTTTCCCGGGTCAGAATCTCA

ACCGGTTTCTGTCGTCAGAAAAACGTATCAGAAACTGTGCATCCTTCATCAGCTC

CGGGGGGCACCCGAGATCGCCTGCTCTGCTTGCGACCAACTCAACCCCGATTTG

GACGATTGCCAATTTGAGCAATAAATGACTGAAATCAGGTATGGCTGCTGACGG

TTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAAGGCATTCGCGAGTGGTGG

GCGCTGAAACCTGGAGCTCCACAACCCAAGGCCAACCAACAGCATCAGGACAA

CGGCAGGGGTCTTGTGCTTCCTGGGTACAAGTACCTCGGACCCTTCAACGGACTC

GACAAGGGAGAGCCGGTCAACGAGGCAGACGCCGCGGCCCTCGAGCACGACAA

GGCCTACGACAAGCAGCTCGAGCAGGGGGACAACCCGTATCTCAAGTACAACCA

CGCCGACGCCGAGTTCCAGCAGCGCTTGGCGACCGACACCTCTTTTGGGGGCAA

CCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGATTCTCGAGCCTCTGGGTCT

GGTTGAAGAGGGCGTTAAAACGGCTCCTGGAAAGAAACGCCCATTAGAAAAGA

CTCCAAATCGGCCGACCAACCCGGACTCTGGGAAGGCCCCGGCCAAGAAAAAG

CAAAAAGACGGCGAACCAGCCGACTCTGCTAGAAGGACACTCGACTTTGAAGAC

TCTGGAGCAGGAGACGGACCCCCTGAGGGATCATCTTCCGGAGAAATGTCTCAT

GATGCTGAGATGCGTGCGGCGCCAGGCGGAAATGCTGTCGAGGCGGGACAAGG

TGCCGATGGAGTGGGTAATGCCTCCGGTGATTGGCATTGCGATTCCACCTGGTCA

GAGGGCCGAGTCACCACCACCAGCACCCGAACCTGGGTCCTACCCACGTACAAC

AACCACCTGTACCTGCGAATCGGAACAACGGCCAACAGCAACACCTACAACGGA

TTCTCCACCCCCTGGGGATACTTTGACTTTAACCGCTTCCACTGCCACTTTTCCCC SEQ

ID Sequence

NO

ACGCGACTGGCAGCGACTCATCAACAACAACTGGGGACTCAGGCCGAAATCGAT

GCGTGTTAAAATCTTCAACATACAGGTCAAGGAGGTCACGACGTCAAACGGCGA

GACTACGGTCGCTAATAACCTTACCAGCACGGTTCAGATCTTTGCGGATTCGACG

TATGAACTCCCATACGTGATGGACGCCGGTCAGGAGGGGAGCTTTCCTCCGTTTC

CCAACGACGTCTTTATGGTTCCCCAATACGGATACTGCGGAGTTGTCACTGGAAA

AAACCAGAACCAGACAGACAGAAATGCCTTTTACTGCCTGGAATACTTTCCATC

CCAAATGCTAAGAACTGGCAACAATTTTGAAGTCAGTTACCAATTTGAAAAAGT

TCCTTTCCATTCAATGTACGCGCACAGCCAGAGCCTGGACAGAATGATGAATCCT

TTACTGGATCAGTACCTGTGGCATCTGCAATCGACCACTACCGGAAATTCCCTTA

ATCAAGGAACAGCTACCACCACGTACGGGAAAATTACCACTGGAGACTTTGCCT

ACTACAGGAAAAACTGGTTGCCTGGAGCCTGCATTAAACAACAAAAATTTTCAA

AGAATGCCAATCAAAACTACAAGATTCCCGCCAGCGGGGGAGACGCCCTTTTAA

AGTATGACACGCATACCACTCTAAATGGGCGATGGAGTAACATGGCTCCTGGAC

CTCCAATGGCAACCGCAGGTGCCGGGGACTCGGATTTTAGCAACAGCCAGCTGA

TCTTTGCCGGACCCAATCCGAGCGGTAACACGACCACATCTTCAAACAATTTGTT

GTTTACCTCAGAAGAGGAGATTGCCACAACAAACCCACGAGACACGGACATGTT

TGGACAGATTGCAGATAATAATCAAAATGCCACCACCGCCCCTCACATCGCTAA

CCTGGACGCTATGGGAATTGTTCCCGGAATGGTCTGGCAAAACAGAGACATCTA

CTACCAGGGCCCTATTTGGGCCAAGGTCCCTCACACGGACGGACACTTTCACCCT

TCGCCGCTGATGGGAGGATTTGGACTGAAACACCCGCCTCCACAGATTTTCATCA

AAAACACCCCCGTACCCGCCAATCCCAATACTACCTTTAGCGCTGCAAGGATTA

ATTCTTTTCTGACGCAGTACAGCACCGGACAAGTTGCCGTTCAGATCGACTGGGA

AATTCAGAAGGAGCATTCCAAACGCTGGAATCCCGAAGTTCAATTTACTTCAAA

CTACGGCACTCAAAATTCTATGCTGTGGGCTCCCGACAATGCTGGCAACTACCAC

GAACTCCGGGCTATTGGGTCCCGTTTCCTCACCCACCACTTGTAA

SEQ

ID Sequence

NO

SEQ CCGCGAGTGAGCGAACCAGGAGCTCCATTTTGCCCGCGAATTTTGAACGAGCAG ID CAGCCATGCCGGGATTCTACGAGATTGTCCTGAAGGTGCCCAGCGACCTGGACG NO: AGCACCTGCCTGGCATTTCTGACTCTTTTGTAAACTGGGTGGCGGAGAAGGAAT 1418 GGGAGCTGCCGCCGGATTCTGACATGGATCTGAATCTGATTGAGCAGGCACCCC

TAACCGTGGCCGAAAAGCTGCAACGCGAATTCCTGGTCGAGTGGCGCCGCGTGA

GTAAGGCCCCGGAGGCCCTCTTCTTTGTTCAGTTCGAGAAGGGGGACAGCTACTT

CCACCTACACATTCTGGTGGAGACCGTGGGCGTGAAATCCATGGTGGTGGGCCG

CTACGTGAGCCAGATTAAAGAGAAGCTGGTGACCCGCATCTACCGCGGGGTCGA

GCCGCAGCTTCCGAACTGGTTCGCGGTGACCAAGACGCGTAATGGCGCCGGAGG

CGGGAACAAGGTGGTGGACGACTGCTACATCCCCAACTACCTGCTCCCCAAGAC

CCAGCCCGAGCTCCAGTGGGCGTGGACTAATATGGACCAGTATTTAAGCGCCTG

TTTGAATCTCGCGGAGCGTAAACGGCTGGTGGCGCAGCATCTGACGCACGTGTC

GCAGACGCAGGAGCAGAACAAAGAGAACCAGAATCCCAATTCTGACGCGCCGG

TGATCAGATCAAAAACCTCCGCGAGGTACATGGAGCTGGTCGGGTGGCTGGTGG

ACCGCGGGATCACGTCAGAAAAGCAATGGATCCAGGAGGACCAGGCCTCTTACA

TCTCCTTCAACGCCGCCTCCAACTCGCGGTCACAAATCAAGGCCGCACTGGACA

ATGCCTCCAAATTTATGAGCCTGACAAAAACGGCTCCGGACTACCTGGTGGGAA

ACAACCCGCCGGAGGACATTACCAGCAACCGGATCTACAAAATCCTCGAGATGA

ACGGGTACGATCCGCAGTACGCGGCCTCCGTCTTCCTGGGCTGGGCGCAAAAGA

AGTTCGGGAAGAGGAACACCATCTGGCTCTTTGGGCCGGCCACGACGGGTAAAA

CCAACATCGCTGAAGCTATCGCCCACGCCGTGCCCTTTTACGGCTGCGTGAACTG

GACCAATGAGAACTTTCCGTTCAACGATTGCGTCGACAAGATGGTGATCTGGTG

GGAGGAGGGCAAGATGACGGCCAAGGTCGTGGAGTCCGCCAAGGCCATTCTGG

GCGGAAGCAAGGTGCGCGTGGACCAAAAGTGCAAGTCATCGGCCCAGATCGAC

CCAACTCCCGTCATCGTCACCTCCAACACCAACATGTGCGCGGTCATCGACGGA

AATTCCACCACCTTCGAGCACCAACAACCACTCCAAGACCGGATGTTCAAGTTC

GAGCTCACCAAGCGCCTGGAGCACGACTTTGGCAAGGTCACCAAGCAGGAAGTC

AAGGACTTTTTCCGGTGGGCGTCAGATCACGTGACTGAGGTGTCTCACGAGTTTT

ACGTCAGAAAGGGTGGAGCTAGAAAGAGGCCCGCCCCCAATGACGCAGATATA

AGTGAGCCCAAGCGGGCCTGTCCGTCAGTTGCGCAGCCATCGACGTCAGACGCG

GAAGCTCCGGTGGACTACGCGGACAGGTACCAAAACAAATGTTCTCGTCACGTG

GTGGACATTTGCTTCACGCACGGGGTCATGGACTGTGCCGAGTGCTTCCCCGTGT

CAGAATCTCAACCCGTGTCTGTCGTCAGAAAGCGGACATATCAGAAACTGTGTC

CGATTCATCACATCATGGGGAGGGCGCCCGAGGTGGCTTGTTCGGCCTGCGATC

TGGCCAATGTGGACTTGGATGACTGTGACATGGAGCAATAAATGACTCAAACCA

GATATGACTGACGGTTACCTTCCAGATTGGCTAGAGGACAACCTCTCTGAAGGC

GTTCGAGAGTGGTGGGCGCTGCAACCTGGAGCCCCTAAACCCAAGGCAAATCAA

CAACATCAGGACAACGCTCGGGGTCTTGTGCTTCCGGGTTACAAATACCTCGGA

CCCGGCAACGGACTTGACAAGGGGGAACCCGTCAACGCAGCGGACGCGGCAGC

CCTCGAACACGACAAGGCCTACGACCAGCAGCTCAAGGCCGGTGACAACCCCTA

CCTCAAGTACAACCACGCCGACGCCGAGTTTCAGGAGCGTCTTCAAGAAGATAC

GTCTTTTGGGGGCAACCTCGGACGAGCAGTCTTCCAGGCCAAAAAGAGGATCCT

TGAGCCTCTGGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAAAAGAG

ACCTGTAGAGCAATCTCCAGCAGAACCGGACTCCTCTTCGGGCATCGGCAAATC

AGGCCAGCAGCCCGCTAGAAAAAGACTGAATTTTGGTCAGACTGGCGACACAGA

GTCAGTCCCAGACCCTCAACCACTCGGACAACCTCCCGCAGCCCCCTCTGGTGTG

GGATCTACTACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAG

GGTGCCGATGGAGTGGGTAATTCCTCAGGAAATTGGCATTGCGATTCCCAATGG

CTGGGCGACAGAGTCATCACCACCAGCACCCGCACCTGGGCCCTGCCCACCTAC

AACAATCACCTCTACAAGCAAATCTCCAGCCAATCAGGAGCCACCAACGACAAC

CACTACTTTGGCTACAGCACCCCCTGGGGGTATTTTGACTTCAACAGATTCCACT

GCCACTTTTCACCACGTGACTGGCAAAGACTCATCAACAACAACTGGGGATTCC SEQ

ID Sequence

NO

GACCCAAGAGACTCAACTTCAAGCTCTTTAACATTCAAGTCAAAGAGGTCACGC

AGAATGACGGTACGACGACGATTGCCAATAACCTTACCAGCACGGTTCAGGTGT

TTACTGACTCCGAGTACCAGCTCCCGTACGTCCTCGGCTCGGCGCATCAGGGATG

CCTCCCGCCGTTCCCAGCAGACGTCTTCATGGTCCCACAGTATGGATACCTCACC

CTGAACAACGGGAGTCAGGCGGTAGGACGCTCTTCCTTTTACTGCCTGGAGTACT

TTCCTTCTCAGATGCTGCGTACTGGAAACAACTTTCAGTTTAGCTACACTTTTGA

AGACGTGCCTTTCCACAGCAGCTACGCTCACAGCCAAAGTCTGGACCGTCTCAT

GAATCCTCTGATCGACCAGTACCTGTACTATCTGAACAGGACACAAACAGCCAG

TGGAACTCAGCAGTCTCGGCTACTGTTTAGCCAAGCTGGACCCACCAGTATGTCT

CTTCAAGCTAAAAACTGGCTGCCTGGACCTTGCTACAGACAGCAGCGTCTGTCA

AAGCAGGCAAACGACAACAACAACAGCAACTTTCCCTGGACTGGTGCCACCAAA

TATCATCTGAATGGCCGGGACTCATTGGTGAACCCGGGCCCTGCTATGGCCAGTC

ACAAGGATGACAAAGAAAAGTTTTTCCCCATGCATGGAACCCTGATATTTGGTA

AAGAAGGAACAAATGCCAACAACGCGGATTTGGAAAATGTCATGATTACAGAT

GAAGAAGAAATCCGCACCACCAATCCCGTGGCTACGGAGCAGTACGGGACTGTG

TCAAATAATTTGCAAAACTCAAACGCTGGTCCAACTACTGGAACTGTCAATCAC

CAAGGAGCGTTACCTGGTATGGTGTGGCAGGATCGAGACGTGTACCTGCAGGGA

CCCATTTGGGCCAAGATTCCTCACACCGATGGACACTTTCATCCTTCTCCACTGA

TGGGAGGTTTTGGGCTCAAACACCCGCCTCCTCAGATCATGATCAAAAACACTC

CCGTTCCAGCCAATCCTCCCACAAACTTTAGTGCGGCAAAGTTTGCTTCCTTCAT

CACACAGTACTCCACGGGGCAGGTCAGCGTGGAGATCGAGTGGGAGCTGCAGA

AGGAGAACAGCAAACGCTGGAATCCCGAAATTCAGTACACTTCCAACTACAACA

AATCTGTTAATGTGGACTTTACTGTGGACACTAATGGTGTGTATTCAGAGCCTCG

CCCCATTGGCACCAGATACCTGACTCGTAATCTGTAATTGCTTGTTAATCAATAA

ACCGGTTAATTCG

SEQ CCGCCATGCCGGGGTTTTACGAGATTGTGATTAAGGTCCCCAGCGACCTTGACG ID AGCATCTGCCCGGCATTTCTGACAGCTTTGTGAACTGGGTGGCCGAGAAGGAAT NO: GGGAGTTGCCGCCAGATTCTGACATGGATCTGAATCTGATTGAGCAGGCACCCC 1419 TGACCGTGGCCGAGAAGCTGCAGCGCGACTTTCTGACGGAATGGCGCCGTGTGA

GTAAGGCCCCGGAGGCCCTTTTCTTTGTGCAATTTGAGAAGGGAGAGAGCTACT

TCCACATGCACGTGCTCGTGGAAACCACCGGGGTGAAATCCATGGTTTTGGGAC

GTTTCCTGAGTCAGATTCGCGAAAAACTGATTCAGAGAATTTACCGCGGGATCG

AGCCGACTTTGCCAAACTGGTTCGCGGTCACAAAGACCAGAAATGGCGCCGGAG

GCGGGAACAAGGTGGTGGATGAGTGCTACATCCCCAATTACTTGCTCCCCAAAA

CCCAGCCTGAGCTCCAGTGGGCGTGGACTAATATGGAACAGTATTTAAGCGCCT

GTTTGAATCTCACGGAGCGTAAACGGTTGGTGGCGCAGCATCTGACGCACGTGT

CGCAGACGCAGGAGCAGAACAAAGAGAATCAGAATCCCAATTCTGATGCGCCG

GTGATCAGATCAAAAACTTCAGCCAGGTACATGGAGCTGGTCGGGTGGCTCGTG

GACAAGGGGATTACCTCGGAGAAGCAGTGGATCCAGGAGGACCAGGCCTCATA

CATCTCCTTCAATGCGGCCTCCAACTCGCGGTCCCAAATCAAGGCTGCCTTGGAC

AATGCGGGAAAGATTATGAGCCTGACTAAAACCGCCCCCGACTACCTGGTGGGC

CAGCAGCCCGTGGAGGACATTTCCAGCAATCGGATTTATAAAATTTTGGAACTA

AACGGGTACGATCCCCAATATGCGGCTTCCGTCTTTCTGGGATGGGCCACGAAA

AAGTTCGGCAAGAGGAACACCATCTGGCTGTTTGGGCCTGCAACTACCGGGAAG

ACCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGTAAAC

TGGACCAATGAGAACTTTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGT

GGGAGGAGGGGAAGATGACCGCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTC

GGAGGAAGCAAGGTGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGA

CCCGACTCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGG

GAACTCAACGACCTTCGAACACCAGCAGCCGTTGCAAGACCGGATGTTCAAATT SEQ

ID Sequence

NO

TGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCACCAAGCAGGAAGT

CAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATT

CTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATA

TAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACG

CGGAAGCTTCGATCAACTACGCAGACAGGTACCAAAACAAATGTTCTCGTCACG

TGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGA

ATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGT

GTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTAC

ATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCA

ATGTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTATGG

CTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACACTCTCTCTGAAGGAATAAG

ACAGTGGTGGAAGCTCAAACCTGGCCCACCACCACCAAAGCCCGCAGAGCGGC

ATAAGGACGACAGCAGGGGTCTTGTGCTTCCTGGGTACAAGTACCTCGGACCCT

TCAACGGACTCGACAAGGGAGAGCCGGTCAACGAGGCAGACGCCGCGGCCCTC

GAGCACGACAAAGCCTACGACCGGCAGCTCGACAGCGGAGACAACCCGTACCT

CAAGTACAACCACGCCGACGCCGAGTTCCAGGAGCGGCTCAAAGAAGATACGTC

TTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAAAAGAGGCTTCTTGA

ACCTCTTGGTCTGGTTGAGGAAGCGGCTAAGACGGCTCCTGGAAAGAAGAGGCC

TGTAGAGCACTCTCCTGTGGAGCCAGACTCCTCCTCGGGAACCGGAAAGGCGGG

CCAGCAGCCTGCAAGAAAAAGATTGAATTTTGGTCAGACTGGAGACGCAGACTC

AGTCCCAGACCCTCAACCAATCGGAGAACCTCCCGCAGCCCCCTCAGGTGTGGG

ATCTCTTACAATGGCTGCAGGCGGTGGCGCACCAATGGCAGACAATAACGAGGG

CGCCGACGGAGTGGGTAATTCCTCGGGAAATTGGCATTGCGATTCCACATGGAT

GGGCGACAGAGTCATCACCACCAGCACCCGAACCTGGGCCCTGCCCACCTACAA

CAACCACCTCTACAAGCAAATCTCCAACAGCACATCTGGAGGATCTTCAAATGA

CAACGCCTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGACTTTAACAGATTC

CACTGCCACTTTTCACCACGTGACTGGCAGCGACTCATCAACAACAACTGGGGA

TTCCGGCCCAAGAGACTCAGCTTCAAGCTCTTCAACATCCAGGTCAAGGAGGTC

ACGCAGAATGAAGGCACCAAGACCATCGCCAATAACCTCACCAGCACCATCCAG

GTGTTTACGGACTCGGAGTACCAGCTGCCGTACGTTCTCGGCTCTGCCCACCAGG

GCTGCCTGCCTCCGTTCCCGGCGGACGTGTTCATGATTCCCCAGTACGGCTACCT

AACACTCAACAACGGTAGTCAGGCCGTGGGACGCTCCTCCTTCTACTGCCTGGA

ATACTTTCCTTCGCAGATGCTGAGAACCGGCAACAACTTCCAGTTTACTTACACC

TTCGAGGACGTGCCTTTCCACAGCAGCTACGCCCACAGCCAGAGCTTGGACCGG

CTGATGAATCCTCTGATTGACCAGTACCTGTACTACTTGTCTCGGACTCAAACAA

CAGGAGGCACGACAAATACGCAGACTCTGGGCTTCAGCCAAGGTGGGCCTAATA

CAATGGCCAATCAGGCAAAGAACTGGCTGCCAGGACCCTGTTACCGCCAGCAGC

GAGTATCAAAGACATCTGCGGATAACAACAACAGTGAATACTCGTGGACTGGAG

CTACCAAGTACCACCTCAATGGCAGAGACTCTCTGGTGAATCCGGGCCCGGCCA

TGGCAAGCCACAAGGACGATGAAGAAAAGTTTTTTCCTCAGAGCGGGGTTCTCA

TCTTTGGGAAGCAAGGCTCAGAGAAAACAAATGTGGACATTGAAAAGGTCATGA

TTACAGACGAAGAGGAAATCAGGACAACCAATCCCGTGGCTACGGAGCAGTAT

GGTTCTGTATCTACCAACCTCCAGAGAGGCAACAGACAAGCAGCTACCGCAGAT

GTCAACACACAAGGCGTTCTTCCAGGCATGGTCTGGCAGGACAGAGATGTGTAC

CTTCAGGGGCCCATCTGGGCAAAGATTCCACACACGGACGGACATTTTCACCCC

TCTCCCCTCATGGGTGGATTCGGACTTAAACACCCTCCGCCTCAGATCCTGATCA

AGAACACGCCTGTACCTGCGGATCCTCCGACCACCTTCAACCAGTCAAAGCTGA

ACTCTTTCATCACCCAGTATTCTACTGGCCAAGTCAGCGTGGAGATCGAGTGGGA

GCTGCAGAAGGAAAACAGCAAGCGCTGGAACCCCGAGATCCAGTACACCTCCA

ACTACTACAAATCTACAAGTGTGGACTTTGCTGTTAATACAGAAGGCGTGTACTC

TGAACCCCGCCCCATTGGCACCCGTTACCTCACCCGTAATCTGTAATTGCCTGTT

AATCAATAAACCGGTTGATTCGTTTCAGTTGAACTTTGGTCTCTGCGAAGGGCGA

ATTCGTTTAAACCTGCAGGACTAGAGGTCCTGTATTAGAGGTCACGTGAGTGTTT SEQ

ID Sequence

NO

TGCGACATTTTGCGACACCATGTGGTCACGCTGGGTATTTAAGCCCGAGTGAGC

ACGCAGGGTCTCCATTTTGAAGCGGGAGGTTTGAACGCGCAGCCGCCAAGCCGA

ATTCTGCAGATATCCATCACACTGGCGGCCGCTCGACTAGAGCGGCCGCCACCG

CGGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGT

AATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACA

CAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGA

GCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCT

GTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCG

TATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGC

TGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAAT

CAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGG

AACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACG

AGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTA

TAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGA

CCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCT

TTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAG

CTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTA

ACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAG

CCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT

TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG

CTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCA

CAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC

TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG

GATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGT

ATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTA

TCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAG

ATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG

CGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGA

AGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTA

ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACG

TTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC

ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGC

AAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCC

GCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGC

CATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGA

ATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATAC

CGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGG

GCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACT

CGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAG

CAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAA

ATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAG

GGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATT

TTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGC

CGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAG

TGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTC

AAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCC

GGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAA GGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGG TCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCG CGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGG SEQ

ID Sequence

NO

CCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAA GTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTG AGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACCGGGCCCCCCCTCG ATCGAGGTCGACGGTATCGGGGGAGCTCGCAGGGTCTCCATTTTGAAGCGGGAG GTTTGAACGCGCAG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTGTGGGGCGGAGCCAACGCTGATTGGACGAGAAGCGGT NO: GATGCAAATAACGTCACGACGCACGGCTAATGGCCGGCGCGGAGGCGTGGCCTA 1420 GGCCGGAAGCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACC

CGGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCG

GATGCAAGTGAAATTAGGTCATTTTGGCGCCAAAACTGAATGAGGAAGTGAAAA

GTGAAAAATACCTGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACT

GTGTGAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAAC

CAGTTGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCT

GAGCTCTGCTCCCAGAGTCTAAAAAAAATGAGACACCTGCGCCTTCTGTCTTCAA

CTGTGCCTATTAACATGGCCGCATTATTGCTGGAGGACTATGTGAGTACAGTATT

GGAGGACGAACTACATCCATCTCCATTTGAGCTGGGACCTACACTTCAGGACCTT

TATGATTTGGAGGTAGATGCCCATGATGACGACCCAAACGAAGAGGCTGTGAAT

TTAATATTTCCAGAATCTCTGATTCTTCAGGCTAACATAGCCAGCGAAGCTGTAC

CTACACCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAGG

ACGAGCTAGACCTCCGATGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGG

ACGAACAGGGTGAGCAGAGCATGGCTGTAATCTCAGAATATGCTTGTGTGGTTG

TGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAGAT

CCTGCCAGTACCACCGGGATAAGACCGGAGACACGAACGCCTCCTGCGCTCTGT

GTTACATGAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGA

GAGGCGAGTGCTTAACACATAACTGGGTGATGCTTAAACAGCTGTGCTAAGTGT

GGTTTATTTTTGTTTCTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAG

AAGACCACCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACA

GACCCACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTG

AGGACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAAC

GCCCCAGGAACTAGGCTCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGTACAA

TAAAAGTATATGTGACGCATGCAAGGTGTGGTTCATGATTCATGGGCGGGGCTT

ATTCCTATATAAGTGGCAACACCTGGGCACTGGGGCACAGACCTTTAGGGAGTT

CCTGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGACTTGTA

GAGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCT

CTATCTCGTCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAAT

CTTTTTGCTGATTGCTCTGGCCTGCTAGATTCTCTGAATCTCGGCCACCAGTCCCT

TTTCCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACA

GCCGGGGTTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAAC

TGAGCAGGGGCTACATTCTGGACTTTGCAGCCATGCACCTGTGGAGGGCATGGG

TGAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTATACAGCCAGCAGCTC

CGGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGC

AGGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAG

CTGGATTGAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGACAT

CCATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATG

ATGACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACC

TGGCACGAGCTACAGATGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGATAA

ATATGGCCTGGAGCAGATAAAAACACATTGGTTGAACCCAGATGAGGATTGGGA SEQ

ID Sequence

NO

GGAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAT

AGTGACCAAGACCGTGAATATTAGACATGCCTGCTACATTTCGGGGAACGGGGC

AGAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGG

AATGAGAGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTT

CAATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCT

GCATGGCTGCAGTTTCTTTGGCTTTAACAATATGTGCGCCGAGGTCTGGGGCGCT

TCCAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGA

CCCAAGAGCGAGATGTCTGTAAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGA

GTCTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGATACGGGC

TGCTTCTGCCTGGTGAAGGGTACGGCCTCTCTAAAGCATAATATGGTGAAGGGC

TGCACAGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCAT

ATCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTT

GAGAATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACC

TTCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGAT

GCCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACA

AGATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGG

GCAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGA

CCAGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAG

GACACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAG

ATGGGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGT

GCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCTC

GACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACT

GGCCTCGAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCATC

ATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGT

CAGCTGGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAACAGCAGCAGCAG

CAAAATAAATGATTCAATAAACACAGATTCTAATTCAAACAGCAAAGTATCTTT

ATTATTTATTTTTTCGCGCGCGATAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTAAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTGAGGAGGAGACTAATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGGG

GGTTCATGTTGTGCAGGACCACCAGAACGGTGTAGCCCGTGCACTTGGGGAACT

TGTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG

ACGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCGGGGGTGATTAGCTGCGAGGAGAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACTGGTTGCAGGT

GGTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGAAGGGGGGCCACCTCGT

TGAGCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGT

CCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGTGGCTTGA

GCCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGT

CCCAAAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCT

GCCAACGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCA

CGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC SEQ

ID Sequence

NO

AGTTGACCATAAGCTCGTAGTTAAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGA GCTTGCCCTTGGAAGAGTGACCGCAGGCGGGACAGAGGATGGATTGCAGGGCGT AGAGCTTGGGTGCAAGAAAGACGGACTCGGGGGCGAAGGCGTCCGCTCCGCAG TGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGGTGTTCGGGG

GAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGA

CTTGATGGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCG

GACCACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG

CGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAG

ACACATGTCCCCCTCCTCCGCATTCAAGAAGGTGATTGGCTTGTAGGTGTAGGCC

ACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCAATGCTTTTTAGGAGACTTTCATC

CATCTGGTCAGAAAAAACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATATTCGCGCGCGACAC

ACTTCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCAACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCA

GTACATCAAGTAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATACCGG

CTGCCACTCGCGGGCGGCCATCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATAGACAT

AGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGG

ATGCTGGCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGG

GCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGAT

GGCATGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTG

CGGCAGTCGGACCGAGTCGCGGATAAAGTGCGCGTAGGAGTCTTGCAGCTTGGC

GACGAGCTCGGCGGTGACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCG

GATGATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGAGCG

TACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCAC

GGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCT

TCTCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCA

GGGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGT

CGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGG

GGTTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCA

TGAAATTGCGGGTGATGCGGAAAGGGCCCGGAACGGAGGCTCGGTTGTTGATGA

CCTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGT

GTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGTTCGAGCGCCAACTCCTG

GAGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGT

CTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCGGG

TGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCG

CGCGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCAT

GACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGT

TTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGG

GAAGAATTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAA

GTAGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCC

GCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCG

TCCCTTGAGGAGGAACTTCAGGAATGGCGGCCCTGGCTGGTGGTTTTCATGTTCG

CCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCG

CGCGGCAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAG SEQ

ID Sequence

NO

GGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAG

GGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATG

GTACTTGATCTCCACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCG

TAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCG

GACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGA

GGCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTG

GCGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAG

ACCACTGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCG

GCGTCATTGACGGCGGCCTGACGCAGGATTTCTTGCACGTCGCCCGAGTTGTCCT

GGTAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCG

GCCCGCGCGCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTG

CGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCC

GTCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCG

CGCGAAGACGGCATAGTTGCGCAGGCGTTGGAAGAGGTAGTTGAGGGTGGTGG

CGATGTGCTCGGTGACGAAGAAGTACATAATCCAGCGGCGCAGGGGCATTTCGC

TGATGTCGCCAATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAA

GTTGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCT

GATGAGTTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTC

CTCCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCG

GTGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACG

AAGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGA

CCCCGTTCGCGAGGACGCAGCGTGAAGACGCCACCGGTCATCTCCCGGTAATGG

GGTGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACAATGCATCTTATCAATTGC

GGTGTAGGGCACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGG

AAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTG

TGGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGA

GGCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGC

GGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGT

AGTAGTCATGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCAT

GCGGGTGACCCCGACGCCCCTGAACGGCTGCACGAGCGCCAGGTCGGCGACGAC

GCGCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTC

CATGTCGACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGC

CATAAGCGACCAGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCGGAGTACCT

GAGCCGCGAGAAGGCGCGCGAGTCGAAGACATAGTCGTTGCAGGTGCGCACAA

GGTACTGGTATCCGACTAGAAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGC

GCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCAAGCATGAGTCGGTGGTAGC

CGTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGC

GGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGGGGCAGGAAATAGTCCATG

GACGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGATGCTCTAGAGGCAA

AAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGG

GTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGC

GACTAACGTGGTATTGGCACTCCCGTCTCGACCCAAGCCCGATAGCCGCCAGGA

TACGGCGGAGAGCCCTTTTTGTCGGCCGAGGGGAGTCGCTAGACTTGAAAGCGG

CCGAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCA

GGGTTGAGTCGCGGCAGAACCCGGTTCAAGGACGGCCGCGGCGAGCGGGACTT

GGTCACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGA

CACCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCA

GCCACAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGAC

TGGGGGCGCCGTCCCCGGAGCGACATCCCCGCGTGCAGCTGCAGAAGGACGTGC

GCCCGGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGC

CCGAGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGC

CTGGACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACG SEQ

ID Sequence

NO

GGGATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTAC

GAGCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGT

GCGCACCCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGA

CCTGGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCACAGCT

GTTCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCACTGCT

GAACATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCA

GAGCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGA

TCAACTACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGA

CGCCGTATGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCA

TGGCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACC

GCATCCACAAGGCCGTGAGCACAAGCCGGCGGCGCGAGCTGAGCGACCGCGAG

CTGATGCTGAGTCTGCGCCGGGCGCTGGTAGGAGGCGCCACCGGCGGTGAGGAG

TCCTACTTTGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGACGCGCCTTG

GAGGCCGCCTACGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGA

CCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGTCAGCCGTCCGGTCTAGCATC

GGACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCC

CGAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGC

GGTGGTTCCTTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAA

CGCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTAGTGTACAA

CGCCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACAAACGTGCAGTCCAACCT

GGACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCA

AGAACGAGGGCCTGGGTTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGC

CGGCGAACGTGCCGCGCGGGCAGGATGATTATACCAACTTTATAAGCGCGCTGC

GGCTGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACT

ACTTTTTCCAGACGAGCAGACAGGGCCTGCAGACGGTGAACCTGAGTCAGGCTT

TCAAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGA

CGGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCC

CTTCACCGACAGTGGCAGCGTGAACCGCAACTCGTACCTGGGTCACCTGCTGAC

GCTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGATGAGCAGACCTTCCAGGA

GATCACTAGCGTAAGCCGCGCGCTGGGTCAGAACGACACCGACAGTCTGAGGGC

CACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGC

GCTGTCGGCCGAGGAGGAGCGCGTCCTGAGATATGTGCAGCAGAGCGTAGGGCT

GTTCCTGATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCG

CAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTTATTAATAAGCTGAT

GGACTACCTGCACCGCGCGGCGTCCATGAACTCGGACTACTTTACCAATGCCATC

TTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATG

CCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGCGC

GGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCG

GTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCT

GAACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGTCAATAACGG

GATAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAAACCTACGCTCAGGACCA

TAGGGAACCTGCGCCCGCGCCGCGGCGACAGCGTCACGACCGGCAGCGGGGCCT

GGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGG

AAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAACCCAGACTGGGGCGACGGAT

GTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGT

TAGAGATGAGGCGCGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGT

GATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCT

ACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCTGTACGACACC

ACTCGCGTGTATTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACC

AAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCC

CTGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCG SEQ

ID Sequence

NO

GTGATCTGAAGACCATTCTGCACACCAACATGCCTAATGTGAACGAGTACATGT

TCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAAGGG

GCTGATGCAAATGATAGGAGCAAGGATATCTTAGAGTATCAGTGGTTTGAGTTT

ACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTAATGAACAAC

GCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGT

GATATCGGAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCCGGTG

ACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTG

GTGCTGCTGCCGGGCTGCGGGGTGGATTTCACCGAGAGCCGCCTGAGCAACCTC

CTGGGCATTCGCAAGAAGCAACCTTTTCAAGAGGGCTTCAGAATCATGTATGAG

GACCTAGTAGGGGGCAACATCCCCGCTCTCCTGAATGTCAAGGAGTATCTGAAG

GATAAGGAAGAAGCTGGCAAAGCAGATGCAAATACTATTAAGGCTCAGAATGA

TGCCGTCCCAAGAGGAGATAACTATGCATCAGCGGCAGAAGCCAAAGCAGCAG

GAAAAGAAATTGAGTTGAAGGCCATTTTGAAAGATGATTCAGACAGAAGCTACA

ATGTGATCGAGGGAACCACAGACACCCTGTACCGCAGTTGGTACCTGTCCTATA

CCTACGGGGATCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGG

ACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAG

ACCCCGTCACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGC

CGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCC

CAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACA

ACCAGATCCTTTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACG

TGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAG

TCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAA

GGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATG

TCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCA

CCATGTACGGAGGAGCCAAGAAACGCTCCCAGCAGCACCCCGTCCGCGTCCGCG

GTCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGGGGGCGGACCTCTGCTCCTGC

CGCCGTGCGCACCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGATGCGCG

CAACTACACCCCCGCCCCCTCGACCGTGGACGCGGTCATCGACAGCGTGGTGGC

AGACGCGCGTGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGC

GCCACCGGAGCACGCCCGCCATGCGCGCCGCCCGAGCTCTGCTGCGCCGCGCCA

GACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCACTGCAC

CCACCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCTGCCGCCGCCGCGGCCA

TCTCTAGCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCG

TCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGC

TTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATG

CTCCAGGTCGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCC

CGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGA

GTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGT

GCAGCGCGTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTC

CTCGGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCT

GGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCG

AAGAGGAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGA

AACCCGTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCG

GGGTTAAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCA

AGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCC

GAGGTTAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAAACC

GTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGC

ATCGAGGTGCAAACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGTCTCCACTT

CTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGCCCTGCCA

ACCGGCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTA

CCGCGGCACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAGTAAACGCCGCCG

CCGCACCGCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTGACCAC

GCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTT SEQ

ID Sequence

NO

TAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCG CATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGG CAGTGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGG CTTTCTGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGC ATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCC

TTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAAC

GAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGG

AGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGG

AATAGTAGCACTGGGCAGTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAG

CAAAAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCG

AACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCAC

GGTGGTGGAGATGGAAGATGCAACTCTTCCGCCGCCCAAGGGCGAGAAGCGAC

CGCGGCCCGACGCGGAGGAGACAATCCTGCAAGTGGACGAGCCGCCCTCGTACG

AGGAGGCCGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCA

CGGGTGTAATGAAACCCGCTACCCTTGACCTGCCTCCACCACCCACGCCCGCTCC

ACCAAAAGCAGCTCCGGTTGTGCAGCCCCCTCCGGTGGCGACCGCCGTGCGCCG

CGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGT

GGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAA

AGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGC

GCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCC

GGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCC

ACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCCCCA

ACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCC

GTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTG

GGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTT

CTGGACCGCGGCCCCAGCTTCAAACCCTACTCGGGCACGGCTTACAACAGCCTG

GCCCCCAAGGGCGCCCCCAATTCCAGTCAGTGGGATGCTCAAGAAAAAAATGGA

CAAGGAGGAAATGACATGGTTACCAAAACTCACACATTTGGCGTGGCTGCTATG

GGAGGAACAAATATTACAAACCAGGGTTTGTTAATTGGAACTGAAGAAACAGCC

GATAATCCTCCAAAGGAAATCTTTGCAGACAAATTATTCCAGCCAGAACCTCAA

GTAGGAGAGGAAAACTGGCAAGACAGCAATGCATTCTATGGAGGCAGGGCTCTT

AAGAAGGAAACTAAAATGAAACCATGCTATGGATCTTATGCTAGACCAACAAAC

ACAAGTGGCGGACAGGCTAAGCTTAAAACTGGTGACAATATCGATCCTACCAAG

GATTTCGACATAGATCTTGCTTTCTTCGATACTCCTGGCGGAAATCCTCCAGCAG

GTGGTATTGGAACGGAAGAATACAAAGCAGATATTGTTATGTACACTGAAAATG

TCAACCTTGAAACACCTGACACTCATGTGGTGTACAAACCAGCCAAAGAGGATG

AAAGTTCTCAGGCCAACTTGGTTCAGCAGTCCATGCCCAACAGACCCAACTACA

TTGGCTTCAGAGACAATTTTGTGGGGCTCATGTATTACAACAGCACTGGCAACAT

GGGAGTGCTGGCTGGTCAGGCCTCTCAGTTGAATGCTGTGGTGGACTTGCAAGA

CAGAAACACAGAGCTGTCTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGAAC

CAGATACTTTAGCATGTGGAACTCTGCGGTGGACAGCTATGATCCAGATGTCAG

AATCATTGAAAATCACGGTGTGGAAGATGAGCTTCCAAACTATTGCTTTCCATTG

GATGGCTCTGGTACCAATGCTGCCTACCAAGGTGTAAAGGTTCAAGATGGTGAA

GACGGGGATAAAGAAACTGAATGGGAAAAAGATACCAAAGTCGCAGATCGTAA

CCAACTGTGCAAGGGTAACATCTTCGCCATGGAGATCAACCTCCAGGCCAACCT

GTGGAAGAGTTTTCTGTACTCGAACGTGGCCCTGTACCTGCCCGACTCCTACAAG

TACACGCCGGCCAACATCACGCTGCCCGCCAACACCAACACCTACGAGTACATG

AACGGCCGCGTGGTAGCCCCCTCGCTGGTGGACGCATACGTCAACATCGGTGCG

CGCTGGTCGCTGGACCCCATGGACAACGTCAACCCCTTCAACCACCACCGCAAC

GCGGGCCTGCGCTACCGCTCCATGCTTCTCGGCAACGGCCGCTACGTGCCCTTCC

ACATCCAAGTGCCCCAAAAGTTCTTTGCCATTAAGAACCTGCTCCTGCTCCCCGG

CTCCTACACCTACGAGTGGAACTTCCGCAAGGATGTCAACATGATCCTGCAGAG SEQ

ID Sequence

NO

TTCCCTCGGAAACGACCTGCGCGTCGACGGCGCCTCCGTGCGCTTCGACAGCGTC

AACCTCTACGCTACCTTCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAG

CCATGCTGCGCAACGACACCAACGACCAGTCCTTTAACGACTACCTCTCGGCCG

CCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCCATTTCCATCCC

CTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAAGACCAA

GGAAACTCCCTCCCTTGGCTCGGGTTTTGACCCCTACTTTGTCTACTCGGGCTCC

ATCCCCTACCTCGACGGGACCTTCTACCTCAACCACACCTTCAAGAAGGTTTCCA

TCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTTACGCCGAA

CGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAAT

GCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAACATCG

GCTACCAGGGCTTCCATGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTCTT

CCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGA

CTACAAGGCAGTCACCCTGCCCTTCCAGCACAACAACTCTGGCTTCACCGGCTAC

CTGGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGC

TCATCGGCTCCACCGCAGTGCCATCCGTCACCCAGAAAAAGTTCCTCTGCGACA

GGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCAC

CGATCTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTCGACATGAC

CTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTT

TTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTAC

CTGCGCACGCCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCGGCTCCA

GCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCCTACTTTT

TGGGCACCCACGACAAGCGCTTCCCGGGCTTCCTCGCCGGCGACAAGCTGGCCT

GCGCCATCGTCAACACGGCCGGTCGCGAGACCGGGGGCGTGCACTGGCTCGCCT

TTGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTCGGGTTCTC

GGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCG

AAGCGCCCTGGCCTCCTCGCCCGATCGCTGTCTTAGCCTCGAACAGTCCACCCAG

ACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTCTTCTGTTGCATGTTCTTGC

ATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGGAACCCCACCATGAACT

TGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCCCACCC

TCAGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCCTACTT

TCGCTCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGATAAAATGAAACA

ACTGCGTGTATGACTCAAATAAACAGCACTTTTATTTTACACATGCGCTGGAGTA

TATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCG

CTGGGGAGGGCCACGTTGCGGTACTGGAACTTGGGCTGCCACTTGAACTCGGGG

ATCACCAGTTTGGGCACTGGAGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGG

CTCATTTGCAGGGCGCCCAGCATGTCAGGGCCGGAGATCTTGAAATCGCAGTTG

GGACCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGAAC

ACCATCAGACTGGGGTACTTCACACTGGCAAGCACGCTCTTGTCGCTAATCTGAT

CCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTG

GCGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACGGG

CATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACGAA

GGCCGCGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTAAAAAACAG

GCCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGCACGCAG

CAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGG

TCACCTTAGCCTTGCTGGGCTGCTCCTTCAGCGCGCGCTGTCCGTTCTCGCTGGTC

ACATCCATCTCCACCACGTGGTCCTTGTGAATCATCACCGTTCCATGCAGACACT

TGAGCTGACCTTCCACCTCGGTGCAGCCGTGATCCCACAGGACGCAGCCGGTGC

ACTCCCAATTCTTGTGCGCGATCCCGCTGTGGCTGAAAATGTAACCTTGCAACAG

GCGACCCATAATGGTGCTAAATGCTTTCTGGGTGGTGAATGTCAGTTGCATCCCG

CGGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTCTGGAAGATCTCGGTCTGCT

CCGGCATGAGCTTGTAAGCATCGCGCAAGCCGCTGTCGACGCGGTAGCGTTCCA

TCAGCACGTTCATGGTATCCATGCCCTTCTCCCATGACGAGACCAGAGGCAGACT

CAGGGGGTTGCGCACGTTCAGGACACCAGGGGTCGCGGGCTCGACGATGCGTTT SEQ

ID Sequence

NO

TCCGTCCTTGCCTTCCTTCAACAGAACCGGAGGCTGGCTGAATCCCACTCCCACG ATCACGGCGTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCT

TCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGA

GGTGGCGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCG

TGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTG

CCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAG

CAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGG

CTTCGAAGAGCCGGCTCGTCTAAAACCCCCACAGGATGAACAGGAGCACGAGCA

AGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAG

GAGAGGAGGATGTGCTGCTAAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGG

ACGCCCTGGCCGACCGAAGCGAAACCCCCCTCAGCGTCAAGGAGCTGTGTCGGG

CCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACG

GCACCTGCGAGCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCGA

GGCCCTTGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCATCTCCTGT

CGCGCCAATCGCACTCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGC

ATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGT

CGGGACGAGACGCGCGCGGCAAACGCTCTGAAAGAAACAGCAGAGGAAGAGGG

TTACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCT

TAAGCGCAGCGTCGAGCTCACCCATTTCGCCTACCCCGCCGTCAACCTCCCGCCC

AAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTTG

ATGAAAGTCAGGAACAGCGCCCCGAGAACGCCCAGCCCGTGGTCAGCGACGAG

ATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCCCTGGAGCAGCGGCGC

AAGCTCATGCTGGCCGTGGTCCTGGTCACCCTTGAGCTCGAATGCATGCGCCGCT

CAGACACGGTTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACCAA

CCTGGTCTCCTGCCTGGGGATCCTACACGAGAACCGCTTGGGACAGACCGTGCT

CCACTCTACCCTGAAGGGCGAGGCGCGGCGGGACTACATCCGCGACTGCGTCTT

TCTCTTTCTCTGCCACACATGGCAAGCGGCCATGGGCGTGTGGCAGCAGTGTCTC

GAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAAA

GCTGTGGACGGGCTTTGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGT

CTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGAGGGCTGCCCGACTTCATGAG

CCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCTGGGATGCTG

CCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAGT

GTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACATTGC

CCACCACTCGGATGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCA

CTGTCGCTGCAACCTATGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCTA

CTGAGCGAGACCCAGGTCATCGGTACCTTTGAGCTGCAAGGTCCGCAGGAGTCC

ACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAA

TTTGTACCCGAGGACTACTACGCCCATGAGATAAAGTTCTTCGAGGACCAATCG

CGTCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCTC

GCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGT

AGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCC

CAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAAT

GGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAGA

CTTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCAT

CCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGCCAAGC

CTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGACAGGGCT

ACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCG

GGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACAT

CCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAATCAG

AAGTAAGAGGAGTCGCCGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCCTTG SEQ

ID Sequence

NO

AAAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTGCGCTCGC

TCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCG

AAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACTAAG

GCGGGAATTACCTCATCGCCACCATGAGCAAGGAGATTCCCACCCCTTACATGT

GGAGCTATCAGCCCCAGATGGGCCTGGCCGCAGGCGCCTCCCAGGACTACTCCA

CCCGCATGAACTGGCTCAGTGCCGGCCCCTCGATGATCTCACAGGTCAATGGGG

TCCGTAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGC

CCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAA

TCCCCGGGCCAACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCAT

GACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCC

ACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACG

ACGAGTTGGTGAGCTCTTCAATCGGTCTGCGACCGGACGGAGTGTTCCAACTAG

CCGGAGCCGGGAGATCCTCCTTCACTCCCCACCAGGCCTACCTGACCTTGCAGA

GCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGG

AGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCC

GGACGAGTTCATACCGAACTTCGATGCAGTGAGAGAAGCGGTGGACGGCTACGA

CTGAATGTCCCATGGTGACTCGGCTGAGCTTGCTCGGTTGAGGCATCTGGACCAC

TGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGAGT

TTCCCAAGGAGCACCCCAACGGCCCGGCACACGGAGTGCGGATCACCGTAGAGG

GCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTCGA

GCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCTACCCCGAA

GTTGCATGAGAATTTTTGTTGTACTCTGTGTGCTGAGTTTAATAAAAGCTAAACT

CCTACAATACTCTGGAATCCCGTGTCGTCGCACTCGCAACGAGATCTTCAACCTC

ACCAACCAGACTGAGGTAAAACTTAACTGCAGACCGGGGGGCAAATACATCCTC

TGGCTCTTTGAAAACACTTCCTTCGCAGTCTCCAACGCCTGCGCCAACGACGGTA

TTGAAATACCCAACAACCTTACCAGTGGACTAACTTACACTACCAGAAAGACTA

AGCTAGTACTCTACAATCCTTTTGTAGAGGGAACCTACCACTGCCAGAGCGGAC

CTTGCTTCCACACTTTCACTTTGGTGAACGTTACCGACAGCAGCACAGCCGCTCC

AGAAACATCTAACCTTTTTGATACTAACACTCCTAAAACCGGAGGTGAGCTCTG

GGTTCCCTCTTTAACAGAGGGGGGTAAACATATTGAAGCGGTTGGGTATTTGATT

TTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTGTATTACCTTCCTTGCTGGA

ACGAAATCAAAATCTTTATCTGCTGGGTCATACATTGTTGGGAGGAACCATGAA

GGGGCTCTTGCTGATTATCCTTTTCCTGGTTGGGGGTGTACTGTCATGCCACGAA

CAGCCACGATGTAACATCACCACAGGCAATGAGAGGAGTGTGATATGCACAGTA

GTCATCAAATGCGAGCATACATGTCCTCTCAACATCACATTCAAGAATAAGACC

ATGAGAAATTCATGGGTGGGCGATTGGGAACCAGGAGATGAGCAGAACTACAC

GGTCACTGTCCATGGTAGCGATGGGAATCACACTTTCGGTTTCAAATTCATTTTT

GAAGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCC

CTACCAAGGAGAACATAGTTGGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTT

TATGTCAGGTCTGCTGGTAGGGGCTTTAGTATGGTTCCTGAAGCGCAAGCCTAGG

CATGAATACTTTGACCGGTGTCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGG

CAGGATTTCATACTATCAATGCTACATGGTGGGCTAATATAACTTTAGTGGGACC

CTCAGATACGCCAGTCACATGGTATGATAAACAGGGAATGCAGTTCTGTGATGG

AAATACAGTTAAGAATCCTCAAATAAGACATGAGTGTAATGAGCAAAACCTTAC

ACTAATTCATGTGAACAAAACCCATGAAAGGACATACATGGGTTATAATACACA

GAGTACTCATAAGGAAGACTATAAAGTCATAGTTATACCGCCTCCTCCTGCTACT

GTAAAGCCACAGTCAGGTCCAGAGTATGTATATGTTAATATGGGAGAGAACAAA

ACCTTAGTTGGACCTCCAGGAATACCAGTTACTTGGTATGACGGAGAAGGAAAT

AAATTCTGCGATGGAGAAAAAGTTGAACATGCAGAATTTAATCATACATGTGAC

GAGCAAAATCTTACACTGTTGTTTATAAATCTTACACATGATGGGGCTTATCTTG

GCTATAATCACCAGGGAACTAAAAGAACTTGGTATGAGGTTGTAGTGACAGATG

GTTTTCCAAAATCAGGGGAGATGAAAATCGAAGATCAGAGTAGACAAAATGAG SEQ

ID Sequence

NO

CATAAACAGGGTGGGCAGAAACAGGAGGGGCAAAAAGAGACAAGTCAAAAGA

AAGCTAATGACAAACAGAAGGCGACACACAGGAGGCCATCAAAACTAAAGCCG

CACACACCTGAAGCAAAACTGATTACAGTTTCTAGTGGGTCTAACTTAACATTAC

TTGGGCCAGATGGAAAGGTCACTTGGTATGATGATGATTTAAAAAGACCATGCG

AGCCTGGGTATAAGTTAGGGTGTAAGTGTGACAATCAAAACCTAACGCTAATCA

ATGTAACTAAACTTTATGAGGGAGTTTACTATGGTACTAATGACAGAGGCAACA

GCAAAAGATATAGAGTAAAAGTAAACACTACTAATTCTCAAAGTGTGAAAATTC

AGCCATACAACAGGTCTACTACTCCTAATCAGAAACACAGATTTGAATTGCAAA

TTGATTCTAATCAAGACAATGACAAAATTCCATCAACCACTGTGGCAATCGTGGT

GGGAGTGATTGCGGGCTTCATAACTATAATCATTGTCATTCTGTGCTACATCTGC

TGCCGCAAGCGTCCCAGGGCATACAATCATATGGTAGACCCACTACTTAGCTTCT

CTTACTGAGACTCAGTCACTTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGC

GTTCTGATTAGCATAGTCACATTAGTATCAGCTGATTACAAACAAGTTCAAGTTA

GCAGAGGAGGAAACATTACATTAGATGGACCATTCGATAATACTACATGGACAA

GATATCATAATGATGGACATAAAAATGGTTGGATGAAAATTTGCACATGGACTG

TACATCCGGAGTTTACAAAGCAGAAGGGTATAAAAAAGAGGTTAGAACATTTTC ATCTAGAAATCAAAAACATACAATTGAAGATTCTGGAGATTATGAACAACAAAA AATATATCTATATAATCTAACAATAATTGAACCGCCAACTACTAAAGCACCCAC CATAGTTAGAACAACTACTAGGGAAACAACACATCCAACCACCACAACTCACAC

AGAGGAAATGAAAGTACTACTGATCAGACAGAGGCTACCTCAAGTGCCTTCAGC

AGCACTGCAAATTTAACTTCGCTTGCTTCGGTAAATGAAACGATCGTGCCAATGA

TGTATGGCCAACCTTACTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTCTGT

GGGATCTTTATTCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAAA

AATCTAGGAGGCCCATCTACAGGCCAGTAATTGGGGATCCTCAGCCTCTCCAAG

TGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTATTCAACGTGTGCGCT

GCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTTGGGCCCTTCCCCACCT

ACCTTCTTTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTC

GTTACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTATCTCCACC

ACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATTTGAC

CATGCATACTCTGCTCATACTGCTATCCCTCCTCTCCCCTGCCCTCGCTGATGATG

ATTACTCTAAGTGCAAATTTGTGGAGCTATGGAATTTCTTAGACTGCTATGATGT

TAAAATGGATATGCCATCCTATTACTTGGTGATTGTGGGGATAGTCATGGTCTGC

TCCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTAATCTCGGCTGGAACTC

TGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCTTCCACGCCGCC

ACCCACACCGCCTCCCCGCAGAAATCAGTTTCCCATGATTCAGTACTTAGAAGA

GCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCAGCGGCGAT

GACTGACAACCACCTGGACCTCGAGATGGACGGCCAGGACTCCGAGCAGCGCAT

CCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGA

TGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGC

AAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGA

GCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGT

CATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAG

CCCCGAGTGCATCTACTCCCTCCTTAAAACCCTTTGCGGACTCCGCAACCTTCTT

CCCACAAACTAACTGATTTAAGCCCAAAAACCAATCAAACCCCCTTTTCCCATCT

ACCCAAATAAACATTTATTGGAAATAATTATTCAATAAAGATCACTTACTTAAAA

TCTGAAAGTATGTCTTTGGTGTAGTTGTTTAGCAGCACCTCAGTCCCCTCCTCCC

AGCTCTGGTACTCCAGTCCCCGGCGGGCGGCAAACTTTCTCCACACCTTGAAAG

GGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTTAGATGACAAAG

AGACTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGG

AATCAAAATATTCCCTTCCTCACTCCCCCCTTTGTCTCCTCCAATGGATTTCAAAA SEQ

ID Sequence

NO

CTTCCCCCCTGGGGTCCTGTCACTTAAACTGGCTGACCCAATCACCATTAACAAT

CAAAATGTATCACTCAAGGTTGGAGGGGGGCTAACTTTGCAAGAAGAAACTGGA

AAATTAACAGTTAATACTGAACCACCTTTGCATCTTACAAATAACAAATTAGGG

ATAGCTTTAGACGCTCCATTTGATGTTATAGACAATAAGCTTACACTATTAGCAG

GCCATGGCTTGTCTATTATAACAAAAGAAACATCAACACTGCCTGGCTTGGTTAA

TACTCTTGTAGTATTAACTGGAAAGGGTATTGGAACAGATTTATCAAATAATGGT

GGAAATATATGTGTTAGAGTTGGAGAAGGCGGCGGCTTATCATTTAATGACAAT

GGAGACTTGGTAGCATTTAATAAAAAAGAAGACAAACGCACCCTATGGACAACT

CCAGACACATCTCCAAATTGCAGAATTGATCAGGATAAGGACTCTAAGCTAACT

TTGGTCCTTACAAAGTGTGGAAGTCAAATATTAGCCAATGTGTCATTAATTGTTG

TAGCTGGAAGGTACAAAATTATCAATAACAATACTAATCCAGCTCTTAAAGGAT

TTACCATTAAATTGTTGTTTGATAAAAATGGAGTCCTTATGGAATCTTCAAATCT

TGGTAAATCATATTGGAACTTTCGAAATCAAAATTCAATTATGTCAACAGCTTAT

GAAAAAGCTATTGGTTTTATGCCTAATTTGGTAGCCTATCCAAAACCTACCACTG

GCTCTAAAAAATATGCAAGAGATATAGTTTATGGAAACATCTACCTTGGCGGAA

AGCCACATCAACCAGTAACCATTAAAACTACCTTTAACCAGGAAACTGGATGTG

AATACTCTATTACATTTGATTTTAGTTGGGCCAAAACTTATGTAAATGTTGAATT

TGAAACTACCTCTTTTACCTTTTCCTATATTGCCCAAGAATAAAGGATAAATAAA

CGTGTTTTTCATTTAAAAATTTCATGTATCTTTATTGATTTTTACACCAGCGCGGG

TACACATTCTCCCACCACCAGCCCATTTTACAGTGTAAACAATTCTCTCAGCACG

GGTGGCCTTAAATAGGGGAAAGTTCTCATTAGTGCGGGAACTGGACTTGGGGTT

TATAATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATTGAGATGAA

GCCGTCCTTTGAAAAATCATCCAAGTGGGCCTCGCAGTCCAAGGTCACAGTCTG

GTGGAATGAGAAGAACGCACAGACTCATACTCGGAAAACAAAATGGGTCTGTG

CCTCTCCATCAGCGCCCTTAACAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGCTA

CAGATGGGATCGGGATCGCAAGTCTCTTTCACTATAATCCCCACAGCCTTTAGCA

TTAGTCTTCTGGTGCGTCGGGCACAGCACCGCATCCTAATCTCGCTCATGTTTTC

ACAGTAAGTGCAGCACATAATGACCATGTTATTCAGCAGCCCATAATTTAGGGT

GCTCCAGCCAAAGCTTATGTTGGAAATGATGGAACCCACGTGACCATCGTACCA

AATGCGGCAGTATATCAGGTGCCTGCCCCTTATAAACACACTGCCCATATACATA

ATCTCTTTGGACATG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTGGGGCGTGGCCGCCGCTGATTGGCTGTTGCAAGAACCGTTAGTGAC NO: GTCACGACGCACGGCGTCAACGGTCGGCGCGGAGGCGTGGCCTAGGCCGGAAG 1421 CAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACGG

CCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGT

GAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAAA

TACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGA

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

GCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGTGTGAGAAAAATGAGACACCTGCGTCTCCTGCCTGGAACTGTGC

CCTTGGACATGGCCGCATTATTGCTGGATGACTTTGTGAGTACAGTATTGGAGGA

TGAACTGCAACCAACTCCGTTTGAGCTGGGGCCCACACTTCAGGACCTCTATGAT

CTGGAGGTAGATGCCCAGGAGGACGACCCGAACGAAGAGGCTGTGAATTTAAT

ATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCTACA

CCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACGAA

CTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAA

CGGGGTGAGCAGAGTATGGCTATAATCTCAGACTATGCTTGTGTGGTTGTGGAA

GAGCATTTTGTGTTGGACAATCCTGAGGTGCCTGGGCAAGGCTGTAGATCCTGCC

AATATCACCGGGATCAGACCGGAGACCAAAATGCTTCCTGTGCTCTGTGTTACAT

GAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGCTG

AGTGCTTAACACATCACTGTGTGATGCTTGAACAGCTGTGCTAAGTGTGGTTTAT SEQ

ID Sequence

NO

TTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGACCA

CCCGTCTCCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGATCAGACCCACC

CCAGTCAGACTCAGTGGGGAGAGGCGAATGGCTGTTGACAAAATCGAGGACTTG

TTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCAGG

AACTAGGCGCAGCTGTGCTGAGTCATGTGTAAATAAAGTTGTACAATAAAAGTG

TATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGACCTAT

ATAAGTGGTAACACCTGGGCACTCAGGCACAGACCTTCAGGGAGTTCCTGATGG

ATGTGTGGACTATCCTTGGGGACTTTAGCAAGACACGCCGGCTTGTAGAGGATA

GTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTATCTCG

CCTGGTGTACACAGTTAAGAAGGATTATAGCGAGGAATTTGAAAATCTTTTTTCC

GACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTTCCAGG

TGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGGACACCCAACTGAGCAGG

GGATACATCCTGGACTTCGCAGCCATGCATCTGTGGAGGGCCTGGATCAGGCAG

CGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGGTCTT

CTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGGAGGCCATG

GACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGATTG

AATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATGGCC

AGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACCGA

GCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACCTGGCACGA

GCTACAGATTGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATACGGCCT

GGAGCAGATAAAAACCCACTGGTTGAATCCAGATGAGGATTGGGAGGAGGCCA

TTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGGTGACCA

AGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGAGGTGG

TCATCGACACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATGAGAG

CCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATAAAGTTCAATGGAG

AGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCACGGCT

GCAATTTCTTCGGGTTCAACAATATGTGTGCAGAGGTCTGGGGCGCCTCCAAGAT

CAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCCAAGAG

CGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGGGTGTCTAC

AGAGGGCAATGCTCGAGTGAGACACTGCTCTTCCCTGGAGACGGGCTGCTTCTG

CCTGGTGAAGGGCACAGCCTCGATCAAGCATAATGTGGTGAAGGGCTGCACGGA

TGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCCTGAA

GAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCATTGTTTGAGAATAA

CCTGCTGATCAAGTGTCACATGCACCTGGGCGCCAGAAGGGGCACCTTCCAGCC

GTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTTCTCC

AGGGTGAACCTGAACGGCATCTTTGACATGGATGTTTCGGTCTACAAGATCCTG

AGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAGGCA

CACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCAGACC

ACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACACAG

ATTAGAGGTAGGTTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAGGCGGTG

CTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATGGGCC

GGAGTTCGTCAGAATGTGATGGGATCGACGGTGGATGGGCGCCCAGTGCTTCCA

GCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCTCGACAGC

ACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTGGCCTCG

AGCTACATGCCCAGCAGCGGCAGCAGCCCCTCTGTGCCCAGTTCCATCATTGCCG

AGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCAGCTGG

CCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAGCAGCAGCAAAATAAAT

GATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTATTATTTATTT

TTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGCGGTGGA

GCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCTCTGGGGTCG SEQ

ID Sequence

NO

TGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGATGATGT

CCTTGAGGAGGAGACTGATGGCCACCGGAAGCCCCTTGGTGTAGGTGTTGGCAA

AGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTTTGGCCT

GGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCTGGGGTTCATGTTGTG

CAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTGTCATGCAACTT

GGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAGGTTTTC

CATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCGGCTTTGGCAAA

GACGTTTCTGGGGTCAGATACATCATAATTATGCTCCTGGGTGAGATCATCATAA

GACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACGATGGTTCCC

TCGGGCCCTGGGGCGAAGTTCCCCTCACAGATCTGCATCTCCCAGGCTTTCATCT

CGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAACGGTTTCCGGG

GCGGGGGTGATGAGCTGCGAAGAGAGCAGGTTTCTCAACAGCTGGGACTTGCCG

CACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAGTTCAAG

GACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTAAGCATGTCC

CTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCCCGCCCAGC

GAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCCCGTCGGCC

ATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTCCCAGAGCTCT

GTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGTTGGG

ACGACTGCGACTGTAGGGTACGAGACGATGGGCGTCCAGCGCTGCCAGCGTCAT

GTCCTTCCAGGGTCTCAGGGTCCGCGTGAGTGTGGTCTCCGTCACGGTGAAGGG

GTGGGCCCCGGGCTGGGCGCTTGCGAGGGTGCGCTTGAGACTCATCCTGCTGGT

GCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGACCAT

GAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTTGCCCTT

GGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGAGCTTGG

GCGCGAGAAAGACCGACTCGGGGGCGAAGGCGTCCGCTCCGCAGTGGGCGCAG

ACGGTCTCGCACTCAACGAGCCAGGTGAGCTCGGGCTGCTCGGGGTCAAAAACC

AGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCATGAGTCTGTG

TCCGCGTTCGGTGACAAACAAGCTGTCAGTGTCCCCGTAGACGGACTTGATTGG

CCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCACTCT

GAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGGGGTA

GCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAAGCACATGTCC

CCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGACCG

GGGGTCACCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCACTC

TCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAAGTATTCCCTCTCGA

GAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGGATT

TGATGTTAGCCTGCCCTGCCGCGATGCTTTTGAGGAGACTTTCATCCATCTGGTC

GTTGGAGAGGAGCTTAGCGATGGATCTCATGGTCTGATTTTTGTCACGATCGGCG

CGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGCACTTCCATT

CGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCGCGGT

TATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCTCCGCGCAGGGGCTCGT

TAGTCCAGCAGAGGCGCCCGCCCTTGCGCGAGCAGAACGGGGGCAACACATCCA

GCAGGTGCTCGTCAGGGGGGTCTGCATCGATGGTAAAGATGCCCGGACAGAGTT

CCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCATCTGCCATTC

GCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCATGGCATGGG

ATGCGTGAGCGCGGAGGCGTACATGCCGCAGATGTCATAGACATAGATGGGCTC

CGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGGCGCG

CACGTATTCATACAACTCGTGCGAGGGGGCCAAGAAAGCGGGGCCGAGATTGGT

GCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCATGCGAGTT

GGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGCGGCAGTCGGA

CCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAGCTCGG

CGGTGACGAGGACGTCCATGGCGCAGTAGTCGAGGGTTTCGCGGATGATGTCAT

AACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTACTCCTCGTC SEQ

ID Sequence

NO

ATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGAGCC

CAGCATGTAGAATTGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCACGGG

GAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGAAGG

TGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTCGCAGCC

GCCGTGTTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAGGCAG

AGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATGAAATTGCG

GGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACCTGGGCGGC

GAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAGTTCCAT

GTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTGGAGATGTGG

GTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGCTC

GTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGACGCA

GTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGCGA

GATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCTGAGAATTTCATGACCAGCA

TGAATGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTACAT

CGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAAC

TGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGAAA

TCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGTAC

TCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTTG

AGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGCGT

GGGACTCACCATGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGGG

AGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGCAGAGCGAAGACGAGGGCGCG

CAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTCT

GAGGTTGACATCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACTT

GATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGCTTTAGAAGCGGTGTCGCGGACGCGCTCCC

GGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCACGTCGGC

GTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGCGAC

GACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGAGTGAAGACCACGGGCCC

CGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATTGAC

GGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCGAT

CTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCTCCGCGGCCCGCGCGC

TCGACGGTGGCGGCGAGGTCATTTGAGATGCGACCCATGAGCTGCGAGAAGGCG

CCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGGCGTCGC

GCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGAAGACGG

CGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTGCTCGG

TGACGAAGAAGTACATGATCCAGCGGCGCAGTGGCATCTCGCTGATGTCGCCGA

TGGCTTCCAACCTTTCCATGGCCTCGTAGAAGTCCACGGCGAAGTTGAAAAACT

GGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGAGCTCGG

CGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTCTTCCTC

TTCTTCCATGACGACCTCTTCTTCTATTTCCTCTACCACTGGGGGTGGCGGGGCCC

GACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTCGATCATCTCCC

CGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTTCGCGAGGACGCA

GCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGTCCCCGTTGGGCA

GCGAGAGGGCGCTGACTATGCATCTTATCAATTGCGGTGTAGGGGACGTGAGCG

CGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGTCTAGCCAATCGC

AGTCGCAAGGTAAGCTCAGACACGTAGCAGCCCTGTGGACGCTGTTAGAATTGC

GGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGGCGGATGGTGGCGA

GGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCGCTCGGCCATGC

CCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCATGCATGAGCCT

CTCGATGTCATCACTGACGGAGGCGGAGTCTTCCATGCGGGTGACCCCGACGCC

CCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCGGCGAGGATGG

CCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCGACGAAGCGGT SEQ

ID Sequence

NO

GGTAGGCCCCTGTGTTGATGGTGTAGGTGCAGTTGGCCATGAGCGACCAGTTGA

CGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCGCGAGAAGGCGC

GCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACTGGTAGCCCACGA

GGAAGTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGCTGGGTGGCCGGCGCG

CCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGAGGTAGCGGGA

CATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTCGCGGACGC

GGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGCACGGTCTGGC

CGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGAAAGCGGTTG

AGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGCCGCGCGTG

TACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAACGTGGTATT

GGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGCGGAGAGCCC

GGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGAGTCGCGGC

AGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCACCCCGCCTATT

AAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCCTTTTTTCTT

TTTGCCAGATGCATCCCGTCCTGCGCCAAATGCGTCCCACCCCTCCGGCGACCAC

CGCAACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGACAGAGATGG

ACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGTCCCCGGAGCGA

CACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTACGTGCCCGCGCAG

AACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATGCGCGACTGCCG

GTTTCGGGCGGGCAGGGAGCTCCGCGAGGGTCTGGACCGCCAGCGCGTGCTGCG

CGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCCGCGCGCGCGC

ACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGTGAAGCAGGAG

CGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCTGATCGCGCGCGAG

GAGGTGGCACTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGCCATCGTGCAG

AACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTGCAGCACAGC

AGGGACAATGAGGCGTTCAGGGAGGCGCTGCTGAACATCGCCGAGCCCGAGGG

TCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATCGTAGTGCAGGAGCG

CAGCCTGAGCCTGGCCGAGAAGGTGGCAGCTATCAACTACTCGGTGCTGAGCCT

GGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGCCCATAGACAA

GGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGGTGCTGACGCT

GAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGGCCGTGAGCAC

GAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGCCTGCGCCGGG

CGCTGGTAGGGGGCGCTACAGGCGAGGAGTCCTACTTCGACATGGGGGCGGACC

TGCATTGGCAGCCGAGCCGACGCGCCTTGGAGGCCGCCTACGGTCCAGAGGACT

TGGATGAGGATGAGGAAGAGGAGGAGGATGCACCCGTTGCGGGGTACTGACGC

CTCCGTGATGTGTTTTTAGATGTCCCAGCAAGCCCCGGACCCCGCCATAAGGGCG

GCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAGGCCGCGATG

CAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGACAACAACCG

CAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCTCGGACCAAC

CCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAGAACAAGGC

CATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAGCGCGTGGG

CCGCTACAACAGCACGAACGTGCAGTCCAACCTGGACCGGCTGGTGACGGACGT

GCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCCTGGGCTCGC

TGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAACGTGCCGCGCGGGC

AGGACGATTACACCAACTTTATCAGCGCGCTGCGGCTGATGGTGACCGAGGTGC

AGGGCTTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAATCTGCGCGGGCTGT

GGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAGCAGCTTGCTGACGC

CCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGCGGCAGCGT

GAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTGTACCGCGAGGCCATAGG

CCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACGAGCGTGAGCCGCG

CGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCTGAACTTTTTGCTGA SEQ

ID Sequence

NO

CCAATAGACAGCAGAAGATCCCGGCGCAGTACGCGCTATCGGCCGAGGAGGAA

AGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTAATGCAGGAGGGC

GCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAACCTAGCATG

TACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACCTGCACCGCGCG

GCGGCCATGAACACGGACTACTTTACCAACGCCATCCTGAACCCGCACTGGCTC

CCGCCGCCGGGGTTCTACACTGGCGAGTACGACATGCCCGACCCCAACGACGGG

TTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCCCCGACCTTGCAAAAGCGC

CAGGAGGCGGTGCGCACGCCCGCCAGCGAGGGCGCGGTGGGTCGCAGCCCCTTT

CCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTG

AGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTGCAG

CCGCCACGGGTCAAGAACGCCATGGCCAATAACGGGATAGAGAGTCTGGTGGA

CAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGACGCGCCCGCGCC

GCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACT

CGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGCCAACCCGT

TCGCGCATCTGCAGCCCAAACTGGGGCGGCGGATGTTTTGAAATGCAAAATAAA

ACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGCGCGGT

GGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTG

GAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGC

ATTCGTTACTCGGAGCTGGCTCCGCTGTACGACACCACTCGCGTGTACTTGGTGG

ACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGCAACT

TCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCCAGCACGC

AGACGATAAATTTTGACGAGCGGTCCCGGTGGGGCGGTGATCTGAAGACCATTC

TGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGG

CGCGGGTGATGGTGGCTAGGAAGCACCCACAGGGGGTAGAAGCAACAGATTTA

AGTCAGGATAAGCTTGAGTATGATTGGTTTGAGTTTACCCTGCCCGAGGGCAACT

TTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAACTACT

TGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATCGGAGTCAAGTTTG

ACAGCAGGAATTTCAGACTGGGCTGGGACCCGGAGACCAAGCTGGTGATGCCAG

GTGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGGGCTGCG

GGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAGAAGC

AACCTTTCCAAGAGGGCTTCAGGATCATGTATGAGGATCTAGAAGGGGGCAACA

TCCCCGCACTCCTTGATGTGGCCAAGTACTTGGAAAGCAAGAAGGAACTTGAGG

ATGCTGCCAAGGAAGCTGCAAAGCAACAGGGAGATGGCGCTGTCACTAGAGGC

GATACCCACCTCACTGTAGCTCAAGAAAAAGCAGCTGGAAAGGAGCTAGTGATT

GTTCCCATTGAGAAAGATGAAAGCAACAGAAGCTACAACCTGATCAAGGATACC

CATGACACCCTGTACCGAAGTTGGTACCTGTCCTATACCTACGGGGACCCCGAG

AAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACCTGCGGCGCG

GAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCGGTCACCTTCCGCT

CCACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCC

GCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTA

CACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGC

CCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCACAGAT

CACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTC

ACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCG

CGCCGCGCGTGCTATCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATCTCGCC

CAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAGGAGC

CAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCC

CTGGGGCGCTTACAAGCGCGGGCGGACTTCCACCGCCGTGCGCACCACCGTCGA

CGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACACCCCCGCCCCCTC

GACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAG

ACGCAAGAGCCGGCGGCGACGGATTGCCAGGCGCCACCGGAGCACGCCCGCCA

TGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCA

TGATGCGAGCCGCGCGCCGCGCCGCCGCCGCACCCACCCCCGCAGGCAGGACTC SEQ

ID Sequence

NO

GCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCA

GGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCG

TGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCG

ACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGA

GATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAA

AAAAAAGGATGAGGCGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTC

CGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCC

GGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGATGAAACGT

AGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCG

GGCGGGCGAGTTCGCCTACGGGAAGCGGTCTCGCGAAGAGGAGCTGATCTCGCT

GCCGCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCA

GGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCGCGAGGGCGA

GAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGCGTGGAGGA

CGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCAT

CAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTCAGATCCCCAC

CGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCC

CTGGCTCCCAGCTTCTACCGCCACCGCCTCTACATCTACGGTTGCCACGGCTACC

GAGCCTCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTAC

GTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACG

CCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCACCACCACCCGCCGCC

GTCTGGCCCCCGCCCGCGTGCGCCGCGTGACCACGCGCCGGGGCCGCTCGCTCG

TTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATAC

TGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACC

GAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGC

CGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGGTTCCTGCCCGCGCTCATC

CCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTGGCGCTG

CAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACA

CGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAG

CTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTC

GGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCA

GTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAAGGTGGTGGACG

GCCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGC

GCGAGATAAACAGTCGCCTGGACCCGCGCCCGCCCGCCGCCACGGTGGTGGAGA

TGGAAGATGCAAGTGCGCATCCTCCGCCCAGGGGCGAGAAGCGGCCGCGACCC

GACGCGGAGGAGACGACCCTGCAGGTGGACGAGCCTCCCTCGTACGAGGAGGC

CGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGAGT

GATGAAACCCGCCACCCTAGACTTGCCTCCACCACCCGCGCCCGCTCCACCAAA

GGCAGCTCCCGCGGTCGTGCAGCCCCCCCCGGTGGCGACCGCCGTGCGCCGCGT

CCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGG

CCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGA

GGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCG

AAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGG

CAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACC

GACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACC

CACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTG

GATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGC

GACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTG

GACCGCGGTCCCAGCTTCAAACCCTACTCGGGCACGGCTTACAACAGCCTGGCC

CCCAAGAGCGCTCCCAATCCCAGCCAGTGGGTTGCCAAAGAAAATGGTCAGGGA

ACTGATAAGACACATACTTATGGCTCAGCTGCCATGGGAGGAAGCAACATCACC

ATTAAAGGTTTAGTAATTGGAACTGATGAAAAAGCTGAGGATGGCCAAAAAGAT

ATTTTTGCAAATAAACTTTATCAGCCAGAACCCCAGGTAGGAGAAGAAAACTGG SEQ

ID Sequence

NO

CAAGAGTCTGAAGCCTTCTATGGAGGCAGAGCTCTTAAGAAAGACACAAAAATG

AAGCCCTGCTATGGCTCATTTGCAAGACCTACCAATGAAAAAGGCGGACAAGCT

AAATTTAAGCCAGTGGAAGAGGGGCAACAACCTAAAGATTATGACATAGATTTG

GCTTTCTTTGACACACCTGGAGGCACCATCACAGGAGGCACAGGCGAAGAATAT

AAAGCAGACATTGTGTTGTACACTGAAAATGTCAACCTTGAAACCCCAGACACC

CACGTGGTATACAAGCCAGGAAAAGAGGATGACAGTTCAGAAGTAAATTTGAC

ACAGCAGTCCATGCCCAACAGGCCTAACTACATTGGCTTCAGAGACAACTTTGT

GGGGCTCATGTATTACAACAGTACTGGTAACATGGGTGTGCTGGCTGGTCAGGC

CTCTCAGTTGAATGCTGTGGTCGACTTGCAAGACAGAAACACCGAGCTGTCTTAC

CAGCTCTTGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACT

CTGCGGTGGATAGCTATGATCCCGATGTCAGGATCATTGAAAATCATGGTGTGG

AAGATGAGCTTCCCAACTACTGCTTCCCGTTGAATGGCACTGGCACCAATTCCAC

TTATCAAGGCGTAAAGGTGAAACCAGATCAAGATGGTGATGTTGAGAGCGAGTG

GGATAAAGATGATACCATTGCAAGGCAGAATCAAATCGCCAAGGGCAACGTCTT

TGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAA

CGTGGCCCTGTACCTGCCCGACTCCTACAAGTACACGCCTGCCAACGTCACGCTG

CCCACCAACACCAACACCTATGAGTACATGAACGGCCGCGTGGTGGCCCCCTCG

CTGGTGGACGCCTACATCAACATCGGCGCCCGCTGGTCGCTGGATCCCATGGAC

AATGTCAACCCCTTCAACCACCACCGCAATGCGGGCCTGCGCTATCGCTCCATGC

TGCTGGGCAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTT

TGCCATCAAGAACCTGCTCCTGCTCCCCGGCTCCTACACCTACGAGTGGAACTTC

CGCAAGGATGTCAACATGATCCTGCAGAGTTCCCTGGGCAACGACCTGCGCGTC

GACGGCGCCTCCGTTCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCA

TGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACG

ACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGC

CAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGC

GGCTGGAGTTTCACGCGGCTCAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGT

TTCGACCCATACTTTGTCTACTCGGGCTCCATCCCCTACCTCGACGGGACCTTCT

ACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTG

GCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGT

CGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCT

CGTCCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCACGTGCCCGAG

GGCTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGC

AGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCC

AGCACAACAACTCGGGCTTCACCGGCTACCTTGCACCCACCATGCGTCAGGGGC

AGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACCGCCGTGCCCTC

CGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCC

AGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACATGCTCTAC

GCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATGGATGAG

CCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGC

CGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGCA

ACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCGGCCATCGT

GCGCGACCTGGGCTGCGGGCCCTACTTTTTGGGCACCCACGACAAGCGCTTCCC

GGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCG

CGAGACCGGAGGCGTGCACTGGCTCGCCTTTGGCTGGAACCCGCGCTCGCGCAC

CTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGCCGGCTCAAGCAGATTTAC

AGCTTCGAGTACGAGGCCATGCTGCGCCGAAGCGCCCTGGCCTCCTCGCCCGAC

CGCTGTCTCAGCCTCGAGCAGTCCACCCAGACAGTGCAGGGGCCCGACTCCGCC

GCCTGCGGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACC

GACCCATGGACTGGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCA

TGCTACAATCGCCACAGGTGCTGCCCACCCTCCGGCGCAACCAGGAGGAGCTCT

ACCGCTTCCTCGCGCGCCACTCCCCCTACTTTCGCTCCCACCGCGCCGCCATCGA

ACACGCCACCGCTTTTGATAAAATGAAACAACTGCGTGTATCTCAATAAACAGC SEQ

ID Sequence

NO

ACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGAAGGGGT

TCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGTACTGGTA

CTTGGGCTGCCACTTGAACTCGGGGATCACCAGTTTGGGAACCGGAATCTCGGG

GAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGACGCCCAGCATGTCGGG

CGCGGAGATCTTGAAATCGCAGTTGGGGCCGGTGCTCTGCGCGCGCGAGTTGCG

GTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTACTTGACGCTGGC

CAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGTTGCTCAGG

CCGAACGGGGTCATCTTGCACAACTGGCGGCCCAGGAAGGGCACGCTGTGGGGC

TTGTGGTTACACTCGCAGTGTACGGGCATCAGCATCATCCCCGCGCCGCGCTGCA

TATTCGGGTAGAGGGCCTTGACGAAGGCCATGATCTGCTTGAAAGCTTGCTGGG

CCTTGGCCCCCTCGCTGAAGAACAGGCCGCAGCTCTTCCCGCTGAACTGGTTATT

CCCGCACCCGGCATCCTGCACGCAGCAGCGCGCGTCGTGGCTGGTCAGTTGCAC

CACGCTTCTCCCCCATCGGTTCTGGGTCACCTTGGCCTTGCTGGGCTGCTCCTTCA

ACGCGCGCTGCCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGGTCCTTGTG

GATCATCACCGTCCCGTGCAGACACTTGAGCTGACCTTCGACCTCGGTGCATCCG

TGGTCCCACAGGACGCAGCCGGTGCACTCCCAGTTCTTGTGCGCGATCCCGCTGT

GGCTGAAAATGTAACCTTGCAACAGGCGGCCCATCACGGTGCTAAAGGTTTTCT

GGGTGGTGAAGGTCAATTGCAGCCCGCGGGCCTCCTCGTTCATCCAGGTCTGGC

ACATCTTTTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGAAAGCATCGCGCA

GGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGCATCCATGCCCTT

CTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGAATACC

GGGGGTCGCGGGTTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAACAGAACC

GGCGGCTGGCTGAATCCCACTCCCACGATCACGGCATCTTCTTCCTGGGGCATCT

CTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTCTTTCTGGCTTGCTTCTTTTTT

GGAGGGCTGTCCATGGGAACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGC

TGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGTGGCGGCGAGGGGCTCCTC

TCCTGCTCCGGCGGATAGCGCGCCGACCCGTGACCCCGGGGCGGAGTGGCCTCT

CGGTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTATTTCCTAGGGG

AAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCA

CGAGCAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGA

ACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCG

ACGCTGGGCTCGAGCATGGCTACCTGGGAGGAGAGGAGGATGTGCTGCTGAAAC

ACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAA

CCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCACC

GCGCGTACCCCCCAAACGCCAGCCCAACGGCACATGCGAGCCCAACCCGCGTCT

CAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTCGCCACCTATCACATCTTTT

TCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGACG

CGCTCCTTGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGA

GGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACG

CTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTG

GAAGGCGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAGCTCACCCAC

TTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATC

AGCTCATCATGCCCCACATCGAGGCCCTCGATGAGACCCAAGAGCAGCGCCCCG

AGGACGCCCAACCAGTGGTCAGCGACGAGATGCTCGCGCGCTGGCTCGGGACCC

GCGACCCCCAGGCCCTGGAGCAGCGGCGCAAGCTCATGCTGGCCGTGGTGTTGG

TCACCCTAGAGCTGGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGC

GCAAGGTCGAGGAGACCCTGCACTACACTTTCAGACACGGTTTCGTCAGGCAGG

CCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCT

GCACGAGAACCGCCTGGGGCAGACCGTGCTCCACTCCACCCTGAAGGGCGAGGC

GCGGCGGGACTACGTCCGCGACTGCGTCTTTCTCTTTCTCTGTCACACCTGGCAA

GCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAAGACGAGAACCTGAAGGAGCT

GGACAAGCTTCTTGCTAGAAACCTCAAAAAGCTGTGGACGGGCTTCGACGAGCG

GACCACCGCCGCCGACCTGGCCGAGATCGTTTTCCCCGAGCGCCTGAGGCAGAC SEQ

ID Sequence

NO

GCTGAAAGGCGGACTGCCCGACTTCATGAGCCAGAGCATGATACAAAACTACCG

CACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCCTTCCCC

TCCGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACT

GCTACCTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGACGTGATCGAGG

ACGTGAGCGGCGAGGGCCTGCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCC

CGCACCGCTCCCTGGTCTGCAACCCCCAGCTCCTGAGCGAAACCCAGGTCATCG

GTACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGC

CGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACG

CCCACGAGATAAAGTTCTTCGAGGACCAATCGCGCCCGCAGCACGCGGATCTCA

CGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCAAA

AATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCC

AGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCC

GCTAGTGGAGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGAC

GACTGGGAGGAGGAGGAGAGTACAGAGGAGGAAGAATTGGAAGAGGTGGAAG

AGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCG

CCGGTCACGGATACAACCTCCGCAGCACCTCCGGCCAAGCCTCCTCGTAGATGG

GATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGGCTACCGATCATGGAG

GGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGC

TTTCGCCCGCCGCTACCTGCTCTTCCATCGCGGGGTGAACATCCCCCGCAACGTG

TTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAATCAGAAGTAAGAGGAGT

CGCCGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCCTCGACCACCAGGG

AGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTTTCAGCAGAGTCGAGG

TCAGCAGCAAGAGCTCAAAGTAAAAAATCGGTCTCTGCGCTCGCTCACCCGCAG

TTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGA

GGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACC

CGGAAAAAAGGCGGGAATTACCTCATCGCCACCACCATGAGCAAAGAGATTCCC

ACACCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCCGCGGGCGCCTCC

CAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGGCCCTCGATGATCTCA

CGGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCG

GTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTG

GTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTG

GCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGG

TGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGC

ACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGA

GTGTTCCAACTAGCCGGAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACC

TGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCGGGAGGCATCGGAACCCTCC

AGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGCTCGCC

AGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGT

GGACGGCTACGACTGAATGTCCTATGGTGACTCGGCTGAGCTCGCTCGGTTGAG

GCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACT

CATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCG

GATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCA

GCCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCAT

CTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTTGTGCTGAGTTTA

ATAAAAGCTGAAATAAGAATCTTCTCTGGACCTTGTCATCGACCTCGGAATCGC

ACCGTCTTACTCACCAACCAGACCAAGGTTCGACTGAACTGTACAACCAACAGG

AAGTACCTTCTTTGGTCCTTCCAAAACACCTCACTCGCTGTTGTCAACGCCCGTG

ACGACGACGGTGTTTTAATCCCAAACAACCTCACCAGTGGACTTACTTTCTCTAC

CAACAAAACAAAGCTCATCCTTCACCACCCTTTTGTAGAGGGAACCTACCAGTG

CCGACACGGACCTTGTGTTCACAACTTCCATTTGGTGAACCTTACCAGCAGCAGT

ACAGTTGCTCCTGAAACAACTAACCTTTCTTCTGATACTAACAAACCTCGTGTCG

GAGGTGAGCTTTGGGTTCCCTCTCTAACAGAGGGTGGGAGTCATATTGAAGTGG

TCGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTATATCA SEQ

ID Sequence

NO

CCTTCCTTGCTGGGTCGAAATCAGAGTCTTTATCTGCTGGGTCAGACACTGTGGG

GAGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGGTTTACT

GGCCTGCCACGAACAGCCACGATGTAACATTACCACAGGGAATGAGAGGAACG

ACTGCTCTGTAGTGATCAAATGCGAGCACCAGTGTCCTTTCAACATTACATTCAA

GAATAAGACCATGGGAAATGTATGGGTGGGATTCTGGCAACCAGGAGATGAGC

AGAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACTTTCGGTTTCA

CTTGTGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTTTTGTGATC ATGGCCTGCTTGATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTTCCTGAAGC

TCTTCGCAGAACCATGAATACTTTGACCAGTGTCGTGCTGCTCTCTCTTCTTGTAG

CTTTTAGTCAGGGACAAGCTGTGCATGAGAATCTTGAAATTTCTTATGGTTGTAA

TGGTACACTAATAGGGCCACCTAAAACCCCAGTTGAGTGGTATGATGGCAGAGG

ACACAAACTTTGTGCAGGAACTGATACTTTTCGCAAGGAACTAAATCACACATG

TAATTTACAAAATATGACACTTACCTTTGTTAACTTAACTCATAAGGGTACTTAC

TATGGTTTTGGCAGTGATAACAAAAACTCTAAAGTGTACCAGGTTACTATTAAGC

CACCTGTTCTGACAACACGCAGGCCTTTATTAAAACCTGAAGATGTTGTAATTAC

TAAGGGAAGCAACAAAACTCTTGTGGGTCCTCCAGATACACCAGTTGATTGGTA

TGATGGTTCAGGACATAAATTGTGTAAAGGAAAAGAAGTACACTACCCTGAACT

CAATCACACCTGTGATGAGCAGAACCTTACACTCATATTTGTCAATGCCACTTTT

AAGGGAACCTATTATGGATTTAGAAAAGATGGTACAGACAAAAAGGAGTATAG

AGTCACAATTGATGATTTATATGCAAAACAACTAAAACAGGAAAAAGATGAAA

AGCCAAGGTCTGGTCATGACAGGCAGAAAGCAAAAACAGATGAAAGGCAAAAT

ATAAAAACAGAAGAAAAACAGAAACCAAAAACAGAGGAAAGGCATAGACAAA

GAGATGTTGTTAAAGAAGTTAGTTTTAAAACTGGAACTAATCAAACTCTAGTGG

GTCCTCCTGGGTCTAAAGTTGATTGGCTTAAAGTGTCAAATGGTGGGACATTTAG

TGAACTTTGTAAAGGAGATGATAAACACTATTCTTGCAATTCTCAAAACTTAACA

ATAATCAACATTACCAGATCTGATGAAGGAAGCTATTATGGATCTAATGATGGT

TCAGCTCATTACAGAGTTTCAGTGTATGACCCAGTACAGAAAAAAAAGGTTATG

AAAATACAGCCACATACCACAAAAAGAACTACAACTAAAGGGACTACAAAAAG

CAGCACTAATGAATCAGATGAAAACTTTGCTTTGCAACAGGGTAATGGGGAAAA

TCAATCTGACGAATCTAATGTTCCATCAGCTACTGTGGCAATTGTGGTGGGAGTG

ATTGCGGGATTCATAACTCTGATCATTGTCATTCTGTGCTACATCTGCTGCCGCA

AGCGTCCCAGGGCTTACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTG

AGACTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGA

TTAGCATAGTCACACTCATTGCAGCTGCAGGATATACTCAAATTAGCATACCTAG

AGGTGGTAGCATTACATTAAATGGTACTTTTAAAAATACCACATGGACAAGATA

TCACACAAATGGTTGGAAAAAAATTTGTGAATGGAATGTTACAGCTTATAAATG

TCACAATAATGGGAGCATTACTATTACTGCCACAAATATTACTTCCGGCAGATAC

AAAGCTGACAGTTACAAAAAAGAAATTAGAACTTCATTTTTTAGAAATAATAAG

ACTACATTCGAAGATTCTGGAAATTATGAACAACAGAAATTGACTTTATTTAATC

TAACAATAATTGAGCCACCAACTACTAAGGCGCCCACTACCACTAAACCCACCA

CAGTTAGGACAACTAGGGAAACAACCACACAGCCTACTACTGTACCCACTACAC

ATCCAACCACCACAGCCAGTACAACTACCGAGACCACTACTCATACTACACAGT

TAGACACTACAGTGCAGAATAGTACTGTGCTGGTTAGGTATTTGTTGAGGGAGG

AAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAA

ATTTAACTTCGCTTGCTTCGGTTAATGAAACCGTCATCGCATTGAAACTGGATCA

AGATCGAGGTTTGGATATGCAAATTACTTTTCTAATTGTCTGTGGGATCTTTATTC

TTGCGGTTCTTCTCTACTATGTCTTTTGCAAGGCCAGATCAAAGTCTCATAGAAC

AATCTACAGGCCAGTAATCGGGGATCCTCAGCCACTCCAAGTGGAAGGAGGTCT

AAGGAATCTTCTTTTCTCTTTTTCAGTATGGTGATCAGCCATGATTCCTAGGTTCT

TCCTATTTAACATCCTCTTCTGTCTCTTCAACGTGTGCGCTGCCTTCGCGGCCGTC

TCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCT SEQ

ID Sequence

NO

GCTAACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCATCACCTTCCTGCAG

CTCATCGACTGGTGCTGCGCGCGCTACAATTACCTACACCGCAGTCCCGAATACA

GGGACGAGAACGTGGCCAGAATCTTAAGGCTCATCTGACCATGCAGACTCTGCT

CATACTGCTATTCCTCCTATCCCCTGCCCTCGCTGATGATTACTCTAAGTGCAAAT

TCGCGGACATATGGAATTTCTTAGACTGCTATCAGGAGAAAATTGATATGCCCTC

CTATTACTTGGTGATTGTTGGGGTAGTCATGGTCTGCTCATGCACTTTCTTTGCCA

TTATGATCTACCCCTGTTTTAATCTTGGCTGGAACTCTGTTGAGGCATTCACATAC

ACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCACCCACACCGCCTCCCCGC

AGAAATCAGTTCCCCATGATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCCTT

CCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACAACCACCTGGAC

CTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGT

CAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCACCAG

TGCAAGAAAGGCATCTTCTGCTTGGTCAAACAGGCAAAGATAACCTACGAGCTC

GTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCCCCAGCAGAAGCAG

AAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTCAGGC

GAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTCC

CTCCTCAAGACCCTTTGCGGACTCCGCGACCTCCTCCCAATGAACTGATGTTGAT

TAAAAGCCCAAAAACCAATCAGCCCCTTCCCCCATTTCCCCATCCCCAATTACTC

ATAAGAATAAATCATTGGAACTAATCATTCAATAAAGATCACTTACTTGAAATCT

GAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCACCTCGGTACCATCCTCCCAGC

TTTGGTACTCCAGTCCCCGGCGGGCGGCAAACTTCCTCCACACCTTGAAAGGGAT

GTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGATGTCAAAGAGGC

TCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGAATC

AGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCTTCCGATGGATTCCAAAACTTC

CCCCCTGGGGTCCTGTCGCTCAAACTGGCTGACCCAATCGCCATCGCCAATGGG

AATGTTTCACTCAAGGTGGGAGGGGGACTCACTGTGGAACAAGAAAGTGGAAAT

CTAAAGGTGAACCCTAAGGCTCCCTTGCAAGTTGCAACAGATGGAACTTTAGAG

CTAAATTATGATGATCCATTTAAAGTGGAAAACAACAAGCTTAGCATTAAAGCT

GGTCATGGTTTAGCAGTTGTAACCAAAGAAAATACAAGCTTGCCTAGCTTAGTT

GGCTCACTTGTTGTTTTAACTGGAAAGGGCATTGGAACCGGATCAAGTGCACAT

GGAGGAACAATTGATGTTAGAATTGGAGATGGAGGAGGACTATCTTTTGATGAA

AAGGGAGATTTAGTGGCATGGGATAAAAAAAATGACCAGCGCACCCTTTGGACA

ACTCCAGACCCATCACCAAATTGCAAAGTGGAAACTGAAAAGGACTCAAAGCTT

ACTTTAATTTTAACGAAATGCGGAAGTCAAATTTTGGCAAATGTGTCCTTGCTTG

TTGTAAAGGGAAAATATGAAAATATAAGTGATTCAGTTAATCCAAAAACATTTC

CAATAAAATTACTTTTTAATGATAAAGGTATTCTTTTAAAAGAATCAAACCTTGA

TGGAACATATTGGAACTTTAGAAGTGGCAGCAATAATGTTCCAAAGCCATATGA

AAATGCTGTTGGTTTTATGCCAAGCACAACAGCTTATCCAAAGTATGATTCTAGC

GCTCCAACTAATCCAGAAGATAAAAAAAGTAGTGGAAAAAATAAAATTGTGAG

TAATATTTATTTTGGAGGAGAAATTTATCAACCTGGCCTAATAGTTATTAAGTTT

AATCAGGAAAATAACTGTGCTTATTCTATCACATTTGAATTCGGATGGGGAAAA

ACCTATACGGCAGCCATACCCTTTGATACTTCTTCTTTCACCTTTTCATACATTGC

CCAAGAATGAAAACGAGAACGAATAAAGTATTTTTCAACTAATCAAGTCTTTAT

TGAATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCACCAGCCCATTTCACAG

TATAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGGGAATGTTCTGATTAGT

GCGGGAACTGATCTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAACG

GGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCTC

ACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACTCG

GAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAACAGTCTCTGCCGCC

GGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTA

TGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGCACCGCAT

CCTGATCTCGCTCATGTTCTCACAGTAAGTGCAGCACATTATCACCATGTTATTC

AGCAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGG SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGTGGCCGACGCTGATTGGCTGTTGCAAGAACCGTTAGTGAC NO: GTCATGACGCACGACGTCAACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAAGC 1422 AAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACGGC

CGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGTG

AAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAAAT

ACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGAT

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCGCAGGGTATTTAAACCAGTCGA

GTCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGGAACTGTGC

CTATGGACATGGCCGCATTATTGCTGCAGGACTTTGTGGATACAGTATTGGAGG

ACGAACTGCAACCAACTCCGTTCGAGCTGGGACCCACACTTCAGGACCTATATG

ATCTGGAGGTAGATGCCCAGGATGACGACCCGAACGAAGAGGCTGTGAATTTAA

TATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCTAC

ACCACTTCATACACCGACTCTGTCGCCCATACCTGAATTGGAAGAGGAGGACGA

ACTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGA

ACGGGGTGAGCAGAGTATGGCTATAATCTCAGACTATGCTTGTGTGGTTGTGGA

AGAGCATTTTGTGTTGGACAATCCTGAGGTGCCAGGGCAAGGATGTAGATCCTG

CCAATATCACCGGGATCAGACCGGAGACTCAAATGCTTCCTGCGCTCTGTGTTAC

ATGAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGC

TGAGTGCTTAACACATCACTGTGTATCGCTTGAACAGCTGTGCTAAGTGTGGTTT

ATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGA

CCACCCGTCTCCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGTTCAGACCC

ACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCGGCTGTTGACAAAATTGAGGA

CTTGTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCC

CAGGAACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAATAAA

AGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTC

CTATATAAGTGGCAACACCTGGGCACTTGGGCACAGACCTTCAGGGAGTTCCTG

ATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGAG

GATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTAT

CTCGCCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAATCTTTT

TGCTGACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTTCC

AGGAAAGGGTACTCCACAGTCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCG

CAGGGGCTACATCCTGGACTTCGCGGCCATGCACCTGTGGAGGTCCTGGGTCAG

GCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGG

TCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGC

CATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGG

ATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCAT

GGCCAGGGGAGTCAAGAGGGAGAGGAGCGATGGGGGCAATACCGGAATGATGA

CCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAACGCATTACCTGGC

ACGAGCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATAT

GGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGA

AGCCATTAAGAAATATGCCAAGATAGCCTTGCGCCCAGATTGCAAGTACAGGGT

GACCAAGACCGTGAATATCAGACATGCCTGCTACATCTCGGGGAACGGGGCAGA

GGTGGTCATCGATACCCTGGACAAGGCCGCCTTTAGGTGTTGCATGATGGGAAT

GAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAA

TGGAGAGAAGTTTAATGGGGTGATGTTCATGGCCAACAGCCACATGACCCTGCA

TGGCTGCAGTTTCTTTGGCTTCAACAATATGTGTGCAGAGGTCTGGGGCGCTGCT

AAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCC

AAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTC

TCTACCGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCCTGGAGACGGGCTGC SEQ

ID Sequence

NO

TTCTGCCTGGTGAAGGGCACAGCCTCGATCAAGCATAATGTGGTGAAGGGCTGC

ACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATC

CTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGAG

AATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACCTTC

CAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCC

TTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGA

TCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCA

GACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCA

GACCACCTGGTGATGGCTTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGAC

ACAGATTAGAGGTAGGTTTTGAGTAGTGGGCGTGGCTAAGGTGAGTATAAAGGC

GGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGCG

GGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATG

GGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGTCCAGTGCT

TCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCTCGA

CAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTGG

CCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGCGCCCAGTTCCATCAT

CGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCA

GCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAGCAGCAGCAAAA

TAAATGATTCAATAAACACAGATTCTGATTCAAACAGTAAAGCATCTTTATTATT

TATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGCG

CATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCTCTGG

GGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGAT

GATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGTT

GGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTT

TGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGGGGTTCAT

GTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTGTCATG

CAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAG

GTTTTCCATGCACTCATCCATGATGATGGCGATGGGACCGTGGGCTGCGGCTTTG

GCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTGAGATCA

TCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACTATG

GTTCCCTCGGGTCCCGGGGCAAAGTTCCCCTCACAGATCTGCATCTCCCAGGCTT

TCATCTCGGAGGGGGGGATCATGTCCACCTGCGGTGCGATGAAAAAAACGGTTT

CCGGGGCGGGAGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGACT

TGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAGT

TCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGCA

TGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCCCGCC

CAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCCCGTC

GGCCATGGGCATCTTCGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTCCCAGAG

CTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGT

TGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCAGC

GTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTGGTCTCCGTCACGGTGA

AGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCTGC

TGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGA

CCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTTGC

CATTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGAGC

TTGGGCGCGAGAAAGACGGACTCGGGGGCGAAGGCGTCCGCCCCGCAGTGGGC

GCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGGGTCAAA

TGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGGACTTGA TTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACC ACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAG GGGTAGCGGTCATTGTCAACCAGGGGGTCCACCTTTTCCACCGTGTGCAGACAC SEQ

ID Sequence

NO

ATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGT GACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCT CACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCCT CTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAAAAACGAGGA

GGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCATAGA

GGGCGTTGGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCACGGTC

GGCGCGCTCCTTGGCCGCGATGTTTAGCTGGACATACTCGCGCGCGACGCACTTC

CATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCG

CGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGGC

TCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGGGCAGCACA

TCAAGCAGATGCTCGTCAGGGGGATCCGCATCGATGGTGAAGATGCCCGGACAG

AGTTCCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCATCTGCC

ACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTAAGGGGCGGACCCCAGGGCA

TGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATACACATAGATGG

GCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGG

CGCGCACGTAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGAGA

TTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCATGC

GAGTTGGATGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGCAA

GCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAG

CTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGATGAT

GTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCATACTCC

TCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAG

AGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCA

CGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCG

AAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCGTCGC

AGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAG

GCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATGAAAT

TGCGGGTGATGCGGAAAGGGCCCGGCACGGAGGCTCGGTTGTTGATGACCTGGG

CGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAGTT

CCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGTAGGT

GAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTGGAGATG

TGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAG

CTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCGGGGGTGAC

GCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGC

GAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCGGAGAATTTCATGACCAG

CATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTAC

ATCGTAGGTAACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGA

ACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGA

AATCCCGCCGGCGAACCGAGCACTCATGCTGATGCTTGTAAAAGCGTCCGCAGT

ACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCT

TGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGC

GTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGG

GAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGCGC

GCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTC

TGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACT

TGATCTCCACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGCTTTAGAAGCGGTGTCGCGGGCGCGCTCCC

GGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCACGTCTGC

GTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGCGAC

GACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGTGTGAAGACCACGGGCCC

CGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATTGAC

GGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCGAT SEQ

ID Sequence

NO

CTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCGCGCGC

TCCACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCGAGAAGGCG

CCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGGCGTCGC

GCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGAAGACGG

CGTAGTTGCGCAGGCGCTGGGAGAGGTAGTTGAGGGTGGTGGCGATGTGCTCGG

TGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTGATGTCGCCGA

TGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGTTGAAAAACT

GGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGAGCTCGG

CGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCTTCTTCCTC

TTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTGGTGGCG

GGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTCGATC

ATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTTCGCGA

GGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGTCCCCG

TTGGGCAGCGAGAGGGCGCTGACTATGCATCTTATCAATTGCGGTGTAGGGGAC

GTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGTCTAGC

CAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGACGCTGTTA

GTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCGCTCG

GCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCATGCA

TGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTGACCC

CGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCGGCGA

GGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCGACGA

AGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCATGATCGACC

AGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCGCGAGA

AGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACCAGGTACTGGTAGC

CGACTAGGAAGTGCGGCGGCGGCTGGCGATAGAGCGGCCAGCGCTGGGTGGCC

GGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGAGGTA

GCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTCGC

GGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGCACGG

TCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGAAAGC

GGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGCCGC

GTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAACGTG

GTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGCGGAG

CGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGAGTC

GCGGCAGAACCCGGTTCGAGGACGGCCGCGGCGAGCGGGACTTGGTCACCCCGC

CGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCCCT

CGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGACA

GAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGTCCCC

GGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTACGTGCC

TGCGCAGAATCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATGCGCG

ACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAGCGA

GTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCCGC

GCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGTGA

AGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCTTGATCG

CGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGCCA

TCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTGC

AGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATCGCCGAG

CCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATCGTAGTG

CAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCGGTG

CTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGCCC

ATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGGTG SEQ

ID Sequence

NO

CTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGGCC

GTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGCCT

GCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACTTCGACAT

GGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACGG

TCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCACCCGCTGCGG

GGTACTGACGCCTCCGTGATGTGTTTTTAGATGCAGCAAGCCCCGGACCCCGCCA

TAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAGG

CCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGAC

AACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCTC

GGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAG

AACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAG

CGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGATCGGCTGGTG

ACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCCT

GGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAACGTGCC

GCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCTGATGGTGAC

GAGCCGGCAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAATCTGCG

CGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAGCAGCTT

GCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGC

GGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTGTACCGCGAG

GCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACGAGCGT

GAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCTGAACTT

TTTGCTGACCAATAGACAGCAGAAGATTCCGGCGCAGTACGCACTGTCGGCCGA

GGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCA

GGAGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAAC

CTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACCTGC

ACCGCGCGGCGGCCATGAACACGGACTACTTTACCAACGCCATATTGAACCCGC

ACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCA

ACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCCCCGACCTTGC

AAAAGCGCCAGGAGGCGCCGCCGAGCGAGGGCGCGGTGGGTCGGAGTCCCTTT

CCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTG

AGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTGCAG

CCGCCGCGGGTCAAGAACGCCATGGCCAATAACGGGATAGAGAGTCTGGTGGA

CAAACTGAACCGTTGGAAGACCTACGCTCAGGACCATAGGGATGCGCCCGCGCC

GCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACT

CGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGCCAACCCGT

TCGCGCATCTGCAGCCCAAACTGGGGCGGCGGATGTTTTGAAAAGCAAAATAAA

ACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGCGCGGT

GGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTG

GAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGC

ATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCGTGTACTTGGTGG

ACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGCAACT

TCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCAGCCGAGGCCAGCACGC

AGACGATAAATTTTGACGAGCGGTCCCGGTGGGGCGGTGATCTGAAGACCATTC

TGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGG

CGCGGGTGATGGTGGCTAGGAAGCATCCCAAAGAGGTTACAGATGAGAATGAT

AGAAGCAAGGATATCTTAGAGTATGAGTGGTTTGAGTTTACCCTGCCCGAGGGC

AACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAAC

TACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATCGGAGTCAAG

TTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGTGATG

CCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGGGC

TGCGGGGTGGACTTCACCGAAAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAG

AAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGGGGGC SEQ

ID Sequence

NO

AACATCCCTGCCCTGCTGGATGTGGATGCATACCTCAAAAGCAAGAATGATCTG

GAAGAGGCTACCAAGAAAGCGAACACAGCTGCTGCCAATGGAGGTGGTGAAAC

TAGGGGAGATACTTTTCTCACCACCGAACAGCTAAGAGCCGCTGGCAAGGAGCT

GGTTATTAAGCCCATCAAGGAAGATGCTAGCAAGAGGAGCTATAATGTCATAGG

GGATACCCATGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGGGA

CCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACCTG

CGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCATCAC

CTTCCGCTCCGCCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCAT

GCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATC

CGCAGCTACACTTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCC

TCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCT

CACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGT

GACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGC

ATAGTCGCGCCGCGCGTGCTCTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCA

TCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACG

GAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCC

GCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCCACCGCTGCCGCCGTGC

GCACCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACA

CCCCCGCCCCCTCGACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCGC

GCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCGG

AGCACGCCAGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACG

GGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCCGCCGCCGCACCCACCCCC

GCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGC

ATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGC

GTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCC

TCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGT

CGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAAT

CAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGC

GCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGC

GTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTC

AGGATGAAACGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCA

GGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGG

AGCTGATCTCGCTGCCGCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCG

TGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCA

AGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCC

GGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTC

AAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGAC

ATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAG

GTGCAGACCGACCCCTGGCTCCCAGCCTCTACCGCCACCGCCTCTACATCTACGG

TTGCCACGGCTACCGAGCCTCCAAGGAGGCGAAGATGGGGCGCCGCCAGCCGGC

TGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGG

CACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCAC

CGCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTGACCACGCGCCG

GGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCC

GTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCC

CGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGTG

GCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTC

TGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCTGGCATAGC

TTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTA

TCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATC

GGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGG

CTTAAAAATTTCGGCTCGACGCTCCGGAACTATGGGAACAAGGCCTGGAATAGT SEQ

ID Sequence

NO

AGCACGGGGCAGTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAA

GGTGGTGGACGGTCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCA

GGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGT

GGAGATGGAAGATGCAACTCTTCCGCCGCCCAAAGGCGAGAAGCGGCCGCGGC

CCGACGCGGAGGAGACGATCCTGCAGGTTGACGAGCCGCCATCGTACGAGGAG

GCCGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGT

GTAATGAAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCGA

AGGCAGCTCCGGTCGTGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCC

CCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCC

TGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAGG

ACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAA

GATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCA

GGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGA

CACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCA

CGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGA

TCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGA

CAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGA

TCGCGGTCCCAGCTTCAAACCCTACTCGGGAACGGCTTACAACAGTCTGGCCCCC

AAGGGCGCCCCCAACTCCAGTCAGTGGGTTGCGAAAGACACCAATGCTACCGAT

CAAGCATTAAAAACCCACACACATGGCGTAGCTGCTATGGGGGGAACAGATATC

ACAGCAAAGGGTTTGCAAATTGGTGTTGACACAACTGAAAACAAGAATGAGCCT

ATTTATGCAAATGAAATCTATCAGCCAGAGCCTCAAATAGGAGAAGAAAACTTG

CAAGATGTTGAAAACTTTTATGGCGGCAGAACTCTTAAAAAGGAAACAAAAATG

AAACCCTGCTATGGCTCATTTGCCAGACCCACAAATGAAAAAGGCGGTCAAGCC

AAATTTTTAACTGACGGCGATGGTCAGCTAACTAAAAATCATGATATCACAATG

AATTTCTTTGACACTCCTGGAGGAACAGTTGGTCAGGATACTGAACTTGAAGCA

GACATTGTTATGTATGCTGAGAATGTGCATCTGGAAACTCCAGACACGCATGTG

GTGTACAAACCAGGAACTTCTGATGAGAGTTCTGAAATTAATTTAACTCAGCAG

TCCATGCCAAACAGGCCCAACTACATTGGCTTCAGGGACAACTTTGTGGGTCTCA

TGTATTACAACAGTACTGGCAACATGGGTGTGCTGGCCGGTCAGGCCTCTCAGTT

GAATGCTGTGGTCGACTTGCAAGACAGAAACACCGAGCTGTCTTACCAGCTCTT

GCTAGATTCTCTGGGTGATAGAACCAGATACTTTAGCATGTGGAACTCTGCGGTG

GACAGCTATGATCCCGATGTCAGGATCATTGAGAATCACGGCGTGGAAGATGAA

CTTCCAAACTATTGCTTCCCATTGGATGGAGCTGGCACTAATGCTACATACCAAG

GTGTAAAAGTTAAAAATGGCGAAGATGGAGATGTAAACGCAGATTGGGAAAAA

GATCCAAACCTTGCTTCTCGAAACCAAATATGCAAGGGAAACATCTTCGCCATG

GAGATCAACCTCCATGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCCC

TGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAACGTCACGCTGCCCGCCA

ACACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCCCCCTCGCTGGTGG

ACGCCTACATCAACATCGGCGCCCGCTGGTCGTTGGACCCCATGGACAACGTCA

ACCCCTTCAACCACCACCGCAATGCGGGCCTGCGCTACCGCTCCATGCTTCTGGG

CAACGGCCGCTACGTGCCCTTCCACATTCAAGTGCCCCAAAAGTTCTTTGCCATC

AAGAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAAG

GACGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGATCTGCGCGTCGACGGC

GCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGC

ACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGT

CCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGC

CACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGATGG

AGTTTCACCCGGCTCAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACC

CCTACTTTGTCTACTCGGGCTCCATCCCCTATCTCGACGGGACCTTCTACCTCAAC

CACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCA

ACGACCGGCTGCTCACGCCGAACGAGTTCGAAATCAAGCGCAGCGTCGACGGGG

AGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGA SEQ

ID Sequence

NO

TGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCATGTGCCCGAGGGCTACAA

GGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTC

GATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAAC

AACTCGGGCTTCACCGGCTACCTCGCACCCACCATGCGCCAGGGGCAGCCCTAC

CCCGCCAACTTCCCCTACCCGCTCATCGGCTCCACCGCAGTGCCCTCCGTCACCC

AGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTT

CATGTCCATGGGCGCCCTTACCGACCTGGGTCAGAACATGCTCTACGCCAACTCG

GCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTC

CTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCG

GCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGAAACGCCACCA

CCTAAGCATGAGCGGCTCCAGCGAAAGAGAGCTCACGGCCATCGTGCGCGACCT

GCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGA

GGCGTGCACTGGCTAGCCTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGT

TCGACCCCTTTGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTA

CGAGGCCATGCTGCGTCGCAGCGCCCTGGCCTCCTCGCCCGACCGCTGTCTCAGC

CTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTT

TTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACG

GAAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGC

CACAGGTGCTGCCCACCCTCAGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCG

CGCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCGCCATCGAACACGCCACCGC

TTTTGACAAAATGAAACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTAC

ATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTC

GTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGTACTGGAACTTGGGCTGCCA

CTTGAACTCGGGGATCACCAGTTTGGGAACCGGAATCTCGGGGAAGGTCTCGCT

CCACATGCGCCGGCTCATCTGCAGGGCGCCCAATATGTCAGGCGCGGATATCTT

GAAATCGCAGTTGGGACCGGTACTCTGCGCGCGCGAGTTGCGGTACACGGGGTT

GCAGCACTGGAACACCATCAGACTGGGGTGCTTCACACTGGCCAGCACGCTCTT

GTCGCTAATCTGATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGAGTC

ATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTGTGAGGCTTGTGGTTACAC

TCGCAGTGAACGGGCATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAG

AGGGCCTTGACAAAGGCTGAGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCC

TCGCTGAAGAACAGCCCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGG

CATCATGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTC

CCCAGCGGTTCTGGGTCACCTTGGCCTTGCTAGGCTGCTCCTTCAACGCGCGCTG

GCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACC

GTCCCGTGCAGACACTTGAGCTGGCCTTCCACCTCGGTGCAGCCGTGATCCCACA

GGGCGCAGCCGGTGCACTCCCAGTTCTTGTGCGCAATCCCGCTGTGGCTGAAGA

TGTAACCTTGCAACATGCGGCCCATGACGGTGCTAAATGATTTACTGGTGCTGAA

GGTCAGTTGCAGGCCGCGGGCCTCCTCGTTCAGCCAGGTCTGGCACATCTTCTGG

AAGATCTCGGTCTGCTCGGGCATCAGCTTGTAGGCATCGCGCAGGCCGCTGTCG

ACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCATGCCCTTCTCCCAGGACG

AGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGGACACCGGGGGTCGCG

GGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGAGGCTGGC

TGAATCCCACTCCCACGATCACGGCATCTTCCTGGGGCATCTCTTCGTCTGGGTC

CGGGGACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGC

GCTTGGTGGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGAT

AGCGCGCCGACCCGTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGC

GCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGC

CGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATC

GAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAA

CAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCA SEQ

ID Sequence

NO

TGGCTACCTGGGAGGAGAGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTC CCTCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGTGTCGA GGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAA CGCCAGCCCAACGGCACATGCGAGCCCAACCCGCGTCTCAACTTTTACCCCGTCT

CCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGACGCGCTCCTTGCTCTGGGA

CCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTC

GAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGC

AGAGGAAGAGGGTCATACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCA

GGCTGGCCGTGCTTAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGT

CAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCAC

ATCGAGGCCCTCGATGAGACCCAAGAGCAGCGCCCAGAGGACACCCGTCCCGTG

GTCAGCGACGAGCAGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGACCCTG

GAGCAGCGGCGCAAACTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGCTCGAA

TGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAGGTCGAGGAGACC

CTGCACTACACTTTCAGGCACGGTTTCGTCAGGCAGGCAAGCAAGATTTCCAAC

GTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCTGCACGAGAACCGCCTG

GGGCAGACCGTGCTCCACTCGACCCTGAAGGGCGAGGCGCGGCGAGACTATGTC

CGCGACTGCGTCTTTCTCTTTCTATGCCACACATGGCAAGCAGCCATGGGCGTGT

GGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTA

GAAATCTTAAAAAGCTGTGGACGGGCTTCGACGAGCGTACCGTCGCCTCGGACC

TGGCCGAGATCGTCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGCGGGCTGC

CCGACTTCATGAGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCG

ATCTGGGATGCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTG

AGCTACCGCGAGTGTCCCCCGCCTCTGTGGAGCCACTGCTACCTCTTGCAGCTGG

CCAACTACATCGCCTACCACTCGGACGTGATCGAGGACGTGAGCGGCGAGGGGC

TTCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTG

CAACCCCCAGCTCCTCAGCGAGACCCAGGTCATCGGTACCTTCGAGCTGCAAGG

TCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGC

GTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCCATGAGATAAAGTTCTTC

GAGGACCAATCGCGGCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAG

GGCGCGATCCTCGCCCAATTGCATGCCATCCAAAAATCCCGCCAAGAGTTTCTTC

TGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAAC

CCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGA

TGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGAC

AGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCC

GTCGCCGCACCATCCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCA

GCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCAC

GAGCGGCAGGGCTATCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGC

TTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACC

GCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTA

AGAAAAAATCAGAAGTAAGAGGAGTCGCCGGAGGAGGCCTGAGGATCGCGGCG

AACGAGCCCTTGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTAT

GCCATTTTTCAGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGG

TCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGC

AGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCT

TAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCAC

CATGAGCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAAATGGG

CCTGGCCGCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGC

CGGCCCCTCGATGATCTCACGGGTCAACGGGGTCCGCAGTCATCGAAACCAGAT

ATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCG

TAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTA

CTTCCGCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTG SEQ

ID Sequence

NO

GCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTG

GTGATCCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATC

GGTCTGCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCCTCCTTC

ACTCCCAACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCG

GAGGCATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAA

CCCCTTCTCGGGCTCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGAC

GCAGTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCT

GAGCTCGCTCGGTTGAGGCATCTGGACCATTGCCGCCGCCTGCGCTGCTTTGCCC

GGGAGAGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCC

CTGCACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCA

GGTTCTTCACCCAGCAACCCTTCCTGGTCGAGCGTGACCGGGGCGCCACCACCTA

CACCGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACT

CTGTGTGCTGAGTTTAATAAAAGCTAAACTCCTACAATACTCTGGGATCCCGTGT

CGTCGCACTCGCAACGAGACCTTCAACCTTACCAACCAGACTGAGGTAAAACTC

AACTGCAGACCAGGGGACAAATACATCCTCTGGCTCTTTGAGAACACTTCCTTCG

CGGTCTCCAACACCTGCGCCAACGACGGTATTGAAATACCCAACAACCTTACCA

GTGGACTAACTTACACCACCAGAAAGACTAAGCTAGTACTCTACAATCCTTTTGT

AGAGGGAACCTACCACTGCCAGAGCGGACCTTGCTTCCACACTTTCACTTTGGTG

AACGTTACCGGCAGCAGCACAGCCGCTCCAGAAACATCTAACCTTCTTTCTGATA

CTAACACTCCTAAAACCGGAGGTGAGCTCTGGGTTCCCTCTCTAACAGAGGGGG

GTAAACATATTGAAGCGGTTGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTG

CATAGCGGTGCTGTATTACCTTCCTTGCTGGATCGAAATCAAAATCTTTATTTGC

TGGGTCATACATTGTTGGGAGGAACCATGAAGAGGCTCTTGCTGATTATCCTTTC

CCTGGTTGGGGGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCAC

AGGCAATGAGAGGAGTGTGATATGCACAGTAGTCATCAAATGCGAGCATACATG

TCCTCTCAACATCACATTCAAGAATAAGACCATGGGAAATGCATGGGTGGGCGA

TTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCAATGG

AAATCACACTTTCGGTTTCAAATTCATTTTTGAAGTCATGTGTGATATCACACTG

CATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTTGGG

TTTTCTTTGGCTTTTGTGATCATGGCCTGTGCAATGTCAGGTCTGCTGGTAGGGG

CTATAATATGGTTCCTGAGGCTCAAGCCCAGGTATGGAAATCTGGAAAAGGAAA

AATTGCTATAAATGTTTTTCTTTCCACAGCATCATGAATACAGTGATCCGTATCG

TGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGGCAGGATTTCATACTATCAATGCT

ACATGGTGGGCTAATATAACTTTAGTGGGACCCTCAGATACGCCAGTCACCTGG

TATGATAAACAGGGAATGCAGTTCTGTGATGGAAATACAGTTAAGAATCCTCAA

ATAAGACATGAGTGTAATGAGCAAAACCTTACACTAATTCATGTGAACAAAACC

CATGAAAGTACATACATGGGTTATAATAGACAGAGTACTCATAAGGAAGACTAT

AAAGTCATAGTTATACCGCCTCCTCCTGCTACTGTAAAGCCACAGTCAGGTCCAG

AGTATGTATATGTTAATATGGGAGAGAATAAAACATTAGTTGGACCTCCGGGAA

TACCAGTTACTTGGTATGACGGAGAAGGAAATAAATTCTGCGATGGAGAAAAAG

TTGAACATGCAGAATTTAATCATACATGTGACGTGCAAAATCTTACACTGTTGTT

TATAAATCTTACACATGATGGGGCTTATCTTGGCTATAATCACCAGGGAACTAAA

AGAACTTGGTATGAGGTTGTAGTGACAGATGGTTTTCCAAAATCAGGGGAGATG

AAAATCGAAGATCAGAGTAGACAAACAGAACAAAAACAAACTGGGCAAAAACA

AAATGAGCATAAACAGGGTGGGCAGAAACAGGAGGGGCAAAAAGAGACAAGT

CAAAAGAAAGCTAATGACAAACAGAAGGCTACACACAGGAGGCCATCAAAACT

AAAGCCGCACACACCTGAAGCAAAACTGATTACAGTTTCTAGTGGGTCTAACTT

AACATTACTTGGGCCAGATGGAAAGGTCACTTGGTATGATGATGATTTAAAAAG

ACCATGTGAACCTGGATATAAGTTAAACTGTAAGTGTGACAATCAAAACCTAAC

CCTAATCAATGTAACTAAACTTTATGAGGGAGTTTACTATGGTACTAATGACGGA

GGCAACGGCAAAAGATACAGAGTAAAAGTAAACACTACGAATTCTCAAAATGT

GAAAATTCAGCCGTACACCAGGCCTACTACTCCTGATCAGAAACACAGATTTGA

ATTGCAAATTGATTATAATCAAGACAATGACAAAATTCCATCAACTACTGTGGC SEQ

ID Sequence

NO

AATCGTGGTGGGTGTGATTGCGGGCTTCATAACTCTGATCATTGTCATTCTGTGC

TACATCTGCTGCCGCAAGCGTCCAAGGGCATACAATCATATGGTAGACCCACTA

CTCAGCTTCTCTTACTGAGACTCAGTCACTTTCATTTCAGAACAATGAAGGCTTT

CACAGCTTGCGTTCTGATTAGCATAGTCACACTTAGTTCAGCTGCAATGATTAAT

GTTAATGTCACTAGAGGTGGTAAAATTACATTGAATGGGACTTATCCACAAACT

ACATGGACAAGATATCATAAAGATGGATGGAAAAATATCTGTGAATGGAATGTT

ACAGCCTATAAATGCTTCAGTAATGGAAGCATTACAATTACTGCCACTGCTAATA

TTACTTCTGGCACAATCAAGGCAGAAAGCTATAAAAATGAAATGAAAAAAATGG

TATATAAAAATAACAAGACAACATTTGAAGATTCTGGAAATTATGAGTATCAGA

AGTTAGGACAACGCAGCCTACCACTGTACCCACTACACATCCAACCACCACAGC

CAGTACAACTACTGAGACCACAACTCACACTACACAGTTAGACACTACAGTGCA

GAATAGTACTGTATTGGTTAGGTATTTGTTAAGAGAGGAAAGTACTACTGAACA

GACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAACTTCGCTTGCT

TGGACTAATGAAACCGGAGTATCATTGATGCATGGCCAGCCTTACTCAGGTTTG

AATATTCAAATTACTTTTCTGGTTGTTTGTGGGATCTTTATTCTTGTGGTTCTTCT

GTACTTTGTCTGCTGCAAAGCCAGAGAAAAATCTAGGAGGCCCATCTACAGGCC

AGTAATCGGGGATCCTCAGCCTCTCCAAGTGGAAGGGGGTCTAAGGAATCTTCT

ATCCTTTTCTGTCTATTCAACGTGTGCGCTGCCTTCGCGGCCGTCTCGCACGCCTC

GCCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCTGCTCACCTGCA

CCTGCGTCTGCAGCATTGTCTGCCTGGTCGTCACCTTCCTGCAGCTCATCGACTG

GTGCTGCGCGCGCTACAATTATCTCCACCACAGTCCCGAATATAGGGACGAGAA

CGTAGCCAGAATCTTAAGGCTCATTTGACCATGCAGACTCTGCTCATACTGCTAT

CCCTCCTCTCCCCTGCCCTCGCTGATGATGATTACTCTAAGTGCAAATTTGTGGA

GCTATGGAATTTCTTAGACTGCTATGATGCTAAAATGGATATGCCATCCTATTAC

TTGGTGATTGTGGGGATAGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCATGAT

CTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATTCACATACACACTA

GAAAGCAGTTCACTAGCCTCCACGCCACCACCCACACCTCCTCCCCGCAGAAAT

CAGTTTCCCCTGATTCAGTACTTAGAAGAGCCCCCTCCCCGACCCCCTTCCACTG

TTAGCTACTTTCACATAACCGGCGGCGATGACTGACCACCTGGACCTCGAGATG

GACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAG

GAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCACCAGTGCAAGAAG

GGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGAGCTCGTGTCCAAC

GGCAAACAGCATCGCCTCACCTATGAGATGCCCCAGCAGAAGCAGAAGTTCACC

TGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTCGGGCGAGACCAAC

GGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTCCCTCCTCAAGA

CCCTTTGCGGACTCCGCGACCTCCTCCCCATGAACTGATGTTGATTAAAAGCCCA

GAAACCAATCAGCCCCTTCCCTATTTCCCCAGCCCCTTGCCCAATTATTCATAAG

AATAAATCATTGGAATTAATCATTCAATAAAGATCGCTTACTTGAAATCTGAAA

GTATGTCTTTGGTGTAGTTGTTTAGCAGCACCTCGGTACCCTCCTCCCAGCTCTG

GTACTCCAGTCCCCGGCGGGCGGCGAACTTCCTCCACACCTTGAAAGGGATGTC

AAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGATGGCAAAGAGGCTCC

GGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGAATCAGA

ATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCCGATGGATTCAAAAACTTCCCC

CCTGGGGTCCTGTCACTCAAACTGGCTGACCCAATCACCATCACCAATGGGGAT

GTTTCGCTCAAGGTGGGAGGGGGTCTTACTTTGCAAGATGGAACTGGAAAACTA

ACAGTCAATACTGAACCACCTTTGCAACTTACAAATAACAAATTAGGTATTGCTT

TAGACGCTCCATTTGATGTTATAGGCGATAAGCTCACACTGTTAGCAGGCCATGG

CTTGTCTATCATAACAAAAGAAACATCAACACTGCCTGGCTTAATTAATACTCTT

GTAGTATTAACTGGAAAGGGTATTGGAACAGAATCAACAGATAATGGTGGGAGC

ATATGCGTTAGAGTTGCAGAAGGCGGAGGCTTATCATTTAATGATGATGGAGAC

TTGGTAGCATTTAATAAAAAAGAAGATAAGCGCACCCTATGGACAACTCCAGAT SEQ

ID Sequence

NO

CCATCTCCAAATTGCAAAATACTTGAGGATAAAGACTCAAAACTAACGTTAGTT

CTTACAAAGTGTGGTAGTCAAATTCTAGGAAATGTGTCTTTGTTGGTAGTTAAGG

GAAAGTTTAGTAATATCAATAATACCACAAACCCAAATGACACCGATAAACAAA

TAACAATTAAGTTGTTGTTTGATGCAAACGGAGTTCTTAAACAGGGCTCTACTAT

GGATTCTTCATATTGGAATTATAGAAGTGATAATTCCAATTTATCCCAACCATAC

AAACAAGCAGTTGGATTCATGCCTAGTAAGACTGCTTATCCTAAGCAAACCAAA

CCCGCCAACAAAGAAATAAGTCAGGCAAAAAATAAAATTATAAGCAATGTTTAC

CTTGGAGGTAAAATTGATCAACCGTGTGTTATTATAATTACTTTTAATGAAGAAG

CTGACAGCGAGTATTCTATTGTGTTTTACTTTAAATGGTACAAAACTTATGAAAA

TGTTCAGTTCGACTCTTCATCCTTTACCTTCTCCTACATCGCCCAAGAATGAAAG

AGCACGGGTAGTCAGTCTCCCACCACCAGCCCATTTCACAGTGTACACGGTTCTT

TCAGCACGGGTGGCCTTAAATAGGGGAATGTTCTGATTAGTGCGGGAACTGGAC

TTGGGGTCTATAAGCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATT

GAGATGAAGCCGTCCTCTGAAAAGTCTTCCAAGCGGGCCTCACAGTCCAAGGTC

ACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACTCGGAAAACAGGATG

GGTCTGTGCCTCTCCATCAGTGCCCTCAACAGTCTCTGCCGCCGGGGCTCGGTGC

GGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTATGATCCCCACAG

CCTTCAGCATCAGTCTCCTGGTGCGACGGGCACAGCACCGCATCCTGATCTCGGC

CAGGTTCTCACAGTAAGTGCAACATAGAATCACCATGTTATTCAGCAGCCCATA

ATTCAGGGCGCTCCAGCCAAAGCTCATGTTGGGGATGATGGAACCCACGTGACC

ATCGTACCAGATGCGGCAGTATATCAGGTGC

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTTTGGGGCGGAGCCAACGCTGATTGGACGAGAAGCGGT NO: GATGCAAATAACGTCACGACGCACGGCTAACGGCCGGCGCGGAGGCGTGGCCT 1423 AGGCCGGAAGCAAGTCGCGGGGCTAATGACGTATAAAAAAGCGGACTTTAGAC

CCGGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGC

GGATGCAAGTGAAATTAGGTCATTTTGGCGCCAAAACTGAATGAGGAAGTGAAA

AGTGAAAAATACCTGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGAC

CGTGTGAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAA

CCAGTTGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAAAGTGTGAGAAAAATGAGACACCTGCGCCTCCTGTCTTC

AACTGTGCCTATTAACATGGCCGCATTATTGCTGGAGGACTATGTGAGTACAGTA

TTGGAGGACGAACTACATCCATCTCCATTTGAGCTGGGACCTACACTTCAGGACC

TTTATGATTTGGAGGTAGATGCCCATGATGACGACCCAAACGAAGAGGCTGTGA

ATTTAATATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGT

ACCTACACCACTTCATACACCGACTTTGTCACCCATACCTGAATTGGAAGAGGA

GGACGAGTTAGACCTCCGATGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGA

GGACGAACAGGGTGAGCAGAGCATGGCTCTAATCTCAGAATATGCTTGTGTGGT

TGTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAG

ATCCTGCCAGTACCACCGGGATAAGACCGGAGACACAAACGCCTCCTGCGCTCT

GTGTTACATGAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGA

GAGAGGCTGAGTGCTTAACACATAACTGGGTGATGCTTAAACAGCTGTGCTAAG

AAGAAAACCACCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGC

ACAAACCCACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAA

ATTGAGGACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTG

AAACGCCCCAGGAACTAGGCGCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGT

ACAATAAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGG

GCTTAGTCCTATATAAGTGGCAACACCTGGGCACTGGGCACAGACCTTCAGGGA

GTTCCTGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTT

GTAGAGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACT SEQ

ID Sequence

NO

CCTCTATCTCGACTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAA

AATCTTTTTGCTGATTGCTCTGGCCTGCTAGATTCTCTGAATCTCGGCCACCAGTC

CCTTTTCCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACT

AACTGAGCAGGGGCTACATTCTGGACTTCGCAGCCATGCACCTGTGGAGGGCAT

GGGTGAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTATACAGCCAGCAG

CTCCGGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGA

GGCAGGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAG

GAGCTGAATTGAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGA

CATCCATGGCTAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGG

ATGATGACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATT

ACCTGGCACGAGCTACAGATGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGAT

AAATATGGCCTGGAGCAGATAAAAACACATTGGTTGAACCCAGATGAGGATTGG

GAGGAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTAC

ATAGTGACCAAGACCGTGAATATTAGACATGCCTGCTACATTTCAGGGAACGGG

GCAGAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATG

GGAATGAGAGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAG

TTCAATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACC

CTGCATGGCTGCAGTTTCTTTGGCTTCAACAATATGTGCGCCGAGGTCTGGGGCG

CTTCCAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAA

GACCTAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGG

GAGTCTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGATACGG

GCTGCTTCTGCCTGGTGAAGGGTACGGCCTCTCTGAAGCATAATATGGTGAAGG

GCTGCACAGATGAGCGCATGTACAACATGCTAACATGCGACTCGGGGGTCTGTC

ATATCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGT

TTGAGAATAACCTGATGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCA

CCTTCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAAAACG

ATGCCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTA

CAAGATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGG

GGGCAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGA

GACCAGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGG

AGGACACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAA

CGGCGGGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCG

GGATGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGTCCA

GTGCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCG

CTTGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAG

ACTGGCCTCGAGCTATATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCC

ATCATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGC

CGCCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAG

GCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGCGGTGGATTTTTTCC

AGGACCCGGTAAAGGTGGGATTGGATGTTGAGGTACATGGGCATGAGCCCGTCC

CGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCTCTGGGGTCGTGTTGTAG

ATAATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGATGATGTCCTTGAGG

AGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGTTGGCAAAGCGGTTA

AGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTTTGGCCTGGATCTTG

AGGTTGGCGATGTTGCCACCCAGATCCCGCCGGGGGTTCATATTGTGCAGGACC

ACCAGAACGGTGTAGCCCGTGCACTTGGGGAACTTATCATGCAACTTGGAAGGG

AATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAGGTTTTCCATGCACT

CATCCATGATGATGGCAATGGGCCCGTGGGCTGCGGCTTTGGCAAAAACGTTTC

TGGGGTCAGAGACATCATAATTATGCTCCTGGGTGAGATCATCATAAGACATTTT

AATGAATTTGGGGCGAAGGGTGCCAGATTGGGGGACGATCGTTCCCTCGGGCCC SEQ

ID Sequence

NO

CGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCCAGGCTTTCATCTCGGAGGGG

GGGATCATGTCCACCTGCGGGGCGATGAAAAAAACGGTTTCCGGGGCGGGGGTG

ATGAGCTGCGAGGAGAGCAGGTTTCTTAACAGCTGGGACTTGCCGCACCCGGTC

GGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAGTTCAAGGAGATGCAG

CTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGCATGTCTCTCACTTGG

AGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCCCGCCCAGCGAGAGCAGC

TCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCCCGTCGGCCATGGGCATC

TTGGCAAGGGTCTGCGAGAGGAGCTCCAGGCGGTCCCATAGCTCGGTGACGTGC

TCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGTTGGGACGACTGCG

ACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCAGCGTCATGTCCTTCCA

GGGTCTCAGGGTCCGAGTGAGGGTGGTCTCCGTCACGGTGAAGGGGTGGGCCCC

GGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCTGCTGGTGCTGAAACG

GGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGACCATGAGCTTGTA

GTTAAGGGCCTCGGCGGCGTGGCCCTTGGCACGGAGCTTGCCTTTGGAAGAGCG

CCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGAGCTTGGGTGCGAGAA

AGACGGACTCGGGAGCGAAGGCGTCCGCTCCGCAGTGGGCGCAGACGGTCTCGC

ACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGGGTCAAAAACCAGTTTTCCCC

GTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGACTTGATTGGCCTGTCCTGCA

GGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCACTCTGAGACAAAGG

CGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGGGGTAGCGGTCGTTGT

CCACCAGGGGGTCCACCTTTTCCACCGTGTGCAGACACATGTCCCCCTCCTCCGC

ATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGACCGGGGGTCCCCGA

CGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCACTCTCTTCCGCGTC

GCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAGAGCGGGCAT

GACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGGATTTGATGTTGGC

CTGCCCTGCCGCAATGCTTTTTAGGAGACTTTCATCCATCTGGTCAGAAAAGACT

ATTTTTTTATTGTCAAGCTTGGTGGCAAAGGAGCCATAGAGGGCGTTGGAGAGA

CCGCGATGTTGAGCTGGACATACTCGCGCGCGACACACTTCCATTCTGGGAAGA

CGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCGCGATTATGCAGGG

TGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGGCTCGTTGGTCCAGC

AGAGGCGTCCGCCCTTGCGCGAGCAGAACGGGGGCAGCACATCAAGCAGATGC

TCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCGGACAGAGTTCCTTGTCA

AAATAATCGATTTTTGAGGATGCATCATCCAAGGCCATCTGCCACTCGCGGGCG

GCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGGCATGGGATGCGTG

AGGGCGGAGGCGTACATGCCGCAGATGTCGTAGACATAGATGGGCTCCGAGAG

GATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGGCGCGCACATA

GTCATACAACTCGTGCGAGGGGGCCAAGAAAGCGGGGCCGAGATTGGTGCGCT

GGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCATGCGAGTTGGAG

GAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGCAAGCGGACCGA

GTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCAACGAGCTCGGCGGT

GACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCACGGATGATGTCATAACC

CGCCTCTTCTTTCTTCTCCCACAGCGCGCGGTTGAGGGCGTACTCCTCGTCATCCT

TCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGAGCCCAGCA

TGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCACGGGGAGGG

CGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGAAGGTATCCC

TAACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCGTCGCAGCCGCCGT

GCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAGGCAGAGCGA

AAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATGAAATTGCGGGTGA

TGCGGAAAGGGCCCGGAACGGAGGCTCGGTTGTTGATGACCTGGGCGGCGAGG

ACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAGTTCCATGAATC

GCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGTTCCTCGTAGGTGAGGTCCTC SEQ

ID Sequence

NO

GGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTGGAGATGTGGGTTGGC

TTGCATGAATGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGCTCGTCGCG

AAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGACGCAGTAGAA

GGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGCGAGATCGCG

AGCGAGGGCGACCAGCTCGGGGTCCCCGGAGAATTTCATGACCAGCATGAAGG

GGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTACATCGTAGG

TGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAACTGGATTT

CCTGCCACCAGTTGGTCGAGTGGCTGTTGATGTGATGAAAGTAGAAATCCCGCC

GGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGTACTCGCAGC

GCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTTGAGGAGGA

ACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGCGTGGGACTC

ACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGGGAGCCAGG

TCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAAACGAGGGCGCGCAGTTGG

GAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTCTGAGGTTG

ACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACTTGATCTCC

ACGGGTGAGTTGGCGGTCGTGTCCACGCATTGCATGAGCCCGTAGCTGCGCGGG

GCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGCGCTCCCG

GCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGTGGCGGTAGAGGCACGTCGGCGT

GGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGCGACGA

CGCGGCGGTTGACATCCTGGATCTGCCGCCTTTGCGTGAAGACCACGGGCCCCG

TGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATTGACGG

CGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCGATCTC

GGACATGAACTGCTCGATTTCCTCCTCCTGGAGATCGCCGCGGCCCGCGCGCTCT

ACGGTGGCGGCAAGGTCATTCGAGATGCGACCCATGAGCTGCGAGAAGGCGCCC

AGGCCGCTCTCGTTCCAGACGCGGCTGTAAACCACGTCCCCGTCGGCGTCGCGC

GCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTAAAGACGGCG

TAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTGCTCGGTG

ACGAAGAAGTACATAATCCAGCGGCGCAGGGGCATTTCGCTGATGTCGCCAATG

GCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGTTGAAAAACTGG

GCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGAGTTCGGCG

ATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTCTTCCTCTT

CTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTGGCGGCGG

GGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTCGATCA

TCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTTCGCGAG

GACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGTGGGTCCCCGT

TGGGCAGCGATAGGGCGCTGACAATGCATCTTATCAATTGCGGTGTAGGGCACG

TGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGTCTAGCC

AATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGACGCTGTTAG

AATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGGCGGATGG

TGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCGCTCGG

CCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCATGCAT

GAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTGACCCC

GACGCCCCTGAACGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCGGCGA

GGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCGACGA

AGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGCCATAAGCGACC

AGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCGGAGTACCTGAGCCGCGAGA

AGGCGCGCGAGTCGAAGACATAGTCGTTGCAGGTGCGCACGAGGTACTGGTATC

CGACTAGAAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGCTGGGTGGCC

GGCGCGCCCGGGGCCAGGTCCTCAAGCATGAGTCGGTGGTAGCCGTAGAGGTAG

CGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTCGCG

GACGCGGTTCCAGATGTTGCGCAGGGGCAGGAAATAGTCCATGGTCGGCACGGT

CTGGCCGGTGAGACGCGCGCAGTCATTGATGCTCTAGAGGCAAAAACGAAAGCG

GTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGCCGCG SEQ

ID Sequence

NO

TGTGTACCCCGGTTCGAGTCCCCTCGATTCAGGCTGGAGCCGCGACTAACGTGGT ATTGGCACTCCCGTCTCGACCCAAGCCCGATAGCCGCCAGGATACGGCGGAGAG

CCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGAGTCGC

GGCAGAACCCGGTTCAAGGACGGCCGCGGCGAGCGGGACTTGGTCACCCCGCCG

ATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCCCTTTT

TTCTTTTTGCCAGATGCATCCCGTCCTGCGCCAAATGCGTCCCACCCCCCCGGCG

ACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGCCACA

GACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGT

CCCCGGAGCGACATCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTACG

TGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATG

CGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAG

CGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCC

GCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGT

GAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCTGAT

CGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGC

CATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCACAGCTGTTCCTGGTGGT

GCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCACTGCTGAACATCGCCG

AGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATCGTAG

TGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCGG

TGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTATGTGC

CCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGG

TGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGG

CCGTGAGCACAAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGTC

TGCGCCGGGCGCTGGTAGGAGGCGCCACCGGCGGTGAGGAGTCCTACTTCGACA

TGGGGGCGGACCTGCATTGGCAGCCGAGCCGACGCGCCTTGGAGGCCGCCTACG

GTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCACCCGCTGCG

ATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTATAGCATCGGACGACTGGGA

GGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAG

ACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTC

TCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGA

GAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGA

GCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGACCGGCTGGT

GACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCC

TGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAACGTGC

CGCGCGGGCAGGATGATTATACCAACTTTATAAGCGCGCTGCGGCTGATGGTGA

GAGCAGACAGGGCCTGCAGACGGTGAACCTGAGTCAGGCTTTCAAGAACCTGCG

CGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAGCAGCTT

GCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGT

GGCAGCGTGAACCGCAACTCGTACCTGGGCCATCTGCTGACGCTGTACCGCGAG

GCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACTAGCGTG

AGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCTGAACTTC

TTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAATATGCGCTGTCGGCCGAG

GAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCAG

GAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAACCT

AGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACCTGCAC

CGCGCGGCGTCCATGAACTCGGACTACTTTACCAATGCCATCCTGAACCCGCACT

GGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCAACG

ACGGGTTCCTGTGGGACGACGTGGACAGCGTGGTGTTCTCGCCGACCTTTCAAA

AGCGCCAGGAGGCGCCGCCGAGCGAGGGCGCGGTGGGGAGGAGCCCCTTTCCT

AGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTGAGC SEQ

ID Sequence

NO

CGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTGCAGCCG

CCACGGGCCAAGAACGCCATGGCCAATAACGGTATAGAGAGTCTGGTGGACAA

ACTGAACCGTTGGAAGACCTACGCTCAGGACCATAGGGATGCGCCCGCGCCGCG

GCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACTCGG

CCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGTCAACCCGTTCG

CGCATCTGCAGCCCAAACTGGGGCGACGGATGTTTTGAAATGCAAAATAAAACT

CACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGTGCGGTGGT

GTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTGGAG

GTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGCATTC

GTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCGTGTACTTGGTGGACA

ACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGCAACTTCC

TGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCCAGCACGCAGA

CGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATCTGAAGACCATTCTGC

ACACTAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGGCGC

GGGTGATGGTGGCTAGGAAGCATCCAGAGGGGGTAGTTGAAACAGATTTGAGTC

AGGATAAGCTTGAATATGAGTGGTTTGAGTTTACCCTGCCCGAGGGAAACTTTTC

CGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAACTACTTGCA

AGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATCGGAGTCAAGTTTGACA

GCAGAAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGTGATGCCAGGGG

TCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGGGCTGCGGGG

TGGATTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAGAAGCAAC

CTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGGTGGCAACATCC

CCGCCCTCCTTGATGTGCCCAAGTACTTGGAAAGCAAGAAGAAAGTTGAAGACG

AAACTAAAAATGCAGCTGCGGCTACAGCCGATACAACCACTAGGGGTGATACAT

TTGCAACTCCAGCGCAAGAGACAGCAGCTGATAAGAAGGTAGAAGTCTTGCCCA

TTGAAAAGGATGAGAGTGGTAGAAGTTACAACCTGATCCAGGGGACCCACGAC

ACGCTGTACCGCAGTTGGTACCTGTCCTATACCTACGGGGACCCCGAGAAGGGG

GTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTTACCTGCGGCGCGGAGCAA

GTCTACTGGTCACTGCCGGACCTCATGCAAGACCCCGTCACCTTCCGCTCCACCC

AGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCA

AGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACCTC

CCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGCCCGCCC

GCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACGGG

ACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGAC

GCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGC

GCGTGCTTTCCAGTCGCACCTTCTAAAAAAATGTCTATTCTCATCTCGCCCAGCA

ATAACACCGGCTGGGGTCTTACTAGACCCAGCACCATGTACGGAGGAGCCAAGA

AGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGGG

GCGCTTACAAGCGCGGGCGGACTTCCACCGCCGTGCGCACCACCGTCGACGACG

TCATCGACTCGGTGGTCGCCGACGCGCGCAACTACACTCCCGCCCCCTCCACCGT

GGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCAA

GAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCATGCGCG

CCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCATGATGC

GAGCCGCGCGCCGCGCTGCCACTGCACCCACCCCCGCAGGCAGGACTCGCAGAC

GAGCGGCCGCCGCCGCCGCTGCGGCCATCTCTAGCATGACCAGACCCAGGCGCG

GAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCA

CCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATG

TCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTAC

GGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAA

GGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCG

GCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCACGTGTTGCGGCCCGGCACGG

CGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAAGCGTAGCTATG

ACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGGGCGGGC SEQ

ID Sequence

NO

GAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCTGATCTCGCTGCCGCTG

GACGAAAGCAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTG

CCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCGCGAGGGCGAGAGCAT

GTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGCGTGGAGGACGTGCT

GGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGC

AGGTGGCGCCGGGCCTGGGCGTGCAAACCGTGGACATTCAGATCCCCACCGACA

TGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAAACCGACCCCTGGC

TCCCAGCCTCCACAGCTACCGTCTCCACTTCTACCGCCGCCACGGCTACCGAGCC

TCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTACGTGTT

GCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACGCCAG

CCGCCGGCGCCCAGCCAGCAAACGCCGCCGCCGCACCGCCACCCGCCGCCGTCT

GGCCCCCGCCCGCGTGCGCCGCGTGACCACGCGCCGGGGCCGCTCGCTCGTTCT

GCCCACCGTGCGCTACCACCCCAGCATCCTTTAATTCGTGTGCTGTGATACTGTT

GCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAG

GAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGCCGG

CGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCGCGCTCATCCCC

ATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAG

GCGTCGCAGCGCCGTTGATGTGCGAATAAAAGCCTCTTTAGACTCTGACACACCT

GGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGG

CACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTG

AACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGC

TCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCAGTTG

CTAAGGGAAAAGCTCAAAGACCAGAACTTTCAGCAGAAGGTGGTGGACGGGCT

GGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGA

GATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATG

CAACTCTTCCGCCGCCCAAAGGCGAGAAGCGGCCGCGGCCCGACGCGGAGGAG

ACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGCCGTCAAGGCCGGC

ATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGAAACCCGCC

ACCCTTGACCTGCCTCCACCACCCGCGCCCGCTCCACCGAAGGCAACTCCGGTTG

TGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGG

CCCAGAACTGGCAGAGCACGTTGCACAGTATCGTAGGCCTGGGAGTGAAAAGTC

TGAAGCGCCGCCGATGCTATTGAAAGAGAGGAAAGAGGACACTAAAGGGAGAG

CTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTC

GATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTA

CCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTACTTCAGCCTG

GGCAACAAGTTTAGGAACCCCACGGTGGCCCCGACCCACGATGTGACCACGGAC

CGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACG

TACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGAC

ATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCA

AACCCTACTCGGGCACAGCTTACAACAGCCTGGCCCCCAAGGGCGCCCCCAACT

CCAGTCAGTGGGAACAGAAAAAGGCCAATGCTGGAGAACAAAAGGAAACACAT

ACTTATGGTGTAGCTCCTATGGGTGGAGAAAACATTACAATTAGCGGTTTGCAA

ATTGGAACAGATACTACAAATGGCAAACAAGACCCGATATATGCTAATAAGCTG

TATCAACCAGAGCCTCAAGTAGGAGAAGAAAACTGGCAGGAAACAGAAGCCTT

CTATGGAGGAAGGGCTCTTAAAAAGGAAACCAAGATGAAACCATGCTATGGCTC

ATTTGCCAGACCCACAAATGAAAAAGGAGGACAGGCAAAACTAAGAGACCCTG

AAAAAAGTCAAGAAGATTTTGACATAGACCTAGCATTCTTTGATACTCCGGGAG

GAACTTTAACAGGTGGTGGAACGGAATACAAAGCAGACATTGTTATGTGCACTG

AAAATGTTAATCTTGAAACCCCGGACACCCACGTGGTGTATAAACCAGGCAAAG

ATGATGACAGTTCAGAAATCAACTTGGTTCAGCAGTCCATGCCCAACAGACCTA

ACTACATCGGCTTCAGGGACAACTTTGTGGGTCTCATGTACTACAACAGCACTGG

CAACATGGGTGTGCTGGCCGGTCAGGCTTCTCAGTTGAATGCTGTGGTCGACTTG

CAAGACAGAAACACAGAGCTGTCTTACCAGCTCTTGCTAGATTCTCTGGGCGAC SEQ

ID Sequence

NO

AGAACCAGGTACTTTAGCATGTGGAACTCTGCGGTGGACAGCTATGATCCCGAT

GTCAGGATCATTGAGAATCACGGTGTGGAAGATGAACTTCCCAACTATTGCTTCC

CATTGGATGGGTCTGGCACCAATGCTGCTTATGAAGGTGTAAAAGTTAAAAATG

GACAAGATGGGGATCAAGAGAGCGAATGGGAAAAAGACACCAATGTGGCAGAT

CGAAACCAAATATGCAAGGGCAACATCTACGCCATGGAGATCAACCTCCAGGCC

AACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCGCTGTACCTGCCCGACTCCT

ACAAGTACACGCCGGCCAACGTCACGCTGCCCACCAACACCAACACCTACGAGT

ACATGAATGGCCGCGTGGTAGCCCCCTCGCTGGTGGACGCCTACATTAACATCG

GCGCCCGCTGGTCGCTGGACCCCATGGACAACGTCAACCCCTTTAACCACCACC

GCAACGCGGGCCTGCGCTACCGCTCCATGCTTCTGGGCAACGGCCGCTACGTGC

CCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTCCTGCT

TCCCGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGATGTCAACATGATCCTG

CAAAGTTCCCTCGGCAACGACCTGCGCGTCGACGGCGCCTCCGTCCGCTTCGAC

AGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACCGCCTCCACCC

TGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTACCTCT

CGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCCATTTC

CATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAAG

ACCAAGGAAACTCCCTCCCTTGGCTCGGGTTTTGACCCCTACTTTGTCTACTCGG

GTTCCATCCCCTACCTCGACGGGACCTTCTACCTCAACCACACCTTCAAGAAGGT

CTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTCACG

CCGAACGAGTTCGAGATTAAGCGCAGCGTCGACGGGGAGGGCTACAATGTGGCC

CAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAAC

ATCGGCTACCAGGGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGTACTCC

AAGGACTACAAGGCCGTCACCCTGCCATTCCAGCACAACAACTCGGGCTTCACC

GGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTTCCCCT

ACCCGCTCATCGGCTCCACCGCAGTGCCATCCGTCACCCAGAAAAAGTTCCTCTG

CGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGTGCC

CTCACCGACCTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTCGAC

ATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCG

AAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCCG

TCTACCTGCGCACGCCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCGGT

TCCAGCGAACGAGAACTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCCTAC

CCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGGGGCGTGCACTGGCTCG

CCTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTT

CTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCG

CCGCAGCGCCCTGGCCTCCTCGCCCGATCGCTGTCTCAGCCTCGAACAGTCCACC

CAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTCTTCTGTTGCATGTTCT

TGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGGAACCCCACCATGA

ACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCCCA

CCCTCCGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTA

CTTTCGCTCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGACAAAATGAAA

CAACTGCGTGTATGACTCAAATAAACAGCACTTTTATTTTACACATGCACTGGAG

TATATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCG

CGCTGGGGAGGGCCACGTTGCGGTACTGGAACTTGGGCTGCCACTTGAACTCGG

GGATCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCC

GGCTCATCTGCAGGGCGCCCAGCATGTCAGGGCCGGAGATCTTGAAATCGCAGT

TGGGGCCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGA

ACACCATCAGACTGGGGTACTTCACACTGGCCAACACGCTCTTGTCGCTGATCTG

ATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGC

TGGCGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACG

GGCATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACG SEQ

ID Sequence

NO

AAGGCCGCGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAAAAC

AGGCCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGCACGC

AGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTG

GGTCACCTTAGCCTTGCTGGGCTGCTCCTTCAGCGCGCGCTGTCCGTTCTCGCTG

GTCACATCCATCTCCACCACGTGGTCCTTGTGAATCATCACCGTTCCATGCAGAC

ACTTGAGCTGACCTTCCACCTCGGTGCAGCCGTGATCCCACAGGACGCAGCCGG

TGCACTCCCAATTCTTGTGCGCGATCCCGCTGTGGCTGAAAATGTAACCTTGCAA

CAGGCGACCCATAATGGTGCTAAATGCTTTCTGGGTGGTGAATGTCAGTTGCATC

CCGCGGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTCTGGAAGATCTCGGTCT

GCTCCGGCATGAGCTTGTAAGCATCGCGCAAGCCGCTGTCGACGCGGTAGCGTT

CCATCAGCACGTTCATGGTATCCATGCCCTTCTCCCATGACGAGACCAGAGGCA

GACTCAGGGGGTTGCGCACGTTCAGGACACCAGGGGTCGCGGGCTCGACGATGC

GTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGAGGCTGGCTGAATCCCACTCC

CACGATCACGGCGTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACA

CTCCTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAG

AGGAGGTGGCGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGA

CCCGTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTG

ACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCA

GGAGCAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACC

TGGGCTTCGAAGAGCCGGCTCGTCTAAAACCCCCACAGGATGAACAGGAGCACG

AGCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTG

GAAGGAGAGGAGGATGTGCTGCTAAAACACCTGCAGCGCCAGTCCCTCATCCTC

CGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGT

CGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCC

AACGGCACCTGCGAGCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCC

CCGAGGCCCTTGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCATCTC

CTGTCGCGCCAATCGCACTCGCGCCGACGCGCTCCTCGCTTTGGGGCCCGGCGCG

CGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTC

GGTCGGGACGAGACGCGCGCGGCAAACGCTCTGAAAGAAACAGCAGAGGAAGA

GGGTTACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGT

GCTTAAGCGCAGCGTCGAGCTCACCCATTTCGCCTACCCCGCCGTCAACCTCCCG

CCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCC

CTTGATGAAAGTCAGGAACAGCGCCCCGAGAACGCCCAGCCCGTGGTCAGCGAC

GAGATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCCCTGGAGCAGCGG

CGCAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTTGAGCTCGAATGCATGCGCC

CTTTCAGACACGGTTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGA

CCAACCTGGTCTCCTGCCTGGGGATCCTACACGAGAACCGCTTGGGACAGACCG

TGCTCCACTCTACCCTGAAGGGCGAGGCGCGGCGGGACTACATCCGCGACTGCG

TCTTTCTCTTTCTCTGCCACACATGGCAAGCGGCCATGGGCGTGTGGCAGCAGTG

TCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAA

AAAGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGAT

CGTCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGAGGGCTGCCCGACTTCAT

GAGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCTGGGAT

GCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGC

GAGTGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACA

TTGCCCACCACTCGGATGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGT

GCCACTGTCGCTGCAACCTATGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCA

GCTACTGAGCGAGACCCAGGTCATCGGTACCTTTGAGCTGCAAGGTCCGCAGGA

GTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGC

AAATTTGTACCCGAGGACTACTACGCCCATGAGATAAAGTTCTTCGAGGACCAA

TCGCGTCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATC SEQ

ID Sequence

NO

CTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAG

GGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTC

CCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAG

AATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGA

AGACTTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCAC

CATCCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGCCA

AGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGACAG

GGCTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGAC

TGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGA

ACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAG

CAAGTCAAAGGAGTCGCCGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCC

CAGCAAAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTGCG

CTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCAC

TCTTGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTGACTCTTAAAGAC

TAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGC

AAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCC

GCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTTAGTGCCGGCCCC

TCGATGATCTCACGGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGTTG

CAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGG

CCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGC

GTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCG

GCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCC

GAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCAATCGGTCTGC

GACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCCCA

ACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGCAGCCTCGCTCGGGAGGCA

TCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTT

CTCGGGCTCGCCAGGCCTCTACCCGGACGAGTTTATACCGAACTTCGACGCAGT

GAGAGAAGCGGTGGACGGCTACGACTGAATGTCCTATGGTGACTCGGCTGAGCT

CGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTTGCCCGGGAG

AGCTACGGCCTCATCTACTTTGAGCTGCCCGAGGAGCACCCCAACGGCCCTGCA

CACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTC

TTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACC

GTCTACTGCATTTGTCCTACCCCGAAGTTGCATGAGAATTTTTGTTGTACTCTTTG

TGGTGAGTTTAATAAAAGCTAAACTCTTGCAATACTCTGGACCTTGTCGTCATCA

ACTCAACGAGACCGTCTACCTCACCAACCAGACTGAGGTAAAACTTACCTGCAG

ACCACACAAGACCTATATCATCTGGTTCTTCGAGAACACCTCATTTGCAGTCTCC

AACACTCACTGCAACGACGGTGTTGAACTTCCCAACAACCTTTCCAGTGGACTG

AGTTACAATACACGTAGAGCTAAGCTCATCCTCTACAATCCTTTTGTAGAGGGAA

CCTACCAGTGCCAGAGCGGACCTTGCTTCCACAGTTTTACTTTGGTGAACGTTAC

CGGCAGCAGCACAGCCGCTCCAGAAACTAACCTTCCTTCTGATACTATCAAACCT

TGTTTCGGAGGTGAGCTAAGGCTTCCCCCTTCTCAGGAGGGGGTTAGCCCATACG

AAGTGGTCGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCT

AGCTCAGCTGCCTTGCTGGGTGGAAATCAAAATCTTTATATGCTGGGTAAGACAT

TGTGGGGAGGAACTATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGG

GTGTGCTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATGAGA

GGAACGACTGCTCTGTAGTTATCAAATGCGAGCACCATTGTCCTCTCAACATTAC

ATTCAAAAATAAGACCATGGGAAATGTATGGGTGGGATTCTGGCAACCAGGAGA

TGAGCAGAACTACACGGTCACTGTCCATGGTAGCAATGGCAATCACACTTTCGG

TTTCAAATTCATTTTTGAAGTCATGTGTGATATCACACTACATGTGGCTAGACTT

CATGGCTTGTGGCCCCCTACCAAGGATAACATGGTGGGTTTTTCTTTGGCTTTTG

TGATCATGGCCTGCTTGATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTTTCT

GAAACGCAAGCCCAGGTATGGAAATGAAGAGAAGGAAAAATTGCTATAAATTC SEQ

ID Sequence

NO

CTTGTAGCTTTTAGTCAGGCAGGATTTCATACTATCAATGCTACATGGTGGGCTA

ATATAACTTTAGTGGGACCCCCAGACACACCAGTCACTTGGTATGATACTCAAG

GATTGTGGTTTTGCAATGGCAGTAGAGTTAAGAATCCTCAAATCAGACATACAT

GTAATGATCAAAACCTTACTTTGATCCATGTGAACAAAACTTATGAAAGAACAT

ACATGGGTTATAATAGACAAGGGACTAAAAAAGAAGACTACAAAGTTGTAGTTA

TACCACCTCCTCCTGCTACTGTAAAACCACAGCCAGAGCCAGAGTATGTGTTTGT

TTATATGGGAGAGAACAAAACTCTAGAAGGTCCTCCGGGAACTCCAGTCACATG

GTTTAATCAGGATGGAAAGAAATTTTGTGAAGGAGAAAAAGTTCTTCATCCAGA

ATTTAACCACACCTGTGACAAACAAAACCTTATACTACTGTTTGTGAATTTTACA

CATGATGGAGCTTACCTTGGGTACAATCATCAAGGAACCCAGAGAACACACTAT

GAAGTTACAGTATTAGATCTTTTTCCAGATTCTGGCCAAATGAAAATTGAACATC

ATAACTGGCAGAAACAGGGTGGGCAAAAACAGGGTGGGCAAAAAACAAATCAA

ACAAAAGTTAATGACAGGAGAAAAACAGCGCAAAAAAGACCATCAAAGCTAAA

GCCGGCAACTATTGAGGCAATGCTGGTTACAGTGACTGCCGGGTCTAACTTAAC

TTTGGTTGGACCTAAAGCAGAAGGAAAAGTTACTTGGTTTGATGGAGATTTAAA

AAGACCATGTGAGCCTAATTACAGACTAAGACACGAATGTAATAATCAAAACTT

AACTCTGATTAATGTAACTAAAGATTATGAGGGAACTTACTATGGTACAAATGA

CAAAGATGAGGGCAAAAGGTACAGAGTGAAAGTAAATACTACAAATTCTCAAT

CTGTGAAAATTCAGCCATATACCAGACAAACTACTCCTGATCAAGAGCACAAAT

TTGAATTACAGTTCGAAACTAATGGAAATTATGATTCAAAAATTCCCTCAACCAC

TGTGGCAATCGTGGTGGGTGTGATTGCGGGCTTCATAACTCTGATCATTGTCTTC

ATATGCTACATCTGCTGCCGCAAGCGTCCCAGGGCATACAATCATATGGTAGAC

CCACTACTCAGCTTCTCTTACTAAGACTCAGTCACTTTCATTTCAGAACCATGAA

GGTTTTCACAGCTTGCGTTCTGATTAGCCTAGTCACACTTAGTGTAGCTATTAAA

AATCAATATCATGTTCATAATGTTACCAGAGATGGATATATCACATTAAATGTAA

CAATTGATAATACTACCTGGACAAGATATCATTTAAATAAGTGGCATCAAATTTG

TACGTGGTCAGACCCATCATACAAATGTCACAGCAATGGCAGCATTACCATTCA

TGCTTTCAATATTACTTCTGGCCAGTACAAAGCTGAAAGTTTTACTAACTGGTTT

AGCATCCTACAACAAAAGCACCCACCACTGCTAATACAGCTACATCAATTAAAT

CAACAACCACACAGCCTACTACTAGGGAGACAACTACTGAGACCACTACTCAAA

CTACACAGCTAGACACAACAGTGCAGAATAGCACTGTGTTGGTTAGGTATCTGT

TGAGGGAGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTTAGCA

GCACTGCAAATTTAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATCATTGAT

GAATCATCAGCCTTTCTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTTTGTG

GGATCTTTATTCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAGAA

ATCTAGGAGGCCCATCTACAGGCCAGTAATCGGGGAACCTCAGCCACTCCAAGT

GGAAGGGGGTCTAAGGAATCTTCTTTTCTCTTTTTCAGTATGGTGATCAGCCATG

ATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACATCTGCGCTGC

CTTTGCAGCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCAACCTAC

CTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCAT

CACCTTCCTGCAGCTTATCGACTGGTGCTGTGCGCGCTACAATTATCTCCATCAC

AGTCCCGAATACAGGGACAAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCA

TGCAGACTCTGCTCATGCTGCTATCCCTCCTATCCCCTGCCCTAGCCACTTATGCT

GATTACTCTAAATGCAAATTCGCAGACATATGGAATTTCTTAGATTGCTATCAGG

AAAAAATTGATATGCCCTCCTATTACTTGGTGATTGTGGGAATAGTCATGGTCTG

CTCCTGCACTTTCTTTGCCATCATGATTTACCCCTGTTTTGATCTCGGCTGGAACT

CTGTTGAAGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCAC

CACCCACACCGCCTCCTCGCAGAAATCAGTTCCCCCTGATACAGTACTTAGAAG

AGCCCCCTCCCCGACCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGA

TGACTGACCACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCA

TCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTTG SEQ

ID Sequence

NO

ATGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGG

CAAAGATCACCTACGAGCTCGTGTCCAACGGCAAACAGCATCGCCTTACCTATG

AGATGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAG

TCATCACCCAGCAGTCGGGCGAGACCAACGGCTGCATCCACTGCTCCTGCGAAA

GCCCCGAGTGCATCTACTCCCTTCTCAAGACCCTTTGCGGACTCCGCGACCTCCT

CCCCATGAACTGATGTTGATTAAAAGCCCAGAAACCAATCAGACCCTTCCTCATT

TCCCCATCCCAATACTCATAAGAATAAATCATTGGAATTAATCATTCAATAAAGA

TCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGCTCAGCAACACCTC

GGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAACTTTCTC

CACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTC

TTAGATGTCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTA

TGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCC

GATGGATTCAAAAACTTCCCCCCTGGGGTACTGTCACTCAAACTGGCTGATCCAA

TCACCATTACCAATGGGGATGTATCCCTCAAGGTGGGAGGTGGTCTCACTTTGCA

AGATGGAAGCCTAACTGTAAACCCTAAGGCTCCACTGCAAGTTAATACTGATAA

AAAACTTGAGCTTGCATATGATAATCCATTTCAAAGTAGTGCTAATAAACTTAGT

TTAAAAGTAGGACATGGATTAAAAGTATTAGATGAAAAAAGTGCTGCGGGGTTA

AAAGATTTAATTGGCAAACTTGTGGTTTTAACAGGAAAAGGAATAGGCACTGAA

AATTTAGAAAATACAGATGGTAGCAGCAGAGGAATTGGTATAAATGTAAGAGC

AAGAGAAGGGTTGACATTTGACAATGATGGATACTTGGTAGCATGGAACCCAAA

GTATGACACGCGCACACTTTGGACAACACCAGACACATCTCCAAACTGCACAAT

TGCTCAAGATAAGGACTCTAAACTCACTTTGGTACTTACAAAGTGTGGAAGTCA

AATATTAGCTAATGTGTCTTTGATTGTGGTCGCAGGAAAGTACCACATCATAAAT

AATAAGACAAATCCAAAAATAAAAAGTTTTACTATTAAACTGCTATTTAATAAG

AACGGAGTGCTTTTAGACAACTCAAATCTTGGAAAAGCTTATTGGAACTTTAGA

AGTGGAAATTCCAATGTTTCGACAGCTTATGAAAAAGCAATTGGTTTTATGCCTA

ATTTGGTAGCGTATCCAAAACCCAGTAATTCTAAAAAATATGCAAGAGACATAG

TTTATGGAACTATATATCTTGGTGGAAAACCTGATCAGCCAGCAGTCATTAAAAC

TACCTTTAACCAAGAAACTGGATGTGAATACTCTATCACATTTAACTTTAGTTGG

TCCAAAACCTATGAAAATGTTGAATTTGAAACCACCTCTTTTACCTTCTCCTATA

TACAGTGTACACGGTTCTCTCAGCACGGGTAGCCTTAAATAGGGAAATATTCTCA

TTAGTGCGGGAATTGGACTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCA

AACGGGGGTCGGTGATTGAAATAAAGCCGTCCTCTGAAAAGTCATCCAAGCGGG

CCTCACAGTCCAAGGTCACAGTCTGGTGGAACAAGAAGAACGCACAGATTCATA

CTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAGCAGTCTCTGC

CGCCGGGGCTCGGTGCGGCTGCTGCAAATGGGATCGGGATCACAAGTCTCTCTG

ACTATGATCCCAACAGCCTTCAGCATCAGTCTCCTGGTGCGACGGGCACAGCAC

CGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCATGT

TATTCAGCAGCCCATAATTCAGGGCGCTCCAGCCAAAGCTCATGTTGGGAATGA

TGGAACCCACGTGACCATCGTACCAGATGCGACAGTATATCAGGTGCCTGCCCC

TCATGAACACACTGCCCATGTACATGATCTCTTTGGGCATGTTTCTGTTTACAAT

CTGGCGGTACCAGGGGAAGCGCTGGTTGA SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGTGGCCAACGCTGATTGGCCGTTGCAACGACCGTTAGTGAC NO: GTCACGACGCACGGCGTCAACGGTCGGCGCGGAGGCGTGGCCTAGGCCGGAAG 1424 CAAGTCGCGGGTCTGATGACGTCTAAAAAAGCGGACTTTAGACCCGGAAATGGC

CGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGTG

AAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAAAT

ACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGAT

AGTCCGGTGTTTATGTCACCTGGTCAGCTGATCCACAGGGTATTTAAACCAGTCG

AGACCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTC

CGCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCAGCAACTGTG

CCTATGGACATGGCTGTGCTTCTGCTGGACGACTTTGTGAATACAGTATTGGAGG

ACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGACCTCTATG

ATCTGGAGGTAGATGCCCATGAGGACGACCCGAACGAAGAGGCTGTGAATTTAA

TATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTATTCCTAC

TCCACTTCATACTCCAACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACGA

GTTAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGA

ACAGGGTGAGCAGAGCATGGCTCTAATCTCAGACTATGCTTGTGTGGTTGTGGA

AGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGGAAGGCTGTAGATCCTG

CCAATATCACCGGGATCAGACCGGAGACCCTAATGCCTCCTGCGCTCTGTGTTAC

ATGAAAACCACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGC

TGAGTGCTTAACACATCTCTGTGTGATGCTTGAACAGCTGTGCTAAGTGTGGTTT

ATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGA

CCACCCGTCACCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGTACAGACC

CACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGACAAAATTGAGG

ACTTGTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCC

CCAGGAACTAGGCGCAGCTGCGCTGAGTCATGTGTAAATAAAGCTGTATAATAA

AAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGA

CCTATATAAGTGGCAACACCTGGACACTCAGACACAGACCTTCAGGGAGCTCCT

GATGGAGGTGTGGACTATCCTTGGGGACTTTAACAAGACACGCCGGCTTGTGGA

GGATAGTTCAGACGGGTGCTCCGGTTTCTGGAGACACTGGTTTGGAACTCCTCTA

TCTCGCCTGGTGTACACAGTTAAGAAGGATTATAGCGAGGAATTTGAAAATCTTT

TTTCCGACTGCTCTGGCCTGCTTGATTCACTGAATTTTGGCCACCAGTCCCTTTTC

GGGGTTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAACTGA

GCAGGGGCTACATCCTGGACTTCGCGGCCATGCACCTGTGGAGGGCCTGGATCA

GGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGG

GTCTTCTTCATCTACACAGACAAACATCCATGTTGGAGGAAGAGATGAGGGAGG

CCATGGACGACAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTG

GATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAGGGTGCTGACATCCA

TGGCCAGGGGAGTGAAGCGGGAGAGGAGCGATGGGGGCAATACCGGGATGATG

ACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACCTGG

CATGAGCTACAGCTGGAGTGCAGGGATGAGGTCGGCCTGATGCAGGATAAATAT

GGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGA

GGCCATTAAGAAGTATGCCAAGATTGCCCTGCGCCCAGATTGCAAGTACAGGGT

GACCAAGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGA

GGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAAT

GAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCGA

TGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCA

TGGCTGTGATTTCTTCGGCTTCAACAATATGTGTGCAGAGGTCTGGGGCGCCGCT

AAGATCAGGGGATGTAAGTTTTATGGCTGTTGGATGGGCGTGGTCGGAAGACCC

AAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTC

TCTACCGAGGGCAATGCTCGAGTGAGACACTGCTCTTCCATGGAGACGGGCTGC SEQ

ID Sequence

NO

TTCTGCCTGGTGAAGGGCACAGCCTCGATCAAGCATAATATGGTGAAGGGCTGC

ACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATC

CTGAAGAACATCCATGTGACCTCCCACCCCAGGAAGAAGTGGCCAGTGTTTGAG

AATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGTCAGAAGGGGTACCTTC

CAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCC

TTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGA

TCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCA

GACACACCAGGATGCAACCGGTGGCCCTGGATGTGACCGAGGATCTGCGACCCG

ACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACA

CAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAAGGCGACTATAAAGGTGG

GCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGTGCTT

CCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTCGCTC

GACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACT

GGCCTCGAGCTACATGCCAAGCAGCAACAGCAGCCCCTCCGTCCCCAGTTCCAT

CATCGCCGATGAGAAACTGCTGGCCCTGCTGGCAGAGCTGGAAGCCCTGAGCCG

CCAGTTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGCA

GCAAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCT

TTATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGA

ACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGT

GCTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGT

GCTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGT

AGGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATG

TGGAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGG

GGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACT

TGTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG

ACGATGGTTCCCTCGGGACCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGATAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGT

GGTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGT

TGAGCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGT

CCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGA

GCCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGT

CCCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCT

GCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCA

CGGTGAATGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATGAGCTCGTAGTTGAGTGCCTCGGCGGCGTGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCG

TAGAGCTTGGGTGCAAGAAAGACGGACTCGGGGGCAAAGGCGTCCGCTCCGCA

GTGGGCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGCTCGGGCCGCTCGGG

GTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCA

TGAGTCTGTGTCCGCGTTCGGTGACAAACAAGCTGTCTGTGTCCCCGTAGACGGA

CTTGATGGGCCTGTCCTGCAAGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCG

GACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG

CGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACGGTATGCAG SEQ

ID Sequence

NO

ACACATGTCCCCCTCCTCCGCATCCAGGAAGGTGATTGGCTTGTAGGTGTAGGCC

ACGTGACCCGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCG

TCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATT

CCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCGATGCTTTTGAGTAGACTTTCATC

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

TAGAGGGCGTTTGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCAC

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACAC

ACTTCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACACTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCGCCCGCCCTTGCGCGAACAGAACGGGGGCA

GCACATCAAGCAGGTGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

CTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

TGGCATGGGATGCGTGAGCGCGGAGGCGTACATGCCGCAGATGTCGTAGACATA

GATGGGCTCCGCGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGAT

GCTGGCGCGCACGTAGTCATACAACTCGTGTGAGGGGGCCAAGAAGGCGGGGC

CGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGG

CATGCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGG

GCAAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGA

CGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGA

TGATGTCATAACCCGTCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTA

CTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGG

TAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTC

TCCACGGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGTCAGG

GCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCG

TCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGG

TTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATG

AAATTGCGGGTGATGCGGAAAGGGCCCGGCACGGAGGCTCGGTTGTTGATGACC

TGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAG

AGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGT

AGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCTAGCGCCCACTCCTGGA

GATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCT

GGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGG

TGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCA

CGGCTAGATCGCGAGCGAGGGCGACCAGCTCTGGGTCCCCGGAGAATTTCATGA

CCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTT

CTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGT

AGAAATCCCTCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCG

CGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGG

CGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGG

TTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGT

ACTTGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGA

CGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGG

CACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGC

GTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGTCGCCTCTGCGTGAAGAC

CACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGC

GTCATTGACGGCGGCTTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGG SEQ

ID Sequence

NO

TAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGC

CCGCGCGCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCG

AGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGT

CGACGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCG

TGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCG

ATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGACGCAGGGGCATCTCGCTG

ATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAGTCCACGGCGAAGT

TGAAAAACTGGGCGTTGCGGGCCGAGATCGTGAGCTCGTCTTCCAGGAGCCTGA

TGAGTTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCT

CCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCCTCCTCTGGGGGCGGT

GGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAA

GCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACC

CCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGG

CGGGTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGG

TGTAGGGGACGTGAGCGCGTCGAGATCGACAGGATCGGAGAATCTTTCGAGGAA

AGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTG

CGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGG

AGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGT

AATCATGCATGAGCCTTTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCG

GGTGACCCCGACGCCCCTGAGCGGTTGCACGAGCGCCAGGTCGGCGACGACGCG

CTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGAAAGTCGTCCAT

GTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCAT

GAGCGACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAG

CCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGT

ACTGGTAGCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGC

TGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCG

TAGAGGTAGCGGGACATCCAGGTGATTCCGGCGGCGGTGGTGGAGGCGCGCGG

GAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGT

CGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAA

ACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGT

TAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGA

CTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATA

GAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGG GTTGAGTCGCGGCAGAACCCGGTTCGAGGACGGCCGCGGCGAGCGGGACTTGGT CACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCG

CCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCC

ACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGC

CGTCCCCGGAGCGACATCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGT

ACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAG

ATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGC

CAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAG

CCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGAC

GGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCT

GATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGA

GGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGT

GGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTAAACATCG

CCGAGCCCGAGGGCCGCTGGCTGCTGGAGCTGATCAACATCTTGCAAAGCATCG

TAGTGCAGGAGCGCAGCCTGAGCTTGGCCGAGAAGGTGGCGGCGATCAATTACT

CGGTGCTAAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACG

TGCCCATAGACAAGGAGGTGAAAATAGACAGCTTTTACATGCGCATGGCGCTCA SEQ

ID Sequence

NO

AGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACA

AGGCCGTAAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTA

AGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACTTC

GACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCC

TACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACCCGT

TGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGCAGCAAACCCCGGACCC

CGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTG

GGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTT

TAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCC

CTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGC

GGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCT

GGAGCGCGTGGGCCGATACAACAGCACGAACGTGCAGTCCAACCTGGACCGGCT

GGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGG

GCTTGGGCTCGCTGGTGGCGCTGAATGCCTTCCTGGCGACGCAGCCGGCGAACG

TGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCTGATGG

AGACGAGCCGGCAGGGCTTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAACC

TGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAGCA

GCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGA

CAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTGTACCG

CGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACGA

GCGTGAGTCGCGCGCTGGGTCAGAACGACACCGACAGTCTGAGGGCCACCCTGA

ACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGCGCTGTCGG

CCGAGGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGA

TGCAGGAGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGG

AACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACC

TGCACCGCGCGGCGTCCATGAACACGGACTACTTTACTAATGCTATACTAAACCC

GCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCTGACCC

CAACGACGGGTTTTTGTGGGACGACGTGGACAGCGCGGTGTTCTCACCGACCTT

GCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCAAGCGAGGGCGCGGTGGGTC

GGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAG

CGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTC

GCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATAACGGGATAGAGA

GTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGAGC

CTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGG

ACGACGAGGATTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTG

GGGTCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGGCGACGGATGTTTTGAA

TGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATG

AGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGC

AGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGG

GCAGAAACAGCATTCGTTACTCAGAGCTGGCTCCGCTGTACGACACCACTCGCG

TGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACG

ACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCG

AGGCTAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATC

TGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTTACCA

GCAAGTTTAAGGCGCGGGTGATGGTGTCTAGGAAGCGGCCAGAGGGGGCGACA

GATGCAAGTCAGGATATCTTAAAGTATGAGTGGTTTGAGTTTACCCTTCCCGAGG

GCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAA

ACTACTTGCAAGTGGGGCGGCAGAATGGCGTGCTGGAGAGCGATATCGGAGTCA

AGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGTGA

TGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGG

GCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCA

AGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGGGG SEQ

ID Sequence

NO

GCAACATCCCCGCTCTGCTTGATGTGGAAGCATACCTCAACAGCAAGAATGATA

AGGAGGAGGCTACCAAGAATGCAAACAGAGCTGCTGACAATGGAGGTGGTGAA

ACTAGGGGAGATACTTTTCTCACCACCGAACAGCTAAGAGCTGCTGGCAAGGAG

CTGGTTATTAAGCCCATCAAGGAAGATGCTAGCAAGAGGAGCTATAATGTCATA

GATGGCACCCATGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGG

GACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACC

TGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTC

ACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTC

ATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCA

TCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGAT

CCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTTAGTGAAAACGTGCCTGCT

CTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGA

GTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGG

GCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTCT

CATCTCGCCCAGCAATAACACCGGCTGGGGTATTACTAGGCCCAGCACCATGTA

CGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTT

CCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCCACCGCCGTGCGCAC

CACCGTTGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACACCCC

CGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGA

CTATGCCAGACGCAAGAGCCGGCGGCGACGGATTGCCAGGCGCCACCGGAGCA

CGCCCGCCATGCGCGCCGCTCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCC

GCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCGCTGCACCCACCCCCGCAG

GCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATTTCTAGCATGA

CCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGC

GCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCC

CGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTC

GCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAA

GCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCG

AGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGT

TGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGA

GCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCG

GCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCT

GATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGAAGCCCGTGAC

CCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCG

CGAGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCG

CGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGG

TGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTC

AGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGC

AGACCGATCCCTGGCTCCCAGCCTCCACCGCTACCGTCTCCACTTCTACCGCCGC

CACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGAT

GCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCTGGCTACCGCGGCACC

CGGTATTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCACCGCC

ACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCGGGGC

CGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATTCGTGT

GCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTC

CCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCT

GAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCC

CGCGCTCATACCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTC

CGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGA

CCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGG CACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCT TAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAG SEQ

ID Sequence

NO

CACGGGGCAGTTGCTAAGGGAAAAGCTCAAAGACCAGAACTTTCAGCAGAAGG

TGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGG

CCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGG

AGATGGAAGATGCAACTCCTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCC

GACGCGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGC

CGTGAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGTGT

AATGAAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCGAA

GGCAGCTCCGGTTGTGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCCC

CGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCCT

GGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAGGA

CACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAG

ATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAG

GACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGAC

ACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCCCCGACCCAC

GATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGAT

CGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGAC

AACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGAC

CGCGGTCCCAGCTTCAAACCCTACTCGGGCACGGCTTACAACAGTCTGGCCCCC

AAGGGCGCCCCCAATCCCAGTCAGTGGGAAGAGAAAAAGAATGGAGGAGGAAG

CGATGCTAATCAAATGCAAACTCACACGTTTGGAGTTGCTGCCATGGGTGGCATT

GAAATTACAGCTAAGGGTCTTCAAATTGGCATTGATGCAACCAAAGAGGAAGAT

AATGGAAAGGAAATATATGCCGACAAAACATTCCAGCCAGAGCCTCAAATAGG

AGAAGAAAACTGGCAGGATAGTGATAATTACTATGGAGGCAGAGCCATCAAGA

AAGAAACCAAGATGAAGCCATGCTATGGCTCATTTGCCAGACCTACCAATGAAA

AAGGCGGCCAGGCTAAATTCAAAACACCTGAAAAAGAAGGTGAAGAACCCAAA

GAACTTGACATAGATTTGAATTTCTTTGATATTCCCAGTACTGGCACAGGTGGTA

ATGGAACAAATGTTAATTTCAAACCAGACATGATAATGTATGCAGAAAATGTGA

ACTTGGAAACCCCAGACACTCATATTGTATACAAGCCAGGCAAGGAAGATGCAA

GTTCTGAATCTAACCTCACACAACAGTCCATGCCCAACAGACCCAACTACATTG

GATTTAGGGACAACTTTGTAGGGCTCATGTACTACAACAGCACTGGCAACATGG

GTGTGCTGGCTGGTCAGGCATCTCAGTTGAATGCTGTGGTCGACTTGCAAGACA

GAAACACCGAGCTGTCTTACCAGCTATTGCTAGATTCTCTGGGTGACAGAACCA

GATACTTTAGTATGTGGAACTCTGCGGTGGACAGTTACGATCCCGATGTCAGGAT

CATTGAGAATCACGGTGTGGAAGATGAACTTCCCAACTATTGCTTCCCCTTGGAT

GGCGCTGGAACTAACGCAGTGTACCAAGGTGTAAAAGTTAAAACTACTAACAAT

ACAGAATGGGAAAAAGACACTGCAGTATCTGAACACAATCAGATATGCAAAGG

CAACGTGTATGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCT

GTACTCGAACGTGGCCCTGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAA

CGTCACGCTGCCCACCAACACCAACACCTACGAGTACATGAACGGCCGCGTGGT

AGCCCCCTCGCTGGTGGACGCTTACATCAACATTGGCGCCCGCTGGTCGCTGGAC

CCCATGGACAACGTCAACCCATTCAACCACCACCGCAACGCGGGCCTGCGCTAC

CGTTCCATGCTTCTGGGCAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCC

AAAAGTTCTTTGCCATCAAGAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGA

GTGGAACTTCCGCAAGGACGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGA

CCTGCGCGTCGACGGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACC

TTCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACG

ACACCAACGACCAGTCTTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCC

CATCCCGGCCAAGGCCACCAACGTGCCCATTTCCATCCCCTCGCGCAACTGGGCC

GCCTTCCGCGGCTGGAGTTTCACTCGTCTGAAAACCAAGGAAACTCCCTCCCTCG

GCTCGGGTTTCGACCCCTACTTTGTCTACTCGGGCTCCATCCCCTACCTCGACGG

GACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCG

GTCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAG

CGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGA SEQ

ID Sequence

NO

CTGGTTCCTCGTCCAGATGCTCTCTCATTACAACATCGGCTACCAGGGCTTCCAC

GTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCA

TGAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCC

TGCCCTTCCAGCACAACAACTCGGGCTTCACCGGCTACCTCGCACCCACCATGCG

CCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAGC

CGTGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCAT

CCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAAC

ATGCTCTACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCC

ATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAG

TGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTC

CGCCGGCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCG

CGCTTCCCGGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACG

GCCGGCCGCGAGACCGGAGGCGTGCACTGGCTCGCCTTTGGCTGGAACCCGCGC

TCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGCCGGCTGAAGC

AGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGCAGCGCCCTGGCCTCCTC

GCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCTGA

CTCTGCCGCCTGCGGACTTTTTTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGC

CCGACCGACCCATGGACGGAAACCCCACCATGAACTTGCTGACGGGGGTACCCA

ACGGCATGCTACAATCGCCACAGGTGCTACCCACCCTCCGGCGCAACCAGGAGG

AGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTACTTTCGATCCCACCGCGCCGC

CATCGAACACGCCACCGCTTTTGATAAAATGAAACAACTGCGTGTATCTCAATA

AACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGA

AGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGT

ACTGGTACTTGGGCTGCCACTTGAATTCGGGGATCACCAGTTTGGGCACTGGAAT

CTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGGCGCCCAGCAT

GTCGGGCGCGGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGCGCGCGCGA

GTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTGCTTCAC

ACTGGCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGTTG

CTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTC

TGAGGCTTGTGATTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCCG

CGCTGCATATTCGGGTAGAGGGCCTTGACGAAGGCCGAGATCTGCTTGAAAGCT

TGCTGGGCCTTGGCCCCCTCGCTGAAAAACAGCCCGCAGCTCTTCCCGCTGAACT

GGTTATTCCCGCAACCGGCATCTTGGACGCAGCAGCGCGCGTCATGGCTGGTCA

GTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTTACCTTGGCCTTGCTGGGTTG

CTCCTTCAACGCGCGCTGCCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGG

TCCTTGTGGATCATCACCGTTCCATGCAGACACTTGAGCTGGCCTTCCACCTCGG

TACAGCCGTGATCCCACAGGGCACTGCCGGTGCACTCCCAGTTCTTGTGCGCGAT

CCCGCTGTGGCTGAAGATGTAACCTTGCAACAGGCGGCCCATGATGGTGCTAAA

GCTCTTCTGGGTGGTGAAGGTCAGTTGCAGACCGCGGGCCTCCTCGTTCATCCAG

GTCTGGCACATCTTCTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCAT

CGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCAT

GCCCTTCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAG

GACACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAAC

AGAACCGGCGGCTGGCTGAATCCCACTCCCACGATCACGGCTTCTTCCTGGGGC

ATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTCTTTCTGGCTTGCTTCTT

TTTTAAAGGGCTGTCCACGGGGACCACGTCCTCCTCGGAAGACCCGGAGCCCAC

CCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGGCGAGGGGCT

CCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTGGC

CTCTCGCTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAG

GGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCAC

CCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCT

AGAACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGA SEQ

ID Sequence

NO

CCGACGCTGGGCTCGAGCATGGCTACCTGGGAGGAGAGGAGGATGTGCTGCTGA

AACACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTAGCCGACCGGAGCG

AAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTC

GCCGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACATGCGAGCCCAACCCGCG

TCTCAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTGGCCACCTATCACATCT

TTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCG

ACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGA

AGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGA

ACGCTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAG

TTGGAAGGCGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAGCTCACC

CACTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGG

ATCAGCTCATTATGCCCCACATCGAGGCCCTCGATGAAAGTCAGGAGCAGCGGC

CCGAGGACGCCCGGCCCGTGGTCAGCGACGAGATGCTCGCGCGCTGGCTCGGGA

CCCGCGACCCCCAGGCTTTGGAACAGCGGCGCAAGCTGATGCTGGCCGTGGTCC

TGGTCACCCTCGAGCTCGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCT

GCGCAAGGTCGAGGAGACCCTGCACTACACTTTCAGACACGGTTTCGTCAGGCA

GGCCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGAT

CCTGCACGAGAACCGCCTGGGGCAGACCGTGCTCCACTCCACCCTGAAGGGCGA

GGCGCGTCGGGACTATGTCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACCTGG

CAGTCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGA

GCTGGACAAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGACGGGCTTCGACGA

GCGCACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCCGAGCGCCTGAGGCA

GACGCTGAAAGGCGGGCTGCCCGACTTCATGAGCCAGAGCATGTTGCAAAATTA

CCGCACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCCTTT

CCCTCCGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCC

ACTGCTACCTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGACGTGATCGA

GGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCACTGCCGATGCAACCTGTGCTC

CCCGCACCGCTCCCTGGTCTGTAACCCCCAGCTCCTGAGCGAAACCCAGGTCATC

GGTACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACG

CCGGGGTTGTGGACTTCTGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACG

CCCACGAGATAAAGTTCTTCGAGGACCAATCGCGCCCGCAGCACGCGGATCTCA

CGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCAAA

AATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCC

AGACGGGCGAGGTGCTCAATCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCCG

ATAGTGGAGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGAGG

ACGAATGGGAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGA

GCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGT

CACGGATACAACCTCCGCAGCACCTCCGGCCAAGCCTCCTCGTAGATGGGATCG

AGTGAAGGGTGACGGTAAGCACGAGCGGCAGGGCTACCGGTCATGGAGGGCCC

ACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCG

CCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCA

TTACTACCGTCACCTTCACAGCTAAGAAAAAGCCAGTAAGAGGAGTCGCCGGAG

GAGGAGGCCTGAGGATCGCGGCGAACGAGCCCTCGACCACCAGGGAGCTGAGG

AAGAGCTCAAAGTAAAAAATCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGT

ACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGT

TCCACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAA

AAGGCGGGAATTACCTCATCGCCACCATCATGAGCAAGGAGATTCCCACCCCTT

ACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCCGCGGGCGCCTCCCAGGACT

ACTCCACCCGCATGAACTGGCTAAGTGCCGGCCCCTCGATGATCTCACGGGTCA

ACGGGGTCCGTAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACAT

CCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATC

AGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAG SEQ

ID Sequence

NO

TCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCT

CCGCCCACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCT

CAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCA

ACTAGCCGGAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACCTGACCTTG

CAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTG

GAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCT

ACCCGGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCT

ACGACTGAATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGG

ACCACTGCCGCCGCCTGCGCTGCTTTGCCCGGGAGAGCTGCGGACTCATCTACTT

TGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGT

AGAGGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTG

GTCGAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCTACC

CCGAAGTTGCATGAGAATTTTTGCTGTACTCTGTGTGCTGAGTTTAATAAAAGCT

AAACTCCTACAATACTCTGGGATCCCGTGTCGTCGCACTCGCAACGAGACCTTCA

ACCTTACCAACCAGACTGAGGTAAAACTCAACTGCAGACCAGGGGACAAATACA

TCCTCTGGCTATTTGAAAACACTTCATTCGCAGTCTCCAACACCTGCGCCAACGA

CGGTATTGAAATACCCAACAACCTTACCAGTGGACTAACTTACACTACCAGAAA

GACTAAGCTAGTACTCTACAATCCTTTTGTAGAGGGAACCTACCACTGCCAGAG

CGGACCTTGCTTCCACACTTTCACTTTGGTGAACGTTACCGGCAGCAGCACAGCC

GCTCCAGAAACATCTAACCTTCTTTCTGATACTAACACTCCTAAAACCGGAGGTG

AGCTCTGGGTTCCCTCTCTAACAGAGGGGGGTAAACATATTGAAGCGGTTGGGT

ATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTGTATTACCTTCC

TTGCTGGATCGAAATCAAAATCTTTATTTGCTGGGTCATACATTGTTGGGAGGAA

CCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTTGGGGGTGTACTGTCATG

CCACGAACAGCCACGATGTAACATCACCACAGGCAATGAGAGGAGTGTGATATG

CACAGTAGTCATCAAATGCGAGCATACATGCCCTCTCAACATCACATTCAAGAA

TAAGACCATGGGAAATGCATGGGTGGGCGATTGGGAACCAGGAGATGAGCAGA

ACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACTTTCGGTTTCAAATT

CATTTTTGAAGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGCTTG

TGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTTTTGTGATCATGG

CCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTTTAGTGTGGTTCCTGAAGCGCAA

GCCTAGGTATGGAAATGAGGAGAAGGAAAAATTGCTATAAATCTTTTTCTCTTC

GCAGAACCATGAATACTTTGACCAGTGTCGTGCTGCTCTCTCTTCTTGTAGCTCTT

AGTCAGGCAGGATTTCATACTATCAATGCTACATGGTGGGCTAATATAACTTTAG

TGGGACCCTCAGATATTCCAGTCACATGGTATGATAGCACTGGATTACAATTTTG

CGATGGAAGTACAGTTAAGAATCATCAGATCAGACATAGCTGTAATGATCAAAA

CTTAACTCTGATTCATGTGAACAAAACCCATGAAAGAACATACATGGGTTATAA

TAGACAGAGTACTCATAAGGAAGACTATAAAGTCATAGTTATACCGCCTCGTCC

TGTTACTGTAAAGCCACAGTCAGGCCCAGAGTATGTCAATGTTAATATGGGAGA

GAACAAAACCTTAGTTGGACCTCCAGGAATTCCAGTTAGTTGGTTTAATCAGGAT

GGATTACAATTCTGCATTGGGGATAAAGTTCTTCATCCAGAATTTAATCACACCT

GTGACATGCAAAATCTTACACTGTTGTTTATAAATCTTACACATGATGGAGCTTA

TCTTGGTTATAATCGCCAGGGAACTGAAAGAACTTGGTATGAGGTTGTAGTGTC

AGATGGTTTTCCAAAATCAGAAGAGATGAAGGTAGAAGAGCATAGTAAAGAAA

CAGAACAAAAACAAACTGGACAAAAACAGAGTGGCCAAAAAGAAACAAGTCAA

AAGAAAACTAATGACACACAAAAGCCATCGCGCAGGAGGCCATCTAAACTAAA

GCCAAACACACCTGACACAAAACTAATTACAGCCACTAGTGGGTCAAACGTAAC

TTTAGTTGGTCCAGCTGGAAAGGTCACTTGGTACGATGATGATTTAAAAAGACC

ATGTGAGACTGGGTATAAGTTAGACTGTAAGTGTGACAAACAAAACCTAACTCT

GATTAATGTAACTAAACTGTACGAAGGAGTTTACTATGGCACTAATGACAAAAG

CGATAGCAAAAGATACAGAATAAAAGTAAACACTACTAATTCTCAAAGTGTGAA

AATTCAGCCGTATACCATACCTACTACTCCTGAAAATAATCACAAATTTGAATTG

CAAATTGATTCTAATCAAGACAATGACAAAATTCCATCAACCACTGTGGCAATC SEQ

ID Sequence

NO

GTGGTGGGAGTGATTGCGGGCTTTGTTACTCTGATCATTGTCATTCTGTGCTACA

TCTGCTGCCGCAAGCGTCCCAGGTCATACAATCACATGGTAGACCCACTGCTCA

GCTTCTCTTACTAAAACTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACA

GCTTGCGTTCTGATTAGCCTAGTCACACTTAGTGCAGCTATTAAAAATCAATATC

ATGTTCATAATGTTACCAGAGATGGATATATCACATTAAATGTAACAATTGATAA

TACTACCTGGACAAGATATCATTTAAATAAGTGGCACCAAATTTGTACGTGGTCA

GACCCATCATACAAATGCCACAGTAATGGCAGCATTACTATTCATGCTTTTAATA

TTACTTCTGGCCAATACAAAGCTGAAAGTTTTACTAACTGGTTTAGATATTATGG

ACAAAATCGCCCACCACTGCTAATACAGCTACATCAATTAAATCAACAACCACA

CAGCCTACAACTGTGCCCACTACACATCCAATCACCACAGTCAGTACAACCACT

GAGACAACTACCCACACTACACAGCTAGACACATCAGTGCAGAGTAGTACTGTG

TTGATTAGGTTTTTGTTGAGGGAGGAAAGTACCACTGAACAGACAGAGGCTACC

TCAAGTGCCTTCAACAGCACTGCAAATTTAACTTCGCTTGCTTCAATAAATGAGA

CCCTCGTGCCGTTGATGCTGGAACAAGATCTAAGAGGTTTGGATATGCAAATTA

CTTTTCTGGTTGTCTGTGGGATCTTTATTCTTGCGGTTCTTCTGTACTTTGTCTGCT

GCAAAGCCAGAGAGAAATCTAGGAGGCCCATCTACAGACCAGTAATCGGGGAG

CCTCAGCCCCTCCAAGTGGATGGAGGCTTAAGAAATCTTCTCTTCTCTTTTACAG

TATGGTGATCAGCCATGATTCCTAGGTTCTTCCTATTTAACATACTCTTCTGTCTA

TTCAACATCTGCGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTAG

GGCCTTTCCCCACCTACCTCCTATTTGCCCTGCTCACCTGCACCTGCGTCTGCAGC

ATTGTCTGCGTGGTCATCACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCT

ACAATTACCTACACCACAGTCCCGAATACAGGGACGAGAACGTGGCCAGAATCT

TAAGGCTCATCTGACCATGCAGACTCTGCTCATACTGCTATCCCTCCTATACCCT

GCCCTTGCTGATGATTACTCTAAGTGCAAATTCGCGGACATATGGAATTTCTTAG

ACTGCTATCAGGAGAAAATGGATATGCCTTCCTATTACTTGGTGATTGTTGGGGT

AGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATC

TTGGCTGGAACTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAG

CCTCCACGCCACCACCCACACCGCCTCCCCGCAGAAATCAGTTTCCCATGATTCA

GTACTTAGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATA

ACCGGCGGCGATGACTGACCACCACCTGGACCTCGAGATGGACGGCCAGGCCTC

CGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAA

GGAGCTCCTCGATGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCT

GGTCAAACAGGCAAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCG

CCTCGCCTATGAGCTACCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGT

CAATCCCATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTG

CTCCTGCGAAAGCCCCGAGTGCATCTACTCCCTGCTCAAGACCCTTTGCGGACTC

CGCGACCTCCTCCCCATGAACTGATGTTGATTAAAAGCCCAAAAACCAATCAGT

CCCTTCCCCATTTCCCCATACCCAATTAAAATCATTGGAATTAATCATTCAATAA

AGATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCAC

CTCGGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGTGGCGAACTTC

CTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCC

CTCTCAGATGGCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCC

CTATGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCA

TCCGATGGATTCCAAAACTTCCCCCCGGGTGTCATGTCACTCAAACTGGCTGACC

CAATCACCATCGTCAATGGGGATGTCTCCCTTAAGGTTGGAGGGGGACTTGCCTT

GCAAGAAGGAAGTGGAAAGCTGACAGTCAATACTAAGGCTCCATTGCAAGTTGC

AAATGATAAATTAGAATTAGCATTTGATGCGCCATTTCAAGAAAAAAATGGAAA

ACTGGTATTGAAAACAGGACATGGTTTAGCTCTTTTAACTGAAGATAACACCCA

CATACCAGACTTAATTGGAACCCTTGTAGTACGAACTGGAAATGGAATTGGTAC

AGGTAGTGTAGCTGGCGGAGGAACCATAGATGTAAGACTTGGAAACGATGGTG

GACTCTCATTTGATAAAAAGGGTGACTTAGTAGCCTGGAATAAAAAAGATGACA

GGCGCACTCTATGGACAACGCCAGATCCATCGCCAAATTGTAGAATTGAAACCG SEQ

ID Sequence

NO

CAAAGGATGCAAAACTTACTCTTGTCTTAACAAAGTGCGGAAGTCAGATTTTAG

CCTCTGTTTCAATTATTGTGCTAAAAGGAACATATGAATATGCAAAAAAGGACA

CAACTGTTAAAGAGTTCAGTATTAAGTTACTGTTTGATAAAAATGGAGTACTTTT

ACCTGAATCTAATTTGGACAAAGATTATTGGAACTACAGAAGCGATGATTTAAC

TATAGCCAAGCCATATGAAAATGCAGTGCCTTTCATGCCAAATTTAAAGGCATA

CCCAAGACCTGATACAACTACTCAAACAACTCCAGGAGATAAAAAAAGTAGTGG

TAAAAATAAAATTGTTAGTAATGTGTATTTTGGAGGCGAGGTTTATCAGCCAGG

AGTTATAGTTATTTATTTTAATCAAGAAAAAGACGCTAACTGTGCTTACTCCATA

ACTTTGAAATTTGGATGGGGAAAGACATATGAAACACCCGTACCATTTGATACC

TCTTCTTTCACCTTCTCATACATTGCCCAAGAAAATGAAGACAAAAACGAATAA

AGTGTTTTAAACTGAATTTATGTATCTTTATTGATTTTTACACCAGCACGGGTAGT

CAGTCTCCCACCACCAGCCCATTTCACAGTGTACACGGTTCTTTCAGCACGGGTG

GCCTTAAATAGGGAAATGTTCTGATTAGTGCGGGAACTGGACTTGGGGTCTATA

ATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATTGAGATGAAGCCG

TCCTCTGGAAAGTCATCCAAGCGGGCCTCACAGTCCAAGGTTACAGTCTGGTGG

AATGAGAAGAACGCACAGATTCATACTCGGAAAACAGGATGGGTCTGTGCCTCT

CCATCAGCGCCCTCAACAGTCTCTGCCGCCGGGGCTCGGTGCGACTGCTGCAGA

TGGGATCGGGATCGCAAGTCTCTTTGACTATGATCCCCACAGCCTTCAGCAACAG

TCTCCTGGTGCGACGGGCACAGCACCGCATCCTGATCTCACTCAAGTTCTCACAG

TAAGTGCAGCACATAATCACCATGTTATTCAGCAGCCCATAATTCAGGGCGCTCC

AGCCAAAGCTCATGTTGGGGATAATGGAACCCACGTGACCATCGTACCAGATGC

GGCAGTATATCAGGTGCCTGCCCCTCAT

SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGTAAATGAGGCG ID ATTTTAAAAAGTGTGGGCTGTGTGGTGATTGGCTGTGGGGTTAACGGCTAAAAG NO: GGGCGGCGCGACCGTGGGAAAATGACGTTCTTTGGGGGTGGAGTTTTCTTGCAA 1425

GTTTTCCCACGGTATTTAACAGGAAATGAGGTAGTTTTGGCCGGATGCAAGTGA AAATTGTTCATTTTCGCGCGAAAACTGAATGAGGAAGTGTTTTTCTGAATAATGC GGTCTTTATGGCAGGGTGGAGTATTTGTTCAGGGCCAGGTAGACTTTGACCTATT ACGTGGAGGTTTCGATTACCGTGTTTTTTACCTGAATTTCCGCGTACCGTGTCAA

GTTTGTGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCTCCTCTGCG

CCGGCAGTTTAATATTAAAAAAATGAGAAACTTGCGATTTCTGCCTCAGGAAAT

AATTTCTGCTGAGACTGGAAACGAAATACTGGAGCTTGTGGTGCACGCCTTAAT

ACTGTATGATTTAGAGGTAGAGGGATCGGAGGATTCTAATGAGGAAGCTGTGAA

TGGCTTTTTTACCGATTCTATGCTTTTAGCTGCTAATGAAGGATTAGAATTAGAT

CCGCCTTTGGACACTTTCGATACTCCAGGGGTGATTGTGGAAAGCGGTACAGGT

GTAAGAAAATTACCTGATTTGGGTTCCGTGGACTGTGATTTGCACTGCTATGAAG

ACGGGTTTCCTCCGAGTGATGAGGAGGACCATGAAACGGAGCAGTCTATGCACA

CTGCAGCGGGTGAGGGAGTGAAGGCTGCCAGTGTTGGTTTTCAGTTGGATTGCC

CGGAGCTTCCTGGACATGGCTGTAAGTCTTGTGAATTTCACAGGAAAAATACTG

GAGTAAAGGAACTGTTATGTTCGCTTTGTTATATGAGAACGCACTGCCACTTTAT

ATATTGAGTGGGGGATTTGTGCTTCTTATTATAGGTCCTGTGTCTGATGCTGATG

AGTCACCATCTCCTGATTCTACTACCTCACCTCCTGAGATTCAAGCACCTGTTCCT

GTGGACGTGCGCAAGCCCATTCCTGTGAAGCTTAAGCCTGGGAAACGTCCAGCA

GTGGAAAAACTTGAGGACTTGTTACAGGGTGGGGACGGACCTTTGGACTTGAGT

ACACGGAAACGTCCAAGACAATAAGTGTTCCATATCCGTGTTTACTTAAGGTGA

CGTCAATATTTGTGTGAGAGTGCAATGTAATAAAAATATGTTAACTGTTCACTGG

GGTTAGCTCATAGGAGCTGGCTTTCATCCATGGAGGTTTGGGCCATTTTGGAAGA

CCTTAGAAAGACTAGGCAACTGTTAGAGGACGCTTCGGACGGAGTCTCCGGTTT

TTGGAGATTCTGGTTCGCTAGTGAATTAGCTAGGGTAGTTTTTAGGATAAAACAG

GACTATAAAGAAGAATTTGAAAAGTTGTTGCTAGATTGCCCAGGACTTTTTGAA

GCTCTTAATTTGGGTCATCAAGTTCACTTTAAAGAAAAAGTTTTATCAGTTTTAG

ACTTTTCAACCCCAGGTAGAACTGCCGCTGCTGTGGCTTTTCTTACTTTTATATTA

GATAAATGGATCCCGCAGACTCATTTCAGCAGGGGATACGTTTTGGATTTCATAG

CCACAGCATTGTGGAGAACATGGAAGGTTCGCAAGATGAGGACAATCTTAGGTT

ACTGGCCAGTGCAGCCTTTGGGTGTAGCGGGAATCCTGAGGCATCCACCGGTCA

TGCCAGCGGTTCTGGAGGAGGAACAGCAAGAGGACAACCCGAGAGCCGGCCTG

GACCCTCCAGTGGAGGAGGCGGAGTAGCTGACTTGTCTCCTGAACTGCAACGGG

TGCTTACTGGATCTACGTCCACTGGACGGGATAGGGGCGTTAAGAGGGAGAGGG

CATGTAGTGGTACTGATGCTAGATCTGAGTTGGCTTTAAGTTTAATGAGTCGCAG

ACGTCCTGAAACCATTTGGTGGCATGAGGTCCAGAAAGAGGGAAGGGATGAAG

TTTCTGTATTGCAGGAAAAATATTCACTGGAACAGGTGAAAACATGTTGGTTGG

AGCCTGAGGATGATTGGGAGGTGGCCATTAAAAATTATGCCAAGATAGCTTTGA

GGCCTGATAAACAGTATAAGATTACTAGACGGATTAATATCCGGAATGCTTGTT

ACATATCTGGAAATGGGGCTGAGGTGGTAATAGATACTCCAGACAAGACAGTTA

TTAGATGCTGCATGATGGATATGTGGCCTGGAGTAGTCGGTATGGAAGCAGTAA

CTTTTGTAAATGTTAAGTTTAGGGGAGATGGTTATAATGGAATAGTGTTTATGGC

GTAGATGCCTGGGGACAGGTTAGTGTACGGGGATGTAGTTTCTGTGCGTGTTGG ATTGCCACAGCTGGCAGAACCAAGAGTCAATTGTCTCTGAAGAAATGCATATTC CAAAGATGTAACCTGGGCATTCTGAATGAAGGCGAAGCAAGGGTCCGCCACTGC SEQ

ID Sequence

NO

GCTTCTACAGATACTGGATGTTTTATTTTAATTAAGGGCAATGCCAGCGTAAAGC ATAACATGATTTGCGGTGCTTCCGATGAGAGGCCTTATCAAATGCTCACTTGTGC CGGTGGGCATTGTAATATGCTGGCTACTGTGCATATTGTTTCCCATCAACGCAAA

GGCGTAGAGGAATGTTTATGCCTTACCAGTGTAACATGAATCATGTGAAAGTGT

TGTTGGAACCAGATGCCTTTTCCAGAATGAGCCTAACAGGAATCTTTGACATGA

ACATGCAAATCTGGAAGATCCTGAGGTATGATGATACGAGATCGAGGGTGCGCG

CATGCGAATGCGGAGGCAAGCATGCCAGGTTCCAGCCGGTGTGTGTAGATGTGA

CTGAAGATCTGAGACCGGATCATTTGGTTATTGCCCGCACTGGAGCAGAGTTCG

GATCCAGTGGAGAAGAAACTGACTAAGGTGAGTATTGGGAAAACTTTGGGGTGG

GGTTTTCAGATGGACAGATTGAGTAAAAATTTGTTTTTTCTGTCTTTCAGCTGTCA

TGAGTGGAAACGCTTCTTTTAAGGGGGGAGTCTTCAGCCCTTATCTGACAGGGC

GTCTCCCATCCTGGGCAGGAGTTCGTCAGAATGTTATGGGATCTACTGTGGATGG

AAGACCCGTCCAACCCGCCAATTCTTCAACGCTGACCTATGCTACTTTAAGTTCT

TCACCTTTGGACGCAGCTGCAGCCGCCGCCGCCGCCTCTGTTGCCGCTAACACTG

TGCTTGGAATGGGTTACTATGGAAGCATCCTGGCTAATTCCACTTCCTCTAATAA

CCCTTCTACCCTGACTCAGGACAAGTTACTTGTCCTTTTGGCCCAGCTGGAGGCT

TTGACCCAACGTCTGGGTGAACTTTCTCAGCAGGTGGCCGAGTTGCGAGTACAA

ACTGAGTCTGCTGTCGGCACGGCAAAGTCTAAATAAAAAAATTCCAGAATCAAT

CGTGCACGGTATGCCCTAGACCACCGATCTCGATCATTGAGAACTCGGTGGATTT

TTTCCAGAATCCTATAGAGGTGGGATTGAATGTTTAGATACATGGGCATTAGGCC

GTCTTTGGGGTGGAGATAGCTCCATTGAAGGGATTCATGCTCCGGGGTAGTGTTG

TAAATCACCCAGTCATAACAAGGTCGCAGTGCATGGTGTTGCACAATATCTTTTA

GAAGTAGGCTGATTGCCACAGATAAGCCCTTGGTGTAGGTGTTTACAAACCGGT

TGAGCTGGGAGGGGTGCATGCGGGGTGAAATTATGTGCATTTTTGATTGGATTTT

TAAGTTGGCAATATTGCCGCCAAGATCTCGTCTTGGGTTCATGTTATGAAGGACC

ACCAAGACGGTGTATCCGGTACATTTAGGAAATTTATCGTGCAGCTTGGATGGA

AAAGCGTGGAAAAATTTGGAGACACCCTTGTGTCCTCCGAGATTTTCCATGCACT

CATCCATGATAATAGCAATGGGGCCGTGGGCAGCGGCGCGGGCAAACACGTTCC

GTGGGTCTGACACATCATAGTTATGTTCCTGAGTTAAATCATCATAAGCCATTTT

AATGAATTTGGGGCGGAGAGTACCCGATTGGGGTATGAATGTTCCTTCGGGCCC

CGGAGCATAGTTCCCCTCACAGATTTGCATTTCCCAAGCTTTCAGTTCCGAGGGT

GGAATCATGTCCACCTGGGGGGCTATAAAGAACACCGTTTCTGGGGCGGGGGTG

ATTAGTTGGGATGATAGCAAGTTTCTGAGCAATTGAGATTTGCCACATCCGGTGG

GGCCATAAATGATTCCGATTACAGGTTGCAGGTGGTAGTTTAGGGAACGGCAAC

TGCCGTCTTCTCGAAGCAAGGGGGCCACCTCGTTCATCATTTCCCTTACATGCAT

ATTTTCCCGCACCAAATCCATTAGGAGGCGCTCTCCTCCTAGTGATAGAAGTTCT

TGTAGTGAGGAAAAGTTTTTCAGCGGTTTTAGACCGTCAGCCATGGGCATTTTGG

AGAGAGTCTGCTGCAAAAGTTCTAGTCTGTTCCACAGTTCAGTGATGTGTTCTAT

GGCATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTTGGACGGCTCCTGGAGT

AGGGTATGAGACGATGGGCGTCCAGCGCTGCCAGGGTTCGGTCCTTCCAGGGTC

TCAGAGTTCGAGTCAGGGTTGTTTCCGTCACAGTGAAGGGGTGTGCGCCTGCTTG

GGCGCTTGCCAGGGTGCGCTTCAGACTCATCCTGCTGGTCGAAAACTTCTGCCGC

TTGGCGCCCTGTATGTCGGCCAAGTAGCAGTTTACCATGAGTTCGTAGTTGAGCG

CCTCGGCTGCGTGACCCTTGGCGCGGAGCTTACCTTTGGAAGTTTTCTTGCATAC

CGGGCAGTATAGGCATTTCAGCGCATACAGCTTGGGCGCAAGGAAAATGGATTC

TGGGGAGTATGCATCCGCGCCGCAGGAGGCGCAAACAGTTTCACATTCCACCAG

ATGCGTTTCTTACCTTTGGTCTCCATGAGTTCGTGTCCTCGTTGAGTGACAAACA GGCTGTCCGTGTCCCCGTAGACTGATTTTACAGGCCTCTTCTCCAGTGGAGTGCC TCGGTCTTCTTCGTACAGGAACTCTGACCACTCTGATACAAAGGCGCGCGTCCAG GCCAGCACAAAGGAGGCTATGTGGGAGGGGTAGCGATCGTTGTCAACCAGGGG SEQ

ID Sequence

NO

GTCCACCTTTTCCAAAGTATGCAAACACATGTCACCCTCTTCAACATCCAGGAAT

GTGATTGGCTTGTAGGTGTATTTCACGTGACCTGGGGTCCCAGTTGGGGGGGTAT

AAAAGGGGGCGGTTCTCTGCTCTTCCTCACTGTCTTCCGGATCGCTGTCCAGGAA

CGTCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCTCTGCACTC

AGGTTGTCAGTTTCTAAGAACGAGGAGGATTTGATATTGACAGTGCCGCTTGAG

ATGCCTTTCATGAGGTTTTCGTCCATTTGGTCAGAAAACACAATTTTTTTATTGTC

AAGTTTGGTGGCAAATGATCCATACAGGGCGTTGGATAAAAGTTTGGCAATGGA

TCGCATGGTTTGGTTCTTTTCCTTGTCCGCGCGCTCTTTGGCAGCGATGTTGAGTT

GGACATACTCGCGTGCCAGGCACTTCCATTCGGGGAAGATAGTTGTCAATTCATC

TGGCACGATTCTCACTTGCCACCCTCGGTTATGCAAGGTAATTAAATCCACACTG

GTGGCCACCTCGCCTCGAAGGGGTTCGTTGGTCCAGCAGAGCCTACCTCCTTTCC

TAGAACAGAAAGGTGGAAGTGGGTCTAGCATAAGTTCATCGGGAGGGTCTGCAT

CCATGGTAAAGATTCCAGGAAGTAAATCCTTATCAAAATAGCTGATGGGAGTGG

GGTCATCTAAGGCCATTTGCCATTCTCGAGCTGCCAGTGCGCGCTCGTATGGGTT

AAGGGGACTGCCCCAGGGCATGGGATGGGTGAGTGCAGAGGCATACATGCCAC

AGATGTCATAGACGTAGATGGGATCCTCAAAGATGCCTATGTAGGTTGGATAGC

ATCGCCCCCCTCTGATACTTGCTCGCACATAGTCATATAGTTCATGTGACGGCGC

TAGCAGCCCCGGACCCAAGTTGGTGCGATTGGGTTTTTCTGTTCTGTAGACAATC

TGGCGAAAGATGGCGTGAGAATTGGAAGAGATGGTGGGTCTTTGAAAAATGTTG

AAGTGGGCATGAGGTAGACCTACAGAGTCTCTGATAAAGTGGGCATAAGATTCT

TGAAGCTTGGTTACCAGTTCGGCGGTGACAAGTACGTCCAGGGCGCAGTAGTCA

GTTGAGAAGGTATTCTTCGCGATCCTTCCAGTACTCTTCTAGCGGAAACCCGTCT

TTGTCTGCACGGTAAGATCCTAGCATGTAGAACTGATTAACTGCCTTGTAAGGGC

AGCAGCCCTTCTCTACGGGTAGAGAGTATGCTTGAGCAGCTTTTCGTAGCGAAG

CGTGAGTAAGGGCGAAGGTGTCTCTGACCATGACTTTGAGAAATTGGTATTTGA

AGTCTATGTCGTCACAGGCTCCCTGTTCCCAGAGTTGGAAGTCTACCCGTTTCTT

GTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAGAGAATCTTACCGGC

TCTGGGCATAAAATTGCGAGTGATGCGGAAAGGCTGTGGTACTTCCGCTCGATT

GTTGATCACCTGGGCAGCTAGGACGATCTCGTCGAAACCGTTGATGTTGTGTCCT

ACAATGTATAATTCTATGAAACGCGGCGTGCCTCTGACGTGAGGTAGCTTATTGA

GCTCATCAAAGGTTAGGTCTGTAGGGTCAGATAAGGCGTAGTGTTCGAGGGCCC

ATTCGTGCAGATGAGGATTTGCATGTAGGAATGATGACCAAAGATCCACCGCCA

GTGCTGTTTGTAACTGGTCCCGATACTGACGAAAATGCTGGCCAATTGCCATTTT

TTCTGGAGTGACACAGTAGAAGGTTCTGGGATCTTGTTGCCATCGATCCCACTTG

AGTTTAATGGCTAGATCGTGGGCCATGTTGACGAGACGCTCTTCTCCTGAGAGTT

TCATGACCAGCATGAAAGGAACTAGTTGTTTGCCAAAGGATCCCATCCAGGTGT

AAGTTTCCACATCGTAGGTCAGGAAGAGTCTTTCTGTGCGAGGATGAGAGCCGA

TCGGGAAGAACTGGATTTCCTGCCACCAGTTGGAGGATTGGCTGTTGATGTGAT

GGAAGTAGAAGTTTCTGCGGCGCGCCGAGCATTCGTGTTTGTGCTTGTACAGAC

GGCCGCAGTAGTCGCAGCGTTGCACGGGTTGTATCTCGTGAATGAGTTGTACCTG

GCTTCCCTTGACGAGAAATTTCAGTGGGAAGCCGAGGCCTGGCGATTGTATCTC

GTGCTCTTCTATATTCGCTGTATCGGCCTGTTCATCTTCTGTTTCGATGGTGGTCA

TGCTGACGAGCCCCCGCGGGAGGCAAGTCCAGACCTCGGCGCGGGAGGGGCGG

AGCTGAAGGACGAGAGCGCGCAGGCTGGAGCTGTCCAGAGTCCTGAGACGCTG

CGGACTCAGGTTAGTAGGTAGGGACAGAAGATTAACTTGCATGATCTTTTCCAG

GGCGTGCGGGAGGTTCAGATGGTACTTGATTTCCACAGGTTCGTTTGTAGAGAC

GTCAATGGCTTGCAGGGTTCCGTGTCCTTTGGGCGCCACTACCGTACCTTTGTTTT

TTCTTTTGATCGGTGGTGGCTCTCTTGCTTCTTGCATGCTCAGAAGCGGTGACGG

GGACGCGCGCCGGGCGGCAGCGGTTGTTCCGGACCCGGGGGCATGGCTGGTAGT

GGCACGTCGGCGCCGCGCACGGGCAGGTTCTGGTACTGCGCTCTGAGAAGACTT

GCGTGCGCCACCACGCGTCGATTGACGTCTTGTATCTGACGTCTCTGGGTGAAAG

CTACCGGCCCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAGAATCAATTTCGG SEQ

ID Sequence

NO

TATCGTTAACGGCAGCTTGTCTCAGTATTTCTTGTACGTCACCAGAGTTGTCCTG

GTAGGCGATCTCCGCCATGAACTGCTCGATTTCTTCCTCCTGAAGATCTCCGCGA

CCCGCTCTTTCGACGGTGGCCGCGAGGTCATTGGAGATACGGCCCATGAGTTGG

GAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAAACCACGGCCCCC

TCGGAGTCTCTTGCGCGCATCACCACCTGAGCGAGGTTAAGCTCCACGTGTCTGG

TGAAGACCGCATAGTTGCATAGGCGCTGAAAAAGGTAGTTGAGTGTGGTGGCAA

TGTGTTCGGCGACGAAGAAATACATGATCCATCGTCTCAGCGGCATTTCGCTAAC

ATCGCCCAGAGCTTCCAAGCGCTCCATGGCCTCGTAGAAGTCCACGGCAAAATT

AAAAAACTGGGAGTTTCGCGCGGACACGGTCAATTCCTCCTCGAGAAGACGGAT

GAGTTCGGCTATGGTGGCCCGTACTTCGCGTTCGAAGGCTCCCGGGATCTCTTCT

TCCTCTTCTATCTCTTCTTCCACTAACATCTCTTCTTCGTCTTCAGGCGGGGGCGG

AGGGGGCACGCGGCGACGTCGACGGCGCACGGGCAAACGGTCGATGAATCGTT

CAATGACCTCTCCGCGGCGGCGGCGCATGGTTTCAGTGACGGCGCGGCCGTTCT

CGCGCGGTCGCAGAGTAAAAACACCGCCGCGCATCTCCTTAAAGTGGTGACTGG

GAGGTTCTCCGTTTGGGAGGGAGAGGGCGCTGATTATACATTTTATTAATTGGCC

CGTAGGGACTGCACGCAGAGATCTGATCGTGTCAAGATCCACGGGATCTGAAAA

CCTTTCGACGAAAGCGTCTAACCAGTCACAGTCACAAGGTAGGCTGAGTACGGC

TTCTTGTGGGCGGGGGTGGTTATGTGTTCGGTCTGGGTCTTCTGTTTCTTCTTCAT

CTCGGGAAGGTGAGACGATGCTGCTGGTGATGAAATTAAAGTAGGCAGTTCTAA

GACGGCGGATGGTGGCGAGGAGCACCAGGTCTTTGGGTCCGGCTTGCTGGATAC

GCAGGCGATTGGCCATTCCCCAAGCATTATCCTGACATCTAGCAAGATCTTTGTA

GTAGTCTTGCATGAGCCGTTCTACGGGCACTTCTTCCTCACCCGTTCTGCCATGC

ATACGTGTGAGTCCAAATCCGCGCATTGGTTGTACCAGTGCCAAGTCAGCTACG

ACTCTTTCGGCGAGGATGGCTTGCTGTACTTGGGTAAGGGTGGCTTGAAAGTCAT

CAAAATCCACAAAGCGGTGGTAAGCCCCTGTATTAATGGTGTAAGCACAGTTGG

CCATGACTGACCAGTTAACTGTCTGGTGACCAGGGCGCACGAGCTCGGTGTATTT

AAGGCGCGAATAGGCGCGGGTGTCAAAGATGTAATCGTTGCAGGTGCGCACCAG

ATACTGGTACCCTATAAGAAAATGCGGCGGTGGTTGGCGGTAGAGAGGCCATCG

TTCTGTAGCTGGAGCGCCAGGGGCGAGGTCTTCCAACATAAGGCGGTGATAGCC

GTAGATGTACCTGGACATCCAGGTGATTCCTGCGGCGGTAGTAGAAGCCCGAGG

AAACTCGCGTACGCGGTTCCAAATGTTGCGTAGCGGCATGAAGTAGTTCATTGT

AGGCACGGTTTGACCAGTGAGGCGCGCGCAGTCATTGATGCTCTATAGACACGG

AGAAAATGAAAGCGTTCAGCGACTCGACTCCGTAGCCTGGAGGAACGTGAACG

GGTTGGGTCGCGGTGTACCCCGGTTCGAGACTTGTACTCGAGCCGGCCGGAGCC

GCGGCTAACGTGGTATTGGCACTCCCGTCTCGACCCAGCCTACAAAAATCCAGG

ATACGGAATCGAGTCGTTTTGCTGGTTGCCGAATGGCAGGGAAGTGAGTCCTAT

ACAGCCCCCCTCGCAGCAGCAGCAACCACAAAAGGCTGTCCCTGCAACTACTGC

AACTGCCGCCGTGAGCGGTGCGGGACAGCCCGCCTATGATCTGGACTTGGAAGA

GGGCGAAGGACTGGCACGTCTAGGTGCGCCCTCGCCCGAGCGGCATCCGCGAGT

TCAACTGAAAAAAGATTCTCGCGAGGCGTATGTGCCCCAACAGAACCTATTTAG

AGACAGAAGCGGCGAGGAGCCGGAGGAGATGCGAGCTTCCCGCTTTAACGCGG

GTCGTGAGCTGCGTCACGGTTTGGACCGAAGACGAGTGTTGCGGGACGAGGATT

TCGAAGTTGATGAAGTGACAGGGATCAGTCCTGCCAGGGCACACGTGGCTGCAG

CCAACCTTGTATCGGCTTACGAGCAGACAGTAAAGGAAGAGCGTAACTTCCAAA

AGTCTTTTAATAATCATGTGCGAACCCTGATTGCCCGCGAAGAAGTCACCCTTGG

TTTGATGCATTTGTGGGATTTGATGGAAGCTATCATTCAGAACCCTACTAGCAAA

CCTCTGACCGCACAGTTGTTTCTGGTGGTGCAACACAGCAGAGACAATGAGGCT

TTCAGAGAGGCACTGCTCAACATCACCGAACCCGAGGGGAGATGGTTGTATGAT

CTTATCAACATTCTACAGAGTATCATAGTGCAGGAGCGGAGCCTGGGCCTGGCC

GAGAAGGTGGCTGCCATCAATTACTCGGTTTTGAGTTTGGGAAAATATTACGCTC

GCAAGATCTACAAGACTCCATACGTTCCCATAGACAAGGAGGTGAAGATAGATG

GGTTCTACATGCGCATGACGCTCAAGGTCTTGACCCTGAGCGATGATCTTGGGGT SEQ

ID Sequence

NO

GTACCGCAATGACAGAATGCATCGCGCCGTTAGCGCCAGTAGGAGGCGCGAGTT

AAGCGACAGGGAACTGATGCACAGTTTGCAAAGAGCTCTGACTGGAGCTGGAAC

CGAGGGTGAGAATTACTTTGACATGGGAGCTGACTTGCAGTGGCAGCCTAGTCG

CAGGGCTCTGAGCGCCGCGACGGCAGGATGTGAGCTTCCTTACATAGAAGAGGC

GGATGAAGGCGAGGAAGAAGAGGGCGAGTACTTGGAAGACTGATGGCACAACC

CGTGTTTTTTGCTAGATGGAACAGCAAGCACCGGATCCCGCAACGCGGGCGGCG

CTGCAGAGCCAGCCGTCCGGCATTAACTCCTCGGACGATTGGACCCAGGCCATG

CAACGTATCATGGCGTTGACGACTCGCAACCCCGAAGCCTTTAGACAGCAACCC

CAGGCCAACCGTCTATCGGCCATCATGGAAGCTGTAGTGCCTTCCCGCTCTAATC

CCACTCATGAGAAGGTCCTGGCCATCGTGAACGCGTTGGTGGAGAACAAAGCTA

TTCGTCCAGATGAGGCCGGACTGGTATACAACGCTCTCTTAGAACGCGTGGCTC

GCTACAACAGTAGCAATGTGCAAACCAATTTGGACCGTATGATAACAGATGTAC

GCGAAGCCGTGTCTCAGCGCGAAAGGTTCCAGCGCGATGCCAACCTGGGTTCGC

TGGTGGCGTTAAATGCTTTTTTGAGTACTCAGCCTGCTAATGTGCCGCGTGGTCA

ACAGGATTATACTAACTTTTTGAGTGCATTGAGACTGATGGTATCTGAAGTACCT

CAGAGCGAAGTGTATCAGTCCGGACCTGACTACTTCTTTCAGACTAGCAGACAG

GGTTTGCAGACGGTAAATCTGAGCCAAGCTTTTAAAAACCTTAAAGGTTTGTGG

GGAGTGCATGCCCCAGTAGGAGAAAGAGCAACCGTGTCTAGCTTGTTAACTCCG

AACTCCCGCCTATTACTACTGTTGGTAGCTCCTTTCACCGACAGCGGTAGCATCG

ACCGTAATTCCTATTTGGGTTACCTACTAAACCTGTATCGCGAAGCCATAGGGCA

AAGCCAGGTGGACGAGCAGACCTATCAAGAAATTACCCAAGTCAGTCGCGCTTT

GGGTCAGGAAGACACTGGCAGTTTGGAAGCCACTCTGAACTTCTTGCTTACCAA

TCGGTCTCAGAAGATCCCTCCTCAATATGCTCTTACTGCGGAGGAGGAGAGGAT

CCTTAGATATGTGCAGCAGAGCGTGGGATTGTTTCTGATGCAAGAGGGGGCAAC

TCCGACTGCAGCATTGGACATGACGGCGCGAAATATGGAGCCCAGCATGTATGC

CAGTAACCGGCCTTTCATTAACAAACTGCTGGACTACTTGCACAGAGCTGCCGCT

ATGAACTCTGATTATTTCACCAATGCCATCTTAAACCCGCACTGGCTGCCCCCAC

CTGGTTTCTACACGGGCGAATATGACATGCCCGACCCTAATGACGGGTTTCTGTG

GGACGACGTGGACAGTGATGTTTTTTCACCTCTTTCTGATCATCGCACGTGGAAA

AAGGAAGGCGGCGATAGAATGCATTCTTCTGCATCGCTGTCCGGGGTCATGGGT

GCTACCGCGGCTGAGCCCGAGTCTGCAAGTCCTTTTCCTAGTCTACCCTTTTCTCT

ACACAGTGTACGTAGCAGCGAAGTGGGTAGAATAAGTCGCCCGAGTTTAATGGG

CGAAGAGGAATACCTAAACGATTCCTTGCTCAGACCGGCGAGAGAAAAAAATTT

CCCAAACAATGGAATAGAAAGTTTGGTGGATAAGATGAGTAGATGGAAGACTTA

TGCTCAGGATCACAAAGACGAGCCTGGGATCATGGGGACTACAAGTAGAGCGA

GCCGTAGACGCCAGCGTCATGACAGACAGAGGGGTCTTGTGTGGGACGATGAGG

ATTCGGCCGATGATAGCAGCGTGTTGGACTTGGGTGGGAGAGGAAGGGGCAACC

CGTTTGCTCATTTGCGCCCTCGTTTGGGTGGTATGTTGTAAAAAAAAATAAAAAG

GAAACTCACCAAGGCCATGGCGACGAGCGTACGTTCGTTCTTCTTTATTATCTGT

GTCTAGTATAATGAGGCGAGTCGTGCTAGGCGGAGCGGTGGTGTATCCGGAGGG

TCCTCCTCCTTCGTACGAGAGCGTGATGCAGCAGCAGCAGGCGACGGCGGTGAT

GCAATCCCCACTGGAGGCTCCCTTTGTACCTCCGCGATACCTGGCACCTACGGAG

GGCAGAAACAGCATTCGTTACTCGGAACTGGCACCTCAGTACGATACCACCAGG

TTGTATCTGGTGGACAACAAGTCGGCGGACATTGCTTCTCTGAACTATCAGAATG

ACCACAGCAACTTCTTGACCACGGTGGTGCAGAACAATGACTTTACCCCTACGG

AAGCCAGTACCCAGACCATTAACTTTGATGAACGATCGCGGTGGGGCGGTCAGC

TAAAGACCATCATGCATACTAACATGCCCAACGTGAACGAGTATATGTTTAGTA

ATAAGTTCAAAGCGCGTGTGATGGTGTCCAGAAAACCTCCTGAGGGTGTTAGAG

TAGACGATAGTTATGATCATAAGCAAGATATTCTAAAATACGAGTGGTTCGAGT

TTACTTTGCCAGAAGGCAACTTTTCGGTCACTATGACTATTGACTTGATGAATAA

TGCCATCATAGACAATTACTTGAAAGTGGGCAGACAGAATGGAGTAATGGAAAG

TGACATTGGTGTTAAGTTCGACACCAGGAACTTCAAGCTGGGATGGGATCCAGA

AACTAAGTTAATCATGCCTGGGGTTTACACCTATGAGGCCTTCCATCCTGACATC SEQ

ID Sequence

NO

GTATTGCTGCCTGGCTGCGGAGTGGATTTTACAGAAAGCCGTCTGAGCAACCTTC

TTGGCATTAGAAAGAAACACCCATTCCAAGAGGGTTTTAAGATCTTGTATGAGG

ATTTAGAAGGAGGAAATATTCCAGCCCTTTTGGATGTAGATGCTTATGAGAACA

GCAAGAAAGATCAAAAAGCCAAAATAGAAGCTGCTACAGCTGCTGCGGAAGCT

AAGGCAAACATAGTTGCCAGCGACTCTACAAGGGTCGCTAACGCTGGAGAGGTC

AGAGGAGACAATTTTGCACCAACACCTGTTCCGACTGCAAAATCATTATTGGCC

AATATGACTGAAGGAACGGACGTGAAACTCACTATTCAACCTGTAGAAAAAGAT

AGTAAGAATAGAAGCTATAATGTGTTGGAAGATAAAATCAACACAGCCTATCGC

AGTTGGTACCTTTCGTACAATTATGGCGATCCCGAAAAAGGAGTGCGTTCCTGG

ACATTGCTCACCACTTCAGATGTCACCTGCGGAGCAGAGCAGGTCTACTGGTCG

CTTCCAGACATGATGCAGGATCCTATCACTTTCCGCTCCACTAGACAAGTCAGTA

ACTACCCTGTGGTGGGTGCAGAGCTTATGCCCGTCTTCTCAAAGAGCTTCTACAA

CGAACAAGCTGTGTACTCCCAGCAGCTCCGCCAGTCCACCTCGCTTACGCACGTC

TTCAACCGCTTTCCTGAGAACCAGATTTTAATCCGTCCGCCGGCGCCCACCATTA

CCACCGTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGTTGCG

CAGCAGTATCCGGGGAGTCCAACGTGTGACCGTTACTGACGCCAGACGCCGCAC

CTGTCCCTACGTGTACAAGGCACTGGGCATAGTCGCACCGCGCGTCCTTTCAAGC

CGCACTTTCTAAAAAAAAAAATGTCCATTCTTATCTCGCCCAGTAATAACACCGG

TTGGGGTCTGCGCGCTCCAAGCAAGATGTACGGAGGCGCACGCAAACGTTCTAC

CCAACATCCCGTGCGTGTTCGCGGTCATTTTCGCGCTCCATGGGGTGCCCTCAAG

GGCCGTACTCGCGTTCGAACCACCGTCGATGATGTAATCGATCAGGTGGTTGCC

GACGCCCGTAATTATACTCCTACTGCGCCTACATCTACTGTGGATGCAGTTATTG

ACAGTGTAGTGGCTGACGCTCGCAACTATGCTCGACGTAAGAGCCGGCGAAGGC

GCATTGCCAGACGCCACCGAGCTACCACTGCCATGCGAGCCGCAAGAGCTCTGC

TACGAAGAGCTAGACGCGTGGGACGAAGAGCCATGCTTAGGGCGGCCAGACGT

GCAGCTTCGGGTGCCAGCGCCGGCAGGTCCCGCAGGCAAGCAGCCGCTGTCGCA

GCGGCGACTATTGCCGACATGGCCCAAACGCGAAGAGGCAATGTATACTGGGTG

CGTGACGCTGCCACCGGTCAACGTGTACCCGTGCGCACCCGTCCCCCTCGCACTT

AGAAGATACTGAGCAGTCTCCGATGTTGTGTCTCAGCGGCGAGGATGTCCAAGC

GCAAATACAAGGAAGAAATGCTGCAGGTTATCGCACCTGAAGTCTACGGCCAAC

CGTTGAAGGATGAAAAAAAACCCCGCAAAATCAAGCGGGCTAAAAAGGACAAA

AAAGAAGAGGAAGATGGCGATGATGGGCTGGCGGAGTTTGTGCGCGAGTTTGCC

CCACGGCGACGCGTGCAATGGCGTGGGCGCAAAGTTCGACATGTGTTGAGACCT

GGAACTTCGGTGGTCTTTACACCCGGCGAGCGTTCAAGCGCTACTTTTAAGCGTT

CCTATGATGAGGTGTACGGGGATGATGATATTCTTGAGCAGGCGGCTGACCGAT

TAGGCGAGTTTGCTTATGGCAAGCGTAGTAGAATAAATCCCAAGGATGAGACAG

TGTCCATACCCTTGGATCATGGAAATCCCACCCCTAGTCTTAAACCGGTCACTTT

GCAGCAAGTGTTACCCGTAACTCCGCGAACAGGTGTTAAACGCGAAGGTGAAGA

TTTGTATCCCACTATGCAACTAATGGTACCCAAACGCCAAAAGTTGGAGGACGT

TTTGGAGAAAGTAAAAGTGGATCCAGATATTCAACCTGAGGTTAAAGTGAGACC

CATTAAGCAGGTAGCGCCTGGTCTGGGAGTACAAACTGTAGACATTAAGATTCC

CACTGAAAGTATGGAAGTGCAAACTGAACCCGCAAAGCCTACTGCCACCTCCAC

TGAAGTGCAAACGGATCCATGGATGCCCATGCCTATTACAACTGACGCCGCCGG

TCCCACTCGAAGATCCCGACGAAAGTACGGTTCAGCAAGTCTGTTGATGCCCAA

CTATGTTGTACACCCATCTATTATTCCTACTCCTGGTTACCGAGGCACTCGCTACT

ATCGCAGCCGAAACAGTACCTCCCGCCGTCGCCGCAAGACACCTGCAAATCGCA

GTCGTCGCCGTAGACGCACAAGCAAACCGACTCCCGGCGCCCTGGTGCGGCAAG

TGTACCGCAATGGTAGTGCGGAACCTTTGACACTGCCGCGTGCGCGTTACCATCC

GAGTATCATCACTTAATCAATGTTGCCGCTGCCTCCTTGCAGATATGGCCCTCAC

TTGTCGCCTTCGCGTTCCCATCACTGGTTACCGAGGAAGAAATTCGCGCCGTAGA

AGAGGGATGTTGGGGCGCGGAATGCGACGCTACAGGCGACGGCGTGCTATCCGC

TTGGCGCGATACCAGGCATAGCTTCCGTGGCGGTTCAGGCCTCGCAACGACATT SEQ

ID Sequence

NO

GACATTGGAAAAAACGTATAAATAAAAAAAAATACAATGGACTCTGACACTCCT

TCCGCGACACGGCACGAAGCCGTACATGGGCACCTGGAGCGACATCGGCACGA

GCCAACTGAACGGGGGCGCCTTCAATTGGAGCAGTATCTGGAGCGGGCTTAAAA

ATTTTGGCTCAACCATAAAAACATACGGGAACAAAGCTTGGAACAGCAGTACAG

GACAGGCGCTTAGAAATAAACTTAAAGACCAGAACTTTCAACAAAAAGTAGTCG

ATGGGATAGCTTCCGGCATCAATGGAGTGGTAGATTTGGCTAATCAGGCTGTGC

AGAAAAAGATAAACAGTCGTTTGGACCCGCCGCCAGCAACCCCAGGTGAAATGC

AAGTGGAGGAAGAAATTCCTCCGCCAGAAAAACGAGGCGACAAGCGTCCGCGT

CCCGATTTAGAAGAGACGCTGGTGACGCGCGTAGATGAACCGCCTTCTTATGAG

GAAGCAACGAAGCTTGGAATGCCCACCACTAGACCGATAGCCCCTATGGCTACC

GGGGTGATGAAACCTTCTCAGTTGCATCGACCCGTCACCTTGGATTTGCCCCCTC

CCCCTGCTGTACCCGCTTCTAAGCCTGTCGCTGTCCCGAAACCAGTCGCCGTAGC

CAGGTCACGTCCCGGGGGCGCTCCTCGTCCAAATGCGCACTGGCAAAATACTCT

GAACAGCATCGTGGGTCTAGGCGTGCAAAGTGTAAAACGCCGTCGCTGCTTTTA

ATTAAATATGGAGTAGCGCTTAACTTGCCTATCTGTGTATATGTGTCATTACACG

CCGTCACAGCAGCAGAGGAAAAAAGGAAGAGGTCGTGCGTCGACGCTGAGTTA

CTTTCAAGATGGCCACCCCATCGATGCTGCCCCAGTGGGCATACATGCACATCGC

CGGACAGGATGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTCGCCCGCGC

CACAGACACCTACTTCAATCTTGGAAATAAGTTTAGAAATCCCACCGTAGCGCC

GACCCACGATGTGACCACCGACCGTAGCCAGCGGCTCATGTTGCGCTTCGTGCC

CGTTGACCGGGAGGACAATACATACTCTTACAAAGTGCGGTACACCCTGGCCGT

GGGCGACAACAGAGTGCTGGATATGGCCAGCACGTTCTTTGACATTAGGGGCGT

GTTGGACAGAGGTCCCAGTTTCAAACCCTATTCTGGTACGGCTTACAACTCTCTG

GCTCCTAAAGGCGCTCCAAATGCATCTCAGTGGTTGGATAAGGGAGTTACAAGC

ACTGGTCTAGTGGACGACGGGAATGATGATGATGGGGAAGAAGCCAAAAAAGC

AACATACACTTTTGGTAACGCTCCAGTAAAAGCCGAGGCTGAAATCACAAAAGA

CGGATTGCCGGTGGGCTTGGAGGTTTCAACTGAAGGTCCTAAACCAATCTATGCT

GATAAGCTTTATCAGCCAGAACCTCAAGTGGGAGACGAAACTTGGACTGACCTA

GACGGAAAAACCGAAGAGTATGGAGGGAGAGTTCTTAAACCTGAAACTAAAAT

GAAACCCTGCTACGGATCTTTTGCTAAACCTACTAATATTAAAGGAGGTCAGGC

AAAGGTAAAACCAAAAGAAGACGATGGCACTAACAACATCGAATATGACATTG

ACATGAACTTCTTTGACTTAAGATCACAAAGATCAGAACTGAAACCTAAAATTG

TAATGTATGCAGAAAATGTGGACCTGGAATCTCCAGATACTCATGTTGTGTACA

AACCTGGAGTTTCAGATGCTAGTTCTGAGACCAATCTTGGACAACAGTCTATGCC

CAACAGACCCAACTACATTGGCTTCAGAGATAACTTCATCGGACTTATGTACTAT

AACAGTACTGGCAACATGGGGGTACTGGCTGGTCAAGCGTCTCAGTTGAATGCA

GTGGTGGACTTGCAGGACAGAAACACAGAACTGTCTTACCAACTCTTGCTTGAC

TCTCTGGGCGACAGAACCAGATATTTTAGCATGTGGAATCAGGCTGTGGACAGT

TATGATCCTGATGTACGTGTTATTGAAAATCATGGTGTGGAAGATGAACTTCCCA

ACTATTGTTTTCCGTTGGATGGTGTCGGTCCGCAAACAGATAGTTACAAGGAGAT

TAAACCAAATGGAGACCAATCTACTTGGACAAATGTAGACCCAAATGGCAGCAG

TCAACTTGCTAAGGGAAATCCATTTGCCATGGAAATTAACCTTCAAGCCAATCTA

TGGCGAAGTTTCCTTTATTCCAATGTGGCTCTGTATCTCCCAGACTCGTACAAAT

ACACCCCGTCCAATGTCACTCTTCCAGAAAACAAAAACACCTACGACTACATGA

ACGGGCGGGTGGTGCCGCCATCTCTAGTAGACACCTATGTGAACATTGGTGCCA

GGTGGTCTCTGGATGCCATGGACAATGTCAACCCATTCAACCACCACCGTAACG

CTGGCTTGCGTTACCGATCCATGCTTCTGGGTAACGGACGTTATGTGCCTTTCCA

CATACAAGTGCCTCAAAAATTCTTCGCTGTTAAAAACCTGCTGCTTCTCCCAGGC

TCCTACACTTATGAGTGGAACTTTAGGAAGGATGTGAACATGGTTCTACAGAGTT

CCCTCGGTAACGACCTGCGGGTAGATGGCGCCAGCATCAGTTTCACGAGCATCA

ACCTCTATGCTACTTTTTTCCCCATGGCTCACAACACCGCTTCCACCCTTGAAGCC

ATGCTACGGAATGACACCAATGATCAGTCATTCAACGACTACCTATCTGCAGCT SEQ

ID Sequence

NO

AACATGCTCTACCCCATTCCTGCCAATGCAACCAATATTCCCATTTCCATTCCTTC

TCGCAACTGGGCGGCTTTCAGAGGCTGGTCATTTACCAGACTCAAAACCAAAGA

AACTCCCTCTTTGGGGTCTGGATTTGACCCCTACTTTGTCTATTCTGGTTCTATTC

CCTACCTGGATGGTACCTTCTACCTGAACCACACTTTTAAGAAGGTTTCCATCAT

GTTTGACTCTTCAGTGAGCTGGCCTGGAAATGACAGGTTACTATCTCCTAACGAA

TTTGAAATAAAGCGCACTGTGGATGGCGAAGGCTACAACGTAGCCCAATGCAAC

ATGACCAAAGACTGGTTCTTGGTACAGATGCTCGCCAACTACAACATCGGCTAT

ACTTCCAGCCCATGAGCAGGCAGGTGGTTGATGAGGTCAATTACAAAGACTTCA

AGGCCGTCGCCATACCCTACCAACACAACAACTCTGGCTTTGTGGGTTACATGGC

TCCGACCATGCGCCAAGGTCAACCCTATCCCGCTAACTATCCCTATCCACTCATT

GGAACAACTGCCGTAAATAGTGTTACGCAGAAAAAGTTCTTGTGTGACAGAACC

ATGTGGCGCATACCGTTCTCGAGCAACTTCATGTCTATGGGGGCCCTTACAGACT

TGGGACAGAATATGCTCTATGCCAACTCAGCTCATGCTCTGGACATGACCTTTGA

GGTGGATCCCATGGATGAGCCCACCCTGCTTTATCTTCTCTTCGAAGTTTTCGAC

GTGGTCAGAGTGCATCAGCCACACCGCGGCATCATCGAGGCAGTCTACCTGCGT

ACACCGTTCTCGGCCGGTAACGCTACCACGTAAGAAGCTTCTTGCTTCTTGCAAA

TAGCAGCTGCAACCATGGCCTGCGGATCCCAAAACGGCTCCAGCGAGCAAGAGC

TAAGCGCTTCCCGGGGTTCATGGCCCCCGATAAGCTCGCCTGTGCCATTGTAAAT

ACGGCCGGACGTGAGACGGGGGGAGAGCACTGGTTGGCTTTCGGTTGGAACCCA

CGTTCTAACACCTGCTACCTTTTTGATCCTTTTGGATTCTCGGATGATCGTCTCAA

ACAGATTTACCAGTTTGAATATGAGGGTCTCCTGCGCCGCAGCGCTCTTGCTACC

AAGGACCGCTGTATTACGCTGGAAAAATCTACCCAGACCGTGCAGGGCCCCCGT

TCTGCCGCCTGCGGACTTTTCTGCTGCATGTTCCTTCACGCCTTTGTGCACTGGCC

TGACCGTCCCATGGACGGAAACCCCACCATGAAATTGCTAACTGGAGTGCCAAA

CAACATGCTTCATTCTCCTAAAGTCCAGCCCACCCTGTGTGACAATCAAAAAGCA

CTCTACCATTTTCTTAATACCCATTCGCCTTATTTTCGCTCTCATCGTACACACAT

CGAAAGGGCCACTGCGTTCGACCGTATGGATGTTCAATAATGACTCATGTAAAC

CTTATTTATTTACAAGTCGAATGGGTTCTGACGAGAATCAGAATGACCCGCAGG

CAGTGATACGTTGCGGAACTGATACTTGGGTTGCCACTTGAATTCGGGAATCACC

AACTTGGGAACCGGTATATCGGGCAGGATGTCACTCCACAGCTTTCTGGTCAGCT

GCAAAGCTCCAAGCAGGTCAGGAGCCGAAATCTTGAAATCACAATTAGGACCAG

TGCTCTGAGCGCGAGAGTTGCGGTACACCGGATTGCAGCACTGAAACACCATCA

GCGACGGATGTCTCACGCTTGCCAGCACGGTGGGATCTGCAATCATGCCCACAT

CCAGATCTTCAGCATTGGCAATGCTGAACGGGGTCATCTTGCAGGTCTGCCTACC

CATGGCGGGCACCCAATTAGGCTTGTGGTTGCAATCGCAGTGCAGGGGGATCAG

TATCATCTTGGCCTGATCCTGTCTGATTCCTGGATACACGGCTCTCATGAAAGCA

TCATATTGCTTGAAAGCCTGCTGGGCTTTACTACCCTCGGTATAAAACATCCCGC

AGGACCTGCTCGAAAACTGGTTAGCTGCACAGCCGGCATCATTCACACAGCAGC

GGGCGTCATTGTTAGCTATTTGCACCACACTTCTGCCCCAGCGGTTTTGGGTGAT

TTTGGTTCGCTCGGGATTCTCTTTTAAGGCTCGTTGTCCGTTCTCGCTGGCCACAT

CCATCTCGATAATCTGCTCCTTCTGAATCATAATATTGCCATGCAGGCACTTCAG

CTTGCCCTCATAATCATTGCAGCCATGAGGCCACAACGCACAGCCTGTACATTCC

CAATTATGGTGGGCGATCTGAGAAAAAGAATGTATCATTCCCTGCAGAAATCTT

CCCATCATCGTGCTCAGTGTCTTGTGACTAGTGAAAGTTAACTGGATGCCTCGGT

GCTCCTCGTTTACGTACTGGTGACAGATGCGCTTGTATTGTTCGTGTTGCTCAGG

CATTAGTTTAAAAGAGGTCCTAAGTTCGTTATCCAGCCTGTACTTCTCCATCAGC

AGACACATCACTTCCATGCCTTTCTCCCAAGCAGACACCAGGGGCAAGCTAATC

GGATTCTTAACAGTGCAGGCAGCAGCTCCTTTAGCCAGAGGGTCATCTTTAGCG

ATCTTCTCAATGCTTCTTTTGCCATCCTTCTCAACGATGCGCACGGGCGGGTAGC

TGAAACCCACTGCTACAAGTTGCGCCTCTTCTCTTTCTTCTTCGCTGTCTTGACTG SEQ

ID Sequence

NO

AGGAGGAGGACTGTCGCTCCGTTCCGGAGACAGGGAGGATTGTGACGTTTCGCT

CACCATTACCAACTGACTGTCGGTAGAAGAACCTGACCCCACACGGCGACAGGT

GTTTCTCTTCGGGGGCAGAGGTGGAGGCGATTGCGAAGGGCTGCGGTCCGACCT

GGAAGGCGGATGACTGGCAGAACCCCTTCCGCGTTCGGGGGTGTGCTCCCTGTG

GCGGTCGCTTAACTGATTTCCTTCGCGGCTGGCCATTGTGTTCTCCTAGGCAGAG

AAACAACAGACATGGAAACTCAGCCATTGCTGTCAACATCGCCACGAGTGCCAT

CACATCTCGTCCTCAGCGACGAGGAAAAGGAGCAGAGCTTAAGCATTCCACCGC

CCAGTCCTGCCACCACCTCTACCCTAGAAGATAAGGAGGTCGACGCATCTCATG

ACATGCAGAATAAAAAAGCGAAAGAGTCTGAGACAGACATCGAGCAAGACCCG

GGCTATGTGACACCGGTGGAACACGAGGAAGAGTTGAAACGCTTTCTAGAGAGA

GAGGATGAAAACTGCCCAAAACAGCGAGCAGATAACTATCACCAAGATGCTGG

AAATAGGGATCAGAACACCGACTACCTCATAGGGCTTGACGGGGAAGACGCGCT

CCTTAAACATCTAGCAAGACAGTCGCTCATAGTCAAGGATGCATTATTGGACAG

AACTGAAGTGCCTATCAGTGTGGAAGAGCTCAGCCGCGCCTACGAGCTTAACCT

CTTTTCACCTCGTACTCCACCCAAACGTCAGCCAAACGGCACCTGCGAGCCAAAT

CCTCGCTTAAACTTTTATCCAGCTTTTGCTGTGCCAGAAGTACTGGCTACCTATC

ACATCTTTTTTAAAAATCAAAAAATTCCAGTCTCCTGCCGCGCTAATCGCACCCG

CGCCGATGCCCTACTCAATCTGGGACCTGGTTCACGCTTACCTGATATAGCTTCC

TTGGAAGAGGTTCCAAAGATCTTCGAGGGTCTGGGCAATAATGAGACTCGGGCC

GCAAATGCTCTGCAAAAGGGAGAAAATGGCATGGATGAGCATCACAGCGTTCTG

GTGGAATTGGAAGGCGATAATGCCAGACTCGCAGTACTCAAGCGAAGCATCGAG

GTCACACACTTCGCATATCCCGCTGTCAACCTGCCCCCTAAAGTCATGACGGCGG

TCATGGACCAGTTACTCATTAAGCGCGCAAGTCCCCTTTCAGAAGACATGCATG

ACCCAGATGCCTGTGATGAGGGTAAACCAGTGGTCAGTGATGAGCAGCTAACCC

GATGGCTGGGCACCGACTCTCCCCGGGATTTGGAAGAGCGTCGCAAGCTTATGA

TGGCCGTGGTGCTGGTTACCGTAGAACTAGAGTGTCTCCGACGTTTCTTTACCGA

TTCAGAAACCTTGCGCAAACTCGAAGAGAATCTGCACTACACTTTTAGACACGG

CTTTGTGCGGCAGGCATGCAAGATATCTAACGTGGAACTCACCAACCTGGTTTCC

TACATGGGTATTCTGCATGAGAATCGCCTAGGACAAAGCGTGCTGCACAGCACC

CTTAAGGGGGAAGCCCGCCGTGATTACATCCGCGATTGTGTCTATCTCTACCTGT

GCCACACGTGGCAAACCGGCATGGGTGTATGGCAGCAATGTTTAGAAGAACAGA

ACTTGAAAGAGCTTGACAAGCTCTTACAGAAATCTCTTAAGGTTCTGTGGACAG

GGTTCGACGAGCGCACCGTCGCTTCCGACCTGGCAGACCTCATCTTCCCAGAGC

GTCTCAGGGTTACTTTGCGAAACGGATTGCCTGACTTTATGAGCCAGAGCATGCT

TAACAATTTTCGCTCTTTCATCCTGGAACGCTCCGGTATCCTGCCCGCCACCTGCT

GCGCACTGCCCTCCGACTTTGTGCCTCTCACCTACCGCGAGTGCCCCCCGCCGCT

ATGGAGTCACTGCTACCTGTTCCGTCTGGCCAACTATCTCTCCTACCACTCGGAT

GTGATCGAGGATGTGAGCGGAGACGGCTTGCTGGAGTGTCACTGCCGCTGCAAT

CTGTGCACGCCCCACCGGTCCCTAGCTTGCAACCCCCAGTTGATGAGCGAAACC

CAGATAATAGGCACCTTTGAATTGCAAGGCCCCAGCGGCCAAGGCGATGGGTCT

TCTCCTGGGCAAAGTTTAAAACTGACCCCGGGACTGTGGACCTCCGCCTACTTGC

GCAAGTTTGCTCCGGAAGATTACCACCCCTATGAAATCAAGTTCTATGAGGACC

AATCACAGCCTCCAAAGGCCGAACTTTCGGCCTGCGTCATCACCCAGGGGGCAA

TTCTGGCCCAATTGCAAGCCATCCAAAAATCCCGCCAAGAATTTCTACTGAAAA

AGGGTAAGGGGGTCTACCTTGACCCCCAGACCGGCGAGGAACTCAACACAAGGT

TCCCTCAGGATGTCCCAACGACGAGAAAACAAGAAGTTGAAGGTGCAGCCGCCG

CCCCCAGAAGATATGGAGGAAGATTGGGACAGTCAGGCAGAGGAGGCGGAGGA

GGACAGTCTGGAGGACAGTCTGGAGGAAGACAGTTTGGAGGAGGAAAACGAGG

AGGCAGAGGAGGTGGAAGAAGTAACCGCCGACAAACAGTTATCCTCGGCTGCG

GAGACAAGCAACAGCGCTACCATCTCCGCTCCGAGTCGAGGAACCCGGCGGCGT

CCCAGCAGTAGATGGGACGAGACCGGACGCTTCCCGAACCCAACCAGCGCTTCC

AAGACCGGTAAGAAGGATCGGCAGGGATACAAGTCCTGGCGGGGGCATAAGAA SEQ

ID Sequence

NO

TGCCATCATCTCCTGCTTGCATGAGTGCGGGGGCAACATATCCTTCACGCGGCGC

TACTTGCTATTCCACCATGGGGTGAACTTTCCGCGCAATGTTTTGCATTACTACC

GTCACCTCCACAGCCCCTACTATAGCCAGCAAATCCCGGCAGTCTCGACAGATA

AAGACAGCGGCGGCGACCTCCAACAGAAAACCAGCAGCGGCAGTTAGAAAATA

CACAACAAGTGCAGCAACAGGAGGATTAAAGATTACAGCCAACGAGCCAGCGC

AAACCCGAGAGTTAAGAAATCGGATCTTTCCAACCCTGTATGCCATCTTCCAGCA

GAGTCGGGGTCAAGAGCAGGAACTGAAAATAAAAAACCGATCTCTGCGTTCGCT

CACCAGAAGTTGTTTGTATCACAAGAGCGAAGATCAACTTCAGCGCACTCTCGA

GGACGCCGAGGCTCTCTTCAACAAGTACTGCGCGCTGACTCTTAAAGAGTAGGC

AGCGACCGCGCTTATTCAAAAAAAGGCGGGAATTACATCATCCTCGACATGAGT

AAAGAAATTCCCACGCCTTACATGTGGAGTTATCAACCCCAAATGGGATTGGCG

GCAGGCGCCTCCCAGGACTACTCCACCCGCATGAATTGGCTCAGCGCCGGGCCT

TCTATGATTTCTCGAGTTAATGATATACGCGCCTACCGAAACCAAATACTTTTGG

AACAGTCAGCTCTTACCACCACGCCCCGCCAACACCTTAATCCCAGAAATTGGC

CCGCCGCCCTAGTGTACCAGGAAAGTCCCGCTCCCACCACTGTATTACTTCCTCG

AGACGCCCAGGCCGAAGTCCAAATGACTAATGCAGGTGCGCAGTTAGCTGGCGG

CTCCACCCTATGTCGTCACAGGCCTCGGCATAATATAAAACGCCTGATGATCAG

AGGCCGAGGTATCCAGCTCAACGACGAGTCGGTGAGCTCTCCGCTTGGTCTACG

ACCAGACGGAATCTTTCAGATTGCCGGCTGCGGGAGATCTTCCTTCACCCCTCGT

CAGGCTGTTCTGACTTTGGAAAGTTCGTCTTCGCAACCCCGCTCGGGCGGAATCG

GGACCGTTCAATTTGTGGAGGAGTTTACTCCCTCTGTCTACTTCAACCCCTTCTCC

GGATCTCCTGGGCACTACCCGGACGAGTTCATACCGAACTTCGACGCGATTAGC

GAGTCAGTGGACGGCTACGATTGATGTCTGGTGACGCGGCTGAGCTATCTCGGC

TGCGACATCTAGACCACTGCCGCCGCTTTCGCTGCTTTGCCCGGGAACTCATTGA

GTTCATCTACTTCGAACTCCCCAAGGATCACCCTCAAGGTCCGGCCCACGGAGTG

CGGATTTCTATCGAAGGCAAAATAGACTCTCGCCTGCAACGAATTTTCTCCCAGC

GGCCCGTGCTGATCGAGCGAGACCAGGGAAACACCACGGTTTCCATCTACTGCA

TTTGTAATCACCCCGGATTGCATGAAAGCCTTTGCTGTCTTATGTGTACTGAGTTT

AATAAAAACTGAATTAAGACTCTCCTACGGACTGCCGCTTCTTCAACCCGGATTT

TACAACCAGAAGAACGAAACTTTTCCTGTCGTCCAGGACTCTGTTAACTTCACCT

TTCCTACTCACAAACTAGAAGCTCAACGACTACACCGCTTTTCCAGAAGCATTTT

CCCTACTAATACTACTTTCAAAACCGGAGGTGAGCTCCAAGGTCTTCCTACAGAA

AACCCTTGGGTGGAAGCGGGCCTTGTAGTGCTAGGAATTCTTGCGGGTGGGCTT

GTGATTATTCTTTGCTACCTATACACACCTTGCTTCACTTTCTTAGTGGTGTTGTG

GTATTGGTTTAAAAAATGGGGCCCATACTAATCTTGCTTGTTTTACTTTCGCTTTT

GGAACCGGGTTCTGCCAATTACGATCCATGTCTAGACTTTGACCCAGAAAACTG

CACACTTACTTTTGCACCCGACACAAGCCGCATCTGTGGAGTTCTTATTAAGTGC

GGATGGGAATGCAGGTCCGTTGAAATTACACACAATAACAAAACCTGGAACAAT

ACCTTATCCACCACATGGGAGCCAGGAGTTCCCGAGTGGTACACTGTCTCTGTCC

GAGGTCCTGACGGTTCCATCCGCATTAGTAACAACACTTTCATTTTTTCTGAAAT

GTGCGATCTGGCCATGTTCATGAGCAAACAGTATTCTCTATGGCCTCCTAGCAAG

GACAACATCGTAACGTTCTCCATTGCTTATTGCTTGTGCGCTTGCCTTCTTACTGC

TTTACTGTGCGTATGCATACACCTGCTTGTAACCACTCGCATCAAAAACGCCAAT

AACAAAGAAAAAATGCCTTAACCTCTTTCTGTTTACAGACATGGCTTCTCTTACA

TCTCTCATATTTGTCAGCATTGTCACTGCCGCTCATGGACAAACAGTCGTCTCTA

TCCCTCTAGGACATAATTACACTCTCATAGGACCCCCAATCACTTCAGAGGTCAT

CTGGACCAAACTGGGAAGCGTTGATTACTTTGATATAATCTGCAACAAAACAAA

ACCAATAATAGTAACTTGCAACATACAAAATCTTACATTGATTAATGTTAGCAA

AGTTTACAGCGGTTACTATTATGGTTATGACAGATACAGTAGTCAATATAGAAAT

TACTTGGTTCGTGTTACCCAGTTGAAAACCACGAAAATGCCAAATATGGCAAAG

ATTCGATCCGATGACAATTCTCTAGAAACTTTTACATCTCCCACCACACCCGACG

AAAAAAACATCCCAGATTCAATGATTGCAATTGTTGCAGCGGTGGCAGTGGTGA

TGGCACTAATAATAATATGCATGCTTTTATATGCTTGTCGCTACAAAAAGTTTCA SEQ

ID Sequence

NO

TCCTAAAAAACAAGATCTCCTACTAAGGCTTAACATTTAATTTCTTTTTATACAG

CCATGGTTTCCACTACCACATTCCTTATGCTTACTAGTCTCGCAACTCTGACTTCT

GCTCGCTCACACCTCACTGTAACTATAGGCTCAAACTGCACACTAAAAGGACCT

CAAGGTGGTCATGTCTTTTGGTGGAGAATATATGACAATGGATGGTTTACAAAA

CCATGTGACCAACCTGGTAGATTTTTCTGCAACGGCAGAGACCTAACCATTATCA

ACGTGACAGCAAATGACAAAGGCTTCTATTATGGAACCGACTATAAAAGTAGTT

TAGATTATAACATTATTGTACTGCCATCTACCACTCCAGCACCCCGCACAACTAC

TTTCTCTAGCAGCAGTGTCGCTAACAATACAATTTCCAATCCAACCTTTGCCGCG

CTTTTAAAACGCACTGTGAATAATTCTACAACTTCACATACAACAATTTCCACTT

CAACAATCAGCATTATCGCTGCAGTGACAATTGGAATATCTATTCTTGTTTTTAC

CATAACCTACTACGCCTGCTGCTATAGAAAAGACAAACATAAAGGTGATCCATT

AATCATGGTACCTAGAAATTTCTTCTTCACCATACTCATTTGTGCATTTAATGTTT GCGCTACTTTCACAGCAGTAGCCACAGCAACCCCAGACTGTATAGGAGCATTTG

GCGCCACCATCCCGAATACCGCAACCAAAATATCGCGGCACTTCTTAGACTCAT

CTAAAACCATGCAGGCTATACTACCAATATTTTTGCTTCTATTGCTTCCCTACGCT

GTCTCAACCCCAGCTGCCTATAGTACTCCACCAGAACACCTTAGAAAATGCAAA

TTCCAACAACCGTGGTCATTTCTTGCTTGCTATCGAGAAAAATCAGAAATTCCCC

CAAATTTAATAATGATTGCTGGAATAATTAATATAATCTGTTGCACCATAATTTC

ATTTTTGATATACCCCCTATTTGATTTTGGCTGGAATGCTCCCAATGCACATGATC

ATCCACAAGACCCAGAGGAACACATTCCCCTACAAAACATGCAACATCCAATAG

CACTAATAGATTACGAAAGTGAACCACAACCCCCACTACTCCCTGCTATTAGTTA

CTTCAACCTAACCGGCGGAGATGACTGAAACACTCACCACCTCCAATTCCGCCG

AGGATCTGCTCGATATGGACGGCCGCGTCTCAGAACAGCGACTCGCCCAACTAC

GCATCCGCCAGCAGCAGGAACGCGCGGCCAAAGAGCTCAGAGATGTCATCCAA

ATTCACCAATGCAAAAAAGGCATATTCTGTTTGGTAAAACAAGCCAAGATATCC

TACGAGATCACCGCTACTGACCATCGCCTCTCTTACGAACTTGGCCCCCAACGAC

AAAAATTTACCTGCATGGTGGGAATCAACCCCATAGTTATCACCCAGCAAAGTG

GAGATACTAAGGGTTGCATTCACTGCTCCTGCGATTCCATCGAGTGCACCTACAC

CCTGCTGAAGACCCTATGCGGCCTAAGAGACCTGCTACCAATGAATTAAAAAAT

GATTAATAAAAAATCACTTACTTGAAATCAGCAATAAGGTCTCTGTTGAAATTTT

CTCCCAGCAGCACCTCACTTCCCTCTTCCCAACTCTGGTATTCTAAACCCCGTTCA

GCGGCATACTTTCTCCATACTTTAAAGGGGATGTCAAATTTTAGCTCCTCTCCTG

TACCCACAATCTTCATGTCTTTCTTCCCAGATGACCAAGAGAGTCCGGCTCAGTG

ACTCCTTCAACCCTGTCTACCCCTATGAAGATGAAAGCACCTCCCAACACCCCTT

TATAAACCCAGGGTTTATTTCCCCAAATGGCTTCACACTAAGCCCAGACGGAGTT

CTTACTTTAAAATGTTTAACCCCACTAACAACCACAGGCGGATCTCTACAGCTAA

TAAGTGCCACCACACCACTCGTTAAGACTGCTCACTCTATAGGTTTACCACTAGG

AGCCGGATTGGGAACGAATGAAAATAAACTTTGTATCAAATTAGGACAAGGACT

TACATTCAATTCAAACAACATTTGCATTGATGATAATATTAACACCTTATGGACA

GGAGTCAACCCCACCGAAGCCAACTGTCAAATCATGAACTCCAGTGAATCTAAT

GATTGCAAATTAATTCTAACACTAGTTAAAACTGGAGCACTAGTCACTGCATTTG

TTTATGTTATAGGAGTATCTAACAATTTTAATATGCTAACTACACACAGAAATAT

AAATTTTACTGCAGAGCTGTTTTTCGATTCTACTGGTAATTTACTAACTAGACTCT

CATCCCTCAAAACTCCACTTAATCATAAATCAGGACAAAACATGGCTACTGGTG

CCATTACTAATGCTAAAGGTTTCATGCCCAGCACGACTGCCTATCCTTTCAATGA

TAATTCTAGAGAAAAAGAAAACTACATTTACGGAACTTGTTACTACACAGCTAG

TGATCACACTGCTTTTCCCATTGACATATCTGTCATGCTTAACCGAAGAGCAATA

AATGACGAGACATCATATTGTATTCGTATAACTTGGTCCTGGAACACAGGAGAT

GCCCCAGAGGTGCAAACCTCTGCTACAACCCTAGTCACCTCCCCATTTACCTTTT SEQ

ID Sequence

NO

ACTACATCAGAGAAGACGACTGACAAATAAAGTTTAACTTGTTTATTTGAAAAT

CAATTCACAAAATCCGAGTAGTTATTTTGCCTCCCCCTTCCCATTTAACAGAATA

CACCAATCTCTCCCCACGCACAGCTTTAAACATTTGGATACCATTAGATATAGAC

ATGGTTTTAGATTCCACATTCCAAACAGTTTCAGAGCGAGCCAATCTGGGGTCAG

TGATAGATAAAAATCCATCGGGATAGTCTTTTAAAGCGCTTTCACAGTCCAACTG

CTGCGGATGCGACTCCGGAGTCTGGATCACGGTCATCTGGAAGAAGAACGATGG

GAATCATAATCCGAAAACGGTATCGGACGATTGTGTCTCATCAAACCCACAAGC

AGCCGCTGTCTGCGTCGCTCCGTGCGACTGCTGTTTATGGGATCAGGGTCCACAG

TGTCCTGAAGCATGATTTTAATAGCCCTTAACATCAACTTTCTGGTGCGATGCGC

GCAGCAACGCATTCTGATTTCACTCAAATCTTTGCAGTAGGTACAGCACATTATT

ACAATATTGTTTAATAAACCATAATTAAAAGCGCTCCAGCCAAAACTCATATCTG

ATATAATCGCCCCTGCATGACCATCATACCAAAGTTTAATATAAATTAAATGACG

TTCCCTCAAAAACACACTACCCACATACATGATCTCTTTTGGCATGTGCATATTA

ACAATCTGTCTGTACCATGGACAACGTTGGTTAATCATGCAACCCAATATAACCT

TCCGGAACCACACTGCCAACACCGCTCCCCCAGCCATGCATTGAAGTGAACCCT

GCTGATTACAATGACAATGAAGAACCCAATTCTCTCGACCGTGAATCACTTGAG

AATGAAAAATATCTATAGTGGCACAACATAGACATAAATGCATGCATCTTCTCA

TAATTTTTAACTCCTCAGGATTTAGAAACATATCCCAGGGAATAGGAAGCTCTTG

CAGAACAGTAAAGCTGGCAGAACAAGGAAGA

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGTAAATGAGGTG ID ATTTTAAAAATTGCGGGGTGTGTGGTGATTGGCTGTGTGGTTAACGGCTAAAAG NO:

1426 GTTGTCGCGGGAAATGTGACGTATACAAAGGCTTTTTTCTCACGGAACTACTTAG

TTTTCCCCACGGTATTTAACAGGAAATGAGGTAGTTTTGGCCGGATGCAAGTGA

AAACTGTTCATTTTCGCGCGAAAACTGAATGAGGAAGTGTTTTTCTGAATAATGT

GGTATTTATGGCAGGGTGGAGTATTTGTTCAGGGCCAGGTAGACTTTGACCCATT

ACGTGGAGGTTTCGATTACCGTGTTTTTTACCTGAATTTCCGCGTACCGTGTCAA

GTTTGTGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCTCCTCTGCG

CCGGCAGTTTAATAATAAAAAAAAATGAGAGATTTGCGATTTCTGCCTCAGGAA

ATAATCTCTGCTGAGACTGGAAATGAAATATTGGAGCTTGTGGTGCACGCCCTA

ATGGGAGACGATCCGGAGCCACCTGTGCAGCTTTTTGAGCCTCCTACGCTTCAGG

AACTGTATGATTTAGAGGTAGAGGGATCGGAGGATTCTAATGAGGAAGCTGTGA

TCCGCCTTTGGACACTTTTGATACTCCAGGGGTGATTGTGGAAAGCGGTACAGGT

GTAAGAAAATTACCTGATTTGGGTTCCGTGGACTGTGATTTGCACTGCTATGAAG

ACGGGTTTCCTCCGAGTGATGAGGAGGACCATGAAAAGGAGCAGTCTATGCAGA

CTGCAGCGGGTGAGGGAGTGAAGGCTGCCAGTGTTGGTTTTCAGTTGGATTGCC

CGGAGCTTCCTGGACATGGCTGTAAGTCTTGTGAATTTCACAGGAAAAATACTG

GAGTAAAGGAACTGTTATGTTCGCTTTGTTATATGAGAACGCACTGCCACTTTAT SEQ

ID Sequence

NO

ATATTGAGTGGGAGTTTTGTGTTTCTTATTATAGGTCCTGTGTCTGATGCTGATGA

ATCACCATCTCCTGATTCTACTACCTCACCTCCTGAGATTCAAGCACCTGTTCCTG

TGGACGTGCGCAAGCCCATTCCTGTGAAGCCTAAGCCTGGGAAACGTCCAGCAG

TGGAGAAACTTGAGGACTTGTTACAGGGTGGGGACGGACCTTTGGACTTGAGTA

CACGGAAACGTCCAAGACAATAAGTGTTCCATATCCGTGTTTACTTAAGGTGAC

GTCAATATTTGTGTGAGAGTGCAATGTAATAAAAATATGTTAACTGTTCACTGGT

TTTTATTGCTTTTTGGGCGGGGACTCAGGTATATAAGTAGAAGCAGACCTGTGTG

GTTAGCTCATAGGAGCTGGCTTTCATCCATGGAGGTTTGGGCCATTTTGGAAGAC

CTTAGGAAGACTAGGCAACTGTTGGAGAACGCTTCGGACGGAGTCTCCGGTTTT

TGGAGATTCTGGTTCGCTAGTGAATTAGCTAGGGTAGTTTTTAGGATAAAACAG

GACTATAAAGAAGAATTTGAAAAGTTGTTGGTAGATTGCCCAGGACTTTTTGAA

GCTCTTAATTTGGGCCATCAGGTTCACTTTAAAGAAAAAGTTTTATCAGTTTTAG

ATTTTTCAACCCCAGGTAGAACTGCCGCTGCTGTGGCTTTTCTTACTTTTATATTA

GACAAATGGATCCCGCAGACTCATTTCAGCAGGGGATACGTTTTGGATTTCATA

GCCACAGCATTGTGGAGAACATGGAAGGTTCGCAAGATGAGGACAATCTTAGGT

TACTGGCCAGTGCAGCCTTTGGGTGTAGCGGGAATCCTGAGGCATCCACCTGTC

ATGCCAGCGGTTCTGGAGGAGGAACAGCAAGAGGACAATCCGAGAGCCGGCCT

GGACCCTCCAGTGGAGGAGGCGGAGTAGCTGACTTGTCTCCTGAACTGCAACGG

GTGCTTACTGGATCTACGTCCACTGGACGGGATAGGGGCGTTAAGAGGGAGAGG

GCATCCAGTGGTACTGATGCTAGATCTGAGTTGGCTTTAAGTTTAATGTCTCGCA

GACGTCCTGAAACCATTTGGTGGCATGAGGTTCAGAAAGAGGGAAGGGATGAA

GTTTCTGTATTGCAGGAGAAATATTCACTGGAACAGGTGAAAACATGTTGGTTG

GAGCCAGAGGATGATTGGGAGGTGGCCATTAAAAATTATGCGAAGATAGCTTTG

AGGCCTGATAAGCAGTATAAGATTACTAGACGGATTAATATCCGGAATGCTTGT

TACATATCTGGAAATGGGGCTGAGGTGGTAATAGATACTCAAGACAAGACAGTT

ATTAGATGCTGCATGATGGATATGTGGCCTGGAGTAGTCGGTATGGAAGCAGTC

ACTTTTGTAAATGTTAAGTTTAGGGGAGATGGTTATAATGGAATAGTGTTTATGG

GTAGATGCCTGGGGACAGGTTAGTGTGCGGGGGTGTAGTTTCTATGCGTGTTGG

ATTGCCACAGCAGGCAGAACCAAGAGTCAATTGTCTCTGAAGAAATGCATATTC

CAAAGATGTAACCTGGGCATTCTGAATGAAGGCGAAGCAAGGGTCCGCCACTGC

GCTTCTACAGATACTGGATGTTTTATTTTAATTAAGGGAAATGCCAGCGTAAAGC

ATAACATGATTTGCGGTGCTTCCGATGAGAGGCCTTATCAAATGCTCACTTGTGC

TGGTGGGCATTGTAATATGCTGGCTACTGTGCATATTGTTTCCCACCAACGCAAA

GGCGTAGAGGAATGTTTATGCCTTACCAGTGTAACATGAATCATGTGAAAGTGT

TGTTGGAACCAGATGCCTTTTCCAGAATGAGCCTAACAGGAATCTTTGACATGA

ACACGCAAATCTGGAAGATCCTGAGGTATGATGATACGAGATCAAGGGTGCGCG

CATGCGAATGCGGAGGCAAGCATGCCAGGTTCCAGCCGGTGTGTGTAGATGTGA

CGGAAGATCTCAGACCGGATCATTTGGTTATTGCCCGCACTGGAGCAGAGTTCG

GATCCAGTGGAGAAGAAACTGACTAAGGTGAGTATTGGGGAAACTTTGGGGTGG

GATTTTCAGATAGACAGATTGAGTAAAAATTTGTTTTTTCTGTCTTGCAGCTGTC

ATGAGTGGAAACGCTTCTTTTAAGGGGGGAGTCTTCAGCCCTTATCTGACAGGG

CGTCTCCCATCCTGGGCAGGAGTTCGTCAGAATGTTATGGGATCTACTGTGGATG

GAAGACCCGTCCAACCCGCCAATTCTTCAACGCTGACCTATGCTACTTTAAGTTC

TTCACCTTTGGACGCAGCTGCAGCCGCCGCCGCCGCCTCTGTCGCCGCTAACACT

GTGCTTGGAATGGGTTACTATGGAAGCATCGTGGCTAATTCCACTTCCTCTAATA

ACCCTTCTACCCTGACTCAGGACAAGTTACTTGTCCTTTTGGCCCAGCTGGAGGC

TTTGACCCAACGTCTGGGTGAACTTTCTCAGCAGGTGGCCGAGTTGCGAGTACA

AACTGAGTCTGCTGTCGGCACGGCAAAGTCTAAATAAAAAAATTCCAGAATCAA

CGCGCACGGTATGCCCTAGACCACCGATCTCGATCATTGAGAACTCGGTGGATTT TTTCCAGAATCCTATAGAGGTGGGATTGAATGTTTAGATACATGGGCATTAGGCC SEQ

ID Sequence

NO

ATCTTTGGGGTGGAGATAGCTCCATTGAAGGGATTCATGCTCCGGGGTAGTGTTG

TAAATCACCCAGTCATAACAAGGTCGCAGTGCATGGTGTTGCACAATATCTTTTA

GAAGTAGGCTGATTGCCACAGATAAGCCCTTGGTGTAGGTGTTTACAAACCGGT

TGAGCTGGGAGGGGTGCATTCGGGGTGAAATTATGTGCATTTTGGATTGGATTTT

TAAGTTGGCGATATTGCCGCCAAGATCCCGTCTTGGGTTCATGTTATGAAGGACC

ACCAAGACGGTGTATCCGGTACATTTAGGAAATTTGTCATGTAGCTTGGATGGA

AAAGCGTGGAAAAATTTGGAGACACCCTTGTGTCCTCCGAGATTTTCCATGCACT

CATCCATGATAATAGCAATGGGGCCGTGGGCAGCGGCGCGGGCAAACACGTTCC

GTGGGTCTGACACATCATAGTTATGTTCCTGAGTTAAATCATCATAAGCCATTTT

AATGAATTTGGGGCGGAGAGTACCAGATTGGGGTATGAATGTTCCTTCGGGCCC

CGGAGCATAGTTTCCCTCACAGATTTGCATTTCCCAAGCTTTCAGTTCCGAGGGT

GGAATCATGTCCACCTGGGGGGCTATGAAAAACACCGTTTCTGGGGCGGGGGTG

ATTAGTTGGGATGATAGCAAATTTCTGAGCAATTGAGATTTGCCACATCCGGTGG

GGCCATATATGATTCCGATTACAGGTTGCAGATGGTAGTTTAGGGAACGGCAAC

TGCCGTCTTCTCGAAGCAAGGGGGCCACCTCGTTCATCATTTCCCTTACATGCAT

ATTTTCCCGCACCAAATCCATTAGGAGGCGCTCTCCTCCTAGTGATAGAAGTTCT

TGTAGTGAGGAAAAGTTTTTCAGCGGTTTTAGACCGTCAGCCATGGGCATTTTGG

AGAGAGTTTGCTGCAAAAGTTCTAGTCTGTTCCACAGTTCAGTGATGTGTTCTAT

GGCATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTTGGACGGCTCCTGGAGT

AGGGTATGAGACGATGGGCGTCCAGCGCTGCCAGGGTTCGGTCCTTCCAGGGTC

TCAGTGTTCGAGTCAGGGTTGTTTCCGTCACAGTGAAGGGGTGTGCGCCTGCTTG

GGCGCTTGCCAGGGTGCGCTTCAGACTCATTCTGCTGGTCGAGAACTTCTGTCGC

TTGGCGCCCTGTATGTCGGCCAAGTAGCAGTTTACCATGAGTTCGTAGTTGAGCG

CCTCGGCTGCGTGGCCTTTGGCGCGTAGCTTACCTTTGGAAGTTTTCTTGCATAC

CGGGCAGTATAGGCATTTCAGCGCATACAGCTTGGGCGCGAGGAAAATGGATTC

TGGGGAGTATGCATCCGCGCCGCAGGAGGCGCAAACAGTTTCACATTCCACCAG

ATGCGTTTCTTACCTTTGCTCTCCATAAGTTCGTGTCCTCGTTGAGTGACAAACA

GGCTGTCCGTATCCCCGTAGACTGATTTTACAGGCCTCTTCTCCAGTGGTGTGCC

TCGGTCTTCTTCGTACAGGAACTCTGACCACTCTGATACAAAGGCGCGCGTCCAG

GCCAGCACAAAGGAGGCTATGTGGGAGGGGTAGCGATCGTTGTCAACCAGGGG

GTCCACCTTTTCCAAAGTATGCAAACACATGTCACCCTCTTCAACATCCAGGAAT

GTGATTGGCTTGTAGGTGTATTTCACGTGACCTGGGGTCCCCGCTGGGGGGGTAT

AAAAGGGGGCGGTTCTTTGCTCTTCCTCACTGTCTTCCGGATCGCTGTCCAGGAA

CGTCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCTCTGCACTC

AGGTTGTCAGTTTCTAAGAACGAGGAGGATTTGATATTGACAGTGCCGGTTGAG

ATGCCTTTCATGAGGTTTTCGTCCATTTGGTCAGAAAACACAATTTTTTTATTGTC

AAGTTTGGTGGCAAATGATCCATACAGGGCGTTGGATAAAAGTTTGGCAATGGA

TCGCATGGTTTGGTTCTTTTCCTTGTCCGCGCGCTCTTTGGCAGCGATGTTGAGTT

GGACATACTCGCGTGCCAGGCACTTCCATTCGGGGAAGATAGTTGTCAATTCATC

TGGCACGATTCTCACTTGCCACCCTCGATTATGCAGGGTAATTAAATCCACACTG

GTGGCCACCTCGCCTCGAAGGGGTTCGTTGGTCCAACAGAGCCTACCTCCTTTCC

TAGAACAGAAAGGGGGAAGTGGGTCTAGCATAAGTTCATCGGGAGGGTCTGCAT

CCATGGTAAAGATTCCAGGAAGTAAATCCTTATCAAAATAGCTGATGGGAGTGG

GGTCATCTAAGGCCATTTGCCATTCTCGAGCTGCCAGTGCGCGCTCATATGGGTT

AAGAGGACTGCCCCAGGGCATGGGATGGGTGAGTGCAGAGGCATACATGCCAC

AGATGTCATAGACGTAGATGGGATCCTCAAAGATGCCTATGTAGGTTGGATAGC

ATCGCCCCCCTCTGATACTTGCTCGCACATAGTCATATAGTTCATGTGATGGCGC

CAGCAGCCCCGGACCCAAGTTGGTACGATTGGGTTTTTCTGTTCTGTAGACAATC

TGGCGAAAGATGGCGTGAGAATTGGAAGAGATGGTGGGTCTTTGAAAAATGTTG

AAATGGGCATGAGGTAGACCTACAGAGTCTCTGACAAAGTGGGCATAAGATTCT

TGAAGCTTGGTTACCAGTTCGGCGGTGACAAGTACGTCCAGGGCGCAGTAGTCA SEQ

ID Sequence

NO

GTTGAGAAGGTATTCTTCGCGATCCTTCCAGTATTCTTCTAGCGGAAACCCGTCT

TTGTCTGCACGGTAAGATCCTAGCATGTAGAACTGATTAACTGCCTTGTAAGGGC

AGCAGCCCTTCTCTACGGGTAGAGAGTATGCTTGAGCAGCTTTTCGTAGCGAAG

CGTGAGTAAGGGCAAAGGTGTCTCTGACCATGACTTTGAAAAATTGGTATTTGA

AGTCCATGTCGTCACAGGCTCCCTGTTCCCAGAGTTGGAAGTCTACCCGTTTCTT

GTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAGAGAATCTTGCCGGC

TCTGGGCATAAAATTGCGAGTGATGCGGAAAGGCTGTGGTACTTCCGCTCGATT

GTTGATCACCTGGGCAGCTAGGACGATCTCGTCGAAACCGTTGATGTTGTGTCCT

ACGATGTATAATTCTATGAAACGCGGCGTGCCTCTGACGTGAGGTAGCTTATTGA

GCTCATCAAAGGTTAGGTCTGTAGGGTCAGATAAGGCGTAGTGTTCGAGAGCCC

ATTCGTGCAGGTGAGGATTTGCATGGAGGAATGTTGACCAAAGATCCACCGCCA

GTGCTGTTTGTAACTGGTCCCGATACTGACGAAAATGTTGGCCAATTGCCATTTT

TTCTGGAGTGACACAGTAGAAGGTTCTGGGGTCTTGTTGCCATCGATCCCACTTG

AGTTTAATGGCTAGATCGTGGGCCATGTTGACGAGACGCTCTTCTCCTGAGAGTT

TCATGACCAGCATGAAAGGAACTAGTTGTTTGCCAAAGGACCCCATCCAGGTGT

AAGTTTCCACATCGTAGGTCAGGAAGAGTCTTTCTGTGCGAGGATGAGAGCCGA

TCGGGAAGAACTGGATTTCCTGCCACCAGTTGGAGGATTGGCTGTTGATGTGAT

GGAAGTAGAAGTTTCTGCGGCGCGCCGAGCATTCGTGTTTGTGCTTGTACAGAC

GGCCGCAGTAGTCGCAGCGTTGCACGGGTTGTATCTCGTGAATGAGCTGTACCT

GGCTTCCCTTGACGAGAAATTTCAGTGGGAAGCCGAGGCCTGGCGATTGTATCT

CGTGCTCTTCTATATTCGCTGTATCGGCCTGTTCATCTTCTGTTTCGATGGTGGTC

ATGCTGACGAGCCCCCGCGGGAGGCAAGTCCAAACCTCGGCGCGGGAGGGGCG

GAGCTGAAGGACGAGAGCGCGCAGGCTGGAGCTGTCCAGAGTCCTGAGACGCT

GCGGACTCAGGTTAGTAGGTAGGGACAGAAGATTAACTTGCATGATCTTTTCCA

GGGCGTGCGGGAGGTTCAGATGGTACTTGATTTCCACAGGTTCGTTTGTAGAGA

CGTCAATGGCTTGCAGGGTTCCGTGTCCTTTGGGCGCCACTACCGTACCTTTGTT

TTTTCTTTTGATCGGTGGTGGCTCTCTTGCTTCTTGCATGCTCAGAAGCGGTGACG

GGGACGCGCGCCGGGCGGCAGCGGTTGTTCCGGACCCGGGGGCATGGCTGGTAG

TGGCACGTCGGCGCCGCGCACGGGCAGGTTCTGGTACTGCGCTCTGAGAAGACT

TGCGTGCGCCACCACGCGTCGATTGACGTCTTGTATCTGACGTCTCTGGGTGAAA

GCTACCGGCCCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAGAATCAATTTCG

GTATCGTTAACGGCAGCTTGTCTCAGTATTTCTTGTACGTCACCAGAGTTGTCCT

GGTAGGCGATCTCCGCCATGAACTGCTCGATTTCTTCCTCCTGAAGATCTCCGCG

ACCCGCTCTCTCGACGGTGGCCGCGAGGTCATTGGAGATACGGCCCATGAGTTG

GGAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAAACCACGGCCCC

CTCGGAGTCTCTTGCGCGCATCACCACCTGAGCGAGGTTAAGCTCCACGTGTCTG

GTGAAGACCGCATAGTTGCATAGGCGCTGAAAAAGGTAGTTGAGTGTGGTGGCA

ATGTGTTCGGCGACGAAGAAGTACATGATCCATCGTCTAAGCGGCATTTCGCTG

ACATCGCCCAGAGCTTCCAAGCGCTCCATGGCCTCGTAGAAGTCCACGGCAAAA

TTAAAAAACTGGGAGTTTCGCGCGGACACGGTCAATTCCTCCTCGAGAAGACGG

ATGAGTTCGGCTATGGTGGCCCGTACTTCGCGTTCGAAGGCTCCCGGGATCTCTT

CTTCCTCTTCTATCTCTTCTTCCACTAACATCTCTTCTTCCTCTTCAGGCGGGGGC

GGAGGGGGCACGCGGCGACGTCGACGGCGCACGGGCAAACGGTCGATGAATCG

TTCAATGACCTCTCCGCGGCGGCGGCGCATGGTTTCAGTGACGGCGCGGCCGTTC

TCGCGCGGTCGCAGAGTAAAAACACCGCCGCGCATCTCCTTAAAGTGGTGACTG

GGAGGTTCTCCGTTTGGGAGAGAGAGGGCGCTGATTATACATTTTATTAATTGGC

CCGTAGGGACTGCGCGCAGAGATCTGATCGTGTCAAGATCCACGGGATCTGAAA

ACCTTTCGACGAAAGCGTCTAACCAGTCACAGTCACAAGGTAGGCTGAGTACGG

CTTCTTGTGGGCGGGGGTGGTTATGTGTTCGGTCTGGGTCTTCTATTCCTTCTTCA

TCTCGGGAAGGTGAGACGATGCTGCTGGTGATGAAATTAAAGTAGGCAGTTCTA

AGACGGCGGATGGTGGCGAGGAGCACCAGGTCTTTGGGTCCGGCTTGCTGGATA

CGCAGGCGATTGGCCATTCCCCAAGCATTATCCTGACATCTAGCAAGATCTTTGT

AGTAGTCTTGCATGAGCCGTTCTACGGGCACTTCTTCCTCACCCGTTCTGCCATG SEQ

ID Sequence

NO

CATACGTGTGAGTCCAAACCCGCGCATTGGTTGAACCAGTGCCAAGTCAGCTAC

GACTCTTTCGGCGAGGATGGCTTGCTGTACTTGGGTGAGGGTGGCTTGAAAGTC

ATCAAAATCCACGAAGCGGTGGTAAGCCCCGGTATTAATGGTGTAAGCACAGTT

GGCCATGACTGACCAGTTAACTGTCTGGTGACCAGGGCGCACGAGCTCGGTGTA

TTTAAGTCGCGAATAGGCGCGGGTGTCAAAGATGTAATCGTTGCAGGTGCGCAC

CAGATACTGGTACCCTATAAGAAAATGTGGCGGTGGTTGGCGGTAGAGAGGCCA

TCTTTCTGTAGCTGGAGCGCCGGGGGCGAGGTCTTCCAACATAAGGCGGTGATA

GCCGTAGATGTACCTGGACATCCAGGTGATTCCTGCGGCGGTAGTAGAAGCCCG

AGGAAACTCGCGTACGCGGTTCCAAATGTTGCGTAGCGGCATGAAGTAGTTCAT

TGTAGGTACGGTTTGACCAGTGAGGCGCGCGCAGTCATTGATGCTCTATAGACA

CGGAGAAAATGAAAGCGTTCAGCGACTCGACTCCGTAGCCTGGAGGAACGTGA

ACGGGTTGGGTCGCGGTGTACCCCGGTTCGAGACTTGTACTCGAGCCGGCCGGA

GCCGCGGCTAACGTGGTATTGGCACTCCCGTCTCGACCCAGCCTACAAAAATCC

AGGATACGGAATCGAGTCGTTTTGCTGGTTGCCGAATGGCAGGGAAGTGAGTCC

TATTTTTTTTTTTTGCCGCTCAGATGCATCCCGTGCTGCGACAGATGCGTCCCCAA

CAACAGCCCCCCTCGCAGCAGCAGCAGCAACCACAAAAGGCTGTCCCTGCAACT

ACTGCAACTGCCGCCGTGAGCGGTGCGGGACAGCCCGCCTATGATCTGGACTTG

GAAGAGGGCGAAGGACTGGCACGTCTAGGTGCGCCTTCGCCCGAGCGGCATCCG

CGAGTTCAACTGAAAAAAGATTCTCGCGAGGCATATGTGCCCCAACAGAACCTA

TTTAGAGACAGAAGCGGCGAGGAGCCGGAGGAAATGCGAGCTTCCCGCTTTAAC

GCGGGTCGTGAGCTGCGTCACGGTTTGGATCGAAGACGAGTGTTGCGGGACGAG

GATTTTGAAGTTGATGAAGTGACAGGGATCAGTCCTGCCAGGGCACACGTGGCT

GCCGCCAACCTTGTATCGGCTTACGAGCAGACAGTAAAGGAAGAGCGTAACTTT

CAAAAGTCTTTTAATAATCATGTGCGAACACTGATTGCCCGCGAAGAGGTCACC

CTTGGTTTGATGCATTTGTGGGATTTGATGGAAGCTATCATTCAGAACCCTACTA

GCAAACCTCTGACCGCGCAGCTGTTTCTGGTGGTGCAACACAGCAGAGACAATG

AGGCTTTCAGAGAGGCGCTTCTCAACATCACCGAACCCGAGGGGAGATGGTTGT

ATGATCTTATCAACATTCTACAAAGTATCATAGTGCAGGAGCGGAGCCTGGGCC

TGGCCGAGAAGGTGGCTGCCATCAATTACTCGGTTTTGAGCTTGGGAAAATATT

ACGCTCGCAAGATCTACAAAACTCCATATGTTCCCATAGACAAGGAGGTGAAGA

TAGATGGGTTCTACATGCGTATGACGCTGAAGGTGCTGACCCTGAGCGATGATC

TTGGGGTGTACCGCAATGACAGAATGCATCGCGCGGTTAGCGCCAGCAGGAGGC

GCGAGTTAAGCGACAGGGAACTGATGCACAGTTTGCAAAGAGCTCTGACTGGAG

CTGGAACCGAGGGTGAGAATTACTTTGACATGGGAGCTGACTTGCAGTGGCAGC

CTAGTCGCAGGGCTCTGAGCGCCGCTACGACAGGATGTGAGCTTCCTTACATAG

AAGAGGCGGATGAAGGCGAGGAGGAAGAGGGCGAGTACTTGGAAGACTGATGG

GGCGGCGCTGCAGAGCCAGCCGTCCGGCATTAACTCCTCGGACGATTGGACCCA

GGCCATGCAACGTATCATGGCGTTGACGACTCGCAACCCCGAAGCCTTTAGACA

GCAACCCCAGGCCAACCGTCTATCGGCCATCATGGAAGCTGTAGTGCCTTCCCG

CTCTAATCCCACTCATGAGAAGGTCCTGGCCATCGTGAACGCGTTGGTGGAGAA

CAAAGCTATTCGTCCAGATGAGGCCGGACTGGTATACAACGCTCTCTTAGAACG

CGTGGCTCGCTACAACAGTAGCAACGTGCAAACCAATTTGGACCGTATGATAAC

AGATGTACGCGAAGCTGTGTCTCAGCGCGAAAGGTTCCAGCGCGATGCCAACCT

CGCGGTCAACAGGATTATACTAACTTTTTGAGTGCATTGAGACTGATGGTATCTG

AAGTACCTCAGAGCGAAGTGTATCAGTCCGGACCTGACTACTTCTTTCAGACTAG

CAGACAGGGCTTGCAGACGGTAAATCTGAGCCAAGCTTTTAAAAACCTTAAAGG

TTTGTGGGGAGTGCATGCCCCGGTAGGAGAAAGAGCAACCGTATCTAGCTTGTT

AACTCCGAACTCCCGCCTATTACTACTGTTGGTAGCTCCTTTCACCGACAGCGGT

AGCATCGACCGTAATTCCTATTTGGGTTACCTACTAAACCTGTATCGCGAAGCCA

TAGGGCAAAGCCAGGTGGACGAGCAGACCTATCAAGAAATTACCCAAGTCAGTC

GCGCTTTGGGTCAGGAAGACACTGGCAGTTTGGAAGCCACTCTGAACTTCTTGCT SEQ

ID Sequence

NO

TACCAATCGATCTCAGAAGATCCCTCCTCAATATGCTCTTACTGCAGAGGAGGA

GAGGATCCTTAGATATGTGCAGCAGAGTGTGGGATTGTTTCTGATGCAAGAGGG

GGCAACTCCGACTGCAGCACTGGACATGACTGCGCGAAATATGGAGCCCAGCAT

GTATGCCAGTAACCGACCTTTCATTAACAAACTGCTGGACTACTTGCACAGAGCT

GCCGCTATGAACTCTGATTATTTCACCAATGCCATCTTAAACCCGCACTGGCTGC

CCCCACCTGGTTTCTACACGGGCGAATATGACATGCCCGACCCTAATGACGGGTT

TGGAAAAAGGAAGGCGGCGATAGAATGCATTCTTCTGCATCGCTGTCCGGGGTC

ATGGGTGCTACCGCGGCTGAGCCCGAGTCTGCAAGTCCTTTTCCTAGTCTACCCT

TTTCCCTACACAGTGTACGTAGCAGCGAAGTGGGTAGGATAAGTCGCCCGAGTT

TAATGGGCGAAGAGGAGTACCTAAACGATTCCTTGCTCAGACCGGCGAGAGAAA

AAAATTTCCCAAACAATGGAATAGAAAGTTTGGTGGATAAAATGAGTAGATGGA

AGACTTATGCTCAGGATCACAGAGACGAGCCTGGGATCATGGGGACTACAAGTA

GAGCGAGCCGTAGACGCCAGCGCCATGACAGACAGAGGGGTCTTGTGTGGGAC

GATGAGGATTCGGCCGATGATAGCAGCGTGTTGGACTTGGGTGGGAGAGGAAG

GGGCAACCCGTTTGCTCATTTGCGCCCTCGCTTGGGTGGTATGTTGTAAAAAAAA

AAATAAAAAGAAAAACTCACCAAGGCCATGGCGACGAGCGTACGTTCGTTCTTC

TTTATTATCTGTGTCTAGTATAATGAGGCGAGTCGTGCTAGGCGGAGCGGTGGTG

TATCCGGAGGGTCCTCCTCCTTCGTACGAGAGCGTGATGCAGCAGCAGCAGGCG

ACGGCGGTGATGCAATCCCCACTGGAGGCTCCCTTTGTGCCTCCGCGATACCTGG

CACCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAACTGGCACCTCAGTACG

ATACCACCAGGTTGTATCTGGTGGACAACAAGTCGGCGGACATTGCTTCTCTGA

ACTATCAGAATGACCACAGCAACTTCTTGACCACGGTGGTGCAGAACAATGACT

TTACCCCTACGGAAGCCAGTACCCAGACTATTAACTTTGATGAACGATCGCGGT

GGGGCGGTCAGCTAAAGACCATCATGCATACTAATATGCCAAACGTGAACGAGT

ATATGTTTAGTAACAAGTTCAAAGCGCGTGTGATGGTGTCCAGAAAAGCTCCTG

AAGGTGTTACAGTAGACAATAATTATGATCATAAGCAAGATATTCTAAAATACG

AGTGGTTCGAGTTCACTTTGCCAGAGGGCAACTTTTCGGTCACTATGACTATTGA

CTTGATGAACAATGCCATCATAGACAACTACTTAAAAGTTGGCAGACAGAATGG

AGTGCTGGAAAGTGACATCGGTGTTAAGTTCGACACCAGGAACTTCAAGCTGGG

ATGGGATCCCGAAACCAAGTTGATCATGCCTGGAGTGTATACGTATGAAGCCTT

CCATCCTGACATTGTTTTACTGCCTGGCTGCGGAGTGGACTTTACCGAGAGTCGT

TTGAGCAACCTTCTTGGTATCAGAAAAAAACAGCCATTCCAAGAGGGTTTTAAG

ATCTTGTATGAAGATTTAGAAGGTGGTAATATTCCGGCTCTCTTGGATGTAGATG

CCTATGAGAACAGTAAGAAAGAACAAAAAGCCAAAATAGAAGCTGCTATAGCT

GCTGCAGAAGCTAAGGCAAACATAGTTGCCAGCGACTCTACAAGGGTTGCTAAC

GCTGGAGAGGTCAGAGGAGACAATTTTGCGCCAACACCTGTTCCGACTACAGAA

TCATTATTGGCCGATATGTCTGAAGGAACGGACGTAAAACTCACTATTCAACCTG

TAGAAAAAGATAGTAAGAATAGAAGCTATAATGTGTTGGAAGATAAAATCAAC

ACAGCCTATCGCAGTTGGTACCTTTCGTACAATTATGGCGACCCCGAAAAAGGA

GTGCGTTCCTGGACATTGCTCACCACCTCAGATGTCACCTGCGGAGCGGAGCAG

GTCTACTGGTCGCTTCCAGACATGATGCAGGATCCTGTCACTTTCCGCTCCACTA

GACAAGTCAGTAACTACCCTGTGGTGGGTGCAGAGCTTATGCCCGTCTTCTCAAA

GAGCTTCTACAACGAACAAGCTGTGTACTCCCAGCAGCTCCGCCAGTCCACCTC

GCTTACGCACGTCTTCAACCGCTTTCCTGAGAACCAGATTTTAATCCGTCCGCCG

GCGCCCACCATTACCACCGTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGG

ACCCTGCCGTTGCGCAGCAGTATCCGGGGAGTCCAACGTGTGACCGTTACTGAC

GCCAGACGCCGCACCTGTCCCTACGTGTACAAGGCACTGGGCATAGTCGCACCG

CGCGTCCTTTCAAGCCGCACTTTCTAAAAAAAATGTCCATTCTTATCTCACCCAG

TAATAACACCGGTTGGGGTCTGCGCGCTCCCAGCAAGATGTACGGAGGCGCACG

CAAACGTTCTACCCAACATCCCGTGCGTGTTCGCGGTCATTTTCGCGCTCCATGG

GGTGCCCTCAAGGGCCGCACTCGCGTTCGAACCACCGTTGATGATGTAATCGAT

CAGGTGGTTGCCGACGCCCGTAATTATACTCCTACTGCGCCTACATCTACTGTGG SEQ

ID Sequence

NO

ACGCAGTTATTGACAGTGTAGTGGCTGACGCTCGCAACTATGCTCGACGTAAGA

GCCGACGAAGGCGCATTGCCAGACGTCACCGAGCTACCACTGCCATGCGAGCCG

CAAGAGCTCTGCTACGAAGAGCTAGGCGCGTGGGGCGAAGAGCCATGCTTAGG

GCGGCCAGACGTGCAGCTTCGGGCGCCAGCGCCGGCAGGTCCCGCAGGCAAGCT

GCCGCTGTCGCAGCGGCGACTATTGCCGACATGGCCCAATCGCGAAGAGGCAAT

GTATACTGGGTGCGTGACGCTGCCACCGGTCAACGTGTACCCGTGCGCACCCGT

CCCCCTCGCACTTAGAAGATACTGAGCAGTCTCCGATGTTGTGTCCCAGCGGCGA

GGATGTCCAAGCGCAAATACAAGGAAGAAATGCTGCAGGTTATCGCGCCTGAAG

TCTACGGCCAACCGTTGAAGGATGAAAAAAAACCCCGCAAAATCAAGCGGGTA

AAAAAGGACAAAAAAGAAGAGGAAGATGGCGATGATGGGCTGGCGGAGTTTGT

GCGCGAGTTTGCCCCACGGCGGCGCGTGCAATGGCGTGGACGCAAAGTTCGACA

TGTGTTGAGACCTGGAACTTCGGTGGTCTTTACACCCGGCGAGCGTTCAAGCGCT

ACTTTTAAGCGTTCCTACGATGAGGTGTACGGGGATGATGATATTCTTGAGCAGG

CAGCTGACCGATTAGGCGAGTTTGCTTATGGCAAGCGTAGTAGAATAAATCCCA

AGGATGAGACAGTGTCCATACCCTTGGATCATGGAAATCCCACCCCTAGTCTTA

AACCGGTCACTTTGCAGCAAGTGTTACCCGTAACTCCGCGAACAGGTGTTAAAC

GCGAAGGTGAAGATTTGTATCCCACTATGCAACTGATGGTGCCCAAACGCCAGA

AGTTGGAGGACGTTTTGGAGAAAGTAAAAGTGGATCCAGATATTCAACCTGAGG

TTAAAGTGAGACCCATTAAGCAGGTAGCGCCTGGTCTAGGAGTACAAACTGTAG

ACATTAAGATTCCCACTGAAAGTATGGAAGTGCAAACTGAACCCGCAAAGCCTA

CTGCCACCTCCACTGAAGTGCAAACGGATCCATGGATGCCCATGCCTATTACAA

CTGACGCCGCCGGTCCCACTCGAAGATCCCGACGAAAGTACGGTCCAGCAAGTC

TGTTGATGCCCAATTATGTTGTACATCCATCTATTATTCCTACTCCTGGTTACCGA

GGCACTCGCTACTATCGCAGCCGAAACAGTACCTCCCGCCGTCGCCGCAAGACA

CCTGCAAATCGCAGTCGTCGCCGCAGACGCACAAGCAAACCGACTCCCGGCGCC

CTGGTGCGGCAAGTGTACCGCAATGGTAGTGCGGAACCTTTGACACTGCCGCGC

GCGCGTTACCATCCGAGTATCGTCACTTAATCAATGTTGCCGCTGCCTCCTTGCA

GATATGGCCCTCACTTGTCGCCTTCGCGTTCCCATCACTGGTTACCGAGGAAGAA

ACTCGCGCCGTAGAAGAGGGATGTTGGGGCGCGGAATGCGACGCTACAGGCGA

TTATCGCTGCTGCGATTGGCGCAATACCAGGCATAGCTTCCGTGGCGGTTCAGGC

CTCGCAACGACATTGACATTGGAAAAAAAAAAAACGTATAAATAAAAAAAAAT

ACAATGGACTCTGACACTCCTGGTCCTGTGACTATGTTTTCTTAGAGATGGAAGA

CATCAATTTTTCATCCTTGGCTCCGCGACACGGCACGAAGCCGTACATGGGCACC

TGGAGCGACATCGGCACGAGCCAACTGAACGGGGGCGCCTTCAATTGGAGCAGT

ATCTGGAGCGGGCTTAAAAATTTTGGCTCAACCATAAAAACATACGGGAACAAA

GCTTGGAACAGCAGTACAGGACAGGCGCTTAGAAATAAACTTAAAGATCAGAA

CTTCCAACAAAAAGTAGTCGATGGGATAGCTTCCGGCATCAATGGAGTGGTAGA

TTTGGCTAACCAGGCTGTGCAGAAAAAGATAAACAGTCGTTTGGACCCGCCGCC

AGCAACCCCAGGTGAAATGCAAGTGGAGGAAGAAATTCCTCCGCCAGAAAAAC

GAGGCGACAAGCGTCCGCGTCCCGATTTGGAAGAGACGCTGGTGACGCGCGTAG

ATGAACCGCCTTCTTATGAGGAAGCAACGAAGCTTGGAATGCCCACCACCAGAC

CGATAGCCCCTATGGCCACCGGGGTGATGAAACCTTCTCAGTTGCATCGACCCGT

CACCTTGGATTTGCCCCCTCCCCCTGCTGCTACTGCTGTACCCGCTTCTAAGCCTG

TCGCTACCCCGAAACCAGTCGCCGTAGCCAGGTCACGTCCCGGGGGCGCTCCTC

GTCCAAATGCGCACTGGCAAAATACTCTGAACAGCATCGTGGGTCTAGGCGTGC

AAAGTGTAAAACGCCGTCGCTGCTTTTAATTAAATATGGAGTAGCGCTTAACTTG

CCTATCTGTGTATATGTGTCATTACACGCCGTCACAGCAGCAGAGGAAAAAAGG

AAGAGGTCGTGCGTCGACGCTGAGTTACTTTCAAGATGGCCACCCCATCGATGC

TGCCCCAATGGGCATACATGCACATCGCCGGACAGGATGCTTCGGAGTACCTGA

GTCCGGGTCTGGTGCAGTTCGCCCGCGCCACAGACACCTACTTCAATCTGGGAA

ATAAGTTTAGAAATCCCACCGTAGCGCCGACCCACGATGTGACCACCGATCGTA

GCCAGCGGCTCATGTTGCGCTTCGTGCCCGTTGACCGGGAGGACAATACATACT SEQ

ID Sequence

NO

CTTACAAAGTGCGGTACACCCTGGCCGTGGGCGACAACAGAGTGCTGGATATGG

CCAGCACGTTCTTTGACATTAGGGGCGTGTTGGACAGAGGTCCCAGTTTCAAACC

CTATTCTGGTACGGCTTACAACTCCCTGGCTCCTAAAGGCGCTCCAAATACATCT

CAGTGGATTGCAGAAGGTGTAAAAAATACAACTGGTAGAAATGGTGAGGAAGA

CGTAACAGAAGAGGAAACCAATACTGCTACTTACACTTTTGGCAATGCTCCTGT

AAAAGCTGAAGCTGAAATTACAAAAGAAGGACTCCCAGTAGGTTTGGAAGTTTC

AGATGAAGAAAGTAAACCGATTTATGCTGATAAAACATATCAGCCAGAACCTCA

GCTGGGAGATGAAACTTGGACTGACCTTGATGGAAAAACTGAAAAGTATGGAG

GCAGGGCTCTCAAACCCGATACTAAGATGAAACCATGCTACGGGTCCTTTGCCA

AACCTACTAATGTGAAAGGCGGTCAGGCAAAACCAAAAACAACGGAGCAGCCA

AAAACAAACTTAAGTCCTAAAATTGTCATGTATGCAGAAAATGTAAATTTGGAA

ACTCCAGACACTCATGTAGTGTACAAACCTGGAACAGAAGACACAAGTTCCGAA

GCTAATTTGGGACAACAGTCTATGCCCAACAGACCCAACTACATTGGCTTCAGA

GATAACTTTATCGGACTTATGTACTATAACAGTACTGGTAACATGGGGGTGCTGG

CTGGTCAAGCGTCTCAGTTAAATGCAGTGGTTGACTTGCAGGACAGAAACACAG

AACTGTCTTACCAACTCTTGCTTGACTCTCTGGGCGACAGAACCAGATACTTTAG

CATGTGGAATCAGGCTGTGGACAGTTATGATCCTGATGTACGTGTTATTGAAAAT

CATGGTGTGGAAGATGAACTTCCCAACTATTGTTTTCCACTGGACGGCATAGGTG

TTCCAACAACCAGTTACAAATCAATAATTCCAAATGGAGACAATGCACCTAATT

GGAAGGAACCTGAAGTAAATGGAACAAGTGAGATCGGACAGGGTAATTTGTTTG

CCATGGAAATTAACCTTCAAGCCAATCTATGGCGAAGTTTCCTTTATTCCAATGT

GGCTCTGTATCTCCCAGACTCGTACAAATACACCCCGTCCAATGTCACTCTTCCA

GAAAACAAAAACACCTACGACTACATGAACGGGCGGGTGGTGCCGCCATCTCTA

GTAGACACCTATGTGAACATTGGTGCCAGGTGGTCTCTGGATGCCATGGACAAT

GTCAACCCGTTCAACCACCACCGTAACGCCGGCTTGCGTTACCGATCCATGCTTC

TGGGTAACGGACGTTATGTGCCTTTCCACATACAAGTGCCTCAAAAATTTTTCGC

TGTTAAAAACCTGCTGCTTCTCCCAGGCTCCTACACTTATGAGTGGAACTTTAGG

AAGGATGTGAACATGGTTCTACAGAGTTCCCTCGGTAACGACCTGCGGGTAGAT

GGCGCCAGCATCAGTTTTACGAGCATCAACCTCTATGCTACTTTTTTCCCCATGG

CTCACAACACCGCTTCCACCCTTGAAGCCATGCTGCGGAATGACACCAATGATC

AGTCATTCAACGACTACCTATCTGCAGCTAACATGCTCTACCCCATTCCTGCCAA

TGCAACCAATATTCCCATTTCCATTCCTTCTCGCAATTGGGCGGCTTTCAGAGGC

TGGTCATTTACCAGACTCAAAACCAAAGAAACTCCCTCTTTGGGGTCTGGATTTG

ACCCCTACTTTGTCTATTCTGGTTCTATTCCCTACCTGGACGGTACCTTCTACCTG

AACCACACTTTTAAGAAGGTTTCCATCATGTTTGACTCTTCAGTGAGCTGGCCTG

GAAATGACAGGTTACTATCTCCTAACGAATTTGAAATAAAGCGTACTGTGGATG

GCGAAGGCTACAACGTAGCCCAATGCAACATGACCAAAGACTGGTTCTTGGTAC

AGATGCTCGCCAACTACAACATCGGCTATCAGGGCTTTTACATTCCAGAAGGAT

TGGTTGATGAGGTCAATTACAAAGACTTCAAGGCCGTCGCCATACCCTACCAAC

ACAACAACTCTGGCTTTGTGGGTTACATGGCTCCGACCATGCGCCAAGGTCAAC

CCTATCCAGCTAACTATCCCTATCCACTCATTGGAACAACTGCCGTAAATAGTGT

TACGCAGAAAAAGTTCTTGTGCGACAGAACCATGTGGCGCATACCGTTCTCGAG

CAACTTCATGTCTATGGGGGCCCTTACAGACTTGGGACAGAACATGCTCTATGCC

AACTCAGCTCATGCTCTGGACATGACCTTTGAGGTGGATCCCATGGATGAGCCC

ACCCTGCTTTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCATCAGCCAC

ACCGCGGCATCATCGAGGCAGTCTACCTGCGTACACCGTTCTCGGCCGGTAACG

CTACCACGTAAGAAGCTTCTTGCTTCTTGCAAACAGCAGCTGCAACCATGGCCTG

CGGATCCCAAAACGGCTCCAGCGAGCAAGAGCTCAGAGCCATTGTCCAAGACCT

GGGTTGCGGACCCTATTTTTTGGGAACCTTTGATAAGCGCTTCCCGGGGTTCATG

GCCCCCGATAAGCTCGCCTGTGCCATTGTAAATACGGCCGGACGTGAGACGGGG

GGAGAGCACTGGTTGGCTTTCGGTTGGAACCCACGTTCTAACACCTGCTACCTTT SEQ

ID Sequence

NO

TTGATCCTTTTGGATTCTCGGATGATCGTCTCAAACAGATTTACCAGTTTGAATA

TGAGGGTCTCCTGCGCCGCAGCGCTCTTGCTACCAAGGACCGCTGTATTACGCTG

GAAAAATCTACCCAGACCGTGCAGGGCCCCCGTTCTGCCGCCTGCGGACTATTCT

GCTGCATGTTCCTTCACGCCTTTGTGCACTGGCCTGACCGTCCCATGGACGGAAA

CCCCACCATGAAATTGCTAACTGGAGTGCCAAACAACATGCTTCATTCTCCTAAA

GTCCAGCCCACCCTGTGTGACAACCAAAAAGCACTCTACCATTTTCTCAATACCC

ATTCGCCTTATTTTCGCTCTCATCGTACACACATCGAAAGGGCCACTGCGTTCGA

CCGTATGGATGTGCAATAATGACTCATGTAAACAACGTGTTCAATAAACATCAC

TTTATTTTTTACATGTATCAAGGCTCTGGATTACTTTTTATTTACAAGTCGAATGG

GTTCTGACGAGAATCAGAATGACCCGCAGGCAGTGATACGTTGCGGAATTGATA

CTTGGGTTGCCACTTGAATTCGGGAATCACCAACTTGGGAACCGGTATATCGGG

CAGGATGTCACTCCACAGCTTTCTGGTCAGCTGCAAAGCTCCCAGCAGGTCAGG

AGCCGAAATCTTGAAATCACAATTAGGACCAGTGCTCTGAGCGCGAGAGTTGCG

GTACACCGGATTGCAGCACTGAAACACCATCAGCGACGGATGTCTCACGCTTGC

CAGCACGGTGGGATCTGCAATCATGCCCACATCCAGATCTTCAGCATTGGCAAT

GCTGAACGGGGTCATCTTGCAGGTCTGCCTACCCATAGCGGGCACCCAATTAGG

CTTGTGGTTACAATCGCAGTGCAGGGGGATCAGTATCATCTTGGCCTGATCCTGT

CTGATTCCTGGATACACGGCTCTCATGAAAGCATCATATTGCTTGAAAGCCTGCT

GGGCTTTACTACCCTCGGTATAAAACATCCCGCAGGACCTGCTCGAAAACTGGTT

AGCTGCGCAGCCGGCATCATTCACACAGCAGCGGGCGTCATTGTTGGCTATTTGC

ACCACACTTCTGCCCCAGCGGTTTTGGGTGATTTTGGTTCGCTCGGGATTCTCCTT

CAAGGCTCGTTGTCCGTTCTCGCTGGCCACATCCATCTCGATAATCTGCTCCTTCT

GAATCATAATATTGCCATGCAGGCACTTCAGCTTGCCCTCATAATCATTGCAACC

ATGAGGCCACAACGCACAGCCTGTACATTCCCAATTATGGTGGGCGATCTGAGA

AAAAGAATGTATCATTCCCTGCAGAAATCTTCCCATCATGGTGCTCAGTGTCTTG

TGACTAGTGAAAGTTAACTGGATGCCTCGGTGCTCCTCGTTTACGTACTGGTGAC

AGATGCGCTTGTATTGTTCGTGTTGCTCAGGCATTAGTTTAAAAGAGGTTCTAAG

TTCGTTATCCAGCCTGTACTTCTCCATCAGCACACACATCACTTCCATGCCTTTCT

CCCAAGCAGACACCAGGGGCAAGCTAATCGGATTCTTAACAGTGCAGGCAGCAG

CTCCTTTAGCCAGAGGGTCATCTTTGGCGATCTTCTCAATGCTTCTTTTGCCATCC

TTCTCAACGATGCGCACGGGCGGGTAGCTGAAACCCACTGCTACAAGTTGCGCC

TCTTCTCTTTCTTCTTCGCTGTCTTGACTGATGTCTTGCATGGGGACATGTTTGGT

CTTCCTTGGCTTCTTTTTGGGGGGTATCGGAGGAGGAGGACTGTCGCTCCGTTCC

GGAGAGAGGGAGGATTGTGAAGTTTCGCTCACCATTACCAACTGACTGTCGGTA

GAAGAACCTGACCCCACACGGCGACAGGTGTTTCTCTTCGGGGGCAGAGGTGGA

GGCGATTGCGAAGGGCTGCGGTCCGACCTGGAAGGCGGATGACTGGCAGAACC

CCTTCCGCGTTCGGGGGTGTGCTCCCTGTGGCGGTCGCTTAACTGATTTCCTTCG

CGGCTGGCCATTGTGTTCTCCTAGGCAGAGAAACAACAGACATGGAAACTCAGC

CATTGCTGTCAACATCGCCACGAGTGCCATCACATCTCGTCCTCAGCGACGAGG

AAAAGGAGCAGAGCTTAAGCATTCCACCGCCCAGTCCTGCCACCACCTCTACCC

TAGAAGATAAGGAGGTCGACGCATCTCATGACATGCAGAATAAAAAAGCGAAA

GAGTCTGAGACAGACATCGAGCAAGACCCGGGCTATGTGACACCGGTGGAACA

CGAGGAAGAGTTGAAACGCTTTCTAGAGAGAGAGGATGAAAACTGCCCAAAAC

AGCAAGCGGATAACTATCACCAAGATGCTGGAAATAGGGATCAGAACACCGAC

TACCTCATAGGGCTTGACGGGGAAGACGCGCTCCTTAAACATCTAGCAAGACAG

TCGCTCATAGTCAAGGATGCATTATTGGACAGAACTGAAGTGCCCATCAGTGTG

GAAGAGCTCAGCCGCGCCTACGAGCTCAACCTCTTTTCACCTCGTACTCCCCCCA

AACGCCAGCCAAACGGCACCTGTGAGCCAAATCCTCGCTTAAACTTTTATCCAG

AATTCCAGTCTCCTGCCGCGCTAATCGCACCCGCGCCGATGCCCTACTCAATCTG GGACCTGGTTCACGCTTACCTGATATAGCTTCCTTGGAAGAGGTTCCAAAGATCT TCGAGGGTCTGGGCAATAATGAGACTCGGGCCGCAAACGCTCTGCAAAAGGGA GAAAATGGCATGGATGAGCATCACAGCGTTCTGGTGGAATTGGAGGGCGATAAT SEQ

ID Sequence

NO

GCCAGACTCGCAGTACTCAAGCGAAGCGTCGAGGTCACACACTTTGCATACCCC

GCTGTCAACCTGCCCCCTAAAGTCATGACGGCCGTCATGGACCAGTTACTCATTA

AGCGCGCAAGTCCCCTTTCAGAAGACATGCATGACCCAGATGCCTGTGACGAGG

GTAAACCAGTGGTCAGTGATGAGCAGCTAACCCGATGGCTGGGCACCGACTCTC

CCCGGGATTTGGAAGAGCGTCGCAAGCTTATGATGGCCGTGGTGCTGGTTACCG

TAGAACTAGAGTGTCTCCGGCGTTTCTTTACCGATTCAGAAACCTTGCGCAAACT

CGAAGAGAATCTGCACTACACTTTTAGACACGGCTTTGTGCGGCAGGCATGCAA

GATATCTAACGTGGAACTCACCAACCTGGTTTCCTACATGGGTATTCTGCATGAG

AATCGCCTAGGACAAAGCGTGCTGCACAGCACCCTTAAGGGGGAAGCCCGCCGT

GATTACATCCGCGATTGTGTCTATCTCTACCTGTGCCACACGTGGCAAACCGGCA

TGGGTGTATGGCAGCAATGTTTAGAAGAACAGAACTTGAAAGAGCTTGACAAGC

TCTTACAGAAATCTCTTAAGGTTCTGTGGACAGGGTTCGACGAGCGCACCGTCGC

TTCCGACCTGGCAGACCTCATCTTCCCAGAGCGTCTCAGGGTTACTTTGCGAAAC

GGACTGCCTGACTTTATGAGCCAGAGCATGCTTAACAATTTTCGCTCTTTCATCC

TGGAACGCTCCGGTATCCTGCCCGCCACCTGCTGCGCACTGCCCTCCGACTTTGT

GCCTCTCACCTACCGCGAGTGCCCCCCGCCGCTATGGAGTCACTGCTACCTGTTC

CGTCTGGCCAACTACCTCTCCTACCACTCGGATGTGATCGAGGATGTGAGCGGA

GACGGCTTGCTGGAGTGTCACTGCCGCTGCAATCTGTGCACGCCCCACCGGTCCC

TAGCTTGCAACCCCCAGTTGATGAGCGAAACCCAGATAATAGGCACCTTTGAAT

TGCAGGGCCCCAGCAGCCAAGGCGATGGGTCTTCTCCTGGGCAAAGTTTAAAAC

TGACCCCGGGACTGTGGACCTCCGCCTACTTGCGCAAGTTTGCCCCGGAAGATTA

CCACCCCTATGAAATCAAGTTCTATGAGGACCAATCACAGCCTCCGAAGGCCGA

ACTTTCGGCCTGCGTCATCACCCAGGGGGCAATTCTGGCCCAATTGCAAGCCATC

CAAAAATCCCGCCAAGAATTTCTACTAAAAAAGGGTAAGGGGGTCTACCTTGAC

CCCCAGACCGGCGAGGAACTCAACACAAGGTTCCCTCAGGATGTCCCAACGACG

AGAAAGCAAGAAGTTGAAGGTGCAGCCGCCGCCCCCAGAAGATATGGAGGAAG

ATTGGGACAGTCAGGCAGAGGAAGCGGAGGAGGAGGAGGACAGTCTGGAGGAC

AGTCTGGAGGAAGACAGTTTGGAGGAGGAAAACGAGGAGGCAGAGGAGGTGGA

AGAAGTAACCGCCGACAAACAGTTATCCTCGGCTGCGGAGACAAGCAACAGCG

CTACCATCTCCGCTCCGAGTCGAGGAACCCGGCGGCGTCCCAGCAGTAGATGGG

ACGAGACCGGACGCTTCCCGAACCCAACCAGCGCTTCCAAGACCGGTAAGAAGG

ATCGGCAGGGATACAAGTCCTGGCGGGGGCATAAGAATGCCATCATCTCCTGCT

TGCATGAGTGCGGGGGCAACATATCCTTCACGCGACGCTACTTGCTATTCCACCA

TGGGGTGAACTTTCCGCGCAATGTTTTGCATTACTACCGTCACCTCCACAGCCCC

TACTATAGCCAGCAAATCCCGGCAGTCTCGACAGATAAAGACAGCGGCGGCGAC

CTCCAACAGAAAACCAGCAGCGGCAGTTAGAAAACACACAACAAGTGCAGCAA

CAGGAGGATTAAAGATTGCAGCCAACGAGCCAGCGCAAACCCGAGAGTTAAGA

AATCGGATCTTTCCAACCCTGTATGCCATCTTCCAGCAGAGTCGGGGCCAAGAG

CAGGAACTGAAAATAAAAAACCGATCTCTGCGTTCGCTCACCAGAAGTTGTTTG

TATCACAAGAGCGAAGATCAACTTCAGCGCACTCTCGAGGACGCCGAGGCTCTC

TTCAACAAGTACTGCGCGCTGACTCTTAAAGAGTAGGCAGCGACCGCGCTTATT

CAAAAAAGGCGGGAATTACATCATCCTCGTCATGAGTAAAGAAATTCCCACGCC

TTACATGTGGAGTTACCAGCCCCAAATGGGATTGGCGGCAGGCGCCTCCCAGGA

CTACTCCACCCGCATGAATTGGCTCAGCGCCGGGCCCTCTATGATTTCTCGAGTT

AATGATATACGCGCCTACCGAAACCAAATACTTTTGGAACAGTCAGCTCTTACC

ACCACGCCCCGCCAACACCTTAATCCCAGAAATTGGCCCGCCGCCCTAGTGTAC

CAGGAAAGTCCCGCTCCCACCACTGTATTACTTCCTCGAGACGCCCAGGCCGAA

GTCCAAATGACTAATGCAGGTGCGCAGTTAGCTGGCGGCTCCACCCTATGTCGTC

ACAGGCCTCGGCATAATATAAAACGCCTGATGATCAGAGGCCGAGGTATCCAGC

TCAACGACGAGTCGGTGAGCTCTCCGCTTGGTCTACGACCAGACGGAATCTTTCA

AATTGCCGGCTGCGGGAGATCTTCCTTCACCCCTCGTCAGGCTGTTCTGACTTTG

GAAAGTTCGTCTTCGCAACCCCGCTCGGGCGGAATCGGGACCGTTCAATTTGTG

GAGGAGTTTACTCCCTCTGTCTACTTCAACCCCTTCTCCGGATCTCCTGGGCACT SEQ

ID Sequence

NO

ACCCGGACGAGTTCATACCGAACTTCGACGCGATTAGCGAGTCAGTGGACGGCT

ACGATTGATGTCTGGTGACGCGGCTGAGCTATCTCGGCTGCGACATCTAGACCA

CTGCCGCCGCTTTCGCTGCTTTGCCCGGGAACTCATTGAGTTCATCTACTTCGAA

CTCCCCAAGGATCACCCTCAAGGTCCGGCCCACGGAGTGCGGATTACTATCGAA

GGCAAAATAGACTCTCGCCTGCAACGAATTTTCTCCCAGCGGCCCGTGCTGATCG

AGCGAGACCAGGGAAACACCACGGTTTCCATCTACTGCATTTGTAATCACCCCG

GATTGCATGAAAGCCTTTGCTGTCTTATGTGTACTGAGTTTAATAAAAACTGAAT

CGAAACTTTTCCTGTCGTCCAGGACTCTGTTAACTTCACCTTTCCTACTCACAAAC

TAGAAGCTCAACGACTACACCGCTTTTCCAGAAGCATTTTCCCTACTAATACTAC

TTTCAAAACCGGAGGTGAGCTCCACGGTCTCCCTACAGAAAACCCTTGGGTGGA

AGCGGGCCTTGTAGTGCTAGGAATTCTTGCGGGTGGGCTTGTGATTATTCTTTGC

TACCTATACACACCTTGCTTCACTTTCCTAGTGGTGTTGTGGTATTGGTTTAAAAA

ATGGGGCCCATACTAGTCTTGCTTGTTTTACTTTCGCTTTTGGAACCGGGTTCTGC

CAATTACGATCCATGTCTAGACTTCGACCCAGAAAACTGCACACTTACTTTTGCA

CCCGACACAAGCCGCATCTGTGGAGTTCTTATTAAGTGCGGATGGGACTGCAGG

TCCGTTGAAATTACACACAATAACAAAACCTGGAACAATACCTTATCCACCACA

TGGGAGCCAGGAGTTCCCGAGTGGTACACTGTCTCTGTCCAAGGTCCTGACGGTT

CCATCCGCATTAGTAACAACACTTTCATTTTTTCTGAAATGTGCGATTTGGCCAT

GTTCATGAGCAAACAGTATTCTCTATGGCCTCCCAACAAGGACAACATCGTAAC

GTTCTCCATTGCTTATTGCTTGTGCGCTTGCCTCCTTACTGCTTTACTGTGCGTAT

GCATACACCTGCTTGTAACCACTCGCATCAAAAACGCCAATAACAAAGAAAAAA

TGCCTTAACCTCTTTCTGTTTACAGACATGGCTTCTCTTACATCTCTCATATTTGT

CAGCATTGTCACTGCCGCTCACGGACAAACAGTCGTCTCTATCCCTCTAGGACAT

AATTACACTCTCATAGGACCCCCAATCACTTCAGAGGTCATCTGGACCAAATTGG

GAAGCGTTGATTACTTTGATATAATCTGCAACAAAACAAAACCAATAATAGTAA

CTTGCAACATACAAAATCTTACATTAATTAATGTTAGCAAAGTTTACAGCGGTTA

CTATTATGGTTATGACAGATACAGTAGTCAATATAGAAATTACTTGGTTCGTGTT

ACCCAGTTCAAAACCACAAAAATGCCAAATATGGCAAAGATTCGATCCGATGAC

AATTCTCTAGAAACTTTTACATCTCCCACCACACCTGACGAAAAAAACATCCCAG

ATTCAATGATTGCAATTATCGCAGCGGTGGCAGTGGTGATGGCACTAATAATAA

TATGCATGCTTTTATATGCTTGTCGCTACAAAAAGTTTCATCCTAAAAAACAAGA

TCTCCTACTAAGGCTTAACATTTAATTTCTTTTTATACAGCCATGGTTTCCACTAC

CACATTCCTTATGCTTACTAGTCTCGCAACTCTGACTTCTGCTCGCTCACACCTCA

CTGTAACTATAGGTTCAAACTGCACACTAAAAGGACCTCAAGGCGGCCATGTCT

TTTGGTGGAGAATATATGACAATGGATGGTTTACAAAACCATGTGACCAACCTG

ACAAAGGCTTCTATTATGGAACCGACTATCAAACTAGTTTAGATTATAACATTAT

TGTACTGCCATCCACCACTCCAGCACCCCGCAAAACTACTTTCTCTAGCAGCAGT

GCCGCTAACAATACAATTTCCAATCCAACCTTTGCCGCGCTTTTAAAACGCACTG

TGAATAATTCTACAACTTCACATACAACAATTTCCATTTCAACAATCAGCATTAT

TGCTGCCGTGACAATTGGAATATCTATTCTTGTTTTTACCATAACCTACTACGCCT

GCTGCTATAGAAAAGACAAACATAAAGGTGATCCATTACTTAGATTTGATATTT

ATTTCTTCTTCACCATACTCATCTGTGCTTTTAATGTTTGCGCTACTTTCACAGCA GTAGCCACAGCAACCCCAGACTGTATAGGAGCATTTGCTTCCTATGCACTTTTTG

CAACTTCTAGACTGGATCCTTGTGCGAATTGCCTACCTGCGCCACCATCCCGAAT

ACCGCAACCAAAATATCGCGGCACTTCTTAGACTCATCTAAAACCATGCAGGCT

ATACTACCAATATTTTTGCTTCTATTGCTCCCCTACGCTGTCTCAACTCCAGCTGC

CTATAGTACTCCGCCAGAACACCTTAGAAAATGCAAATTCCAACAACCGTGGTC

ATTTCTTGCTTGCTATCGAGAAAAATCAGAAATTCCCCCAAATTTAATAATGATT

GCTGGAATAATTAATATAATCTGCTGCACCATAATTTCATTTCTGATATACCCCC SEQ

ID Sequence

NO

TATTTGATTTTGGCTGGAATGCTCCCAATGCACATGATCATCCACAAGACCCAGA

GGAACACATTCCCCTACAGAACATGCAACATCCAATAGCGCTAATAGAATACGA

AAGTGAACCACAACCCCCACTACTCCCTGCTATTAGTTACTTCAACCTAACCGGC

GGAGATGACTGAAACACTCACCACCTCCAATTCCGCCGAGGATCTGCTTGATAT

GGACGGCCGCGTCTCAGAACAGCGACTCGCCCAACTACGCATCCGCCAACAGCA

GGAACGCGTGGCCAAAGAGCTCAGAGATGTCATCCAAATTCACCAATGCAAAAA

AGGCATATTCTGTCTGGTAAAACAAGCCAAGATATCCTACGAGATCACCGCTAC

TGACCATCGCCTCTCTTATGAGCTTGGCCCCCAACGACAAAAATTTACCTGCATG

GTGGGAATCAACCCCATAGTTATCACCCAGCAAAGTGGAGATACTAAGGGTTGC

ATTCACTGCTCCTGCGATTCCATCGAGTGCACCTACACCCTGCTGAAGACCCTAT

GCGGTCTAAGAGACCTGCTACCAATGAATTAAAAAAAATGATTAATAAAAAATC

ACTTACTTGAAATCAGCAATAAGGTCTCTGTTGAAATTTTCTCCCAGCAGCACCT

CACTTCCCTCTTCCCAACTCTGGTATTCTAAACCCCGTTCAGCGGCATACTTTCTC

CATACTTTAAATGGGATGTCAAATTTTAGCTCCTCTCCTGTACCCACAATCTTCAT

GTCTTTCTTCCCAGATGACCAAGAGAGTCCGGCTCAGTGACTCCTTCAACCCTGT

CTATCCCTATGAAGATGAAAGCACCTCCCAACACCCCTTTATAAACCCAGGGTTT

ATTTCCCCAAACGGCTTCACACAAAGCCCAGACGGAGTTCTTACTTTAAAATGTT

TAACCCCGCTAACAACCACAGGCGGGTCTCTACAGTTAAAAGTGGGAGAGGGTC

TTACAGTAGATGACACCGGGTTTTTGAAAGAAAACATAAGTGCTACCACACCAC

TCGTTAAGACTGGTCACTCTATAGGTTTGTCGCTAGGACCCGGATTAGGAACAA

ATGAAAATAAACTTTGTACCAAATTGGGAGAAGGACTTACATTCAATTCGAACA

ACATTTGCATTGATGACAATATTAACACCCTATGGACAGGAGTTAACCCCACCA

GAGCCAACTGTCAAATGATGGACTCCAGTGAATCTAATGATTGCAAATTAATTCT

AACACTAGTTAAAACTGGAGCCCTAGTTACTGCATTTGTTTATGTTATAGGAGTA

TCTAACGATTTTAATATGCTAACTACACAGAAAAATATAAATTTTACTGCAGAGC

TGTTTTTCGATTCTACTGGTAATTTACTAACTAGCCTCTCATCCCTAAAAACTCCA

CTTAATCATAAATCAGGGCAAAACATGGCTACTGGTGCCATTACTAATGCTAAA

GGTTTCATGCCCAGCACAACTGCCTATCCTTTCAATAATAATTCCAGAGAAAAAG

AAAACTACATTTACGGAACTTGTTACTACACAGCTAGTGATCACACTGCTTTTCC

CATTGACATATCTGTCATGCTTAACCGAAGAGCAATAAATGATGAGACATCATA

TTGTATTCGTATAACTTGGTCCTGGAGCACAGGAGTTGCCCCAGAAGTGCAAAC

CTCTGCTACTACCCTAGTCACCTCTCCATTTACCTTTTACTACATCAGAGAAGAC

GACTGACAAATAAAGTTTAACTTGTTTATTTGAAAATCAATTCACAAAATTCGAG

TAGTTATTTTGCCTCCCCCTTCCCATTTAACAGAATACACCAATCTCTCCCCACGC

ACAGCTTTAAACATTTGGATACCATTAGAGATAGACATAGTTTTAGATTCCACAT

TCCAAACAGTTTCAGAGCGAGCCAATCTGGGGTCAGTGATACATAAAAATGCAT

CTGGATAGTCTTTTAAAGCGCTTTCACAGTCCAACTGCTGCGGATGCGACTCCGG

AGTCTGAATCACGGTCATCTGGAAGAAGAACGATGGGAATCATAATCCGAAAAC

GGGATCGGGCGATTGTGTCTCATCAAACCCACAAGCAGCCGCTGTCTGCGTCGC

TCCGTGCGACTGCTGTTTATGGGATCGGGGTCCACAGTGTCCTGAAGCATAATTT

TAATAGCCCTTAACATTAACTTTCTGGTGCGATGCGCGCAGCAACGCATTCTGAT

CTCACTTAGATTACTACAGTAGGTACAGCACATTATCACAATATTGTTTAATAAA

CCATAATTAAAAGCGCTCCAGCCAAAACTCATATCTGATATAATCGCCCCTGCAT

GACCATCATACCAAAGTTTAATATAAATTAAATGTCGTTCCCTCAAAAACACACT

ACCCACATACATGATCTCTTTTGGCATGTGCATATTAACAATCTGTCTGTACCAT

GGACAACGTTGGTTAATCATGCAACCCAATATAACCTTCCGGAACCACACTGCC

AACACCGCTCCCCCAGCCATGCATTGAAGTGAACCCTGCTGATTACAATGACAA

TGAAGAACCCAATTCTCTCGACCGTGAATCACTTGAGAATGAAAAATATCTATA

GTAGCACAACATAGACATAAATGCATGCATCTTCTCATAATTTTTAACTCCTCAG

GATTTAGAAACATATCCCAGGGAATAGGAAGCTCTTGCAGAACAGTAAA SEQ

ID Sequence

NO

SEQ GTGGTGATTGGCTGTGGGGTTAACGGCTAAAAGGGGCGGCGCGGCCGTGGGAA ID AATGATGTTTTTTGGGGGTGGAGTTTTTTTTGCAAGTTGTCGCGGGAAATGTGAC NO:

1427 GGAAATGAGGTACTTTTGGCCGGATGCAAGTGAAAACTGTTCATTTTCGCGCGA

GTATTTGTTCAGGGCCAGGTAGACTTTGACCCATTACGTGGAGGTTTCGATTACC

TGTCAGCTGATCGCTAGGGTATTTATACCTCAGGGTTTGTGTCAAGAGGCCACTC TTGAGTGCCAGCGAGAAGAGTTTTCTCCTCTGCGCCGGCAGTTTAATAATAAAA AAATGAGAGATTTGCGATTTCTGCCTCAGGAAATAATCTCTGCTGAGACTGGAA ATGAAATATTGGAGCTTGTGGTGCACGCCCTAATGGGAGACGATCCGGAGCCAC

GGGATCGGAGGATTCTAATCAGGAAGCTGTGAATGGCTTTTTTACCGATTCTATG

CTTTTAGCTGCTAATGAAGGATTAGAATTAGATCCGCCTTTGGACACTTTTGATA

TTCCAGGGGTGATTGTGGAAAGCGGTACAGGTGTAAGAAAATTACCTGATTTGG

GTTCCGTGGACTGTGATTTGCACTGCTATGAAGACGGGTTTCCTCCGAGTGATGA

GGAGGACCATGAAAAGGAGCAGTCTATGCAGACTGCAGCGGGTGAGGGAGTGA

AGGCTGCCAGTGTTGGTTTTCAGTTGGATTGCCCGGAGCTTCCTGGACATGGCTG

TAAGTCTTGTGAATTTCACAGGAAAAATACTGGAGTAAAGGAACTGTTATGTTC

GCTTTGTTATATGAGAACGCACTGCCACTTTATTTACAGTAAGTGTGTTTAACTT

TTCTTATTATAGGTCCTGTGTCTGATGCTGATGAATCACCATCTCCTGATTCTACT ACCTCACCTCCTGAGATTCAAGCACCTGTTCCTGTGGACGTGCGCAAGCCCATTC CTGTGAAGCTTAAGCCTGGGAAACGTCCAGCAGTGGAAAAACTTGAGGACTTGT TACAGGGTGGGGACGGACCTTTGGACTTGAGTACACGGAAACGTCCAAGACAAT AAGTGTTCCATATCCGTGTTTACTTAAGGTGACGTCAATATTTGTGTGAGAGTGC

GACTCAGGTATATAAGTAGAAGCAGACCTGTGTGGTTAGCTCATAGGAGCTGGC

TTTCATCCATGGAGGTTTGGGCCATTTTGGAAGACCTTAGGAAGACTAGGCAACT

GTTGGAGAACGCTTCGGACGGAGTCTCCGGTTTTTGGAGATTCTGGTTCGCTAGT

GAATTAGCTAGGGTAGTTTTTAGGATAAAACAGGACTATAAAGAAGAATTTGAA

AAGTTGTTGGTAGATTGCCCAGGACTTTTTGAAGCTCTTAATTTGGGCCACCAGG

TTCACTTTAAAGAAAAAGTTTTATCAGTTTTAGACTTTTCAACCCCAGGTAGAAC

TGCCGCTGCTGTGGCTTTTCTTACTTTTATATTAGACAAATGGATCCCGCAGACT

CATTTCAGCAGGGGATACGTTTTGGATTTCATAGCCACAGCATTGTGGAGAACAT

GGAAGGTTCGCAAGATGAGGACAATCTTAGGTTACTGGCCAGTGCAGCCTTTGG

GTGTAGCGGGAATCCTGAGGCATCCACCTGTCATGCCAGCGGTTCTGGAGGAGG

AACAGCAAGAGGACAATCCGAGAGCCGGCCTGGACCCTCCAGTGGAGGAGGCG

GAGTAGCTGACTTGTCTCCTGAACTGCAACGGGTGCTTACTGGATCTACGTCCAC

TGGACGGGATAGGGGCGTTAAGAGGGAGAGGGCATCCAGTGGTACTGATGCTA

GATCTGAGTTGGCTTTAAGTTTAATGTCTCGCAGACGTCCTGAAACCATTTGGTG

GCATGAGGTTCAGAAAGAGGGAAGGGATGAAGTTTCTGTATTGCAGGAGAAAT

ATTCACTGGAACAGGTGAAAACATGTTGGTTGGAGCCAGAGGATGATTGGGAGG

TGGCCATTAAAAATTATGCGAAGATAGCTTTGAGGCCTGATAAGCAGTATAAGA

TCACTAGACGGATTAATATCCGGAATGCTTGTTACATATCTGGAAATGGGGCTG

AGGTGGTAATAGATACTCAAGACAAGACAGTTATTAGATGCTGCATGATGGATA

TGTGGCCTGGAGTAGTCGGTATGGAAGCAGTCACTTTTGTAAATGTTAAGTTTAG

GGGAGATGGTTATAATGGAATAGTGTTTATGGCCAATACCAAACTTATATTGCAT

GTGTGCGGGGGTGTAGTTTCTATGCGTGTTGGATTGCCACAGCAGGCAGAACCA AGAGTCAATTGTCTCTGAAGAAATGCATATTCCAAAGATGTAACCTGGGCATTCT GAATGAAGGCGAAGCAAGGGTCCGCCACTGCGCTTCTACAGATACTGGATGTTT TATTTTAATTAAGGGAAATGCCAGCGTAAAGCATAACATGATTTGCGGTGCTTCC SEQ

ID Sequence

NO

GATGAGAGGCCTTATCAAATGCTCACTTGTGCTGGTGGGCATTGTAATATGCTGG

TGTGTTGACCAAGTGCACCATGCATGCAGGTGGGCGTAGAGGAATGTTTATGCC

TTACCAGTGTAACATGAATCATGTGAAAGTGTTGTTGGAACCAGATGCCTTTTCC

AGAATGAGCCTAACAGGAATCTTTGACATGAACACGCAAATCTGGAAGATCCTG

AGGTATGATGATACGAGATCAAGGGTGCGCACATGCGAATGCGGAGGCAAGCA

TGCCAGGTTCCAGCCGGTGTGTGTAGATGTGACGGAAGATCTCAGACCGGATCA

TTTGGTTATTGCCCGCACTGGAGCAGAGTTCGGATCCAGTGGAGAAGAAACTGA

CTAAGGTGAGTATTGGGAAAAGTTTGGGGTGGGATTTTCAGATAGACAGATTGA

GGGGGGAGTCTTCAGCCCTTATTTGACAGGGCGTCTCCCATCCTGGGCAGGAGTT

CGTCAGAATGTTATGGGATCTACTGTGGATGGAAGACCCGTCCAACCCGCCAAT

TCTTCAACGCTGACCTATGCTACTTTAAGTTCTTCACCTTTGGACGCAGCTGCAG

CCGCCGCCGCCTCTGTCGCCGCTAACACTGTGCTTGGAATGGGTTACTATGGAAG

CATCGTGGCTAATTCCACTTCCTCTAATAACCCTTCTACCCTGACTCAGGACAAG

TTACTTGTCCTTTTGGCCCAGCTGGAGGCTTTGACCCAACGTCTGGGTGAACTTT

CTCAGCAGGTGGCGGAGTTGCGAGTACAAACTGAGTCTGCTGTCGGCACGGCAA

AGTCTAAATAAAAAAATTCCAGAATCAATGAATAAATAAACGAGCTTGTTGTTG

TGAATGTTTAGATACATGGGCATTAGGCCATCTTTGGGGTGGAGATAGCTCCATT

GAAGGGATTCATGCTCCGGGGTAGTGTTGTAAATCACCCAGTCATAACAAGGTC

GCAGTGCATGGTGTTGCACAATATCTTTTAGAAGTAGGCTGATTGCCACAGATA

AGCCCTTGGTGTAGGTGTTTACAAACCGGTTGAGCTGGGAGGGGTGCATTCGGG

GTGAAATTATGTGCATTTTGGATTGGATTTTTAAGTTGGCGATATTGCCGCCAAG

ATCCCGTCTTGGGTTCATGTTATGAAGGACCACCAAGACGGTGTATCCGGTACAT

TTAGGAAATTTATCATGTAGCTTGGATGGAAAAGCGTGGAAAAATTTGGAGACA

CCCTTGTGTCCTCCGAGATTTTCCATGCACTCATCCATGATAATAGCAATGGGGC

CGTGGGCAGCGGCGCGGGCAAACACGTTCCGTGGGTCTGACACATCATAGTTAT

GTTCCTGAGTTAAATCATCATAAGCCATTTTAATGAATTTGGGGCGGAGAGTACC

AGATTGGGGTATGAATGTTCCTTCGGGCCCCGGAGCATAGTTTCCCTCACAGATT

TGCATTTCCCAAGCTTTCAGTTCCGAGGGTGGAATCATGTCCACCTGGGGGGCTA

TGAAAAACACCGTTTCTGGGGCGGGGGTGATTAGTTGGGATGATAGCAAATTTC

TGAGCAATTGAGATTTGCCACATCCGGTGGGGCCATATATGATTCCGATTACAG

GTTGCAGATGGTAGTTTAGGGAGCGGCAACTGCCGTCTTCTCGAAGCAAGGGGG

CCACCTCGTTCATCATTTCCCTTACATGCATATTTTCCCGCACCAAATCCATTAGG

AGGCGCTCTCCTCCTAGTGATAGAAGTTCTTGTAGTGAGGAAAAGTTTTTCAGCG

GTTTTAGACCGTCAGCCATGGGCATTTTGGAGAGAGTTTGCTGCAAAAGTTCTAG

TCTGTTCCACAGTTCAGTGATGTGTTCTATGGCATCTCGATCCAGCAGACCTCCT

CGTTTCGCGGGTTTGGACGGCTCCTGGAGTAGGGTATGAGACGATGGGCGTCCA

GCGCTGCCAGGGTTCGGTCCTTCCAGGGTCTCAGTGTTCGAGTCAGGGTTGTTTC

CGTCACAGTGAAGGGGTGTGCGCCTGCTTGGGCGCTTGCCAGGGTGCGCTTCAG

ACTCATTCTGCTGGTCGAGAACTTCTGTCGCTTGGCGCCCTGTATGTCGGCCAAG

TAGCAGTTTACCATGAGTTCGTAGTTGAGCGCCTCGGCTGCGTGGCCTTTGGCGC

GTAGCTTACCTTTGGAAGTTTTCTTGCATACCGGGCAGTATAGGCATTTCAGCGC

ATACAGCTTGGGCGCGAGGAAAATGGATTCTGGGGAGTATGCATCCGCACCGCA

GGAGGCGCAAACAGTTTCACATTCCACCAGCCAGGTTAAATCCGGTTCATTGGG

TAAGTTCGTGTCCTCGTTGAGTGACAAACAGGCTGTCCGTGTCCCCGTAGACTGA

TTTTACAGGCCTCTTCTCCAGTGGTGTGCCTCGGTCTTCTTCGTACAGAAACTCTG

ACCACTCTGATACAAAGGCGCGCGTCCAGGCCAGCACAAAGGAGGCTATGTGGG

AGGGGTAGCGATCGTTGTCAACCAGGGGGTCCACCTTTTCCAAAGTATGCAAAC

ACATGTCACCCTCTTCAACATCCAGGAATGTGATTGGCTTGTAGGTGTATTTCAC SEQ

ID Sequence

NO

GTGACCTGGGGTCCCCGCTGGGGGGGTATAAAAGGGGGCGGTTCTTTGCTCTTC CTCACTGTCTTCCGGATCGCTGTCCAGGAACGTCAGCTGTTGGGGTAGGTATTCC CTCTCGAAGGCGGGCATGACCTCTGCACTCAGGTTGTCAGTTTCTAAGAACGAG GAGGATTTGATATTGACAGTGCCGGTTGAGATGCCTTTCATGAGGTTTTCGTCCA

CAGGGCGTTGGATAAAAGTTTGGCAATGGATCGCATGGTTTGGTTCTTTTCCTTG

TCCGCGCGCTCTTTGGCAGCGATGTTGAGTTGGACATACTCGCGTGCCAGGCACT

TCCATTCGGGGAAGATAGTTGTCAATTCATCTGGCACGATTCTCACTTGCCACCC

TCGATTATGCAGGGTAATTAAATCCACACTGGTGGCCACCTCGCCTCGAAGGGG

TTCGTTGGTCCAACAGAGCCTACCTCCTTTCCTAGAACAGAAAGGGGGAAGTGG

GTCTAGCATAAGTTCATCGGGAGGGTCTGCATCCATGGTAAAGATTCCCGGAAG

TAAATCCTTATCAAAATAGCTGATGGGAGTGGGGTCATCTAAGGCCATTTGCCAT

TCTCGAGCTGCCAGTGCGCGCTCATATGGGTTAAGAGGACTGCCCCAGGGCATG

GGATGGGTGAGTGCAGAGGCATACATGCCACAGATGTCATAGACGTAGATGGG

ATCCTCAAAGATGCCTATGTAGGTTGGATAGCATCGCCCCCCTCTGATACTTGCT

CGCACATAGTCATATAGTTCATGTGATGGCGCTAGCAGCCCCGGACCCAAGTTG

TGGAAGAGATGGTGGGTCTTTGAAAAATGTTGAAATGGGCATGAGGTAGACCTA

CAGAGTCTCTGACAAAGTGGGCATAAGATTCTTGAAGCTTGGTTACCAGTTCGG

CGGTGACAAGTACGTCCAGGGCGCAGTAGTCAAGTGTTTCTTGAATGATGTCAT

ATCCTTCCAGTACTCTTCTAGCGGAAACCCGTCTTTGTCTGCACGGTAAGATCCT

AGCATGTAGAACTGATTAACTGCCTTGTAAGGGCAGCAGCCCTTCTCTACGGGT

AGAGAGTATGCTTGAGCAGCTTTTCGTAGCGAAGCGTGAGTAAGGGCAAAGGTG

TCTCTGACCATGACTTTGAGAAATTGGTATTTGAAGTCCATGTCGTCACAGGCTC

CCTGTTCCCAGAGTTGGAAGTCTACCCGTTTCTTGTAGGCGGGGTTGGGCAAAGC

GAAAGTAACATCGTTGAAGAGAATCTTGCCGGCTCTGGGCATAAAATTGCGAGT

GATGCGGAAAGGCTGTGGTACTTCCGCTCGATTGTTGATCACCTGGGCAGCTAG

GACGATCTCGTCGAAACCGTTGATGTTGTGTCCTACGATGTATAATTCTATGAAA

CGCGGCGTGCCTCTGACGTGAGGTAGCTTATTGAGCTCATCAAAGGTTAGGTCTG

TAGGGTCAGATAAGGCGTAGTGTTCGAGAGCCCATTCGTGCAGGTGAGGATTTG

CATGGAGGAATGTTGACCAAAGATCCACCGCCAGTGCTGTTTGTAACTGGTCCC

AGGTTCTGGGGTCTTGTTGCCATCGATCCCACTTGAGTTTAATGGCTAGATCGTG

GGCCATGTTGACGAGACGCTCTTCTCCTGAGAGTTTCATGACCAGCATGAAAGG

AACTAGTTGTTTGCCAAAGGACCCCATCCAGGTGTAAGTTTCCACATCGTAGGTC

AGGAAGAGTCTTTCTGTGCGAGGATGAGAGCCGATCGGGAAGAACTGGATTTCC

TGCCACCAGTTGGAGGATTGGCTGTTGATGTGATGGAAGTAGAAGTTTCTGCGG

CGCGCCGAGCATTCGTGTTTGTGCTTGTACAGACGGCCGCAGTAGTCGCAGCGTT

GCACGGGTTGTATCTCGTGAATGAGCTGTACCTGGCTTCCCTTGACGAGAAATTT

CAGTGGGAAGCCGAGGCCTGGCGATTGTATCTCGTGCTCTTCTATATTCGCTGTA

TCGGCCTGTTCATCTTCTGTTTCGATGGTGGTCATGCTGACGAGCCCCCGCGGGA

GGCAAGTCCAAACCTCGGCGCGGGAGGGGCGGAGCTGAAGGACGAGAGCGCGC

AGGCTGGAGCTGTCCAGAGTCCTGAGACGCTGCGGACTCAGGTTAGTAGGTAGG

GACAGAAGATTAACTTGCATGATCTTTTCCAGGGCGTGCGGGAGGTTCAGATGG

TACTTGATTTCCACAGGTTCGTTTGTAGAGACGTCAATGGCTTGCAGGGTTCCGT

GTCCTTTGGGCGCCACTACCGTACCTTTGTTTTTTCTTTTGATCGGTGGTGGCTCT

CTTGCTTCTTGCATGCTCAGAAGCGGTGACGGGGACGCGCGCCGGGCGGCAGCG

GTTGTTCCGGACCCGGGGGCATGGCTGGTAGTGGCACGTCGGCGCCGCGCACGG

GCAGGTTCTGGTACTGCGCTCTGAGAAGACTTGCGTGCGCCACCACGCGTCGATT

GACGTCTTGTATCTGACGTCTCTGGGTGAAAGCTACCGGCCCCGTGAGCTTGAAC

CTGAAAGAGAGTTCAACAGAATCAATTTCGGTATCGTTAACGGCAGCTTGTCTC

AGTATTTCTTGTACGTCACCAGAGTTGTCCTGGTAGGCAATCTCCGCCATGAACT SEQ

ID Sequence

NO

GCTCGATTTCTTCCTCCTGAAGATCTCCGCGACCCGCTCTCTCGACGGTGGCCGC

GAGGTCATTGGAGATACGGCCCATGAGTTGGGAGAATGCATTCATGCCCGCCTC

GTTCCAGACGCGGCTGTAAACCACGGCCCCCTCGGAGTCTCTTGCGCGCATCACC

ACCTGAGCGAGGTTAAGCTCCACGTGTCTGGTGAAGACCGCATAGTTGCATAGG

CGCTGAAAAAGGTAGTTGAGTGTGGTGGCAATGTGTTCGGCGACGAAGAAGTAC

ATGATCCATCGTCTCAGCGGCATTTCGCTGACATCGCCCAGAGCTTCCAAGCGCT

CCATGGCCTCGTAGAAGTCCACGGCGAAATTAAAAAACTGGGAGTTTCGCGCGG

ACACGGTCAATTCCTCCTCGAGAAGACGGATGAGTTCGGCTATGGTGGCCCGTA

CTTCGCGTTCGAAGGCTCCCGGGATCTCTTCTTCCTCTTCTATCTCTTCTTCCACT

AACATCTCTTCTTCCTCTTCAGGCGGGGGCGGAGGGGGCACGCGGCGACGTCGA

CGGCGCACGGGCAAACGGTCGATGAATCGTTCAATGACCTCTCCGCGGCGGCGG

CGCATGGTTTCAGTGACGGCGCGGCCGTTCTCGCGCGGTCGCAGAGTAAAAACA

CCGCCGCGCATCTCCTTAAAGTGGTGACTGGGAGGTTCTCCGTTTGGGAGAGAG

AGGGCGCTGATTATACATTTTATTAATTGGCCCGTAGGGACTGCGCGCAGAGAT

CTGATCGTGTCAAGATCCACGGGATCTGAAAACCTTTCGACGAAAGCGTCTAAC

CAGTCACAGTCACAAGGTAGGCTGAGTACGGCTTCTTGTGGGCGGGGGTGGTTA

TGTGTTCGGTCTGGGTCTTCTATTCCTTCTTCATCTCGGGAAGGTGAGACGATGC

TGCTGGTGATGAAATTAAAGTAGGCAGTTCTAAGACGGCGGATGGTGGCGAGGA

GCACCAGGTCTTTGGGTCCGGCTTGCTGGATACGCAGGCGATTGGCCATTCCCCA

AGCATTATCCTGACATCTAGCAAGATCTTTGTAGTAGTCTTGCATGAGCCGTTCT

ACGGGCACTTCTTCCTCACCCGTTCTGCCATGCATACGTGTGAGTCCAAACCCGC

GCATTGGTTGAACCAGTGCCAAGTCAGCTACGACTCTTTCGGCGAGGATGGCTT

GCTGTACTTGGGTGAGGGTGGCTTGAAAGTCATCAAAATCCACGAAGCGGTGGT

AAGCCCCGGTATTAATGGTGTAAGCACAGTTGGCCATGACTGACCAGTTAACTG

TCTGGTGACCAGGGCGCACGAGCTCGGTGTATTTAAGTCGCGAATAGGCGCGGG

TGTCAAAGATGTAATCGTTGCAGGTGCGCACCAGATACTGGTACCCTATAAGAA

AATGTGGCGGTGGTTGGCGGTAGAGAGGCCATCTTTCTGTAGCTGGAGCGCCGG

GGGCGAGGTCTTCCAACATAAGGCGGTGATAGCCGTAGATGTACCTGGACATCC

AGGTGATTCCTGCGGCGGTAGTAGAAGCCCGAGGAAACTCGCGTACGCGGTTCC

AAATGTTGCGTAGCGGCATGAAGTAGTTCATTGTAGGTACGGTTTGACCAGTGA

GGCGCGCGCAGTCATTGATGCTCTATAGACACGGAGAAAATGAAAGCGTTCAGC

GACTCGACTCCGTAGCCTGGAGGAACGTGAACGGGTTGGGTCGCGGTGTACCCC

GGTTCGAGACTTGTACTCGAGCCGGCCGGAGCCGCGGCTAACGTGGTATTGGCA

CTCCCGTCTCGACCCAGCCTACAAAAATCCAGGATACGGAATCGAGTCGTTTTGC

GCATCCCGTGCTGCGACAGATGCGTCCCCAACAACAGCCCCCCTCGCAGCAGCA

GCAGCAACCACAAAAGGCTGTCCCTGCAACTACTGCAACTGCCGCCGTGAGCGG

TGCGGGACAGCCCGCCTATGATCTGGACTTGGAAGAGGGCGAAGGACTGGCACG

TCTAGGTGCGCCTTCGCCCGAGCGGCATCCGCGAGTTCAACTGAAAAAAGATTC

TCGCGAGGCATATGTGCCCCAACAGAACCTATTTAGAGACAGAAGCGGCGAGGA

GCCGGAGGAAATGCGAGCTTCCCGCTTTAACGCGGGTCGTGAGCTGCGTCACGG

TTTGGATCGAAGACGAGTGTTGCGGGACGAGGATTTTGAAGTTGATGAAGTGAC

AGGAATCAGTCCTGCCAGGGCACACGTGGCTGCCGCCAACCTTGTATCGGCTTA

CGAGCAGACAGTAAAGGAAGAGCGTAACTTTCAAAAGTCTTTTAATAATCATGT

GCGAACACTGATTGCCCGCGAAGAGGTCACCCTTGGTTTGATGCATTTGTGGGAT

TTGATGGAAGCTATCATTCAGAACCCTACTAGCAAACCTCTGACCGCGCAGCTGT

TTCTGGTGGTGCAACACAGCAGAGACAATGAGGCTTTCAGAGAGGCGCTTCTCA

ACATCACCGAACCCGAGGGGAGATGGTTGTATGATCTTATCAACATTCTACAAA

GTATCATAGTGCAGGAGCGGAGCCTGGGCCTGGCCGAGAAGGTGGCTGCCATCA

ATTACTCGGTTTTGAGCTTGGGAAAATATTACGCTCGCAAGATCTACAAAACTCC

ATACGTTCCCATAGACAAGGAGGTGAAGATAGATGGGTTCTACATGCGCATGAC

GCTGAAGGTGCTGACCCTGAGCGATGATCTTGGGGTGTACCGCAATGACAGAAT

GCATCGCGCGGTTAGCGCCAGCAGGAGGCGCGAGTTAAGCGACAGGGAACTGA SEQ

ID Sequence

NO

TGCACAGTTTGCAAAGAGCTCTGACTGGAGCTGGAACCGAGGGTGAGAATTACT TTGACATGGGAGCTGACTTGCAGTGGCAGCCTAGTCGCAGGGCTCTGAGCGCCG CTACGGCAGGATGTGAGCTTCCTTACATAGAAGAGGCGGATGAAGGCGAGGAG

GGAACAGCAAGCACCGGATCCCGCAATGCGGGCGGCGCTGCAGAGCCAGCCGT

CCGGCATTAACTCCTCGGACGATTGGACCCAGGCCATGCAACGTATCATGGCGT

TGACGACTCGCAACCCCGAAGCCTTTAGACAGCAACCCCAGGCCAACCGTCTAT

CGGCCATCATGGAAGCTGTAGTGCCTTCCCGCTCTAATCCCACTCATGAGAAGGT

CCTGGCCATCGTGAACGCGTTGGTGGAGAACAAAGCTATTCGTCCAGATGAGGC

CGGACTGGTATACAACGCTCTCTTAGAACGCGTGGCTCGCTACAACAGTAGCAA

CGTGCAAACCAATTTGGACCGTATGATAACAGATGTACGCGAAGCTGTGTCTCA

GCGCGAAAGGTTCCAGCGCGATGCCAACTTGGGTTCGCTGGTGGCGTTAAATGC

AGTCCGGACCTGACTACTTCTTTCAGACTAGCAGACAGGGCTTGCAGACGGTAA

ATCTGAGCCAAGCTTTTAAAAACCTTAAAGGTTTGTGGGGAGTGCATGCCCCGG

TAGGAGAAAGAGCAACCGTATCTAGCTTGTTAACTCCGAACTCCCGCCTATTACT

ACTGTTGGTAGCTCCTTTCACCGACAGCGGTAGCATCGACCGTAATTCCTATTTG

GGTTACCTACTAAACCTGTATCGCGAAGCCATAGGGCAAAGCCAGGTGGACGAG

CAGACCTATCAAGAAATTACCCAAGTCAGTCGCGCTTTGGGTCAGGAAGACACT

GGCAGTTTGGAAGCCACTCTGAACTTCTTGCTTACCAATCGATCTCAGAAGATCC

CTCCTCAATATGCTCTTACTGCAGAGGAGGAGAGGATCCTTAGATATGTGCAGC

AGAGTGTGGGATTGTTTCTGATGCAAGAGGGGGCAACTCCGACTGCAGCACTGG

ACATGACTGCGCGAAATATGGAGCCCAGCATGTATGCCAGTAACCGACCTTTCA

TTAACAAACTGCTGGACTACTTGCACAGAGCTGCCGCTATGAACTCTGATTATTT

CACCAATGCCATCTTAAACCCGCACTGGCTGCCCCCACCTGGTTTCTACACGGGC

GAATATGACATGCCCGACCCTAATGACGGGTTTCTGTGGGACGACGTGGACAGC

GATGTTTTTTCACCTCTTTCTGATCATCGCGCGTGGAAAAAGGAAGGCGGCGATA

GAATGCATTCTTCTGCATCGCTGTCCGGGGTCATGGGTGCTACCGCGGCTGAGCC

CGAGTCTGCAAGTCCTTTTCCTAGTCTACCCTTTTCCCTACACAGTGTACGTAGC

AGCGAAGTGGGTAGGATAAGTCGCCCGAGTTTAATGGGCGAAGAGGAGTACCT

AAACGATTCCTTGCTCAGACCGGCGAGAGAAAAAAATTTCCCAAACAATGGAAT

AGAAAGTTTGGTGGATAAAATGAGTAGATGGAAGACTTATGCTCAGGATCACAG

AGACGAGCCTGGGATCATGGGGACTACAAGTAGAGCGAGCCGTAGACGCCAGC

GCCATGACAGACAGAGGGGTCTTGTGTGGGACGATGAGGATTCGGCCGATGATA

GCAGCGTGTTGGACTTGGGTGGGAGAGGAAGGGGCAACCCGTTTGCTCATTTGC

GCCCTCGCTTGGGTGGTATGTTGTAAAAAAAAATAAAAAGAAAAACTCACCAAG

GCCATGGCGACGAGCGTACGTTCGTTCTTCTTTATTATCTGTGTCTAGTATAATG

AGGCGAGTCGTGCTAGGCGGAGCGGTGGTGTATCCGGAGGGTCCTCCTCCTTCG

TACGAGAGCGTGATGCAGCAGCAGCAGGCGACGGCGGTGATGCAATCCCCACTG

GAGGCTCCCTTTGTGCCTCCGCGATACCTGGCACCTACGGAGGGCAGAAACAGC

ATTCGTTACTCGGAACTGGCACCTCAGTACGATACCACCAGGTTGTATCTGGTGG

ACAACAAGTCGGCGGACATTGCTTCTCTGAACTATCAGAATGACCACAGCAACT

TCTTGACCACGGTGGTGCAGAACAATGACTTTACCCCTACGGAAGCCAGTACCC

AGACTATTAACTTTGATGAACGATCGCGGTGGGGCGGTCAGCTAAAGACCATCA

TGCATACTAATATGCCAAACGTGAACGAGTATATGTTTAGTAACAAGTTCAAAG

CGCGTGTGATGGTGTCCAGAAAAGCTCCTGAAGGTGTTACAGTAGACAATAATT

ATGATCATAAGCAAGATATTCTAAAATACGAGTGGTTCGAGTTCACTTTGCCAG

AGGGCAACTTTTCGGTCACTATGACTATTGACTTGATGAACAATGCCATCATAGA

CAACTACTTAAAAGTTGGCAGACAGAATGGAGTGCTGGAAAGTGACATCGGTGT

TAAGTTCGACACCAGGAACTTCAAGCTGGGATGGGATCCCGAAACCAAGTTGAT

CATGCCTGGAGTGTATACGTATGAAGCCTTCCATCCTGACATTGTTTTACTGCCT

GGCTGCGGAGTGGACTTTACCGAGAGTCGTTTGAGCAACCTTCTTGGTATCAGA SEQ

ID Sequence

NO

AAAAAACAGCCATTCCAAGAGGGTTTTAAGATCTTGTATGAAGATTTAGAAGGT

GGTAATATTCCGGCTCTCTTGGATGTAGATGCCTATGAGAACAGTAAGAAAGAA

CAAAAAGCCAAAATAGAAGCTGCTATAGCTGCTGCAGAAGCTAAGGCAAACAT

AGTTGCCAGCGACTCTACAAGGGTTGCTAACGCTGGAGAGGTCAGAGGAGACAA

TTTTGCGCCAACACCTGTTCCGACTACAGAATCATTATTGGCCGATATGTCTGAA

GGAACGGACGTAAAACTCACTATTCAACCTGTAGAAAAAGATAGTAAGAATAG

AAGCTATAATGTGTTGGAAGATAAAATCAACACAGCCTATCGCAGTTGGTACCT

TTCGTACAATTATGGCGACCCCGAAAAAGGAGTGCGTTCCTGGACATTGCTCAC

CACCTCAGATGTCACCTGCGGAGCGGAGCAGGTCTACTGGTCGCTTCCAGACAT

GATGCAGGATCCTGTCACTTTCCGCTCCACTAGACAAGTCAGTAACTACCCTGTG

GTGGGTGCAGAGCTTATGCCCGTCTTCTCAAAGAGCTTCTACAACGAACAAGCT

GTGTACTCCCAGCAGCTCCGCCAGTCCACCTCGCTTACGCACGTCTTCAACCGCT

TTCCTGAGAACCAGATTTTAATCCGTCCGCCGGCGCCCACCATTACCACCGTCAG

TGAAAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGTTGCGCAGCAGTATC

CGGGGAGTCCAACGTGTGACCGTTACTGACGCCAGACGCCGCACCTGTCCCTAC

GTGTACAAGGCACTGGGCATAGTCGCACCGCGCGTCCTTTCAAGCCGCACTTTCT

AAAAAAAAAAATGTCCATTCTTATCTCACCCAGTAATAACACCGGTTGGGGTCT

GCGCGCTCCCAGCAAGATGTACGGAGGCGCACGCAAACGTTCTACCCAACATCC

CGTGCGTGTTCGCGGTCATTTTCGCGCTCCATGGGGTGCCCTCAAGGGCCGCACT

CGCGTTCGAACCACCGTTGATGATGTAATCGATCAGGTGGTTGCCGACGCCCGT

AATTATACTCCTACTGCGCCTACATCTACTGTGGACGCAGTTATTGACAGTGTAG

TGGCTGACGCTCGCAACTATGCTCGACGTAAGAGCCGACGAAGGCGCATTGCCA

GACGTCACCGAGCTACCACTGCCATGCGAGCCGCAAGAGCTCTGCTACGAAGAG

CTAGACGCGTGGGACGAAGAGCCATGCTTAGGGCGGCCAGACGTGCAGCTTCGG

GCGCCAGCGCCGGCAGGTCCCGCAGGCAAGCTGCCGCTGTCGCAGCGGCGACTA

TTGCCGACATGGCCCAATCGCGAAGAGGCAATGTATACTGGGTGCGTGACGCTG

CCACCGGTCAACGTGTACCCGTGCGCACCCGTCCCCCTCGCACTTAGAAGATACT

GAGCAGTCTCCGATGTTGTGTCCCAGCGGCGAGGATGTCCAAGCGCAAATACAA

GGAAGAAATGCTGCAGGTTATCGCGCCTGAAGTCTACGGCCAACCGTTGAAGGA

TGAAAAAAAACCCCGCAAAATCAAGCGGGTAAAAAAGGACAAAAAAGAAGAG

GAAGATGGCGATGATGGGCTGGCGGAGTTTGTGCGCGAGTTTGCCCCACGGCGG

CGCGTGCAATGGCGTGGACGCAAAGTTCGACATGTGTTGAGACCTGGAACTTCG

GTGGTCTTTACACCCGGCGAGCGTTCAAGCGCTACTTTTAAGCGTTCCTACGATG

AGGTGTACGGGGATGATGATATTCTTGAGCAGGCAGCTGACCGATTAGGCGAGT

TTGCTTATGGCAAGCGTAGTAGAATAAATCCCAAGGATGAGACAGTGTCCATAC

CCTTGGATCATGGAAATCCCACCCCTAGTCTTAAACCGGTCACTTTGCAGCAAGT

GTTACCCGTAACTCCGCGAACAGGTGTTAAACGCGAAGGTGAAGATTTGTATCC

CACTATGCAACTGATGGTGCCCAAACGCCAGAAGTTGGAGGACGTTTTGGAGAA

AGTAAAAGTGGATCCAGATATTCAACCTGAGGTTAAAGTGAGACCCATTAAGCA

GGTAGCGCCTGGTCTGGGAGTACAAACTGTAGACATTAAGATTCCCACTGAAAG

TATGGAAGTGCAAACTGAACCCGCAAAGCCTACTGCCACCTCCACTGAAGTGCA

AACGGATCCATGGATGCCCATGCCTATTACAACTGACGCCGCCGGTCCCACTCG

AAGATCCCGACGAAAGTACGGTCCAGCAAGTCTGTTGATGCCCAATTATGTTGT

ACATCCATCTATTATTCCTACTCCTGGTTACCGAGGCACTCGCTACTATCGCAGC

CGAAACAGTACCTCCCGCCGTCGCCGCAAGACACCTGCAAATCGCAGTCGTCGC

CGCAGACGCACAAGCAAACCGACTCCCGGCGCCCTGGTGCGGCAAGTGTACCGC

AATGGTAGTGCGGAACCTTTGACACTGCCGCGTGCGCGTTACCATCCGAGTATC

GTCACTTAATCAATGTTGCCGCTGCCTCCTTGCAGATATGGCCCTCACTTGTCGC

CTTCGCGTTCCCATCACTGGTTACCGAGGAAGAAACTCGCGCCGTAGAAGAGGG

ATGTTGGGGCGCGGAATGCGACGCTACAGGCGACGGCGTGCTATCCGCAAGCAA

CAATACCAGGCATAGCTTCCGTGGCGGTTCAGGCCTCGCAACGACATTGACATT GGAAAAAAAAACGTATAAATAAAAAAAAATACAATGGACTCTGACACTCCTGG SEQ

ID Sequence

NO

TCCTGTGACTATGTTTTCTTAGAGATGGAAGACATCAATTTTTCATCCTTGGCTCC

GCGACACGGCACGAAGCCGTACATGGGCACCTGGAGCGACATCGGCACGAGCC

AACTGAACGGGGGCGCCTTCAATTGGAGCAGTATCTGGAGCGGGCTTAAAAATT

TTGGCTCAACCATAAAAACATACGGGAACAAAGCTTGGAACAGCAGTACAGGA

CAGGCGCTTAGAAATAAACTTAAAGATCAGAACTTCCAACAAAAAGTAGTCGAT

GGGATAGCTTCCGGCATCAATGGAGTGGTAGATTTGGCTAACCAGGCTGTGCAA

AAAAAGATAAACAGTCGTTTGGACCCGCCGCCAGCAACCCCAGGTGAAATGCAA

GTGGAGGAAGAAATTCCTCCACCAGAAAAACGAGGCGACAAGCGTCCGCGTCC

CGATTTGGAAGAGACGCTGGTGACGCGCGTAGATGAACCGCCTTCTTATGAGGA

AGCAATGAAGCTTGGAATGCCCACCACCAGACCGATAGCCCCTATGGCCACCGG

GGTGATGAAACCTTCTCAGTTGCATCGACCCGTCACCTTGGATTTGCCCCCTCCC

CCTGCTGCTACTGCTGTACCCGCTTCTAAGCCTGTCGCTACCCCGAAACCAGTCG

CCGTAGCCAGGTCACGTCCCGGGGGCGCTCCTCGTCCAAATGCGCACTGGCAAA

ATACTCTGAACAGCATCGTGGGTCTAGGCGTGCAAAGTGTAAAACGCCGTCGCT

GCTTTTAATTAAATATGGAGTAGCGCTTAACTTGCCTATCTGTGTATATGTGTCA

TTACACGCCGTCACAGCAGCAGAGGAAAAAAGGAAGAGGTCGTGCGTCGACGC

TGAGTTACTTTCAAGATGGCCACCCCATCGATGCTGCCCCAATGGGCATACATGC

ACATCGCCGGACAGGATGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTCG

CCCGCGCCACAGACACCTACTTCAATCTTGGAAATAAGTTTAGAAATCCCACCGT

AGCGCCGACCCACGATGTGACCACCGACCGTAGCCAGCGGCTCATGTTGCGCTT

CGTGCCCGTTGACCGGGAGGACAATACATACTCTTACAAAGTGCGGTACACCCT

GGCCGTGGGCGACAACAGAGTGCTGGATATGGCCAGCACGTTCTTTGACATTAG

GGGCGTGTTGGACAGAGGTCCCAGTTTCAAACCTTATTCTGGCACGGCTTACAAC

TCCCTGGCTCCTAAAGGCGCTCCAAATGCATCTCAGTGGTTGGATAAGGGAGTT

ACAAGCACTGGTCTAGTGGACGACGGGAATGGTGATGATGGGGAAGAAGCCAA

AAAAGCAACATACACTTTTGGTAATGCTCCAGTAAAAGCCGAGGCTGAAATCAC

AAAAGACGGATTGCCGGTGGGCTTGGAAGTTTCAACTGAAGGTCCTAAACCAAT

CTATGCTGATAAGCTTTATCAGCCAGAACCTCAAGTGGGAGACGAAACTTGGAC

TGACCTAGACGGAAAAACCGAAGAGTATGGAGGGAGGGTTCTTAAACCTGAAA

CTAAAATGAAACCCTGCTACGGATCTTTTGCTAAACCTACTAATATTAAAGGAG

GTCAGGCAAAGGTAAAACCAAAAGAAGACGATGGCACTAACAACATCGAATAT

GACATTGACATGAACTTCTTTGACTTAAGATCACAAAGATCAGAACTGAAACCT

AAAATTGTAATGTATGCAGAAAATGTGGACCTGGAATCTCCAGATACTCATGTT

GTGTACAAACCTGGAGTTTCAGATGCTAGTTCTGAGACCAATCTTGGACAACAG

TCTATGCCCAACAGACCCAACTACATTGGCTTCAGAGATAACTTTATCGGACTTA

TGTACTATAACAGTACTGGCAACATGGGGGTATTGGCTGGCCAAGCGTCTCAGT

TGAATGCAGTGGTTGACTTGCAGGACAGAAACACAGAACTGTCTTACCAACTCT

TGCTTGACTCCCTGGGCGACAGAACCAGATACTTTAGCATGTGGAATCAGGCTG

TGGACAGTTATGATCCTGATGTACGTGTTATTGAAAATCATGGTGTGGAAGATG

AACTTCCCAACTATTGTTTTCCGTTGGATGGTGTCGGTCCGCGAACAGATAGTTA

CAAGGAGATTAAACCAAATGGAGACCAATCTACTTGGACGAATGTAGACCCGAA

TGGCAGCAGTGAACTTGCTAAGGGAAATCCATTTGCCATGGAAATTAACCTTCA

AGCCAATCTATGGCGAAGTTTCCTTTATTCCAATGTGGCTCTGTATCTCCCAGAC

TCGTACAAATACACCCCGTCCAATGTCACTCTTCCAGAAAACAAAAACACCTAC

GACTACATGAACGGGCGGGTGGTGCCGCCATCTCTAGTAGACACCTATGTGAAC

ATTGGCGCCAGGTGGTCTCTGGATGCCATGGACAATGTGAACCCATTCAACCAC

CACCGTAACGCTGGCTTGCGTTACCGATCCATGCTTCTGGGTAACGGACGTTATG

TGCCTTTCCACATACAAGTGCCTCAAAAATTCTTCGCTGTTAAAAACCTGCTGCT

TCTCCCAGGCTCCTACACTTATGAGTGGAACTTTAGGAAGGATGTGAACATGGTT

CTACAGAGTTCCCTCGGTAATGACCTGCGGGTAGATGGCGCCAGCATCAGTTTC

ACGAGCATCAACCTCTATGCTACTTTTTTCCCAATGGCTCACAACACCGCTTCCA

CCCTTGAAGCCATGCTGCGGAATGACACCAATGATCAGTCATTCAACGACTACC

TATCTGCAGCTAACATGCTCTACCCCATTCCTGCCAATGCAACCAATATTCCCAT SEQ

ID Sequence

NO

TTCAATTCCTTCTCGCAACTGGGCGGCTTTCAGAGGCTGGTCATTTACCAGACTG

AAAACCAAAGAAACTCCCTCTTTGGGGTCCGGATTTGACCCATACTTTGTCTATT

CTGGTTCTATTCCCTACCTGGATGGTACCTTCTACCTGAACCACACTTTTAAGAA

GGTTTCCATCATGTTTGACTCTTCAGTGAGCTGGCCTGGAAACGACAGGTTACTA

TCTCCTAACGAATTTGAAATAAAGCGCACTGTGGATGGCGAAGGCTACAACGTA

GCCCAATGCAACATGACCAAAGACTGGTTCTTGGTACAGATGCTCGCCAACTAC

AACATCGGCTATCAGGGCTTCTACATTCCAGAAGGATACAAAGATCGCATGTAT

ACAAAGACTTCAAGGCCGTCGCCATACCCTACCAACACAACAACTCTGGCTTTG

TGGGTTACATGGCTCCGACTATGCGCCAAGGTCAACCCTATCCCGCTAACTATCC

CTATCCACTCATCGGAACTACTGCCGTAAATAGTGTTACGCAGAAAAAGTTCTTG

TGTGACAGAACCATGTGGCGCATACCGTTCTCCAGCAACTTCATGTCTATGGGGG

CCCTTACAGACTTGGGGCAGAACATGCTCTATGCCAACTCAGCTCATGCTCTGGA

CATGACCTTCGAGGTGGATCCCATGGATGAGCCCACCCTGCTTTATCTTCTCTTC

GAAGTTTTCGACGTGGTCAGAGTGCATCAGCCACACCGCGGCATCATCGAGGCA

GTCTACCTGCGTACACCGTTCTCGGCCGGTAACGCTACCACGTAAGAAGCTTCTT

GCTTCTTGCAAACAGCAGCTGCAACCATGGCCTGCGGATCCCAAAACGGCTCCA

GGGAACCTACGATAAGCGCTTCCCGGGGTTCATGGCTCCCGATAAGCTCGCCTG

TGCCATTGTAAATACGGCCGGACGTGAGACGGGGGGAGAGCACTGGTTGGCTTT

CGGTTGGAACCCACGTTCTAACACCTGCTACCTTTTTGATCCTTTTGGATTCTCGG

ATGATCGTCTCAAACAGATTTACCAGTTTGAATATGAGGGTCTCCTGCGCCGCAG

CGCTCTTGCTACCAAGGACCGCTGTATTACGCTGGAAAAATCTACCCAGACCGT

GCAGGGCCCCCGTTCCGCCGCCTGCGGACTTTTCTGCTGCATGTTCCTTCACGCC

TTTGTGCACTGGCCTGACCGTCCCATGGACGGAAACCCCACCATGAAATTGCTA

ACTGGAGTGCCAAACAACATGCTTCATTCTCCTAAAGTCCAGCCCACCCTGTGTG

ACAATCAAAAAGCACTTTATCATTTTCTCAATACCCATTCGCCTTATTTTCGCTCT

CATCGCACACACATCGAAAGGGCCACTGCGTTTGACCGTATGGATGTGCAATAA

TGATTCATGTAAACAACGTGTTCAATAAACAGCACTTTATTTTTTACATGTATCA

AGGCTCTGGATTACTTATTTATTTACAAGTCGAATGGGTTCTGACGAGAATCAGA

ATGACCCGCAGGCAGTGATACGTTGCGGAACTGATACTTGGGTTGCCACTTGAA

TTCGGGAATCACCAACTTCGGAACCGGTATATCGGGCAGGATGTCACTCCACAG

CTTTCTAGTCAGCTGCAAAGCTCCCAGCAGGTCAGGAGCCGAAATCTTGAAATC

ACAATTAGGACCAGTGCTCTGAGCGCGAGAGTTGCGGTACACCGGATTGCAGCA

CTGAAACACCATCAGCGACGGATGTCTCACGCTTGCCAGCACGGTGGGATCTGC

AATCATGCCCACATCCAGATCTTCAGCATTGGCAATGCTGAACGGGGTCATCTTG

CAGGTCTGCCTACCCATGGCGGGCACCCAATTAGGCTTGTGGTTACAATCGCAGT

GCAGGGGGATCAGTATCATCTTGGCCTGATCCTGTCTGATTCCTGGATACACGGC

TCTCATGAAAGCATCATATTGCTTGAAAGCCTGCTGGGCTTTACTACCCTCGGTA

TAAAACATCCCGCAGGACCTGCTCGAAAACTGGTTAGCTGCGCAGCCGGCATCA

TTCACACAGCAGCGGGCGTCATTGTTGGCTATTTGCACCACACTTCTGCCCCAGC

GGTTTTGGGTGATTTTGGTTCGCTCGGGATTCTCCTTCAAGGCTCGTTGTCCGTTC

TCGCTGGCCACATCCATCTCGATAATCTGCTCCTTCTGAATCATAATATTGCCAT

GCAAGCACTTCAGCTTGCCCTCATAATCATTGCAGCCATGAGGCCACAACGCAC

AGCCTGTACATTCCCAATTATGGTGGGCGATCTGAGAAAAAGAATGTATCATTC

CCTGCAGAAATCTTCCCATCATCGTGCTCAGTGTCTTGTGACTAGTGAAAGTTAA

CTGGATGCCTCGGTGCTCCTCGTTTACGTACTGGTGACAGATGCGCTTGTATTGT

TCGTGTTGCTCAGGCATTAGTTTAAAAGAGGTTCTAAGTTCGTTATCCAGCCTGT

ACTTCTCCATCAGCAGACACATCACTTCCATGCCTTTCTCCCAAGCAGACACCAG

GGGCAAGCTAATCGGATTCTTAACAGTGCAGGCAGCAGCTCCTTTAGCCAGAGG

GTCATCTTTGGCGATCTTCTCAATGCTTCTTTTGCCATCCTTCTCAACGATGCGCA

CGGGCGGGTAGCTGAAACCCACTGCTACAAGTTGCGCCTCTTCTCTTTCTTCTTC

GCTGTCTTGACTGATGTCTTGCATGGGGACATGTTTGGTCTTCCTTGGCTTCTTTT SEQ

ID Sequence

NO

TGGGGGGTATCGGAGGAGGAGGACTGTCGCTCCGTTCCGGAGACAGGGAGGATT

GTGAAGTTTCGCTCACCATTACCAACTGACTGTCGGTAGAAGAACCTGACCCCA

CACGGCGACAGGTGTTTCTCTTCGGGGGCAGAGGTGGAGGCGATTGCGAAGGGC

TGCGGTCCGACCTGGAAGGCGGATGACTGGCAGAACCCCTTCCGCGTTCGGGGG

TGTGCTCCCTGTGGCGGTCGCTTAACTGATTTCCTTCGCGGCTGGCCATTGTGTTC

TCCTAGGCAGAGAAACAACAGACATGGAAACTCAGCCATTGCTGTCAACATCGC

CACGAGTGCCATCACATCTCGTCCTCAGCGACGAGGAAAAGGAGCAGAGCTTAA

GCATTCCACCGCCCAGTCCTGCCACCACCTCTACCCTAGAAGATAAGGAGGTCG

ACGCATCTCATGACATGCAGAATAAAAAAGCGAAAGAGTCTGAGACAGACATC

GAGCAAGACCCGGGCTATGTGACACCGGTGGAACACGAGGAAGAGTTGAAACG

CTTTCTAGAGAGAGAGGATGAAAACTGCCCAAAACAGCAAGCGGATAACTATCA

CCAAGATGCTGGAAATAGGGATCAGAACACCGACTACCTCATAGGGCTTGACGG

GGAAGACGCGCTCCTTAAACATCTAGCAAGACAGTCGCTCATAGTCAAGGATGC

ATTATTGGACAGAACTGAAGTGCCCATCAGTGTGGAAGAGCTCAGCCGCGCCTA

CGAGCTCAACCTCTTTTCACCTCGTACTCCCCCCAAACGCCAGCCAAACGGCACC

TGCGAGCCAAATCCTCGCTTAAACTTTTATCCAGCTTTTGCTGTGCCAGAAGTAC

TAATCGCACCCGCGCCGATGCCCTACTCAATCTGGGACCTGGTTCACGCTTACCT

GATATAGCTTCCTTGGAAGAGGTTCCAAAGATCTTCGAGGGTCTGGGCAATAAT

GAGACTCGGGCCGCAAATGCTCTGCAAAAGGGAGAAAATGGCATGGATGAGCA

TCACAGCGTTCTGGTGGAATTGGAGGGCGATAATGCCAGACTCGCAGTACTCAA

GCGAAGCGTCGAGGTCACACACTTTGCATATCCCGCTGTCAACCTGCCCCCTAAA

GTCATGACGGCCGTCATGGACCAGTTACTCATTAAGCGCGCAAGTCCCCTTTCAG

AAGACATGCATGACCCAGATGCCTGTGATGAGGGTAAACCAGTGGTCAGTGATG

AGCAACTAACCCGATGGCTGGGCACCGACTCTCCCCGGGATTTGGAAGAGCGTC

GCAAGCTTATGATGGCCGTGGTGCTGGTTACCGTAGAACTAGAGTGTCTCCGGC

GTTTCTTTACCGATTCAGAAACCTTGCGCAAACTCGAAGAGAATCTGCACTACAC

TTTTAGACACGGCTTTGTGCGGCAGGCATGCAAGATATCTAACGTGGAACTCAC

CAACCTGGTTTCCTACATGGGTATTCTGCATGAGAATCGCCTAGGACAAAGCGT

GCTGCACAGCACCCTTAAGGGGGAAGCCCGCCGTGATTACATCCGCGATTGTGT

CTATCTCTACCTGTGCCACACGTGGCAAACCGGCATGGGTGTATGGCAGCAATG

TTTAGAAGAACAGAACTTGAAAGAGCTTGACAAGCTCTTACAGAAATCTCTTAA

GGTTCTGTGGACAGGGTTCGACGAGCGCACCGTCGCTTCCGACCTGGCAGACCT

CATCTTCCCAGAGCGTCTCAGGGTTACTTTGCGAAACGGACTGCCTGACTTTATG

AGCCAGAGCATGCTTAACAATTTTCGCTCTTTCATCCTGGAACGCTCCGGTATCC

TGCCCGCCACCTGCTGCGCACTGCCCTCCGACTTTGTGCCTCTCACCTACCGCGA

GTGCCCCCCGCCGCTATGGAGTCACTGCTACCTGTTCCGTCTGGCCAACTACCTC

TCCTACCACTCGGATGTGATCGAGGATGTGAGCGGAGACGGCTTGCTGGAGTGT

CACTGCCGCTGCAATCTGTGCACGCCCCACCGGTCCCTAGCTTGCAACCCCCAGT

TGATGAGCGAAACCCAGATAATAGGCACCTTTGAATTGCAGGGCCCCAGCAGCC

AAGGCGATGGGTCTTCTCCTGGGCAAAGTTTAAAACTGACCCCGGGACTGTGGA

CCTCCGCCTACTTGCGCAAGTTTGCCCCGGAAGATTACCACCCCTATGAAATCAA

GTTCTATGAGGACCAATCACAGCCTCCGAAGGCCGAACTTTCGGCCTGCGTCATC

ACCCAGGGGGCAATTCTGGCCCAATTGCAAGCCATCCAAAAATCCCGCCAAGAA

TTTCTACTGAAAAAGGGTAAGGGGGTCTACCTTGACCCCCAGACCGGCGAGGAA

CTCAACACAAGGTTCCCTCAGGATGTCCCAACGACGAGAAAGCAAGAAGTTGAA

GGTGCAGCCGCCGCCCCCAGAAGATATGGAGGAAGATTGGGACAGTCAGGCAG

AGGAAGCGGAGGAGGAGGAGGACAGTCTGGAGGACAGTCTGGAGGAAGACAGT

TTGGAGGAGGAAAACGAGGAGGCAGAGGAGGTGGAAGAAGTAACCGCCGACA

AACAGTTATCCTCGGCTGCGGAGACAAGCAACAGCGCTACCATCTCCGCTCCGA

GTCGAGGAACCCGGCGGCGTCCCAGCAGTAGATGGGACGAGACCGGACGCTTCC

CGAACCCAACCAGCGCTTCCAAGACCGGTAAGAAGGATCGGCAGGGATACAAG

TCCTGGCGGGGGCATAAGAATGCCATCATCTCCTGCTTGCATGAGTGCGGGGGC SEQ

ID Sequence

NO

AACATATCCTTCACGCGACGCTACTTGCTATTCCACCATGGGGTGAACTTTCCGC

GCAATGTTTTGCATTACTACCGTCACCTCCACAGCCCCTACTATAGCCAGCAAAT

CCCGGCAGTCTCGACAGATAAAGACAGCGGCGGCGACCTCCAACAGAAAACCA

GCAGCGGCAGTTAGAAAACACACAACAAGTGCAGCAACAGGAGGATTAAAGAT

TGCAGCCAACGAGCCAGCGCAAACCCGAGAGTTAAGAAATCGGATCTTTCCAAC

CCTGTATGCCATCTTCCAGCAGAGTCGGGGCCAAGAGCAGGAACTGAAAATAAA

AAACCGATCTCTGCGTTCGCTCACCAGAAGTTGTTTGTATCACAAGAGCGAAGA

TCAACTTCAGCGCACTCTCGAGGACGCCGAGGCTCTCTTCAACAAGTACTGCGC

GCTGACTCTTAAAGAGTAGGCAGCGACCGCGCTTATTCAAAAAAGGCGGGAATT

ACATCATCCTCGTCATGAGTAAAGAAATTCCCACGCCTTACATGTGGAGTTACCA

GCCCCAAATGGGATTGGCGGCAGGCGCCTCCCAGGACTACTCCACCCGCATGAA

TTGGCTCAGCGCCGGGCCCTCTATGATTTCTCGAGTTAATGATATACGCGCCTAC

CGAAACCAAATACTTTTGGAACAGTCAGCTCTTACCACCACGCCCCGCCAACAC

CTTAATCCCAGAAATTGGCCCGCCGCCCTAGTGTACCAGGAAAGTCCCGCTCCC

ACCACTGTATTACTTCCTCGAGACGCCCAGGCCGAAGTCCAAATGACTAATGCA

GGTGCGCAGTTAGCTGGCGGCTCCACCCTATGTCGTCACAGGCCTCGGCATAAT

ATAAAACGCCTGATGATCAGAGGCCGAGGTATCCAGCTTAACGACGAGTCGGTG

AGCTCTCCGCTTGGTCTACGACCAGACGGAATCTTTCAGATTGCCGGCTGCGGGA

GATCTTCCTTCACCCCTCGTCAGGCTGTTCTGACTTTGGAAAGTTCGTCTTCGCAA

CCCCGCTCGGGCGGAATCGGGACCGTTCAATTTGTGGAGGAGTTTACTCCCTCTG

TCTACTTCAACCCCTTCTCCGGATCTCCTGGGCACTACCCGGACGAGTTCATACC

GAACTTCGACGCGATTAGCGAGTCAGTGGACGGCTACGATTGATGTCTGGTGAC

GCGGCTGAGCTATCTCGGCTGCGACATCTAGACCACTGCCGCCGCTTTCGCTGCT

TTGCCCGGGAACTCATTGAGTTCATCTACTTCGAACTCCCCAAGGATCACCCTCA

AGGTCCGGCCCACGGAGTGCGGATTACTATCGAAGGCAAAATAGACTCTCGCCT

GCAACGAATTTTCTCCCAGCGGCCCGTGCTGATCGAGCGAGACCAGGGAAACAC

CACGGTTTCCATCTACTGCATTTGTAATCACCCCGGATTGCATGAAAGCCTTTGC

TGTCTTATGTGTACTGAGTTTAATAAAAACTGAATTAAGACTCTCCTACGGACTG

CCGCTTCTTCAACCCGGATTTTACAACCAGAAGAACGAAACTTTTCCTGTCGTCC

AGGACTCTGTTAACTTCACCTTTCCTACTCACAAACTAGAAGCTCAACGACTACA

CCGCTTTTCCAGAAGCATTTTCCCTACTAATACTACTTTCAAAACCGGAGGTGAG

CTCCACGGTCTCCCTACAGAAAACCCTTGGGTGGAAGCGGGCCTTGTAGTGCTA

GGAATTCTTGCGGGTGGGCTTGTGATTATTCTTTGCTACCTATACACACCTTGCTT

CACTTTCCTAGTGGTGTTGTGGTATTGGTTTAAAAAATGGGGCCCATACTAGTCT

TGCTTGTTTTACTTTCGCTTTTGGAACCGGGTTCTGCCAATTACGATCCATGTCTA

GACTTCGACCCAGAAAACTGCACACTTACTTTTGCACCCGACACAAGCCGCATCT

GTGGAGTTCTTATTAAGTGCGGATGGGACTGCAGGTCCGTTGAAATTACACACA

ATAACAAAACCTGGAACAATACCTTATCCACCACATGGGAGCCAGGAGTTCCCG

AGTGGTACACTGTCTCTGTCCGAGGTCCTGACGGTTCCATCCGCATTAGTAACAA

TCTCTATGGCCTCCCAGCAAGGACAACATTGTAACGTTCTCCATTGCTTATTGCT

TGTGCGCTTGCCTCCTTACTGCTTTACTGTGCGTATGCATACACCTGCTTGTAACC

ACTCGCATCAAAAACGCCAATAACAAAGAAAAAATGCCTTAACCTCTTTCTGTTT

ACAGACATGGCTTCTCTTACATCTCTCATATTTGTCAGCATTGTCACTGCCGCTCA

CGGACAAACAGTCGTCTCTATCCCTCTAGGACATAATTACACTCTCATAGGACCC

CCAATCACTTCAGAGGTCATCTGGACCAAATTGGGAAGCGTTGATTACTTTGATA

TAATCTGTAACAAAACAAAACCAATAATAGTAACTTGCAACATACAAAATCTTA

CATTAATTAATGTTAGCAAAGTTTACAGCGGTTACTATTATGGTTATGACAGATA

CAGTAGTCAATATAGAAATTACTTGGTTCGTGTTACCCAGTTCAAAACCACAAA

AATGCCAAATATGGCAAAGATTCGATCCGATGACAATTCTCTAGAAACTTTTAC

ATCTCCCACCACACCTGACGAAAAAAACATCCCAGATTCAATGATTGCAATTAT

CGCAGCGGTGGCAGTGGTGATGGCACTAATAATAATATGCATGCTTTTATATGCT

TGTCGCTACAAAAAGTTTCATCCTAAAAAACAAGATCTCCTACTAAGGCTTAAC SEQ

ID Sequence

NO

AGTCTCGCAACTCTGACTTCTGCTCGCTCACACCTCACTGTAACTATAGGTTCAA ACTGCACACTAAAAGGACCTCAAGGCGGCCATGTCTTTTGGTGGAGAATATATG

CAGAGACCTAACCATTGTCAACGTGACAGCAAGTGACAAAGGCTTCTATTATGG

AACCGACTATCAAACTAGTTTAGATTATAACATTATTGTACTGCCATCCACCACT

CCAGCACCCCGCAAAACTACTTTCTCTAGCAGCAGTGCCGCTAACAATACAATTT

CCAATCCAACCTTTGCCGCGCTTTTAAAACGCACTGTGAATAATTCTACAACTTC

ACATACAACAATTTCCATTTCAACAATCAGCATTATTGCTGCCGTGACAATTGGA

ATATCTATTCTTGTTTTTACCATAACCTACTACGCCTGCTGCTATAGAAAAGACA

TTACAGTATGGTGAACACCAATCATGGTACCTAGAAATTTCTTCTTCACCATACT CATCTGTGCTTTTAATGTTTGCGCTACTTTCACAGCAGTAGCCACAGCAACCCCA GACTGTATAGGAGCATTTGCTTCCTATGCACTTTTTGCTTTTGTCACTTGCATCTG

TTGTGCGAATTGCCTACCTGCGCCACCATCCCGAATACCGCAACCAAAATATCGC

GGCACTTCTTAGACTCATCTAAAACCATGCAGGCTATACTACCAATATTTTTGCT

TCTATTGCTCCCCTACGCTGTCTCAACTCCAGCTGCCTATAGTACTCCGCCAGAA

CACCTTAGAAAATGCAAATTCCAACAACCGTGGTCATTTCTTGCTTGCTATCGAG

AAAAATCAGAAATTCCCCCAAATTTAATAATGATTGCTGGAATAATTAATATAA

TCTGCTGCACCATAATTTCATTTCTGATATACCCCCTATTTGATTTTGGCTGGAAT

GCTCCCAATGCACATGATCATCCACAAGACCCAGAGGAACACATTCCCCTACAG

AACATGCAACATCCAATAGCGCTAATAGAATACGAAAGTGAACCACAACCCCCA

CTACTCCCTGCTATTAGTTACTTCAACCTAACCGGCGGAGATGACTGAAACACTC

ACCACCTCCAATTCCGCCGAGGATCTGCTTGATATGGACGGCCGCGTCTCAGAA

CAGCGACTCGCCCAACTACGCATCCGCCAACAGCAGGAACGCGTGGCCAAAGA

GCTCAGAGATGTCATCCAAATTCACCAATGCAAAAAAGGCATATTCTGTCTGGT

AAAACAAGCCAAGATATCCTACGAGATCACCGCTACTGACCATCGCCTCTCTTAT

GAGCTTGGCCCCCAACGACAAAAATTTACCTGCATGGTGGGAATCAACCCCATA

GTTATCACCCAGCAAAGTGGAGATACTAAGGGTTGCATTCACTGCTCCTGCGATT

CCATCGAGTGCACCTACACCCTGCTGAAGACCCTATGCGGTCTAAGAGACCTGC

TACCAATGAATTAAAAAAAATGATTAATAAAAAATCACTTACTTGAAATCAGCA

ATAAGGTCTCTGTTGAAATTTTCTCCCAGCAGCACCTCACTTCCCTCTTCCCAACT

CTGGTATTCTAAACCCCGTTCAGCGGCATACTTTCTCCATACTTTAAATGGGATG

TCAAATTTTAGCTCCTCTCCTGTACCCACAATCTTCATGTCTTTCTTCCCAGATGA

CCAAGAGAGTCCGGCTCAGTGACTCCTTCAACCCTGTCTACCCCTATGAAGATGA

AAGCACCTCCCAACACCCCTTTATAAACCCAGGGTTTATTTCCCCAAACGGCTTC

ACACAAAGCCCAGACGGAGTTCTTACTTTAAAATGTTTAACCCCGCTAACAACC

ACAGGCGGGTCTCTACAGTTAAAAGTGGGAGAGGGTCTTACAGTAGATGACACC

GGGTTTTTGAAAGAAAACATAAGTGCTACCACACCACTCGTTAAGACTGGTCAC

TCTATAGGTTTGTCGCTAGGACCCGGATTAGGAACAAATGAAAATAAACTTTGT

ACCAAATTGGGAGAAGGACTTACATTCAATTCGAACAACATTTGCATTGATGAC

AATATTAACACCCTATGGACAGGAGTTAACCCCACCAGAGCCAACTGTCAAATG

ATGGACTCCAGTGAATCTAATGATTGCAAATTAATTCTAACACTAGTTAAAACTG

GAGCCCTAGTCACTGCATTTGTTTATGTTATAGGAGTATCTAACGATTTTAATAT

GCTAACTACACAGAAAAATATAAATTTTACTGCAGAGCTGTTTTTCGATTCTACT

GGTAATTTACTAACTAGCCTCTCATCCCTAAAAACTCCACTTAATCATAAATCAG

GGCAAAACATGGCTACTGGTGCCATTACTAATGCTAAAGGTTTCATGCCCAGCA

CAACTGCCTATCCTTTCAATAATAATTCCAGAGAAAAAGAAAACTACATTTACG

GAACTTGTTACTACACAGCTAGTGATCACACTGCTTTTCCCATTGACATATCTGT

CATGCTTAACCGAAGAGCAATAAATGATGAGACATCATATTGTATTCGTATAAC

TTGGTCCTGGAGCACAGGAGTTGCCCCAGAAGTGCAAACCTCTGCTACTACCCT

AGTCACCTCTCCATTTACCTTTTACTACATCAGAGAAGACGACTGACAAATAAAG SEQ

ID Sequence

NO

TTTAACTTGTTTATTTGAAAATCAATTCACAAAATTCGAGTAGTTATTTTGCCTCC

CCCTTCCCATTTAACAGAATACACCAATCTCTCCCCACGCACAGCTTTAAACATT

TGGATACCATTAGAGATAGACATAGTTTTAGATTCCACATTCCAAACAGTTTCAG

AGCGAGCCAATCTGGGGTCAGTGATAGATAAAAATGCATCTGGATAGTCTTTTA

AAGCGCTTTCACAGTCCAACTGCTGCGGGTGCGACTCCGGAGTCTGAATCACGG

TCATCTGGAAGAAGAACGATGGGAATCATAATCCGAAAACGGGATCGGGCGATT

GTGTCTCATCAAACCCACAAGCAGCCGCTGTCTGCGTCGCTCCGTGCGACTGCTG

TTTATGGGATCGGGGTCCACAGTGTCCTGAAGCATAATTTTAATAGCCCTTAACA

TTAACTTTCTGGTGCGATGCGCGCAGCAACGCATTCTGATCTCACTTAGATTACT

ACAGTAGGTACAGCACATTATCACAATATTGTTTAATAAACCATAATTAAAAGC

GCTCCAGCCAAAACTCATATCTGATATAATCGCCCCTGCATGACCATCATACCAA

AGTTTAATATAAATTAAATGTCGTTCCCTCAAAAACACACTACCCACATACATGA

TCTCTTTTGGCATGTGCATATTAACAATCTGTCTGTACCATGGACAACGTTGGTT

AATCATGCAACCCAATATAACCTTCCGGAACCACACTGCCAACACCGCTCCCCC

AGCCATGCATTGAAGTGAACCCTGCTGATTACAATGACAATGAAGAACCCAATT

CTCTCGACCGTGAATCACTTGAGAATGAAAAATATCTATAGTAGCACAACATAG

ACATAAATGCATGCATCTTCTCATAATTTTTAACTCCTCAGGATTTAGAAACATA

TCCCAGGGAATAGGAAGCTCTTGCAGAACAGTAAAGCTGGCAGAACAAGGAAG

ACCACGAACACAACTTACACTATGCATAGTCATAGTATCACAATCTGGCAACAG

CGGGTG

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGTAAATGAGGTG ID GTTTGAAAATGGAGAGCGGAAGGGGATTGGCTTGGGGTTCAACGGTCACGGGGC NO: GGCGCGGGAAGGTGACGTATGCGTGGGTGTGGCTAAGATGCAAGCTGTCGCGGT 1428 ATTTCTGACGTAAACGAGGTGGAGTTTAAACACGGAAGTACACAGTTTCCCGCG

CTTATTGACAGGAAATGAGGTAGTTTTGGGCGGATGCAAGTGAAAATTCCTCAT

TTTCGCGCGAAAACTGAATGAGGAAGTGAATATCTGAGTAATTTCGTGTTTATGA

CAGGGTGGAGTATTTACCGAGGGCCGAGTAGACTTTGACCGATTACGTGGAGGT

TTCGATTACCGTGTTTTTCACCTAAATTTCCGCGTACGGTGTCAAAGTCCTGTGTT

TTTACGTAGGTGTCAGCTGATCGCCAGGGTATTTAAACCTGACGAGTTCCGTCAA

GAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCTCCTCCGCGCTGCGAGTCA

GATCTCCACTTCGAAAATGAGACACCTGCGTTTCCTGTCCCAGGAGATAGTCTCC

ACTGAAACTGGGAATGAAATACTGCAGTTTGTGGTAAATACTCTGATGGGAGAC

GATCCAGAGCCGCCTGAGCCATCTTTTGATCCTCCTACGCTTCATGAATTATATG

ATTTAGAGGTAGACGGACCGGAGGACCCTAATGAGGACGACGTGAATGGGTTTT

TTACTGATTCTATGTTATTAGCTGCTAATGAGGGAGTGGATTTAGACCCACCTTC

TGGAACTCTTGATACTCCAGGGGTGATTGTGGAAAGCGACATAAATGGGAAAAA

TTTACCTGATTTGGGTGCTGCTGAATTGGACTTGCACTGCTATGAAGAGGGTTTT

CCTCCGAGTGATGATGAAGATGTGGAGAATGAGCAGTCAATTCAGACCGCAGCG

GGTGAGGTAGTGAAAGCAGCCAGTGATGGTTTTAAGTTGGACTGCCCGATGCTG

CCTGGACATGGCTGTAAGTCTTGTGAATTTCACAGGAAAAATACTGGAGTAAAA

GAAATATTATGCTCGCTTTGTTATATGAGAGCGCATTGCCACTTTATTTACAGTA

AGTGTGTTTAAGTTAAATTTAAAGGAACAGTAGCTGTTTTTATAACTCTTGGATG

GGTGATTTATGTTTTGCTTGTGATTTTTTATAGGTCCTGTGTCTGATGCTGATGAA

TCGCCTTCTCCTGATTCAACTACCTCACCTCCTGAAATTCAGGCACCCGTCCCTG

CAAATGTATGCAAGCCCATTCCTGTGAAGCTTAAGCCTGGGAAACGCCCTGCTG

TGGATAAACTTGAGGATTTGCTGGAGGGTGTGGATGAACCTTTGGACTTGTGTAC

CCGGAAAATACCAAGGCAATGAGTGCCCCGCACCTGTGTTTATTTAATGACGTC

ACTATTTATGTGAGAGTGCCATGTAATAAAATTATGTCAGCTGCTGAGTGTTTTA

TTGTTTCTTGGGTGGGACTTGGGATATATAAGTAGGAGCAGACCTGTGTGGTTAG

CTCACAGCAGCTTGCTTCCATCCATGGAGGTTTGGGCCATCTTGGAAGATCTTAG

GCAGACTAGGCAACTGCTAGAAAACGCCTCGGACGGAGTCTCTGGTCTTTGGAG

ATTCTGGTTCGGTGGTGATCTGGCTAGACTAGTCTTTAGAATAAAACAGGATTAC

AGGCAAGAATTTGAAAAGTTATTGGACGACTGTCCAGGACTTTTTGAAGCTCTTA SEQ

ID Sequence

NO

TACCCCTGGTAGAACTGCTGCTGCTGTAGCTTTCCTTACATTCATATTTGATAAAT

GGATCCCACAGACCCACTTCAGCAAGGGATACGTTTTGGATTTCATAGCAGCAG

CTTTGTGGAGAACATGGAAGGCTCGCAGGATGAGGACAATCTTAGATTACTGGC

CAGTACAGCCTCTGGGCGTAGCAGGGATCCTGAGACACCCACCGACCATGCCAG

CGGTTTTGGAGGAGGAGCACCAAGAGGACAATCCGAGAGTCGGCCTGGACCCTC

CGGTGGAGGAGGCGGAGGAGTAGCTGACTTGTTTCCTGAACTGCGACGGGTGCT

TACTAGATCTACAACCAGTGGACGGGACAGGGGCATTAAGAGGGAAAGGAATC

CTAGTGGAACTAATCCCAGATCTGAGTTGGCTTTAAGTTTGATGAGTCGCAGACG

TCCTGAAACTATATGGTGGCATGAGGTTCAGAATGAGGGCAGGGATGAAGTATC

AATATTGCAAGAGAAATATTCTCTAGAACAGGTGAAAACATGTTGGTTGGAGCC

TGAGGATGATTGGGAGGTTGCCATTAGGAATTATGCCAAGATAGCTTTGAGGCC

TGATAAATTGTACAGAATTACTAAACGGATTAATATTAGAAATGCATGTTATATA

TCAGGGAATGGGGCTGAGGTAGTGATAGACACTCAAGACAGAACAGTTTTTAGA

TGCTGCATGATGGGTATGTGGCCAGGGGTGGTTGGCATGGAGGCAGTAACCCTT

AGCTTGGGGGCAGGTGAGTGTAAGAGGCTGTAGTTTCTATGCATGCTGGATTGC

AACATCAGGCAGGACCAAGAGTCAATTGTCTGTAAAGAAATGTATGTTTGAGAG

ATGTAACCTGGGCATACTGAATGAAGGAGAAGCCAGAGTCAGCCACTGTGCTTC

TTCCGAAACTGGCTGTTTCATATTGATAAAGGGAAATGCCAATGTGAAACATAA

TATGATCTGTGGACCCTCAGATGAGAGGCCTTATCAGATGCTGACATGTGCTGGC

GGACATTGCAATATGCTGGCTACCGTGCATATTGTTTCTCACCCACGCAAGAAAT

GGCCTGTTTTGGAACATAATGTGATGACCAAATGCACTATGCACGTAGGTGGTC

GCAGAGGAATGTTAATGCCATACCAGTGTAACATGAATAATGTGAAAGTGATGT

TGGAGCCAGATGCATTTTCCAGAATGAGTTTAACAGGAATCTTTGACATGAATCT

GCAAATATGGAAGATCCTGAGATATGATGACACGAAGTCGAGGGTACGCGCATG

CGAGTGCGGGGGCAAACATGCCAGGTTCCAGCCGGTGTGTGTGGATGTGACTGA

AGAACTAAGGCCAGATCATTTGGTGATTGCCTGCACTGGAGCGGAGTTCGGTTC

TAGTGGTGAAGAAACTGACTAAAGTGAGTAGTAGTGGGATGGTTTGGATGGACT

CTGTCATGAGTGGAAGCGCTTCTTTTGAGGGGGGAGTCTTTAGCCCTTATCTGAC

GGGCCGTCTCCCACCATGGGCAGGAGTACGTCAGAATGTCATGGGATCTACTGT

GGATGGGAGACCAGTCCAGCCCGCCAATTCATCAACACTGACCTATGCCACTTT

GAGCTCTTCACCCTTGGATGCAGCTGCAGCTGCTGCCGCCTCTGCTGCCGCCAAC

ACCGTCCTTGGAATTGGCTATTATGGAAGCATCGTTGCCAATACCAGTTCCTCAA

ATAACCCTTCGACCCTGGCTGAGGACAAGCTACTTGTTCTTTTGGCGCAGCTTGA

GGCGTTGACCCAGCGCCTGGGTGAACTGTCTCAGCAGGTGGCCCAGCTGCGCGA

GCAAACTGAGTCTGCTGTTGCCACAGCAAAGTCTAAATAAAGATTAATCAATAA

ATAAAGGAGATACTTGTTGATTTTAAACTGTAATGAATCTTTATTTGATTTTTCGC

GCACGGTATGCCCTGGACCACCGGTCTCGATCATTGAGAACTCGGTGGATCTTTT

CCAGGACCCTGTAGAGGTGGGATTGAATGTTTAGATACATTGGCATTAGGCCGT

CTCGAGGGTGGAGATAGCTCCATTGAAGAGCCTCGTGTTCCGGGGTAGTGTTAT

AAATCACCCAGTCATAACAAGGTCGGAGTGCATGATGTTGCACAATATCTTTAA

GGAGCAGGCTGATTGCAACTGGGAGCCCCTTGGTGTATGTGTTTACAAATCTGTT

AGGTTGGCAATGTTGCCGCCCAGATCCCGTCTCGGGTTCATGTTATGCAGGACCA

CCAAGACGGTGTATCCGGTGCACTTAGGAAATTTATCATGCAGCTTAGATGGAA

AAGCATGAAAAAATTTGGAGACGCCTTTGTGTCCGCCCAAATTCTCCATGCACTC

ATCCATAATGATAGCAATGGGGCCGTGGGCGGCGGCACGGGCAAACACGTTCCG

GGGATCTGACACATCATAGTTATGCTCCTGAGACAGGTCATCATAAGCCATTTTA

ATAAACTTTGGGCGTAGGGTGCCAGATTGGGGTATAAATGTTCCCTCGGGCCCC

GGAGCATAGTTTCCCTCACAGATTTGCATTTCCCAGGCTTTCAGTTCAGAGGGGG SEQ

ID Sequence

NO

GGATCATGTCCACCTGCGGGGCTATAAAAAATACCGTTTCTGGGGCTGGGGTGA

TTAACTGTGATGATAGCAAATTCCTTAGCAGCTGTGACTTGCCACACCCAGTGGG

GCCGTAAATGACCCCGATTACGGGTTGCAGATGGTAGTTTAGGGAGCGGCAGCT

GCCGTCCTCTCGGAGCAGGGGGGCCACTTCGTTCATCATTTCCCTTACATGGATA

TTTTCCCGCACCAAGTCCGTTAGGAGGCGCTCTCCACCTAGGGATAAAAGTTCCT

GGAGGGAGGAGAAGTTTTTGAGCGGCTTCAGCCCGTCAGCCATGGGCATTTTGG

AGAGAGTCTGTTGCAAGAGCTCGAGCCGATCCCAAAGCTCGGTTATGTGTTCTAT

GGCATCTCGATCCAGCAAACCTCCTCGTTTCGCGGATTGGGGCGGCTCCTGGAGT

AGGGTATCAGACGATGGGCGTCCAGCGCTGCCAGTGTCCGATCCTTCCATGGTC

GCAGCGTCCGAGTCAGGGTTGTTTCCGTCACGGTGAATGGGTGCGCGCCTGGTT

GTGCGCTTGCGAGGGTGCGCCTCAGGCTCATCCTGCTGGTCGAGAACCGCTGCC

GATCGGCGCCCTGCATGTCGGCCAGGTAGCAGTTTACCATGAGTTCGTAGTTGA

GCGCTTCGGCCGCATGGCCTTTGGCGCGGAGCTTACCTTTGGAAGTTTTGTGACA

GGAGGGACAGTATAGACACTTAAGGGCATACAGCTTGGGTGCGAGGAAGATTG

ATTCGGGGGAGTATGCATCTGCGCCGCAGGAGGCGCAGACAGTTTCGCATTCCA

CGAGCCATGTCAGATCTGGTTCATCTGGGTCAAAAACAAGTTTTCCGCCATATTT

TTTGATGCGTTTCTTACCTTTTGTCTCCATGAGTTCGTGTCCTCGCTGGGTGACAA

AGAGGCTGTCTGTGTCCCCGTAGACCGACTTTATAGGCCTGTCCTCGAGCGGAGT

GCCTCGGTCCTCTTCGTATAGGAATCCCGACCACTCTGATACAAAGGCGCGTGTC

CAGGCTAGCACAAATGAGGCTACTTGGGAAGGGTAGCGGTCGTTGTCAACCAGG

GGGTCCACCTTCTCTACAGTATGTAAACACATGTCCCCCTCCTCCACATCCAGAA

ATGTGATTGGCTTGTAAAGGTATGCCACGTGACCGGGAGTCCCAGCCGGGGGGG

TATAAAAGGGGGCGGGTCTCTGTTCGTCCTCACTGTCTTCCGGATCGCTGTCCAG

GAGCGCCAACTGTTGGGGTAGGTATTCCCTCTCGAAGGCAGGCATAACCTCTGC

ACTCAGGTTGTCAGTTTCTAGGAACGATGAGGATTTGATATTGACAGTGCCTGCT

TGTCCAACTTGGTAGCAAAGGATCCATATAGGGCATTGGATAGGAGCTTGGCTA

TGGAGCGCATGGTTTGATTCTTTTCCTTGTCCGCGCGTTCCTTGGCGGCGATGTTC

AGCTGGACATATTCGCGCGCCAGGCACTTCCATTCAGGGAAGATGGTTGTCAGT

TCATCCGGCACAATTCTGACTTGCCAGCCCCTATTATGTAGGGTTATCAGATCCA

CACTGGTGGCCACCTCTCCTCGAAGAGGTTCGTTGGTCCAGCAGAGCCGACCCC

CCTTTCTCGAACAGAAAGGGGGTAGAGGGTCTAGCATGAGCTCATCAGGGGGGT

CTGCATCCATGGTGAAGATTCCTGGAAGTAGGTCCTTGTCAAAATAGCTGATGG

GGGTGGGATCATCTAAAGCCATCTGCCATTCTCGAGCTGCTAGCGCGCGCTCATA

TGGGTTCAGTGGTGTACCCCAGGGCATGGGATGGGTGAGCGCAGAGGCATACAT

GCCACAGATGTCATAGACATAAAGGGGCTCTTCTAGTATGCCGATGTATGTGGG

ATAACATCGCCCCCCTCTGATGCTTGCTCGCACATAATTATAGAGCTCATGAGAT

GGGGCAAGGAGACCCGGGCCCAGATTAGTGCGGTTGGGCTTCTCTGCCCTGTAG

ACAATTTGGCGAAAGATGGCATGGGAATTAGAAGAGATAGTTGGCCTTTGGAAT

ATGTTAAAGTGGGCATGGGGTAAACCTACAGAATCCCTGATGAAGTGGGCATAT

GATTCTTGCAACTTGGCCACTAGCTCTGCGGTGACCAGGACGTCCATGGCGCAGT

TCGCGGTTGAGGAGGTATTCTTCGCGATCCTTCCAGTACTCTTCGAGGGGAAACC

CGTCTTTGTCTGCACGGTAAGAGCCCAGCATGTAGAATTGATTGACTGCCTTGTA

AGGACAGCACCCCTTCTCCACAGGGAGAGAGTATGCTTGAGCGGCTTTGCGCAG

TGAGGTATGAGTAAGGGCGAAGGTGTCCCTGACCATAACTTTGAGGAACTGGTA

CTTGAAGTCGATGTCGTCACACGTCCCCTGTTCCCAGAGTTGGAAGTCCACCCGC

TTCTTGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAGAGAATCTTG

CCGGCCCTGGGCAAAAAATTGCGGGTAATGCGGAAAGGCTGGGGCACCTCTGCT

CGATTATTGATCACTTGCGCAGCTAGGACGATCTCGTCAAAGCCGTTAATGTTGT

GCCCCACTATGTACATTTCTATGAATCGTGGGGAGCCTCTGATGTGAGGTAGCTT

TTTGAGCTCTTCGAAGGTGAGGTCTGTAGGGTCAGAGAGAGCGTAGTGTTCGAG

GGCCCATTCGTGCAGGTGAGGGTTTGCATTCATGAAAGATGACCAAAGATCCAC SEQ

ID Sequence

NO

TGCCAGTGCTGTTTGTAACTGGTCCCGGTACTGGCGAAAATGCTGACCGACTGCC

ATCTTTTCTGGGGTGACACAGTAGAATGTTTTGGGGTCCTGCTGCCAACGATCCC

ACTTGAGTTTCATGGCGAGATCGTAGGCGATGTTGACGAGCCGTTCGTCCCCCGA

AAGTTTCATGACCAGCATGAAGGGGACTAGCTGCTTTCCAAAGGACCCCATCCA

GGTGTAGGTTTCCACATCGTAGGTGAGGAAGAGCCTTTCTGTGCGAGGATGAGA

GCCAATCGGGAAGAACTGGATCTCCTGCCACCAGTTGGAGGAATGGCTGTTGAT

GTGATGGAAGTAGAACTCCCTTCGGCGCGCCGAGCATTCATGCTTGTGCTTGTAC

AGACGGCCGCAGTACTCGCAGCGCTGCACGGGATGCACCTCATGAATGAGTTGT

ACCTGGTTTCCTTTGACAAGAAATTTCAGTGGGAAGTTGAGGCCTGGCGTCTGTA

CCTCGTGCTCTACTATGTTATTTGCATCGGCCTGGCCATCTTCTGTCTCGATGGTG

GTCATGCTGACGAGACCCCGCGGGAGGCAAGTCCAGATCTCGGCGCGGGAGGG

GCGGAGCTCGAGGACGAGAGCGCGCAGGCCGGAACTGTCCAGGGTCCTGAGTC

GCTGCGGAGTCAGGTTAGTAGGGAGGCTCTGGAGATTGACTTGCAAGATTTTTTC

GAGGGCATGGGGGAGGTTAAGATGGTACTTGATCTCTACTGGTCCGTTGGTGGA

GATGTCGATGGCTTGCAGGGTTCCATGTCCCTTGGGCGCCACCACTGTGCCCTTG

CGGTGGCGAGGGCGAGCGCCGGGCGGTAGGGGCGGCTCGGGCCCCGGTGGCAT

GGCCGGCAGTGGCACGTCGGCGCCGCGTGCGGGTAGGTTCTGGTACTGCGCCCT

GAGAAGACTTGCGTGCGCAACGACGCGGCGGTTGACGTCTTGGATCTGCCGCCT

CTGGGTGAAAGCTACCGGACCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAGA

ATCAATTTCGGTATCGTTAACGGCGGCCTGTCTCAGGATCTCTTGCACGTCGCCT

GAGTTGTCCTGGTAGGCGATCTCGGCCATGAATTGCTCGATTTCTTCCTCCTGAA

GATCTCCGCGACCCGCTCTCTCGACGGTGGCCGCGAGGTCGTTGGAAATGCGGG

CCATGAGTTGAGAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAGA

CCACGGCCCCTTCGGGATCTCTTGCGCGCATGACCACCTGGGCAAGGTTGAGCTC

CACGTGGCGCGTGAAGACCGCATAGTTGCAGAGGCGCTGGTATAGGTAGTTGAG

TGTGGTGGCGATATGCTCGGTGACGAAGAAGTACATGATCCATCGTCTCAGCGG

CATTTCGCTGACATCGCCCAGGGCTTCCAAGCGCTCCATGGCCTCGTAGAAGTCC

ACGGCGAAGTTGAAAAACTGAGAGTTTCGCGCGGACACGGTCAACTCCTCCTCC

AGAAGACGGATGAGTTCGGCGATGGTGGCGCGCACTTCGCGCTCGAAGGCCCCC

GGGATTTCTTCCTCCTCTTCTAACTCTTCTTCCACTAACATCTCTTCTTCCTCTTCA

GGCGGGGGCGGAGGAGGAGGAGGGGGTACGCGGCGACGCCGGCGGCGCACGG

GCAAACGGTCGATGAATCTTTCAATGACCTCTCCGCGGCGGCGGCGCATGGTCT

CGGTGACGGCACGGCCGTTCTCCCTGGGTCTCAAAGTGAAAACGCCTCCGCGCA

TCTCCCTGAAGTGGTGACTTGGGGGCTCTCCGTTGGGCAGTGAAAGGGCGCTGA

TTATGCACTTTATCAATTGTCCTGTAGGGACTCCGCGCAAGGACCTGATCGTCTC

AAGATCCACGGGATCTGAAAATCTTTCAACGAAAGCGTCTAACCAGTCGCAATC

GCAAGGTAGGCTGAGCACTGTTTCTTGCTGGCGGGGGTGGCTACACGCTCGGTC

GGGGTTCTCTCTTTCTTCTCCTTCCTCCTCTTGGGAGGGTGAGACGATGCTGCTGG

TGATGAAATTAAAATAGGCAGTTCTGAGACGGCGGATGGTGGCGAGGAGCACC

AGGTCTTTGGGACCGGCTTGCTGGATGCGCAGGCGATTGGCCATTCCCCAAGCA

TTATCCTGACACCTGGCCAGATTTTTGTAGTAGTCTTGCATAAGTCGCTCCACGG

GCACTTCTTCTTCGCCCGCTCTGCCATGCATGCGCGTGAGCCCAAACCCACGCAT

GGGCTGGATAAGTGCCAGGTCTGCTACGACCCTTTCTGCGAGGATGGCTTGCTGC

ACCTGAGTGAGGGTGGCTTGGAAGTCGTCGAAGTCCACAAAACGATGGTAGGCC

CCGGTGTTGATGGTGTAAGAGCAGTTGGCCATGACTGACCAGTTAACTGTCTGGT

GCCCCGGGCGCACAAGCTCGGTGTACTTGAGGCGCGAGTAGGCGCGGGTGTCAA

AGATGTAATCGTTACAGGTGCGCACCAGGTACTGGTAGCCGATGAGAAAGTGCG

GCGGCGGCTGGCGGTATAGGGGCCATCGCTCTGTAGCCGGGGCGCCAGGGGCGA

GGTCTTCCAGCATGAGGCGGTGATAACCGTAGATGTACCTGGACATCCAGGTGA

TACCGGAGGCGGTGGTGGATGCCCGCGGGAACTCGCGTACGCGGTTCCAGATGT

TGCGCAGCGGCATGAAGTAGTTCATGGTAGGCACGGTTTGGCCCGTGAGGCGCG

CACAGTCGTTGATGCTCTAGACATACGGGCAAAAACGAAAGCGGTCAGCGGCTC SEQ

ID Sequence

NO

GTCTCCGTGGCCTGGAGGCTAAGCGAACGGGTTGGGCTGCGCGTGTACCCCGGT TCGAATCTCGGATCAGGCTGGAGCCGCAGCTAACGTGGTACTGGCACTCCCGTC

CGCGGGGTTGGGAGTGGCTCGCGCCCGTAGTCTGGAGAATCAATCGCCAGGGTT GCGTTGCGGTGTGCCCCGGTTCGAGTCTTAGCGCGCCGGATCGGCCGGTTTCCGC GACAAGCGAGGGTTTGGCAGCCCCGTCATTTCTAAGACCCCGCCAGCCGACTTC

TGCTGCGACAGATGCGCCCCCAGCAACAGCCCCCTTCTCAGCAGCAGCTACAGC

AACAGCCACAAAAGGCTCTTCCTGCTCCTGTAACTACTGCGGCTGCAGCCGTCA

GCGGCGCGGGACAGCCCGCCTATGATCTGGACTTGGAAGAGGGCGAGGGACTG

GCGCGCCTGGGTGCACCATCGCCCGAGCGGCACCCGCGGGTGCAACTGAAAAAG

GACTCTCGCGAGGCGTACGTGCCCCAGCAGAACCTGTTCAGGGACAGGAGCGGC

GAGGAGCCTGAGGAAATGCGAGCTTCCCGCTTTAACGCGGGTCGCGAACTGCGT

CACGGTCTGGACCGAAGACGGGTGCTGCGTGATGATGATTTTGAAGTCGATGAA

GTGACAGGAATAAGTCCTGCTAGGGCACATGTGGCCGCGGCCAACCTAGTATCA

GCTTACGAGCAGACCGTGAAGGAGGAGCGCAACTTTCAAAAATCTTTCAACAAC

CATGTGCGCACCCTGATTGCCCGCGAGGAAGTGACACTGGGTCTGATGCACCTG

TGGGACCTGATGGAAGCTATTACCCAGAACCCCACCAGCAAACCTCTGACCGCT

CAGCTGTTTCTGGTGGTGCAACATAGTAGAGACAATGAGGCATTTAGGGAGGCG

CTGTTGAACATTACTGAGCCCGAGGGGAGATGGTTGTATGATCTTATCAATATTC

TGCAAAGTATAATAGTGCAAGAACGTAGCCTGGGTCTAGCTGAGAAGGTGGCTG

CTATTAACTACTCGGTCTTGAGCCTGGGCAAGCACTACGCTCGCAAGATCTACAA

AACCCCATACGTACCTATAGACAAGGAGGTGAAGATAGATGGGTTTTATATGCG

CATGACTCTCAAGGTGCTGACCTTGAGTGACGATCTGGGAGTGTACCGCAACGA

CAGGATGCACCGCGCAGTGAGCGCCAGCAGAAGGCGTGAGCTGAGCGACAGAG

AACTTATGCACAGCTTGCAAAGAGCTCTGACGGGGGCTGGAACCGAGGGGGAG

AACTACTTTGACATGGGAGCGGACTTGCAGTGGCAGCCCAGTCGCAGGGCCCTG

GACGCAGCAGGGTATGAGCTTCCTTACATAGAAGAGGTGGATGCAGGCCAGGAT

ATGGAACAGCAGGCACCGGACCCCGCAATACGGGCGGCGCTACAGAGCCAGCC

GTCCGGCATTAACTCCTCGGACGATTGGAGCCAGGCCATGCAACGCATCATGGC

GCTGACGACCCGCAACCCCGAAGCCTTTAGACAGCAACCCCAGGCCAACCGCCT

TTCTGCCATCCTGGAGGCCGTAGTGCCCTCCCGCTCCAACCCCACACACGAGAA

GGTCCTGGCCATCGTGAACGCGCTGGTGGAGAACAAAGCCATACGTCCCGATGA

GGCTGGGCTGGTATACAATGCCCTATTGGAGCGCGTAGCCCGTTACAACAGCAG

CAACGTGCAGACCAACCTGGACCGGATGGTGACCGATGTGCGCGAGGCCGTGTC

CCAGCGCGAGCGGTTCCAGCGAGACGCCAATTTAGGGTCGCTGGTGGCTTTGAA

CGCCTTCCTCAGCACTCAGCCTGCCAACGTGCCTCGCGGTCAGCAAGACTACAC

AAACTTTCTAAGTGCATTAAGACTCATGGTGGCCGAAGTCCCTCAAAGCGAAGT

GTACCAGTCCGGGCCAGACTACTTTTTCCAGACCAGCAGACAGGGCTTGCAGAC

AGTGAACCTGAGCCAGGCTTTTAAGAACCTGAATGGTCTGTGGGGAGTGCGCGC

CCCAGTGGGAGATCGGGCGACCGTGTCTAGCTTGCTGACCCCCAACTCCCGCCT

ACTACTTCTCTTGGTAGCCCCATTCACTGACAGCGGTAGCATCGACCGTAATTCT

TACTTGGGCTATCTGTTGAACCTGTATCGCGAGGCCATAGGGCAAACTCAGGTA

GATGAGCAAACCTATCAAGAAATTACCCAAGTGAGCCGCGCTCTGGGTCAGGAG

GACACTGGCAGCTTGGAAGCCACCTTAAACTTCTTGCTGACCAACCGGTCGCAG

AAGATCCCTCCTCAGTATGCGCTTACCGCGGAGGAGGAACGGATCCTGAGATAC

GTGCAGCAGAGCGTGGGACTGTTCCTAATGCAGGAGGGGGCGACTCCTACTGCT

GCGCTCGATATGACAGCCCGAAACATGGAGCCCAGCATGTATGCCAGTAACCGG

CCTTTTATCAATAAACTGCTAGACTACTTACACAGGGCGGCTGCTATGAACTCTG

ATTATTTCACCAATGCTATCCTGAACCCCCATTGGCTGCCCCCACCTGGGTTCTA

TACGGGCGAGTATGACATGCCCGACCCCAATGACGGGTTTTTATGGGACGATGT SEQ

ID Sequence

NO

GGACAGTAGTGTTTTCTCCCCGCCTCCTGGTTATAACACTTGGAAGAAGGAAGGT

GGCGATAGAAGGCACTCTTCCGTGTCACTGTCCGGGGCAACGGGTGCTGCCGCA

GCGGTTCCCGAGGCTGCAAGTCCTTTCCCTAGTTTGCCATTTTCGCTAAACAGTG

TACGCAGCAGTGAGCTGGGAAGAATAACCCGTCCTCGCTTGATCGGCGAGGAGG

AGTATTTGAACGACTCCCTGTTGAGACCCGAGAGGGAGAAGAATTTCCCCAACA

ACGGGATAGAAAGCTTGGTTGACAAAATGAACCGCTGGAAGACGTACGCGCAC

GATCACAGGGACGATCCCCGGGCGCTGGGGGATAGCCGGGGCAGCGCTACCCGT

AAACGCCAGTGGCACGACAGGCAGCGGGGCCTGGTGTGGGCCGATGAGGATTC

CGCCGACGACAGCAGCGTGTTGGACTTGGGTGGGAGTGGTGGTAACCCGTTCGC

TCACCTGCGCCCCCGCGTCGGGCGCCTGATGTAAGAAACCGAAAATAAATACTT

ACCAAGGCCATGGCGACCAGCGTGCGTTCGTTTCTTCTCTGTTATATCTAGTATG

ATGAGGCGAACCGTGCTAGGCGGAGCGGTGGTGTATCCGGAGGGTCCTCCTCCT

TCGTACGAGAGCGTGATGCAGCAGGCGGCGGCGGCGGCGATGCAGCCACCACT

GGAGGCTCCCTTTGTACCCCCTCGGTACCTGGCACCTACGGAGGGGAGAAACAG

CATTCGTTACTCGGAGCTGGCACCATTGTATGATACCACCCGGTTGTATTTGGTG

GACAACAAGTCCGCGGACATCGCCTCACTGAACTATCAGAACGACCACAGCAAC

TTCCTCACCACGGTGGTGCAAAACAATGACTTTACCCCCACGGAGGCCAGCACC

CAGACCATCAACTTTGACGAGCGGTCGCGATGGGGCGGTCAGCTGAAGACTATC

ATGCACACCAACATGCCCAACGTGAACGAGTACATGTTTAGCAACAAGTTCAAA

GCTCGGGTGATGGTGTCTAGAAAGGCTCCTGAAGGTGTCACAGTAGATGACAAT

TATGATCACAAGCAGGATATTTTGGAATATGAGTGGTTTGAGTTTACTCTACCGG

AAGGGAACTTCTCAGCCACAATGACCATTGACCTAATGAACAATGCCATCATTG

ATAATTACCTTGAAGTGGGCAGACAGAATGGAGTGTTGGAGAGTGACATTGGTG

TTAAATTTGACACCAGGAACTTTAGACTGGGTTGGGATCCGGAAACTAAGTTGA

TTATGCCTGGGGTTTACACCTATGAGGCATTCCATCCTGACATTGTATTGTTGCCT

GGTTGCGGAGTTGACTTTACTGAAAGTCGCCTTAGTAACTTGCTTGGTATCAGGA

AAAGACACCCATTCCAGGAGGGTTTTAAGATCTTGTATGAGGATCTTGAAGGGG

GTAATATCCCGGCCCTGTTGGATGTAGAAGCCTATGAGAACAGTAAGAAAGAAC

AAGAAGCCAAAACAGAAGCCGCTAAAGCTGCTGCTATTGCTAAAGCCAACATAG

TTGTCAGCGACCCTGTAAGGGTGGCTAATGCCGAAGAAGTCAGAGGAGACAACT

ATACAGCTTCATCTGTTGCAACTGAAGAATCGCTATTGGCTGCTGTGGCCGAAAC

CGAAACTACAGAGACAAAACTCACTATTAAACCTGTAGAAAAAGACAGCAAGA

GTAGAAGTTACAATGTCTTGGAAGATAAAGTCAATACAGCCTACCGCAGCTGGT

ACCTGTCCTACAACTATGGTGACCCTGAAAAAGGAGTCCGTTCCTGGACACTGCT

CACCACCTCGGATGTCACCTGTGGAGCAGAGCAGGTGTACTGGTCGCTCCCAGA

CATGATGCAGGACCCTGTCACATTCCGTTCCACGAGACAAGTCAGCAACTATCC

AGTGGTAGGTGCAGAGCTCATGCCGGTCTTCTCAAAGAGTTTCTACAACGAGCA

AGCCGTGTACTCCCAGCAGCTTCGCCAGTCCACCTCGCTCACGCACGTCTTCAAC

CGCTTCCCTGAGAACCAGATCCTCATCCGCCCGCCAGCGCCCACCATTACCACCG

TCAGTGAAAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGTTGCGCAGCA

GTATCCGGGGAGTCCAGCGCGTGACCGTTACTGACGCCAGACGCCGCACCTGCC

CCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTCCTTTCAAGCCGCAC

TTTCTAAAAAAAAAAAAAATGTCCATTCTTATCTCACCTAGTAATAACACCGGTT

GGGGCCTGCGCGCGCCAAGCAAGATGTACGGAGGTGCTCGCAAACGCTCTACAC

AGCACCCTGTGCGCGTGCGCGGGCACTTCCGCGCTCCATGGGGCGCCCTCAAGG

GTCGTACCCGCACTAGAACCACCGTCGATGATGTGATCGACCAGGTGGTGGCCG

ATGCTCGTAATTATACTCCTACTGCACCTACATCTACTGTGGATGCAGTTATTGA

CAGCGTAGTGGCTGACGCCCGCGCCTATGCTCGCCGGAAGAGCAGGCGGAGACG

CATCGCCAGGCGCCACCGGGCTACTCCCGCTATGCGAGCGGCAAGAGCTCTGCT

ACGGAGGGCCAAACGCGTGGGGCGAAGAGCTATGCTTAGAGCGGCCAGACGCG

CGGCTTCAGGTGCCAGTGCCGGCAGGTCCCGCAGGCGCGCAGCCACGGCGGCAG

CAGCGGCCATTGCCAACATGGCCCAACCGCGAAGAGGCAATGTGTACTGGGTGC

GCGACGCCACCACCGGCCAGCGCGTGCCCGTGCGCACCCGCCCCCCTCGCTCTT SEQ

ID Sequence

NO

AGAAGATACTGAGCAGTCTCCGATGTTGTGTCCCAGCGAGGATGTCCAAGCGCA

AATACAAGGAAGAGATGCTCCAGGTCATCGCGCCTGAAATCTACGGTCCGCCGG

TGAAGGATGAAAAAAAGCCCCGCAAAATCAAGCGGGTCAAAAAGGACAAAAAG

GAAGAAGATGGCAATGATGGTCTGGTGGAGTTTGTACGCGAGTTCGCCCCAAGG

CGGCGTGTGCAGTGGCGTGGACGCAAAGTGCGGCCTGTGCTGAGACCTGGAACC

ACGGTGGTCTTTACGCCCGGCGAGCGCACCAGCACTGCTTTTAAGCGATCCTATG

ATGAGGTGTATGGGGATGATGATATTCTGGAGCAGGCGGCCGACCGCCTGGGCG

AGTTTGCTTATGGCAAGCGCTCCCGCTCCAGCCCCAAGGAGGAGGCGGTGTCCA

TTCCCTTGGACAATGGGAATCCCACCCCTAGCCTCAAGCCAGTCACCCTGCAGCA

AGTGCTGCCCGTGCCTCCACGCAGAGGCAACAAGCGAGAGGGTGAGGATCTGTA

TCCCACGATGCAATTGATGGTGCCCAAGCGCCAGCGGCTGGAGGACGTGCTGGA

GAAAATGAAAGTGGATCCCGATATACAACCTGAGGTCAAAGTGAGACCCATCAA

GCAGGTGGCGCCAGGTTTGGGAGTACAAACCGTAGACATCAAGATTCCCACCGA

GTCCATGGAAGTCCAAACCGAACCTGCAAAGCCCACAACCACCTCCATTGAGGT

GCAAACGGATCCCTGGATGTCCGCACCCGTTACAGCTCAAGCTGCTGTCAACAC

CACTCGAAGATCCCGGCGAAAGTACGGTCCAGCAAGTTTGCTGATGCCAAATTA

TGCTCTGCACCCATCTATTATTCCAACTCCGGGTTACCGAGGCACTCGCTACTAC

CGCAGCCGGAGCAGCACTTCCCGCCGTCGCCGCAAAACACCTGCAAGTCGTAGT

CACCGTCGTCGTCGCCGCCCCGCCAGCAATCTGACCCCCGCTGCTCTGGTGCGGA

GAGTGTATCGCGATGGCCGCGCAGATCCCCTGACGTTGCCACGCGTACGCTACC

ATCCAAGCATCACAACTTAACGACTGTTGCCGCTGCCTCCTTGCAGATATGGCCC

TCACTTGCCGCCTTCGTGTCCCCATTACTGGCTACCGAGGAAGAAACTCGCGCCG

TAGAAGAGGGATGTTGGGGCGCGGGATGCGACGCCACAGGCGGCGGCGCGCTA

TCAGCAAAAGGCTGGGGGGTGGCTTTCTGCCTGCTCTGATCCCCATCATAGCCGC

GGCGATCGGGGCGATACCAGGCATAGCTTCCGTGGCGGTTCAGGCCTCGCAGCG

CCACTGACATTGGAAAAACTTATAAATAAAATAGAATGGACTCTGATGCTCCTG

CCGCGACACGGCACGAGGCCGTACATGGGCACCTGGAGCGACATCGGCACCAG

CCAACTGAACGGGGGCGCCTTCAATTGGAGCAGTATCTGGAGCGGGCTTAAAAA

TTTTGGCTCTACCATAAAAACCTATGGGAACAAAGCTTGGAACAGCAGCACAGG

GCAGGCACTGAGAAATAAGCTTAAAGAGCAAAACTTCCAACAGAAGGTGGTTG

ATGGGATCGCCTCTGGTATCAATGGGGTGGTGGATCTGGCCAACCAGGCCGTAC

AGAAACAGATAAACAGCCGCCTGGACCCGCCGCCGTCAGCCCCGGGCGAAATG

GAAGTGGAGGAAGATCTCCCTCCCCTTGAAAAGCGGGGCGACAAGCGTCCGCGC

CCCGATCTGGAGGAGACACTAGTCACACGCTCAGACGACCCGCCCTCCTACGAG

GAGGCAGTGAAGCTTGGAATGCCCACCACCAGACCTGTAGCCCCCATGGCTACC

GGGGTAATGAAACCTTCTCAGTCACACCGACCCGCTACCTTGGACTTGCCTCCTC

CCCCTACTGCTGCAGCGCCTGCTCGCAAGCCTGTCGCTACCCCGAAGCCCACCAC

CGTACAGCCCGTCGCCGTAGCCAGGCCGCGTCCTGGGGGCACTCCACGTCCAAA

TGCAAACTGGCAGAGTACTCTGAACAGCATCGTGGGTCTGGGCGTGCAAAGTGT

AAAGCGCCGTCGCTGCTTTTAAATTAAATATGGAGTAGCGCTTAACTTGCCTGTC

TGTGTGTATGTGTCATCATCACGCCGCCGCAGCAACAGCAGAGGAGAAAAGGAA

GAGGTCGCGCGCCGAGGCTGAGTTGCTTTCAAGATGGCCACCCCATCGATGCTG

CCCCAGTGGGCATACATGCACATCGCCGGACAGGATGCTTCGGAGTACCTGAGT

CCGGGTCTGGTGCAGTTCGCCCGCGCCACAGACACCTACTTCAATCTGGGGAAC

AAGTTTAGGAACCCCACCGTGGCGCCCACCCATGATGTGACCACCGACCGCAGT

CAGCGGCTGATGCTCCGCTTTGTGCCCGTTGACCGGGAGGACAATACCTACTCAT

ACAAAGTTCGATACACCTTGGCTGTGGGCGACAACAGAGTGCTGGATATGGCCA

GCACTTTCTTTGACATTCGGGGTGTGTTGGATAGAGGCCCTAGCTTCAAGCCATA

TTCTGGCACTGCTTACAACTCATTGGCCCCTAAGGGCGCTCCCAATACATCTCAG

TGGATTGCTGAAGGCGTAAAAAAAGAAAATGGGGAAGCTGACGATGAAGCAGC

TGTCGAAGAGGAAGAGGAAGAGAAAAATCTTACCACTTACACTTTTGGAAATGC

CCCAGTGAAAGCAGAAGGTGGTGATATCACTAAAGACAAAGGTCTTCCAATTGG SEQ

ID Sequence

NO

TTCAGAAATTACAGACGGCGAAGCCAAACCAATTTATGCAGATAAACTATACCA ACCAGAACCTCAGGTGGGAGAGGAAACTTGGACTGACACAGATGGAACAACTG AGAAGTATGGTGGTAGAGCTCTAAAGCCAGAAACTAAAATGAAACCCTGCTATG GGTCTTTTGCTAAACCCACTAACGTCAAAGGCGGACAGGCAAAACAAAAAACTA

ATCAAGCGTCACAGAAAGCAAACTTCAGTCCAAAAATTGTGATGTATGCAGAAA

ATGTAGACTTGGAAACCCCAGACACTCACGTGGTGTACAAACCTGGTACTTCAG

AAGAAAGTTCTCATGCTAATCTCGGTCAACAATCTATGCCCAACAGACCCAACT

ACATTGGCTTTAGAGATAACTTTATTGGACTTATGTACTACAACAGTACTGGCAA

CATGGGAGTGCTGGCAGGTCAAGCATCCCAATTGAATGCGGTGGTTGACTTGCA

GGACAGAAACACAGAACTATCATATCAACTACTGCTTGATTCTCTGGGTGACAG

AACCAGATACTTCAGCATGTGGAATCAAGCAGTCGATAGCTATGATCCTGATGT

GCGCATTATTGAAAATCATGGGGTGGAAGATGAGCTTCCCAACTACTGCTTTCCA

TTGGATGGAGTAGGGGTACCAACAACTAGTTACAAAATAATTGAACCAAATGGA

GAGGGTGCAGATTGGAAAGAGCCTGACATAAATGGAACAAGTGAAATTGGACA

AGGAAATCTCTTTGCCATGGAAATTAACCTCCAAGCTAATCTCTGGAGAAGTTTT

CTTTATTCCAATGTGGCTCTGTATCTCCCAGACTCCTACAAATACACCCCAGCCA

ATGTCACTCTTCCAACTAACACCAACACTTATGACTACATGAATGGGCGGGTGGT

TCCCCCATCCCTAGTGGATACCTACGTAAACATTGGCGCCAGATGGTCTTTGGAT

GCCATGGACAATGTCAACCCCTTCAACCATCACCGCAACGCTGGCCTGCGATAC

CGGTCCATGCTTTTGGGCAATGGTCGCTACGTGCCTTTCCACATTCAAGTGCCTC

AGAAATTCTTTGCTGTGAAGAACCTGCTGCTTCTACCCGGTTCTTACACCTACGA

GTGGAACTTCAGAAAGGATGTGAACATGGTCCTGCAGAGTTCCCTTGGTAATGA

TCTCCGGGTCGATGGTGCCAGCATCAGTTTTACCAGCATCAATCTCTATGCCACC

TTCTTCCCCATGGCCCACAACACTGCCTCCACCCTTGAAGCCATGCTGCGCAATG

ACACCAATGATCAATCATTCAATGACTACCTTTCTGCAGCCAACATGCTCTACCC

CATCCCGGCCAACGCTACCAACGTTCCCATCTCCATTCCCTCTCGCAACTGGGCC

GCCTTCAGAGGCTGGTCCTTCACCAGACTCAAAACCAAAGAGACTCCCTCTTTGG

GATCAGGGTTCGATCCCTACTTTGTTTACTCTGGTTCTATACCTTACCTGGATGGT

ACCTTCTACCTTAACCACACTTTTAAGAAAGTCTCTATCATGTTTGACTCTTCAGT

CAGCTGGCCTGGTAATGACAGATTGCTAACTCCAAATGAGTTCGAAATCAAGCG

CACAGTTGATGGGGAAGGCTACAATGTGGCCCAATGTAACATGACCAAAGACTG

GTTCCTGGTCCAGATGCTTGCCAACTACAACATTGGATACCAGGGCTTCTACGTT

CCTGAGGGTTACAAGGATCGCATGTACTCCTTCTTCAGAAACTTCCAGCCCATGA

GTAGACAGGTGGTTGATGAGATTAACTACAAAGACTATAAAGCTGTCGCCGTAC

CCTACCAGCATAATAACTCTGGCTTTGTGGGTTACATGGCTCCTACCATGCGTCA

GGGTCAAGCGTACCCTGCTAACTACCCATACCCCCTAATTGGAACCACTGCAGT

AACCAGTGTCACCCAGAAAAAATTCCTGTGCGACAGGACCATGTGGCGCATCCC

ATTCTCTAGCAACTTCATGTCCATGGGTGCCCTTACAGACCTGGGACAGAACTTG

CTGTATGCCAACTCAGCCCATGCGCTGGACATGACTTTTGAGGTGGATCCCATGG

ATGAGCCCACCCTGCTTTATCTTCTTTTTGAAGTATTCGACGTGGTCAGAGTGCA

CCAACCACACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACACCGTTCTCGGCT

GGTAACGCCACCACATAAGAAACCTGCTTCTTGCAAGGTGCAGCCATGGCCTGC

GGGTCCGGAAACGGCTCCAGCGAGCAAGAGCTCAGAGCCATCGTCCGAGACCTT

GGCTGTGGACCCTACTTCCTGGGAACCTTTGACAAACGCTTCCCGGGGTTTATGG

CTCCAAACAAGCTGGCCTGCGCCATTGTCAACACAGCCGGTCGCGAGACGGGGG

GAGAGCACTGGTTGGCTTTTGGTTGGAACCCGCGCTCCAACACATGCTACCTTTT

TGATCCGTTTGGATTCTCGGATGACCGTCTCAAGCAGATCTACCAGTTTGAATAC

GAGGGGTTACTGCGCCGCAGCGCCCTTGCTACTAAGGATCGCTGCATTACCTTGG

AAAAGTCCACCCAAACCGTGCAGGGTCCGCGCTCCGCCGCTTGTGGACTTTTTTG

CTGCATGTTTCTCCATGCCTTTGTACACTGGCCAGACCGCCCCATGGACGGTAAC

CCCACCATGAAGTTGCTTACGGGAGTGCCCAACAGCATGCTCCAGTCACCCCAA

GTCCAGCCCACCCTGCGCAGGAACCAGGAGGCGCTCTACCATTTCCTCAACACA SEQ

ID Sequence

NO

CATTCATCTTACTTTCGTTCTCACCGCGCACGTATCGAAAGGGCTACTGCGTTCG

ATCGTATGGGATATTAATAAGTCATGTAAAACCGTGTTCAATAAACAGAACTTT

ATTTTTTACATGCACTGGTGGTTTCTCATTCATTTATTCACTCAGAAGTCGAAGG

GGTTTTGGCGGGAATCAGAGTGACCCGCGGGCAGGGATACGTTGCGGAACTGGA

ACTGAGCCTGCCACTTGAATTCGGGGATCACCAGCTTGGGAACTGGCAGGTCAG

GCAGGATGTCGCTCCACAGCTTCCTGGTCAGTTGCAGGGCTCCCAACAGGTCAG

GAGCTGAAATCTTGAAATCGCAATTGGGACCCGTGCTCTGAGCGCGGGAGTTGC

GATACACAGGGTTGCAACACTGGAACACCATCAGCGACGGGTATTTCACACTCG

CCAACACAGTGGGATCGGTGATAATTCCCACATCCAGGTCTTCGGCATTGGCCAT

GCTAAAGGGGGTCATCTTGCATGTCTGTCTGCCCATAGCCGGTACCCAGCCTGGC

TTGTGGTTGCAATCGCAGCGCAGAGGGATCAGCATCATCTTGGCCTGGTCGGAT

CTCATACCGGGATACACAGCTTTCATGAAAGCTTCATATTGCTTGAAAGCCTGTT

GGGCCTTGCTACCCTCAGTGTAGAACATCCCACATGACTTGCTAGAGAACTGGTT

AGCAGCACATCCGGCATCATTCACACAACAGCGAGCGTCGTTGTTGGCTATTTGC

ACCACACTCCTGCCCCAGCGGTTCTGGGTGATCTTGGTTCGCTCAGGGTTCTCCT

TCAGCGCCCGTTGACCGTTTTCGCTTGCCACATCCATTTCTATGATATGTTCCTTC

TGAATCATGATGTTGCCATGCAAACACTTCAGCTTGCCTTCATAATCATTACATC

CATGTGACCACAGCGCGCATCCCGTACACTCCCAGTTATTGTGAGCGATCTCAGA

ATAGGAATGCACCAACCCCTGCAGGAATCTTCCCATCATGGTTGAGAGGGTCTT

GTTACTGGTGAAAGTCAGCGGGACGCCTCGATGCTCCTCGTTCACATACTGGTGG

CAAATTCGCTTGTACTGTTCATGCTGCTCTGGCATAAGCTTGAAAGAGGTTCTTA

GGTCATTCTCCAGCCTGTACTTCTCCATCAGCACAGCCATTACTTCCATGCCCTTT

TCCCAGGCAGAAACCAGGGGTAGGCTCATGGAATTTCTAACAGAAATAGCAGCT

ACTTTAGCCAGAGGGTCATCCTTGTCAATCTTCTCAACACTTCTTTTGCCATCCTT

CTCAGTGATGCGCACGGGTGGGTAGCTGAAGCCCACGGCCACCAGCTCCGCCTC

TTCTCTTTCTTCTTCGCTGTCCTGACTGATGTCTTGTAAAGGGACATGCTTGGTCT

CATGGAGGACCGCGAAGTTTCGCTCACCAGTACCACCTGGCTCTCGGTAGAAGA

ACCGGACCCCACACGGCGGTAGGTGTTCCTCTTCGGGGGCAGAGGTGGAGGTGA

CTGCGATGGGCTGCGGTCCGGCCTGGGAGGCGGATGACTGGCAGAGCCCCTTCC

GCGTTCGGGGGTGTGCTCCCGGTGGCGGTCGCTTGACTGATTTCCTCCGCGGCTG

GCCATTGTGTTCTCCTAGGTAGAGAAACAACAGACATGGAGACTCAGCCATCGC

TGCCAACACCGCTGCAAGCACCATCACACCTCGCCTCCAGCGATGAGGAGGAGG

AACAAAGCTTAACCGCCCCACCACCCAGTCCCGCCACCACCACCTCTACCCTCG

AGGATGAGGAGGTCGACGCACCCCAGGAGATACGGACGCAGGATATGGAGGAT

GAGAAAGCGGAAGAGATTGAGGCAGATATCGAGCAGGACCCAGGCTATGTGAC

ACCGGCCGAGCACGAGGAAGAGCTGAGACGCTTTCTAGAGAAAGATGATGACA

ACCGTCCAGAACAGCAAGCAGATGGCGATCAGCAGAATGTTGGGCTCGGGGATC

ATGTTGTCGACTACCTCACCGGCCTTGGTGGGGAGGACGTGCTCCTCAAACACCT

AGCAAGGCAGTCGATCATAATCAAAGATGCACTGCTTGATCGCAGCGAAGTGCC

CATCAGTGTGGAAGAGCTCAGCCGCGCCTACGAGCTCAACCTGTTCTCGCCTCG

GGTACCCCCCAAGCGTCAGCCAAACGGCACCTGCGAGCCCAACCCTCGCCTCAA

CTTCTATCCCGCATTCACCGTCCCCGAGGTGCTGGCTACCTACCACATATTTTTCA

AAAACCAAAAAATTCCAATTTCCTGCCGCGCCAACCGAACTCGCGCCGATGCCC

TGCTCAACTTGGGACCTGGCGCTTGCTTACCTGATATAACTTCCTTGGAAGAGGT

CCCAAAGATCTTCGAAGGTCTGGGCAGTGATGAGACTCGGGCCGCAAATGCTCT

GCAACAGGGAGAGAATGGCATCGATGAACATCACAGCGCTCTGGTGGAGTTGG

AGGGCGATAATGCCCGACTAGCAGTACTCAAGCGCAGTATCGAGGTGACCCATT

TCGCATACCCCGCTGTCAACCTGCCTCCCAAAGTCATGAGCGCTGTCATGGATCA

GATACTCATTAAACGCGCAAGTCCCCTTTCAGAAAACATGCAGGATCCAGACGC

CTCGGATGAGGGCAAGCCAGTGGTCAGTGATGAACAGCTATCTCGCTGGCTGGG

CACCAACTCCCCACGAGACTTGGAAGAGCGGCGCAAGCTCATGATGGCCGTGGT

GCTAGTTACTGTGGAAATGGAGTGTCTTCGCCGCTTCTTCACTGACCCCGAGACA SEQ

ID Sequence

NO

CTGCGCAAGCTCGAGGAGAACCTACACTACACTTTTAGACATGGATTTGTGAGA

CAGGCATGCAAGATCTCCAACGTGGAGCTTACCAACCTGGTTTCCTACATGGGC

ATTTTGCATGAAAACAGACTCGGACAGAGCGTGCTGCACACCACCCTGAAGGGG

GAAGCCCGTCGCGACTACATCCGCGACACTGTCTACCTCTACCTCTGCCATACCT

GGCAGACTGGTATGGGTGTGTGGCAGCAGTGTTTGGAAGAACAAAACCTGAAAG

AACTAGACAAGCTCTTACAGAGATCCCTCAAAACCTTGTGGACGGGTTTTGACG

AGCGCACAGTCGCCTCTGATCTGGCAGATCTCATCTTCCCAGAGCGTCTCAGGAC

TACTCTGCGCAACGGGCTGCCTGACTTCATGAACCAGAGCATGATTAACAACTTT

CGCTCTTTCATCCTGGAACGCTCCGGTATCCTGCCCGCCACCTGCTGTGCGCTAC

CATCCGACTTTGTGCCTCTGACCTACCGCGAGTGCCCCCCACCGCTATGGAGCCA

CTGCTACCTGTTCCGCCTGGCCAACTACCTATCATACCACTCGGATGTGATCGAG

GATGTGAGCGGAGATGGCCTGCTTGAGTGCCACTGCCGCTGTAATCTCTGCTCAC

CACATCGCTCCCTAGTCTGTAACCCCCAGTTGCTTAGCGAAACCCAAATTATAGG

CACCTTCGAATTGCAGGGTCCCAGCAGCGAAGGCGAGGGGTCTTCTCCTGGGCA

AAGTTTGAAACTGACCCCGGGACTGTGGACCTCCGCCTACCTGCGCAAGTTCTCC

CCCGAGGACTACCACCCCTATGAGATCAGGTTCTATGAAGACCAATCACAGCCG

CCCAAAGCTGAGCTCTCAGCGTGCGTCATCACCCAGGGGGCAATTTTGGCCCAA

TTGCAAGCCATCCAAAAATCCCGCCAAGAATTTTTGCTGAAAAAGGGTAACGGA

GTCTACCTCGACCCCCAGACTGGTGAGGAGCTCAACACAAGGTTCTCTCAGGAT

GTCTCAGCGCCGAGGAAACAAGAAGTTGAAAGTGCAGCTGCCGCCCCCAGAGG

ATATGGAGGAAGACTGGGACAGTCAGACAGAGGAGATGGAAGATTGGGACAGC

CAGGCAGAGGAGGAGGAGGACAGCCTGGAGGAAGACAGTTTGGAGGAGGAAG

ACGAGGAGGCAGAGGAGGTGGAAGAAGCAACCGCCGCCAAACAGTTGTCCTCG

GCGGCGGAAACAAGCAAGGCCACAGACAACACCACAGCTACCATCTCCGTTCCG

GGTCGGGGGGTCCAGCACCGTCCCAACAGTAGATGGGATGAGACCGGGCGACTC

CCGAATGCGACCACCGCTTCTAAGACTGGTAAGAAGGAGCGGCAGGGATACAA

GTCCTGGCGGGGGCATAAGAACGCTATCATATCCTGCTTGCATGAATGCGGGGG

CAACATATCCTTCACCCGCCGCTACCTGCTCTTCCACCACGGGGTGAACTTCCCC

CGCAATGTCTTGCATTACTACCGTCACCTCCACAGCCCCTACTACAGCCAGCAAG

CCTCGGCAGAAAAAGACAACAGCAGCAAGAACCTCCAGCAGAAAACCAGCAGC

AGTTAGAACACCCACAGCAGGTGCAACAGGAGGAGGACTGAGAATCACAGCGA

CCATCTTCCAACAGAGTCGGGGGCAAGAGCAGGAACTGAAAGTAAAAAACCGA

TCTTTGCGCTCGCTCACCCGAAGTTGTTTGTATCACAAGAGCGAAGACCAACTTC

AGCGCACTCTCGAGGACGCCGAGGCTCTCTTCAACAAGTACTGCGCGCTCACTCT

TAAAGAGTAGCCCGCGCCCGCGCTAGCTCGAAAAAAGGCGGGAATTACGTCACC

CATTGGCGCCTGTCCTTTGCCCTCGTCATGAGTAAAGAAATTCCCACGCCTTACA

TGTGGAGTTATCAACCCCAAATGGGACTGGCAGCAGGCGCCTCCCAGGACTACT

CCACCCGTATGAATTGGCTCAGCGCCGGTCCCTCGATGATCTCACGGGTTAATGA

TATACGAGCTTATCGAAACCAATTACTCCTAGAACAGTCAGCACTTACCGCCAC

ACCCAGACAACACCTCAATCCCCGGAATTGGCCCGCCGCCCTGGTGTACCAGGA

AACCCCCGCTCCCACCACCGTCCTACTTCCTCGAGACGCCCAGGCCGAAGTTCAG

ATGACTAACGCAGGTGTACAGCTGGCTGGCGGTTCCGCCCTGTGTCGTCACCGG

CCTCAACAGAGTATAAAACGCCTGGTGATCAGAGGCCGAGGTATCCAGCTCAAC

GACGAGTCGGTGAGCTCTTCGCTTGGTCTACGACCAGACGGAGTCTTCCAAATTG

CCGGCTGCGGGAGATCTTCCTTCACTCCTCGTCAGGCTGTACTGACTTTGGAGAG

TTCGTCATCGCAGCCCCGCTCGGGTGGCATCGGGACTCTCCAATTTGTGGAGGAG

TTTACTCCCTCTGTCTACTTCAACCCCTTCTCCGGCTCTCCTGGGCATTACCCGGA

CGAGTTCATACCAAACTTCGACGCAATCAGCGAGTCAGTGGATGGCTATGATTG

ATGTCTAATGGTGGCGCGGCTGAGCTAGCTCGACTGCGACATCTAGACCACTGC

CGCCGCTTTCGCTGCTTTGCCCGAGAACTCACCGAGTTCATCTACTTCGAAATAC

CCGAGGAGCACCCTCAAGGACCGGCCCACGGAGTGCGTATTACCATCGAAGGGG

GGATAGACTCTCGCCTGCATCGGATCTTCTGCCAGCGACCCGTGCTAATCGAGCG SEQ

ID Sequence

NO

CGACCAGGGAAACACCACAGTCTCCATCTACTGCATCTGTAACCACCCCGGATT

GCATGAAAGCCTTTGCTGTCTTATTTGTGCTGAGTTTAATAAAAACTGAGTTAAG

ACTCTCCTACGGACTACCAATTCTTCAACTCGGACTTTATAACAATCAGACCCTC

CGTTCAAGTCAGAAGACCCCAACCCTTCCTCTGATCCAGGAATCTAATTCTACCT

CCCCAGCACCACACTTTACTAGCCTTCCCGAAACTAACAACCTCGGAGCTCAACT

GCACCACTTTTCCAGAAGCCTTCTCTCTGCCAATACTACCACTCCCAGAACCGGA

GGTGAGCTCCGTGGTCTTCCTAATAACAACCCCTGGGTGGTAACTGGGTTTGTAA

CGCTAGGTGTAGTTGCGGGTGGGCTTGTGCTTGTCCTTTGCTACCTATACACACC

TTGCTGTGCTTATTTAGTAATCTTGTGTTGCTGGTTTAAGAAATGGGGGCCCTAC

TAGTCGCGCTTGCTTTACTTTCACTTTTGGATCTGGGCTCTACTATGCTAGTTCAG

CCTGTACTATTTGATCCATGCCTCAATTTTGATCCAGACAACTGCACACTCACTTT

TGCTCCAGAGGCTGGCCGCTGTGGAGTTCTTATTAGGTGCGGACGGGAATGCAG

TCCCATTGAAATACACCACAATAACAAAATTTGGAACAATACCTTATTCACCAC

ATGGCAGCCAGGAGACCCTGAGTGGTATACTGTCTCTGTCCGTGGTCCTGACGGT

TGTTCATGAGCAAACAGTATAACCTATGGCCTCCAAGCAAGGAGAACATTGTGG

CATTCTCCATTGCTTATTGCTTGTGTACGTGTCTCATTACTGCTATTCTATGTATC

TGCATACACTTGCTTATTTGCCACCGCCACAGAAACAGCAATGAGGAAAAAGAG

GTTATAGCTCTAATTATTGTCAGCATTCTCACTGCCGCACAGGGACAAACAATTG

TCTATATTACCTTAGGTCATAACCGCACTCTTATAGGACCCCAAATTAGTTCACA

GGTTATATGGACCAAACTTGGAAGTGTTGATTATTTTGACATAATCTGCAACAGA

ACTAAACCAATATTTGTAACCTGTAACAAACAAAATCTCACCTTAATTAATGTTA

GCGAAATTTACAGCGGTTACTATTATGGTTATGACAGACACAGCAGTGAATATA

AAAATTACCTAGTTCGCATAACTCAACCCAAAACCACAAAAATGCCAAATAAGG

CAAAAATTCAAATGGTTAGCGCATTAGAACATCTTACATATCCCACCACACCCG

ATGAGAGAAACATTCCAAATTCAATGATTGCCATTATTGCGGCGGTGGCAGTGG

GAATGGCACTAATAATAATTTGTATGTTCCTATATGCTTGTTACTGTAGAAAGTT

TCATCACAAACAGGATTCCCTACTAAATTTTTGACATTTAATTTTTTATACAGCTA

CGCTCACACCTCACTGTAACTGTTGGCTCAACTTGTACACTACAAGGACCCCAAG

AAGGGCATGTCAGTTGGTGGAGAATATATGATAGTGGATGGTTCATTAGGCCAT

GTGACCAGCCTGGTAACAAATTTTTCTGCAACGGGAGAGACTTGACCATTATTA

ACATCACAGTAAATGACCAGGGCTTCTATTATGGAACTAACTATAAAAATAACT

TAGATTACAACATTATCGTAGTGCCAGCCACCACTCCAGCTCCCCGCAAAACCA

CTTTCTTTAGCAGCAGTGCCAGTATTTCTAAAACAGCTTCTGCAAGCTTCAAAAA

ATTCGCTTTACGTAATTCCACAACCTCTTCCACTTCCAATAATACAATGTCTAAA

TCAGTAATCGGCATCGCTGCTGCCGCGATAGTGGGATTAATGATTATAATTCTAT

GCATAATCTACTACGCCTGCTGCTATAGAAAACAACATGAACAAAAAACCGATC

CCTTGCTGAATTTTGATATTTAATTTTTTTATAGAATCATGAAAAAACTAAGTAT

CCTAGCTTTCATTTTGTTTCAAACATTTACCAATGTGCAGACTACTTTAAGTCATG

GTATAGAGAACCACACTACCTCTTATGAGCTCACAAACATTACTACCCATCATCC

TAAATATGCTATGCAACTAGAAATCACCATGCTAATTGTAGTTGGAATACTTATC

CTAGCTATTATTTTCTATTTTACACTATGCCGCCAAATACCTAATATTCATAAAA

ATTCTAAAAGACGTCCCATCTATTGCCCTGTGATTAGTCGACCCCATATGACTCT

AAATGAAATCTAAGATCATCTATTTCTCTTTTTTACAGTATGGTGAACACCAATC

ATGATTCCTAGAAATTTCTTCTTCACCATACTCATCTGTGCTTTTAATGTCTGTGC

CACCTTCACAGCAGTAGCCACTGCAACCCCAGACTGTATAGGAGCATTTGCCTC

ATATACACTTTTCGCTTTTGTCGCTTGCACCTGCGTGTGTAGCGTAGTCTGCCTGG

TTATTAATTTTTTCCAACTTGTAGACTGGATCTTTGTACGACTTGCCTACCTGCGT

CACCATCCCGAATACCGCAATCAACATGTTGCGGCACTTCTCAGACTTATTTAAA

ACCATGCAGGCTATACTACCAGTCATTCTGCTTCTGTTGCTCCCCTGCGATGCCTT

AACCCCCGTCGCTAATCGTACCCCACCTGAACAACTTAGAAAATGCAAATTCCA SEQ

ID Sequence

NO

ACAACCATGGACATTCCTTGATTGCTACCGAGAAAAATCTGATTTCCCTACATAC TGGATTATGATCATTGGAATTGTCAATCTAGTTTCTTGCACACTATTCTCTTTCCT

AAGAACCAGAGGAACATATCCCACTACAGAACATGCAACAGCCAATAGCTATA

ATAGATTATGACAATGAGCCACAGCCCTCGCTGCTTCCTGCTATTAGTTACTTCA

ACCTAACCGGTGGAGATGACTGACCCACTCGCCGCCTCCACTGCTGCCGAGGAA

CTACTTGATATGGACGGCCGCGCCTCAGAACAGCGACTCGCCCAACTACGCATA

CGCCAGCAGCAGGAACGTGCCGCCAAGGAGCTCAGGGATGCTATTGAAATTCAC

CAGTGCAAAAAAGGCATATTCTGTCTGGTGAAACAAGCCAAGATTTCCTACGAG

ATTACCAATACTGACCATCGCCTCTCATACGAGCTCGGACCGCAGCGGCAAAAA

TTCACTTGTATGGTGGGAATCAACCCCATAATCATCACCCAGCAAGCTGGAGAT

ATCAAGGGTTGCATCCACTGTTCCTGCAGTTCCACCGAGTGCATCTACACCCTGC

TGAAGACCCTCTGCGGCCTTCGAGACCTCCTACCCATGAACTAATCAACCCAGCC

CCTCACTTACCAATTACATAAAGCCAATTAATAAAAATCACTTACTTGAAATCAG

AAATAAGGTTTCTGTCTACGTTGTTTCCAAGCAGCACCTCACTTCCCTCTTCCCA

ACTCTGGTACTCTAAGCCTCGGCGGGTGGCATACTTCCTCCACACTTTGAAAGGG

ATGTCAAATTTTAGTTCCTCTTCTTTGCCCACAATCTTCATTTCTTTATCCCCAGA

TGGCCAAACGAGCTCGGCTAAGCAGCTCCTTCAATCCGGTCTACCCCTATGAAG

ATGAAAGCAGCTCACAACACCCCTTTATAAACCCTGGTTTCATTTCCTCAAATGG

TTTTACACAAAGCCCAGATGGAGTTCTAACTCTTAAATGTGTTAATCCGCTCACT

ACCGCCAGCGGACCCCTCCAACTTAAAGTTGGAAGCAGTCTTACAGTAGATACT

ATCGATGGGTCTTTGGAGGAAAATATAACTGCCGCAGCGCCACTCACTAAAACT

AACCACTCCATAGGTTTATCAATAGGATCTGGCTTGCAAACAAAGGATGATAAA

CTTTGTTTATCGCTGGGAGATGGGTTGGTAACAAAGGATGATAAACTATGTTTAT

CGCTGGGAGATGGGTTAATAACAAAAGATGATACACTATGTGCCAAACTAGGAC

ATGGCCTTGTGTTTGACTCTTCCAATGCTATCACCATAGAAAACAACACCTTGTG

GACAGGTGCAAAACCAAGCGCCAACTGTGTAATTAAAGAGGGAGAAGATTCCC

CAGACTGTAAGCTCACTTTAGTTCTAGTGAAGAATGGAGGACTGATAAATGGAT

ACATAACATTAATGGGAGACTCAGAATATACTAACACCTTGTTTAAAAACAAAC

AAGTTACAATCGATGTAAACCTCGCATTTGATAATACCGGCCAAATTATCACTTA

CCTATCATCTCTTAAAAGTAACCTGAACTTCAAAGACAACCAAAACATGGCTAC

TGGAACCATAACCAGTGCCAAAGGCTTCATGCCAAGCACCACTGCCTATCCATTT

ATAACATACGCCACTCAGTCCCTAAATGAAGATTACATTTATGGAGAGTGTTACT

ACAAATCTACCAATGGAACTCTCTTTCCACTAAAAGTTACTGTCACACTAAACAG

ACGTATGTCAGCTTCTGGAATGGCCTATGCTATGAATTTTTCATGGTCTCTAAAT

GCAGAGGAAGCCCCGGAAACTACCGAAGTCACTCTCATTACCTCCCCCTTCTTTT

TTTCTTATATCAGAGAAGATGACTGACAACAAAAAAAAAAATAAAGATCAACTT

TTTTATTGAAAATCAGTTTACAAGATTCGAGTAGTTATTTTGCCCCCCTCTTCCCA

TTTTATAGAATACACAATTCTCTCCCCACGCACAGCTTTGAACATTTGAATTCCA

TTAGAGATA

SEQ ATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCTTTTGAATT ID TTAACGGTTTTGGGGCGGAGCCAACGCTGATTGGTCGAGAGAAGACGATGCAAA NO: TGACGTCACGACGCACGGCTGACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAA 1429 GCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACG

GCCGATTTTCCCGCGGTCACGCCAGGATATGAGGTAATTCTGGGCGGATGCAAG

TGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAA

ATACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCG

ATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTCCGTGTCA

AAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCG

AGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTC

CGCTCCCAGAGACCGAGAAAAATGAGACACCTGCGCCTCCTGCCTTCAACTGTG

CCCGGTGAGCTGGCTGTGCTTATGCTGGAGGACTTTGTGGATACAGTATTGGAG

GACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGATCTCTAT SEQ

ID Sequence

NO

GATCTGGAGGTAGATGCCCATGATGACGACCCTAACGAAGAGGCTGTGAATTTA

ATATTTCCAGAATCTATGATTCTCCAGGCTGACATAGCTAGCGAAGCTATAGTTA

CTCCACTTCATACCCCAACTCTGCCGCCCATACCTGAATTGGAAGAGGAGGATG

AGATAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACG

AACAGGGTGAGCGAGAGATGGCTATTCTATCGGACTTTGCTTGTGTGATTGTGG

AGGAGCAAGATGTGATTGAAAAATCTACTGAGCCAGTACAAGGCTGTAGGAACT

GCCAGTACCACCGGGATAAGTCCGGAGATGTGAACGCCTCCTGCGCTCTGTGCT

ATATGAAACAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAG

GCTGAGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTT

ATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGA

CCACCCGTCCCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGACC

CACCCCAGTCAGACCAAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTGAGG

ACTTGTTACATGATATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCC

CCAGGAACTAGGCGCATATGCGCTTAGTCATGTGTAAATAAAGTTGTACAAATA

AAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTA

GTCCTATATAAGTGGTAACACCTGGGCACTCAGGCACAGACCTTCAGGGAGCTC

CTGATGGAGGTGTGGACTATCCTTGCGGACTTTAACAAGACACGCCGGCTTGTG

GAGGATAGTTCAGACGGGTGCTCCGGTTTCTGGAGACACTGGTTTGGAACTCCTC

TAGCTCGCCTGGTGTACACAGTTAAGAAGGATTATCAGGAGGAATTTGAAAATC

CCGGTGTTGCTTTTGTGGTGTTTCTGGTTGACAAATGGAGCCAGCAAACCCACCT

AACCAGGGATTACATCCTGGACTTCACGGCCATGCATCTGTGGAAGGCCTGGGT

CAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCC

GGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAGATGAGGGA

GGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGC

TGGATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACAAC

CATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACTGGGATGA

TGACCGAGCTGACAGCCAGCCTGATGAATCGCAGGCGACCTGAGCGCATTACCT

GGCATGAGCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAA

TATGGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAG

GAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGG

GTGACCAAGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCA

GAGGTGATCATCGATACCCTGGATAAGGCTGCCTTCAGGTGTTGCATGATGGGA

ATGAGAGCCGGTGTGATGAATATGAATTCAATGATATTCATGAACATCAAGTTC

AATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTG

CACGGCTGTAATTTCTTTGGCTTTAACAACATGTGTGCAGAAGTCTGGGGTGCTT

CCAAGATCAGGGGCTGTAAGTTTTATGGCTGCTGGATGGGAGTGGTCGGAAGAC

CCAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAGTGCTACCTGGCCG

TGTCTACCGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCATGGAGACGGGCT

GCTTCTGCCTGGTGAAGGGCACAGCTTCTATCAAGCATAATGTGATCAAGGGGT

GTACTGATGAGCGCATGTACAACATGCTGACCTGCGACTCTGGGGTCTGCCATAT

CCTGAAGAACATCCATGTGACCTCCCACCCTAGGAAGAGGTGGCCATCATTTGA

AAATAATGTCCTGATCAAGTGCCATGTGCACCTGGGAGCCAGAAGGGGTACCTT

CCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGCTGGAGAATGATGC

CTTCTCCAGGGTGAACCTGAACGGTATCTTTGACATGGATGTCTCGGTGTACAAG

ATCCTGAGATACGATGAGACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGC

AGACACACCAGGATGCAGCCTGTGGCTCTGGATGTAACCGAGGAGCTGAGGCCC

GACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGCGGGGAGGAC

ACAGATTAGAGGTAGGTTGAGTATTAGTGGGCGTGGCTAAGGTGACTATAAAGG

TGGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGG

CGGGGCCTTCGAAGGGGGGCTTTTCAGCCCTTATTTGACAACCCGCCTGCCGGG

ATGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGT SEQ

ID Sequence

NO

GCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTC

GCTTGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGA

GATTGGCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTC

CATCATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAG

CCGCCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCA

GCAGCAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCAT

GAGAGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAG

GTACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTC

GTGCTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTG

GTGCTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGT

GTAGGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGA

TGTGCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCT

GGGGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAA

CTTATCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTG

ACCGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCT

GCGGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGG

GTGAGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGG

GGGACGATAGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATC

TCCCAGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAA

AAAACGGTTTCCGGGGCGGGGGTGATTAGCTGCGAGGAGAGCAGGTTTCTCAAC

AGCTGGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGC

AGGTGGTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACC

TCGTTGAGCATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGC

GGTCCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCT

TGAGCCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGC

GGTCCCAGAGCTCGGTGACGTGTTCTACGGCATCTCGATCCAGCAGACTTCCTCG

TTTCGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGC

GCGGCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGAGTGAGGGTGGTCTCC

GTCACGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGA

CTCATCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGAT

AGCAGTTGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCAC

GGAGCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGG

GCGTATAGCTTGGGTGCGAGAAAGACGGACTCGGGGGCGAAAGCATCCGCTCCG

CAGTGGGCGCAGACGGTCTCGCATTCGACTAGCCAGGTGAGCTCGGGCTGCTCG

GGGTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTC

CATGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGAC

GGACTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAA

CTCGGACCACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCA

CGTGCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTG

CAGACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAG

GCCACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTG

CTCGTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGG

TATTCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAA

ACGAGGAGGATTTGATGTTAGCCTGCCCTGCCGCGATGCTTTTGAGTAGACTTTC

CACGGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGA

CGCACTTCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGC

GCCAGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGC

GCAGGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGG

GCAGCACATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGC SEQ

ID Sequence

NO

CATCTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACC

CCAGGGCATGGGATGCGTGAGGGCGGAGGCATACATGCCGCAGATGTCATAGA

CATAGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGC

GGATGCTGGCGCGCACGTATTCATACAACTCGTGCGAAGGGGCCAAGAAAGCGG

GGCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAG

ATGGCGTGCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCG

TGCGGCAGTCGGACCGAGTCTCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTG

GCGACGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCG

CGGATGATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGG

CGTACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGC

ACGGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCC

CTTCTCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGTGT

CAGGGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGA

GTCGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAG

GGGGTTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGG

CATGAAATTGCGGGTGATGCGGAAAGGGCCCGGGACTGAGGCTCGGTTGTTGAT

GACCTGGGCGGCGAGGACGATCTCATCGAAGCCGTTGATGTTGTGCCCGACGAT

GTAGAGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGTTCC

TCGTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCT

GGAGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGG

GTCTGGAGCTCGTCGCGAAAAAGGCGGAACTGCTGGCCCACGGCCATCTTTTCT

GGGGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAA

GCGCACGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTT

CATGACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTA

GGTTTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGAT

TGGGAAGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATG

AAAGTAGAAATCCCGCCGCCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCG

TCCGCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGC

GCGTCCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGT

TCGCCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGC

CCGCGCGGCAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGAC

GAGGGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGG

CAGGGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAG

ATGGTACTTGATCTCCACTGGGGAGTTGGTGGCCGTGTCCACGCATTGCATGAGC

CCGTAGCTGCGCGGGGTCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTC

GCGGACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGC

AGAGGCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCG

CTGGCGTGCGCGACGACGCGGCGGTTGACATCCTGAATCTGTCGCCTCTGCGTG

AAGACCACTGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATC

TCGGCGTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGT

CCTGGTAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCC

GCGGCCCGCGCGCTCCACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAG

CTGCGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTC

CCCGTCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTG

CCGCGTGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGT

GGCGATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTC

GCTGATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAGTCCACGGCG

AAGTTGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGC

CGGATAAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCC

TCCTCCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGC

GGTGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGAC

GAAGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCG

ACCCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATG SEQ

ID Sequence

NO

GGGCGGGTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTG

CGGTGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAG

GAAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCT

GTGGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTG

AGGCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATG

CGGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGT

AGTAGTCATGCATGAGCCTCTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCAT

GCGGGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGAC

GCGCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTC

CATGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGC

CATGAGCGACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCT

GAGTCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACAA

GGTACTGGTAGCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAG

CGCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAG

CCGTATAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGC

GGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATG

GTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAA

AAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGG

GTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGC

GACTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGA

TACGGCGGAGAGCCCTTTTTGCCGGCCGCGGGGTGTCGCTAGACTTGAAAGCGG

CCGAAAACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCA

GGGTTGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTG

GTCACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAG

CGAGCCCCCTTTTTTCTTTTTGCCAGATGCATCCCGTTCTGCGCCAAATGCGTCCC

ACCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAG

CCACCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGG

GGCGCCGTCCCCGGAGCGACATCCCCGAGTGCAGCTGCAGAAGGACGTGCGCCC

GGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCG

AGGAGATGCGCGACTGCCGGTTTCGGGCTGGCAGGGAGCTGCGCGAGGGCCTGG

ACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGG

ATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAG

CAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGC

ACGCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTG

GCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTC

CTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAA

CATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATCAACATCTTGCAGAG

CATCGTAGTGCAGGAGCGCAGCTTGAGCCTGGCCGAGAAGGTGGCGGCCATCAA

CTACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCC

GTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGC

GCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCAT

CCACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGA

TGCTGAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCT

ACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGG

CCGCCTACGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCA

CCCGCTGCGGGGTACTGACGCCTCCGTGATGTGTTTTAGATGTCCCAGCAGCAAG

CCCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCAT

CGGACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACC

CCGAGTCCTTTAGACAACAACCGCAGGCCAACAGACTCTCGGCCATTCTGGAGG

CGGTGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGA

ACGCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTATACA

ACGCCCTGCTGGAACGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACC

TGGACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCA SEQ

ID Sequence

NO

AGAACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGC

CGGCTAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGC

GGCTGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACT

ACTTTTTCCAGACTAGCAGACAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTT

TCAAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGA

CGGTGAGCAGCTTGCTGACGCCCAACTCGCGTCTGCTGCTGCTGCTGATCGCGCC

CTTCACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGAC

GCTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGG

AGATCACGAGCGTGAGCCGCGCGCTGGGCCAGAACGACACCGACAGTCTGAGG

GCCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTAC

GCACTGTCGGCCGAGGAGGAAAGGATCTTGAGATATGTGCAGCAGAGCGTAGG

GCTGTTCCTGATGCAGGAGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGC

GCGCAACATGGAACCTAGCATGTACGCTGCCAACCGGCCGTTCATCAATAAGCT

GATGGACTACCTGCACCGCGCGGCGGCCATGAACACGGACTACTTTACCAATGC

CATCCTGAACCCGCACTGGCTTCCGCCGCCTGGGTTCTACACGGGCGAGTACGA

CATGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTT

CTCGCCCGCCTTTCAAAAGAGACAGGAAGCGGTGCGCACGCCTAGCGAGGGCGC

TGTGGGACGGAGCCCCTTTCCTAGCTTGGGGAGTTTGCATAGCCTGCCGGGCTCG

GTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCT

GAACGACTCGCTGCTGCAGCCGCCGCGGGCCAAGAACGCCATGGCCAATAACGG

GATAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCA

TAGGGACGCACCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGG

TGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGA

GCGGTGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAGACTGGGGCGGCGGA

TGTTTTGAAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTT

GTTAGAGATGAGGCGCGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGC

GTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTC

CTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCTGTACGACA

CCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACT

ACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCA

CCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGG

GCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACA

TGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAAGCATCCCAAAG

ATGTGCCAGTTAATGATTTAAGCAAAGATATCTTAGAGTACGATTGGTTTGAGTT

TACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAA

CGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAG

CGATATCGGAGTCAAGTTTGACAGCAGAAATTTCAGACTGGGCTGGGACCCGGA

GACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGT

GGTGCTGCTGCCGGGCTGCGGGGTGGATTTCACCGAGAGTCGCCTGAGCAACCT

CCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGA

GGATCTAGAAGGGGGCAACATTCCCGCACTCCTTGATGTGGCCAAGTACCTTGA

AAGCAAGAAGGAACTGGAGGATGCCGCCAAGGAAGCTGCAAAGCAACAGGGAG

ATGGCGCTGTCATTAGAGGCGATACCCACCTCACTGTAGCTCAAGAAAAAGCAG

CTGGAAAGGAGCTAGTGATTGTTCCCATTGAGAAAGATGAAAGCAACAGAAGCT

ACAACCTGATCAAGGATACCCATGACACCCTGTACCGAAGTTGGTACCTGTCCT

ATACCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCC

CGGACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGC

AAGACCCCGTCACCTTCCGCTCCACCCAGCAAGTCAGCAACTACCCAGTGGTCG

GCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTA

CTCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCC

GACAACCAGATCCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAA

AACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGC

GGAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCT SEQ

ID Sequence

NO

ACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAA

AAATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCC

CAGCACCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGT

TCGCGGCCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCCAC

CGCCGCCGCCGTGCGCACCACCGTCGACGATGTCATCGACTCGGTGGTCGCCGA

CGCGCGCAACTATACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGT

GGTGGCCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCG

CCAGGCGCCACCGGAGTACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCC

GCGCCAGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCA

CTGCACCCACCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCG

CGGCCATCTCTAGCATGACCAGGCCCAGGCGCGGAAACGTGTACTGGGTGCGCG

ACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATC

TAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAG

GAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGGACCAACCCAGGCGGACCAG

AAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGC

AGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCG

CAGGGTGCAGCGCGTGTTGCGACCCGGCACGGCGGTGGTGTTCACGCCCGGCGA

GCGGTCCTCTGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGA

CATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGT

CGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGA

GCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGA

GCCGCGGGGTCAAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATG

GTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACGCCGTGAAAATGGATGTG

GAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTG

CAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCG

ACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGCC

TCCACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGT

GCCACCAGCCGGCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGC

CGGGCTACCGCGGCACCCGGTATTACGCCAGCCGCAGGCGCCCAGCCAGCAAAC

GCCGCCGCCGCACCACCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCG

TGACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAG

CATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCC

GCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCA

TGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTG

AGTGGCGGGTTCCTGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACG

ATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCG

AATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTTTTAGAATGGAA

GACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGC

ACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGC

AGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAAC

AAGGCCTGGAATAGTAGCACTGGGCAGTTGTTGAGGGAAAAGCTCAAAGACAA

GAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGT

GGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGC

GGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCTTCCGCCGCCCAAGGGCG

AGAAGCGGCCGCGGCCCGACGCGGAGGAGACGATCCTGCAGGTGGACGAGCCG

CCCTCGTACGAGGAGGCCGTGAAGGCCGGCATGCCCACCACGCGCATCATCGCG

CCGCTGGCCACGGGTGTAATGAAGCCCGCCACCCTTGACCTGCCTCCACCACCC

ACGCCCGCTCCACCGAAGGCAGCTCCGGTCGTGCAGGCCCCCCCGGTGGCGACC

GCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTG

CACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGA

GAGAGAGGAAAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGC

CAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACAT

GCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTT SEQ

ID Sequence

NO

TGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCAC

GGTGGCTCCCACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCG

CTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCAC

TCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACAT

CCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTACTCGGGCACGGCTTA

CAACAGCCTGGCCCCCAAGGGCGCCCCAAATCCAAGTCAATGGGAAACAAAAG

AAAAGCAAGGAACTACCGGAGTCCAAACGGAAAAAGATGTCACAAAAACATTT

GGTGTGGCCGCCACTGGCGGAATTAATATTACAAACCAGGGTCTGTTACTTGGA

ACTGATGAAAAAGCCGAAAATGGCAAAAAAGACATTTATGCAGACAAGACTTTT

CAACCAGAACCTCAAGTTGGAGAGGAAAACTGGCAGGAAAATGAAGCATTCTA

CGGAGGCAGAGCTCTTAAGAAGGACACCAAAATGAAACCATGCTATGGATCTTT

TGCTAGACCTACTAATGAGAAAGGAGGTCAGGCAAAGTTCAAACCAGTTAATGA

AGGAGAACAGCCTAAAGAACTGGATATAGATTTTGCTTACTTTGACACTCCAGG

TGGCAATATAACACAAGGAACAGAAGAATTAAAGGCAGATATCATTTTGTACAC

TGAAAATGTTAATCTGGAAACACCAGACACTCATGTGGTATACAAGCCAGGAAC

TTCAGATGACAGTTCAGAAATCAATCTTGTTCAGCAGTCCATGCCAAACAGACC

CAATTACATTGGTTTCAGAGACAACTTTGTGGGGCTTATGTATTACAACAGCACT

GGCAACATGGGTGTGCTGGCTGGTCAGGCCTCTCAGTTGAATGCTGTGGTTGACT

TGCAAGACAGAAACACCGAGCTGTCATACCAGCTCTTGCTAGATTCTTTGGGTG

ACAGAACCAGATACTTTAGCATGTGGAACTCTGCGGTTGACAGCTATGATCCCG

ATGTCAGGATCATTGAGAATCATGGTGTGGAAGATGAACTTCCAAACTATTGCTT

CCCCTTGGATGGCACTGGAACCAATTCCACTTACCAAGGTGTAAAGATCACAAA

TGGTAATGATGGCGCTGAAGAAAGTGAGTGGGAAAAAGACGATGCTATATCTAG

ACAAAACCAAATCTGCAAAGGCAACGTGTACGCCATGGAGATCAACCTCCAGGC

CAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCCCTGTACCTGCCCGACTCC

TACAAGTACACGCCGGCCAACGTCACGCTGCCCGCCAACACCAACACCTACGAC

TACATGAACGGCCGTGTGGTAGCCCCCTCGCTGGTGGACGCCTACGTCAACATC

GGCGCCCGCTGGTCGCTGGACCCCATGGACAATGTCAACCCCTTTAACCACCAC

CGCAACGCGGGCCTGCGCTACCGTTCCATGCTGTTGGGCAACGGCCGCTACGTG

CCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTCCTGC

TCCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGACGTCAACATGATCC

TGCAGAGTTCCCTCGGAAACGATCTGCGCGTCGACGGCGCCTCCGTCCGCTTCGA

CAGCGTCAACCTCTACGCCACCTTTTTCCCCATGGCGCACAACACCGCCTCCACC

TTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTACCTC

TCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCCATCT

CCATTCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAA

GACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACCCCTACTTTGTCTACTCG

GGATCCATCCCCTACCTCGACGGGACCTTCTACCTCAACCACACCTTCAAGAAGG

TTTCCATCATGTTCGACTCCTCGGTCAGCTGGCCTGGCAACGACCGGCTGCTGAC

GCCGAACGAGTTCGAGATTAAGCGCAGTGTCGACGGGGAGGGCTACAACGTGG

CTCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAA

CATCGGCTACCAGGGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGTACTC

CTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAACTA

CAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAACAACTCGGGCTTCAC

CGGCTACCTTGCGCCCACCATGCGCCAGGGGCAGCCCTACCCCGCCAACTTCCCC

TACCCGCTCATCGGCTCCACCGCAGTGCCCTCCGTCACCCAGAAAAAGTTCCTCT

GCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGC

CCTTACCGACTTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTCGAC

ATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCG

AAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCCG

TCTACCTGCGCACACCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCGGT

TCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCCTAC SEQ

ID Sequence

NO

CCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAGGCGTGCACTGGCTCG

CCTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTT

CTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCG

CCGAAGCGCCCTGGCCTCATCGCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACC

CAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTTTCTGTTGCATGTTCT

TGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCACCATGA

ACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTACCCA

CCCTCCGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTA

CTTTCGATCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGATAAAATGAAA

CAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATACACTGGAGTATAT

GCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTG

GGGAGGGCCACGTTGCGGTACTGGTACTTGGGCTGCCACTTGAACTCGGGGATC

ACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTC

ATCTGCAGGGCGCCCAGCATGTCCGGGCCGGAGATCTTGAAATCGCAGTTGGGG

CCGGTGCTCTGCGCGCGCGAGTTGCGGTACACAGGGTTGCAGCACTGGAACACC

ATCAGACTGGGGTACTTCACACTGGCAAGCACGCTCTTGTCGCTGATCTGTTCCT

TGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGC

GGCCCAGGAAGGGCACGCTCTGAGGCTTGTGATTACACTCGCAGTGAACGGGCA

TCAGCATCATTCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACAAAGG

CCGTGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAAAACAGCCC

GCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGCACGCAGCAG

CGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCA

CCTTGGCCTTGCTGGGCTGCTCCTTCAGCGCGCGCTGCCCGTTCTCACTGGTCAC

ATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCGTCCCATGCAGACACTTG

AGCTGGCCTTCCACCTCGGTGCAGCCGTGATCCCACAGGGCGCATCCGGTGCAC

TCCCAATTCTTGTGTGCGATCCCGCTGTGGCTGAAGATGTAACCTTGCAACATGC

GGCCCATGATGGTGCTAAAGCTCTTCTGGGTGGTGAAGGTCAGTTGCAGACCGT

GGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGAAGATCTCGGTCTGCTC

GGGCATGAGCTTGTAGGCATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCAT

CAGCACGTTCATGGTATCCATGCCCTTCTCCCAGGACGAGACCAGAGGCAGACT

CAGGGGGTTGCGCACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGCGTTT

TCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTCCCACG

ATCACGGCATCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCT

TGGTCTTCCTGGCTTGCTTCTTTTTTGGAGGGCTGTCCACGGGGACCACGTCCTCC

TCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGA

GGTGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCG

TGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTG

CCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAG

CAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGG

CTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGAGCA

AGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAG

GAGAGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGG

ACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGG

CCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACG

GCACCTGCGAGCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCGA

CGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGC

ATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGT

CGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGAGGG

TCACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCT

CAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCCC

AAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTC

GATGAAAGTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGACGA SEQ

ID Sequence

NO

GATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCTTTGGAACAGCGGCG

CAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGCTCGAATGCATGCGCCGC

TTCTTCACCGACCCCGAGACCCTGCGCAAAGTCGAGGAGACCCTGCACTACACT

TTCAGACACGGCTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACC

AACCTGGTCTCCTGCCTGGGGATCCTTCACGAGAACCGCCTGGGGCAGACCGTG

CTCCACTCTACCCTGAAGGGCGAGGCGCGTCGGGACTATGTCCGCGACTGCGTC

TTTCTCTTTCTCTGCCACACATGGCAAGCAGCCATGGGCGTGTGGCAGCAGTGTC

TCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAA

AGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCG

GCCAGAGCATGTTGCAAAACTACCGCACTTTTATTCTCGAGCGCTCGGGGATCCT

GCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAG

TGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACATCG

CCCACCACTCGGATGTGATCGAGGACGTGAGCGGCGAGGGGCTTCTCGAGTGCC

ACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCT

CCTAAGCGAGACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGAGTC

CACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAA

ATTTGTACCCGAGGACTACCACGCCCATGAGATAAAGTTCTTCGAGGACCAATC

GCGTCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCT

CGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGG

TAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCC

CCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAA

TGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAG

AATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCA

TCCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGCCAAG

CCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGG

CTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTG

CGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAA

CATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGC

AAGTAAGAGGAGTCGCCGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCC

TTGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTTTC

AGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAATCGGTCTCTGCGCT

CGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTC

TCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTGACTCTTAAAGACT

AAGGCGCGCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGCA

AGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAAATGGGCCTGGCCG

CGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCCT

CGATGATCTCACGGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGTTGG

AGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGC

CCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCG

TGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGG

CGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCG

AGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGCG

ACCGGACGGAGTGTTCCAACTAGCCGGAGCAGGGAGATCGTCCTTCACTCCCAA

CCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCAT

CGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTC

TCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGTG

AGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAGCTC

GCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAG

AGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCAC

ACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTCT

TCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCG

TCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTTGT SEQ

ID Sequence

NO

GGTGAGTTTAATAAAAGCTGAAATAAGACTCTACTCTGGGATCAAGTGTCGTCA

TAATCGCACCGAGACCATCAACTTCACCACCCAGGAACAGGTGAACTTTACCTG

CAAACCCCACAAGAAGTACCTCATCTGGTTCTTCGAGAACACTACTCTTGCAGTA

GTTAACACCTGTGACAACGACGGTGTTCTTCTTCCCAACAATCTCACCAGTGGAC

TAGCCTTCTCTGTTAAAAGGGCAAAGCTAATTCTTCATCGCCCTATTGTAGAAGG

AACTTACCATTGTCAGAGCGGACCTTGTCACCACATTTTCCATTTGGTGAACGTC

ACCAGCAGCAGCAACAGCTCAGAAACTAACCTCTCTTCTCGTACTAACAGACCT

CAATTCGGAGGTGAGCTAAGGCTTCCCCCTTCTGAGGAGGGGGTTAGTCCATAC

GAAGTGGTCGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCAGTG

CTAGCTCAGCTGCCTTGCTGGATCGAAATCAAAATCTTTATCTGCTGGGTCAGAC

ATTGTGGGGAGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGG

GGTGTACTGTCATGCCACGAACAGCCACTATGTAACATCACCACAGGCAATGAG

AGAAGCGAATGCTCTGTAGTTATCAAATGTGAGCACAAATGTTCTCTCAACATTA

CATTCAAGAATAAGACCATGGGAAATGTATGGGTGGGCTTCTGGCAACCAGGAG

ATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGCAATCACACTTTCG

GTTTCAAATTCATTTTTGAAGTCATGTGTGATATCACACTGCATGTGGCTAGACT

GTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTTTC TGAAGCGCAAGCCCAGATATGGAAATGAGGAAAAGGAAAAATTGCTATAAATC

TTGTAGCTTTTAGTCAAGGACTATTAGAATCTAAAGTTGTAAAAATACCATATGG

CAGTACCTATGTTTTAGTTGGACCAAGAGATCCACCAGTTCAATGGTTTGGGGGT

GGAGATTTTACTATGTTCTGTAATGGAAGTAAAACTCACTTGCAAAACATAAGA

CACACTTGTAATGAACAGAACCTGACTTTACTGTCAGTTGGCTATGGCCATAGAG

GTGATTACTATGGTTTTAGACATGATAACACAGGCAGAAAACATTATAAGGTTA

TAATCGAAGCACCTCCGCCAGTAACCAGAAAACCACTTTCAGAAATAAAATATG

TTAATGTTACCATGGGTCAAAATCTAACACTAAGTGGACCACCAGGAACGCCAG

TTACATGGCATGGAGAGGGTCACAAACTTTGCGAAGGCAAAAATGTTTTCTATC

GCGAACTTAACCACACTTGTACAGAAAAGGACCTTATCCTGTTATTTGTAAACAG

AACTCATAATGGTCCTTATATTGGTTACAACAAAGAAGGTACAGACAGAGAGCA

TTATGAAGTATCAGTGTTAGATTTAATGCCAATTGCAGGACAAGGTTTGGATTCA

AAAAATAAAGAACAAAAAATACCTCCTAAAAGAAAATCAAAAGATAAAGTCAA

AGAAGTTAACTTTCCAACAGGAACTGATCAGACACTAATTGGACCTCCTGGGCA

AAAAATTGATTGGCATGTGAGCAGTAATGATGGTCAGTTTAAAAAACTGTGTGA

AACTAAAGATGGAAAACATTCTTGCCATGGGCGGAACATAACAATATTCAACAT

TAGCAGAGCAGATGAAGGGTCTTATTATGGCTCCAGCCATGATGGTTCGTCGCA

CTACAAAGTTACTGTGTATGACAAATCAAGCTTTGGTAAAGCAAAAATCAAAAT

TGATCCATACACCACAAAGGGAACAACCACTGAAAATTATCACGAGTTTGAATT

ACAACAGGGAAATGATGAATCAGACGATCAAAAACAAATTCCTTCAACTACTGT

GGCTATCGTGGTGGGTGTGATTGCGGGCTTCGTAACTCTGATCATTGTCTTTATC

TGCTACATCTGCTGCCGCAAGCGACCAAGGTCATACAATCATATGGTAGACCCA

CTACTCAGCTTCTCTTACTGAAACTCAGTTACTCTCATTTCAGAACCATGAAGGC

TTTCACAGCTTGCGTTCTGATTAGCTTAGTCACACTTAGTCTATCTCAAATGATTA

ATGTTAATGTTACCAGAGGAGGTAGTATTACATTGAATGGAACTTACAAAGATA

CTACATGGACAAGATATCACTTAGACTCATGGAAAAATTTATGCGAGTGGAACA

TTACAGCTTACAAATGTTATGAAAATGGAAGCATTACTATCACTGCCACTGGTGA

TATTACATCTGGCAGATACAAGGCAGAAAGTTACAAAAATGAAATTAAAAAATC

AATATTAAAAACTAATAAAACTACATTTGAAGATTCTGGAAACTATGAACATCA

AAAAATAACTTTCTATCAGCTAACAATAATCGAACTACCTACTACTAAGGCATCC

ACCACAGTTAGATCAACCCAGCCTACTACAGTCAGTACAACGATTGAAAGCACT

ACTCACACTACACAGTTAGACACTACAGTGAAGAACAGTACTGTGTTGGTTAGG

TTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTCGGTAAATGAGACGATCGTGC SEQ

ID Sequence

NO

CGATGATGTATGGCCAACATTACCCAGGTTTGGATATGCAAATTACTTTCCTGAT

TGTCTGTGGGGTCTTTATCCTCACTGTCCTTCTCTACTTTGTCTGCTGCAAGGCCA

GAGAAAAATCTAGGCGGCCCATCTACAGGCCAGTAATCGGGGAACCTCAGCCCC

TCCAAGTGGATGGAGGCTTAAGAAATCTTCTCTTCTCTTTTACAGTATGGTGATC

AGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACATCT

GCGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTAGGGCCTTTCCC

CACCTACCTCCTCTTTGCCCTACTCACCTGCACCTGCGTCTGCAGCATTGTCTGCC

TGGTCATTACCTTCCTGCAGCTCATAGACTGGTGCTGCGCGCGCTACAATTACCT

GCATCATAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCAT

ATGACCATGCAGACTCTGCTCATACTGCTATCCCTCCTATCCCCTGTCCTCGCTG

ATGATTACTCTAAATGCAAATTCGCGGACATATGGAATTTCTTAGACTGCTATCA

GGAGAAAATTGATATGCCCTCCTATTACTTGGTGATTGTTGGGGTAGTCATGGTC

TGCTCCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTCGGCTGGAA

CTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCA

CCACCCACACCGCCTCCCCGCAGAAATCAGTTTCCCATGATTCAGTACTTAGAAG

AGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGA

TGACTGACCACCACCTGGATCTCGAGATGGACGGGCAGGCCTCCGAGCAGCGCA

TCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCG

ATGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTTTGCCTGGTCAAACAGG

CAAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATG

AGCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAG

TCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAA

GCCCCGAGTGCATCTACTCCCTCCTCAAGACCCTTTGCGGACTCCGCGACCTCCT

CCCCATGAACTGATGTTGATTAAAAGCCCAAAACCAATCAGCCCCATCCCCAAT

TACTCATAAGAATAAATCATTGGAATTAATCATTCAATAAAGATCACTTACTTGA

AATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCACCTCAGTACCCTCCTC

CCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCAAACTTCCTCCACACCTTGAAA

GGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTTCCTCTCAGATGTCAAA

GAGGCTCCGGGTGGAAGATGACTTCAATCCCGTCTACCCCTATGGCTACGCGCG

GAATCAGAATATCCCCTTCCTTACTCCCCCCTTTGTCTCCTCCGATGGATTCCAAA

ACTTCCCCCCTGGGGTCTTGTCACTCAAACTGGCTAACCCAATTGCTATCACCAA

TGGGAATGTCTCACTCAAGGTGGGAGGAGGACTCACTGTAGAACAAGACTCTGG

AAACCTAAGTGTGTCCCCTAAACCTCCATTGCAAATTGGAACAGACAAAAAACT

GGAATTGGCTTTGGCACCTCCATTTGATGTTAAAGAGAACAAGCTATCTTTGCTA

GTAGGAGATGGATTAAAGATAATAGATAGATCAATATCTGATTTGCCAGGATTG

TTAAACTATCTTGTAGTTTTAACTGGCAAAGGAATTGGAAATGAAGAATTAAAG

AATAACGATGGTAGTAATAAAGGAGTCGGTTTATGTGTGAGAATTGGAGAAGGA

GGTGGTTTAACTTTTGATGATAAAGGTTATTTAGTGGCATGGAACAATAAACATG

ACATCCGCACACTTTGGACAACTTTGGACCCTTCTCCAAATTGCAAAATAGATCT

AGAAAAAGACTCAAAACTAACTTTGGTACTGACAAAATGCGGAAGTCAGATTTT

GGCAAATGTATCTCTAATTATAGTTAAAGGAAAGTTTCAGAACCTTAACAACAA

AACAAACCCAACCCTACCTAAAACATTTAGCATCAAACTACTGTTTGATCGAAA

TGGAGTTCTATTGGAAAACTCAAACATTGAAAAACAGTACCTAAACTTTAGAAG

TGGAGACTCAATTCTTCCAAATCCATATAAAAATGCAATTGGGTTTATGCCTAAT

TTATTAGCTTATTCTAAATCTACAACTGATCAGTCTAAAATTTATGCAAGGAACA

CTATATATGGAAATATATACTTAGATAATCAGCCATATAATCCAGTTGTAATTAA

AGTTACTTTTAATAATGAAGCAGATAGTGCTTATTCTATCACTTTTAACTATTCAT

GGACCAAGGACTATGATAATATCCCTTTTGATTCTACTTCATTTACCTTCTCCTAT

TCTTTATTTATTTTTACACCAGCACGGGTAGTCAGTTTCCCACCACCAGCCCATTT CACAGTATAAACAACTCTCTCAGCACGGGTGGCCTTAAATAGGGAAATATTCTG ATTAGTGCGGGAACTGGACTTAGGGTCTATAATCCACACAGTTTCCTGGCGAGC CAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCG SEQ

ID Sequence

NO

GGCCTCGCAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCA

TACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAACAGTCTTT

GCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTC

TGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGCA

CCGCATCCTGATCTCGCTCATGTTCTCACAGTAAGTGCAGCACATAATCACCATG

TTATTCAGCAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGGATG

ATGGAACCCACGTGACCATCATACCAGATGCGGCAGTATATCAGGTGCCTGCCC

CTCATGAACACACTGCCCATATACATGATCTCTTTGGGCATGTTTCTGTTCACAA

TCTGCCGGTACCAGGGGAATCG

SEQ ATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCTTTTGAATT ID TTAACGGTTTCGGGGCGGAGCCAACGCTGATTGGACGAGAAGCGGTGATGCAAA NO: TGACGTCACGACGCACGGCCGACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAA 1430 GCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACG

GCCGATTTTCCCGCGGTCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAG

TGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAA

ATACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCG

ATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTCCGTGTCA

AAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCG

AGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTC

CGCTCCCAGAGACCGAGAAAAATGAGACACCTGCGCCTCCTGCCTTCAACTGTG

CCCGGTGAGCTGGCTGTGCTTATGCTGGAGGACTTTGTGGATACAGTATTGGAG

GACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGATCTCTAT

GATCTGGAGGTAGATGCCCATGATGACGACCCTAACGAAGAGGCTGTGAATTTA

ATATTTCCAGAATCTATGATTCTCCAGGCTGACATAGCTAGCGAAGCTATAGTTA

CTCCACTTCATACCCCAACTCTGCCGCCCATACCTGAATTGGAAGAGGAGGATG

AGATAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACG

AACAGGGTGAGCGAGAGATGGCTATTCTATCGGACTTTGCTTGTGTGATTGTGG

AGGAGCAAGATGTGATTGAAAAATCTACTGAGCCAGTACAAGGCTGTAGGAACT

GCCAGTACCACCGGGATAAGTCCGGAGATGTGAACGCCTCCTGCGCTCTGTGCT

ATATGAAACAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAG

GCTGAGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTT

ATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGA

CCACCCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGACC

CACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTGAGG

ACTTGTTACATGATATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCC

CCAGGAACTAGGCGCATATGCGCTTAGTCATGTGTAAATAAAGTTGTACAAATA

AAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTA

GTCCTATATAAGTGGTAACACCTGGGCACTCAGGCACAGACCTTCAGGGAGCTC

CTGATGGAGGTGTGGACTATCCTTGCGGACTTTAACAAGACACGCCGGCTTGTG

GAGGATAGTTCAGACGGGTGCTCCGGTTTCTGGAGACACTGGTTTGGAACTCCTC

TAGCTCGCCTGGTGTACACAGTTAAGAAGGATTATCAGGAGGAATTTGAAAATC

CCGGTGTTGCTTTTGTGGTGTTTCTGGTTGACAAATGGAGCCAGCAAACCCACCT

AACCAGGGATTACATCCTGGACTTCACGGCCATGCATCTGTGGAAGGCCTGGGT

CAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCC

GGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAGATGAGGGA

GGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGC

TGGATTGAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGACAAC

CATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACTGGGATGA

TGACCGAGCTGACAGCCAGCCTGATGAATCGCAGGCGACCTGAGCGCATTACCT

GGCATGAGCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAA

TATGGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAG SEQ

ID Sequence

NO

GAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGTAAGTACAGG

GTGACCAAGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCA

GAGGTGATCATCGATACCCTGGATAAGGCTGCCTTCAGGTGTTGCATGATGGGA

ATGAGAGCCGGTGTGATGAATATGAATTCAATGATATTCATGAACATCAAGTTC

AATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTG

CACGGCTGTAATTTCTTTGGCTTTAACAACATGTGTGCAGAAGTCTGGGGTGCTT

CCAAGATCAGGGGCTGTAAGTTTTATGGCTGCTGGATGGGAGTGGTCGGAAGAC

CCAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAGTGCTACCTGGCCG

TGTCTACCGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCATGGAGACGGGCT

GCTTCTGCCTGGTGAAGGGCACAGCTTCTATCAAGCATAATGTGATCAAGGGGT

GTACTGATGAGCGCATGTACAACATGCTGACCTGCGACTCTGGGGTCTGCCATAT

CCTGAAGAACATCCATGTGACCTCCCACCCTAGGAAGAGGTGGCCATCATTTGA

AAATAATGTCCTGATCAAGTGCCATGTGCACCTGGGAGCCAGAAGGGGTACCTT

CCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGCTGGAGAATGATGC

CTTCTCCAGGGTGAACCTGAACGGTATCTTTGACATGGATGTCTCGGTGTACAAG

ATCCTGAGATACGATGAGACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGC

AGACACACCAGGATGCAGCCTGTGGCTCTGGATGTAACCGAGGAGCTGAGGCCC

GACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGCGGGGAGGAC

ACAGATTAGAGGTAGGTTGAGTATTAGTGGGCGTGGCTAAGGTGACTATAAAGG

TGGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGG

CGGGGCCTTCGAAGGGGGGCTTTTCAGCCCTTATTTGACAACCCGCCTGCCGGG

ATGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGT

GCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTC

GCTTGACAGCACCGCTGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAG

ATTGGCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCC

ATCATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGC

CGCCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAG

CAGCAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATC

TTTATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTG

AGAGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGG

TACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCG

TGCTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGG

TGCTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTG

TAGGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGAT

GTGCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCTG

GGGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAAC

TTATCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGA

CCGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTG

CGGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGT

GAGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGG

GACGATAGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCC

CAGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAA

ACGGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGC

TGGGACTTGCCGCACCCGGTCGGGCCGTATATGACCCCGATGACGGGTTGCAGG

TGGTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCG

TTGAGCATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGG

TCCCCGCCCAGTGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTTAGGGGCTTG

AGTCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGG

TCCCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTT

TCGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGC

GGCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTGGTCTCCGTC

ACGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTC

ATCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAG SEQ

ID Sequence

NO

CAGTTGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGG

AGCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACATAGGAGGGATTGCAGGGC

GTATAGCTTGGGCGCGAGAAAGACCGACTCGGGGGCGAAGGCGTCCGCTCCGCA

GTGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGG

GTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCA

TGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGATGG

ACTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTC

GGACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGT

GCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCA

AGCACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGC

CACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAAAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCGATGCTTTTCAGGAGACTTTCATC

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCAAAGGAGCCA

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGC

ACTTCCATTCGGGGAAGACGGCGGTGCGATCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGGGCA

GCACATCAAGCAGATGTTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

GACAGAGTTCCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCAT

CTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCGTAGACAT

AGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGG

ATGCTTGCGCGCACGTAGTCATACAACTCGTGCGATGGGGCCAAGAAAGCGGGG

CCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATG

GCGTGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGG

GGCAGGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCG

ACGAGCTCGGCGGTGACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGA

ATAATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCAT

ACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACG

GTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTT

CTCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAG

GGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTC

GTCGCAGCCACCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGCGG

GTTAGGCAGAGCGAAAGTGACATCATTGAAGAGAATCTTGCCTGCCCGCGGCAT

GAAATTGCGGGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGAC

CTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTA

GAGTTCCATGAATCGCGGACGGCCTTTGATGTGAGGCAGCTTTTTGAGCTCCTCG

TAGGTGAGGTCCTCGGGACATTGCAAGCCGTGCTGCTCGAGCGCCCACTCCTGG

AGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTC

TGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGG

GTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGC

ACGGCGAGATCGCGAGCGAGGGCGACCAGCTCTGGGTCCCCCGAGAATTTCATG

ACCAGCATGAAGGGGACGAGCTGTTTGCCAAAGGACCCCATCCAGGTGTAGGTT

TCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGG

AAGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAG

TAGAAATCCCGCCGGCGAACAGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCG

CAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGT

CCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGC

CTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGC

GCGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGG SEQ

ID Sequence

NO

GCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGG

GTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGG

TACTTGATTTCTACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCGT

AGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGG

ACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAG

GCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGG

CGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGA

CCACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGG

CGTCATTGACGGCGGCCTGACGCAGGATTTCTTGCACGTCGCCCGAGTTGTCCTG

GTAGGCAATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGG

CCCGCGCGCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGC

GAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCG

TCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGC

GTGAATACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCG

ATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTG

ATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGT

TGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCGGA

TGAGTTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCT

CCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCCTCCTCTGGGGGTGGT

GGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAA

GCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACC

CCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGG

CGGGTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGG

TGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAA

AGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTG

CGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGG

AGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAAGTTCTTGTAGT

AGTCATGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGC

GGGTTACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGC

GCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCA

TGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCA

TGAGCGACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGA

GCCGCGAGAAGGCGCGCGAGTCGAAGACATAGTCGTTGCAGGTGCGCACGAGG

TACTGGTAGCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCG

CTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCC

GTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCG

GGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGG

TCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAA

AACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGG

TTAGGCCGCGCGTGTACCCCGGTTCGAGTCACCTCGAATCAGGCTGGAGCCGCG

ACTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGAT

ACGGCGGAGAGCCCTTTTTGCCGGCCGAGTGGGGTCGCTAGACTTGAAAGCGGC

GGAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAG

GGTTGAGTCGCGGCAGAACCCGGTTCGCGGACGGTCGCGGCGAGCGGGACTTGG

TCACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGC

CCCCCCCGGCGACCACCGCAACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGC

CACAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCAAGACTG

GGGGCGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGC

CCGGCGTACGTGCCTCCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCC

GAGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCT

GGACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGG SEQ

ID Sequence

NO

GGATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACG

AGCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTG

CGCACGCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGAC

CTGGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTG

TTCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTG

AACATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAG

AGCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGAT

CAACTACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGAC

GCCGTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCAT

GGCGCTCAAGGTGCTAACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCG

CATCCACAAGGCCGTGAGCGCGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGC

TGATGCTGAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGT

CCTACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGG

AGGCCGCCTACGGTCCAGAGGACTTGGAAGAGGATGAGGAAGAGGAGGAGGAT

GCACCCGCTGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGCAGCAAGCC

CCGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCG

GACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCC

GAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTTTCGGCCATTCTGGAGGCG

GTGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAAC

GCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAAC

GCCCTGCTGGAGCGCGTGGGCCGCTATAACAGCACGAACGTGCAGTCCAACCTG

GACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAA

GAACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCC

GGCGAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCG

GCTCATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCTGGCCCGGACTA

CTTTTTCCAGACGAGCCGGCAGGGCTTGCAGACGGTGAACCTGAGCCAGGCTTT

CAAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGAC

GGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCC

TTCACCGACAGCGGCAGCGTAAACCGCAACTCGTACCTGGGTCACTTGCTAACG

CTGTACCGCGAGGCCATAGGCCAGGCACAGGTGGACGAGCAGACCTTCCAGGA

GATCACAAGCGTGAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGG

CCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACG

CGCTGTCGGCCGAGGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGG

CTTTTCCTGATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCG

CGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTG

ATGGACTATCTGCACCGCGCGGCGGCCATGAACTCGGACTACTTTACTAATGCTA

TACTAAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACA

TGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCT

CACCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGC

GCGGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCT

CGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTAC

CTGAACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATAAC

GGGATAGAGAGTCTGGTGGACAAACTTAACCGCTGGAAGACCTACGCTCAGGAC

CATAGAGAACCTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGG

CCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGG

CGGGAGCGGTGGGGTCAACCCGTTCGCGCATTTGCAGCCCAGACTGGGGCGACG

GATGTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCT

TGTTAGAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAG

CGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCT

CCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGAC

ACCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAAC

TACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTC

ACCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGG SEQ

ID Sequence

NO

GGCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTAC

ATGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGA

AGGGGCTGATGCAAATGATAGAAGCAAGGATATTTTAGAGTATGAATGGTTTGA

GTTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAA

CAACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAGAATGGCGTGCTGGA

GAGCGATATCGGAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCC

GGTGACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGA

CGTGGTGCTGCTGCCGGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAA

CCTCCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTA

TGAGGATCTAGTAGGGGGCAACATCCCCGCCCTGCTTGATGTGCCCAAGTACTT

GGAAAGCAAGAAGAAACTGGAGGAAGCCGCTAAGGAATCTGGCAATACCAAAG

CTGAGGAAGAGGCTGCTAAAAAAGAGCTAGTTATTTTGCCAGTAACAGAAGATG

AAAGCAAAAGAAGCTATAATTTAATTCAGGGAACCACAGACACGCTGTACCGAA

GCTGGTACCTGTCCTATACCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGA

CGCTGCTTACCACCCCTGATGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCT

GCCGGACCTCATGCAAGACCCCGTCACCTTCCGCTCTACCCAGCAAGTCAGCAA

CTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAAC

GACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCT

TCAACCGCTTCCCCGACAACCAGATCCTCTGCCGCCCGCCCGCGCCCACCATCAC

CACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCG

CAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCAC

CTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGT

CGCACCTTCTAAAAAATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGG

GTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGC

ACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCG

GGCGGACTTCTACCGCCGCCGCCGTGCGCACCACCGTCGACGACGTTATCGACT

CGGTGGTCGCCGACGCGCGCAACTACACCCCCGCCCCCTCCACCGTGGACGCGG

TCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGC

GGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCATGCGCGCCGCTCGGG

CTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGC

GCCGCGCTGCCGCTGCACCCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCG

CCGCCGCCGCGGCCATCTCTAGCATGACTAGACCCAGGCGCGGAAACGTGTACT

GGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTC

GTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAA

ATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGGACCCCCGGAC

CAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGG

GGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGG

GCGCAGGGTGCAGCGCGCGTTGCGGCCCGGCACGGCGGTGGTATTCACGCCCGG

CGAGCGGTCCTCGGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGA

CGACATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGC

GGTCGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAGAGCAACCCCACGC

CGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTTC

CGAGCCGCGGGGTCAAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATC

ATGGTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGAT

GTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGC

GTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCC

TCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTTCCAACCTCCACCGCTACC

GCCTCCACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGATGG

GGCGCCGCCAGCCGGCTAATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGA

CGCCGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAGCA

AACGCCGCCGCCGCACCGCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCC

GCGTAACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCC

CAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTT SEQ

ID Sequence

NO

GCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAG GCATGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGC CTGAGTGGCGGCTTTCTGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCA CGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGC

AGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGG

CACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAG

CAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAA

CAAGGCCTGGAATAGTAGCACGGGGCAGATGTTGAGGGAAAAGCTCGCAGACC

AGAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGG

TGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGC

GTCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCTTCCGCCGCCCAAGGGCG

AGAAGCGACCGCGGCCCGACGCGGAGGAGACGACCCTGCAGGTGGACGAGCCG

CCCTCGTACGAGGAGGCTGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCG

CCGCTGGCCACGGGTGTAATGAAACCCGCCACCCTAGACCTGCCTCCACCACCC

ACGCCCGCTCCACCGAAGGCAACTCCGGTTGTGCAGCCCCCTCCGGTGGCAACC

GCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAAAGCACGCTG

CACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGA

GAGAGAGGAAAGAGGACACTAAAGGAGAGCTTAACTTGTATGTGCCTTACCGCC

AGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATG

CACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTT

GCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACG

GTGGCTCCCACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGC

TTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACT

CTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATC

CGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTACTCTGGCACGGCCTAC

AACAGCCTGGCCCCCAAGGGCGCCCCCAATCCCAGTCAGTGGACTACGAAAGAG

AATAATGGTCAACAAAAAGAAATAACGCACACTTTTGGTGTGGCTGCTATGGGA

GGGGAATCAATAGATAAAGATAAAGGTTTACAAATTGGAACTGAAGAAACAAC

AGACAATGGACAGCAAAAGATCTATGCAAATAAAATCTTCCAGCCAGAACCTCA

AGTAGGAGAGGATAACTGGAGTGAAAATTACCCAGTTTATGGCGGAAGAGCGCT

TAAGAAAGATACCAAGATGAAGCCTTGCTATGGCTCGTTTGCTAGACCTACTAA

TGAAAAAGGTGGGCAGGCGAAACTAAAGGACCCAGAAAATAACCAGAAAGAAT

TCGACATCGACTTGGCTTTCTTTGATCCAAATGACATCAACACTCCAGACGTTGT

GCTTTACACTGAAAATGCACATCTGGAAACACCAGACACCCATGTGGTGTATAA

AGCTGGCAAAGAAGACGACAGTTCCGAAATCAACCTGGTTCAGCAGTCCATGCC

AAACAGGCCCAACTACATCGGCTTCAGGGACAACTTTGTGGGGCTCATGTATTA

CAACAGCACTGGCAACATGGGTGTGCTGGCCGGCCAGGCCTCTCAGTTGAATGC

TGTGGTTGATTTGCAAGACAGAAACACAGAGCTGTCTTACCAGCTATTGCTAGAT

TCTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACTCTGCGGTGGACAGC

TATGATCCCGATGTCAGGATCATTGAGAATCACGGTGTGGAAGATGAACTTCCA

AACTATTGCTTCCCATTGGATGGAGTGGCAACTAATGCAGTTTTCCAAGGTGTTA

AACCTGATCCAGCTGCTGGTGATCAAGACAAATGGGTTAAGGATGAAAACAGCG

ATGAACATAACAGAATAGGCAAGGGAAACATCTATGCCATGGAGATCAACCTCC

AGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCCCTGTACCTGCCCGA

CTCATACAAGTACACGCCGGCCAACGTCACGCTGCCCACCAACACCAACACCTA

CGACTACATGAACGGCCGCGTGGTAGCCCCCTCGCTGGTGGACGCCTACGTCAA

TATCGGCGCGCGCTGGTCGCTGGACCCCATGGACAATGTCAACCCCTTCAACCA

CCACCGCAATGCGGGTCTGCGCTACCGTTCCATGCTTCTGGGCAACGGCCGCTAC

GTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTTC

TGCTTCCCGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGACGTCAACATGAT

CCTGCAGAGTTCCCTCGGAAACGACCTGCGCGTCGACGGCGCCTCCGTCCGCTTC

GACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACCGCCTCCA SEQ

ID Sequence

NO

CCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTACC

TGTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCCA

TCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCAGGCT

CAAGACCAAGGAAACTCCCTCCCTGGGCTCGGGTTTCGACCCATACTTTGTCTAC

TCGGGCTCCATTCCCTACCTCGACGGAACCTTCTACCTCAACCACACTTTCAAGA

AGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCAGGCAACGACCGGCTGCT

TACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACG

TGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTA

CAACATCGGCTACCAGGGCTTCTACGTGCCCGAGGGCTACAAGGACCGCATGTA

CTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAAC

TACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAACAACTCGGGCTTC

ACCGGCTACCTTGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTTCC

CCTACCCGCTCATCGGCCAGACAGCCGTGCCCTCTGTCACCCAGAAAAAGTTCCT

CTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGC

GCCCTCACCGACCTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTC

GACATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCT

TCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGG

CCGTCTACCTGCGCACGCCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGC

GGCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCC

TGGCCTGTGCCATCGTCAACACGGCCGGCCGCGAGACCGGGGGCGTGCACTGGC

TCGCCTTTGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGG

GTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCT

GCGCCGCAGCGCCCTGGCCTCCTCACCCGACCGGTGTCTCAGCCTCGAGCAGTCC

ACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTTTTTGTTGCATGT

TCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGGAACCCCACCAT

GAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCC

CACCCTCCGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCT

TACTTTCGATCCCACCGCGCCGCCATTGAACACGCCACCGCTTTTGACAAAATGA

AACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGAGTAT

ATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGC

TGGGGAGGGCCACGTTGCGGTACTGGAACTTGGGCTGCCACTTGAACTCGGGGA

TCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGC

TCATCTGCAGAGCGCCCAGTATGTCAGGCGCGGAGATCTTGAAATCGCAGTTGG

GGCCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGAACA

CCATCAGACTGGGGTACTTCACACTGGCCAGCACGCTCTTGTCGCTGATCTGATC

CTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGG

CGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACGGGC

ATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACAAAG

GCCGAGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAGAACAGA

CCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGGACGCAGC

AGCGCGCGTCATGGCTGGTCAGTTGCACCACACTCCGGCCCCAGCGGTTCTGGG

TCACCTTGGCCTTGCTGGGCTGCTCCTTCAGCGCGCGCTGCCCGTTCTCGCTGGT

CACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCGTTCCATGCAGACAC

TTGAGCTGGCCTTCCACCTCGGTGCAGCCGTGATCCCACAGGGCGCAGCCGGTG

CACTCCCAGTTCTTGTGCGCGATCCCGCTGTGGCTAAAGATGTAACCTTGCAACA

GGCGACCCATGACGGTGCTAAATGCTTTCTGGGTGGTGAAGGTCAGTTGCATCC

CGCGGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGAAGATTTCGGTCTG

CTCTGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTC

CATCAACACGTTCATGGCATCCATGCCCTTCTCCCAGGACGAGACCAGAGGCAG

ACTTAGGGGGTTGCGCACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGCG

TTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTCCC

ACGATCACGGCGTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACAT SEQ

ID Sequence

NO

TCCTCGGAAGACCCCGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGA

GGAGGCGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCTGAACCG

TGGCCCCGGGGCGGAGTGGCCTCTCGGTCCATGAACCGGCGCACGTCCTGACTG

CCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAG

CAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGG

CTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGAGCA

AGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAG

GAGAGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGG

ACGCCCTGGCCGACCGGAGTGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGG

CCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACG

GCACATGTGAGCCCAACCCGCGTCTCAACTTCTATCCCGTTTTCGCGGTCCCCGA

GGCCCTTGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTGC

CGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCACGC

ATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGT

CGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAAGAAGAGGG

TCACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTAGCCGTGCT

CAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCCA

AAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTC

GATGAAAGTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGACGA

GCAGCTCGCGCGCTGGCTCGGGACCCGCGACCACCAGACCCTGGAGCAGCGGCG

CAAACTCATGCTGGCCGTGGTCCTGGTCACCCTAGAGCTGGAATGCATGCGCCG

CTTCTTCAGCGACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACAC

TTTCAGGCACGGTTTCGTCAGGCAGGCATGCAAGATTTCCAACGTGGAGCTGAC

CAACCTGGTCTCCTGCCTGGGAATCCTGCACGAGAACCGCCTGGGGCAGACCGT

GCTCCACTCGACCCTGAAGGGCGAGGCGCGGCGAGACTATGTCCGCGACTGCGT

CTTTCTATTTCTCTGCCACACATGGCAAGCAGCCATGGGCGTGTGGCAGCAGTGT

CTCGAGGATGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAA

AAGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATC

GTCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGCGGGCTGCCCGACTTCATG

AGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCTGGGATG

CTACCCGCCACCTGCAACGCTTTCCCCTCCGACTTTGTCCCACTGAGCTACCGCG

AGTGTCCCCCGCCGCTGTGGAGCCACTGCTATCTCTTGCAGCTGGCCAACTACAT

TGCCTACCACTCGGACGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTG

CCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTGCAATCCCCAG

CTCCTAAGCGAGACCCAGGTCATTGGTACCTTCGAGCTGCAAGGTCCGCAGGAG

TCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCA

AATTTGTACCCGAGGACTACCACGCCCATGAGATAAAATTCTTCGAGGACCAAT

CGCGGCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCC

TCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGG

GTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCC

CCCAGCATGCCGAGGAAGAAGCAGGAACCGCTAGTGGAGGAGATGGAAGAAGA

ATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAA

GAATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACC

ATCCGCGCCGGCAGCCCCGCCGGTCACGGATACAACCTCCGCTCCGGTCAAGCC

TCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGGCT

ACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCG

GGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACAT

CCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCAAG

TAAGAGGAGTCGCCGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCC

TTGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTTTC

AGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTGCGCT

CGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTC SEQ

ID Sequence

NO

TCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACT

AAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGC

AAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCC

GCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCC

TCGATGATCTCACGGGTCAACGGGGTCCGTAGCCATCGAAACCAGATATTGTTG

GAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGG

CCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGC

GTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCG

GCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCC

GAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGC

GACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCCCA

ACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCA

TCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTT

CTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGT

GAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAGCT

CGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGA

GAGCTGCGGACTCATCTATTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCA

CACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTC

TTCACCCAGCAACCATTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACC

GTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTTG

TGCTGAGTTTAATAAAAGCTGAAATAAGAATCTTCTCTGGACCTTGTCATCGACC

TCGGAATCGCACCGTCTTACTCACCAACCAGACCAAGGTTCGTCTTAACTGTGCA

ACCAACAGGAAGTACCTTCTTTGGTCCTTCCAAAACACCTCACTCGCTGTTGTCA

ACGCCCGTGACGACGACGGTGTTTTAATCCCAAACAACCTCACCAGTGGACTTA

CTTTCTCTACCAACAAAACAAAGCTCATCCTTCACCACCCTTTTGTAGAGGGAAC

CTACCAGTGCCGACACGGACCTTGTGTTCACAACTTCCATTTGGTGAACCTTACC

AGCAGCAGTACAGTTGCTCCTGAAACAACTAACCTTTCTTCTGATACTAACAAAC

CTCGTGTCGGAGGTGAGCTTTGGGTTCCCTCTCTAACAGAGGGTGGGAAACATA

TTGAAGTGGTTGGGTATTTGATTTTAGGGGCGGTCCTGGGTGGGTGCATAGCAGT

GCTATATCAACTTCCTTGCTGGGTCGAAATCAAAATCTTTATCTGCTGGGTCAGA

CATTGTGGGGAGGAACCATGAAGGGGCTCTTGTTGATTATCCTTTCCCTGGTTGG

GGGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATGA

GAGAAGCGAATGCTCTATAGTGATCAAATGTGAGCACAAATGTTCTCTCAACAT

CACATTCAAGAATAAGACCATGGGAAATGTATGGGTGGGATTCTGGCAACCAGG

AGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACTTT

CTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTGGGTTTTTCTTTGGCTT

TTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTT

CCTGAAGCGCAAGCCCAGGTACGGAAATGAGGAGAAGGAAAAATTGCTATAAA

TCTTTTTCTTTTCGCAGAACCATGAATACAGTGATCCGTATCGTGCTGCTCTCTCT

TCTTGTAGCTTTTAGTCAGGGAAAAACAGAACGTAAAAATATCACTGTTGAATG

GGGAAAGGATGTAATACTAGTCGGACCACAAGATCTGCCAGTTAATTGGCACGG

GCCTAGAAATGAACTTTGTAAGGGAACTGAAACTCTTCATAGGCAGCTTAGTCA

TAAGTGTGATGGGCAGAATTTAACACTTATAAGAGTTAATAACACTTTTCAGGGT

ACATATTATGGTTTTAGAAAAGATGGAACTGGAATGAACCAATATACAGTTAAA

GTTTATGCACCAAAGGCCTATACTCGCAAACCATTGCCAAAAACAATACAATAT

GATGTATACAAAGGCCAAAATATTACACTAACAGGACCTCCATATGATCATGTC

GATTGGTATGGTCCGACTCACCAACTTTGTAATGGTGATGAGACTTTACATCCAG

AAATTAATCACACATGCACTAAACAAAACCTAACGCTTACATTTGTAAATTCGA

CTTACTGGGGCGCCTATTATGGAATAAACAAAGATGGAGATGACAGAACAAGTT

ATGAGGTTACTGTGTTAGATGGTTATGAAAATGCAGGGCAACATAAAGATGAAG

ACCCAGAAATTGAAAACTCTAGAGAGCAGACTAAACCAAAAACAAAAAGCAAA

AGTGCCCAAAAGACAAACAAGCATAGGCCAGACAAGCAGCTCAAAAAAGATAT SEQ

ID Sequence

NO

TGAAAAAGATTTCGCTAGCGGAACCAATCAAACTTTAGTGGGTCCACCAGGTTC

AAAAACTGAATGGTATAATGGAAAACTTGACAAACTGTGCGGTGGAAAGACTG

GTTTAAAGATTTTGTGTAATGATCAGAACATTACATTGATCAATGTAAATGAAAC

ATATGCAGGAACCTATTATGGTTCTAACAAAGATGACCATAGGCAGTACAGAGT

TACTGTTTATACAAGACCACGTAATGAAACTGTGAGAATTCAACCATACACCAC

TAAGGGAACTACAAAAACAACCTTAGGTAATCACAGCTTTGAACTGCAATTGGG

AAATGGCGAATCAGAAGATGATCAAAAACAAATTCCATCTACTACTGTGGCAAT

CGTGGTGGGTGTGATTGCGGGCTTCATAACTATAATCATTGTCATTCTGTGCTAC

ATCTGCTGCCGCAAGCGTCCCAGGTCATACAATCATATGGTAGACCCACTACTCA

GCTTCTCTTACTGAAACTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACA

GCTTGCGTTCTGATTAGCATAGTCACACTTAGTTTAGCTGCTAAGAGAGAACAAT

ACCATAGTTACAATGTTACTAGAAATGGATTTATAACGTTAAATGTAACAATTGA

AAATACAACATGGACGCGTTATCATCAAGATGGATGGAAACAAATTTGTTTGTG

GAAAGATCCATCTTACACATGTCACACAAATAATGGAAGCATTACTATTCATGC

CTTCAATATTACTTCTGGACAATATAGAGCTGAAAGCTACACTTACTGGTATAAA

ATCCTACAACAAAAGCGCCAACCACTGCTAATACAGCCACATTAACCACACAGC

CTACTACTAGGAAAACAACTACACAGTCAACTACTAGGGAGACAACGCGGCCAA

CCACACATCAAACCACCACAGCCAGTACAACTGCTGAGACCACTACTCATACTA

CACAGCTAGACACTACAGTGCAGAATAGTACTGTGTTGGTTAGGTTTTTGTTGAG

GGAGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCAC

TGCAAATTTAACTTCGCTTGCTTCAATAAATGAGACCCTCGTGCCGATGAAACAG

GATCAACCTAATTACTCAGGTTTGGATATGCAAATTACTTTCTTAATTGTCTGTG

GGGTCTTTATTCTTGTGGTTCTTCTTTACTTTGTCTTTTGCAAAGCCAGACAAAAA

TCTCATAGAACAATCTACAGGCCAGTGATCGGGGAACCCCAGCCACTCCAAGTG

GATGGAGGCTTAAGAAATCTTCTCTTCTCTTTTACAGTATGGTGATCAGCCATGA

TTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCAACCTACC

TCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCGTGGTTATC

ACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTACATACAGCACA

GTCCCGAATACAGGGACGAGAACGTAGCCAGAATATTAAGGCTCATCTGACCAT

GCAGACTCTGCTCATACTGTTATCCCTCCTATCCCCTGCCCTCGCTACTAAAGAC

TATTCTCAATGTAAATTTGCGGACATATGGAATTTCTTAGAATGCTATGATGCGA

AAATTGATATGCCCTCCTATTACTTGGTGATTGTTGGGGTAGTCATGGTCTGCTC

ATGCACTTTCTTTGCCATTATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTG

TTGAAGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCAC

CCACACCGCCTACCCGCAGAAATCAGTTTCCCCTGATTCAGTACTTAGAAGAGCC

CCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGAC

TGACCACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCT

GCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGC

CATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAA

GATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCT

GCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCAT

CACCCAGCAGTCGGGCGAGACCAACGGCTGCATCCACTGCTCCTGCGAAAGCCC

CGAGTGCATCTACTCCCTCCTCAAGACCCTTTGCGGACTCCGCGACCTCCTCCCC

ATGAACTGATGTTGATTAAAAGCCCAGAAACCAATCAGCCCCTTCCCCATCCCC

AATTACTCATAAGAATAAATCAATGGAATTAATCATTCAATAAAGATCACTTACT

TGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTTAGCAGCACCTCAGTACCCTC

CTCCCAGCTCTGGTACTCCAATCCCCGGCGGGCGGCGAACTTCCTCCACACCTTG

AAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGATGTC

AAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGC

GCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCCGATGGATTCC

AAAACTTCCCCCCTGGTGTCCTGTCGCTCAAACTGGCTAACCCAATCACCATTGC SEQ

ID Sequence

NO

CAATGGAAATGTTTCACTTAAGGTGGGAGGGGGACTTACTTTGCAAGATGTAAC

TGGAGACCTAACAGTCAATGCTAAGACACCCTTGCAAGTTGCAGATGATAAAAA

ACTTGAGCTTGCTTACGGTGAGCCTTTTGAAATAAAGAATGGCAAACTTGCAAT

AAAAACAGGTCATGGATTAAAGGTTATAAATGAAGAAATTTCAACATTACCAGG

TTTGGCAGGACACCTTGTAGTTTTAACTGGAGTTGGAATTGGCACTGAGACACTT

AAAGACAAAGACGATAAAGTAATTGGATCTGCTGTAAATGTAAGACTTGGAAAA

GATGGTGGTCTTGATTTTAATAAAAAAGGAGACTTGGTTGCCTGGAACAGAGAT

AATGACAGGCGTACTCTTTGGACCACTCCAGATCCATCTCCAAATTGCAAGGTCA

GCGAAGCAAAGGATTCTAAACTAACTTTAGTATTAACCAAGTGTGGAAGTCAGA

TTTTAGCTAGTGTTGCACTGCTTATTGTTAAAGGAAAATACCAAACAATAAGCGA

ATCAACCATACCAAAAAACGAAAGAAACTTTAGCATTAAGCTGATGTTTGATGA

CAAAGGAAAGCTTCTTAACACGTCCAGTCTGGATAAGGAATATTGGAACTTCAG

AAGCAATGACAGTGTTGTTGGAACTGCTTATGATAATGCAGTACCATTTATGCCT

AATCTAAAAGCATATCCAAAAAATACTACAACGTCTTCCACAAATCCAGATGAT

AAAATAAGTGCTGGGAAAAAGAACATTGTGTCAAATGTGTATCTTGAAGGAAGG

GTATATCAGCCAGTGGCTTTAACTGTAAAATTTAACAGTGAAAATGATTGTGCTT

ATTCCATTACATTTGACTTTGTTTGGAGCAAGACATATGAATCTCCTGTGGCATT

TGATAGCTCCTCATTTACCTTCTCATATATTGCCCAAGAAAACAAAGACACGGAC

GGGTAGTCAGTCTCCCACCACCAGCCCATTTCACAGTATAAACAATTCTTTCAGC

ACGGGTGGCCTTAAATAGGGGAATGTTCTGATTAGTGCGGGAACTGAACTTGGG

GTCTATAATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTAATTGAGAT

GAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCTCACAGTCCAAGGTCACAGT

CTGGTGGAATGAGAAGAACGCACAGATTCATACTCGGAAAACAGGATGGGTCTG

TGCCTCTCCATCAGCGCCCTCAACAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGC

TGCAGATGGGATCGGGATCACAAGTCTCTCTGACTATGATCCCCACAGCCTTCAG

CATCAGTCTCCTGGTGCGTCGGGCACAGCACCGCATCCTGATCTCTGCCATGTTC

TCACAGTAAGTGCAGCACATAATCACCATGTTATTCAGCAGCCCATAATTCAGG

GTGCTCCAGCCAAAGCTCATGTTGGGAATGATGGAACCCACGTGACCATCGTAC

CAGATGCGGCAGTATATCAGGTGCCTGCCCCTCATGAACACACTGCCCATATAC

ATGATCTCTTTGGGCATGTTTCT

SEQ

ID Sequence

NO

SEQ ATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCTTTTGAATT ID TTAACGGTTTTGGGGCGGAGCCAACGCTGATTGGTCGAAAGAAGACGATGCAAA NO: TGACGTCACGACGCACGGCCGACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAA 1431 GCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACG

GCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTAGGCGGATGCAAG

TGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAA

ATACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCG

ATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTCCGTGTCA

AAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGCC

GAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCT

CCGCTCCCAGAGACCGAGAAAAATGAGACACCTGCGCCTCCTGCCTGGAACTGT

GCCTATGGACATGGCCGCATTATTGCTGCAGGACTTTGTGGATACAGTATTGGAG

GACGAACTGCAACCAACTCCGTTCGAGCTGGGACCCACACTTCAGGACCTATAT

GATCTGGAGGTAGATGCCCAGGATGACGACCCGAACGAAGAGGCTGTGAATTTA

ATATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCTA

CACCACTTCATACACCGACTCTGTCGCCCATACCTGAATTGGAAGAGGAGGACG

AACTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACG

AACGGGGTGAGCAGAGTATGGCTATAATCTCAGACTATGCTTGTGTGGTTGTGG

AAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCAGGGCAAGGATGTAGATCCT

GCCAATATCACCGGGATCAGACCGGAGACCCAAATGCTTCCTGCGCTCTGTGTT

ACATGAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAG

GCTGAGTGCTTAACACATCATTGTGTATCGCTTGAACAGCTGTGCTAAGTGTGGT

TTATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAG

ACCACCCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGAC

CCACCCCAGTCAGAGCTAGTGGCGAGAGGCGAGCAGCTGTTGACAAAATTGAGG

ACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCC

CCAGGAATTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAATAA

AAGTGTATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGT

CCTATATAAGTGCCAACACCTGGGCACTTGGGCACAGACCTTCAGGGAGTTCCT

GATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGA

GGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTA

TCTCGCCTGGTGTACACAGTTAAGAAGGATTATAAAGAGGAATTTGAAAATCTT

TTTGCTGACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGTCACCAGTCCCTTTT

CCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGC

AGCAGGGGCTACATCCTGGACTTCGCAGCCATGCACCTGTGGAGGGCCTGGATC

AGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCG

GGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAG

GCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCT

GGATTGAATCAGGTAGCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCC

ATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGAT

GACCGAGCTGACTGCCAGTCTGATGAATCGCAAGCGCCCAGAGCGCCTTACCTG

GTACGAGCTTCAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAAT

ATGGCCTGGAGCAGATAAAAACCCATTGGTTGAACCCAGATGAGGATTGGGAGG

AGGCCATTAAGAAGTATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACATGG

TGACCAAGACCGTGAATATCAGACATGCTTGCTACATCTCGGGGAACGGGGCAG

AGGTGGTCATCGATACACTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAA

TGAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCA

ATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGTCACATGACCCTGC

ATGGCTGCAGTTTCTTTGGCTTCAACAATATGTGTGCAGAGGTTTGGGGCGCTTC

CAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACC

CAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGT

CTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGAGACGGGCTG SEQ

ID Sequence

NO

CTTCTGCCTGGTGAAGGGCACGGCCTCTCTGAAGCATAATATGGTGAAGGGCTG

CACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGTCATAT

CCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGA

GAATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACCTT

CCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGC

CTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAG

ATCCTGAGATATGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGC

AGACATACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACC

AGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTTAGCTCCAGTGGGGAGGA

CACAGATTAGAGGTAGGTTTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAG

GTGGGTGTCTTACGAGGGTCTTTTGCTTTTCTGCAGACATCATGAACGGGACCGG

TGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGTCCAGTG

CTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCACTCG

ACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTG

GCCTCGAGCTACATGCCCAGCAGCGGCAGCAGCCCCTCCGTGCCCAGTTCCATC

ATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGTCGC

CAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGCAG

CAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTT

ATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTA

CATGGGCATGAGCCCGTCCCGGGGATGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GGAGTTTGGCCTGGATCTTCAGGTTGGCAATGTTGCCGCCCAGATCCCGCCTGGG

GTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTT

ATCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCTTTGTGCCC

GCCCAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCG

GCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTGA

GATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGA

CGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCACATATTTGCATCTCCCA

GGCTTTCATCTCGGAGGGGGGAATCATGTCCACCTGCGGGGCGATGAAAAAAAC

GGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTG

GGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTG

GTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTT

GAGCATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTC

TCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAG

CCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTC

CCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTC

GGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCG

GCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTTGTCTCCGTCA

CGGTGAAGGGGTGGGCCCCGGGTTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCG

TAGAGCTTGGGCGCGAGAAAGACGGACTCGGGAGCGAAAGCGTCCGCTCCGCA

GTGGGCGCAGACTGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGG

GTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCA

TGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGG

ACTTGATTGGCCTGTCCTGCAGGAGCGTCCCGCGGTCCTCCTCGTAGAGAAACTC

GGACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGT

GCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCA SEQ

ID Sequence

NO

GACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGC CACGTGACCGGGGGTTCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

GGTCGGCGCGCTCCTTGGCCGCGATGTTTAGCTGGACATACTCGCGCGCGACGC

ACTTCCATTCGGGGAAGACGGCGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCA

ACACATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

CTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCATACATGCCGCAGATGTCATACACATA

GATGGGCTCTGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGAT

GCTGGCGCGCACGTAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGC

CGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGG

CGTGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGG

GCAAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGA

CGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCTCGGA

TGATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCATA

CTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGG

TAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTC

TCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGAGTCAGG

GCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCG

TCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTTGAGAGGGGG

TTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATG

AAATTGCGGGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACC

TGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAG

AGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGT

AGGTGAGGTCCTCGGGACATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTGGA

GATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCT

GGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGG

TGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCA

CGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCTCCCGAGAATTTCATGA

CCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTT

CTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGT

AGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCG

CGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGG

CACGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGG

TTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGT

ACTTGATCTCCACTGGGGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGA

CGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGG

CACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGC

GTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGAC

CACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGC

GTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGG SEQ

ID Sequence

NO

TAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGC

CCGCGCGTTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCG

AGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGT

CGGCGTCGCGCGCTCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCG

TGAAGACAGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCG

ATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATTTCGCTG

ATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAGTCCACGGCGAAGT

TGAAAAACTGGGCATTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGA

TGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCT

CCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGT

GGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAA

GCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACC

CCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGG

CGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACGATGCATCTTATCAATTGCGG

TGTAGGGGACGTGAACGCGTCGAGATCGACAGGATCGGAGAATCTTTCGAGGAA

AGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTG

CGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGG

AGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGT

AGTCATGCATGAGCCTCTCGATGTCATTATTGGCGGAGGCGGAGTCTTCCATGCG

GGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCG

TTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCAT

GTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCAT

GAGCGACCAGTTAACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAG

CCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGT

ATTGGTAGCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGCT

GGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCTAGCATGAGGCGGTGGTAGCCGT

AGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGG

AACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTC

GGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAA

CGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTT

AGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGAC

TAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATAC

GGCGGAGAGCCCTTTTTGCCGGCCGAGGGGTGTCGCTAGACTTGAAAGCGGCCG

AAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGG

TTGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTC

ACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGA

CCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCA

CAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCC

GTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTA

CGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGA

TGCGCGACTGCCGATTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCC

AGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGC

CCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACG

GTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCTG

ATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAG

GCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTG

GTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATCGC

CGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATCAACATCTTGCAGAGCATCGT

AGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAAGTGGCGGCGATCAACTACTC

GGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGT

GCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAA SEQ

ID Sequence

NO

GGTGCTGACGCTAAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAA

GGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGA

GCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACTTCG

ACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCT

ACGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCACCCGCT

GCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGTCCCAGCAAGCCCCGGAC

CCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGAC

TGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCC

TTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTC

CCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTG

GCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTG

CTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGACCGG

CTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGA

GGGCCTAGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAA

CGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCTGAT

CCAGACGAGCCGGCAGGGCTTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAA

CCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAG

CAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACC

GACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGTCACCTGCTGACGCTGTAC

CGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCAC

TAGCGTAAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCT

GAACTTTTTGCTGACCAATAGACAGCAGAAGATCCCGGCACAGTACGCGCTGTC

GGCCGAGGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCT

GATGCAGGAGGGTGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACAT

GGAACCTAGCATGTACGCCGCCAACCGGCCGTTTATCAATAAGCTGATGGACTA

CCTGCACCGCGCGGCGGCCATGAACACGGACTACTTTACAAACGCCATCCTGAA

CCCGCACTGGCTCCCGCCGCCTGGGTTCTACACGGGCGAGTACGACATGCCCGA

CCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCGCCGAC

TTTTCAAAAGCGCCAGGAGGCGCCGCCGAGCGAGGGCGCGGTGGGGAGGAGCC

CTTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGCAG

GGTGAGCCGGCCGCGCTTGCTGGGTGAGGACGAGTACCTGAACGACTCGCTGCT

GCAGCCGCCGCGGGCCAAGAACGCCATGGCCAATAACGGGATAGAGAGTCTGG

TGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGACGCGCCCG

CGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAG

GACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGCCAAC

CCGTTCGCGCATCTGCAGCCCAAACTGGGGCGACGGATGTTTTGAAATGCAAAA

TAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGCG

CGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGAC

CCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAA

CAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCGTGTACTTG

GTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGC

AACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCCAGC

ACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATCTGAAGACC

ATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTT

AAGGCGCGGGTGATGGTGGCTAGGAAACATCCAGAGAATGTAGCTAAAGATGA

TTTGAGTCAGGATAAGCTTGAGTATGAGTGGTTTGAGTTTACCCTGCCCGAGGGC

AACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAAC

TACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATCGGAGTCAAG

TTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGTGATG

CCGGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGGGC

TGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAG

AAGCAACCTTTCCAAGAGGGCTTCAGGATCATGTATGAGGATTTAGAAGGGGGC SEQ

ID Sequence

NO

AACATCCCCGCACTCCTTGATGTGGCCAAGTACTTGGAAAGCAAGAAGAAGGTA

GAGGAAGCAATTAAGAAGGCCGCTGAAACCAATGGAACCCCTAGAGGAGACAG

TGATGTTGCAAGAGAGGTGGAAAAGGCAGCTCAAACTCAGCTTGTCATTGAGCC

CATCAAGCAAGATGATAGCAAGAGAAGTTACAACCTCATCGAGGGAACCATGG

ACACGCTGTACCGCAGCTGGTACCTGTCCTATACCTACGGGGACCCCGAGAAGG

GGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACCTGCGGCGCGGAGC

AAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTCACCTTCCGCTCTAC

CCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGC

CAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACC

TCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGCCCGC

CCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACG

GGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTG

ACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCC

GCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATCTCGCCCAGC

AATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAG

AAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGG

GGCGCATACAAGCGCGGCCGGACTTCCGCCGCCGCCGTGCGCACCACCGTCGAC

GATGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACACCCCCGCCCCCTCC

ACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGA

CGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCAT

GCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCAT

GATGCGAGCCGCGCGCCGCGCTGCCACTGCACCCACCCCCGCAGGCAGGACTCG

CAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATTTCTAGCATGACCAGACCCAG

GCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGCGCGCGTGCCCGT

GCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGA

CGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAG

ATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAA

AAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCC

GCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCG

GCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAAGCGTA

GCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGG

GCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCTGATCTCGCTG

CCGCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAG

GTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCGCGAGGGCGAG

AGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGCGTGGAGGAC

GTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCATC

AAGCAGGTGGCGCCGGGCCTGGGCGTGCAAACCGTGGACATTCAGATCCCCACC

GACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCCC

TGGCTCCCAGCCTCCACCGCTACCGCCTCCACTTCTACCGCCGCCACGGCTACCG

AGCCTCCCAGAAGGCGAAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTACG

TGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACGC

CAGCCGCCGGCGCCCAGCCGCCAAACGCCGCCGCCGCACCGCCACCCGCCGCCG

TCTGGCCCCCGCCCGCGTGCGCCGCGTGACCACGCGCCGGGGCCGCTCGCTCGTT

CTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATACTG

TTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGA

GGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGCCG

GCGGCGGGCCATGCGCAGGCGCCTGAGTGGTGGCTTTCTGCCCGCGCTCATCCC

CATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCA

GGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACACCT

GGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGG

CACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTG

AACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGC

TCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCAGTTG SEQ

ID Sequence

NO

TTAAGGGAAAAACTCAAAGACCAGAACTTCCAGCAGAAGGTGGTGGACGGGCT

GGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGA

GATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATG

CAACTCTTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGACGCGGAGGAG

ACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGCCGTTAAGGCCGGC

ATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGAAACCCGCC

ACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCGAAGGCAGCTCCGGTCG

TGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGG

CCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTC

TGAAGCGCCGCCGATGCTATTGAGAGAGGAAAGAGGACACTAAAGGGAGAGCT

TAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGA

TGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTACC

TGAGCCCCGGTCTGGTGCAGTTTGCCCGTGCCACCGACACGTACTTCAGCCTGGG

CAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGTGACCACGGACCG

GTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTA

CTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGACAT

GGCCAGCACGTACTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAA

ACCCTATTCGGGCACGGCCTACAACAGCCTGGCTCCCAAGAGCGCTCCCAATCC

CAGCCAGTGGGATGCAAAGGAAAAGGAAGGAGTTGCCCAAACAGAAAAAAATG

TTTTAAAAACATTTGGTGTTGCCGCTACAGGTGGTTTTAATATTACAGATCAGGG

TCTGTTACTTGGAACTGAGGAAACAGCTGAAAACGTTAAAAAGGATATCTATGC

AGAGAAAACTTTCCAGCCTGAACCTCAAGTTGGTGAAGAAAACTGGCAGGAAA

GTGAAGCCTTTTATGGAGGAAGGGCTATTAAGAAAGACACCAAAATGAAGCCAT

GCTATGGTTCATTTGCCAGACCCACTAATGAAAAAGGAGGACAGGCTAAATTTA

AAACACTAGATGGGCAAGTTACAAAAGATCCAGATATTGACTTTGCTTACTTTG

ACGTCCCTGGCGGAAAAGCTCCAACAGGCAGTAGTCTGCCGGAAGAATACAAA

GCAGATATAATTTTGTACACAGAAAATGTTAATCTGGAAACACCAGATACTCAC

ATAGTGTATAAACCTGGCAAAGAAGATGACAATTCTGAAATTAACTTAACACAA

CAGTCCATGCCAAACAGACCCAACTACATTGGCTTCAGGGACAACTTTGTAGGT

CTCATGTACTACAACAGTACTGGCAACATGGGTGTGCTGGCTGGTCAGGCCTCTC

AGTTGAATGCTGTGGTGGACTTGCAAGACAGAAACACCGAGCTGTCTTACCAGC

TCTTGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACTCTGC

GGTTGACAGTTATGATCCCGATGTCAGGATCATTGAAAATCACGGTGTGGAAGA

TGAACTTCCAAACTACTGCTTCCCATTGAATGGCACTGGAACCAATTCCACTTAC

CAAGGTGTAAAGGTTCAAGATGGTCAAGATGGGGATAAAGAAACTGAGTGGGA

AAAAGACGATGCAATTTCTAGACAAAACCAAATCTGCAAGGGCAATGTCTACGC

CATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGT

GGCCCTGTACCTGCCCGACTCCTACAAGTACACTCCGGCCAACGTCACGCTGCCC

ACCAACACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCCCCCTCACTG

GTGGACGCCTACATCAACATCGGCGCCCGCTGGTCGCTGGATCCCATGGACAAC

GTTAACCCCTTCAACCACCACCGCAACGCGGGCCTGCGCTACCGCTCCATGCTTC

TGGGCAACGGTCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGC

CATCAAGAACCTGCTTCTGCTCCCCGGCTCCTACACCTACGAGTGGAACTTCCGC

AAGGACGTCAACATGATCCTGCAGAGTTCCCTCGGCAACGACCTGCGCGTCGAC

GGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGG

CGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACC

AGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAA

GGCCACCAACGTGCCCATCTCCATCCCATCACGCAACTGGGCCGCCTTCCGCGGC

TGGAGTTTCACCAGGCTAAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTC

GACCCCTACTTTGTCTACTCGGGCTCCATCCCCTACCTCGACGGGACCTTCTACC

TCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCC

CGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGA

CGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGT SEQ

ID Sequence

NO

CCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCACGTGCCCGAGGG

CTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAG

GTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAG

CACAACAACTCGGGCTTCACCGGCTACCTAGCACCCACCATGCGCCAGGGGCAG

CCCTACCCCGCCAACTTCCCCTACCCGCTCATTGGCTCTACCGCCGTGCCCTCCG

TCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAG

CAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACATGCTCTACGCC

AACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATGGATGAGCCC

ACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGC

ACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGCAACG

CCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCG

CTTCCTAGCCGGCGACAAGCTGGCCTGTGCCATTGTCAACACGGCCGGCCGCGA

GACCGGAGGCGTGCACTGGCTCGCCTTCGGCTGGAACCCGCGCTCGCGCACCTG

CTACATGTTCGACCCATTCGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGC

TTCGAGTACGAGGCCATGCTGCGCCGCAGCGCCCTGGCCTCCTCACCCGACCGG

TGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTCTGCCGCC

TGCGGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGAC

CCATGGACGGGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCATGC

TACAATCGCCACAGGTGCTGCCCACCCTCCGGCGCAACCAGGAGGAGCTCTACC

GCTTCCTCGCGCGCCACTCCCCTTACTTTCGATCCCACCGCGCCGCCATCGAACA

CGCCACCGCTTTTGACAAAATGAAACAACTGCGTGTATCTCAATAAACAGCACT

TTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCT

CGCGCTCGTCGTTGTGCGCCGCGCTTGGGAGGGCCACGTTGCGGTACTGGAACTT

GGGCTGCCACTTGAACTCGGGGATCACCAGTTTGGGCACTGGGGTCTCGGGGAA

GGTCTCGCTCCACATGCGCCGACTCATCTGCAGGGCGCCCAGTATGTCCGGGGC

GGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGCGCGCGCGAGTTGCGGTA

CACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTGCTTCACACTGGCCAG

CACGCTCTTGTCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCG

AACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTCTGAGGCTTG

TGGTTACACTCGCAGTGCACGGGCATCAGCATCATTCCCGCGCCGCGCTGCATAT

TCGGGTAGAGAGCCTTGACAAAGGCCGAGATCTGCTTGAAAGCTTGCTGGGCCT

TGGCCCCCTCGCTAAAGAACAGGCCACAGCTCTTCCCGCTGAACTGGTTATTCCC

GCACCCGGCATCCTGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCAC

GCTCCGGCCCCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGTTGCTCCTTCAAC

GCGCGCTGCCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGA

TCATCACCGTCCCATGCAGACACTTGAGCTGGCCTTCCACCTCGGTGCAGCCGTG

GTCCCACAGGGCGCATCCGGTGCACTCCCAATTCTTGTGCGCGATTCCGCTGTGG

CTGAAGATGTAACCTTGCAACATGCGGCCCATGATGGTGCTAAATGCTTTCTGGG

TGGTGAAGGTCAGTTGCAGACCGCGGGCCTCCTCGTTCATCCAGGTCTGGCACAT

CTTTTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAGGCATCGCGCAGGCCG

CTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCATGCCCTTCTCCC

ATGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGGACACCAGGG

GTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCG

GCTGGCTGAATCCCACTCCCACGATCACGGCGTCTTCCTGGGGCATCTCTTCGTC

GGGGTCTACCTTGGTCACATGCTTGGTCTTCCTGGCTTGCTTCTTTTTTGGAGGGC

TGTCCACGGGGACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGCTGATACT

TTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCG

GCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGA

ACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGG

AGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCACGAGCAACCC

AAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAG

GATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCT SEQ

ID Sequence

NO

CGAGCATGGCTACCTGGGAGGAGAGGAGGATGTGCTGCTGAAACACTTGCAGCG CCAGTCCCTCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAG CGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTACCC CCCAAACGCCAGCCCAACGGCACATGCGAGCCCAACCCGCGTCTCAACTTCTAT

AAAAGATCCCCGTCTCCTGTCGCGCCAACCGCACCCGCGCCGACGCGCTCCTCTC

TCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAA

GATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAG

AAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTGGAAGGCGAC

AACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTTGAGCTCACCCACTTCGCCTAC

CCCGCCGTCAACCTCCCGCCCAAGGTTATGCGTCGCATCATGGATCAGCTCATCA

TGCCCCACATCGAGGCCCTCGATGAGACGCAAGAGCAGCGCCCCGAGGACGCCC

GGCCCGTGGTCAGCGACGAGATGCTCGCTCGCTGGCTCGGGACCCGCGACCCCC

AGGCCCTGGAGCAGCGGCGCAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTCG

AGCTCGAATGCATGCGTCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAGGTCG

AGGAGACGCTGCACTACACTTTCAGGCACGGTTTCGTCAGGCAGGCCTGCAAGA

TCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCTTCACGAGAA

CCGCCTGGGACAGACCGTGCTCCACTCTACCCTGAAGGGCGAGGCGCGTCGGGA

CTATGTCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACATGGCAAGCAGCCATG

GGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTT

CTTGCTAGAAACCTTAAAAAGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCC

TCGGACCTGGCCGAGATCGTCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGC

GGGCTGCCCGACTTCATGAGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTC

TCGAGCGATCTGGAATGCTGCCCGCCACCTGCAACGCTTTCCCCTCCGACTTTGT

CCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTG

CAGCTGGCCAACTACATCTCCTACCACTCGGACGTGATCGAGGACGTGAGCGGC

GAGGGGCTTCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCAC

TAGTCTGCAACCCCCAGCTCCTTAGCGAGACCCAGGTCATCGGTACCTTCGAGCT

GCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGAC

TTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCCATGAGATAAA

GTTCTTCGAGGACCAATCGCGGCCGCAGCACGCGGATCTCACGGCCTGCGTCAT

CACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGA

GTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGT

GCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGG

AGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGA

GGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAG

CAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGTCACGGATACAACC

TCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGT

AAGCACGAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCGCGATCAT

CGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTC

TTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTC

ACAGCTAAGAAAAAGCAAGTAAGAGGAGTCGCCGGAGGAGGAGGAGGCCTGAG

GATCGCGGCGAACGAGCCCTTGACCACCAGGGAGCTGAGGAACCGGATCTTCCC

CACTCTTTATGCCATTTTTCAGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGT

AAAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGA

AGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTG

CGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTA

CCTCATCGCCACCATGAGCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCA

GCCCCAGATGGGCCTGGCCGCGGGCGCCTCCCAGGACTACTCCACCCGCATGAA

CTGGCTCAGTGCCGGCCCCTCGATGATCTCACGGGTCAACGGGGTCCGCAGTCA

TCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAA

GCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCC

GACTACCGTACTACTTCCGCGTGACGCTCTGGCCGAAGTCCGCATGACTAACTCA SEQ

ID Sequence

NO

GGTGTCCAGCTGGCTGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGT

ATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTG

AGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGG

AGATCGTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGG

AGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTC

GGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATA

CCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCAT

GGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTG

CGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGC

ACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGT

CTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGG

CGCCACCACCTACACCGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAAT

TTTTGCTGTACTCTTTGTGGTGAGTTTAATAAAAGCTGAACTAAGAACCTACTTT

GGAATCCCTTGTCGTCATCCTCGAAACAAGACCGTCTTCTTTACCAACCAGACCA

AGGTCCGTCTGAACTGTACAACCAACAGGAAGTACCTTCTCTGGACTTTCCAAG

ACACCTCACTCGCTGTTGTCAATACCCGTGACAACGACGGTGTTTTAATCCCCAA

CAACCTCACCAGTGGACTTACTTTCTCTACCAACAAAACAAAGCTCATCCTTCAC

CACCCTTTTGTAGAGGGAACCTACCAGTGCCGACACGGACCTTGTGTTCACAACT

TCCATTTGGTGAACCTTACCAGCAGCAGCACAGTTGCTCCTGAAACTAACCTTTC

TTCTGATACTAACAAACCTCGTGTCGGAGGTGAGCTTTGGGTTCCATCTCTAACA

GAGGGTGGGAATTCTATTGAAGTGGTTGGGTATTTGATTTTAGGGGTGGTCCTTG

GTGGGTGCATAGCAGTGCTGTATCAACTTCCTTGCTGGGTCGAAATCAGGGTATT

TATCTGCTGGGTCAGACATTGTGGGGAGGAACCATGAAGGGGCTCTTGCTGATT

ATCCTTTCCCTGGTGGGGGGTGTACTGTCATGCCACGAACAGCCACGATGTAAC

ATCACCACAGGCAATGAGAGGAGTGTGATATGCACAGTAGTCATCAAATGCGAG

CATAAATGTCCTCTCAACATCACATTCAAAAACCGTACCATGGGGAATGCATGG

GTGGGCGACTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCATGGT

AGCAATGGAAATCACACTTTCGGTTTCAAATTCATTTTTGAAGTCATGTGTGATA

TCACACTACATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACAT

GGTGGGTTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGG

TAGGGGCTCTAGTGTGGTTTCTGAAGCGCAAGCCCAGGTATGGAAATGAGGAGA

AGGAAAAATTGCTATAAATCTTTTTCTCTTCGCAGAACCATGAATACTCTGACCA

GTGTCGTGCTGCTCTCTCTTCTTGTGGTTTTTAGTCAGGGAAAAATAGATAGTGA

AGATGTTATTGGTCATTGGGGTAAAAATATAACACTAGTTGGACCGACAGAAAA

ACCTATTGAATGGCATGGACCAAGAGTTCAGCTTTGCGATGGTCCAAAAATCTT

ACATACAGAATTTAATCACACCTGTAATGAACAGAATCTTACTTTGATATTCTTG

AACAACAGTTTTAATGGAAAATACTATGGTATAAGAAAGGATGGGTTTGGAATG

AAACAGTACAATCTTAAGGTTATTGCTCCAAAAGCTTCCACTCGTAAACCTCTTT

CCCCGCCTAAGCAAATTGATGTCAAAATGGGACAAAATGTAACTCTAGTTGGGC

CAGTAGATACTCCAGTTAATTGGCATGGACCAAAACATGAACTATGCAGAGGAA

ATCAGATAATACATCCAGAAGTTAATCATACATGCAATGAACAAAACCTCACAT

TGCTGTTTGTTAACTACACTTTCTGGGGAGCATATCTTGGCTTTGACAGATATGG

TACTGACAGAGTGCATTATGAGGTTACAATAATAGATGGATTTGAAAATGCAGG

GCAACAAAAATATGATGAGACAAGTCAGCACAAGCCTAGCAATAAAGATAGAC

CAAGTCCAAAAGTAAAAAATCCTCAGAAAACAAAAAACACACACAAGACAAAC

ATGCAGAACAAAAAGGATATTGAGAAAGATTTTCCCAGAGGATCTAATCAAACT

CTTGTGGGACCTCCTGGTTCAAAAGTTGACTGGTATGAAGGTAAAAATGGTGAC

CTTGTAAAACTCTGTGATGGAAAGTCTGGTTTAAAGGTTTCATGCAATGATCAAA

ACATCACTTTGATTAATGTGAATGAAACCTATGCTGGAACTTATTATGGTTCTAA

CAATGACGACCATAGACAGTATAGAGTCACTGTCTATACAATACCGCGTAATAA

AACTGTTAAAATTCAACCTCATACCACAAAAGGAACCACAGTGGGTGCCACAGT

TAATGAACAGTTTGCTCTGCAACAAGGTAATGATAAAACCAATCAAGATGATGA

ACAAATTCCATCAACTACTGTGGCAATCGTGGTGGGTGTGATTGCGGGCTTCATA SEQ

ID Sequence

NO

ACTATAATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCCAGGTCAT

ACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTGAAACTCAGTCACTCT

CATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGACTAGCTTAGTCACAC

TCATTGCAGCTGCAGGATATACTCAAATTAGCATACCTAGGGGTGGTAGCATTA

CATTAAATGGTACTTTTAGAAATACTACATGGACAAGATATCACACAAATGGTT

GGAAAAAAATTTGTGAATGGAATGTTACAGCTTATAAATGTCACAATAATGGAA

GCATTACTATTACTGCCACAAATATTACTTCTGGCAGATACAAAGCTGACAGTTA

TTCTGGAAATTATGAACAGCAGAGATTGACTTTATTTAATCTAACAATAATTGAG

CCGCCAACTACGAAGGCACCCACTACCACTAAACCAACCACAGTTAGGACAACT

AGGGAAACAACCACACAGCCTACCACAGCCAGTACAACTGTTGAGACCACTACT

CACACTACACAGTTAGACACTACAGTACATAATAGTACTGTGATGATAAGGTTTT

TGTTGAGGGAGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCA

GCAGCACTGCAAATTTAACTTCGCTTGCTTCAATAAATGAGACCCTCGTGCCGAT

GAAACAGGATCAACCTAATTACTCAGGTTTGGATATGCAAATTACTTTCTTAATT

GTCTGTGGGGTCTTTATTCTTGCGGTTCTTCTTTACTTTGTCTTTTGCAAAGCCAG

ACAAAAATCTCATAGAACAATCTACAGGCCAGTGATTGGGGAACCTCAGCCCCT

CCAAGTGGACGGAGGCTTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTGATCA

GCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACATCTG

TGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCA

ACCTACCTCCTCTTTGCCCTGCTAACCTGCACCTGCGTCTGCAGCATTGTCTGCCT

GGTCATCACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTACCTA

CACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATC

TGACCATGCAGACTCTGCTCATACTGCTATCCCTCCTATACCCTGCCCTTGCTGAT

GATTACTCTAAGTGCAAATTCGCGGACATATGGAATTTCTTAGACTGTTATCAGG

AGAAAATGGATATGCCTTCCTATTACTTGGTGATTGTGGGGATAGTCATGGTCTG

CTCCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTTGGCTGGAACT

CTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACACCAC

CACCCACACCGCCTCCCCGCAGAAATCAGTTTCCCATGATTCAGTACTTAGAAGA

GCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGAT

GACTGACAACCACCTGGACCTCGAGATGGACGGCCAGGCATCCGAGCAGCGCAT

CCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGA

TGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGC

AAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGA

GCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCATCAACCCCATAGT

CATCACCCAGCAGTCGGGCGAGACCAACGGCTGCATCCACTGCTCCTGCGAAAG

CCCCGAGTGCATCTACTCCCTGCTCAAGACCCTTTGCGGACTACGCGACCTCCTC

CCCATGAACTGATGTTGATTAAAAGCCCAAAAACCAATCAGCCCCTTCCCCCATT

TCCCCATTCCCAATTACTCACAAGAATAAATCATTGGAACTAATCATTCAATAAA

GATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAACACC

TCGGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCAAACTTCC

TCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCC

TCTCAGATGGCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCC

TATGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTC

CGATGGATTCAAAAACTTCCCCCCTGGGGTCCTGTCACTCAAATTGGCTGATCCA

ATAGCCATCACCAATGGGGATGTCTCACTCAAGGTGGGAGGTGGACTCACTGTG

GAAAAAGAGTCTGGAAAGCTAAGTGCTGACCCTAAGACTCCCTTGCAAGTTGCA

ACTGACAACAAATTGGAACTTGCTTATAATGCGCCATTTAAAGTTGAAAATGAC

AAGCTATCGCTTGATGTAGGCCATGGATTAAAAGTGATAGGTAATGAAATATCA

AGTTTGCCTGGATTAGTGAATAAGCTTGTTGTTTTAACTGGTAAGGGAATTGGCA

CTGAAGAGTTAAAAGAACAAAACAGCGATAAACTAATAGGAGTTGGAATTAGT

GTAAGAGCAAGAGGAGGTTTGACATTTGACAATGACGGCTACTTAGTAGCTTGG

AATCCAAAGTATGATACACGCACACTTTGGACAACTCCAGACACATCTCCTAATT SEQ

ID Sequence

NO

GCAAGATGGTCACAAAAAAGGACTCAAAACTTACACTGACACTTACAAAGTGCG

GAAGTCAAATTTTAGGAAATGTATCTTTACTTGCTGTCTCTGGAAAGTATCTAAA

CATGACAAAGGACGAAACAGGAGTTAAGATAATTTTACTATTTGACAAAAATGG

AGTTCTTATGGAGCAATCATCGCTTGATAAAGAATATTGGAACTATAGAAATGA

CAATAATGTCGTTGGAACTCCTTATGAAAATGCTGTTGGATTTATGCCAAACTTA

GTGGCATATCCTAAACCATCAAGTGCAGATGCAAAGAACTATTCAAGAAGCAAG

ATAATAAGTAATGTATACTTAAAGGGTCTTATATATCAACCAGTAATTATAATTG

CCAGTTTTAATCAGGAAACCACTAATGGTTGTGTCTATTCTATTTCATTTGATTTC

ACCTGTTCAAAGGATTACACTGGCCAACAATTTGATGTTACCTCATTCACTTTCT

CATGTATCTTTATTGATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCACCAG

CCCATTTCACAGTGTAAACAATTCTCTCAGCACGGGTAGCCTTAAATAGGGGAA

TGTTCTGATTAGTGCGGGAACTGAACTTGGGGTCTATAATCCACACAGTTTCCTG

GCGAGCCAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATC

CAAGCGGGCCTCGCAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCAC

AGATTCATACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAA

CAGTCTTTGCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCA

AGTCTCTCTGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGG

GCACAGCACCGCATCCTGATCTCGCTCATGTTCTCACAGTAAGTGCAGCACATAA

TCACCATATTATTCAACAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTT

GGGGATGATGGAACCCACGTGACCATCATACCAGATGCGGCAGTATATCAGGTG

CCTGCCCCTCATGAACA

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGGGGCCGACGCTGATTGGACGAGAGAAGACGATGCAAATG NO: ACGTCACGACGCACGGCTAACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAAGC 1432 AAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACGGC

CGATTTTCCCGCGGCCAAGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGTG

AAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAAAT

ACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGAT

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

GCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGACCGAGAAAAATGAGACACCTGCGCCTTCTACCTTCAACTGTGC

CCGGGGACCTGGCTGTGATTATGCTGGAGGACTTTGTGAATACAGTTCTGGAGG

ACGAACTGCAACCAGAGCCATTTGAGCTGGGACCTACACTTCAGGACCTCTATG

ATCTGGAGGTAGATGCCCATGATGACGACCCTAACGAAGAGGCTGTGAATTTAA

TATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAGTGAAGCCATAGTTAC

TCCTCTACATACTCCAACTCTGCCGCCTATACCTGAATTGGAAGAGGAGGATGA

GATAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGA

ACAGGGTGAGCGAGAGATGGCTATTCTATCGGACTTTGCTTGTGTGATTGTGGA

GGAGCAAGATGTGATTGAAAAATCTACTGAGCCAGTACAAGGCTGTAGGAACTG

CCAGTACCACCGGGATAAGTCCGGAGATGTGAACGCCTCCTGCGCTTTGTGCTAT

ATGAAACAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGC

TGAGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTTAT

TTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGACCG

CCCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGTTCAGACCCACC

CCAGTCAGACCCAGTGGCGAGAGGCGAGCGGCTGTTGACAAAATTGAGGACTTG

TTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCAGG

AACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAATAAAAGTA

TATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTCCTATA

TAAGTGGCAACACCTGGGCACTTGGGCACAGACCTTCAGGGAGTTCCTGATGGA

TGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGAGGATAG SEQ

ID Sequence

NO

TTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTATCTCGC

ACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTTCCAGGA

AAGGGTACTTCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCGGGGTT

GCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGGACACCCAACTGAGCAGG

GGATACATCCTGGACTTCGCAGCCATGCACCTGTGGAGGTCCTGGATCAGGCAG

CGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCAGGTCTT

CTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGCCATG

GACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGATTG

AATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATGGCC

AGGGGAGTGAAGAGGGAGAGGAGTGATGGGGGCAATACCGGGATGATGACCGA

GCTGACGGCCAGCTTGATGAATCGCAAGCGTCCAGAGCGCATTACCTGGCACGA

GCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAATATGGCCT

GGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGAGGCCA

TTAAGAAGTATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGATCACCA

AGACGGTGAATATTAGACATGCCTGCTACATCTCAGGGAACGGGGCAGAGGTGA

TGATCGATACCCTGGACAAGTCAGCTTTCAGGTGTTGCATGATGGGAATGAGAG

CCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAATGGAG

AGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCGTACATGGCT

GCAGCTTCTTCGGTTTCAACAACATGTGTGCAGAGGTCTGGGGAGCTGCTAAGA

TCAGGGGCTGTAAGTTTTATGGCTGCTGGATGGGAGTGGTCGGAAGACCCAAGA

GCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAGTGCTACCTGGGGGTGTCTA

CAGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCCTGGAGACGGGCTGCTTCT

GCCTGGTGAAGGGCACAGCTTCGATCAAGCATAATGTGGTGAAAGGCTGCACGG

ATGAGCGCATGTACAACATGCTGACCTGCGACTCAGGGGTCTGTCATATCCTGA

AGAACATCCATGTGACCGCCCACTCCAGAAAGAAGTGGCCAGTGTTTGAGAATA

ACCTGCTAATCAAGTGCCATATGCACCTGGGAGCCAGAAGGGGCACCTTCCAGC

CGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTTCTC

TAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGATCCT

GAGATACGATGAGACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAGAC

ACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCAGAC

CACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACACA

GATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAGGTGGGT

GTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGCGGGG

CGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGTGCTTCC

AGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCTCGACAG

CACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTGGCCTC

GAGCTACATGCCCAGCAGCGGTAGCAGCCCATCTGTGCCCAGTTCCATCATCGC

CGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCAGCT

GGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAGCAACAGCAGCAGCAAA

ATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTATTAT

TTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGC

GGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACATGG

GCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCTCTG

GGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGA

TGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGT

TGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGT

TTGGCCTGGATCTTGAGGTTGGCAATGTTGCCGCCCAGATCACGCCGTGGGTTCA

TGTTGTGCAGGACCACCAGAACGGTGTAGCCCGTGCACTTGGGGAACTTGTCAT

GCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCA

GGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCGGCTTT

GGCAAAGACGTTTCTGGGGTCAGACACATCATAATTATGCTCCTGGGTGAGATC SEQ

ID Sequence

NO

ATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACGAT

GGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCACAGATCTGCATCTCCCAGGCT

TTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATAAAAAAAACGGTT

TCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGAC

TTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAG

TTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGC

ATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCCCG

TCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTCCCAG

AGCTCGGTGACGTGCTCTACGGCATCTCTATCCAGCAGACTTCCTCGTTTCGGGG

GTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCA

GCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTGGTCTCCGTCACGGT

GAAGGGGTGGGCCCCTGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCT

GCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTT

GACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTT

GCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGA

GCTTGGGTGCGAGAAAGACCGATTCGGGGGCGAAAGCATCCGCTCCGCAGTGGG

CGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGGTGATCGGGGTCAA

AAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCATGAGT

CTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGGACTTG

ATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGAC

CACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCTACGTGCGA

GGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAGACA

CATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACG

TGACCCGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCC

TCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCC

TCTCGAGAGCGGGCATAACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGG

AGGATTTGATGTTGGCTTGCCCTGCCGCGATGCTTTTTAGGAGACTTTCATCCAT

AGGGCGTTGGAGAGAAGCTTAGCGATGGATCTCATGGTCTGATTTTTGTCACGGT

CGGCGCGCTCCTTTGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGCACTT

CCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCC

GCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGG

CTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCAGCAC

ATCAAGGAGATGCTCGTCAGGGGGATCCGCATCGATGGTGAAGATGCCCGGACA

CACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGCGGCGGACCCCAGGGC

ATGGGATGCGTAAGGGCGGAGGCGTACATGCCGCAGATGTCATAGACATAGATG

GGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTG

GCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAAAAGGCGGGGCCGAG

ATTGGTGCGCTGGGGCTGCTCGGCACGGAAGACGATCTGGCGAAAGATGGCATG

CGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGCA

GGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGA

GCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCGAGCGTTTCGCGGATGA

TGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCATACTC

CTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAA

GAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCC

ACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGTGTCAGGGC

GAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTC

GCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTTTTCGAGAGGGGGTT

AGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATGAA

ATTGCGGGTGATGCGGAAAGGGCCAGGCACGGAGGCTCGGTTGTTGATGACCTG

GGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAG SEQ

ID Sequence

NO

TTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCTTCGTAG

GTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCTTGGAGA

TGGGGATTGGCGCGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTG

GAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGT

GACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCAC

GGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCGGAGAATTTCATGAC

CAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTC

TACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATGGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGT

AGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCG

CGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGCAGAGCGAAGACGAGGG

CGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGG

TTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGT

ACTTGATTTCTACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGCTTTAGAAGCGGTGTCGCGGACGCGCT

CCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCACGTC

TGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGC

GACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACCACGGG

CCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATT

GACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGC

GATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCTCGGCCCGCG

CGCTCGACGGTGGCGGCGAGGTCATTGGAGATGCGACCCATGAGCTGCGAGAAG

GCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGGCG

TCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGAAG

ACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTGC

TCGGTGACGAAGAAGTACATGATCCAGCGTCGCAGGGGCATCTCGCTGATGTCG

CCGATGGCCTCCAACCTTTCCATGGCCTCGTAGAAGTCCACGGCGAAGTTGAAA

AACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGAGC

TCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGAGCCTCCTCCTCTT

CCTCTTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGT

GGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCG

CTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCG

TTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGG

GTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGGTGT

AGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAG

CGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAGACACGTAGCAGCCCTGTGGA

GCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAG

CCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAG

TCATGCATGAGCCTCTCTATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGG

TGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCT

CGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGT

CGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCATGA

GCGACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCC

GCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTAC

TGGTAGCCCACAAGGCAGTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGCTG

GGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTA

GAGGTAGCGTGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGA

ACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCG

GCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAAC SEQ

ID Sequence

NO

GAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTA

GGCCGCGCGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACT

AACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACG

AAACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATTGCCAGGGT TGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCT CCCCGCCTATAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCC

CGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTGTAAGCCAGCCAC

AGCAGACAGAAATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCG

CCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCG

TACGTGCCCGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGA

GATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGTCTGGACCG

CCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCA

GCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGA

CGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCC

TGATCGCGCGCGAGGAGGTGGCCCTTGGCCTGATGCACCTGTGGGACCTGGCGG

AGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGG

TGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATC

GCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATC

GTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTA

CTCGGTGTTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTA

CGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCT

CAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCA

CAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGC

TGAGCCTGCGCCGGGCACTGGTAGGGGGCGCCACCGGCGGTGAGGAGTCCTACT

TCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCG

CCTACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACCC

GACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGAC

GACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAG

TCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTG

GTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCG

CTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCC

CTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGAC

CGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAA

CGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGC

GAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCT

GATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACTACTT

TTTCCAGACGAGCCGGCAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAA

GAATCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACAGGTCGACGGT

GAGCAGTTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTC

ACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTG

TATAGGGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGAT

CACGAGCGTAAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCA

CCCTGAACTTTTTGCTGACCAATAGACAGCAGAAGATCCCGCCGCAGTACGCAC

TGTCGGCCGAGGAGGAAAGGATCTTGAGATATGTGCAGCAGAGCGTAGGGCTGT

TCCTGATGCAGGAGGGTGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCA

ACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGG

ACTACCTGCACCGCGCGGCGGCCATGAACTCGGACTACTTTACCAATGCCATTCT

GAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCC

CGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCGCC

CGCCTTTCAAAAGCGACAGGAAGCGGTGCGCACGCCTAGCGAGGGCGCTGTGGG SEQ

ID Sequence

NO

ACGGAGCCCCTTTCCTAGCTTGGGGAGTTTGCATAGCCTGCCGGGCTCGGTGAAC

AGTGGCAGGGTGAGCCGACCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGA

CTCGCTGCTGCAGCCGCCGCGGGCCAAGAACGCCATGGCCAATAACGGGATAGA

GAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGA

CGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGG

ACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGT

GGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAGACTGGGGCGACGGATGTTT

TAAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGA

GATGAGGCGCGCGGTGGTGTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCA

GGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCGCCTACGGAGGG

CAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCTGTACGACACCACTCGCGT

GTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGA

CCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGA

GGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCCCGGTGGGGCGGTGATCT

GAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAG

CAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAAGGGGCTGATG

CAAATGATAGAAGCAAGGATATCTTAGAGTATCAGTGGTTTGAGTTTACCCTGC

CCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCT

TGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGTGATATCG

GAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGC

TGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGC

TGCCGGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTTCTGGGCA

TTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAG

AAGGGGGCAACATACCCGCTCTTCTGGATACCAAAAAATATCTGGATAGCAAGA

AAGAAATTGAAGAAGCTGCTAAAAATGCAGCCACTGCAAATGATGCGCCCAGG

GGAGATACTTTTGTCAATGAAGCTCAAGAGAAGGCAGCTCAGAAGCAGCTAGTG

ATCGAGCCCATTGAAAAGGATGACAGCAACAGAAGTTATAATCTCATACCTGGA

ACCATGGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGGGACCCC

GAGAAGGGGGTGCAGTCGTGGACACTGCTCACCACCCCGGACGTCACCTGCGGC

GCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCGGTCACCTTC

CGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCC

TTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCA

GCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTG

CCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCAC

AGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGAC

CGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATA

GTCGCGCCGCGCGTGCTCTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATCT

CGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAG

GAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCG

CTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCCACCGCCACCGCCGTGCGCA

CCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACACCC

CCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTAGCCGACGCGCGCG

ACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGAGC

ACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGC

CGCCGGGCCATGATGCGAGCCGCGCGCCGCGCCGCCGCCGCACCCACCCCCGCA

GGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATG

ACCAGACCCAGACGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTG

CGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCC

CCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGT

CGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAA

GCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCG

AGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGT

TGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGA SEQ

ID Sequence

NO

TGAAACGTAGTTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGG

CGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCTCGCGAAGAGGAGCTG

ATCTCGCTGCCGCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCGTGACC

CTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCGC

GAGGGCGAAAACATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGC

GTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGT

GCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTCA

GATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCA

GACCGACCCCTGGCTTCCAGCCTCCACCGCTACCGTCTCCACTTCTACCGCCGCC

ACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGAT

GCCAAACTACGTGTTGCATCCTTCCATTATCCCGACGCCGGGCTACCGCGGCACC

CGGTATTACACCAGCCGCAGGCGCCCAGCCACCAAGCGCCGCCGCCGCACCACC

CGCCGCCGTCTGGCCCCAGCCCGCGTGCGCCGCGTAACCACGCGCCGGGGCCGC

TCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCT

GTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCG

AATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAA

CCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCGC

GCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTT

GCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCT

GACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTG

GCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACC

AGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAA

AATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACG

GGGCAGTTGTTGAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAAGGTGGT

GGACGGCCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGT

GCAGCGCGAGATAAACAGCCGTCTGGACCCGCGCCCGCCCGCCGCCACGGTGGT

GGAGATGGAAGATGCAAGCGCGCATCCTCCGCCCAAGGGCGAGAAGCGGCCGC

GGCCCGACGCGGAGGAGACGACCCTGCAGGTGGACGAGCCGCCCTCGTACGAG

GAGGCCGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACG

GGTGTAATGAAACCCGCCACCCTAGACCTGCCTCCACCACCTACGCCCGCTCCAC

CGAAGGCAGCTCCGGTCGTGCAGCCCCCTCCGGTGGCGACCGCCGTGCGCCGCG

TCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGG

GCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTTTTGAGAGAGAAAGGAC

ACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGA

TGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGG

ACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACA

CGTACTTCAGCCTGGGCAACAAGTTTAGAAACCCCACGGTGGCTCCCACCCACG

ATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATC

GCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACA

ACCGGGTGCTAGACATGGCCAGCACGTACTTTGACATCCGCGGCGTCCTGGACC

GCGGTCCCAGCTTCAAACCCTACTCGGGCACGGCTTACAACAGCCTGGCACCCA

AGGGCGCCCCCAATCCCAGTCAGTGGACTACCAAAGAAAAGCAGACCGGAGTA

AATGCAGGAGACAAAGAAGTTACAAAGACATTTGGACTTGCCGCCATGGGAGG

CAGTAATATTTCTAAGGACGGTTTGCAGATTGGAACTGACACAACAGCAGATGC

TGTAAAACCAATATATGCAGACAAAACTTACCAGCCAGAACCTCAAGTGGGAGA

AGAAAACTGGCAGGATAATGATGAATATTATGGCGGCAGGGCTCTTAAAAAAG

ATACTAAAATGAAGCCATGCTATGGTTCCTTTGCTAAACCCACAAACAAGGAAG

GTGGCCAGGCTAAATTGAAAGAAACACCCAATGGTGCTGATCCTCAATATGATG

TGGACATGGCCTTCTTCGACTCAACCACTATAAACATTCCAGATGTAGTGTTATA

CACTGAAAATGTAGATTTGGAAACTCCAGATACACATGTGGTGTACAAACCAGG

CAAAGAGGATGAGAGTTCTGAAGCTAACTTAACTCAGCAGTCCATGCCAAACAG

ACCAAACTACATTGGCTTCAGAGACAACTTTGTGGGGCTTATGTATTACAACAGC

ACTGGCAACATGGGTGTGCTGGCTGGTCAGGCTTCCCAATTGAATGCTGTGGTCG SEQ

ID Sequence

NO

ACTTGCAAGACAGAAACACAGAGCTGTCTTACCAGCTTTTGCTAGATTCTCTGGG

TGACAGAACCAGATACTTTAGCATGTGGAACTCTGCGGTGGACAGTTATGATCC

CGATGTTAGGATCATTGAGAACCACGGTGTTGAAGATGAACTTCCTAACTATTGC

TTCCCCTTGGACGGTGTTCAAACTAATTCAGCCTACCAAGGTGTTAAACTAAAGG

CTAATCAAGCAGGAGGTGGAGCTAATGGAGACTGGGAAAAGGATGATACCATTT

CAGCCCATAATCAAATTGGAAAGGGCAACATCTTTGCCATGGAGATCAACCTCC

AGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCGCTGTACCTGCCCG

ACTCCTTCAAGTACACTCCGGCCAACGTCACTCTGCCCACCAACACCAACACCTA

CGAGTACATGAACGGCCGCGTGGTGGCCCCCTCGCTGGTGGACGCTTACATCAA

CATCGGCGCCCGCTGGTCGCTGGACCCCATGGACAACGTCAACCCCTTCAACCA

CCACCGCAATGCGGGCCTGCGCTACCGCTCCATGCTGCTGGGCAACGGCCGCTA

CGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTC

CTGCTTCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGATGTCAACATG

ATCCTGCAGAGTTCCCTCGGCAACGACCTGCGCGTCGACGGCGCCTCCGTCCGCT

TCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACCGCCTC

CACTCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTA

CCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCC

ATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGC

TCAAGACCAAGGAAACTCCTTCCCTCGGCTCGGGTTTCGACCCCTACTTTGTCTA

CTCGGGCTCCATCCCATACCTCGACGGGACCTTCTACCTCAACCACACCTTCAAG

AAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGC

TCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAAC

GTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACT

ACAACATCGGCTACCAGGGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGT

ACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCA

ACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAACAACTCGGGCT

TCACCGGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTT

CCCCTACCCGCTCATCGGCCAGACGGCCGTGCCCTCCGTCACCCAGAAAAAGTT

CCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATG

GGCGCCCTCACCGACCTGGGTCAGAACATGCTCTATGCCAACTCGGCCCACGCG

CTCGACATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTC

TCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCG

AGGCCGTCTACCTGCGCACACCCTTCTCCGCCGGCAACGCCACCACATAAGCAT

GAGCGGCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGG

AAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAGGCGTGCAC

TGGCTCGCCTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCT

TTGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCA

TGCTGCGCCGCAGCGCGCTTGCCTCCTCGCCCGACCGCTGTCTCAGCCTCGAACA

GTCCACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTTTCTGTTGC

ATGTTCTTGCATGCTTTCGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCA

CCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGC

TGCCCACCCTCCGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCATTC

CCCTTACTTTCGCTCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGACAAA

ATGAAACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGA

GTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCC

GCGCTGGGGAGGGCCACGTTGCGGTACTGGTACTTGGGCTGCCACTTGAACTCG

GGGATCACCAGCTTGGGTACGGGAATCTCGGGGAAGGTCTCGCTCCACATGCGC

CGGCTCATCTGCAGGGCGCCCAGCATGTCAGGCGCGGAGATCTTGAAATCGCAG

TTGGGGCCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGATTGCAGCACTGG

AACACCATCAGACTGGGGTAGTTGACGCTGGCCAGCACGCTCTTGTCGCTGATCT

GATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAG

CTGGCGGCCCAGGAAGGGCACGCTGTGAGGCTTGTGATTACACTCGCAGTGCAC SEQ

ID Sequence

NO

GGGCATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGAC

GAAGGCCGTGATCTGCTTGAAAGCTTGCTGGGCCTTGGCTCCCTCGCTGAAGAA

CAGCCCGCAGCTTTTCCCGCTGAACTGGTTATTCCCACACCCGGCATCATGCACA

CAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTTCGGCCCCAGCGGTTCT

GGGTCACCTTGGCCTTGCTGGGCTGTTCCTTCAACGCGCGCTGCCCGTTCTCGCT

GGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACTGTCCCGTGCAGA

CACTTCAGCTGGCCTTCCACCTCGGTGCAGCCGTGGTCCCACAGGGCGCTGCCGG

TGCACTCCCAGTTCTTATGCGCGATACCGCTGTGGCTGAAGATGTAACCTTGCAA

CAGGCGGCCCATGATGGTGCTAAAGGTTTTCTGGGTGGTGAAGGTCAGTTGCAT

CCCGCGGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTCTGGAAGATCTCGGTC

TGCTCGGGCATGAGCTTGTAAGCATCGCGCAGACCGCTGTCGACGCGGTAACGT

TCCATTAGCACGTTCATGGCATCCATGCCCTTCTCCCAGGACGAGACTAGAGGCA

GACTCAGGGGGTTGCGCACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGC

GTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTCC

CACGATCACGGCATCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACA

CTCCTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAG

AGGAGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCTGAACC

GTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGACT

GCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGA

GCAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGG

GCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGAGC

AAGACGCAGGCCAGGAGGAAACCGACGCTGGGCTCGAGCATGGCTACCTGGGA

GGAGAGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTCCGG

GACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGG

GCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAAC

GGCACCTGCGAGCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCG

AGGCCCTCGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTG

CCGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCGCG

CATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGG

TCTGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGAGG

GTCACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGC

TCAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCC

CAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTC

GATGAAAGTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGACGA

GATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCTTTGGAACAGCGGCG

CAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGCTCGAATGCATGCGCCGC

TTCTTCACCGACCCCGAGACCCTGCGCAAAGTCGAGGAGACCCTGCACTACACT

TTCAGACACGGCTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACC

AACCTGGTCTCCTGCCTGGGGATCCTTCACGAGAACCGCCTGGGGCAGACCGTG

CTCCACTCTACCCTGAAGGGCGAGGCGCGTCGGGACTATGTCCGCGACTGCGTC

TTTCTCTTTCTCTGCCACACATGGCAAGCAGCCATGGGCGTGTGGCAGCAGTGTC

TCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAA

AGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCG

TCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGCGGGCTGCCCGACTTCATGA

GCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCTGGGATGCT

GCCCGCCACCTGCAACGCTTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAG

TGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACATCG

CCTATCACTCGGATGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCC

ACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCT

CCTTAGCGAAACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGAGTC

CACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAA

ATTTGTACCCGAGGACTACCACGCCCATGAGATAAAGTTCTTCGAGGACCAATC SEQ

ID Sequence

NO

GCGTCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCT

CGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGG

TAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCC

CCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAA

TGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAG

AATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCA

TCCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGCCAAG

CCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGG

CTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTG

CGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTTCACCGCGGGGTGAAC

ATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCA

AGTAAGAGGAGTCGCCGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGC

CCTCGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTT

TCAGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAATCGGTCTCTGCG

CTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCAC

TCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGAC

TAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGC

AAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCC

GCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCC

TCGATGATCTCACGGGTCAACGGGGTCCGCAGTCATCGAAACCAGATATTGTTG

GAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGG

CCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGC

GTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCG

GCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCC

GAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGC

GACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCCCA

ACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCA

TCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTT

CTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGT

GAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAGCT

CGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGA

GAGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGC

ACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTT

CTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACAC

CGTCTACTGCATCTGTCCAACCCCGAAGTTGCATGAGAATTTTTGTTGTACTCTTT

GTGGTGAGTTTAATAAAAGCTGAACTAAGAACCTACTTTGGAATCCCTTGTCGTC

ATCCTCGAAACAAGACCGTCTTCTTTACCAACCAGACCAAGGTTCGTCTGAACTG

TACAACCAACAGGAAGTACCTTCTCTGGACTTTCCAAAACACCTCACTCGCTGTT

GTCAATACCCGTGACGACGACGGTGTTTTAATCCCCAACAACCTCACTAGTGGA

CTTACTTACAGTACCAGAAAAACTAAGCTCGTCCTCCACAAACCTTTTGTAGAGG

GAACCTACCAGTGCCGACACGGACCTTGTGTTCACACATTCCACTTGGTGAACCT

TACCAGCAGCAGCACAGTTGCTCCTGAAACAACTAACCTTTCTTCTGATACTAAC

AAACCTCGTGTCGGAGGTGAGCTTTGGGTTCCATCTCTAACAGAGGGTGGGAGT

TCTATTGAAGTGGTTGGGTATTTGATTTTAGGGGTGGTACTGGGTGGGTGCATAG

CAGTGCTGTATCAACTTCCTTGCTGGGTCGAAATCAGGGTATTTATCTGCTGGGT

CAGACATTGTGGGGAGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGG

TGGGGGGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCA

ATGAGAGAAGCGAATGCTCTGTAGTCATCAAATGTGAGCACAAATGTTCTCTCA

ACATTACATTCAAGAATAAGACTATGGGAAATGTCTGGGTGGGATTCTGGCAAC

CAGGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACA

GTTTCGGTTTCAAATTCATTTTTGAAGTCATGTGTGATATCACACTGCATGTGGCT

AGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGG

CTTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTG SEQ

ID Sequence

NO

GTTCCTGAAACGCAAGCCCAGGTACGGAAATGAGGAGAAGGAAAAATTGCTAT

CTCTTCTTGTGGTTTTTAGTCAGGGAAAAATAGATAGTGAAGATATTATTGGTCA

TTGGGGTAAAAATATAACACTAGTTGGACCGACAGAAAAACCTATTGAATGGCA

TGGACCAAGAGTTCAGCTTTGCGATGGTCCAAAAATCTTACATCCAGAATTTAAT

CACACCTGTAATGAACAGAATCTCACTCTGATATTCTTGAACAACACTTTTAATG

GGAGGTACTATGGTATTATTGATTAATGTGAATGAAACCTATGCTGGAACTTATT

ATGGTTCTAACAATGACGACCATAGACAGTATAGAGTCACTGTCTATACAATAC

CGCGTAATAAAACTGTTAAAATTCAACCTCATACCACAAAAGGAACCACAGGGG

GTGCCACAGTTAATGAACAGTTTGCTCTGCAACAAGGTAATGATAAAACCAATC

AAGATGATGAACAAATTCCATCAACTACTGTGGCAATCGTGGTGGGTGTGATTG

CGGGCTTCATAACTATAATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCG

TCCCAGGTCATACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTGAAAC

TCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAG

CATAGTCACACTTAGTTCAGCTGGTTATATTCAAGTTAATGTGACTAGAGGTGGG

AACATTACATTGAATGGACCACTACAAAATACTACATGGCTAAGATACCATCTA

AATGGTTGGCAACATATCTGTACATGGTCTGGTCCGTCATATAAGTGCCATACTA

ATAATGGAAGCATTACAATTTTTGCTATTAACATCACTTCTGGAACTTATAAAGC

TGAAGGATATAAAAAAGAGGTTAGGACTTTCTCATCTACAAATCAAAAACATAC

AATTGAAGATTCTGGTGATTATGAAGAACATAAAATACTTTTATATAATTTAACA

ATAATTGAACTGCCGACCACTAAAGCACCCACGACAGTTAGGACAACTAGGGAA

ACAACCACACAGCCTACTACAAAGCCAACTACCAGTCCAACAACACAGCCTACT

ACAGTTAGTACAACTATGGAGGACACTACTCACACTACAGTACAGAATAGTACT

GTGTTGGTTAGGTTTTTGTTGAGGGAGGAAAGTACTACTGAACAAACAGAGGCT

ACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTCAATAAATG

AGACCCTCGTGCCGATGAAACAGGATCAACCTAATTACTCAGGTTTGGATATGC

AAATTACTTTCTTAATTGTCTGTGGGGTCTTTATTCTTGTGGTTCTTCTTTACTTTG

TCTTTTGCAAAGCCAGACAAAAAGCTCATAGAACAATCTACAGGCCAGTGATCG

GGGAACCCCAGCCACTCCAAGTGGATGGAGGCTTAAGGAATCTTCTTTTCTCTTT

TACAGTATGGTGATCAGCCATGATTCCTAGGTTTTTCCTATTTAACATCCTTTTCT

GTCTCTTCAACATCTGCGCTGCATTTGCGGCCGTCTCGCACGCCTCGCCCGACTG

TCTCGGGCCCTTCCCAACCTACCTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCT

GCAGCATTGTCTGCCTGGTCGTCACCTTCCTGCAGCTCATCGACTGGTGCTGCGC

GCGCTACAATTATCTCCACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAG

AATCTTAAGGCTCATATGACCATGCAGACTCTGCTCATACTGCTATCCCTCCTAT

CCCCTGCCCTTGCTGCTGATGATTACTCTAAGTGCAAATTTGTGGAACTATGGAA

TTTCTTAGACTGCTATGATGCTAAAATTGATATGCCTTCCTATTACTTGGTAATTG

TGGGAATAGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCATGATCTACCCCTGT

TTTGATCTCGGCTGGAACTCTGTTGAGGCATTCACATACACACTAGAAAACAGTT

CACTAGCCTCCACGCCACCACCCACACCGCCTCCCCGCAGAAATCAGTTCCCCCT

GATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTT

CACATAACCGGCGGCGATGACTGACCACCACCTGGACCTTGAGATGGACGGCCA

GGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGC

CGCCAAGGAGCTACTCGATGCCATCAATATCCACCAGTGCAAGAAGGGCATCTT

CTGCCTGGTCAAACAGGCAAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCA

GCATCGCCTCGCCTATGAGCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGT

GGGCGTCAACCCCATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCAT

CCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTCCCTCCTCAAGACCCTTTGC

GGACTTCGCGACCTCCTCCCCATGAACTGATTGATTAAAGCCCAAAAACCAATC

AAACCCCATTCCCCAATACCCCAAATAAACAATCATTGGAAATAATCATTCAAT

AAAGATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGC

ACCTCGGTCCCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCAAACT

TCCTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTT SEQ

ID Sequence

NO

CCCTCTCAGATGTCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTAC

CCCTATGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCTCCCTTTGTCTC

CTCCGATGGATTCCAAAACTTCCCCCCAGGGGTCCTGTCACTCAAACTGGCTGAC

CCAATCGCCATCGTCAACGGGAATGTCTCACTCAAGGTGGGAGGGGGGCTCACC

TTGCAAGAAGGAACTGGGGACCTAAAGGTGAACGCTAAGTCCCCATTGCAAGTT

GCAACTAATAAACAGTTGGAGATTGCACTTGCTAAACCATTTGAGGAAAAGGAT

GGCAAACTTGCTTTAAAAATTGGCCATGGATTAGCCGTTGTGGATGAAAATCAT

ACTCACTTACAATCACTAATAGGTACACTTGTTATTTTAACTGGCAAGGGAATTG

GTACAGGTAGTGCTGAAAGTGGAGGAACTATAGATGTAAGACTCGGAAGTGGA

GGTGGTTTGTCATTTGATAAAGACGGAAACCTAGTTGCTTGGAACAAAGACAAT

GATAGGCGAACTCTTTGGACCACACCAGATCCTTCTCCAAATTGCAACATTGACC

AAGAAAAGGACTCTAAACTAACATTGGTTCTTACAAAATGTGGAAGTCAGATAC

TGGCTAATATGTCTTTGCTTGTAGTCAAAGGAAAATTTTGCATTATAAATAATAA

GGTTAATGCAACTGATGATTACAAAAAGTTTAGTATCAAGCTGCTATTTGATGCC

AAGGGACGTTTATTGGAAGGATCTAGTTTAGATAAAGCTTATTGGAACTATAGA

AGCGTTAATAACAACATAGGTACAGCTTATGAAGAAGCTGTTGGTTTTATGCCA

AACACAACAGCATACCCAAAACTGCCTAATCCTCCAACTTCATCTACCACTCCTA

TAGAAAAAAGCCGGTCAAAAAACAAATACGTTAGTAATCTCTACCTTGGTGGAC

AAGCTGGAAACCCAGTGGCTACAACTATTAGTTTTAATGAAGAAATTGATGATA

CATGTGCTTATTCTATCAGATTTGATTTTGCTTGGAATAAGACATATGAAAATGT

ATAAACGTTTTTCATTTGAAATTTTCATGTATCTTTATTGATTTTTACACCAGCAC

GGGTAGTCAGCCTCCCACCACCAGCCCATTTCACAGTGTAAACAATTCTCTCAGC

ACGGGTGGCCTTAAATAGGGGAATATTATTATTGGAACGGGAACTAGATTTAGT

GTCTATAATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATTGAGAT

GAAGCCGTCCTCTGAGAAGTCATCCAAGCGGGCCTCACAGTCCAAGGTCACAGT

CTGGTGGAACGAGAAGAACGCACAGATTCATACTCGGAAAACAGGATGGGTCT

GTGCCTCTCCATCAGCGCCCTCAACAATCTTTGCCGCCGGGGCTCGGTGCGGCTG

CTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTATGATCCCCACAGCCTTCA

GCATCAGTCTCCTGGTGCGACGGGCACAGCACCGCATCCTGATCTCTGCCATGTT

CTCACAGTAAGTGCAGCACATAATCACCATGTTATTCAGCAGCCCATAATTCAG

GGTGCTCCAGCCAAAACTCATGTTGGGGATGATGGAACCCACGTGACCATCGTA

CCAGATGCGGCAGTATATCAGGTGCCTGCCCCTCATGAACACACTGCCCATATA

CATGATCTCTTTGGGCATGTCTCTGTTCACAATCTGACGGTACCATGGGAAGCGC

TGGTTGAACATGCACCCGTAAATGACTCTCCTGAACCACACGGCCAGCAGGGTG

CCTCCCGCCCGACACTGCAGGGAGCCCGGGGATGAACAGTGGCAATGCAGGATC

CAGCGCTCGTACCCGCTCACCATCTGAGCTCTCACCAAGTCCAGGGTAGCAGGG

CACAGGCACACTGACATACATCTTTTTAAAATTTTTATTTCCTCTGGGGTCAGGA

TCATATCCCAGGGGACTGGAAACTCTTGGAGCAGGGTAAAGCCAGCAGCACATG

GTAATCCACGGACAGAACTTACATTATGATAATCTGCATGATCACAATCGGGCA

ACAGGGGATGTTGTTCAGTCAGTGAAGCCCTGGTCTCCTCATCAGATCGTGGTAA

ACGGGCCCTGCGATATGGATGATGGCGCAGCAAGCTGGATTGAATCTCGGTTTG

CATTGTAGTGGATTCTCTTGCGTACCTTGTCGTACTTCTGCCAGCAGAAATGGGC

CCTTGAACAGCAGATACCCCTCCTGCGGCCGTCCTTTCGCTGCTGCCGCTCAGTC

ATCCAACTGAAGTACATCCATTCTC

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTGGGGCGTGGCCGACGCTGATTGGCTGTTGCGACGACGGTTACTGAC NO: GTCATGACGCACGGCGTCAACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAAGC 1433 AAGTCGCGGAGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACGGC

CGATTTTCCCGCGACCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGTG

AAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAAAT

ACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGAT SEQ

ID Sequence

NO

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

GCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGGAACTGTGC

CTATGGACATGGCTGTGCTTTTACTGGATGACTTTGTGAATACAGTATTGGAGGA

CGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGACCTTTATGAT

CTGGAGGTAGATGCCCATGATGACGACCCGAACGAAGAGGCTGTGAATTTAATA

TTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTATACCTACTC

CACTTCATACACCGACTCTACCACCCATACCTGAATTGGAAGAGGAGGACGAAC

TAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAAC

GGGGTGAGCAGAGTATGGCTATAATCTCAGACTATGCTTGTGTGGTTGTGGAAG

AGCATTTTGTGTTGGACAATCCTGAGGTGCCAGGGCAAGGCTGTAGATCCTGCC

AATATCACCGGGATCAGACCGGAGACCCAAATGTTTCCTGCGCTCTGTGTTACAT

GAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGCTG

AGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTTATTT

TTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGACCAC

CCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGACCCACC

CCAGTCAGACCCAGTGGCGAGAGGCGAGCGGCTGTTGACAAAATTGAGGACTTG

TTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCAGG

AACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAATAAAAGTA

TATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTCCTATA

TAAGTGGCAACACCTGGGCACTCGGGCACAGACCTTCAGGGAGTTCCTGATGGA

TGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGAGGATAG

TTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTATCTCGC

ACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTTCCAGGA

AAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCGGGGT

TGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGGACACCCAACTGAGCAGG

GGCTACATCCTGGACTTCGCAGCCATGCACCTGTGGAGGTCCTGGATCAGGCAG

CGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGGTCTT

CTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGCCATG

GACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGATTG

AATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATGGCC

AGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACCGA

GCTGACGGCCAGCCTGATGAATCGCAAGCGTCCAGAGCGCATTACCTGGCACGA

GCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATATGGCCT

GGAGCAGATAAAAACCCATTGGTTGAACCCAGATGAGGATTGGGAGGAGGCCA

TTAAGAAATATGCCAAGATAGCCCTGCGTCCAGATTGCAAGTACAGGGTGACCA

AGACGGTGAATATCAGACATGCCTGCTACATCTCGGGGAACGGGGCAGAGGTGG

TCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATGAGAG

CAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAATGGAG

AGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCATGGCT

GCAATTTCTTCGGCTTCAACAATATGTGCGCAGAGGTCTGGGGCGCCGCTAAGA

TCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCCAAGA

GCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGCAGTCTCTAC

CGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGAGACGGGCTGCTTCTG

CCTGGTGAAGGGCACAGCCTCTCTGAAGCATAATATGGTGAAGGGCTGCACGGA

TGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCCTGAA

GAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGAGAATAA

CCTGCTGATCAAGTGCCATATGCACCTGGGCGCCAGAAGGGGCACCTTCCAGCC

GTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTTCTCC

AGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGATCCTG

AGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAGACA

CACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCCGACCA SEQ

ID Sequence

NO

CCTGGTGATGGCCTGTACCGGGACCGAGTTTAGCTCCAGTGGGGAGGACACAGA TTAGAGGTAGGTTTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAGGCGGGT GTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGCGGGG

CGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGTGCTTCC

AGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCTCGACAG

CACCGCCGCAGCCGCGGCAGCAGCAGCCGCCATGACAGCGACGAGACTGGCCTC

GAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCATCATCGCC

GAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCAGCTG

GCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAGCAGCAGCAGCAAAATAAA

TGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTATTATTTATT

TTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGCGGTGG

ATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACATGGGCATG

AGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCTTCGTGCTCTGGGGTC

GTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGATGATG

TCTTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGTTGGCG

AAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTTTGGCC

TGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGGGGTTCATGTTGT

GCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTGTCATGCAACT

TGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAGGTTTT

CCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCGGCTTTGGCAA

AGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTGAGATCATCATA

AGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACGATGGTTCC

CTCGGGCCCCGGGGCGAAGTTTCCCTCACAGATCTGCATCTCCCAGGCTTTCATC

TCGGAGGGGGGGATCATGTCCACCTGCGGGGCAATGAAAAAAACGGTTTCCGGG

GCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGACTTGCCG

CACCCGGTCGGACCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAGTTCAAG

GACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGCATGTCT

CTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGTCCCCGCCCAGC

GAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCCCGTCGGCC

ATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTCCCAGAGCTCG

GTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGTTGGG

ACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCAGCGTCAT

GTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTGGTCTCCGTCACGGTGAAGGG

GTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCTGCTGGT

GCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGACCAT

GAGCTGGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCTCGGAGCTTGCCCTT

GGAAGAGCGCCCGCAGGAGGGACAGAGGAGGGACTGCAGGGCGTAGAGCTTTG

GCGCAAGAAAGACGGACTCGGGGGCGAAAGCGTCCGCTCCGCAGTGGGCGCAG

ACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGGGTCAAAAACC

AGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCATGAGTCTGTG

TCCGCGCTCGGTGACAAACAAGCTGTCGGTGTCCCCGTAGACGGACTTGATTGG

CCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCACTCT

GAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGGGGTA

GCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAAGCACATGTCC

CCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGACCG

GGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCACTC

TCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGA

GAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGGATT

TGATGTTGGCTTGCCCTGCCGCGATGCTTTTTAGGAGACTTTCATCCATCTGGTC

CGCTCCTTGGCCGCGATGTTAAGCTGGACATACTCGCGCGCGACACACTTCCATT SEQ

ID Sequence

NO

CGGGAAAGACGGTGGTGCGCTCGTCGGGCACGATCCTAACGCGCCAGCCACGGT

TATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGGCTCGT

TGGTCCAGCAGAGTCGCCCGCCCTTGCGCGAGCAGAACGGGGGCAGCACATCAA

GCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCTGGACAGAGTT

CCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCATCTGCCACTT

GCGGGCGGCCAGTGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGGCATGG

GATGAGTGAGGGCGGAGGCGTACATGCCGCAGATGTCGTAGACATAGATGGGCT

CCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGGCGC

GCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGAGATTG

GTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCGTGCGA

GTTGGAGGAGATGGTGGGCCGTTGGAAGATATTAAAGTGGGCGTGCGGCAAGC

GGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAGCT

CGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGATGATGT

CATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTACTCCTC

GTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGA

GCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAACCCTTCTCCAC

GGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGA

AGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCGTCGCA

GCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTAGAGAGGGGGTTAGG

CAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATGAAATT

GCGGGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACCTGGGC

GGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAAAGTTC

CATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGTTCCTCGTAGGTG

AGGTCCTCGGGGCATTGCAGGCCGTGTTGCTCGAGCGCCCACTCCTGGAGATGT

GGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGC

TCGTCGCGAAAGAGACGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGACG

CAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGCG

AGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCTGAGAATTTCATGACCAGC

ATGAAGGGGACGAGCTGCTTGCCAAAGGACCCCATCCAGGTGTAGGTTTCTACA

TCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAA

CTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGAA

ATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGTA

CTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTT

GAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGC

GTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGG

CAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGCGC

GCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTC

TGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACT

TGATTTCTACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGC

GCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCAC

GTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTG

CGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACCAC

GGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTC

ATTGACGGCAGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAG

GCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCG

CGCGCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCGAGA

AGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGG

CGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGA

AGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCGATGT

GCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGTGGCATCTCGCTGATGT

CGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGTTGA

AAAACTGGGCGTTGCGGGCCGACACCGTGAGCTCGTCTTCCAGGAGCCGGATGA SEQ

ID Sequence

NO

CCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTC

TTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTG

GTGGCGGGGCCCGACGACGACGGCGGCGCACCGGGAGACGGTCGACGAAGCGC

TCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTT

CGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGTGGCGGGT

CCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGGTGTAG

GGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGT

CTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGACGC

TGTTAGAATTGCGGTTGCTGATGATGTAATTAAAGTAGGCGTTTTTGAGGCGGCG

GATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCG

CTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCA

TGCATGAGCCTTTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTG

ACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCG

GCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCG

ACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCATGAGC

GACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCGC

GAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACTG

GTATCCGACTAGGAAGTGCGGTGGCGGCTGGCGGTAGAGCGGCCAGCGCTGGGT

GGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGA

GGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAAC

TCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGC

ACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGA

AAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGG

CCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAA

CGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGC

ACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTG

AGTCGCGGCAGAACCCGGTTCGAGGACGGCCGCGGCGAGCGGGACTTGGTCACC

CCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCC

CCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACA

GCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGG

CGCCGTCCCCGGAGCGACATCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGG

CGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAG

GAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGTGCGAGGGCCTGGAC

CGCCAGCGCGTGCTGCGCGATGAGGATTTCGAGCCGAACGAGCAGACGGGGATC

AGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAG

ACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACC

CTAATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCG

GAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTG

GTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACAT

CGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCAT

CGTAGTGCAGGAGCGCAGCTTGAGCCTCGCCGAGAAGGTGGCGGCGATCAACTA

CTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTA

CGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCT

CAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCA

CAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGT

TGAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGATGAGTCCTACT

TCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCG

CCTACGGTCCCGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCACCC

GACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGAC GACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAG SEQ

ID Sequence

NO

TCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTG

GTCCCATCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCG

CTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCC

CTGCTGGAACGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGAC

CGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAA

CGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGC

GAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCT

GATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACTACTT

TTTCCAGACGAGCCGGCAGGGCTTGCAGACGGTGAACCTGAGTCAGGCTTTCAA

GAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGT

GAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTC

ACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTG

TACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGAT

CACGAGCGTGAGCCGCGCGCTGGGCCAGAACGACACCGACAGTCTGAGGGCCA

CCCTGAACTTTTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGCAC

TGTCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGT

TCCTGATGCAGGAGGGCGCCACCCCCAGCGCCGCACTGGACATGACCGCGCGCA

ACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGG

ACTACCTGCACCGCGCGGCTGCCATGAACACGGACTATTTCACCAACGCCATTCT

GAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGATATGCC

CGACCCCAACGATGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCGCC

GACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGCGCGG

TGGGGAGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGT

GAACAGCGGCAGGGTGAGCCGACCGCGCTTGCTGGGCGAGGACGAGTACCTGA

ACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATAACGGGA

TAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATA

GGGACGCGCCCGCGCCGCGGCGGCAGCGCCACGACCGGCAGCGGGGCCTGGTG

TGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAG

CGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGGCGGCGGATGTT

TTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAG

AGATGAGGCGCGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGAT

GGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACG

GAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACT

CGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAA

AACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCC

GCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGT

GATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTC

ACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAAGCATCCCAAAGATGTA

GATGCCAGTGATTTAAGCAAGGATATCTTAGAGTATGATTGGTTTGAGTTTACCC

TGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCA

TCTTGGAAAACTACTTGCAAGTGGGGCGACAAAATGGCGTGCTGGAGAGCGATA

TCGGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCA

AGCTGGTGATGCCTGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGC

TGCTACCGGGCTGCGGGGTGGACTTCACCGAAAGCCGCCTGAGCAACCTTCTGG

GCATTCGCAAGAAGCAACCTTTCCAAGAGGGATTCAGAATCATGTATGAGGATC

TAGAAGGTGGCAACATCCCCGCCCTCCTTGATGTGCCCAAGTACTTGGAAAGCA

AGAAGAAAGTTGAAGACGAAACTAAAAATGCAGCTGCGGCTACAGCCGATACA

ACCACTAGGGGTGATACATTTGCAACTCCAGCACAAGAGACAGCAGCTGATAAG

AAGGTAGAAGTCTTGCCCATTGAAAAGGATGAGAGCGGTAGAAGTTACAACCTG

ATCCATGGGACACACGACACGCTGTACCGCAGTTGGTACCTGTCCTATACCTACG

GGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCA

CCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCG

TCACCTTCCGCTCCACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCTGAGCT SEQ

ID Sequence

NO

CATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTC

ATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCTGACAACCAGA

TCCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGC

TCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCG

AGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTG

GGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTC

TCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGT

ACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACT

TCCGCGCTCCCTGGGGCGCATACAAGCGCGGGCGGACTGCCACCGCCGCCGCCG

TGCGCACCACCGTTGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACT

ACACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACG

CGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCAC

CGGAGCACGCCCGCCATGCGCGCCGCCCGAGCTCTGCTGCGCCGCGCCAGACGC

ACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCACTGCACCCACC

CCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCT

AGCATGACTAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACG

GGCGTGCGCGTGCCCGTACGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTG

TCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCA

GGTCGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAA

AATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTG

TGCGCGAGTTCGCTCCGCGGCGACGCGTAAATTGGAAGGGGCGCAGGGTGCAGC

GCGTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGG

TCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACC

AGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAG

GAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGAAGCCC

GTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTC

AAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCG

CCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGG

TCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAAACCGTGG

ACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCG

AGGTGCAGACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGCCTCCACTTCTAC

CGTCGCCACGGCCACCGAGCCTCCCAGGAGGCGAAGATGGGGTGCCGCCAGCCG

GCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGC

GGCACCCGGTATTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGC

ACCGCCACCCGCCGCCGTCTAGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGC

CGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAAT

CCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATC

CCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAG

CGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTT

TCTGCCCGCGCTCATCCCCATAATCGCCGCGGCCATTGGCACGATCCCGGGCATA

GCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTT

TAGACTCTGACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTG

CGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGA

TCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCG

GGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATA

GTAGCACGGGGCAGTTGTTAAGAGAAAAGCTCAAAGACCAGAACTTCCAGCAG

AAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAAC

CAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGCCCGCCCGCCGCC

ACGGTGGTGGAGATGGAAGATGCAAGCGCGCATCCTCCTCCCAGGGGCGAGAA

GCGACCGCGGCCCGACGCGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCT

CGTACGAGGAGGCCGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGC

TGGCCACGGGTGTAATGAAACCCGCCACCCTTGACCTGCCTCCACCACCCGCGC

CCGCTCCACCAAAGGCAGCTCCGGTTGTGCAGGCCCCCCCGGTGGCGACCGCCG SEQ

ID Sequence

NO

TGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACA

GTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGA

GAGGAAAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGA

GAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCAC

ATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCC

CGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTG

GCCCCGACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTC

GTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTG

GCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGC

GGCGTCCTGGACCGCGGTCCCAGTTTCAAACCCTATTCGGGCACGGCTTACAAC

AGCCTGGCCCCAAAAGGTGCCCCCAACTCCAGTCAGTGGGAGCAGAAAAAAACT

ACTGGTGGAGGCAATGACATGGAAACGCATACTTATGGCGTTGCAGCCATGGGT

GGAGAAGACATTACAGAAAAGGGCCTTCAAATTGGCATTGATGAAACTAAAGA

AGAAAATAACAAGATATTTGCAGACAAAACATTCCAACCAGAACCTCAAGTGGG

GGACACCAAAATGAAACCATGCTATGGCTCATTTGCCAGACCTACTAATGAAAA

GGGAGGTCAGGCTAAATTTGTACTTGACCAGGAAGGAAAGCCAACTAAAAATCA

TGATATCACAATGGCTTTCTTTGATACTCCTGGTGGACAATTGAATGGAAAAGAT

GAGCTTAAGGCAGACATTGTCATGTACACTGAAAATGTCAACCTGGAAACACCT

GACACGCATGTTGTTTACAAACCTGGAACTTCAGATGACAGTTCAGAAATCAAT

TTGGTTCAACAGTCCATGCCAAATAGACCCAACTACATTGGCTTCAGGGACAAC

TTTGTAGGGCTCATGTATTACAACAGCACTGGTAACATGGGTGTGCTGGCAGGTC

AGGCATCTCAGTTGAATGCTGTGGTGGATTTGCAAGACAGAAACACAGAGCTAT

CTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTG

GAACTCTGCGGTGGACAGCTATGATCCAGATGTTAGGATCATTGAGAATCACGG

TGTGGAAGATGAACTTCCAAACTATTGCTTCCCATTGGATGGCGCTGGAACTAAT

GCAGTTTACCAAGGTGTAAAAATTACAGATGGAAATGATGGTGATGTCAATGAT

GACTGGGAAAAAGACACCGCAGTATCTGAACGTAATCAGATATGCAAGGGCAA

CATCTATGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTAC

TCGAATGTGGCCCTGTACCTTCCCGACTCATACAAGTACACGCCGGCCAACGTCA

AGCTGCCCACCAACACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCTC

CCTCACTGGTGGACGCCTACGTCAACATCGGCGCCCGGTGGTCGCTGGACCCCA

TGGACAACGTCAACCCCTTCAACCACCACCGCAACGCTGGCCTGCGCTACCGCT

CCATGCTTCTGGGCAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAA

GTTCTTTGCCATCAAGAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGAGTGG

AACTTCCGCAAGGACGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGATCTG

CGCGTCGACGGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCT

TCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACA

CCAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCAT

CCCGGCCAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGC

CTTTCGCGGCTGGAGTTTCACTCGCCTGAAAACCAAGGAAACTCCCTCGCTCGGC

TCGGGTTTCGACCCCTACTTTGTCTACTCGGGCTCCATTCCCTACCTCGACGGGA

CCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGT

CAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAAATCAAGCG

CAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACT

GGTTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCACGT

GCCCGAGGGCTACAAGGACCGCATGTATTCCTTCTTCCGCAACTTCCAGCCCATG

AGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTG

CCATTCCAGCACAACAACTCGGGTTTCGTCGGCTACCTCGCACCCACCATGCGCC

AGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAGCCG

TGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCC

CTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACATG

CTCTACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATG SEQ

ID Sequence

NO

GATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGC

ACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGC

CGGAAACGCCACCACATAAGCATGAGCGGCTCCAGCGAAAGAGAGCTCGCGGC

CTTCCCGGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCC

GGCCGCGAGACAGGAGGCGTGCACTGGCTCGCCTTCGGCTGGAACCCGCGCTCG

CGCACCTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGCCGGCTCAAGCAGA

TTTACAGCTTCGAGTACGAGGCTATGTTGCGCCGAAGCGCGCTCGCCTCCTCGCC

CGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTC

CGCCGCCTGCGGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCG

ACCGACCCATGGACGGGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACG

GCATGCTACAATCGCCACAGGTGCTGCCCACCCTCAGGCGCAACCAGGAGGAGC

TCTACCGCTTCCTTGCGCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCGCCATC

GAACACGCCACCGCTTTTGACAAAATGAAACAACTGCGTGTATCTCAATAAACA

GCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCAAAGGG

GTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGAACTG

ATACTTGGGCTGCCACTTGAACTCTGGAATCACCAGTTTGGGCACTGGGGTCTCG

GGGAAGGTCTCGCTCCACATGCGCCGGCTCATTTGCAGGGCGCCCAGCATGTCA

GGCGCGGAGATCTTGAAATCGCAGTTGGGGCCGGTGCTCTGCGCGCGCGAGTTG

CGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTACTTCACACTG

GCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGATCCTCGGCGTTGCTCA

GGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTCTGAG

GCTTGTGGTTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCCGCGCTG

CATATTCGGGTAGAGGGCCTTGACAAAGGCCTCGATCTGCTTGAAAGCTTGCTG

GGCCTTGCCCCCCTCGCTGAAGAACAGGCCGCAGCTCTTCCCGCTGAACTGGTTA

TTCCCGCACCCGGCATCCTGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGC

ACCACGCTCCGGCCCCAGCGGTTCTGGGTCACCTTTGCCTTGCTGGGTTGCTCCT

TCAACGCGCGCTGTCCGTTCTCACTGGTCACATCCATCTCCACCACGTGGTCCTT

GTGGATCATCACCGTCCCATGCAGACACTTGAGCTGGCCTTCCACCTCGGTGCAG

CCGTGATCCCACAGGGCACTGCCGGTGCACTCCCAATTCTTGTGTGCGATCCCGC

TGTGGCTAAAGATGTAACCTTGCAACAGGCGACCCATGATGGTGCTAAAGGTTT

TCTGGGTGGTGAAGGTCAGTTGCATCCCGCGGGCCTCCTCGTTCATCCAGGTCTG

GCACATCTTCTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCATCGCGC

AGGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCATGCCCT

TCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGGACAC

CGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAGCAGAAC

CGGCGGCTGGCTGAATCCCACTCCCACGATCACGGCTTCTTCCTGGGGCATCTCT

AGGGCTGTCCACGGGGACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGCTG

ATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTG

CTCCGGCGGATAGCGCGCTGAACCGTGGCCCCGGGGCGGAGTGGCCTCTCGCTC

CATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGAT

GGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCACGAGC

AACCCAAAATCGAGCAGGACCTGGGCTTTGAAGAGCCGGCTCGTCTAGAACCCC

CACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCT

GGGCTCGAGCATGGCTACCTGGGAGGAGAGGAAGATGTGCTGCTGAAACACTTG

CAGCGCCAATCCATCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAACCCCC

CTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTTTTCTCGCCGCGCG

TGCCCCCCAAACGCCAGCCCAACGGCACCTGCGAGCCCAACCCGCGCCTCAACT

TCTATCCCGTCTTTGCGGTCCCAGAGGCCCTCGCCACCTATCACATCTTTTTCAAG

AACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGACGCGCTC

CTCGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGAGGTG

CCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTG SEQ

ID Sequence

NO

AAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTGGAAGG

CGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAACTCACCCACTTCGC

CTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTC

ATCATGCCCCACATCGAGGCCCTCGATGAAAGTCAGGAGCAGCGCCCCGAGGAC

GCCCGGCCCGTGGTCAGCGACGAGCAGCTAGCGCGCTGGCTCGGGACCCGCGAC

CCCCAGGCTTTGGAACAGCGGCGCAAGCTGATGCTGGCCGTGGTCCTGGTCACC

CTCGAGCTCGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAG

GTCGAGGAGACCCTGCACTATACTTTTAGGCACGGCTTCGTCAGGCAGGCCTGC

AAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCTGCAC

GAGAACCGCCTGGGGCAGACCGTGCTCCACTCTACCCTGAAGGGCGAGGCGCGT

CGGGACTATGTCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACATGGCAAGCAG

CCATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAGCTGGAC

AAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGACGGGCTTCGACGAGCGCACC

GTCGCCTCGGACCTGGCCGAGATCGTCTTCCCCGAGCGCCTGAGGCAGACGCTG

AAAGGCGGACTGCCCGACTTCATGAGCCAGAGCATGATACAAAACTACCGCACT

TTCATTCTCGAACGATCTGGGATGCTGCCCGCCACCTGCAACGCTTTCCCCTCCG

ACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTA

CCTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGACGTGATCGAGGACGT

GAGCGGCGAGGGGCTTCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCA

CCGCTCCCTGGTCTGCAACCCCCAGCTCCTAAGCGAGACCCAGGTCATCGGTACC

TTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGGGG

TTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCCATG

AGATAAAGTTCTTCGAGGACCAATCGCGGCCGCAGCACGCGGATCTCACGGCCT

GCGTCATCACCCAGGGCGCAATCCTCGCCCAATTGCACGCCATCCAAAAATCCC

GCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGG

GCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAGCC

GCTAGTGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAAT

GGGAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGC

AACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGTCACGGA

TACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGG

TGACGGTAAGCACGAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCG

CGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCT

ACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTACCG

TCACCTTCACAGCTAAGAAAAAGCAAGTAAGAGGAGTCGCCGGAGGAGGAGGA

GGCCTGAGGATCGCGGCGAACGAGCCCTTGACCACCAGGGAGCTGAGGAACCG

CTCAAAGTAAAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACA

AAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACA

AGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCG

GGAATTACCTCATCGCCAGCACCATGAGCAAAGAGATTCCCACACCTTACATGT

GGAGCTATCAGCCCCAAATGGGCCTGGCCGCGGGCGCCTCCCAGGACTACTCCA

CCCGCATGAACTGGCTCAGTGCCGGCCCCTCGATGATCTCACGGGTCAACGGGG

TCCGCAGTCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGC

CCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAA

TCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCAT

GACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCC

ACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACG

ACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAG

CCGGAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGA

GCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGG

AGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCC

GGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCTACG

ACTGAATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACC SEQ

ID Sequence

NO

ACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGA

GTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGA

GGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTC

GAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCAACCCCG

AAGTTGCATGAGAATTTTTGTTGTACTCTTTGTGGTGAGTTTAATAAAAGCTGAA

CTAAGAACCTACTTTGGAATCCCTTGTCGTCATCCTCGAAACAAGACCGTCTTCT

TTACCAACCAGACCAAGGTTCGTCTGAACTGTACAACCAACAGGAAGTACCTTC

TCTGGACTTTCCAAAACACCTCACTCGCTGTTGTCAATACCCGTGACGACGACGG

TGTTTTAATCCCCAACAACCTCACTAGTGGACTTACTTACAGTACCAGAAAAACT

AAGCTCGTCCTCCACAAACCTTTTGTAGAGGGAACCTACCAGTGCCGACACGGA

CCTTGTGTTCACACATTCCACTTGGTGAACCTTACCAGCAGCAGCACAGTTGCTC

CTGAAACAACTAACCTTTCTTCTGATACTAACAAACCTCGTGTCGGAGGTGAGCT

TTGGGTTCCATCTCTAACAGAGGGTGGGAGTTCTATTGAAGTGGTTGGGTATTTG

ATTTTAGGGGTGGTACTGGGTGGGTGCATAGCAGTGCTGTATCAACTTCCTTGCT

GGGTCGAAATCAGGGTATTTATCTGCTGGGTCAGACATTGTGGGGAGGAACCAT

GAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGGTGTACTGTCATGCCAC

GAACAGCCACGATGTAACATCACCACAGGCAATGAGAGAAGCGAATGCTCTGTA

GTCATCAAATGTGAGCACAAATGTTCTCTCAACATTACATTCAAGAATAAGACT

ATGGGAAATGTCTGGGTGGGATTCTGGCAACCAGGAGATGAGCAGAACTACACG

AAGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCC

TACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTT

ATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTTCCTGAAGCGCAAGCCCAGG

CATGAAAACTTTGACAAGTGTCGTGCTGCTCTCTCTTTTAGTTATTAATGTGGATT

CGGCAGATCCTATTATAGTTAGTGTAGATTGGGGAAAAAATCTAACATTAGAGG

GGCCTAAAGAAACACCAGTTGAATGGTGGGGTGGGAGAAACATTCAACAACTGT

GCATAGGGAATCAAACCAAACATAAAGAGCTAAGACACACATGTAATATGCAG

AACATAACTTTGCTGTCTGTAAATACTAGTTTTAATGGAGACTATTTTGGCTTTA

AAAATGATAATAGCGGTATGAAACACTATAAAGTTACAGTTATCCCTCCTAAAC

CAACCACTCGGAAACCTTTACCTCCACCACACTATGTCAACGCAACTATGGGTCA

AAACTTAACATTAGTGGGTCCAGCAAACATTCCAGTTACTTGGCTCAGTGAATTT

GGCACCTTGTGTGAGGGTAAAAAAATTTTGCATGAAGAACTTAATCACACCTGT

AACGAACAGAACCTCACGTTGCTGTTTGTTAATATGACACACAACGGGCCATAT

TTTGGTTTTGGCAAAGACAATGTTGACAGAGAGCAGTATGAGGTCTCCATTATTA

GTTTATTCAAAGTAGGAGCGGGGCAAAAAAAAATAGACAAAGGACAAAGGACA

GAAGAGAAAACAAAATTCAACTCAGGTGATTTGGGTAGAAAACAATCTAGACCT

AAGAAAAAAGACATTGTTGATGAGGTTCAAGTTAAATCAGGCAATAATCAAACT

CTTATTGGACCACCTGGAAAAAATGTTGATTGGATTAAGCTTTCCAGCGGAAAC

GATGCTGTTGTAACGTTGTGTAAAGGTGACACTTGGATAAAACACACATGCAAT

GGGCCAAATGTAACTTTGATTAATGTCACAAAACCATACGAAGGAAGCTATTAT

GGCTCCAGCGATGATGGTTCAAGTCATTACAAAGTTACTGTGTATGATTTATATA

AATCAAATAAATCCAAGTCTAAGGTCAAACCTTACACTACAAAGGGCACTACAG

TAAATGCAACAAATGCCAATGGCCTCAAAAATGCTTTGCAACAGGAAATTGGTG

AATCAGAAAATGATCAAGAATCAAAAATTCCATCAGCTACTGTGGCAATCGTGG

TGGGTGTGATTGCGGGCTTTGTAACTCTGATCATTGTCTTCATATGCTACATCTGC

TGCCGCAAGCGTCCCAGGACTTACAATCATATGGTAGACCCACTACTCAGCTTCT

CTTACTGAAACTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACAGCTTGC

GTTCTGATTAGCATAGTCACACTTAGTGCAGCTGCTGGTAAATGCTATCATACAG

TTAATGTCACTAGGGGAGGGAATATTACACTTACAGGGGCAGGAATCAACACTA

CATGGACAGCTTATCATAACGATGGAAAGGGGCAAAATGGTTGGTTGCCCATCT

GTACATGGGGCGATCCCATCTATGTGTGCCATGGAAATAGCAGTACTATTTCAA

ATCTTACAGTTGTAGCTCACAAAAATTTAACTGACAGAACTATTAAGGCATATA SEQ

ID Sequence

NO

GCTATGAGAACAAAGATGATTATGAAACAGTAAATTCATGCTTTTATGTTGTAA AAGTTGTTGAGCTTCCAACCACTAAAGCGCCCACACAGTCTACTACACATCCAA CCACCACAGCCAGTACAACTACTGAGACCACTACTCAAACTACACAGCTAGACA

CTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAA

CTTCGCTTGCTTCGGTAAATGAGACGATCGTGCCGCTGATGTATGGCCAACATTA

CCCAGGTTTGGATATACAAATTACTTTCCTGATTGTCTGTGGGGTCTTTATCCTCG

CTGTCCTTCTCTACTTTGTCTGCTGCAAGGCCAGAGAAAAATCTAGGCGGCCCAT

CTACAGGCCAGTAATCGGGGAACCTCAGCCACTCCAAGTGGATGGAGGCTTAAG

GAATCTTCTTTTCTCTTTTACAGTATGGTGATCAGCCATGATTCCTAGGTTCTTCC

TATTTAACATCCTCTTCTGTCTCTTCAACGTGTGCGCTGCCTTCGCGGCCGTCTCG

CACGCCTCACCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCTGCT

CACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCATCACCTTCCTGCAGCTC

ATCGACTGGTGCTGCGCGCGCTACAATTACCTACACCACAGTCCCGAATACAGG

GACGAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCATGCAGACTCTGCTCA

TACTGCTATCCCTCCTATCCCCTGTCTTCACAACTTCTGTTGATTACTCTAAATGC

AAATTCGCTGACATATGGAATTTCTTAGATTGCTATCAGGAGAAAATTGATATGC

CCTCCTATTACTTGGTGATTGTGGGAATAGTCATGGTCTGCTCCTGCACTTTCTTT

GCCATCATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATTCA

CATACACACTAGAAAGCAGTTCACTAGCCTCCACACCACCACCCACACCGCCTC

CCCGCAGAAATCAGTTCCCCATGATTCAGTACTTAGAAGAGCCCCCTCCCCGGCC

CCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACAACCACCT

GGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCGTCCTGCAACTGCGCGT

CCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCA

CCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGA

GCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCCCCAGCAGAA

GCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTC

GGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTA

CTCCCTGCTCAAAACCCTTTGCGGACTCCGCGACCTCCTCCCCATGAACTGATGT

TGATTAAAAGCCCAAAAACCAATCAGCCCCTTCCCCCATTTCCCCATCCCCCAAT

TACTCATAAAAATAAATCATTGGAACTAATCATTCAATAAAGATCACTTACTTGA

AATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCACCTCGGTACCCTCCTC

CCAGCTCTGGTACTCCAATCCCCGGCGGGCGGCGAACTTCCTCCACACCTTGAAA

GGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTTAGATGTCAAA

GAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCG

GAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCTTCCGATGGATTCCAAA

ACTTCCCCCCTGGTGTCCTGTCACTCAAACTCGCTGACCCAATCACTATCAACAA

TGGGGATGTCTCGCTCAAGGTGGGAGGGGGACTCACTGTTGAACAACAGTCTGG

AAATTTAACTATAGATGCCAAAGCACCTTTGCAAGTTGCAAATGGTAAATTAGA

CATTGCTTTGGCACCACCATTTGAAGTTAAAGATAATAAACTTTCTTTACTAGTT

GGAAATGGACTAAAGGTGATAGATAGATCAGTCTCTGACTTGCCAGGTCTTCTA

AACTACCTTGTAGTATTGACTGGCAAAGGCATCGGAAATGAAGAGATAAAAAAC

GCAGACGGAACAAACAAAGGAGTTGGATTGCGTGTGAGAATCGCAGAAGCAGG

TGGCTTAACATTTGATGATAAAGGTGAATTAGTGGCCTGGTATAAAAACAATGA

TAAGCGCACCCTTTGGACAACTCTGGATCCATCTCCAAATTGCAGAGTTGATGAA

GAAAAGGATTCAAAGTTTACTTTAGTTTTAACAAAGTGTGGAAGTCAGATTCTG

GCTAGTGTATCACTATTGATTGTAAAAGGTAAATTCCAAATTTTAGATCATAAGG

CCAACACTGGCCTTAGTAAAGCTTTTGCAATTAAGTTACTATTTGATGAAAATGG

AGTCCTTAAAGACTCATCAAACATTGACAAGAACTCTTGGAATTATAGAAGCGG

GAATTCTGTTCTGTCAGAGCCATATAAAAATGCAATTGGATTTATGCCAAATTTA

GCAGCGTATCCTAAATCTACAACTTCTGGTTCTAAGATTTATGCAAGAAATACTA

TACTTTTAATCAAGAAGCAGATAGTGCTTATTCTATGACTTTTAACTATTCATGG SEQ

ID Sequence

NO

ACCAAGGATTATGAAAAAGTCCCTTTTGATTCTACTTCTTTTACATTTTGCTATAT CGCCCAAGAATGAAAGACCAATAAACGTGTTTTTCATTTGAAAATTTTCATGTAT

CACAGTGTACACGGTTCTCTCAGCACGAGTGGCCTTAAATAGGGAAATGTTCTG

ATTAGTGCGGGAACTGGACTTGGGATCTATAATCCACACAGTTTCCTGGCGAGC

CAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCG

GGCCTCACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCA

TACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAACAGTCTCT

GCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTC

TGACTATGATCCCAACAGCCTTGAGCATCAGTCTCCTGGTGCGTCGGGCACAGC

ACCGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTACAGCACATAATCACCAT

GTTATTCAGCAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGGAT

GATGGAACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAGGTGCCTGCC

CCTCATGAACACACTGCCC

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID CTTGAATTTTAACGGTTTTGGGGCGGAGCCAATGCTGATTGGCCGAGAAGCGGT NO: GACGCAGTTGACGTCACGACGCACGGCCGACGCTCGCCGCGGAGGCGTGGCCTA 1434 GCCCGGAAGCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCC

GGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGTGG

ATGCAAGTGAAATTAGGCCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAA

GTGAAAAATACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGAC

TTTGACCGATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGT

CCGTGTCAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAA

ACCAGTCGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCT

CTGAGCTCCGCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCTTC

AACTGTGCCTATGGACATGGCTGTGCTTATGCTGGATGACTTTGTGAATACAGTA

TTGGAGGATGAACTGCATCCAACTCCGTTCGAGCTGGGACCCACACTTCAGGAC

CTCTATGATCTGGAGGTAGATGCCCAGGAGGACGACCCGAACGAAGAGGCTGTG

AATTTAATATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAGTGAAGCCA

TAGTTACTCCTCTACATACTCCAACTCTGCCTCCCATACCTGAATTGGAGGAGGA

TGAAGAAATAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGA

GGACGAACAGGGTGAGCAGCAGATGGCTCTAATCTCTGATTTAGCTTGTGTGAT

TGTGGAGGAACAAGTTGTGATTGAAAAATCTACCGAGCCAGTACAAGGCTGTAG

GAACTGCCAGTATCACCGGGATAAGTCCGGAGACCCGAACGCTTCCTGCGCTCT

GTGTTACATGAAATCTACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAG

AGAGGCTGAGTACTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGT

GGTTTATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAG

AAGACCACCCGTCTCCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGTTCAG

ACCCACCCCAGTCAGAGCCAGTGGCGAGAGGCGAGCGGCTGTTGACAAAATTGA

GGACTTGTTGCAGGACATGGGTGGGGATAAACCTTTGGACCTGAGCTTGAAACG

CCCCAGGAACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAAT

AAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTA

GTCCTATATAAGTGGCAACACCTGGGCACTTGGGCACAGACCTTCAGGGAGTTC

CTGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAG

AGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCT

ATCTCGCCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAATCT

TTTTGCTGACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTT

GAGCAGGGGCTACATTCTGGACTTCGCGGCCATGCACCTGTGGAGGTCCTGGAT CAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCC GGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCA GGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGC SEQ

ID Sequence

NO

TGGATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATC

CATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGA

TGACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAACGCATTACCT

GGCACGAGCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAA

TATGGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAG

GAAGCCATTAAGAAATATGCCAAGATAGCCTTGCGCCCAGATTGCAAGTACAGG

GTGACCAAGACCGTGAATATCAGACATGCCTGCTACATCTCGGGGAACGGGGCA

GAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTTAGGTGTTGCATGATGGGA

ATGAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTC

AATGGAGAGAAGTTTAATGGGGTGATGTTCATGGCCAACAGCCACATGACCCTG

CATGGCTGCAGTTTCTTTGGTTTCAACAATATGTGTGCAGAGGTCTGGGGCGCTG

CTAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGAC

CCAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAG

TCTCTACTGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGAGACGGGCT

GCTTCTGCCTGGTGAAGGGCACGGCCTCTCTGAAGCATAATATGGTGAAGGGCT

GCACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATA

TCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTG

AGAATAACCTGCTGATCAAGTGCCATATGCACCTGGGCGCCAGAAGGGGCACCT

TCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATG

CCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTTTCGGTGTACAA

GATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGG

CAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGAC

CAGACCACCTGGTGATGGCATGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGG

ACACAGATTAGAGGTAGGTTTTGAGTAGTGGGCGTGGCTAAGGTGAGTATAAAG

GCGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGG

CGGAGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGA

TGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGTCCAGTG

CTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCTCG

ACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTG

GCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCCATCA

TCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCC

AGCTGGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAGCAGCAACAGCAGC

AAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTA

ATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGC

TCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGC

TGGATGATGTCTTTGAGGAGGAGACTAATGGCCACGGGGAGCCCCTTGGTGTAG

GTGTTGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTG

CAGTTTGGCCTGGATCTTGAGGTTGGCAATGTTGCCGCCCAGATCCCGCCGGGG

GTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTT

GTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCC

GCCCAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCG

GCTTTGGCAAAGACGTTTCTGGGGTCAGACACATCATAATTATGCTCCTGGGTGA

GATCATCATAAGACATTTTAATGAATTTGGGGCGAAGGGTGCCAGATTGGGGGA

CGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCACAGATCTGCATCTCCCA

GGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCAATGAAAAAAAC

GGTTTCCGGGGCGGGGGTGATGAGCTGCGAAGAGAGCAGGTTTCTCAACAGCTG

GGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTG

GTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTT

GAGCATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGTC

CCCGCCCAGCGAGAGGAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAG

CCCGTCGGCCATTGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTC SEQ

ID Sequence

NO

CCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTC

GGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCG

GCCAGCGTCATGTCCTTCCAGGGTCTCAGTGTCCGCGTGAGGGTGGTCTCCGTCA

CGGTGAATGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATCAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACATAGGAGGGATTGCAGGGCGT

AGAGCTTGGGCGCGAGAAAGACCGACTCGGGGGCGAAGGCGTCCGCTCCGCAG

TGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCTGGCTGCTCGGGG

GAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGGA

CTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCG

GACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG

CGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAG

ACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCC

ACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

ATAGAGGGCGTTGGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTC

ACGGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATATTCGCGCGCAAC

ACACTTCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCG

CCAGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCG

CAGGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGTGG

CAGCACATCAAGCAGATTCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCC

CGGACAGAGTTCCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCC

ATCTGCCACTCGCGGGCGGCCATCGCTCGCTCGTAGGGGTTGAGGGGCGGACCC

CAGGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCGTAGAC

ATAGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCG

GATGCTGGCGCGCACGTAATCATACAACTCGTGCGAGGGGGCCAAGAAGGCGG

GGCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAG

ATGGCATGCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCG

TGAGGCAGGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTG

GCGACGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCG

CGGATGATGTCATAACCCGCCTCTCCTTTCTTGTCCCACAGCTCGCGGTTGAGGG

CGTACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGC

ACGGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCC

CTTCTCCACTGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGT

CAGGGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGA

GTCGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAG

GGAGTTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGG

CATGAAATTGCGGGTGATGCGGAAAGGGCCCGGAACGGAGGCTCGGTTGTTGAT

GACCTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGAT

GTAGAGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGTTCC

TCGTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCT

GGAGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCAGGAGG

GTCTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCG

GGTGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAG

CGCACGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTC

ATGACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAG

GTTTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATT

GGGAAGAACTGGATTTCCTGCCACCAGTTGGACGATTGGCTGTTGATGTGATGA SEQ

ID Sequence

NO

AAGTAGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGT

CCGCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCG

CGTCCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTT

CGCCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCC

CGCGCGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACG

AGGGCACGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGC

AGGGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGA

TGGTACTTGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCC

CGTAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCG

CGGACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCA

GAGGCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGC

TGGCGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGA

AGACCACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCT

CGGCGTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTC

CTGGTAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCG

CGGCCCGCGCGCTCCACGGTGGCGGCGAGGTCATTTGAGATGCGACCCATGAGC

TGCGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCC

CCGTCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGC

CGCGCGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGT

GGCGATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTC

GCTGATGTCGCCGATGGCCTCCAGCCTTTCCATGGCTTCGTAGAAATCCACGGCG

AAGTTGAAAAACTGGGCGTTGCGGGCCGACACCGTGAGCTCGTCTTCCAGGAGC

CGGATGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCAAAATCCCCGGGGGCC

TCCTCCTCTTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGG

GGCGGTGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTC

GACGAAGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGC

GCGACCCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTA

ATGGGGCGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACGATGCATCTTATCAA

TTGCGGTGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTC

AAGGAAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAG

CCCTGTGGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTT

TTTAAGGCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCAGCTTGCTG

GATGCGGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTT

CTTGTAGTAGTCATGCATGAGCCTTTCAATGTCATCACTTGCGGAGGCGGAGTCT

TCCATGCGGGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCG

ACGACGCGCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAG

TCGTCCATGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAG

TTGGCCATGAGCGACCAGTTAACGGTCTGCAGGCCGGGCTGCACGACCTCCGAG

TACCTGAGCCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGC

ACGAGGTACTGGTAGCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGG

CCAGCGCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTG

GTAGCCGTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGG

CGCGCGGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAAT

CCATGGTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGA

GGCAAAAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCA

AACGGGTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGA

GCCGCGACTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGC

GCGGCCGAAAACCCTGTCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATC GCCAGGGTTGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGG ACTTGGTCACCCCGCCAATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACG

GTCCCGCCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTA SEQ

ID Sequence

NO

GCCAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTG

GGGGCGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGC

CCGGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCC

GAGGAGATGCGCGACTGCCGTTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCTTG

GACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGG

GATCAGCCCCGCTCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGA

GCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGC

GCACCCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACC

TGGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGT

TCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGA

ACATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAAA

GCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATC

AACTACTCGGTGTTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACG

CCGTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATG

GCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGC

ATCCACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCT

GATGCTTAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTC

CTACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGA

AGCCGCCTACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATG

CGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGG

ACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCG

AGTCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGG

TGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACG

CGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACG

CCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGG

ACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAG

AACGAGGGCCTGGGCTCTCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCG

GCGAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGG

CTGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACTAC

AAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGAC

GGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCC

TTCACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACG

CTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGA

GATCACGAGCGTGAGCCGCGCGCTGGGGCAGAACGATACCGACAGTCTGAGGG

CCACCCTGAACTTTTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACG

CACTGTCGGCCGAGGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGG

CTGTTCCTGATGCAGGAGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGCG

CGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTG

ATGGACTACCTGCACCGCGCGGCGGCCATGAACACGGACTACTTTACAAACGCC

ATCCTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGAC

ATGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGTGGTGTTC

TCGCCGACCTTTCAAAAGCGCCAGGAGGCGCCGCCGAGCGAGGGCGCGGTGGGT

CGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACA

GCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACT

CGCTGCTGCAGCCGCCGCGGGCCAAGAACGCCATGGCCAATAACGGGATAGAG

AGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGAC

GCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGA

CGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTG

GGGCCAACCCGTTCGCACATCTGCAGCCCAAACTGGGGAGGCGGATGTTTTGAA

ATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGAT

GAGGCGCGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCG SEQ

ID Sequence

NO

CAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGG

GCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCG

TGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACG

ACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCG

AGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATC

TGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCA

GCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAAGGGGCTGAT

GCAAATGATAGGAGCAAGGATATCTTAGAGTATCAGTGGTTTGAGTTTACCCTG

CCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATC

TTGGAAAACTACTTACAAGTGGGGCGGCAGAATGGCGTGCTGGAGAGCGATATC

GGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAG

CTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTG

CTGCCGGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGC

ATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTA

GTAGGGGGCAACATCCCCGCCCTGCTTGATGTGCCCAAGTACTTGGAAAGCAAG

AAGAAACTGGAGGAAGGCGCTAAGGAAGCTGGCAACACCAAAGCTCCAATTAG

AGGAGATACTTATGCTACCACAGCTGAGGAAGAGGCTGCTAAAAAAGAGTTAGT

TATTTTGCCAGTAACAGAAGATGAAAGCAAAAGAAGCTATAATTTAATTGAGGG

AACCACAGACACGCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGGGACCC

CGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACCTGCGG

CGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTCACCTT

CCGCTCCACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCC

CTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGC

AGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCT

GCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCA

CAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGA

CCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCAT

AGTCGCGCCGCGCGTGCTCTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATC

TCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGA

GGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGC

GCTCCCTGGGGCGCATACAAGCGCGGGCGGACTGCCACCGCCGCCGCCGTGCGC

ACCACCGTCGACGATGTCATCGACTCGGTGGTCGCCGATGCGCGCAACTATACC

CCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGC

GACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGAG

TACGCCCGCTATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGG

CCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCACTGCACCCACCCCCGC

AGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATTTCTAGCAT

GACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGT

GCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTC

CCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTC

GTCGCCCCGGAGATTTACGGACCCCCGGACCAGAAACCCCGCAAAATCAAGCGG

GTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTT

CGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCG

GCCCGGCACGGCGGTGGTATTCACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAA

GCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGCGG

AGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCTGATC

TCGCTGCCGCTGGACGAGAGCAATCCCACGCCGAGCCTGAAGCCCGTGACCCTG

CAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGATCAAGCGCGAG

GGCGAGAACATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGCGTG

GAGGAAGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCG

CCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTCAGAT

CCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAGAC

CGACCCCTGGCTCCCAGCCTCCACCGCTACCGTCTCCACTTCTACCGCCGCCACG SEQ

ID Sequence

NO

GCCACCGAGCCTCCCAGGAGGCGAAGATGGGGCCCTGCCAACCGGCTGATGCCC

AACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCGGT

ACTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCACCACCACCC

GCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCGGGGCCGCT

CGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCTG

TGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGA

ATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAAC

CGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCGCG

CTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTTG

CGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCTG

CTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACCA

GCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAA

ATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACGG

GGCAGTTGTTGAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAAGGTGGTG

GACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTG

CAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGAT

GGAAGATGCAACTCTTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGACG

CGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGCCGTC

AAGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTAGCCACGGGTGTAATG

AAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCGAAGGCA

GCTCCGGTCGTGCAGGCCCCCCCGGTGGCGACTGCCGTGCGCCGCGTCCCCGCC

CGCCGTCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGA

GTGAAAAGTCTGAAGCGCCGCCGATGCTATTGACAGAGAGGAAAGAGGACACT

AAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGG

CCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACG

CCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGT

ACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATG

TGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCG

AGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACC

GGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCG

GTCCCAGTTTCAAACCCTACTCGGGCACAGCCTACAACAGCCTGGCCCCCAAGG

GTGCCCCCAATCCTAGTCAGTGGATTACCAAAGAAAAGCAAACCGGAGTAAATG

CAGGAGACAAAGATGTTACAAAGACATTTGGAATTGCCGCCATGGGAGGCAGTA

ATATTTCTAAAGACGGTTTACAGATTGGAACTGACACAACAGCAGCTGCTGCAA

AACCAATATATGCAGACAAAACTTTCCAGCCAGAACCTCAAGTTGGAGAAGAAA

ACTGGCAGGATAATGATGAATATTATGGCGGCAGGGCTCTTAAAAAAGATACCA

AAATGAAGCCATGCTATGGTTCATTTGCTAAACCCACAAACAAGGAAGGTGGGC

AGGCTAAATTGAAAGAAACACCCAATGGTGCCGATCCTCAATATGATGTGGACA

TGGCTTTCTTTGACTCAACCACTATAAATATACCAGATGTTGTGTTATACACTGA

AAATGTAGATTTGGAAACTCCAGATACACATGTGGTGTACAAACCAGGCAAAGA

GGATGACAGTTCTGAAGCTAATTTAACTCAGCAGTCCATGCCTAACAGACCAAA

CTACATTGGCTTCAGAGACAACTTTGTGGGGCTATTGTACTACAACAGCACTGGC

AACATGGGTGTGCTGGCTGGTCAGGCATCTCAGTTGAATGCCGTGGTCGACTTGC

AAGACAGAAACACCGAACTGTCTTACCAGCTCTTGCTAGATTCTCTGGGTGACA

GAACCAGATATTTTAGTATGTGGAACTCTGCGGTGGACAGCTATGATCCCGATGT

CAGGATCATTGAGAACCACGGTGTGGAAGACGAACTTCCTAACTATTGCTTCCC

CTTGGACGGTGTTCAAACTAATTCAGCCTACCAAGGTGTTAAACTAAAGGCTAA

TCCAGCAGGAGGCGGAGCTAATGGAGATTGGGAAAAGGATGATACCATTTCAGT

CCATAATCAAATTGGAAAGGGCAACATCTTTGCCATGGAGATCAACCTCCAGGC

CAACCTGTGGAAAAGTTTTCTGTACTCGAACGTGGCCCTGTACCTGCCCGACTCC

TACAAGTACACGCCGGCCAACGTCACGCTGCCCACCAACACCAACACCTACGAC

TACATGAACGGCCGCGTGGTAGCCCCATCCCTGGTGGACGCCTACATCAACATC SEQ

ID Sequence

NO

GGCGCCCGCTGGTCGCTGGATCCCATGGACAACGTCAACCCCTTCAACCACCAC

CGCAATGCGGGGCTGCGCTACCGCTCCATGCTTCTGGGCAACGGCCGCTACGTA

CCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTCCTGC

TCCCCGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGATGTCAACATGATCCT

GCAGAGCTCCCTCGGCAACGACCTGCGCGTCGACGGCGCCTCCGTGCGCTTCGA

CAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACCGCCTCCACC

CTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTACCTC

TCGGCCGCCAACATGCTCTACCCCATCCCTGCCAAGGCCACCAACGTGCCCATCT

CCATTCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAA

GACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACCCCTACTTTGTCTACTCG

GGCTCCATTCCCTACCTCGACGGGACCTTCTACCTCAACCACACCTTCAAGAAGG

TCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTCAC

GCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACGTGG

CCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAA

CATCGGCTACCAGGGCTTCTACGTGCCCGAGGGCTACAAGGACCGCATGTACTC

CTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAACTA

CAAGGACTACAAGGCCGTTACCCTGCCATTCCAGCACAACAACTCGGGCTTCAC

CGGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTTCCCC

TACCCGCTCATTGGTCAGACAGCCGTGCCCTCCGTCACCCAGAAAAAGTTCCTCT

GCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGC

CCTCACCGACCTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTCGA

CATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTC

GAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCC

GTCTACCTGCGCACGCCATTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCG

GCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGTGGGCCCT

ACTTTTTGGGCACCCACGACAAGCGATTCCCGGGCTTCCTCGCCGGCGACAAGCT

GGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAGGCGTGCACTGGCT

CGCCTTTGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCATTTGGG

TTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTG

CGCCGAAGCGCCCTGGCCTCCTCGCCCGACCGCTGTCTCAGCCTAGAGCAGTCC

ACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTCTTCTGTTGCATGT

TCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCACCAT

GAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCC

CACCCTCAGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCT

TACTTTCGCTCCCACCGCGCCGCCATCGAACATGCCACCGCTTTTGATAAAATGA

AACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGAGTAT

ATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGC

TGGGGAGGGCCACGTTGCGGTACTGGTACTTGGGCTGCCACTTGAACTCGGGGA

TCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGC

TCATCTGCAGGGCACCCAGCATGTCCGGGCCGGAGATCTTGAAATCGCAGTTGG

GGCCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGAACA

CCATAAGACTGGGGTACTTCACACTGGCCAGCACGCTCTTGTCGCTGATCTGATC

CTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGG

CGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACGGGC

ATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACAAAG

GCCGCGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAAAACAGG

CCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCCTGCACGCAGC

AGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGT

CACCTTGGCCTTGCTGGGTTGCTCCTTCAACGCGCGCTGCCCGTTCTCACTGGTC

ACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCGTTCCATGCAGACACT

TGAGCTGGCCTTCCACCTCGGTGCAGCCGTGGTCCCACAGGACGCAGCCGGTGC

ACTCCCAGTTCTTGTGCGCGATCCCGCTGTGGCTGAAGATGTAACCTTGCAACAT

GCGGCCCATGATGGTGCTAAAGGTTTTCTGAGTGGTGAAAGTCAGTTGCAGACC SEQ

ID Sequence

NO

GCGAGCCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGAAGATCTCGGTCTGC

TCGGGCATTAGCTTGTAAGCATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCC

ATCAGCACGTTCATGGTATCCATGCCCTTCTCCCAAGACGAGACCAGAGGCAGA

CTTAGGGGGTTGCGCACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGCGT

TTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTCCCA

CGATCACGGCTTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATG

CTTGGTCTTCCTGGCTTGCTTCTTTTTTGGAGGGCTGTCCACGGGGACCACGTCCT

CCTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAG

GAGGCGGCGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACC

CGTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGAC

TGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGG

AGCAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTG

GGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGA

GCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGACTACCTGG

GAGGAGAGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTCC

GGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTC

GGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCA

ACGGCACATGCGAGCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCC

CGAGGCCCTCGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCC

TGCCGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCG

CGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTC

GGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGA

GGGTCACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGT

GCTCAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCG

CCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCC

CTCGATGAAAGTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGAC

GAGATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCTTTGGAGCAGCGG

CGCAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGCTCGAATGCATGCGCC

GCTTCTTCAGCGACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACA

CTTTCAGGCACGGTTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGA

CCAACCTGGTCTCCTGCCTGGGGATCCTGCACGAGAACCGCCTGGGACAGACCG

TGCTCCACTCTACCCTGAAGGGCGAGGCGCGTCGGGACTATGTCCGCGACTGCG

TCTTTCTATTTCTCTGCCACACATGGCAAGCGGCCATGGGCGTGTGGCAGCAGTG

TCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAA

AAAGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGAT

CGTCTTCCCCGAGCGCCTGAGGCAGACGCTAAAAGGCGGCCTGCCCGACTTCAT

GAGCCAGAGCATGTTGCAAAATTACCGCACTTTCATTCTCGAGCGCTCGGGGAT

CCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCACTGAGCTACCGC

GAGTGTCCCCCGCCGCTGTGGAGCCACTGCTATCTCTTGCAGCTGGCCAACTACA

TCGCCTACCACTCGGACGTGATCGAGGACGTGAGCGGTGAGGGGCTTCTCGAGT

GCCACTGCCGCTGCAACCTGTGCTCTCCGCACCGCTCCCTGGTCTGCAACCCCCA

GCTCCTGAGCGAAACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGA

GTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGC

AAATTTGTACCCGAGGACTACCACGCCCATGAGATAAAGTTCTTCGAGGACCAA

TCGCGGCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATC

CTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAG

GGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTC

CCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAG

AATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGA

AGAATTGGAAGAGGTGGAAGAGGAGCGGGCAACAGAGCAGCCCGTCGCCGCAC

CATCCGCGCCGGCAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGTCA

AGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAG

GGCTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGAC SEQ

ID Sequence

NO

TGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGA

ACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAG

CAAGTAAGAGAAGTCGCCGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGA

GCCCTTGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATT

TTTCAGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTG

CGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGC

ACTCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAG

ACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGA

GCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGG

CCGCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCC

CCTCGATGATCTCACGGGTCAACGGGGTCCGCAGTCATCGAAACCAGATATTGT

TGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCCCGTAATT

GGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCC

GCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGG

CGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGAT

CCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCT

GCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCCTCCTTCACTCC

CCACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGG

CATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCC

TTCTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCA

GTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAG

CTCGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGG

AGAGCTGTGGCCTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGC

ACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTT

CTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACAC

CGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTT

GTGCTGAGTTTAATAAAAGCTGAAATAAAAATCTTCTCTGGACCTTGTCATCGAC

CTCGGAACAGCACCGTCTTACTCACCAATCAGACCAAGGTTCGTCTGAACTGCA

CAACCAACAGGAAGTACCTTCTCTGGACTTTCCAAAACACCTCACTCGCTGTTGT

CAACGCCCGTGACGACGACGGTGTTTTAATCCCCAACAACCTCACCAGTGGACT

TACTTTCAGCACAAGAAAAACTAAGCTCGTCCTCCACAAACCTTTTGTAGAGGG

AACCTACCAGTGCCGACACGGACCTTGTGTTCTCAACTTCCATTTGGTGAACATT

ACCAGCAGCAGTACAGTTGCTCCTGAAACAACTAACCTTTCTTCTGATACTAACA

AACCTCGTGTCGGAGGTGAGCTTTGGGTTCCCTCTCTAACAGAGGGTGGGAGTTC

TATTGAAGTGGTTGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCG

GTGCTATATCACCTTCCTTGCTGGGTCGAAATCAGAGTCTTTATCTGCTGGGTCA

GACATTGTGGGGAGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTG

GGGGGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAAT

GAGAGAAGCGAATGCTCTATAGTGATCAAATGTGAGCACAAATGTTCTCTCAAC

ATCACATTCAAGAATAAGACCATGGGAAATGTATGGGTGGGATTCTGGCAACCA

GGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACT

GACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTGGGTTTTTCTTTGGC TTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGG TTTCTGAAGCGCAAGCCCAGGTATGGAAATGAGGAGAAGGAAAAATTGCTATAA

TTCTTGTAGCTTTTAGTCAGGGACAAGCTGTGCATGTGAAACTTGAAATTTGTTA

TGGTTGTAATGGTACACTAATAGGACCACATAAAACTCCAGTTGAGTGGTATGA

CGGCAGAGGACACAAACTTTGTGCAGGATCTGATACTTTTCACAAGGAACTAAA

TCACACATGTGATTTACAAAATATGACACTTACATTTGTTAACTTAACTCATAAG

GGTACTTACTATGGTTTTGGCAGTGATAACAAAAACTCTAAAGTATACCAGGTTA

CTATTAAGCCACCTGTTCTGACAACTCGCAGGCCTTTATTAAAACCTGAAGATAT

TGTAATCACTAAGGGAAGCAACAAAACTCTTGTGGGTCCTCCAGATACACCAGT SEQ

ID Sequence

NO

TGACTGGTATGATGGTTCAGGACATAAATTGTGTAAAGGAAAAGAAGTTCATTA

CCCTGAACTCAATCACACCTGTGATGAGCAGAACCTTACACTCATATTTGTAAAT

GCCACTTTTAAGGGAACCTATTATGGCTTTAGAAAAGATGGCACAGACAAAAAG

GAATATAGAGTCAAAATTGATGATTTATATGCAAAACAACTAAAACAGGAAAAA

GATGAAAAACCAAGGTCTGGCCATGATAAGCAGAAATCAAAAACAGAAGAAAA

ACAAAATCCAAAAACAGAAGAAAGGCATGGGCATAGAGATGTTGTTAAAGAAG

TTAGTTTTAGAACTGGAACTAATCAAACTCTAGTGGGCCCACCAGGGTCTAAGG

TTGATTGGCTTAAAGTTGGAAATGGTGGGACATTTAGCGAACTTTGTAAAAGCG

ATAATAAACACTATTCTTGTAATTCTCAAAACTTAACAATAATCAATGTTACCAG

ATTTGATGAAGGTAGCTATTATGGCTCTAATGACGGTTCAGCTCATTACAGAGTT

TCAGTCTATGACCCAGTACAGAAAAAAAGGGTTATGAAAATACAACCACACACA

ACAAAAACTACTGCAAAAAAAACTACAAAAAGCAGCGCTAATGAAACAGATGA

AAACTTTGCTTTGCAACAGGGTAACAATGGGGAAAATCAATATGATGAAACTAA

TATTCCTTCAACTACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTCATAACT

ATAATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCCAGGGCATACA

ATCATATGGTAGACCCACTACTCAGCTTCTCTTACTGAGACTCAGTCACTTTCAT

TTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCCTAGTCACACTTA

GTTTAGCCAAAATTAATCAAATCAGTGTCAAAAGAGGTGAAAATGTTACACTAG

ATGGAACTTATCCAAATACTACATGGACAAGATATCACCTTACAAAATGGGATA

ATATTTGCAAATGGAATATTTCAACATATAAATGTCATAATAATGGAAGCATTAC

AATTCATACTTTTAATATCACTTCTGGATTATACAAGGGAGATAGCTATAAAAGA

GAAGTGATAACATCAATGTCTAAATTTGGAAATATGACAGACACTTATTTCAGC

GAATATCAACAATTAAAAATGTATAATTTAACAATAATTGAACCACCAACTACT

AAAGCACCCACTACCACTAAGCCTACCACAGTTAAGACAACACAACCTACCACT

GTGCCCACTACACATCCAACCACCGCAGTCAGTACAACTATTGAAACCACTACT

CACACTACACAGCTAGACACTACAGTGCAGAATAGTACTGTGTTGGTTAGGTAT

CTGTTGAGGGAGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTC

AGCAGCACTGCAAATTTAACTTCGCTTGCTTCAATAAATGAGACCCTCGTGCCGA

TGAAACAGGATCAACCTAATTACTCAGGTTTGGATATGCAAATTACTTTCTTAAT

TGTCTGTGGAGTCTTTATTCTTGTGGTTCTTCTTTACTTTGTCTTTTGCAAAGCCA

GACAAAAATCTCATAGAACAATCTACAGGCCAGTGATTGGGGAACCTCAGCCCC

TCCAAGTGGACGGAGGCTTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTGATC

AGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACATCT

GTGCTGCCTTCGCGGCCGTCTCGCACGCCTCACCCGACTGTCTCGGGCCCTTCCC

CACCTACCTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTTTGCT

TGGTCGTCACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTATCT

CCACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATATTAAGGCTCAT

ATGACCATGCAGACTCTGCTCATATTGCTATCCCTCTTATCCCCTGCCATTGCCGC

TCCTGATTACTCTAAATGCAAATTTGTGGAACTATGGAATTTCTTAGACTGCTAT

GATGCTAAAATGGATATGCCTTCCTATTACTTGGTAATTGTGGGGATAGTCATGG

TCTGCTCATGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTCGGCTGG

AATTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGC

CACCACCCACACCGCCTCCCCGCAGAAATCAGTTCCCCTTGATACAATACTTAGA

AGAGCCCCCTCCCCGACCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGC

GATGACTGACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCAC

CCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGA

TGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGC

AAAGATCACCTACGAGCTCGTGTCCGGCGGCAAACAGCATCGCCTCGCCTATGA

GCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCATCAACCCCATAGT

CATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAG

CCCCGAGTGCATCTACTCACTGCTCAAGACCCTTTGCGGACTCCGCGACCTTCTC

CCCATGAACTGATGTTGATTAAAATCCCAGAAACCAATCAGCCCCTTACCCCATT

CCCCTCCCCAATTACTCATAACACATTTGGAATTAATGATTCAATAAAGATCACT SEQ

ID Sequence

NO

TACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCACCTCGGTAC

CCTCCTCCCAGCTCTGGTACTCCAGTCCTCGGCGGGCGGCGAACTTCCTCCACAC

CTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGA

TGTCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCT

ACGCGCGGAATCAGAATATCCCCTTCCTTACTCCCCCCTTTGTCTCATCCGATGG

ATTCAAAAACTTCCCACCTGGGGTCCTGTCACTCAAACTGGCTGACCCAATCGCC

ATCACTAATGGGGATGTCTCACTCAAGGTGGGAGGGGGACTAACTGTGGAACAA

GATAGTGGAAACCTAAGTGTAAACCCTAAGGCTCCATTGCAAGTTGGAACAGAC

AAAAAACTGGAATTGGCTTTAGCACCTCCATTTGATGTCAGAGATAACAAGCTA

GCTATTCTAGTAGGAGATGGATTAAAGGTAATAGATAGATCAATATCTGATTTG

CCAGGTTTGTTAAACTATCTTGTAGTTTTGACTGGCAAAGGAATTGGAAATGAAG

AATTAAAAAATGACGATGGTAGCAATAAAGGAGTCGGTTTATGTGTGAGAATTG

GAGAAGGAGGTGGTTTAACTTTTGATGATAAAGGTTATTTAGTAGCATGGAACA

ATAAACATGACATCCGCACACTTTGGACAACTTTAGACCCTTCTCCAAATTGTAA

GATAGATATAGAAAAAGACTCAAAACTAACTTTGGTACTGACAAAGTGCGGAAG

TCAGATTTTGGCAAATGTATCTCTAATTATAGTCAACGGAAAGTTTAAGATCCTT

AATAACAAAACAGACCCATCCCTACCTAAATCATTTAACATCAAACTACTGTTTG

ATCAAAATGGAGTTCTATTGGAAAATTCAAACATTGAAAAACAGTACCTAAACT

TTAGAAGTGGAGACTCTATTCTTCCAGAGCCATATAAAAATGCAATTGGATTTAT

GCCTAATTTACTAGCTTATGCTAAAGCTACAACTGATCAGTCTAAAATTTATGCA

AGGAACACTATATATGGAAATATCTACTTAGATAATCAGCCATATAATCCAGTT

GTAATTAAAATTACTTTTAATAATGAAGCAGATAGTGCTTATTCTATCACTTTTA

ACTATTCATGGACCAAGGACTATGACAATATCCCTTTTGATTCTACTTCATTTAC

CTTCTCCTATATCGCCCAAGAATGAAAGACCAATAAACATGTTCTCATTTGAAAA

TTTTCATGTATCTTTATTGATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCAC

CAGCCCATTTCACAGTGTAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGG

AAATGTTCTGATTAGTGCGGGAACTGGACTTGGGGTCTATAATCCACACAGTTTC

CTGGCGAGCCAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTC

ATCCAAGCGGGCCTCACAGTCCAAGGTTACAGTCTGGTGGAATGAGAAGAACGC

ACAGATTCATACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTC

AGCAGTCTCTGCCGCCGGGGCTCGGTGCGACTGCTGCAGATGGGATCGGGATCA

CAAGTCTCTCTGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTC

GGGCACAGCACCGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACAT

AATCACCATGTTATTCAGCAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATG

TTGGGGATGATGGAACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAGG

TGCCTGCCCCTCATGAACACACTG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGGGGCCAGCACTGATTGGCCGTTGCAAGAACCGTTAGTGA NO: CGTCACGACGCACGGCGTCAACGGTCGCCGCGGAGGCGTGGCCTAGTCCGGAAG 1435 CAAGTCGCGGGGCTGATAACGTATAAAAAAGCGGACTTTAAACCCGGAAACGG

CCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGT

GAAATTAGGCCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAAA

TACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGA

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

TCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCCG

CTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGTCTTCAACTGTGCCT

ATTGACATGGCCGCATTATTGCTGGAGGATTATGTGAGTACAATATTGGAGGAC

GAACTGCATCCATCTCCATTCGAGCTGGGACCTACACTTCAGGACCTATATGATT

TGGAGGTAGATGCCCATGATGACGACCCGAACGAAGAGGCTGTGAATTTAATAT

TTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCTACACC

ACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACGAGCT

AGACCTCCGATGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAACA SEQ

ID Sequence

NO

GGGTGAGCAGAGCATGACTCTAATCTCAGAATATGCTTGTGTGGTTGTGGAAGA

GCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAGATCCTGCCA

GTACCACCGGGATAAGACCGGAGACACGAACGCCTCCTGCGCTCTGTGTTACAT

GAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTAAATGTGAGAGAGACTG

AGTGCTTAACACATAACTGGGTGATGCTTAAACAGCTGTGCTAAGTGTGGTTTAT

TTTTGTTTCTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAAAAGAAGACCA

CCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGACCCAC

CCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTGAGGACTT

GTTACATGACATGGGTGGGGATGAACCTTTGGACCTAAGCTTGAAACGCCCCAG

GAACTAGGCTCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGTACAATAAAAGT

ATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGTGGCTTAGTCCTAT

ATAAGTGGCAACACCTGGGCACTGGGGCACAGACCTTCAGGGAGTTCCTGATGG

ATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGAGGATA

GTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTATCTCG

GATTGCTCTGGCCTGCTAGATTCTCTGAATCTCGGCCACCAGTCCCTTTTCCAGG

TTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAACTGAGCAG

GGGCTACATTCTGGACTTCGCAGCCATGCACCTGTGGAGGGCATGGGTGAGGCA

GCGGGGACAGAGAATCTTGAACTACTGGCTTATACAGCCAGCAGCTCCGGGTCT

TCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGCCAT

GGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGATT

GAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATGGC

CAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACCG

AGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACATGGCACG

AGCTACAGATGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGATAAATATGGCC

TGGAGCAGATAAAAACACATTGGTTGAACCCAGATGAGGATTGGGAGGAGGCC

ATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACATAGTGACC

AAGACCGTGAATATTAGACATGCCTGCTACATTTCGGGTAACGGGGCAGAGGTG

GTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATGAGA

GCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAATGGA

GAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCATGGC

TGCAGTTTCTTTGGCTTCAACAATATGTGCGCCGAGGTCTGGGGCGCTTCCAAGA

TCAGGGGATGTAAGTTTTATGGCTGTTGGATGGGCGTAGTGGGAAGACCCAAGA

GTGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTCTCTAC

CGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGATACGGGCTGTTTCTGC

CTGGTGAAGGGTACGGCCTCTCTGAAGCATAATATGGTGAAGGGCTGCACAGAT

GAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCCTGAAG

AACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGAGAATAAC

CTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACCTTCCAGCCG

TACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTTCTCCA

GGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGATCCTGA

GATACGATGAGACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAGACAC

ACCAGGATGCAGCCTGTGGCCCTGGATGTGACAGAGGAGCTGAGACCAGACCAC

CTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGCGGGGAGGACACAGAT

TAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAGGTGGGTGTC

TCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATGGGCCG

GAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGTGCTTCCAG

CAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCTCGACAGCA

CCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCAACGAGACTAGCCTCGA

GCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCCATCATCGCCGA

GGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCAGCTGGC SEQ

ID Sequence

NO

CGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAGCAGCAGCAGCAAAATAAATG

TCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGCGGTGGATT

TTTTCCAGGACCCGATAGAGGTGGGATTGGATGTTGAGGTACATGGGCATGAGC

CCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCTCTGGGGTCGTG

TTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGATGATGTCC

TTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGTTGGCAAAA

CGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTTTGGCCTGG

ATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGGGGTTCATGTTGTGCA

GGACCACCAGGACGGTGTAGCCTGTGCACTTGGGGAACTTGTCATGCAACTTGG

AAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAGGTTTTCCA

TGCACTCATCCATGATGATGGCGATGGGTCCGTGGGCTGCGGCTTTGGCAAAGA

CGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTGAGATCATCATAAGA

CATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACTATGGTTCCCTC

GGGCCCCGGGGCGAAGTTCCCCTCACAGATCTGCATCTCCCAGGCTTTCATCTCG

GAGGGGGGAATCATGTCCACCTGCGGGGCGATGAAAAAAACGGTTTCCGGGGC

GGGGGTGATGAGCTGCGAGGAGAGGAGGTTTCTCAGCAGCTGGGACTTGCCGCA

CCCGGTCGGACCGTAGATGACCCCGATGACTGGTTGCAGGTGGTAGTTCAAGGA

GATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTAAGCATGTCTCT

GACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCCCGCCCAGCGA

GAGGAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGTCCGTCGGCCAT

GGGCATCTTGGCGAGGGTCTGCGAGAGGAGTTCCAACCGGTCCCAGAGCTCGGT

GACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGTTGGGAC

GACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCAGCGTCATGT

CCTTCCAGGGTCTCAGGGTCCGAGTGAGGGTGGTCTCCGTCACGGTGAATGGGT

GGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCTGCTGGTGC

TGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGACCATGA

GCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTTTCCTTTGGA

AGAGCGCCCGCAGGCGGGACATAGGAGGGATTGCAGGGCGTAGAGCTTGGGCG

CTAGAAAGACGGACTCGGGGGCGAAGGCGTCCGCTCCGCAGTGGGCGCAGACG

GTCTCGCACTCGACGAGCCAGGTGAGCTCGGGGTGATCGGGGTCAAAAACCAGT

GCGTTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGACTTGATGGGCCT

GTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCACTCTGA

GACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGGGGTAGC

GGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACGGTATGCAGACACATGTCCCC

CTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGACCTGG

GGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCACTCTC

TTCCGCGTCGCTGTCTACGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAGA

GCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGGATTTG

ATGTTGGCCTGCCCTGCCGCGATGCTTTTGAGTAAACTTTCATCCATCTGGTCAG

AAAAGACAATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCATAGAGGGCGT

CTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGCACTTCCATTCG

GGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCGCGGTTA

TGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGGCTCGTTG

GTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGGGCAGCACATCCAGG

AGGTGCTCGTCGGGGGGGTCCGCATCGATGGTGAAGATGCCCGGACAGAGTTCC

TTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCATCTGCCACTCGC

GGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAAGGCATGGGA

TGTGTGAGGGCGGAGGCGTACATGCCGCAGATGTCGTAGACATAGATGGGCTCC

GAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGGCGCGC

ACGTAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGAGATTGGT SEQ

ID Sequence

NO

GCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCATGCGAGTT

TGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGCAGGCGGA

CCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAGCTCGG

CGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGTGTTTCGCGGATGATGTCAT

AACCCGCCTCTCCTTTCTTCTCCCATAGCTCGCGGTTGAGGGCGTACTCCTCGTC

ATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGAGCC

CAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCACGGG

GAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGAAGG

TGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTCGCAGCC

GCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAGGCAG

AGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATGAAATTGCG

GGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACCTGGGCGGC

GAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAGTTCCAT

GAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGTTCCTCGTAGGTGAGG

TCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTGGAGATGTGGG

TTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGCTCG

TCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGACGCAG

TAGAAGGTGAGGGGGTCACGCTCCCAGCGATCCCAGCGTAAGCGCACGGCGAG

ATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCATGACCAGCAT

GAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTACATC

GTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAACT

GGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGAAAT

CCCGCCGGCGAACCGAGCACTCATGCTGATGCTTGTAAAAGCGTCCGCAGTACT

CGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTTGA

GGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGCGTG

GGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGGGA

GCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACAAGGGCGCGC

AGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCAGGGGGCAGGGTTCTG

AGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACTTG

ATTTCTACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCTGC

GCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGCGC

TCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCACTTC

GGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGC

GACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGTGTGAAGACCACTGG

CCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATT

GACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGC

GATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCGCG

CGCTCGACGGTGGCGGCGAGGTCGTTGGAGATGCGACCCATGAGCTGCGAGAAG

GCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGGCG

TCGCGCGCGCGCATGACCACCTGCGCTAGGTTGAGCTCCACGTGGCGCGTGAAG

ACAGCGTAGTTGCGCAGGCGTTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTGC

TCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTGATGTCG

CCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAGTCCACGGCGAAGTTGAAA

AACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCGGATGAGC

TCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTCTT

CCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTGGT

GGCGGGGCGCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTC

GATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTTC

GCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGTC

CCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGGTGTAGG

GGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGTC

TAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGACGCT

GTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGGCG SEQ

ID Sequence

NO

GATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCG

CTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCA

TGCATGAGCCTTTCAATGTCATCACTGGCGGAGGCAGAGTCTTCCATGCGGGTG

ACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCG

GCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCG

ACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAGGTGCAGTTGGCCATGAGC

GACCAGTTAACGGTCTGCAAGCCGGGCTGCACGACCTCCGAGTACCTGAGCCGC

GAGAAGGCGCGCGAGTCGAATACGTAGTCGTTGCAGGTGCGCACGAGGTACTGG

TATCCGACTAGAAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGCTGGGTG

GCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGACG

TAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTC

GCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGCAC

GGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGAAA

GCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGCC

GCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAACG

TGGTATTGGCACTCCCGTCTCGACCCAAGCCCGATAGCCGCCAGGATACGGCGG

CCTGTCGGGCAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGAG

TCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCACCCC

GCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCC

CTTTTTTCTTTTTGCCAGATGCATCCCGTCCTGCGCCAAATGCGTCCCACCCCCCC

GGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGC

CACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCG

CCGTCCCCGGAGCGACACCCCCGAGTGCAGCTGCAGAAGGACGTGCGCCCGGCG

TACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGA

GATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCG

CCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGCATCA

GCCCCGCGCGCGCTCACGTGGCGGCGGCCAATCTGGTGACGGCCTACGAGCAGA

CGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCC

TGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGG

AGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTAACGGCGCAGCTGTTCCTGG

TGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATC

GCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATCAACATCTTGCAGAGCATC

GTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTA

CTCGGTGTTGAGCCTCGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTA

CGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCT

CAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCA

CAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTCATGC

TGAGTCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACT

TCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCG

CCTATGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGCACCC

GACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGAC

GACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAG

TCCTTTAGACAACAGCCGCAGGCCAACAGACTTTCGGCTATTCTGGAGGCGGTG

GTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCG

CTGGCGGAAAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCC

CTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGAC

CGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAA

CGAGGGCCTGGGCTCGTTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGC

GAACGTGCCGCGCGGGCAGGACGATTATACCAACTTTATCAGCGCGCTGCGGCT

GATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGCCCGGACTACTT

TTTCCAGACTAGCAGACAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAA SEQ

ID Sequence

NO

GAATCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGT

GAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTC

ACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGTCACCTGCTGACGCTG

TACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGAT

CACTAGTGTAAGCCGCGCGCTGGGTCAGAACGACACCGACAGTCTTAGAGCCAC

CCTGAACTTCTTGCTGACAAATAGACAGCAGAAGATTCCGGCGCAGTACGCGCT

GTCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAGCAGAGCGTAGGGCTTTT

CCTGATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAA

CATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTTATCAATAAGCTGATGGA

CTACCTGCACCGCGCGGCGTCCATGAACTCGGACTACTTTACCAATGCCATTTTG

AACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCT

GACCCCAACGACGGGTTTTTGTGGGACGACGTGGACAGCGCGGTGTTCTCACCG

ACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGCGCGGT

GGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTG

AACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAA

CGATTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATAACGGGAT

AGAGAGTTTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAG

GGAGCCTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGG

TGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGA

GCGGTGGGGTCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGGCGGCGGATGT

TTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTA

GAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGA

TGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTAC

GGAGGGCAGAAACAGCATTCGTTACTCAGAGCTGGCTCCGCTGTACGACACCAC

TCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCA

AAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCC

CGCCGAGGCCAGCACACAAACAATAAATTTTGACGAGCGGTCGCGGTGGGGCG

GTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGT

TTACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAAGGG

GCTGATGCAAATGATAGGAGCAAGGATATCTTAGAGTACCAGTGGTTTGAGTTT

ACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAAC

GCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGC

GATATTGGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTG

ACCAAGCTGGTGATGCCAGGGGTTTACACCTATGAGGCCTTCCACCCGGACGTG

GTGCTGCTGCCTGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTC

CTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAG

GATCTAGTAGGGGGCAACATCCCCGCCCTCCTGAATGTCAAGGAGTATCTGAAG

GATAAGGAAGAAGCTGGCACAGCAGATGCAAATACCATTAAGGCTCAGAATGA

TGCAGTCCCAAGAGGAGATAACTATGCATCAGCGGCAGAAGCCAAAGCAGCAG

GAAAAGAAATTGAGTTGAAGGCCATTTTGAAAGATGATTCAAACAGAAGCTACA

ATGTGATCGAGGGAACCACAGACACCCTGTACCGCAGTTGGTACCTGTCCTATA

CCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGG

ACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAG

ACCCCGTCACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTTGGCGC

CGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCC

CAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACA

ACCAGATCCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACG

TGCCTGCTCTCACAGATCACGGGACGCTTCCGCTGCGCAGCAGTATCCGCGGAG

TCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAA

GGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATG

TCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCA

CCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCG

GCCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCTACCGCCG SEQ

ID Sequence

NO

CCGCCGTGCGCACCACCGTCGACGATGTCATCGACTCGGTGGTCGCCGATGCGC

GCAACTATACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGG

CCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGAATCGCCAGG

CGCCACCGGAGTACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCC

AGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCCGCCACTGCA

CCCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATT

TCTAGCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTC

ACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTT

GTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCT

CCAGGTCGTCGCCCCGGAGATTTACGGACCCCCGGACCAGAAACCCCGCAAAAT

CAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGC

GCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGC

GTGTTGCGGCCAGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTC

AGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCA

GGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGG

AGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGAAGCCCG

TGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCA

AGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCC

GGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTC

AAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGAC

ATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAG

GTGCAGACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGTCTCCACTTCTACCG

CCGCCACGGCCACCGAGCCTCCCAGGAGGCGAATATGGGGCGCCGCCAGCCGGC

TGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGG

CACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCAC

CACCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCG

GGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCC

GTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCC

CGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCG

GCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTC

TGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATTCCGGGCATAG

CTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTT

AGACTCTGACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGC

GTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGAT

CGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGG

GCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAG

TAGCACGGGGCAGTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGA

AGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACC

AGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTG

GTTGAGATGGAAGATGCAACTCTTCCGCCGCCCAAGGGCGAAAAGCGGCCGCGG

CCCGACGCGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGA

GGCCGTGAAGGCCGGCATGCCCACCACGCGTATCATCGCGCCGCTGGCCACGGG

TGTAATGAAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCG

AAGGCAGCTCCGGTTGTGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTC

CCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGC

CTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAG

GACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGA

AGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGC

AGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCG

ACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCC

ACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGG

ATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCG

ACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGG SEQ

ID Sequence

NO

ACCGCGGTCCCAGCTTCAAACCCTACTCGGGCACGGCCTACAACAGTCTGGCCC

CCAAGGGCGCCCCCAACTCCAGTCAGTGGGAACAGAAAAAGGCCAATGCTGGA

GATCAAAAGGAAACACATACTTATGGTGTAGCTCCTATGGGTGGAGAAAACATT

ACAATTAGCGGTTTGCAAATTGGAACAGATACTACAAATGGCAAACAAGACCCG

ATATATGCTAATAAGCTGTATCAACCAGAGCCTCAAGTAGGAGAAGAAAACTGG

CAGGAAACAGAAGCCTTCTATGGAGGAAGGGCTCTTAAAAAGGAAACCAAGAT

GAAACCATGCTATGGCTCATTTGCCAGACCCACAAATGAAAAAGGAGGACAGGC

AAAACTAAGAGACCCTGAAAAAAGTCAAGAAGATTTTGACATAGACCTAGCATT

CTTTGATACTCCGGGAGGAACTTTAACAGGTGGTGGAACGGAATACAAAGCAGA

CATTGTTATGTGCACTGAAAATGTTAATCTTGAAACCCCGGACACCCACGTGGTG

TATAAACCAGGCAAAGATGATGACAGTTCAGAAATCAACTTGGTTCAGCAGTCC

ATGCCCAACAGACCTAACTACATCGGCTTCAGGGACAACTTTGTGGGTCTCATGT

ACTACAACAGCACTGGCAACATGGGTGTGCTGGCCGGTCAGGCTTCTCAGTTGA

ATGCTGTGGTCGACTTGCAAGACAGAAACACAGAGCTGTCTTACCAGCTCTTGCT

AGATTCTCTGGGCGACAGAACCAGGTACTTTAGCATGTGGAACTCTGCGGTGGA

CAGCTATGATCCCGATGTCAGGATCATTGAGAATCACGGTGTGGAAGATGAACT

TCCCAACTATTGCTTCCCATTGGATGGGTCTGGCACCAATGCTGCTTATGAAGGT

GTAAAAGTTAAAAATGGAGAAGATGGGGATCAAGAGAGCGAATGGGAAAAAGA

CACCAATGTGGCAGATCGAAACCAAATATGCAAGGGCAACATCTACGCCATGGA

GATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAATGTGGCCCTG

TACCTGCCTGACTCCTACAAGTACACGCCGGCCAACGTCACGCTGCCCGCCAAC

ACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCCCCCTCGCTGGTGGAC

GCCTACATCAACATCGGCGCCCGCTGGTCGTTGGACCCCATGGACAACGTCAAC

CCCTTCAACCACCACCGCAATGCGGGCCTGCGCTACCGCTCCATGCTTCTGGGCA

ACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAA

GAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGA

CGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGATCTGCGCGTCGACGGCGC

CTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCAC

AACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCC

TTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCA

CCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAG

TTTCACCCGGCTCAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACCCC

TACTTTGTCTACTCGGGCTCCATCCCCTATCTCGACGGGACCTTCTACCTCAACC

ACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAA

CGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGA

GGGCTACAATGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGAT

GCTCTCCCACTACAACATCGGTTACCAGGGCTTCCATGTGCCCGAGGGCTACAA

GGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTC

GATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAAC

AACTCTGGCTTCACCGGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACC

CCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAGCCGTGCCATCCGTCACCCA

GAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTC

ATGTCCATGGGCGCCCTTACCGACCTGGGTCAGAACATGCTCTACGCCAACTCG

GCCCACGCGCTCGACATGACCTTTGAGGTGGACCCCATGGATGAGCCCACCCTC

CTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCG

GCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGCAACGCCACCAC

CTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTG

GGCTGCGGGCCCTACTTTTTGGGCACCCACGACAAGCGCTTCCCGGGCTTTCTCG

CCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAG

GCGTGCACTGGCTCGCCTTTGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTT

CGACCCCTTTGGGTTCTCGGACCGCCGGCTGAAGCAGATTTACAGCTTCGAGTAC

GAGGCCATGCTACGCCGCAGCGCCCTGGCCTCCTCGCCCGACCGCTGTCTCAGCC

TCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTT SEQ

ID Sequence

NO

TCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGG

AAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCC

ACAGGTGCTACCCACCCTCCGGCGCAACCAGGAGCAGCTCTACCGCTTCCTCGC

GCGCCACTCCCCTTACTTTCGATCCCACCGCGCCGCCATCGAACACGCCACCGCT

TTTGATAAAATGAAACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACA

TGCACTGGAGTATATGCAAGTTATTTAAAAGTCAAAGGGGTTCTCGCGCTCGTCG

TTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGTACTGGTACTTGGGCTGCCAC

TTGAACTCGGGGATCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTC

CACATGCGCCGGCTCATCTGCAGGGCGCCCAGCATGTCCGGGCCGGAGATCTTG

AAATCGCAGTTGGGGCCGGTGCTTTGCGCGCGCGAGTTGCGGTACACGGGGTTG

CAGCACTGGAACACCATCAGACTGGGGTACTTCACACTGGCAAGCACGCTCTTG

TCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCA

TCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACT

CGCAGTGAACGGGCATTAGCATCATTCCCGCGCCGCGCTGCATATTCGGGTAGA

GGGCCTTGACAAAGGCCGCGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTC

GCTGAAAAACAGGCCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCATCCGGC

ATCCTGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGGCC

CCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGTTGCTCCTTCAACGCGCGCTGC

CCGTTCTCACTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCG

TTCCATGCAGACACTTGAGCTGACCTTCCACCTCGGTGCAGCCGTGGTCCCACAG

GGCGCAGCCGGTGCACTCCCAGTTCTTGTGCGCGATCCCGCTGTGGCTGAAGAT

GTAACCTTGCAACATGCGGCCCATTATGGTGCTAAAGGTTTTCTGAGTGGTGAAG

GTCAGTTGCAGACCGCGGGCCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGA

AGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTGTCGA

CGCGGTAACGTTCCATCAGCACGTTCATGGTATCCATGCCCTTCTCCCAGGACGA

GACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAGGACACCGGGTGTCGCGG

GCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCT

GAATCCCACTCCCACGATCACGGCATCTTCCTGGGGCATCTCTTCGTCGGGGTCT

ACCTTGGTCACATGCTTGGTCTTCCTGGCTTGCTTCTTTTTTGGAGGGCTGTCCAC

GGGAACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCG

CTTGGTGGGCAGAGGAGGTGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGG

ATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTGGCCTCTCGCTCCATGAACCG

GCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCA

GCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCACGAGCAACCCAAAA

TCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGATG

AACAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAGGAGAGGAG

GATGTGCTGCTGAAACACCTGCAGCGCCAGTCCATCATCCTCCGGGACGCCCTG

GCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTAAGTAGGGCCTACGA

GCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACATG

CGAGCCCAACCCGCGTCTCAACTTCTACCCCGTCTTTGCGGTCCCCGAGGCCCTC

GCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCA

ACCGCACCCGCGCCGACGCGCTCCTCGCTTTGGGGCCCGGCGCGCGCATACCTG

ATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACG

AGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACT

AGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCTCAAGCGC

AGCGTCGAGCTTACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCA

TGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTCGATGAAA

GTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGACGAGATGCTCG

CGCGCTGGCTCGGGACCCGCGACCCCCAGGCTTTGGAACAGCGGCGCAAACTCA

CGACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACACTTTCAGGCA CGGTTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGT CTCCTGCCTGGGGATCCTGCACGAGAACCGCCTGGGCCAGACCGTGCTCCACTCT SEQ

ID Sequence

NO

ACCCTGAAGGGCGAGGCGCGGCGGGACTATGTCCGCGACTGCGTCTTTCTCTTTC

TCTGCCACACATGGCAAGCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAGGACG

AGAACCTAAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGA

CGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCCG

AGCGCCTGAGACAGACGCTGAAAGGCGGGCTGCCCGACTTCATGAGCCAGAGC

ATGTTGCAAAACTACCGCACTTTCATTCTTGAGCGATCAGGCATCCTGCCCGCCA

CCTGCAACGCCTTCCCCTCCGACTTTGTACCGCTGAGCTACCGCGAGTGTCCCCC

GCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACATCGCCTACCAC

TCGGACGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCACTGTCGC

TGCAACCTGTGCTCCCCGCATCGCTCCCTGGTCTGCAACCCCCAGCTCCTGAGCG

AGACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTC

CGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACC

CGAAGACTACCACGCCCATGAGATAAAGTTCTTTGAGGACCAATCGCGTCCGCA

GCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATT

GCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGT

CTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGC

CGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAATGGGACAG

CCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAGAATTGGAA

GAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCC

GGCAGCCCCGCCGGTCACGGATACAACCTCCGCTCCGGTCAAGCCTCCTCGTAG

ATGGGATCAAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGGCTACCGATCAT

GGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAAC

ATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCA

ACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCAAGTCAAAGGA

GTCGCCGGAGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCCTTGAC

AGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTGCGCTCGCTC

ACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAA

GACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGC

GCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGCAAGGA

GATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCCGCGGG

CGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCCTCGATG

ATCTCACAGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGTTGGAGCAG

GCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCC

ACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCGTGAC

GCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCT

TCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCGAGGC

AGAGGCACACAGCTTAACGACGAGTTGGTGAGCTCTTCAATCGGTCTGCGACCG

GACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCCTCCTTCACTCCCCACCAG

GCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGA

ACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGG

GATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGATGCAGTGAGAG

AAGCGGTGGACGGCTACGACTGAATGTCCCATGCTGACTCGGCTGAGCTCGCTC

GGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCT

GCGGACTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCGCACG

GAGTGCGGATCACCGTAGAGGGCACCGCCGAGTCTCACCTGGTCAGGTTCTTCA

CCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCGTCT

ACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGTTGTACTCTGTGTGCT

GAGTTTAATAAAAGCTAAACTCCTACAATACTCTGGGATCCCGTGTCGTCGCACT

CGCAACGAGATCTTCAACCTCACCAACCAGACTGAGGTAAAACTCAACTGCAGA

CCGGGGGGCAAATACATCCTCTGGCTCTTTGAAAACACTTCCTTCGCAGTCTCCA

ACGCCTGCGCCAACGACGGTATTGAAATACCCAACAACCTTACCAGTGGACTAA

CTTACACTACCAGAAAGACTAAGCTAGTACTCTACAATCCTTTTGTAGAGGGAA SEQ

ID Sequence

NO

CCTACCACTGCCAGAGCGGACCTTGCTTCCACACTTTCACTTTGGTGAACGTTAC

CGACAGCAGCACAGTCGCTCCAGAAACATCTAACCTTTTTGATACTAACACTCCT

AAAACCGGAGGTGAGCTCTGGGTTCCCTCTTTAACAGAGGGGGGTAAACATATT

GAAGCGGTTGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTG

CTGTATTACCTTCCTTGCTGGATCGAAATCAAAATCTTTATCTGCTGGGTCATAC

ATTGTTGGGAGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTTGGG

GGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATGAG

AGGAGTGTGATATGCACAGTAGTCATCAAATGCGAGCATGCATGTCCTCTCAAC

ATCACATTCAAGAATAAGACCATGGGAAATTCATGGGTGGGCGATTGGGAACCA

GGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGGAATCACACT

GACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGC

TTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGGGGCTTTAGTATGG

TTCCTGAAGCACAAGCCTAGGTATGGAAATGAGGAGAAGGAAAAATTGCTATAA

TTCTTGTAGCTTTTAGTCAGGCAGGATTTCATACTATCAATGCTACATGGTGGGC

TAATGTAACTTTAGTGGGACCCTCAGATACGCCAGTCACATGGTATGATAAACA

GGGAATGCAGTTCTGTGATGGAAATACAGTTAAGAATCCTCAAATAAGACATGA

GTGTAATGAGCAAAACCTTACACTAATTCATGTGAACAAAACCCATGAAAGGAC

ATACATGGGTTATAATAGACAGAGTACTCATAAGGAAGACTATAAAGTCATAGT

TATACCGCCTCCTCCTGCTACTGTAAAGCCACAGTCAGGTCCAGAGTATGTATAT

GTTAATATGGGAGAGAACAAAACCTTAGTTGGACCTCCAGGAATACCAGTTACT

TGGTATGACGGAGAAGGAAATAAATTCTGCGATGGAGAAAAAGTTGAACATGC

AGAATTTAATCATACATGTGACGAGCAAAATCTTACACTGTTGTTTATAAATCTT

ACACATGATGGGGCTTATCTTGGCTATAATCACCAGGGAACTAAAAGAACTTGG

TATGAGGTTGTAGTGACAGATGGTTTTCCAAAATCAGGGGAGATGAAAATCGAA

GATCAGAGTAGACAAACAGAACAAAAACAAAATGAGCATAAACAGGGTGGGCA

GAAACAGGAGGGGCAAAAAGAGACAAGTCAAAAGAAAGATAATGACAAACAG

AAGGCGACACACAGGAGGCCATCAAAACTAAAGCCGCACACACCTGAAGCAAA

ACTGATTACAGTTTCTAGTGGGTCTAACTTAACATTACTTGGGCCAGATGGAAAG

GTCACTTGGTATGATGATGATTTAAAAAGACCATGCGAGCCTGGGTATAAGTTA

GGGTGTAAGTGTGACAATCAAAACCTAACGCTAATCAATGTAACTAAACTTTAT

GAGGGAGTTTACTATGGTACTAATGACAGAGGTAACAGCAAAAGATACAGATTA

AAAGTAAACACTACTAATTCTCAAAGTGTGAAAATTCAGCCATACAACAGGTCT

ACTACTCCTGATCAGAAACACAGATTTGAATTGCAAATTGATTCTAATCAAGAC

AATGACAAAATTCCATCAACCACTGTGGCAATCGTGGTGGGAGTGATTGCGGGC

TTCATAACTATAATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCCA

GGGCATACAATCATATGGTAGACCCACTACTTAGCTTCTCTTACTGAGACTCAGT

CACTTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCATAG

TCACATTAGTATCAGCTGATTACAAACAAGTTCAAGTTAGCAGAGGAGGAAATA

TTACATTAGATGGACCATTCGATAATACTACATGGACAAGATATCATAATGATG

GACATAAAAATGGTTGGATGAAAATTTGCACATGGACTGGAGCAACATATAAAT

GTCACAATAATGGAAGCATTACTATTTTTGCTTTCAACATTACATCCGGAGTTTA

CAAAGCAGAAGGGTATAAAAAAGAGGTTAGAACATTTTCATCTAGAAATCAAA

AACATACAATTGAAGATTCTGGAGATTATGAACAACAAAAAATATATCTATATA

ATCTAACAATAATTGAAGCGCCAACTACTAAAGCACCCACCACAGTTAGAACAA

CCACGCAGACAACTACTAGGGAAACAACACATCCAACCACCACAGTCAGTACAA

CTCACACTACACATCTAGACACTACAGTGCAGAATACTACTTTATTGATTGGGTT

TTTACTAAGAGGAAATGAAAGTACTACTGATCAGACAGAGGCTACCTCAAGTGC

CTTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTCGGTAAATGAAACGATCGTG

CCGATGATGTATGGCCAACCTTACTCAGGTTTGGATATTCAAATTACTTTTCTGG

TTGTCTGTGGGATCTTTATTCTTGTGGTTCTTTTGTACTTTGTCTGCTGCAAAGCC

AGAGAAAAATCTAGGAGGCCCATCTACAGGCCAGTAATCGGGGATCCTCAGCCT SEQ

ID Sequence

NO

CTCCAAGTGGAAGGGGGTCTAAGGAATCTTCTCTTCTCTTTTTCAGTATGGTGAT

TCAGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGTCTATTCAACGT

GTGCGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTTGGGCCCTTC

CCCACCTACCTTCTTTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTG

CCTGGTCGTCACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTAT

CTCCACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTC

ATTTGACCATGCAGACTCTGCTCATACTGCTATCCTTCCTCTCCCCTGCCCTCGCT

GATGATGATTACTCTAAGTGCAAATTTGTGGAGCTATGGAATTTCTTAGACTGCT

ATGATGCTAAAATGGATATGCCATCCTATTACTTGGTGATTGTGGGGATAGTCAT

GGTCTGCTCCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTCGGCT

GGAACTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCTTCCA

CGCCGCCACCCACACCGCCTCCCCGCAGAAATCAGTTTCCCATGATTCAGTACTT

AGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGC

GGCGATGACTGACAACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCA

GCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCT

CCTCGATGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAA

ACAGGCAAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGC

CTATGAGCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCC

CATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTG

CGAAAGCCCCGAGTGCATCTACTCCCTCCTCAAGACCCTTTGCGGACTTCGCGAC

CTCCTCCCCATGAACTGATTGATTAAAGCCCAAAAAACCAATCAAACCCCTTCCC

ATTAGCCCCAAATAAACAATCATTGGAAATAATCATTCAATAAAGATCACTTAC

TTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTTAGCAGCACCTCGGTACCCT

CCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAACTTTCTCCACACCTT

GAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTTTTCCCTCTCAGATGT

CAAAGAGGCTTCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGACTACG

CGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCCGATGGATTC

CAAAACTTCCCCCCTGGTGTCCTGTCACTCAAATTGGCTGACCCAATCGCTATCA

CCAATGGTGATGTCTCACTCAAGGTGGGAGGGGGACTTACTTTACAAGATGGAA

CCGGAAAACTAACTATCGACACCAAGACTCCCTTGCAAGTTGCAAATAATAAAT

TAGAACTTGCGTTTGATGCACCATTGTATGAAAAAAATGGAAAACTTGCTTTAA

AAACAGGCCATGGATTAGCTGTTTTAACCAAAGACATTGGCATACCAGAATTAA

TTGGATCCCTTGTGATCTTAACTGGAAAAGGAATTGGGACAGGTACTGTTGCAG

GAGGAGGAACTATAGATGTAAGACTGGGTGATGATGGAGGTTTATCATTTGATA

AAAAGGGTGATCTAGTAGCCTGGAATAAAAAAAATGACAGGCGCACTTTGTGGA

CAACACCTGATCCATCCCCAAACTGCAGAGTATCAGAAGATAAAGATTCAAAAC

TAACTTTAATTCTTACAAAATGTGGAAGTCAGATCCTAGCAAGTTTTTCACTGCT

TGTAGTCAAAGGGACGTATGCAACTGTTGATAAAAATACAACTAATAAACAATT

TAGCATTAAACTACTGTTTGATGCAAATGGAAAGCTTAAAAGCGAATCAAACCT

TAGTGGTTATTGGAACTATAGAAGTGATAATAGTGTTGTTAGTACTCCCTATGAC

AATGCAGTGCCTTTCATGCCAAATACCACGGCTTATCCTGAAAATAAGAAAAGT

TCGGCTAAAAAAACTATTGTTGGCAATGTCTACCTAGAAGGTAATGCGGGTCAA

CCAGTAGCCGTTGCTATTAGTTTCAATAAGGAAACTACTGCTGACTATTCAATAA

CATTTGACTTTGCGTGGAGCAAAGCTTATGAAACCCCTGTGCCTTTTGACACCTC

CTCCATGACATTCTCATATATTGCCCAGGAAAATCAAGACAAAGGCGAATAAAG

AGTCTCCCACCACCAGCCCATTTCACAGTGTACACGATTCTCTCAGCACGGGTGG

CCTTAAATAGGGAAATGTTCTGATTAGTGCGGGAACTGGACTTGGGGTCTATAA

TCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATTGAGATGAAGCCGT

CCTCTGAAAAGTCATCCAAGCGGGCCTCACAGTCCAAGGTCACAGTCTAGTGGA

ATGAGAAGAACGCACAGATTCATATTCGGAAAACAGGATGGGTCTGTGCCTCTC

CATCAGCGCCCTCAGCAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGCTGCAGAT

GGGATCGGGATCACAAGTCTCTCTGACTATGATCCCCACAGCCTTCAGCATCAGT SEQ

ID Sequence

NO

CTCCTGGTGCGTCGGGCACAGCACCGCATCCTGATCTCGCTCATGTTCTCACAGT

AAGTGCAGCACATAATCACCATGTTATTCAGCAGACCATAATTCAGGGTGCTCC

AGCCAAAACTCATGTTGGGGATGATGGAACCCACGTGACCATCGTACCAGATGC

GGCAGTATATCAGGTGCCTGCCCCTCATGAACACACTGCCCATATACATGATCTC

TTTGGGCATGTCTCTGTTCACAATCTGACGGTACCATGGGAAAC

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGCAAATGAGGTA ID ATTTAAAAAAGTGCGCGTTGTGTGGTGATTGGCTGCGGGGTGAACGGCTAAAAG NO: GGGCGGGGCAATGTTGGGAGGTTACGTGACTTATGTGGGAGGAGTTATGTTGCA 1436 AGTTATCGCGGTAAAGGTGACGTAAAACGAGGTGTGGTTTGGACACGGAAGTAG

ACAGTTTTCCCACGCTTACTGACAGGATATGAGGTAGTTTTGGGCGGATGCAAGT

GAAAATTCTCCATTTTCGCGCGAAAACTGAATGAGGAAGTGAATTTCTGAGTCA

TTTCGCGGTTATGACAGGGTGGAGTATTTGCCGAGGGCCGAGTAGACTTTGACC

ACGAGTTCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCTCCTCC

GCGCCGCGAGTCAGTTCTGCGCTTTGAAAATGAGACACCTGCGATTCCTGCCAC

AGGAGATTATCTCCAGCGAGACCGGGATCGAAATACTGGAGTTTGTGGTAAATA

CCCTGATGGGAGATGACCCGGAACCGCCAGTGCAGCCTTTCGATCCACCTACGC

TGCACGACCTGTATGATTTAGAGGTAGACGGGCCGGATGATCCCAATGAGGAAG

CATAAACCCTCCTCCTGAGACCCTTGATACCCCAGGGGTGGTTGTGGAAAGCGG

CACAGGTGGGAAAAAATTGCCTGATCTGGGAGCAGCTGAAATGGACTTGCGTTG

TTATGAAGAGGGTTTTCCTCCGAGTGATGATGAAGATGGGGAAACTGAACAGTC

CATCCATACCGCAGTGAATGAGGGAGTAAAAGCTGCCAGCGATGTTTTTAAGTT

GGACTGTCCGGAGCTGCCTGGTCATGGCTGTAAGTCTTGTGAATTTCACAGGAAT

AACACTGGAATGAAAGAACTATTGTGCTCGCTTTGCTATATGAGAATGCACTGC

CACTTTATTTACAGTAAGTGTATTTAAGTGAAATTTAAAGGAATAGTGTAGCTGT

GTGTCTGATGATGAGTCGCCTTCTCCTGATTCAACTACCTCACCTCCTGAAATTC

AGGCGCCCGTACCTGCAAACGTATGCAAGCCCATTCCTGTGAAGCCTAAGTCTG

GGAAACGCCCTGCTGTGGATAAGCTTGAGGACTTGTTGGAGGGTGGGGATGGAC

CTTTGGACCTTAGTACCCGGAAACTGCCAAGGCAATGAGTGCCCTGCAGCTGTG

TTTATTTAATGTGACGTCATGTAATAAAATTATGTCAGCTGCTGAGTGTTTTATTG

CTTATTGGGTGGGGACTTGGATATATAAGTAGGAGCAGATCTGTGTGGTTAGCTC

ATAGCAACCTGCTGCCATCCATGGAGGTTTGGGCTATCTTGGAAGACCTGAGAC

AGACTAGGCTACTGCTAGAAAACGCCTCGGACGGAGTCTCTGGCTTTTGGAGAT

TCTGGTTCGGAGGTGATCTAGCTAGGCTAGTGTTTAGGATAAAACAGGACTACA

GGGAAGAATTTGAAAAGTTATTGGACGACAGTCCAGGACTTTTTGAAGCTCTTA

ACTTGGGCCATCAGGCTCATTTTAAGGAGAAGGTTTTATCAGTTTTAGATTTTTC

TACTCCTGGTAGAACTGCTGCTGCTGTAGCTTTTCTTACTTTTATATTGGATAAAT

GGATCCGCCAAACCCACTTCAGCAAGGGATACGTTTTGGATTTCATAGCAGCAG

CTTTGTGGAGAACATGGAAGGCTCGCAGGATGAGGACAATCTTAGATTACTGGC

CAGTGCAGCCTCTGGGAGTAGCAGGGATACTGAGACACCCACCGGCCATGCCAG

CGGTTCTGGAGGAGGAGCAGCAGGAGGACAATCCGAGAGCCGGCCTGGACCCT

CCGGTGGAGGAGTAGCTGACCTGTTTCCTGAACTGCGACGGGTGCTTACTAGGT

CTACGTCCAGTGGACAGGACAGGGGCATTAAGAGGGAGAGGAATCCTAGTGGG

AATAATTTAAGAACCGAGTTGGCTTTAAGTTTAATGAGCCGTAGGCGTCCTGAA

ACTGTTTGGTGGCATGAGGTTCAGAGCGAAGGCAGGGATGAAGTTTCAATATTG

CAGGAGAAATATTCACTAGAACAACTTAAGACCTGTTGGTTGGAACCTGAGGAT

GATTGGGAAGTGGCCATTAGGAATTATGCTAAGATATCTCTGAGGCCTGATAAA SEQ

ID Sequence

NO

CAGTATAGAATTACTAAGAAGATTAATATTAGAAATGCATGCTACATATTAGGG AATGGGGCAGAGGTTATAATAGATACACAAGATAAAGCAGCTTTTAGATGTTGT ATGATGGGTATGTGGCCAGGGGTTGTCGGCATGGAAGCAGTAACATTTATGAAT ATTAGGTTTAGAGGGGATGGGTATAATGGCATTGTATTTATGGCTAACACTAAG

AGGTAGGGTCAAGAGTCAGTTGTCTGCGAAGAAATGCATGTTTGAGAGATGTAA

TCTTGGCATACTGAATGAAGGTGAAGCAAGGGTCCGCCACTGCGCAGCTACAGA

AACTGGCTGCTTCATTCTAATAAAGGGAAATGCCAGTGTGAAGCATAATATGAT

CTGTGGACATTCGGATGAGAGACCTTATCAGATGCTGACCTGCGCTGGTGGACA

TTGCAATATTCTTGCTACCGTGCATATCGTTTCCCATGCACGCAAGAAATGGCCT

GTATTTGAACATAATGTGATTACCAAGTGCACCATGCACATAGGTGGTCGCAGG

GGAATGTTTATGCCTTACCAGTGTAACATGAATCATGTGAAGGTGATGTTGGAA

CCAGATGCCTTTTCCAGAGTGAGTTTAACAGGAATCTTTGATATGAATATTCAAC

TATGGAAGATCCTGAGATATGATGACACTAAACCGAGGGTGCGCGCATGCGAAT

GCGGAGGCAAGCATGCTAGATTCCAGCCGGTGTGCGTGGATGTGACTGAAGACC

TGAGACCCGATCATTTGGTGCTTGCCTGCACTGGAGCGGAGTTCGGTTCTAGTGG

TGAAGAAACTGACTAAAGTGAGTAGTGGGGCAAGATGTGGATGGGGACTTTGA

GGTTGGTAAGGTGGACAGATTGGGTAAATTTTGTTAATTTCTGTCTTGCAGCTGC

CATGAGTGGAAGCCCTTCTTTTGAGGGGGGAGTATTTAGCCCTTATCTGACGGGC

AGGCTCCCACCATGGGCAGGAGTTCGTCAGAATGTCATGGGATCCACTGTGGAT

GGGAGACCCGTCCAGCCCGCCAATTCCTCAACGCTGACCTATGCCACTTTGAGTT

CGTCATCATTGGATGCAGCTGCAGCCGCCGCCGCTACTGCTGCGGCCAACACCA

TCCTTGGAATGGGCTATTACGGAAGCATCGTTGCCAATTCCACTTCCTCTAATAA

CCCTTCAACCCTGGCTGAGGACAAGCTACTTGTTCTCTTGGCTCAGCTTGAGGCC

TTAACCCAACGCTTAGGCGAACTGTCTAAGCAGGTGGCCCAGTTGCGTGAGCAA

ACTGAGTCTGCTGTTGCCACAGCAAAGTCTAAATAAAGATCTCAAATCAATAAA

ACCCTGTAAAGGTGGGATTGAATGTTTAGATACATGGGCATTAGTCCGTCTCGG

GGGTGGAGATAGCTCCATTGAAGAGCCTCTTGCTCCGGGGTAGTGTTATAAATC

ACCCAGTCATAGCAAGGTCGGAGTGCATGGTGTTGCACAATATCTTTTAGGAGC

AGACTAATTGCAACGGGGAGGCCCTTAGTGTAGGTGTTTACAAATCTGTTGAGC

TGGGACGGGTGCATCCGGGGTGAAATTATATGCATTTTGGACTGGATCTTGAGG

TTGGCAATGTTGCCGCCTAGATCCCGTCTCGGGTTCATATTGTGCAGAACCACCA

AGACAGTGTATCCGGTGCACTTGGGAAATTTATCATGCAGCTTAGAGGGAAAAG

CATGAAAAAATTTGGAGACGCCTTTGTGACCCCCCAGATTCTCCATGCACTCATC

CATAATGATAGCGATGGGGCCGTGGGCAGCGGCACGGGCGAACACGTTCCGGG

GGTCTGAAACATCATAGTTATGCTCCTGAGTCAGGTCATCATAAGCCATTTTAAT

AAACTTTGGGCGGAGGGTGCCAGATTGGGGGATGAAAGTTCCCTCTAGCCCGGG

AGCATAGTTTCCCTCACATATTTGCATTTCCCAGGCTTTCAGTTCCGAGGGGGGG

ATCATGTCCACCTGCGGGGCTATAAAAAATACCGTTTCTGGAGCCGGGGTGATT

AACTGGGATGAGAGCAAATTCCTAAGCAGCTGAGACTTGCCGCACCCAGTGGGA

CCGTAAATGACCCCAATTACGGGTTGCAGATGGTAGTTTAGGGAGCGACAGCTG

CCGTCCTCCCGGAGCAGGGGGGCCACTTCGTTCATCATTTCCCTTACATGGATAT

TTTCCCGCACCAAGTCCGTTAGGAGGCGCTCTCCCCCAAGGGATAGAAGCTCCT

GGAGCGAGGAGAAGTTTTTCAACGGTTTCAGCCCGTCAGCCATGGGCATTTTGG

AAAGAGTCTGTTGCAAGAGCTCGAGCCGATCCCAGAGCTCGGTGATGTGCTCTA

TGGCATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTGGGACGGCTCCTGGAG

TAGGGAATCAGACGATGGGCGTCCAGCGCTGCTAGGGTCCGATCCTTCCATGGT

CGCAGCGTCCGAGTCAGGGTTGTTTCCGTCACGGTGAAGGGGTGCGCGCCTGGT

TGGGCGCTTGCGAGGGTGCGCTTCAGACTCATCCTGCTGGTCGAGAACCGCTGC

CGATCGGCGCCCTGCATGTCGGCCAGGTAGCAGTTTACCATGAGTTCGTAGTTGA SEQ

ID Sequence

NO

GCGCCTCGGCCGCGTGGCCTTTGGCACGGAGCTTACCTTTGGAAGTTTTATGGCA

GGCGGGGCAGTAGATACATTTGAGGGCATACAGCTTGGGCGCGAGGAAAATGG

ATTCGGGGGAGTATGCATCCGCACCGCAGGAGGCGCAGACGGTTTCGCACTCCA

CGAGCCAGGTCAGATCCGGCTCATCGGGGTCAAAAACAAGTTTTCCGCCATGTT

TTTTGATGCGTTTCTTACCTTTGGTTTCCATGAGTTCGTGTCCCCGCTGGGTGACA

AAGAGGCTGTCCGTGTCCCCGTAGACCGACTTTATGGGCCTGTCCTCGAGCGGA

GTGCCTCGGTCCTCTTCGTAGAGGAACCCAGCCCACTCTGATACAAAAGCGCGT

GTCCAGGCCAGCACAAAGGAGGCCACGTGGGAGGGGTAGCGGTCGTTGTCAAC

CAGTGGGTCCACCTTCTCTACGGTATGTAAACACATGTCCCCCTCCTCCACATCC

AAGAATGTGATTGGCTTGTAAGTGTAGGCCACGTGACCAGGGGTCCCCGCCGGG

GGGGTATAAAAGGGGGCGGGCCTCTGTTCGTCCTCACTGTCTTCAGGATCGCTGT

CCAGGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCT

CTGCACTCAGGTTGTCAGTTTCTAGGAACGAGGAGGATTTGATATTGACAGTACC

AGCAGAGATGCCTTTCATAAGACTCTCGTCCATCTGGTCAGAAAACACAATCTTC

TTGTTGTCCAGCTTGGTGGCAAATGATCCATAAAGGGCATTGGACAGAAGCTTG

GCGATGGAGCGCATGGTTTGGTTCTTTTCCTTGTCCGCGCGCTCCTTGGCGGCGA

TGTTAAGCTGGACGTACTCGCGCGCCACACATTTCCATTCAGGGAAGATGGTTGT

CAGTTCATCCGGAACTATTCTGACTCGCCATCCCCTATTGTGCAGGGTTATCAGA

TCCACACTGGTGGCCACCTCGCCTCGGAGGGGCTCATTGGTCCAGCAGAGTCGA

CCTCCTTTTCTTGAACAGAAAGGGGGGAGGGGGTCTAGCATGAACTCATCAGGG

GGGTCCGCATCTATGGTAAATATTCCCGGTAGCAAATCTTTGTCAAAATAGCTGA

TGGTGGCGGGATCACCCAAGGTCATCTGCCATTCTCGAACTGCCAGCGCGCGCT

CATAGGGGTTAAGAGGGGTGCCCCAGGGCATGGGGTGGGTGAGCGCGGAGGCA

TACATGCCACAGATATCGTAGACATAGAGGGGCTCTTCGAGGATGCCGATGTAA

GTGGGATAACAGCGCCCCCCTCTGATGCTTGCTCGCACATAGTCATAGAGTTCAT

TGTAAACGATCTGGCGAAAGATGGCATGGGAATTGGAAGAGATAGTAGGTCTCT

GGAATATGTTAAAATGGGCATGAGGTAGGCCTACAGAGTCCCTTATGAAGTGGG

CATATGACTCTTGCAGCTTGGCTACCAGCTCGGCGGTGACGAGTACGTCCAGGG

CACAGTAGTCGAGAGTTTCCTGGATGATGTCATAACGCGGTTGGCTTTTCTTTTC

CCACAGCTCGCGGTTGAGAAGGTATTCTTCGCGATCCTTCCAGTACTCTTCGAGG

GGAAACCCGTCTTTTTCTGCACGGTAAGAGCCCAACATGTAGAACTGATTGACT

GCCTTGTAGGGACAGCATCCCTTCTCCACTGGGAGAGAGTATGCTTGGGCTGCAT

TGCGCAGCGAGGTATGAGTGAGAGCAAAAGTGTCCCTGACCATGACTTTGAGGA

ATTGATACTTGAAGTCGATGTCATCACAGGCCCCCTGTTCCCAGAGTTGGAAGTC

CACCCGCTTCTTGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCATTGAAGAG

GATCTTGCCGGCCCTGGGCATGAAATTTCGGGTGATTCTGAAAGGCTGAGGGAC

CTCTGCTCGGTTATTGATAACCTGAGCGGCCAAGACGATCTCATCAAAGCCATTG

ATGTTGTGCCCCACTATGTACAGTTCTAAGAATCGAGGTGTGCCCCTGACATGAG

GCAGCTTCTTGAGTTCTTCAAAAGTGAGGTCTGTAGGGTCAGTGAGAGCATAGT

GTTCGAGGGCCCATTCGTGCACGTGAGGGTTCGCTTTGAGGAAGGAGGACCAGA

GGTCCACTGCCAGTGCTGTTTGTAACTGGTCCCGGTACTGACGAAAATGCTGCCC

GACTGCCATCTTTTCTGGGGTGACGCAATAGAAGGTTTGGGGGTCCTGCCGCCA

GCGATCCCACTTGAGTTTTATGGCCAGGTCATAGGCGATGTTGACGAGCCGCTG

GTCTCCAGAGAGTTTCATGACCAGCATGAAGGGGATTAGCTGCTTGCCAAAGGA

CCCCATCCAGGTGTAGGTTTCCACATCGTAGGTGAGGAAGAGCCTTTCTGTGCGA

GGATGAGAGCCAATCGGGAAGAACTGGATCTCCTGCCACCAGTTGGAGGAATGG

CTGTTGATGTGATGGAAGTAGAACTCCCTGCGACGCGCCGAGCATTCATGCTTGT

GCTTGTACAGACGGCCGCAGTACTCGCATCGATTCACGGGATGCACCTCATGAA

TGAGTTGTACCTGACTTCCTTTGACGAGAAATTTCAGTGGAAAATTGAGGCCTGG

CGATTGTACCTCGCGCTCTACTATGTTGTCTGCATCGGCATGACCATCTTCTGTCT

CGATGGTGGTCATGCTGACGAGCCCTCGCGGGAGGCAAGTCCAGACCTCGGCGC

GGCAGGGGCGGAGCTCGAGGACGAGAGCGCGCAGGCCGGAGCTGTCCAGGGTC SEQ

ID Sequence

NO

CTGAGACGCTGCGGAGTCAGGTTAGTAGGCAGTGTCAGGAGATTGACTTGCATG ATCTTTTCGAGGGCGTGAGGGAGGTTCAGATGGTACTTGATCTCCACGGGTCCGT TGGTGGAGATGTCGATGGCTTGCAGGGTTCCGTGCCCCTTGGGCGCTACCACCGT

GCGGTGTCGAGGGCGCGCACCGGGCGGCAGGGGCGGTTCGGGACCCGGCGGCA

TGGCCGGCAGTGGTACGTCGGCGCCGCGCGCGGGTAGGTTCTGGTACTGCGCCC

TGAGAAGACTCGCATGCGCGACGACGCGGCGGTTGACATCCTGGATCTGACGCC

TCTGGGTGAAAGCTACCGGTCCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAG

AATCAATCTCGGTATCGTTGACGGCGGCTTGCCTAAGGATTTCTTGCACGTCGCC

AGAGTTGTCCTGGTAGGCGATCTCGGCCATGAACTGCTCGATCTCTTCCTCTTGA

AGATCTCCGCGGCCCGCTCTCTCGACGGTGGCCGCGAGGTCGTTGGAGATGCGC

CCAATGAGTTGAGAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAG

ACCACAGCCCCCACGGGATCTCTCGCGCGCATGACCACCTGGGCGAGGTTGAGC

TCCACGTGGCGGGTGAAGACCGCATAGTTGCATAGGCGCTGGAAAAGGTAGTTG

AGTGTGGTGGCGATGTGCTCGGTGACGAAGAAATACATGATCCATCGTCTCAGC

GGCATCTCGCTGACATCGCCCAGCGCTTCCAAGCGCTCCATGGCCTCGTAGAAGT

CCACGGCAAAGTTGAAAAACTGGGAGTTACGCGCGGACACGGTCAACTCCTCTT

CCAAAAGACGGATGAGTTCGGCGATGGTGGTGCGCACCTCGAGCTCGAAAGCCC

CTGGGATTTCTTCCTCAATCTCTTCTTCTTCCACTAACATCTCTTCCTCTTCAGGT

GGGGCTGCAGGAGGAGGGGGAACTCGGCGACGCCGGCGGCGCACGGGCAGACG

GTCGATGAATCTTTCAATGACCTCTCCGCGGCGGCGGCGCATGGTCTCGGTGACG

GCACGACCGTTCTCCCTGGGTCTCAGAGTGAAGACGCCTCCGCGCATCTCCCTGA

AGTGGTGACTGGGAGGCTCTCCGTTGGGCAGGGACACCGCGCTGATTATGCATT

TTATCAATTGCCCCGTAGGTACTCCGCGCAAGGACCTGATCGTCTCAAGATCCAC

GGGATCTGAAAACCTTTCGACGAAAGCGTCTAACCAGTCGCAATCGCAAGGTAG

GCTGAGCACTGTTTCTTGCGGGCGGGGGCGGCTAGACGCTCGGTCGGGGTTCTCT

CTTTCTTCTCCTTCCTCCTCTTGGGAGGGTGAGACGATGCTGCTGGTGATGAAAT

TAAAATAGGCAGTTTTGAGACGGCGGATGGTGGCTAGGAGCACCAGGTCTTTGG

GTCCGGCTTGTTGGATGCGCAGGCGATGTGCCATTCCCCAAGCATTATCCTGACA

TCTGGCCAGATCTTTATAGTAGTCTTGCATGAGTCGTTCCACGGGCACTTCTTCTT

CGCCCGCTCTGCCATGCATGCGAGTGATCCCGAACCCGCGCATGGGCTGGACAA

GTGCCAGGTCCGCTACAACCCTTTCGGCGAGGATGGCTTGCTGCACCTGGGTGA

GGGTGGCTTGGAAGTCATCAAAGTCCACGAAGCGGTGGTAGGCCCCGGTGTTGA

TTGTGTAGGAGCAGTTGGCCATGACTGACCAGTTGACTGTCTGGTGCCCAGGGC

GCACGAGCTCGGTGTACTTGAGGCGCGAGTATGCGCGGGTGTCAAAGATGTAAT

CGTTGCAGGTGCGCACCAGGTACTGGTAGCCGATGAGAAAGTGTGGCGGTGGCT

GGCGGTACAGGGGCCATCGCTCTGTAGCCGGGGCGCCGGGGGCGAGGTCTTCCA

GCATGAGTCGGTGGTAGCCGTAGATGTACCTGGACATCCAGGTGATACCGGAGG

CGGTGGTGGATGCACGTGGGAACTCGCGCACGCGGTTCCAGATGTTGCGCAGCG

GCATGAAGTAGTTCATGGTAGGCACGGTTTGGCCCGTGAGGCGCGCACAGTCGT

TGATGCTCTAGACATACGGGCAAAAAACGAAAGCGGTCAGCGGCTCGTCTCCGT

GGCCTGGAGGCTAAGCGAACGGGTTGGGCTGCGCGTGTACCCCGGTTCGAATCT

CGGATCAGGCTGGAGCCGCAGCTAACGTGGTACTGGCACTCCCGTCTCGACCCA

CCTGGATGGGAGCCAGTGCTGCGTCAAGCTTTAGAACGCTCAGTTCTCGGGGCT GGGAGTGGCTCGCGCCCGTAGTCTGGAGAATCAATCGCCAGGGTTGCGTTGCGG TGTGCCCCGGTTCGAGTCTTAGCGCGTCGGATCGGCCGGTTTCCGCGACAAGCG AGGGTTTGGCAGCCCCGTCATTTCTAAGACCCCGCCAGCCGACTTCTCCAGTTTA

GCGACAGATGCGCCCCCAGCAACAGCCCCCTTCTCAGCAGCAGCTACAACAACA GCCACAAAAGGCTCTTCCTGCTCCTGTAACTACTGCGGCTGCAGCCGTCAGCGGC GCGGGACAGCCCGCCTATGATCTGGACTTGGAAGAGGGCGAGGGATTGGCGCGC CTGGGGGCTCCATCGCCCGAGCGGCACCCACGGGTGCAACTAAAAAAGGACTCT SEQ

ID Sequence

NO

CGCGAGGCGTACGTGCCCCAACAGAACCTATTCAGGGACAGGAGCGGCGAGGA

GCCAGAGGAGATGCGAGCATCTCGATTTAACGCGGGTCGCGAGCTGCGCCACGG

TCTGGATCGAAGACGGGTGCTGCAAGACGAGGATTTTGAGGTCGATGAAGTGAC

AGGGATCAGCCCAGCTAGGGCACATGTGGCCGCGGCCAACCTAGTCTCGGCCTA

CGAGCAGACCGTGAAGGAGGAGCGCAACTTCCAAAAATCTTTCAACAACCATGT

GCGCACCCTGATCGCCCGCGAGGAAGTGACCCTGGGTCTGATGCACCTGTGGGA

CCTGATGGAGGCTATCACCCAGAACCCCACTAGCAAACCCCTGACAGCTCAGCT

GTTTCTGGTTGTTCAACATAGCAGGGACAACGAGGCATTCAGGGAGGCGTTGTT

AAACATCACCGAGCCCGATGGGAGATGGCTGTATGATCTGATTAACATCCTGCA

AAGTATTATAGTGCAGGAACGTAGCCTGGGTTTGGCTGAGAAAGTGGCAGCTAT

TAACTACTCGGTCTTGAGTCTGGGCAAATACTACGCTCGCAAGATCTACAAGAC

CCCCTACGTACCCATAGACAAGGAGGTGAAGATAGATGGGTTTTACATGCGCAT

GACTCTCAAGGTGCTGACTCTGAGCGACGATCTGGGGGTGTATCGTAATGACAG

GATGCACCGCGCGGTGAGCGCCAGCAGGAGGCGCGAGCTGAGCGACAGAGAAC

TTATGCACAGCTTGCAAAGAGCTCTAACGGGGGCCGGAACTGATGGGGAGAACT

ACTTTGACATGGGAGCGGACTTGCAATGGCAACCCAGTCGCAGGGCCATGGAGG

CTGCGGGGTGTGAGCTTCCTTACATAGAAGAGGTGGATGAAGCCGAGGACGAGG

AGGGCGAGTACTTGGAAGACTGATGGCGCGACCCATATTTTTGCTAGATGGAAC

AGCAGCAGGCACCGGACCCCGCAATGCGGGCGGCGCTACAGAGCCAGCCGTCC

GGCATTAACTCCTCGGACGATTGGACCCAGGCCATGCAACGCATAATGGCGCTG

ACGACCCGCAACCCCGAAGCCTTTAGACAGCAACCCCAGGCCAACCGCCTTTCG

GCCATACTGGAGGCCGTAGTGCCCTCCCGCTCCAACCCCACCCACGAGAAGGTC

CTGGCTATCGTGAACGCGCTGGTGGAGAACAAGGCCATCCGTCCCGATGAGGCC

GGGCTGGTATACAATGCTCTCTTGGAGCGCGTGGCCCGTTACAACAGCAGCAAC

GTGCAGACCAACCTGGACCGGATGGTGACCGATGTGCGCGAGGCTGTGTCTCAG

CGCGAGCGGTTCCAACGCGACGCCAACTTGGGGTCGTTGGTAGCGCTAAACGCT

TTCCTTAGCACCCAGCCCGCCAACGTGCCCCGTGGTCAGCAAGACTATACAAAC

AGTCCGGGCCAGATTACTTCTTCCAGACCAGCAGACAGGGCTTGCAGACAGTGA

ACCTGACCCAGGCTTTCAAGAACCTGAAGGGTCTGTGGGGAGTGCACGCCCCAG

TAGGAGATCGCGCGACCGTGTCTAGTTTGCTGACTCCCAACTCCCGCCTGCTGCT

GCTGCTGGTATCCCCCTTCACTGACAGCGGTAGCATCGACCGCAACTCCTACTTG

GGCTACCTGCTTAACCTGTATCGCGAGGCCATAGGGCAGAGCCAGGTGGACGAG

CAGACTTATCAAGAAATCACCCAAGTAAGCCGCGCCCTGGGTCAGGAAGACACG

GGCGGTTTGGAAGCCACCCTGAACTTCTTACTAACCAACCGGTCGCAGAAGATC

CCTCCTCAGTATGCGCTTACCGCCGAGGAGGAGCGGATCCTAAGATACGTGCAA

CAGAGCGTTGGACTGTTCCTGATGCAGGAGGGGGCGACACCTACCGCCGCGCTG

GATATGACAGCTCGAAACATGGAGCCCAGCATGTATGCTAGTAACAGGCCTTTC

ATTAACAAACTGCTGGACTACCTGCACAGGGCGGCCGCCATGAACTCTGATTAT

TTCACCAATGCTATTCTGAACCCACACTGGCTGCCTCCACCTGGTTTCTACACTG

GCGAATACGACATGCCCGATCCCAATGACGGGTTCCTGTGGGACGATGTGGACA

GTAGCATATTTTCCCCGCCTCCAGGTTATACGGTTTGGAAGAAGGAAGGGGGCG

ATAGAAGGCACTCTTCCGTATCGTTGCCCGGAACGGCTGGTGCTGCCGCGGCCG

TGCCCGAAGCTGCGAGTCCTTTCCCTAGCTTGTCCTTTTCACTAAACAGCGTTCG

CAGCAGTGAACTGGGGAGAATAAACCGCCCGCGCTTGATGGGCGAGGATGAGT

ACTTGAATGACTCTTTGCTGAGGCCAGAGAGGGAAAAAAACTTCCCTAACAATG

GAATAGAGAGCCTGGTGGATAAGATGAGTAGATGGAAGACCTATGCGCAGGAT

CACAGAGACGAGCCCAGGATCTTGGGGGCTACAAGCAGACCGAGCCGTAGACG

CCAGCGCCACGACAGGCAGATGGGTCTTGTGTGGGACGACGAGGACTCTGCCGA

TGACAGCAGCGTGTTGGACTTGGGTGGAAAAGGAGTTGGCAACCCGTTCGCTCA

TCTGCGTCCCCGTTTCGGTCGCATGTTGTAAAAGTGAAAGTAAAAATAAAAAGG

GTATCTAGTACGATGAGGAGACGAGCCGTGCTAGGCGGAGCGGTGGTGTATCCG SEQ

ID Sequence

NO

GAGGGTCCTCCTCCTTCTTACGAGAGCGTGATGCAGCAACAGGCGGCGATGATA

CAGCCCCCACTGGAGGCTCCCTTCGTACCCCCTCGGTACCTGGCGCCTACGGAAG

GGAGAAATAGCATTCGTTACTCGGAGCTGTCACCCCAGTACGATACCACCAAGT

TGTATCTGGTGGACAACAAGTCGGCGGACATCGCCTCCCTGAACTATCAGAACG

ACCACAGCAACTTCCTGACCACAGTGGTGCAGAACAATGACTTTACCCCCACTG

AGGCTAGCACCCAGACCATTAACTTTGACGAGCGGTCGCGGTGGGGCGGTCAGC

TGAAGACCATTATGCACACCAACATGCCCAACGTGAACGAGTACATGTTCAGCA

ACAAGTTTAAGGCGAGGGTGATGGTATCTAGGAAGGCTCCTGAAGGTGTTACAG

TAAATGATCATAAAGATGATATTTTGAAATATGAGTGGTTTGAGTTCACTTTACC

AGAAGGTAACTTCTCAGCTACCATGACCATCGACCTGATGAACAATGCCATCAT

TGACAACTACCTGAAAATTGGCAGACAGAATGGAGTGCTGGAAAGTGACATTGG

TGTTAAGTTTGACACTAGAAACTTCAGGCTCGGGTGGGACCCCGAAACTAAGTT

GATTATGCCAGGGGTCTACACTTATGAGGCATTCCATCCTGACATTGTTTTGTTG

CCTGGTTGCGGGGTAGACTTTACTGAAAGCCGACTTAGCAACTTGCTTGGCATCA

GGAAGAGACATCCATTCCAGGAGGGTTTCAAAATCATGTATGAAGATCTTGAAG

GGGGTAATATTCCTGCCCTTTTGGATGTCACTGCCTATGAGGAAAGCAAAAAGG

ATACCACTACTGAAACAGGCGAAAAGGCGGTGGTTAAAACAACCACAGTGGCT

GTTGCAGAGGAAACCAGTGAAGATGATAATATAACTAGAGGAGATACTTATATA

ACTGAAAAAAAAAAACGTGAAGCTGCAGCTGCAGAACTATTACTTATGTCTGAA

GTTAAAAAAGAGTTAAAGATCCAACCTTTAGAAAAAGACAGCAAGAATAGAAG

CTACAATGTCTTGGAAGACAAAATCAACACAGCCTACCGCAGCTGGTACCTGTC

CTACAATTATGGTAACCCTGAGAAAGGAATAAGGTCCTGGACACTGCTCACCAC

TTCGGATGTCACCTGTGGAGCCGAGCAGGTCTACTGGTCGCTCCCCGACATGATG

CAAGACCCCATCACCTTCCGCTCCTCGAGACAAGTCAACAACTACCCAGTAGTG

GGTGCAGAGCTTATGCCCGTCTTCTCAAAGAGTTTCTACAATGAGCAAGCCGTGT

ACTCTCAGCAGCTCCGACAGTCCACCTCGCTCACGCACGTCTTCAACCGCTTCCC

TGAGAACCAGATCCTCATCCGCCCGCCGGCGCCCACAATTACCACCATCAGTGA

AAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGTTACGCAGCAGTATCCG

GGGAGTCCAGCGCGTGACCGTTACTGACGCCAGACGTCGCACCTGTCCCTACGT

TTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTTCTTTCAAGCCGCACTTTCTAA

AAAAAAAAAAAATGTCCATTCTCATCTCGCCCAGTAATAATACCGGTTGGGGAC

TGCATGCGCCCACCAAGATGTACGGAGGCGCCCGCAAACGCTCTACCCAGCACC

CCGTGCGCGTTCGCGGTCATTTCCGCGCTCCCTGGGGCGCCCTCAAGGGCCGTAC

CCGCACTCGGACCACGGTCGATGATGTGATCGACCAGGTGGTTGCCGATGCTCG

TAATTATACTCCTACTGCGCCTACATCTACTGTGGATGCAGTTATTGACAGTGTG

GTGGCAGACGCCCGCGCCTATGCTCGCCGGAAAAGCCGAAGGAGGCGCATCGCC

AGGCGCCACAGGGCTACTCCCGCCATGCGAGCTGCAAAAGCTATTCTGCGGAGG

GCCAAACGTGTGGGGCGAAGAGCCATGCTTAGAGCGGCCAGACGCGCGGCTTCT

GGTGCTAGCAGCGGCAGGTCCCGCAGGCGCGCGGCCACGGCGGCAGCAGCGGC

CATTGCCAACATGGTCCAACCGCGAAGAGGCAATGTGTATTGGGTGCGCGATGC

CGCTACCGGCCAGCGCGTGCCCGTGCGCACCCGCCCCCCTCGCACTTAGAAGAT

ACTGAGCAGTCTCCGATGTTGTGTCCCAGCGGCAAGTATGTCCAAGCGCAAATA

CAAGGAAGAGATGCTCCAGGTCATCGCGCCTGAAATCTACGGTCCACCGATGAA

GGATGAAAAAAAGCCCCGCAAAATCAAGCGGGTCAAAAAGGACAAAAAAGAA

GAAGATGGCGATGATGGGCTGGTAGAGTTTGTGCGCGAGTTCGCCCCAAGACGG

CGCGTGCAGTGGCGCGGTCGAAAAGTGCGCCAAGTGCTTAGACCCGGGACCACT

GTGGTCTTTACACCTGGCGAGCGTTCCAGCACTACTTTTAAACGGTCCTATGATG

AGGTGTATGGGGATGACGATATTCTTGAGCAGGCGGCAGACCGCCTTGGCGAGT

TTGCTTATGGCAAGCGCACAAGATCCAGTCCCAAAGAGGAGGCGGTGTCTATTC

CCTTGGATCATGGAAATCCCACCCCCAGCCTCAAACCAGTCACCCTGCAGCAAG

TGCTGCCCGTACCCGCGAGCAGAGGCGTAAAGCGCGAGGGTGAGGACCTATATC

CCACCATGCAGCTAATGGTGCCCAAGCGCCAAAGATTAGAAGATGTACTGGAGA

AAATGAAAGTGGATGCCGATATCCAGCCTGAGGTCAAAGTGAGACCCATCAAGG SEQ

ID Sequence

NO

AAGTGGCGCCAGGTTTGGGAGTACAAACCTTTGACATCAAGATTCCCACTGAGT

CCATGGAAGTGCAGACCGAACCTGCAAAACCCACAACCACCTCAATTGAGGTGC

AGACGGAACCCTGGATGCACGCGCCCGTTGCCGCCCCCAGCACCACTAGAAGAT

CACGTCGAAAGTATGGCCCAGCAAGTCTGATAATGCCCAACTATGCTCTGCACC

CATCCATCATTCCCACCCCGGGTTACAGAGGCACTCGCTACTATCGAAGTCGGA

GCAACACCTCACGCCGCCGCAAACTACCTGCAAGTCGCACTCGCCGTCGCCGCC

GCCGCACCACTGCCAGCAAATTAACTCCCACCGCCCTGGTGCGGAGAGTGTACC

GCGATGGTCGCGCTGAACCTCTGACGCTGCCGCGCGCGCGCTACCATCCAAGCA

TCACCACTTAATGACTGTTGACGCTGCCTCCTTGCAGATATGGCCCTCACTTGCC

GCCTTCGCGTCCCCATTACTGGCTACCGAGGAAGAAACTCGCGCCGTAGAAGGA

TGTTGGGGCGAGGGATGCGCCGCCACAGACGAAGGCGCGCTATCAGCAAGCGA

TTAGGGGGTGGCTTTCTGCCAGCTCTTATACCCATCATCGCCGCGGCGATCGGGG

CGATACCAGGCATAGCTTCCGTGGCGGTTCAGGCCTCGCAGCGCCACTAACAAT

GGAAAAACTTATAAATAAAAAATAGAATGGACTCTGACGCTCCTGGTCCTGTGA

CTATGTTTTTGTAGAGATGGAAGACATCAATTTTTCATCCCTGGCTCCGCGACAC

GGCACGAGGCCGTACATGGGCACCTGGAGCGACATCGGCACGAGCCAACTGAA

CGGGGGCGCCTTCAATTGGAACAGTATCTGGAGCGGGCTTAAAAATTTTGGCTC

GACCATAAAAACCTATGGGAATAAAGCTTGGAACAGCAGCACAGGGCAGGCTC

TGAGAAATAAGCTTAAGGAGCAGAACTTCCAACAGAAGGTGGTTGATGGTATCG

CCTCTGGTATTAACGGCGTAGTGGATCTGGCCAACCAGGCTGTGCAGAAACAGA

TAAACAGCCGCCTGGACCCGCCGCCCGCAACCGCTGGTGAAATGGAAGTGGAGG

AAGAGCTTCCTCCGCTGGAAAAGCGGGGCGACAAGCGACCGCGTCCCGAGCTGG

AGCAGACGTTGGTGACGCGCGCAGACGAGCCCCCTTCATACGAGGAGGCAGTAA

AGCTCGGAATGCCCACTACCAGGCCTGTAGCTCACATGGCTACCGGGGTGATGA

AACCTTCTCAGTCGCATCGGCCCGTCACCTTGGACTTGCCTCCTCCCCCTGCTTCT

GCGGCGCCTGTTCCCAAACCTGTCGCTACCAGAAAGCCCACCGCCATACAGCCC

GTCGCCGTAGCCAGACCGCGTCCTGGGGGCACACCGCGCCCGAAAGCAAACTGG

CAGAGTACTCTGAACAGCATCGTGGGTCTGGGCGTGCAAAGTGTAAAGCGCCGT

CGCTGCTATTAATTAAATATGGAGTAGCGCTTAACTTGCTTGTCTGTGTGTATGT

ATCATCACCACGCCGCCGCAGCAGAGGAGAAAGGAAGAGGTCGCGCGCCGAGG

CTGAGTTGCTTTCAAGATGGCCACCCCATCGATGATGCCCCAATGGGCTTACATG

CACATCGCCGGACAGGATGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTC

GCCCGTGCAACAGACACCTACTTCAGTATGGGGAACAAGTTTAGAAACCCCACA

GTGGCGCCCACCCACGATGTGACCACCGACCGTAGCCAGCGCCTGATGCTGCGC

TTTGTGCCCGTTGACCGGGAAGACAATACCTACTCTTACAAAGTTCGCTACACGC

TGGCTGTAGGCGACAACAGAGTGCTTGACATGGCCAGCACATTCTTTGACATTC

GGGGGGTGCTCGATAGAGGTCCTAGCTTCAAGCCATATTCCGGCACAGCTTACA

ATTCACTGGCTCCTAAGGGCGCGCCCAATACATCTCAGTGGATAGTTACAACAA

ATGCGGACCAAACTACCACCACCACCACAAACACATTCGGCATTGCTGCCATGA

AGGGAGACAATATTACTAAAGAAGGTTTACAAATTGGGAAAGACATTACCACTA

CCGAAGGAGAAGAAAAGCCCATTTATGCCGATAAAACATATCAGCCAGAGCCTC

AAGTTGGAGAAGAATCATGGACTGATACTGATGGAACAAATGAAAAGTTTGGTG

GTAGAGCCCTTAAACCAGCTACCAACATGAAGCCGTGCTACGGGTCTTTTGCAA

GACCTACAAACATAAAAGGGGGTCAGGCTAAAAACAGAAAAGTAAAACCAACA

ACCGAAGGAGGGGTTGAAACTGAAGAACCAGATATTGATATGGAATTTTTCGAT

GGTAGAGATGCTGTTGCAGGAGCTTTAGCGCCTGAAATTGTGCTTTATACGGAA

AATGTAAATTTGGAAACTCCAGACAGTCATGTGGTATATAAGCCAGGAACTTCT

GATAACTCTCATGCAAATTTGGGTCAACAAGCCATGCCTAACAGACCCAATTAC

ATTGGCTTCAGGGATAACTTTGTGGGCCTAATGTACTACAACAGTACTGGAAAT

ATGGGAGTTTTGGCTGGCCAAGCATCACAACTGAATGCAGTGGTTGACTTGCAG

GACAGAAATACTGAACTGTCATATCAGCTTTTGCTTGATTCTCTGGGAGACAGAA

CCAGATACTTCAGCATGTGGAATCAGGCTGTGGACAGTTATGATCCCGATGTTCG

CATTATTGAAAATCATGGCATCGAGGATGAACTGCCTAATTACTGTTTTCCTCTG SEQ

ID Sequence

NO

GATGGCATAGGACCAGGGCACACATATCAAGGCATTAAAGTTAAAACCGATGAC

ACTAATGGATGGGAAAAAGATGCTAATGTTGCTACAGCTAATGAAATAGCCATA

GGCAACAACCTGGCTATGGAAATTAATATTCAAGCTAACCTTTGGAGAAATTTTC

TCTACTCCAATGTGGCTTTGTACCTTCCAGATGTTTACAAGTACACGCCACCTAA

CATTACTCTGCCCGCTAACACCAACACCTATGAGTACATGAACGGGCGAGTGGT

ATCCCCATCTCTGGTTGATTCATACATCAACATTGGCGCCAGATGGTCTCTTGAC

CCAATGGACAATGTAAATCCATTCAACCACCACCGCAATGCTGGTTTGCGCTAC

AGGTCCATGCTTCTGGGAAATGGTCGTTATGTGCCTTTCCACATACAAGTGCCTC

AGAAATTCTTTGCTGTTAAAAACCTGCTGCTTCTCCCAGGCTCCTACACTTATGA

GTGGAACTTCAGAAAGGATGTGAACATGGTCCTGCAAAGTTCCCTTGGAAATGA

CCTCAGAACAGATGGTGCTACCATAAGTTTTACCAGCATCAACCTCTATGCCACC

TTCTTCCCCATGGCTCACAACACCGCTTCAACCCTTGAAGCCATGCTGCGCAACG

ATACCAATGATCAGTCATTCAACGACTACCTCTCTGCAGCTAACATGCTTTACCC

CATCCCTGCCAATGCAACCAATATTCCCATTTCCATTCCTTCTCGCAACTGGGCA

GCCTTCAGGGGCTGGTCCTTCACCAGACTCAAAACCAAGGAGACTCCATCTCTTG

GATCAGGGTTCGATCCCTACTTCGTATATTCTGGATCTATTCCCTACCTGGATGG

CACCTTTTACCTTAACCACACTTTCAAGAAGGTCTCCATCATGTTTGACTCCTCA

GTCAGCTGGCCTGGCAATGACAGGCTGTTGAGCCCAAATGAGTTTGAAATCAAG

CGCACTGTGGACGGGGAAGGATACAATGTGGCCCAATGCAACATGACCAAAGA

CTGGTTCCTGGTTCAGATGCTTGCCAACTACAACATTGGCTACCAGGGCTTTTAC

TGAGCAGGCAGGTGGTTGATGAGGTTAATTACACTGACTACAAAGCCGTCACCT

TACCATACCAACACAACAACTCTGGCTTTGTAGGGTACCTTGCACCTACTATGAG

ACAAGGGGAACCTTACCCAGCCAATTATCCATACCCGCTCATCGGAACTACTGC

CGTTAAGAGTGTCACCCAGAAAAAGTTCCTGTGCGACAGGACCATGTGGCGCAT

TCCCTTCTCCAGCAACTTCATGTCCATGGGGGCCCTTACAGACCTGGGACAGAAC

CTGCTCTATGCCAACTCGGCCCATGCGCTGGACATGACTTTTGAGGTGGATCCCA

TGGATGAGCCCACCCTGCTTTATCTTCTTTTCGAAGTCTTCGACGTGGTCAGAGT

GCACCAGCCACACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACACCGTTCTC

GGCCGGCAACGCCACCACATAAGAAGCCTCTTGCTTCTTGCAAGCAGCAGCTGC

AGCCATGTCATGCGGGTCCGGAAACGGCTCCAGCGAGCAAGAGCTCAAAGCCAT

CGTCCGAGACCTGGGTTGCGGACCCTATTTCCTGGGAACCTTTGACAAGCGTTTC

CCGGGGTTCATGGCCCCCGACAAGCTCGCCTGCGCCATAGTCAACACTGCCGGA

CGCGAGACGGGGGGAGAGCACTGGCTGGCTTTTGGTTGGAACCCGCGCTCCAAC

ACCAGTTTGAGTACGAGGGGCTCCTGCGCCGCAGTGCCCTTGCTACCAAAGACC GCTGCATCACCCTGGAAAAGTCCACCCAGAGCGTGCAGGGCCCACGCTCAGCCG

CCCATGAACGGAAACCCCACCATGAAGTTGCTGACTGGGGTGTCCAACAGCATG CTCCAATCTCCCCAAGTCCAGCCCACCCTGCGCCGCAACCAGGAGGCGCTATAT CGCTTCCTAAACACCCATTCATCTTACTTTCGTTCTCACCGCGCACGCATCGAAA GGGCCACCGCGTTTGACCGTATGGATATGCAATAAGTCATGTAAAACCGTGTTC

TTTCATCATTCACTCAGAAATCAAATGGGTTCTGGCGGGAGTCAGAGTGGCCCG

CGGGCAGGGATACGTTGCGGAACTGTAACCTGTTCTGCCACTTGAACTCGGGGA

TCACCAGCTTGGGAACTGGAATCTCGGGAAATGTGTCTTGCCACAACTTTCTGGT

CAGTTGCATGGCGCCAAGCAGGTCAGGAGCAGAGATCTTGAAATCACAGTTGGG

GCCGGCATTCTGAACACGGGAGTTGCGGTACACTGGATTGCAACACTGGAACAC

CATCAAGGCTGGGTGTCTCACGCTTGCCAGCACGGTCGGGTCACTGATGGTAGT

CACATCCAAGTCTTCAGCATTGGCCATCCCAAAGGGGGTCATCTTACAGGTCTGC

CTGCCCATCACGGGAGCGCAGCCTGGCTTGTGGTTGCAATCGCAATGAATGGGG

ATCAACATCATCCTGGCTTGGTCGGGGGTTATCCCTGGATACACGGCCTTCATGA

AGGCTTCGTACTGCTTGAAAGCTTCCTGAGCCTTACTTCCCTCGGTGTAGAACAT SEQ

ID Sequence

NO

CCCACAGGACTTGCTGGAAAATTGGTTAGTAGCACAGTTGGCATCATTCACACA

GCAGCGGGCATCGTTGTTGGCCAACTGGACCACATTTCTGCCCCAGCGGTTCTGG

GTGATCTTGGCTCTGTCTGGGTTCTCCTTCATAGCGCGCTGCCCGTTCTCGCTCGC

CACATCCATCTCGATAATGTGGTCCTTCTGGATCATGATAGTGCCATGCAGGCAT

TTCACCTTGCCTTCGTAATCGGTGCATCCATGAGCCCACAGAGCGCACCCGGTGC

ACTCCCAATTATTGTGGGCGATCTCAGAATAAGAATGCACCAATCCCTGCATGA

ATCTTCCCATCATCGCTGTCAGGGTCTTCATGCTACTAAATGTCAGCGGGATGCC

ACGGTGCTCCTCGTTCACATACTGGTGGCAGATACGCTTGTACTGCTCGTGCTGC

TCTGGCATCAGCTTAAAAGAGGTTCTCAGGTCATTATCCAGCCTATACCTTTCCA

TTAGCACAGCCATCACTTCCATGCCTTTCTCCCAGGCAGATACCAGGGGCAAGCT

CAAAGGATTCCTAACAGCAATAGAAGTAGCTCCTTTAGCTATAGGGTCATTCTTG

TCGATCTTCTCAACACTTCTTTTGCCATCCTTCTCAATGATGCGCACCGGGGGGT

AGCTGAAGCCCACGGCCACCAACTGAGCCTGTTCTCTTTCTTCTTCGCTGTCCTG

GCTGATGTCTTGCAGAGGGACATGCTTGGTCTTCCTGGGCTTCTTCTTGGGAGGG

ATCGGGGGAGGACTGTTGCTCCGTTCCGGAGACAGGGATGACCGCGAAGTTTCG

CTTACCAGTACCACCTGGCTCTCGATAGAAGAATCGGACCCCACGCGACGGTAG

GTGTTCCTCTTCGGGGGCAGAGGTGGAGGCGACTGAGATGGGCTGCGGTCCGGC

CTTGGAGGCTGATGGCTGGCAGAGCCCATTCCGCGTTCGGGGGTGTGCTCCCGTT

GGCGGTCGCTTGACTGATTTCCTCCGCGGCTGGCCATTGTGTTCTCCTAGGCAGA

GAAACAACAGACATGGAAACTCAGCCATCACTGCCAACATCGCTGCAAGCGCCA

TCACACCTCGCCCCCAGCAGCGACGAGGAGGAGAGCTTAACCACCCCACCACCC

AGTCCCGCTACCACCACCTCTACCCTCGATGATGAGGAGGAGGTCGACGCAGCC

CAGGAGATGCAGGCGCAGGATAATGTGAAAGCGGAAGAGATTGAGGCAGATGT

CGAGCAGGACCCGGGCTATGTGACACCGGCGGAGCACGAGGAGGAGCTGAAAC

GTTTTCTAGACAGAGAGGATGACGACCGCCCAGAGCATCAAGCAGATGGCAATC

ACCAGGAGGCTGGCCTCGGGGATCATGTTGCCGACTACCTCACCGGGCTTGGGG

GGGAGGACGTGCTCCTCAAACATCTAGCAAGGCAGTCGATCATAGTTAAAGACG

CACTACTCAACCTCACCGAAGTGCCCATCAGTGTGGAAGAGCTTAGCCGCGCCT

ACGAGCTGAACCTCTTTTCGCCTCAGATACCCCCCAAGCGGCAGCCAAACGGCA

CCTGCGAGGCCAACCCTCGACTCAACTTCTATCCAGCTTTTACTGTCCCCGAAGT

ACTGGCCACCTACCACATCTTTTTTAAGAACCAAAAGATTCCAGTCTCCTGCCGC

GCCAACCGCACCCGCGCAGATGCCCTTCTCAACTTGGGTCCGGGAGCTCGCTTAC

CTGATATAGCTGCCTTGGAAGAGGTTCCAAAGATCTTTGAGGGTTTGGGAAGTG

ATGAGACTCGGGCCGCAAATGCTCTGCAACAGGGAGAGAATGGCATGGATGAA

CATCACAGCGCTCTAGTGGAACTGGAGGGTGACAATGCCCGGCTTGCAGTGCTC

AAGCGCAGTATCGTGGTCACCCATTTTGCCTACCCCGCTGTTAACCTGCCGCCCA

AAGTCATGAGCGCTGTCATGGACCATCTGCTCATCAAACGAGCAAGTCCACTTTC

AGAAAACCAGAACATGCAGGATCCAGACGCCTCGGACGAGGGCAAGCCGGTAG

TCAGTGACGAGCAGCTATCTCGCTGGCTGGGTACCAACTCCCCCCGAGATTTGG

AAGAAAGGCGCAAGCTTATGATGGCTGTAGTGCTAGTAACTGTTGAGCTGGAGT

GTCTGCGCCGCTTTTTTACCGACCCCGAGACCCTGCGCAAGCTAGAGGAGAACC

TGCACTATACCTTCAGACATGGCTTCGTGCGCCAGGCATGCAAGATCTCCAACGT

GGAGCTCACCAACCTGGTTTCATACATGGGCATTTTGCATGAGAACCGGCTAGG

GCAGAGCGTTCTGCACACCACCCTGAAGGGGGAGGCCCGCCGCGACTACATCCG

AGACTGTGTCTACCTCTACCTCTGCCATACCTGGCAGACTGGTATGGGTGTGTGG

CAACAGTGTTTGGAAGAGCAGAACCTCAAAGAGCTGGACAAGCTCTTGCAGAGA

TCCCTGAAAGCCCTGTGGACAGGTTTTGACGAGCGCACCGTCGCCTCGGACCTG

GCGGACATCATCTTCCCCGAGCGTCTTAGGGTTACTCTGCGAAACGGCCTGCCAG

ACTTCATGAGCCAGAGCATGCTTAACAACTTTCGCTCTTTCATCCTGGAACGCTC

CGGTATCCTGCCTGTCACCTGCTGTGCGCTGCCCTCCGACTTTGTGCCTCTCACCT

ACCGCGAGTGCCCACCGCCATTATGGAGCCACTGCTACCTGTTCCGCCTGGCCAA

CTACCTCTCCTACCACTCGGATGTGATAGAGGATGTGAGCGGAGACGGCCTGCT

GGAATGCCACTGCCGATGCAATTTATGCACACCCCACCGCTCCCTCGCCTGCAAC SEQ

ID Sequence

NO

CCCCAGTTGCTAAGCGAGACCCAGATCATCGGCACCTTCGAGTTGCAGGGTCCC

AACAGTGAAGGCGAGGGGTCTTCTCCAGGGCAGAGTCTGAAACTGACACCGGG

GCTGTGGACCTCCGCATACCTGCGCAAGTTTCATCCCGAGGACTATCACCCCTAT

GAGATCAGGTTCTATGAGGACCAGTCACATCCTCCCAAAGTCGAGCTCTCAGCC

TGCGTCATCACCCAGGGGGCAATTCTGGCCCAATTGCAAGCCATCCAAAAATCC

CGCCAAGAATTTCTGTTGAAAAAGGGAAGCGGGGTCTACCTTGACCCCCAGACC

GGTGAGGAGCTCAACACAAAGTTCCCCCAGGATGTCCCATCGCCGAGGAAGCAA

GAAGCTGAAGGTGCAGCTGTCGCCCCCAGAGGATATGGAGGAAGACTGGGACA

GTCAGGCAGAGGAGGAGATGGAAGATTGGGACAGCCAGGCAGAGGAGGTGGAC

AGCCTGGAGGAAGACAGTTTGGAGGAGGAAGACGAGGAGGCAGAGGAGGTGG

AAGAAGCAACCGCCGCCAAACAGTTGTCATCGGCGGCGGAGACAAGCAAGTCC

CCAGACAGCAGCACGGCTACCATCTCCGCTCCGGGTCGGGGGGCCCAGCGGCGG

CCCAACAGTAGATGGGACGAGACCGGGCGATTCCCAAACCCGACCACCGCTTCC

AAGAACGGTAAGAAGGAGCGACAGGGATACAAGTCCTGGCGTGGACATAAAAA

CGCTATCATCTCCTGCTTGCATGAATGCGGGGGCAACATATCCTTCACCCGGCGA

TACCTGCTCTTCCACCACGGTGTGAACTTCCCCCGCAATATCTTGCATTACTACC

GTCACCTCCACAGCCCCTACTGCAGTCAGCAAGTCCCGGCAACCCCGACAGAAA

AAGACAGCAGCGACAACGGTGACCAGAAAACCAGCAGTTAGAAAATCCACAAC

AAGTGCAACAGGAGGAGGACTGAGGATCACAGCGAACGAGCCAGCGCAGACCA

GAGAGCTGAGGAACCGGATCTTTCCAACCCTCTATGCCATCTTCCAGCAGAGTC

GGGGGCAAGAGCAGGAATTGAAAGTAAAAAACCGATCTCTGCGCTCGCTCACCA

GAAGTTGTTTGTATCACAAGAGCGAAGACCAACTTCAGCGCACTCTCGAGGACG

CCGAGGCTCTCTTCAACAAGTACTGCGCGCTGACTCTTAAAGAGTAGCCCTTGCC

CGCGCTCATTCGAAAACGGCGGGAATCACGTCACCCTTGGCACCTGTCCTTTGCC

CTCGTCATGAGTAAAGAGATTCCCACGCCTTACATGTGGAGCTATCAGCCCCAA

ATGGGGTTGGCAGCAGGTGCTTCCCAGGACTACTCCACCCGCATGAATTGGCTT

AGCGCCGGGCCCTCAATGATATCACGGGTTAATGATATACGAGCTTATCGAAAC

CAGTTACTCCTAGAACAGTCAGCTCTCACCACCACACCCCGCCAACACCTTAATC

CCCGAAATTGGCCCGCCGCCCTGGTGTACCAGGAAAATCCCGCTCCCACCACCG

TACTACTTCCTCGAGACGCCCAGGCCGAAGTTCAGATGACTAACGCAGGTGTAC

AGCTGGCGGGCGGTTCCGCCCTATGTCGTCACCGACCTCAACAGAGTATAAAAC

GCCTGGTGATCAGAGGCCGAGGTATCCAGCTCAACGACGAATCGGTTAGCTCTT

CGCTTGGTCTGCGACCAGACGGAGTCTTCCAGATCGCCGGCTGTGGGAGATCTTC

CTTCACTCCTCGTCAGGCTGTGCTGACTTTGGAGAGTTCGTCCTCGCAGCCCCGC

TCGGGCGGCATCGGAACTCTCCAGTTTGTGGAGGAGTTTACTCCCTCTGTCTACT

TCAACCCCTTCTCCGGCTCTCCTGGCCAGTACCCGGACGAGTTCATACCGAACTT

CGACGCAATCAGCGAGTCAGTGGATGGCTATGATTGATGTCTAATGGTGGCGCG

GCTGAGCTAGCTCGACTGCGACACCTAGACCACTGCCGCCGCTTTCGCTGTTTCG

CCCGGGAACTCACCGAGTTCATCTACTTCGAACTCTCCGAGGAGCACCCTCAGG

GTCCGGCCCACGGAGTGCGGATTACCATCGAAGGGGGAATAGACTCTCGCCTGC

ATCGAATCTTCTCCCAGCGACCCGTGCTGATTGAGCGCGACCAGGGAAATACAA

CCATCTCCATCTACTGCATCTGTAACCACCCCGGATTGCATGAAAGCCTTTGCTG

TCTTGTTTGTGCTGAGTTTAATAAAAACTGAGTTAAGACCCTCCTACGGACTACC

GCTTCTTCAATCAGGACTTTACAACACCAACCAGATCTTCCAGAAGACCCAGAC

CCTTCCTCCTCTGATCCAGGACTCTAACTCTACCTTACCAGCACCATCCACTACT

AACCTTCCCGAAACTAACAAGCTTGGATCTCATCTGCAACACCGCCTTTCACGAA

GCCTTCTTTCTGCCAATACTACCACTCCCAAAACCGGAGGTGAGCTCCGCGGTCT

CCCTACTGACGACCCCTGGGTGGTAGCGGGTTTTGTAACATTAGGAGTAGTTGCG

GGTGGGCTTGTGCTGATCCTTTGCTACCTATACACACCTTGCTGTGCATATTTAGT

CATATTGCGCTGTTGGTTTAAAAAATGGGGGCCATACTAGTCGTGCTTGCTTTAC

TTTCGCTTTTGGGTCTGGGCTCTGCTAATCTCAATCCTCTTGATCACGATCCATGT

CTAGACTTCGACCCAGAAAACTGCACACTTACTTTTGCACCCGACACAAGCCGTC

TCTGTGGAGTTCTTATTAAGTGCGGATGGGACTGCAGATCCGTTGAAATTACACA SEQ

ID Sequence

NO

TAATAACAAAACATGGAACAATACCTTATCCACCACATGGGAGCCAGGAGTTCC

CGAGTGGTATACTGTCTCTGTCCGAGGTCCTGACGGTTCCATCCGCATTAGTAAC

AACACTTTTATTTTTTCTGAAATGTGCGATCTGGCCATGTTCATGAGCAGACAGT

ATGACCTATGGCCTCCCAGCAAAGAGAACATTGTGGCATTTTCCATTGCTTATTG

CTTGGTAACATGCATCATCACTGCTATCATTTGTGTGTGCATACACTTGCTTATA

GTTATTCGCCCTAGACAAAGCAATAAGGAAAAAGAGAAAATGCCTTAACCTTTT

TACTCATACCTTTTCTTTACAGCATGGCTTCTGTTACAGCTCTAATTATTGCCAGC

ATTGTCACTGTCGCTCACGGGCAAACAATTGTCCATATTACCTTAGGACATAATC

ACACCCTTGTAGGGCCCCCAATTACTTCAGAGGTTATTTGGACCAAACTTGGAAG

TGTTGATTATTTTGATATAATTTGCAACAAAACTAAACCAATATTTGTAATCTGC

AACAGACAAAATCTCACGTTAATTAATGTCAGCAAAATTTATAACGGTTACTATT

ATGGTTATGACAGATCCAGTAGTCAATATAAAAATTACTTAGTTCGCATAACTCA

GCCCAAATCAACAGTGCCAACTATGACAATAATTAAAATGGCTAATAAAGCATT

AGAAAATTTTACATTACCAACAACGCCCAATGAAAAAAACATTCCAAATTCAAT

GATTGCAATTATTGTGGCGGTGGCATTGGGAATGGCACTAATAATAATATGCAT

GTTCCTATATGCTTGTTGCTATAAAAAGTTTCAACATAAACAGGATCCACTACTA

TAGCCTTGCAGCTGTAACTTATGGCCGTTCACACCTAACTGTACCTGTTGGCTCA

ACATGTACACTACAAGGACCCCAACAAGGCTATGTCACTTGGTGGAGAATATAT

GATAATGGAGGGTTCGCTAGACCATGTGATCAGCCTGGTACAAAATTTTCATGC

AACGGAAAAGACTTGACCATAATTAACATAACATCAAATGAGCAAGGCTTCTAT

TATGGAACCAACTATAAAGATAGTTTAGATTACAACATTATTGTAGTGCCAGCC

ACCACTTCTGCTCCCCGCAAATCCACTTTCTCTAGCAGCAGTGCCAAAGCAAGCA

CAATTCCTAAAACAGCTTCTGCTATGTTAAAGCTTCAAAAAATCGCTTTAAGTAA

TTCCACAGCCGCTCCCAATACAATTCCTAAATCAACAATTGGCATCATTACTGCT

GTGGTAGTGGGATTAATTATTATGTTTTTGTGCATAATGTACTACGTCTGCTGCT

ATAGAAAACATGAACAAAAAGGTGATGCATTACTAAATTTTGACATTTAATTTTT

TATAGAATTATGATATTGTTTCAATCAAATACCACTAACACTATCAATGTGCAGA

CTACTTTAAATCATGACATGGAAAACCACACTACCTCCTATGCATACACAAACAT

TCAGCCTAAATACGCTATGCAACTAGAAATCACCATACTAATTGTAATTGGAATT

CTTATACTATCTGTTATTCTTTATTTTATATTCTGCCGTCAAATACCCAATGTTCA

TAGAAATTCTAAAAGACGTCCCATCTATTCTCCTATGATTAGTCGTCCCCATATG

GCTCTGAATGAAATCTAAGATCTTTTTTTTTCTCTTACAGTATGGTGAACACCAA

TCATGATCCCTAGAAATTTCTTCTTCACCATACTCATCTGTGCTTTCAATGTCTGT

GCTACTTTCACAGCAGTAGCCACTGCAAGCCCAGACTGTATAGGACCATTTGCTT

TCACCATCCCGAATACCGCAATCAAAATGTTGCGGCACTTCTTAGGCTTATTTAA AACCATGCAGGCTATGCTACCAGTCATTTTAATTCTGCTACTACCCTGCATTGCC CTAGCTTCCACCGCCACTCGCGCTACACCTGAACAACTTAGAAAATGCAAATTTC AACAACCATGGTCATTTCTTGATTGCTACCATGAAAAATCTGATTTTCCCACATA

CAATATACCCCACATTTAATTTTGGGTGGAATTCTCCCAATGCACTGGGTTACCC

ACAAGAACCAGATGAACATATCCCACTACACCACATACAACAACCACTAGCACT

GGTAGAGTATGAAAATGAGCCACAACCTTCACTGCCTCCTGCCATTAGTTACTTC

AACCTAACCGGCGGAGATGACTGAAATACTCACCACCTCCAATTCCGCCGAGGA

TCTGCTTGATATGGACGGCCGCGCCTCAGAACAGCGACTCGCCCAACTACGCAT

ACGCCAGCAGCAGGAACGTGCCGCCAAGGAGCTCAGGGATGCTATTGAAATTCA

CCAATGCAAAAAAGGCATATTTTGTTTGGTAAAACAAGCCAAGATATCCTACGA

GATTACCAATACTGACCATCGCCTCTCATACGAGCTCGGACCGCAGCGGCAAAA

ATTCACTTGTATGGTGGGAATCAACCCCATAATCATCACCCAGCAAGCTGGAGA

TACCAAGGGTTGCATCCACTGTTCCTGCAGTTCCACCGAGTGCATCTACACCCTG

CTGAAGACCCTCTGCGGCCTTCGAGACCTCCTACCCATGAACTAATCAACCCAGC SEQ

ID Sequence

NO

CCCTCACTTACCAATTACATAAAGCCAATAAAAACACTTACTTGAAATCAGAAA

TAAGGTTTCTGTCTACGTTGTTTCCAAGCAGCACCTCACTTCCCTCTTCCCAACTC

TGGTACTCTAAGCCTCGGCGGGTGGCATACTTCCTCCACACTTTGAAAGGGATGT

CAAATTTTAGTTCCTCTTCTTTGCCCACAATCTTCATTTCTTTATCCCCAGATGGC

CAAACGAGCTCGGCTAAGCAGCTCCTTCAATCCGGTCTACCCCTATGAAGATGA

AAGCAGCTCACAACACCCCTTTATAAACCCTGGTTTCATTTCCTCAAATGGTTTT

GCACAAAGCCCAGATGGAGTTCTAACTCTTAAATGTGTTAATCCGCTCACTACCG

CCAGCGGACCCCTCCAACTTAAAGTTGGAAGCAGTCTTACAGTAGATACTATCG

ATGGGTCTTTGGAGGAAAATATAACTGCCGCAGCGCCACTCACTAAAACTAACC

ACTCCATAGGTTTATCAATAGGATCTGGCTTACAAACAAAGGATGATAAACTTT

GTTTATCGCTGGGAGATGGGTTGGTAACAAAGGATGATAAACTATGTTTATCGCT

GGGAGATGGGTTAATAACAAAAAATGATGTACTATGTGCCAAACTAGGACATGG

TCTTGTGTTTGACTCTTCCAATGCTATCACCATAGAAAACAACACCTTGTGGACA

GGCGCAAAACCAAGCGCCAACTGTGTAATTAAAGAGGGAGAAGATTCCCCAGA

CTGTAAGCTCACTTTAGTTCTAGTTAAGAATGGAGGACTGATAAATGGATACAT

AACATTAATGGGAGCCTCAGAATATACTAACACCTTGTTTAAAAACAATCAAGT

TACAATCGATGTAAACCTCGCATTTGATAATACTGGCCAAATTATCACTTACCTA

TCATCCCTTAAAAGTAACCTGAACTTTAAAGACAACCAAAACATGACTACTGGA

ACCATAACCAGTGCCAAAGGCTTCATGCCCAGCACCACCGCCTATCCATTTATAA

CATACGCCACTGAGACCCTAAATGAAGATTACATTTATGGAGAGTGTTACTACA

AATCTACCAATGGAACTCTCTTTCCACTAAAAGTTACTGTCACACTAAACAGACG

TATGTCAGCTTCTGGAATGGCCTATGCTATGAATTTTTCATGGTCTCTAAATGCA

ATTGAAAATCAGTTTACAAGATTCGAGTAGTTATTTTGCCCCCCTCTTCCCATTTT ATAGAATACACAATTCTCTCCCCACGCACAGCTTTGAACATTTGAATTCCATTAG AGATAGACATAGTTTTAGATTCCACATTCCACACAGTTTCAGAGCGGGCCAATCT TGGATCAGTGATAGATATAAATCCATCGGAACAGTCTTTCAAGGTGG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGGGGCCGTCGCTGATTGGACGAGAGAAGACGATGCAAATG NO: ACGTCACGACGCACGGCTAACGGTCGCCGCGGAGGCGTGGCCTAGGCCGGAAG 1437 CAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAACGG

CCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGT

GAAATTAGGCCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAAA

TACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGA

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

GCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTTCTACCTTCAACTGTGCC

CGGTGAGCTGGCTGTGCTTATGCTGGAGGACTTTGTGGATACAGTATTGGAGGA

TGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGACCTCTATGAT

CTGGAGGTAGATGCCCATGATGACGACCCTAACGAAGAGGCTGTGAATTTAATA

TTTCCAGAATCTATGATTCTCCAGGCTGACATAGCCAGCGAAGCTATAGTTACTC

CACTTCATACCCCGACTCTGCCACCAATACCTGAATTGGAAGAGGAGGACGAGA

TAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAAC

AGGGTGAGCGAGAGATGGCTATTCTATCGGACTTTGCTTGTGTGATTGTGGAGG

AGCAAGATGTGATTGAAAAATCTACCGAGCCAGTACAAGGCTGTAGAAACTGCC

AATACCACCGGGATAAGTCCGGAGATCCAAACGCCTCCTGCGCTCTGTGCTATA

TGAAACAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGTT

GAGTGCTTAACACATAACTGTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTTA

TTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCGCCCTCAGAAGAAGACC

ACCCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACAGACCCA

CCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTGAGGACT SEQ

ID Sequence

NO

TGTTGCATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCA

GGAACTAGGCGCAGATGCGCTTAGTCATGTGTAAATAAAGTTGTACAATAAAAG

TATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTCCTA

TATAAGTGGTAACACCTGGGCACTCAGGCACAGACCTTCAGGGAGCTCCTGATG

GAGGTGTGGACTATCCTTGCGGACTTTAACAAGACACGCCGGCTTGTAGAGGAT

AGTTCAGACGGGTGCTCCGGTTTCTGGAGACACTGGTTTGGAACTCCTCTAGCTC

TGACTGTTCTGGCCTTCTTGATTCACTGAATCTCGGCCACCAGGCTCTATTCCAG

GAAAGGGTCCTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCGGT

GTTGCTTTTGTGGTGTTTCTGGTTGACAAATGGAGCCAGCAAACCCACCTAACCA

GGGATTACATCCTGGACTTCACGGCCATGCACCTGTGGAAGGCCTGGGTCAGGC

AGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGGTC

TTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGCCA

TGGACGAGAACCCGAGGAGCGGTCTGGACCCTCCGTCGGAAGAGGAGCTGGATT

GAATCAGGTATCCAGCCTCTATCCAGAGCTTAGCAAGGTGCTGACATCCATGGC

CAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACCG

AGCTGACGGCCAGCCTGATGAATCGCAAGCGTCCAGAGCGCATTACCTGGCACG

AGCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATATGGC

CTGGAGCAGATAAAAACCCATTGGTTGAACCCAGATGAGGATTGGGAGGAGGC

CATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGGTGAC

CAAGACGGTGAATATCAGACATGCCTGCTACATCTCGGGTAACGGGGCAGAGGT

GGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATGAG

AGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAATGG

AGAGAAGTTTAATGGGGTGATGTTCATGGCCAACAGCCACATGACCCTGCATGG

CTGCAGTTTCTTTGGCTTCAACAATATGTGCGCAGAGGTCTGGGGCGCTGCTAAG

ATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCCAAG

AGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTCTCT

ACCGAGGGCAATGCTAGAGTAAGACACTGCTCTTCCCTGGAGACGGGCTGCTTC

TGCCTGGTGAAGGGCACAGCCTCTCTGAAGCATAATATGGTGAAGGGCTGCACG

GATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCCTG

AAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGAGAAT

AACCTGCTGATCAAGTGCCATATGCACCTGGGCGCCAGAAGGGGCACCTTCCAG

CCGTACCAGTGCAACCTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTTC

TCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGATC

CTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAG

ACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCAG

ACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACA

CAGATTAGAGGTAGGTTGAGTGAGTAGTGGGCGTGGCTAAGGTGACTATAAAGG

CGGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGG

CGGGGCCTTCGAAGGGGGGCTTTTCAGCCCTTATTTGACAACCCGCCTGCCGGG

ATGGGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGT

GCTTCCAGCAAATTCCTCGACCATGACCTATGCGACCGTGGGGAGCTCGTCGCTC

GACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACT

GGCCTCGAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCATC

ATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCTCTGAGCCGC

CAGCTGGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAACAGCAGCAGCAG

CAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTT

ATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT SEQ

ID Sequence

NO

GTAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGTGG

GTTCATGTTGTGCAGGACCACCAGAACGGTGTAGCCCGTGCACTTGGGGAACTT

GTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCC

ACCCAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCG

GCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTGA

GATCATCATAAGACATTTTAATGAACTTGGGGCGGAGGGTGCCAGATTGTGGGA

CGATGGTTCCCTCGGGCCCCGGGGCAAAGTTCCCCTCGCAGATCTGCATCTCCCA

GGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAAC

GGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTG

GGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTG

GTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTT

GAGCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTC

CCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAG

CCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTGGAGGCGGTC

CCATAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTC

GGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCT

GCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCA

CGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCACGGA

GCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCG

TAGAGCTTGGGTGCGAGAAAGACGGACTCGGGGGCGAAAGCATCCGCTCCGCA

GTGGGCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGCTCGGGCTGCTCGGG

GTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCA

TGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGG

ACTTGATGGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTC

GGACCACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGT

GCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCA

GACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGC

CACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGTTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCAAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATATTGGCCTGCCCTGCCGCGATGCTTTTTAGGAGACTTTCATC

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

TAGAGGGCGTTTGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCAC

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGC

ACTTCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACACTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCA

GCACATCCAGGAGGTGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

CTGCCACTCGCGGGCGGCCATTGCTCGCTCGTAGGGGTTGAGTGGCGGACCCCA

GGGCATGGGATGCGTGAGCGCGGAGGCGTACATGCCGCAGATGTCATAGACATA

GATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGAT

GCTGGCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAATGCGGGACC

GAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGC

ATGCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGCGG

CAGTCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGAC

GAGCTCGGCGGTGACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGAT

GATGTCATAACCCGTCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTAC

TCCTCGTCATCCTTCCAGTACTCCCGGAGCGGAAATCCTCGATCGTCCGCACGGT

AAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCT

CCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGG SEQ

ID Sequence

NO

GCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCG

TCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGG

TTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATG

AAATTGCGGGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACC

TGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAG

AGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGT

AGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCTAGCGCCCACTCCTGGA

GATGTGGGTTGACCTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCT

GGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCAGGGG

TGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCA

CGGCTAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCATGA

CCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTT

CTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGT

AGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCG

CGGGAGCCAGGTCCAGATATCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGG

CGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGG

TTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGT

ACTTGATTTCTACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGGTGCGTTTTTAGAAGCGGTGTCGCGGA

CGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGG

CACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGC

GTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGTGTGAAGAC

CACTGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGC

GTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGG

TAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGC

CTGCGCGCTCGACGGTGGCGGCGAGGTCATTGGAGATGCGACCCATGAGCTGCG

AGAAGGCGCCCAGGCCGCTTTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGT

CGGCGTCGCGTGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCG

CGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCG

ATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTG

ATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGT

TGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCGGA

TGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCT

CCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGT

GGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAA

GCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACC

CCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGG

CGGGTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGG

TGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAA

AGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTG

CGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGG

AGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGT

AGTCATGCATGAGTCTCTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCG

GGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCG

CTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCAT

GTCGACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGCCAT

GAGCGACCAGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCCGAGTACCTGAG

CCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGT SEQ

ID Sequence

NO

ACTGGTATCCGACTAGGAAGTGCGGCGGCGGCTGGCGATAGAGCGGCCAGCGCT

GGGTGGCCGGCGCGCCCGGCGCCAGGTCCTCCAGCATGAGGCGGTGGTAGCCGT

AGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGG

AACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAATCCATGGTC

GGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAA

CGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTT

AGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGAC

TAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATAC

GGCGGAGAGCCCTTTTTGCCGGCCGAGGGGGGTCGCTAGACTTGAAAGCGGCCG

AAAACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGG

TTGAGTCGCGGCAGAACCCGGTTCGAGGACGGCCGCGGCGAGCGGGACTTGGTC

ACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGA

CCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCACCGGCGCTAGCCAGCCA

CAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGG

GGCGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCC

GGCGTACGTGCCTCCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGA

GGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGG

ACCGCCAGCGAGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCATACGGGG

ATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAG

CAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCATGTGCGC

ACGCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTG

GCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTC

CTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAA

CATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAAAG

CATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCA

ACTACTCGGTGCTTAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGC

CGTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGG

CGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCA

TCCACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTG

ATGCTGAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCTCTGGCGGCGAGGAGTCC

TACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAG

GCCGCCTACGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATGC

ACCCGTTGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGTCCCAGCAGCA

AGCCCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGC

ATCGGACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAA

CCCCGAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGA

GGCGGTGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGTGGGCGATCGT

GAACGCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGT

ACAACGCCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCA

ACCTGGACCGGCTCGTGACGGACGTGCGCGAGGCCGTGGCTCAGCGCGAGCGGT

TCAAGAACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGC

AGCCGGCGAACGTGCCGCGCGGGCAGGACGATTATACCAACTTTATCAGTGCGC

TGCGGCTGATGGTGACCGAGGTTCCCCAGAGCGAGGTGTACCAGTCGGGCCCGG

ACTACTTTTTCCAGACTAGCAGACAGGGCCTGCAGACGGTGAACCTGAGCCAGG

CTTTCAAGAATCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGT

CGACGGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGTTGCTCCTGCTGATCGC

GCCCTTCACAGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGTCACCTGCT

GACGCTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCA

GGAAATCACGAGCGTGAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGA

GGGCCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGT

ACGCGCTATCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAACAGAGCGTAG

GGCTGTTCCTAATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCG SEQ

ID Sequence

NO

CGCGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGC

TGATGGACTACTTGCACCGCGCGGCGGCCATGAACTCGGACTACTTTACAAACG

CCATTCTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACG

ACATGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGT

TCTCACCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGG

GCGCGGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGG

CTCGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGT

ACCTGAACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATA

ACGGGATAGAAAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAG

GACCATAGGGAGCCTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCG

GGGCCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTT

GGGCGGGAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGGA

GGCGGATGTTTTGAAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCT

CTTCCTTGTTAGAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTAC

GAGAGCGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTAT

ATGGCTCCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCTG

TACGACACCACTCGCGTGTATTTGGTGGACAACAAGTCGGCGGACATCGCTTCC

CTGAACTACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAAC

GATTTCACCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCG

CGGTGGGGCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAAC

GAGTACATGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAAGCAC

CCAGAGAATGTAGCTAAAGAGGATTTGAGTCAGGATATCTTAGAATATAAGTGG

TTTGAGTTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGA

TGAACAACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGC

TGGAGAGCGATATCGGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGG

ACCCGGTGACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCATC

CGGACGTGGTGCTGCTGCCGGGCTGCGGGGTGGACTTTACCGAGAGCCGCCTGA

GCAACCTCCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGGATCA

TGTATGAGGATCTAGAAGGGGGCAACATCCCCGCACTCCTTGATGTGGCCAAGT

ACTTGGAAAGCAAGAAGAAGGTAGAGGAAGCAATTAAGAAGGCCGCTGAAACC

AATGGAACCCCTAGAGGAGACAGTGATGTTGCAAGAGAGGTGGAAAAGGCAGC

TCAAACTCAGCTTGTCATTGAGCCCATCAAGCAAGATGATAGCAAGAGAAGTTA

CAACCTCATCGAGGGAACCATGGACACGCTGTACCGCAGCTGGTACCTGTCCTA

TACCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCC

GGACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGATCTCATGCA

AGACCCCGTCACCTTCCGCTCCACCCAGCAAGTCAGCAACTACCCCGTGGTCGG

CGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTAC

TCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCG

ACAACCAGATCCTATGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAA

ACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCG

GAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTA

CAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAA

AATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCC

AGCACCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTC

CGCGGCCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTTCCACC

GCCGCCGCCGTGCGCACCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGAC

GCGCGCAACTACACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTG

GTGGCCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATAGC

CAGGCGCCACCGGAGTACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCG

CGCCAGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCCGCCAC

TGCACCCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGC

CATCTCTAGCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTC

CGTCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAAT SEQ

ID Sequence

NO

GCTTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGA

TGCTCCAGGTCGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAAC

CCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTA

GAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGG

GTGCAGCGCGTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGG

TCCTCGGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATC

CTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCG

CGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCT

GAAGCCCGTGACCCTGCAGCAGGTGCTGTCCCAGGCGGTTCTGCTCCCGAGCCG

CGGGGTCAAGCGCGAGGGCGAAAGCATGTACCCCACCATGCAGATCATGGTGCC

CAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGC

CCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAAA

CCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCA

GCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGCCTCCA

ATTCTACCGAGCCTCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGATGC

CCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCG

GTACTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCACCGCCAC

CCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCGGGGCCG

CTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGC

TGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCC

GAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGTGGCCTGA

ACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCG

CGCTCATCCCCATAATCGCGGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGT

TGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCT

GACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTG

GCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACC

AGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAA

AATTTCGGCTCGACGCTCCGGAACTATGGGAACAAGGCCTGGAATAGTAGCACG

GGGCAGTTGTTAAGGGAAAAGCTCAAAGACCATAACTTCCAGCAGAAGGTGGTG

GACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTG

CAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTTGAGATG

GAAGATGCAACTCTTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGACGC

GGAGGAGACGATCCTGCAGGTTGACGAGCCGCCCTCGTACGAGGAGGCCGTGA

AGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGA

AACCCGCCACCCTTGATCTGCCTCCACCACCCACGCCCGCTCCACCGAAGGCAG

CTCCGGTTGTGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCC

GCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGAG

TGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAGGACACTA

AAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGC

CACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGC

CTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTA

CTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGT

GACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGA

GGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCG

GGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGG

TCCCAGCTTCAAACCCTACTCGGGCACAGCTTACAACAGTCTGGCCCCCAAGGG

TGCCCCCAACTCCAGCCAGTGGCTTGCAAAAGACACCAATGCTGGCGATCAAGC

ATTAAAAACCCACACACATGGCGTAGCTGCTATGGGGGGAACAGATATCACAGC

AAAGGGTTTGCAAATTGGTGTTGATACGACTGAAAACAAGAATGAGCCTATTTA

TGCAAATGAAATATACCAGCCAGAACCTCAGGTAGGAGAGGAAAACTTGCAAG

ATGTTGAAAACTTTTATGGAGGCAGAGCTCTTAAAAAAGAAACCAAAATGAAAC

CTTGCTATGGCTCGTTTGCCAGACCCACAAATGAAAAAGGCGGTCAAGCCAAAT

TTTTAACTGACGGCGATGGTCAGCTAACTAAAAATCATGATATCACAATGAATTT SEQ

ID Sequence

NO

CTTTGACACTCCTGGAGGAACAGTTGGTCAGGATACTGAACTTGAAGCAGACAT

TGTTATGTATGCTGAGAATGTGCATCTGGAAACTCCAGACACGCATGTGGTGTAC

AAACCAGGAACTTCTGATGAGAGTTCAGAAGCAAATTTGGTTCAGCAGTCCATG

CCAAACAGGCCCAACTACATCGGCTTCAGGGACAACTTTGTGGGTCTCATGTACT

ATAACAGCACTGGCAACATGGGTGTGCTGGCTGGTCAAGCATCTCAGTTGAATG

CTGTGGTCGACTTGCAAGACAGAAACACAGAGCTGTCTTACCAGCTCTTGCTAG

ATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACTCTGCAGTGGACA

GTTATGATCCTGATGTCAGGATTATTGAAAATCACGGTGTGGAAGATGAACTTCC

AAACTATTGCTTCCCATTGGATGGAGCTGGCACTAATGCTACCTACCAAGGTGTA

AAAGTTAAAAATGGCCAAGATGGAGATGTAAACGCAGATTGGGAAAAAGATCC

AAATCTTGCTTCACGAAACCAAATATGCAAGGGTAACATCTTCGCCATGGAGAT

CAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAATGTGGCCCTGTAC

CTGCCCGACTCCTACAAGTACACGCCGGCCAACATCACGCTGCCCACCAACACC

AACACCTACGAGTACATGAACGGCCGCGTGGTGGCACCCTCGCTGGTGGATGCC

TATGTCAACATCGGTGCCCGCTGGTCGCTGGACCCCATGGACAATGTCAACCCCT

TCAACCACCACCGCAACGCGGGTCTGCGCTACCGCTCCATGCTGCTGGGCAACG

GCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAA

CCTGCTCCTGCTCCCCGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGACGTC

AACATGATCCTGCAGAGTTCCCTCGGAAACGATCTGCGCGTCGACGGCGCCTCC

GTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACA

CCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCA

ACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCA

ACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTT

CACCAGGCTCAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACCCCTA

CTTTGTCTACTCGGGCTCCATCCCCTACCTCGACGGGACCTTCTACCTCAACCAC

ACCTTCAAGAAGGTTTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACG

ACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAA

GGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATG

CTCTCCCACTACAACATCGGCTACCAGGGCTTCCACGTGCCCGAGGGCTACAAG

GACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCG

ATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAACA

ACTCGGGTTTCACCGGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACCC

CGCCAACTTCCCCTACCCGCTCATCGGTCAGACAGCCGTGCCCTCCGTCACCCAG

AAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCA

TGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACATGCTCTACGCCAACTCGG

CCCATGCGCTCGACATGACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCT

CTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGC

GTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGAAACGCCACCACAT

AAGCATGAGCGGCTCCAGCGAAAGAGAGCTCGCGGCCATCGTGCGCGACCTGG

CGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAG

GCGTGCACTGGCTCGCATTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTT

CGACCCCTTCGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTAC

GAGGCCATGCTGCGCCGCAGCGCCCTGGCCTCCTCGCCCGATCGCTGTCTCAGTC

TCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTT

TTTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGG

AAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCC

ACAGGTGCTGCCCACCCTCAGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGC

GCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCGCCATCGAACATGCCACCGCT

TTTGATAAAATGAAACAACTGCGTGTATCTCAATAAACAGCACTTTATTTTACAT

GCACTGGAGTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGT

TGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGTACTGGTACTTGGGATGCCACT

TGAACTCGGGGATCACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCC SEQ

ID Sequence

NO

ACATGCGCCGGCTCATCTGCAGGGCGCCCAGTATGTCAGGCGCGGAAATCTTGA

AATCGCAGTTGGGACCGGTGCTCTGCGCGCGCGAGTTGCGGTACACGGGGTTGC

AGCACTGGAACACCATCAGACTGGGGTGCTTCACGCTGGCCAGCACGCTCTTGT

CGCTGATCTGATCCTTGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCAT

CTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTCTGAGGCTTGTGGTTACACTC

GCAGTGCACGGGCATCAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAG

GGCCTTGACAAAGGCCAAGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTC

GCTGAAGAACAGGCCGCAGCTCTTCCCGCTGAACTGGTTATTTCCACACCCGGC

ATCATGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTTCGGCC

CCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGCTGCTCCTTCAACGCGCGCTGG

CCGTTCTCGCTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCG

TTCCATGCAGACACTTGAGCTGGCCCTCGACATCGGCGCAGCCGTGTTCCCACAG

GGCGCAGCCGGTGCACTCCCAATTCTTGTGCGCGATCCCGCTGTGGCTGAAGAT

GTAACCTTGCAACATGCGGCCCATCACGGTGCTAAATGATTTACTGGTGCTGAA

GGTCAGTTGCAGGCCGCGTGCCTCCTCGTTCATCCATGTCTGACACATCTTTTGG

AAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTGTCG

ACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCATGCCCTTCTCCCATGACG

AGACCAGAGGCAAACTCAGGGGGTTGCGCACGTTCAGGATACCGGGGGTCGCG

GGCTCTACGATGCGTTTTCCGTCCTTTCCTTCCTTCAACAGGACCGGCGGCTGGC

TGAATCCCACTCCCACGATCACGGCGTCTTCCTGGGGCATCTCTTCGTCGGGGTC

CGGGGACCACGTCCTCTTCGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGC

GCTTGGTGGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGAT

AGCGCGCTGAACCGTGGCCCCGGGGCGGAGTGGCCTCTCGGTCCATGAACCGGC

GCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGC

CGCGTAAGCAGGAGCAGGAGGAGGAGAACTTAACCACCCACGAACAAGCAAAA

ATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCACAGGAT

GAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGA

GCATGGCTACCTAGAGGAGGACATGCTGCTGAAACACTTGCAGCGCCAATCCCT

CATCCTCAGGGACGCCCTGGCCGACCGGAGCGAGATCCCCCTCAGCGTCGAGGA

GCTAAGTAGGGCCTACGAGCTCAACCTTTTCTCGCCGCGCGTGCCCCCCAAACGC

CAGCCCAACGGCACCTGCGAGCCCAACCCGCGCCTCAACTTTTACCCCGTTTTCG

CGTCTCCTGTCGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCC

GGCGCGCGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAA

GGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGA

GGAAGAGGGTCACACTAGCGCCCTTGTAGAGTTGGAAGGCGACAACGCCAGGCT

GGCCGTACTCAAGCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAA

CCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATC

GAGGCCCTCGATGAGACGCAAGAGCAGCGGCCCGAGGACGCCCAGCCCGTGGT

CAGCGACGAGCAGCTCGCGCGCTGGCTCGGGAACCGCGACCCCCAGGTCCTGGA

GCAGCGGCGCAAGCTCATGCTGGCCGTGGTCCTTGTCACCCTCGAGCTGGAATG

CATGCGCCGCTTCTTCAGCGACCCCGACACCCTGCGCAAGGTCGAGGAGACCCT

GCACTACACTTTCAGACACGGGTTCGTCAGGCAGGCCTGCAAGATCTCCAACGT

GGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCTGCACGAGAACCGCCTGGG

ACAGACCGTGCTCCACTCTACCCTGAAGGGCGAGGCGCGGAGTGACTACGTCCG

AGACTGCATCTTTCTCTTTCTCTGCCACACATGGCAGTCGGCCATGGGAGTGTGG

CAGCAGTGTCTAGAGGATGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGA

AACCTCAAAAAGCTGTGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTG

GCCGAAATAGTCTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGCGGGCTGCCC

GACTTCATGAGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGAT

CGGGGATCCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAG

CTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCC SEQ

ID Sequence

NO

AACTACATCGCCCACCACTCGGATGTGATCGAGGACGTGAGCGGCGAGGGGCTG

CTAGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCTCTGGTCTGCA

ACCCCCAGCTCCTGAGCGAGACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTC

CGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGT

ACCTGCGCAAATTTGTACCCGCTGACTACCACGCCCATGAGATAAAGTTCTTCGA

GGACCAATCGCGTCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGG

CGCGATCCTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTG

AAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCC

GGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATG

GAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAG

AGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTC

GCCGCACCATCCGCGCCGGCAGCCCCGCCGGTCACGGATACAACCTCCGCTCCG

GTCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGG

CAGGGCTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAA

GACTGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGG

GTGAACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAA

AAATCAGAAGTAAGAGGAGTCGCCGGAGGAGGCCTGAGGATCGCGGCGAACGA

GCCCTCGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATT

TTTCAGCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTG

CGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGC

ACTCTCGAAGACGCCGAGGCTCTGTTTCACAAGTACTGCGCGCTCACTCTTAAAG

ACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACTTCATCGCCACCATGA

GCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGG

CCGCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCC

CCTCGATGATCTCACGGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGT

TGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATT

GGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCC

GCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGG

CGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGAT

CCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATTGGTCT

GCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCC

CAACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGG

CATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCC

TTCTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCA

GTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAG

CTCGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGG

AGAGCTGCGGCCTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGC

ACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTT

CTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACAC

CGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTT

GTGGTGAGTTTAATAAAAGCTAAACTCTTGCAATACTCTGGACCTTGTCGTCGTC

AACTCAACGAGACCGTCTATCTCACCAACCAGACTGAGGTAAAACTCACCTGCA

GACCACACAAAACCTATATCATCTGGTTCTTCGAGAACACCTCATTTGCAGTTGC

CAACACTCACTGCAACGACGGTGTTGAACTTCCCAACAACCTTTCCAGTGGACTG

AGTTACGATACCAGAAGAGCTAAACTCGTCCTCTACAATCCTTTTGTAGAGGGA

ACCTATCATTGCCAGAGCGGACCTTGTACTCACACCTTCCATTTGGTGAACGTCA

CCAGCAGCAGCAACAGCTCAGAAACTAACCTCTCTTCTCGTACTAACAGACCTC

ATTTTGGAGGTGAGCTAAGGCTTCCCCCTTCTGAGGAGGGGGTTAGCCCATACG

AAGTGGTCGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCT

AGCTCAGCTGCCTTGCTGGGTGGAAATCAAAATCTTTATCTGCTGGGTCAGACAT

TGTGGGGAGGAACCATGAATGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGG

TGTACTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATCATAT

GAGCAGAGAGTGCACTGTAGTCATCAAATGCGAGCACGACTGCCCACTAAACAT SEQ

ID Sequence

NO

TACATTCAAGAATAACACCATGGGAAATGTATGGGTGGGTTTCTGGGAACCAGG AGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCAATGGAAATCACACTTT

CTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTT

TTGTGATCATGGCCTGCTTGATGTCAGGTCTACTGGTAGGGGCTTTAGTGTGGTT

CCTGAAGCGCAAGCCTAGGTACGGAAATGAAGAAAAGGAAAAATTGCTATAAT

CTTTTTCTTTTTCACAGAACCATGAATGCTTTGACCAGTGTCGTGCTGCTCTCTCT

TCTTGTAGCTTTTAGTAATGGGGAAGCTGAAACTGTAGTTGTAAATGTTAAATCT

GGTACAAACCACACCCTTGAAGGTCCTAGAAAAACTCCAGTTCAGTGGTATGGG

GGTGCTAACTTTGACATGTTTTGCAATGGCTCTAAAATACATCACAAGGAATTGA

ATCACACTTGCTCTATTCAGAACATAACTCTTACATTCATAAACAGAACACATCA

TGGAACATACTATGGTTTTGGCTATGACAATCAAAATTCAAAAGTGTATCATGTC

AGAGTAGATGTAGAGCCTCCTAGACCCCGTGCTACTTGGGCTCCTCCTCAGGAC

ATAACTATTAAGTATGGTTCAAATAGAACATTGCAGGGCCCAAGTGTTACTCCA

GTTAGTTGGTATGATGGTGAAGGAAATCGGTTTTGCGATGGAGATAAAATTGAT

CATACAGAAATTAATCACACTTGCAATGCTCAAAACCTTACTTTGCTATTTGTGA

ATGAAACACATGAAAGAACATATTATGGAATTAGTGGTGATTGGAAACAGCGAA

ATGAGTATGATGTTACTGTTACAAAGACACATTTAAATATTAAAAATTTGGGCCA

ACGCAAAACTGATGAAAACCATAAAAATGGAATGCAACAGAAAGTCGAACAAA

AGCCTTCAAAAAGGCCTAAACAAAAAACATTGCAAACTACAATTCAGGTTATGA

TTCCTATTGGAACTAATTATACTTTAGTGGGGCCTTCGCCACCAGTGAGCTGGCA

TACTACAAAAAATGGCTTAACAGAACTCTGTAATGGAAACCCTATTTTAAGACA

CACTTGTGATGGGCAAAATATTACACTTATTAATGTTAATGCTACATTTGAAGCT

GATTACTATGGCTCGAACAATAAGAGTGAATCAAAACACTACAGAGTCAAGGTT

TTCAAAGAAAGAAAAGATCAGGCACTATTATTCAGACCGCTTACTACCAAAGGA

AGCATGATCATTACTACTGAAAATCAAAACTTTGAATTGCAAAAAGGTGACAAT

CAAGATGATGACAAAATTCCATCAACTACTGTGGCAATCGTGGTGGGTGTGATT

GCGGGCTTTGTGACTCTGATCATTGTCTTCATATGCTACATCTGCTGCCGCAAGC

GTCCCAGGACATACAATCATATGGTAGACCCACTACTCAGTTTCTCTTACTGAAA

CTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTA

GCATAGTCACACTTAGTGCAGCCGCAGCTAAATGCTTCCATACTTATAACTTAAC

TAGAGGGGAAAATATTACATTATCAGGTGCTGGTTTAAACACAACATGGGAAGC

GTATCACAATGGGTGGAAACAAGTTTGTCCATGGAATGACGGACGCTATGTGTG

CGTTGGAAACAGCAGTACCATAACTAACCTTACAGTTGTGGCTAATGCAAATTT

ATCATCAACTGTTAAATTTAGAGCTGAAAGTTTATACATTGGAACTGATGGATAT

GAAAGCAATCCATCATGCTTTTATACTGTCAATGTAATTGAGCTTCCAACCACCA

GATCGCCAACTACCACCACAGTCAGTACAACTGCTGAAACCACAACTCACACTA

CACAGTTAGACACTACAGAGCAGAATAGTACTGTATTGGTTAGGTATTTGTTAA

GGGAGGAGAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCA

CTGCAAATTTAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATCGTTGATGAA

TCGCCAGCCTTACTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTCTGTGGAA

TCTTTATTCTTGCGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAAAAATCT

AGGCGGCCCATCTACAGGCCAGTAATCGGGGAACCTCAGCCACTCCAAGTGGAT

GGAGGCTTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTGATCAGCCATGATTC

CTAGGTTCTTCCTATTTAACATCCTGTTCTGTCTCTTCAACATCTGCGCTGCCTTC

GCGGCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCCACCTACCTAC

TCTTTGCCCTACTCACCTGCACCTGCGTCTGCAGCATTGTCTGCGTGGTCATAAC

CTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTACCTACACCACAGT

CCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCATGC

AGACTCTGCTCATGCTGCTATCCCTCCTATCCCCTGCCCTCGCCACTTCTGCTGAT

TACTCTAAATGCAAATTCGCGGACATATGGAATTTCTTAGATTGCTATCAGGAGA

AAATTGATATGCCATCCTATTACTTGGTGATTGTGGGAATAGTCATGGTCTGCTC

CTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTG SEQ

ID Sequence

NO

TTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCAC

CCACACCGCCTCCCCGCAGAAATCAGTTTCCCCTGATTCAGTACTTAGAAGAGCC

CCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGAC

TGACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCA

ACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCAT

CAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGAT

CACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCC

CCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCAC

CCAGCAGTCGGGCGAGACCAACGGCTGCATCCACTGCTCCTGCGAAAGCCCCGA

GTGCATCTACTCCCTCCTCAAGACCCTTTGCGGACTACGCGACCTTCTCCCCATG

AACTGATGTTGATTAAAAGCCCAAAAACCAATCATACCCTTCCCCCATTTCCCCA

CCCCCAATCATAAGAATAAATCATTGGAACTAAACATTCAATAAAGATCACTTA

CTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAACACCTCAGTACCC

TCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAACTTCCTCCACACCT

TGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCCCTCAGATG

ACAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTAC

GCGCGGAATCAGAATATCCCCTTCCTCACTCCTCCCTTTGTCTCCTCCGATGGATT

CCAAAACTTCCCCCCTGGTGTCCTGTCACTCAAATTGGCTGACCCAATCGCTATC

AGCAATGGTGATGTCTCACTCAAGGTGGGAGGGGGACTCACTGTGGAACAAGAT

AGTGGAAACCTAAGTGTGAATCCTAAGGCTCCATTGCAAGTTGGAACAGACAAA

AAACTGGAATTGGCTTTAGCACCTCCATTTAATGTTAAAGATAATAAGCTAGCTC

TGCTAGTAGGAGATGGATTAAAAGTAATAGATAGATCAATATCTGACTTGCCAG

GATTGTTAAATTATCTTGTAGTTTTGACTGGCAAAGGAATTGGAAATGAAGAATT

AAAAAATGACGATGGTAGCAATAAAGGAGTCGGTTTATGTGTAAGAACTGGAG

AAGGAGGTGGTTTAACTTTTGATGATAAAGGTTATTTAGTAGCATGGAACAAGA

AACATGACATCCGCACACTTTGGACAACTTTAGACCCTTCTCCAAATTGTAGAAT

CGATGTGGACAAGGACTCTAAACTAACATTGGTCCTTACAAAGTGCGGAAGTCA

GATATTGGCTAATGTATCTCTTCTTGTTGTCAAAGGAAGGTTTCAAAACCTAAAT

TACAAAACAAACCCAAACCTTCCTAAAGCATTTGCAATAAAATTACTGTTTGATG

AAAATGGGATTCTTAAAGACTCATCAAATCTTGACAAGAACTATTGGAACTATA

GAAGCGGAAATTCTATTTTAGCAGAGCAATATAAAAATGCAGTTGGCTTTATGC

CAAATTTAGCAGCTTATCCCAAATCTACCACCACTCAGTCTAAACTTTATGCAAG

AAACACTATTTTTGGAAATATTTACCTGGATTCGCAAGCATATAATCCAGTGGTT

ATTAAAATTACTTTTAATCAAGAAGCAGATAGTGCTTATTCTATCACTTTAAACT

ATTCATGGGGTAAGGATTATGAAAATATCCCTTTTGATTCTACTTCTTTTACCTTT

TCATGTATCTTTATTGATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCACCA

GCCCATTTCACAGTGTAAACAACTCTCTCAGCACGGGTGGCCTTAAACAGGGAA

ATGTTCTGATTAGTGCGGGAACTGGACTTGGGGTCTATAATCCACACAGTTTCCT

GGCGAGCCAAGCGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCAT

CCAAGCGGGCCTCACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCAC

AGATTCATACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAG

CAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCA

AGTCTCTCTGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGG

GCACAGCACCGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAA

TCACCATGTTATTCAGCAGCCCATAATTTAGGGCGCTCCAGCCAAAGCTCATGTT

GGGGATGATGGAACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAGATG

CCTGCCCCTCATGAACACACTGCCCATATACATGATCTCTTTGGGCATGTTTCTG

TTCACAATCTGCCGGTACCATGGGAATCGCTGGTTGAACATGCACCCGTAAATG

ACTCTCCTGAACCACACGGCC SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGCAAATGAGGTA ID ATTTAAAAAAGTGCGCGCTGTGTGGTGATTGGCTGTGGGGTGAACGGCTAAAAT NO: GGGCGGGGCGGCCGTGGGAAAATGACGTGACTTATGTGGGAGGAGCTATGTTGC 1438 AAGTTATTGCGGTAAATGTGACGTAAAACGAGGTGTGGTTTGAACACGGAAGTA

GACAGTTTTCCCACGCTTACTGACAGGATATGAGAGTAGTTTTGGGCGGATGCA

AGTAAAAATTCTCCATTTTCGCGCGAAAACTGAATGAGAATATGAATTTCTGAGT

CATTTCGCGGTTATGACAGGGTGGAGTATTTGCCGAGGGCCGAGTTAGACTTTG

CCTGACGAGTTCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCT

CCTCCGCGCCGCAAGTCAGTTCTGCGCTTTGAAAATGAGACACCTGCGTTTCCTG

CCACAGGAGATTATCTCCAGTGAAACCGGGATTGAAATACTGGAGTTTGTGGTA

AATACCCTAATGGGAGACGACCCGGAACCGCCAGTGCAGCCTTTTGATCCACCT

ACGCTGCACGATCTGTATGATTTAGAGGTAGACGGGCCGGAGGATCCCAATGAG

GAAGCTGTGAATGGGTTTTTTACTGATTCTATGCTGCTAGCTGCCGATGAAGGAT

TGGACATAAACCCTCCTCCTGAGACCCTTGATACCCCAGGGGTGGTTGTGGAAA

GCGGCAGAGGTGGGAAAAAATTGCCTGATCTGGGAGCAGCTGAAATGGACTTGC

GTTGTTATGAAGAGGGTTTTCCTCCGAGTGATGATGAAGATGGGGAAATTGAGC

AGTTGGACTGTCCGGAGCTGCCTGGACATGGCTGTAAGTCTTGTGAATTTCACAG

GAATAACACTGGAATGAAAGAACTATTGTGCTCGCTTTGCTATATGAGAATGCA

CTGCCACTTTATTTACAGTAAGTGTATTTAAGTGAAATTTAAAGGAATAGTGTAG

CCTGTGTCTGATGATGAGTCACCTTCTCCTGATTCAACTACTTCACTTCCTGAAAT

TCAGGCGCCCGCACCTGCAAACGTATGCAAGCCCATTCCTGTGAAGCCTAAGCC

TGGGAAACGCCCTGCTGTGGATAAGCTTGAGGACTTGTTGGAGGGTGGGGATGG

ACCTTTGGACCTTAGTACCCGGAAACTGCCAAGGCAATGAGTGCCCTGCAGCTG

TGTTTATTTAATGTGACGTCATGTAATAAAATTATGTCAGCTGCTGAGTGTTTTAT

TACTTGTTGGGTGGGGACTTGGATATATAAGTAGGAGCAGATCTGTGTGGTTAG

CTCACAGCAACCTGCTGCCATCCATGGAGGTTTGGGCTATCTTGGAAGACCTCAG

ACAGACTAGGCTACTGCTAGAAAACGCCTCGGACGGAGTCTCTGGCCTTTGGAG

ATTCTGGTTCGGTGGTGATCTAGCTAGGCTAGTGTTTAGGATAAAACAGGACTAC

AACTTGGGTCATCAGGCTCATTTTAAGGAGAAGGTTTTATCAGTTTTAGATTTTT

CTACTCCTGGTAGAACTGCTGCTGCTGTAGCTTTTCTTACTTTTATATTGGATAAA

TGGATCCGCCAAACTCACTTCAGCAAGGGATACGTTTTGGATTTCATAGCAGCA

GCTTTGTGGAGAACATGGAAGGCTCGCAGGATGAGGACAATCTTAGATTACTGG

CCAGTGCAGCCTCTGGGAGTAGCAGGGATACTGAGACACCCACCGACCATGCCA

GCGGTTCTGCAGGAGGAGCAGCAGGAGGACAATCCGAGAGCCGGCCTGGACCC

TCCGGTGGAGGAGTAGCTGACCTGTTTCCTGAACTGCGACGGGTGCTTACTAGGT

CTACGACCAGTGGACAGAACAGGGGCATTAAGAGGGAGAGGAATCCTAGTGGG

AACAATTCAAGAACCGAGTTGGCTTTAAGTTTAATGAGCCGCAGGCGTCCTGAA

ACTGTTTGGTGGCATGAGGTTCAGAGCGAAGGCAGGGATGAAGTTTCAATATTG

CAGGAGAAATATTCACTAGAACAACTTAAGACCTGTTGGTTGGAACCTGAGGAT

GATTGGGAGGTGGCCATTAGGAATTATGCTAAGATATCTCTGAGGCCTGATAAA

CAATATAGAATTACTAAGAAGATTAATATTAGAAATGCATGCTACATATCAGGG

AATGGGGCAGAGGTTATAATAGATACACAAGATAAAGCAGCTTTTAGATGTTGT

ATGATGGGTATGTGGCCAGGGGTTGTCGGCATGGAAGCAGTAACACTTATGAAT

ATTAGGTTTAGAGGGGATGGGTATAATGGCATTGTATTTATGGCTAACACTAAG

AGGTAGGGTGAAGAGTCAGTTGTCTGTAAAGAAATGCATGTTTGAGAGATGTAA TCTTGGCATACTGAATGAAGGTGAAGCAAGGGTCCGCCACTGCGCGGCTACACA SEQ

ID Sequence

NO

AACTGGCTGCTTCATTCTAATAAAGGGAAATGCCAGTGTAAAGCATAATATGAT

CTGTGGACATTCGGATGAGAGGCCTTATCAGATGCTGACCTGCGCTGGTGGACA

TTGCAATATTCTTGCTACCGTGCATATCGTTTCACATGCACGCAAGAAATGGCCT

GTATTTGAACATAATGTGATTACCAAGTGCACCATGCACATAGGTGGTCGCAGA

GGAATGTTTATGCCTTACCAGTGTAACATGAATCATGTGAAGGTGATGTTGGAA

CCAGATGCCTTTTCCAGAGTGAGCTTAACAGGAATCTTTGATATGAATATTCAAC

TATGGAAGATCCTGAGATATGATGACACTAAACCGAGGGTGCGCGCATGCGAAT

GCGGAGGCAAGCATGCTAGATTCCAGCCGGTGTGCGTGGATGTGACTGAAGACC

TGAGACCCGATCATTTGGTGCTTGCCTGCACTGGAGCGGAGTTTGGTTCTAGTGG

TGAAGAAACTGACTAAAGTGAGTAGTGGGGCAAGATGTGGATGGGGACTTTCAG

GTTGGTAAGGTGGACAAATTGGGTAAATTTTGTTAATTTCTGTCTTGCAGCTGCC

ATGAGTGGAAGTGCTTCTTTTGAGGGGGGAGTATTTAGCCCTTATCTGACGGGCA

GACTCCCACCATGGGCAGGAGTTCGTCAGAATGTCATGGGATCTACTGTGGATG

GGAGACCCGTCCAGCCCGCCAATTCCTCAACGCTGACCTATGCCACTTTGAGTTC

GTCACCATTGGATGCAGCTGCAGCCGCCGCCGCTACTGCTGCCGCCAACACCAT

CCTTGGAATGGGCTATTACGGAAGCATCGTTGCCAATTCCAGTTCCTCTAATAAC

CCTTCAACCCTGGCTGAGGACAAGCTACTTGTTCTCTTGGCTCAGCTCGAAGCCT

TAACCCAACGCTTAGGCGAACTGTCTAAGCAGGTGGCCCAGTTGCGTGAGCAAA

CTGAGTCTGCTGTTGCCACAGCAAAGTCTAAATAAAGATCTCAAATCAATAAAT

ATGCCCTGGACCATCGGTCTCGATCATTGAGAACTCGGTGGATCTTTTCCAGTAC

CCTGTAAAGGTGGGATTGAATGTTTAGATACATGGGCATTAGTCCGTCTCGGGG

GTGGAGATAGCTCCATTGAAGAGCCTCTTGCTCCGGGGTAGTGTTATAAATCACC

CAGTCATAGCAAGGTCGGAGTGCATGGTGTTGCACAATATCTTTTAGGAGCAGA

CTAATTGCAACGGGGAGGCCCTTAGTGTAGGTGTTTACAAATCTGTTAAGCTGG

GACGGGTGCATTCGGGGTGAAATTATATGCATTTTGGACTGGATCTTAAGGTTGG

CAATGTTGCCGCCTAGATCCCGTCTCGGGTTCATATTGTGCAGGACCACCAAGAC

AGTGTATCCTGTGCACTTGGGAAATTTATCATGCAGCTTAGAGGGAAAAGCATG

AAAAAATTTGGAGACGCCTTTGTGACCCCCCAGATTCTCCATGCACTCATCCATA

ATGATAGCGATGGGGCCGTGGGCAGCGGCACGGGCGAACACGTTGCGGGGGTC

TGAAACATCATAGTTATGCTCCTGAGTCAGGTCATCATAAGCCATTTTAATAAAC

TTTGGGCGGAGGGTGCCAGATTGGGGAATGAAAGTTCCCTCTGGCCCGGGAGCA

TAGTTTCCCTCACATATTTGCATTTCCCAGGCTTTCAGTTCAGAGGGGGGGATCA

TGTCCACCTGCGGGGCTATAAAAAATACCGTTTCTGGAGCCGGGGTGATTAACT

GGGATGAGAGCAAATTCCTAAGCAGCTGAGACTTGCCGCACCCAGTGGGACCGT

AAATGACCCCAATTACGGGTTGCAGATGGTAGTTTAGGGAGCGACAGCTGCCGT

CCTCCCGGAGCAGGGGGGCCACTTCGTTCATCATTTGCCTTACATGGATATTTTC

CCGCACCAAGTCCGTTAGGAGGCGCTCTCCCCCAAGGGATAGAAGCTCCTGGAG

CGAGGAGAAGTTTTTCAGCGGCTTTAGCCCGTCAGCCATGGGCATTTTGGAAAG

AGTCTGTTGCAAAAGCTCGAGCCGGTCCCAGAGCTCGGCGATGTGCTCTATGGC

ATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTGGGACGGCTCCTGGAGTAGG

GAATCAGACGATGGGCGTCCAGCGCTGCCAGGGTCCGATCCTTCCATGGTCGCA

GCGTCCGAGTTAGGGTTGTTTCCGTCACGGTGAAGGGGTGCGCGCCTGGTTGGG

CGCTTGCGAGGGTGCGCTTCAGACTCATCCTGCTGGTCGAGAACCGCTGCCGATC

GGCGCCCTGCATGTCGGCCAGGTAGCAGTTTACCATAAGTTCGTAGTTAAGCGC

CTCGGCCGCGTGGCCTTTGGCACGGAGCTTACCTTTGGAAGTTTTATGGCAGGCG

GGGCAGTAGATACATTTGAGGGCATACAGCTTGGGCGCGAGGAAAATGGATTCG

GGGGAGTATGCATCCGCACCGCAGGAGGCGCAGACGGTTTCGCACTCTACGAGC

TGCGTTTCTTACCTTTGGTTTCCATGAGTTCGTGTCCCCGCTGGGTGACAAAGAG GCTGTCCGTGTCCCCGTAGACCGACTTTATGGGTCTGTCCTCGAGCGGAGTGCCT CGGTCCTCTTCGTAGAGGAACCCAGCCCACTCTGATACAAAAGCGCGTGTCCAG GCCAGCACAAAGGAGGCCACGTGGGAGGGGTAGCGGTCGTTGTCAACCAGGGG SEQ

ID Sequence

NO

GTCCACCTTCTCTACGGTATGTAAACACATGTCCCCCTCCTCCACATCCAAGAAT

GTGATTGGCTTGTAAGTGTAGGCCACGTGACCAGGGGTCCCCGCCGGGGGGGTA

TAAAAGGGGGCGGGCCTCTGTTCGTCCTCACTGTCTTCCGGATCGCTGTCCAGGA

GCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCTCTGCACT

CAGGTTGTCAGTTTCTAGGAACGAGGAGGATTTGATATTGACAGTACCAGCAGA

GATGCCTTTCATAAGACTCTCGTCCATTTGGTCAGAAAACACAATCTTCTTGTTG

TCCAGCTTGGTAGCAAATGATCCATAGAGGGCATTGGATAGAAGCTTGGCGATG

GAGCGCATGGTTTGGTTCTTTTCCTTGTCCGCGCGCTCCTTGGCGGCGATGTTAA

GCTGGACGTACTCGCGCGCCACACATTTCCATTCAGGGAAGATGGTTGTCAGTTC

ATCCGGAACTATTCTGACTCGCCATCCCCTATTGTGCAGGGTTATCAGATCCACA

CTGGTGGCCACCTCGCCTCGGAGGGGCTCATTGGTCCAGCAGAGTCGACCTCCTT

TTCTTGAACAGAAAGGGGGGAGGGGGTCTAGCATGAGCTCATCAGGGGGGTCCG

CATCTATGGTAAATATTCCCGGTAACAAATCTTTGTCAAAATAGCTAATGGTGGT

GGGATCATCCAAGGTCATCTGCCATTCTCGAACTGCCAGCGCGCGCTCATAGGG

GTTAAGAGGGGTGCCCCAGGGCATGGGGTGGGTGAGCGCGGAGGCATACATGC

CACAGATATCGTATACATAGAGGGGCTCTTCGAGGATGCCGATGTAAGTGGGAT

AACAGCGCCCCCCTCTGATGCTTGCTCGCACATAGTCATAGAGTTCATGTGAGGG

GGCGAGAAGACCCGGGCCCAGATTGGTGCGGTTGGGTTTTTCCGCCCTGTAAAC

GATCTGGCGAAAGATGGCATGGGAATTTGAAGAGATAGTAGGTCTCTGGAATAT

GTTAAAATGGGCATGAGGTAGGCCTACAGAGTCCCTTATGAAGTGGGCATATGA

CTCTTGCAGCTTGGCTACCAGCTCGGCGGTGACGAGTACATCCAGGGCACAGTA

GTCGAGAGTTTCCTGGATGATGTCATAACGCGGTTGGCTTTTCTTTTCCCACAGC

TCGCGGTTGAGAAGGTATTCTTCGCGATCCTTCCAGTACTCTTCGAGGGGAAACC

GGGACAGCATCCCTTCTCCACTGGGAGAGAGTATGCTTGGGCTGCATTGCGCAG

CGAGGTATGAGTGAGGGCAAAAGTGTCCCTGACCATGACTTTGAGGAATTGATA

CTTGAAGTCCATGTCATCACAGGCCCCCTGTTCCCAGAGTTGGAAGTCCACCCGC

TTCTTGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCATTGAAGAGGATCTTG

CCGGCCCTGGGCATGAAATTTCGGGTGATTCTGAAAGGCTGAGGGACCTCTGCT

CGGTTATTGATAACCTGAGCGGCCAAGACGATCTCATCAAAGCCATTGATGTTGT

GCCCCACTATGTACAGTTCTAAGAATCGAGGGGTGCCCCTGACATGAGGCAGCT

TCTTGAGTTCTTCAAAAGTGAGATCTGTAGGGTCAGTGAGAGCATAGTGTTCGA

GGGCCCATTCGTGCACGTGAGGGTTCGCTTTGAGGAAGGAGGACCAGAGGTCCA

CTGCGAGTGCTGTTTGTAACTGGTCCCGGTATTGACGAAAATGCTGCCCGACTGC

CACTTAAGTTTCATGGCGAGGTCATAGGCGATGTTGACGAGCCGCTGGTCTCCA

GAGAGTTTCATGACCAGCATGAAGGGGATTAGCTGCTTGCCAAAGGACCCCATC

CAGGTGTAGGTTTCCACATCGTAGGTGAGGAAGAGCCTTTCTGTGCGAGGATGA

GAGCCAATCGGGAAGAACTGGATCTCCTGCCACCAGTTGGAGGAATGGCTGTTG

ATGTGATGGAAGTAGAACTCCCTGCGACGCGCCGAGCATTCATGCTTGTGCTTGT

ACAAACGGCCGCAGTACTCGCAGCGATTCACGGGATGCACCTCATGAATGAGTT

GTACCTGACTTCCTTTGACGAGAAATTTCAGTGGAAAATTGAGGCCTGGCGTTTG

TACCTGGCGCTCTACTATGTTGTCTGCATCGGCATGACCATCTTCTGTCTCGATG

GTGGTCATGCTGACGAGCCCTCGCGGGAGGCAAGTCCAGACCTCGGCGCGGCAG

GGGCGGAGCTCGAGGACGAGAGCGCGCAGGCCGGAGCTGTCCAGGGTCCTGAG

ACGCTGCGGAGTCAGGTTAGTAGGCAGTGTCAGGAGATTGACTTGCATGATCTT

TTGGAGGGCGTGAGGGAGGTTCAGATGGTACTTGATCTCCACGGGTCCGTTGGT

GGAGATGTCAATGGCTTGCAGGGTTCCGTGCCCCTTGGGCGCTACCACCGTGCCC

TTGTTTTTCCTTTTGGGCGGCGGTGGCTCTGTTGCTTCTTGCATGTTTAGGAGCGG

TGTCGAGGGCGCGCACCGGGCGGCAGGGGCGGCTCGGGACCCGGCGGCATGGC

TGGCAGTGGTACGTCGGCGCCGCGCGCGGGTAGGTTCTGGTACTGCGCCCTGAG

AAGACTCGCATGTGCGACGACGCGGCGGTTGACATCCTGGATCTGACGCCTCTG

GGTGAAAGCTACCGGCCCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAGAATC SEQ

ID Sequence

NO

AATCTCGGTATCGTTGACGGCGGCTTGCCTAAGGATTTCTTGCACGTCGCCAGAG

TTATCCTGGTAGGCGATCTCGACCATGAACTGCTGGATCTCTTCCTCTTGAAGAT

CTCCGCGGCCCGCTCTCTCGACGGTGGCCGCGAGGTCGTTGGAGATGCGCCCAA

TGAGTTGAGAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAGACCA

CAGCCCCCACGGGATCTCTCGCGCGCATAACCACCTGGGCGAGGTTAAGCTCTA

CGTGGCGGGTGAAGACCGCATAGTTGCATAGGCGCTGGAAAAGGTAGTTGAGTG

TGGTGGCGATGTGCTCGGTGACGAAGAAATACATGATCCATCGTCTCAGCGGCA

TCTCGCTGACATCGCCCAGCGCTTCCAAGCGCTCCATGGCCTCGTAGAAGTCCAC

GGCAAAGTTGAAAAACTGGGAGTTACGCGCGGACACGGTCAACTCCTCTTCCAG

AAGACGGATGAGTTCGGCAATGGTGGTGCGCACCTCGCGCTCGAAATCCCCCGG

GATTTCTTCCTCAATCTCTTCTTCTTCCACTAACATCTCTTCCTCTTCAGGTGGGG

CTGCAGGAGGAGGGGGAACGCGGCGACGCCGGCGGCGCACGGGCAGACGGTCG

ATGAATCTTTCAATGACCTCTCCGCGGCGGCGGCGCATGGTCTCGGTGACGGCA

CGACCGTTCTCCCTGGGTCTCAGAGTGAAGACACCTCCGCGCATCTCCCTGAAGT

GGTGACTGGGAGGCTCTCCGTTGGGCAGGGACACCGCGCTGATTATGCATTTTAT

CAATTGCCCCGTAGGTACTCCGCGCAAGGACCTGATCGTTTCAAGATCCACGGG

ATCTGAAAACCTTTCGACGAAAGCGTCTAACCAGTCGCAATCGCAAGGTAGGCT

GAGCACTGTTTCTTGCGGGCGGGGGCGGCTAGACGCTCGGTCGGGGTTCTCTCTT

TCTTTTCCTTCCTCCTCTTGGGAGGATGAGACGATGCTGCTGGTGATGAAATTAA

AATAGGCAGTTTTGAGACGGCGGATGGTGGCGAGGAGCACCAGGTCTTTGGGTC

CGGCTTGTTGGATGCGCAGGCGATGGGCCATTCCCCAAGCATTATCCTGACATCT

GGCCAGATCTTTATAGTAGTCTTGCATGAGTCGTTCCACGGGCACTTCTTCTTCG

CCCGCTCTGCCATGCATGCGAGTGATCCCGAACCCGCGCATGGGCTGGACAAGT

GCCAGGTCCGCTACAACCCTTTCGGCGAGGATGGCTTGCTGCACCTGGGTGAGG

GTGGCTTGGAAGTCGTCAAAGTCTACAAAGCGGTGGTAGGCCCCGGTGTTGATT

GTGTAGGAGCAGTTGGCCATGACTGACCAGTTGACTGTCTGGTGCCCAGGGCGC

ACGAGCTCGGTGTACTTGAGGCGCGAGTATGCGCGGGTGTCAAAGATGTAATCG

TTGCAGGTGCGCACCAGGTACTGGTAGCCGATGAGAAAGTGTGGCGGTGGCTGG

CGGTACAGGGGCCATCGCTCTGTAGCCGGGGCTCCGGGGGCAAGGTCTTCCAGC

ATGAGGCGGTGGTAACCGTAGATGTACCTGGACATCCAGGTGATACCGGAGGCG

GTGGTGGATGCCCGCGGGAACTCGCGTACGCGGTTCCAGATGTTGCGCAGCGGC

ATGAAGTAGTTCATGGTAGGCACGGTTTGGCCCGTGAGACGTGCACAGTCGTTG

ATGCTCTAGACATACGGGCAAAAACGAAAGCGGTCAGCGGCTCGTCTCCGTGGC

CTGGAGGCTAAGCGAACGGGTTGGGCTGCGCGTGTACCCCGGTTCGAATCTCGG

ATCAGGCTGGAGCCGCAGCTAACGTGGTACTGGCACTCCCGTCTCGACCCAGGC

GGGAGCCAGTGCTGCGTCAAGCTTTAGAACACTCAGTTCTCGGGGCTGGGAGTG

GCTCGCGCCCGTAGTCTGGAGAATTAATCGCCAGGGTTGCGTTGCGGTGTGCCCC

GGTTCGAGTCTTAGCGCGCCGGATCGGCCGGTTTCCGCGACGTTTCTAAGACCCC

TTTGTTTGCCCAGATGCATCCCGTGCTGCGACAGATGCGCCCCCAGCAACAGCCC

CCTTCTCAGCAGCAGCTACAACGACAGCCACAAAAGGCTCTTCCTGCTCCTGTAA

CTACTGCGGCTGCAGCCGTCAGCGGCGCGGGACAGCCCGCCTATGATCTGGAAT

TGGAAGAGGGCGAGGGACTGGCGCGCCTGGGCGCACCATCGCCCGAGCGGCAC

CCGCGGGTGCAACTGAAAAAGGACTCTAGCGAGGCGTACGTGCCCCAGCAGAA

CCTGTTCAGGGACAGGAGCGGTGAGGAGCCAGAGGAGATGCGAGCATCTCGATT

TAACGCGGGTCGCGAGCTGCGCCACGGTCTGGATCGAAGACGGGTGCTGCAAGA

CGAGGATTTTGAGGTCGATGAAGTGACAGGGATCAGCCCAGCTAGGGCACATGT

GGCCGCGGCCAACCTAGTCTCAGCCTACGAGCAGACCGTGAAGGAGGAGCGCA

ACTTCCAAAAATCTTTTAACAACCATGTGCGCACCCTGATCGCCCGCGAGGAAG

TGACCCTGGGTCTGATGCATCTGTGGGACCTGATGGAGGCTATCACCCAGAACC

CCACTAGCAAACCCCTGACAGCTCAGCTGTTTCTGGTGGTTCAACATAGCAGGG

ACAACGAGGCATTCAGGGAGGCGTTGTTGAACATCACCGAGCCTGATGGGAGAT SEQ

ID Sequence

NO

GGCTGTATGATCTGATCAACATCCTGCAAAGTATTATAGTGCAGGAACGTAGCC

TGGGTTTGGCTGAGAAAGTGGCAGCTATCAACTACTCGGTCTTGAGCCTGGGCA

AATACTACGCTCGCAAGATCTACAAGACCCCCTACGTACCCATAGACAAGGAGG

TAAAGATAGATGGGTTTTACATGCGCATGACTCTCAAGGTGCTGACTTTGAGCG

ACGATCTGGGGGTGTATCGCAATGACAGGATGCACCGTGCGGTGAGCGCCAGCA

GGAGGCGCGAGCTGAGCGACAGAGAACTTATGCACAGCTTGCAAAGAGCTCTA

ACGGGGGCTGGGACCGATGGGGAGAACTACTTTGACATGGGAGCGGACTTGCA

ATGGCAACCCAGTCGCAGGGCCATGGAGGCTGCAGGGTGTGAGCTTCCTTACAT

AGAAGAGGTGGATGAAGTCGAGGACGAGGAGGGCGAGTACTTGGAAGACTGAT

TGCGGGCGGCGCTGCAGAGCCAGCCGTCCGGCATTAACTCCTCGGACGATTGGA

CCCAGGCCATGCAACGCATAATGGCGCTGACGACCCGCAACCCCGAAGCCTTTA

GACAGCAACCCCAGGCCAACCGCCTTTCGGCTATACTGGAGGCCGTAGTGCCCT

CCCGCTCCAACCCCACCCACGAGAAGGTCCTGGCTATCGTGAACGCGCTGGTGG

AGAACAAGGCCATCCGTCCCGATGAGGCCGGGCTGGTATACAATGCTCTCTTGG

AGCGCGTGGCCCGTTACAACAGCAGCAACGTGCAGACCAACCTGGACCGGATGG

TGACCGATGTGCGCGAGGCCGTGTCTCAGCGCGAGCGGTTCCAGCGCGACGCCA

ACTTGGGATCGTTGGTAGCGCTAAACGCTTTCCTCAGCACCCAGCCCGCTAACGT

GCCCCGTGGTCAGCAAGACTATACAAACTTTTTGAGTGCATTGAGACTCATGGTA

GCTGAGGTGCCTCAGAGCGAGGTGTACCAGTCCGGGCCAGATTACTTCTTCCAG

ACCAGCAGACAGGGCTTGCAGACAGTGAACCTGACTCAGGCTTTCAAGAACCTG

AAGGGTCTCTGGGGAGTGCACGCCCCAGTAGGGGATCGCGCGACCGTGTCTAGC

TTGCTGACTCCCAACTCCCGCCTGCTGCTGCTGCTGGTATCCCCCTTTACTGACA

GCGGTAGCATCGACCGCAACTCGTACTTGGGCTACCTGCTTAACCTGTATCGCGA

GGCCATAGGGCAGAGCCAGGTGGACGAGCAGACCTATCAAGAAATCACCCAAG

TGAGCCGCGCCCTGGGTCAGGAAGACACGGGCAGTTTGGAAGCCACCCTGAACT

TCTTGCTAACCAACCGGTCGCAGAAGATCCCTCCTCAGTATGCGCTTACCGCTGA

GGAGGAGCGGATCCTCAGATACGTGCAACAGAGCGTTGGACTGTTTCTGATGCA

GGAGGGGGCGACACCTACCGCCGCGCTGGACATGACAGCTCGAAACATGGAGC

CCAGCATGTATGCTAGTAACAGGCCTTTCATTAACAAACTGCTGGACTACCTGCA

CAGGGCGGCCGCCATGAACTCTGATTATTTCACCAATGCTATCCTGAACCCACAC

TGGCTGCCCCCACCTGGTTTCTACACTGGCGAGTACGACATGCCCGACCCCAATG

ACGGGTTCCTGTGGGACGATGTGGACAGCAGCATATTCTCCCCGCCTCCCGGTTA

TACAGTTTGGAAGAAGGAAGGGGGCGATAGAAGACACTCTTCCGTGTCGCTGTC

CAGAACGGCTGGTGCTGCCGCCACCGTGCCCGAAGCTGCAAGTCCTTTCCCTAG

CTTGCCCTTTTCACTAAACAGCGTTCGCAGCAGTGAACTGGGGAGAATAACCCG

CCCGCGCTTGATGGGCGAGGATGAGTACTTGAATGACTCTTTGTTGAGGCCAGA

GAGGGAAAAGAACTTCCCCAACAATGGAATAGAGAGCCTGGTGGATAAGATGA

GTAGATGGAAGACCTATGCGCAGGATCACAGAGACGAGCCCAAAATCTTGGGG

GCTACAAGCAGACCGACCCGTAGACGCCAGCGCCACGACAGACAGATGGGTCTT

GTGTGGGACGATGAGGACTCTGCCGATGATAGCAGCGTGTTGGACTTGGGTGGA

AGAGGAGGGGGCAACCCGTTCGCTCATCTGCGTCCCAGATTCGGGCGCATGTTG

TAAAAGTGAAAGTAAAATAAAAATGCAACTCACCAAGGCCATGGCGACCGAGC

TAGGCGGAGCGGTGGTGTATCCGGAGGGTCCTCCTCCTTCTTACGAGAGCGTGA

TGCAGCAACAGGCGGCGATGCTACAGCCCCCACTGGAGGCTCCCTTCGTACCCC

CGCGGTACCTGGCGCCTACGGAAGGGAGAAACAGCATTCGTTACTCGGAGCTGT

CGCCTCTGTACGATACCACCAAGTTGTATCTGGTGGACAACAAGTCGGCGGACA

TTGCCTCCCTGAACTATCAGAACGACCACAGCAACTTCCTGACCACGGTGGTGC

AGAACAATGACTTTACCCCCACGGAGGCTAGCACCCAGACCATCAACTTTGACG

AGCGGTCGCGATGGGGCGGTCAGCTGAAGACCATCATGCACACCAACATGCCCA

ACGTGAACGAGTACATGTTCAGCAACAAGTTCAAGGCGAGGGTGATGGTGTCCA

GAAAAGCTCCTGAAGGTGTTATAGTAAATGACACCTATGATCATAAAGAGGATA SEQ

ID Sequence

NO

TCTTAAAGTATGAGTGGTTTGAGTTCACTTTACCAGAAGGCAACTTCTCAGCCAC

CATGACCATTGACCTGATGAACAATGCCATCATTGACAACTACCTGGAAATTGG

CAGACAAAATGGAGTGCTGGAAAGTGACATTGGTGTTAAGTTTGACACTAGAAA

CTTTAGGCTCGGGTGGGACCCCGAAACTAAGTTGATTATGCCAGGAGTCTACAC

TTATGAGGCATTCCATCCTGACATTGTATTGCTGCCTGGTTGCGGGGTAGACTTT

ACTGAAAGCCGACTTAGCAACTTGCTTGGCATCAGGAAAAGACATCCATTCCAG

GAGGGTTTCAAAATCATGTATGAAGATCTTGAAGGGGGTAATATTCCTGCCCTTT

TGGATGTCACTGCCTATGAGGAAAGCAAAAAGGATACCACTACTGAAACAACCA

CACTGGCTGTTGCAGAGGAAACTAGTGAAGATGATAATATAACTAGAGGAGATA

CTTATATAACTGAAAAACAAAAACGTGAAGCTGCAGCTGCTGAAGTTAAAAAAG

AGTTAAAGATCCAACCTCTAGAAAAAGACAGCAAGAGTAGAAGCTACAATGTCT

TGGAAGACAAAATCAACACGGCCTACCGCAGCTGGTACCTGTCCTACAATTACG

GTAACCCCGAGAAAGGAATAAGGTCTTGGACACTGCTTACCACTTCAGATGTCA

CCTGTGGGGCAGAGCAGGTCTACTGGTCGCTCCCTGACATGATGCAAGACCCAG

TCACCTTCCGCTCCACAAGACAAGTCAACAACTACCCAGTGGTGGGTGCAGAGC

TTATGCCCGTCTTCTCAAAGAGTTTCTACAATGAGCAAGCCGTGTACTCTCAGCA

GCTCCGACAGGCCACTTCGCTCACGCACGTCTTCAACCGCTTCCCTGAGAACCAG

ATCCTCATCCGCCCGCCGGCGCCCACAATTACCACCGTCAGTGAAAACGTTCCTG

CTCTCACAGATCACGGGACCCTGCCGTTACGCAGCAGTATCCGGGGAGTCCAGC

GCGTGACCGTTACTGACGCCAGACGCCGCACCTGTCCCTACGTTTACAAGGCCCT

GGGCATAGTCGCGCCGCGCGTTCTTTCAAGCCGCACTTTCTAAAAAAAAAAAAT

GTCCATTCTCATCTCGCCCAGTAATAATACCGGTTGGGGACTGTATGCGCCCACC

AAGATGTATGGAGGCGCCCGCATACGCTCTACCCAGCACCCTGTGCGCGTTCGC

GGTCATTTCCGCGCTCCATGGGGCGCACTCAAGGGTCGTACCCGCACTCGGACC

ACGGTCGATGATGTGATCGACCAGGTGGTCGCCGATGCTCGTAATTATACTCCTA

CTGCGCCTACATCTACTGTGGATGCAGTTATTGACAGTGTGGTGGCAGACGCCCG

CGCCTATGCTCGCCGGAAGAGCCGAAGGAGGCGCATTGCCAGGCGCCACAGGG

CTACTACCGCCATGCGAGCTGCAAAAGCTATTCTGCGGAGGGCCAAACGTGTGG

GGCGAAGAGCCATGCTTAGAGCGGCCAGACGCGCGGCTTTAGGTGCCAGCAGCG

GCAGGTCCCGCAGGCGCGCGGCCACGGCGGCAGCAGCGGCCATTGCCAACATG

GCCCAACCGCGAAGAGGCAATGTGTACTGGGTGCGTGATGCCACTACCGGCCAG

CGCGTGCCTGTGCGCACCCGCCCCCCTCGCACTTAGAAGATACTGAGCAGTCTCC

GATGTTGTGTCCCAGCGGCAAGTATGTCCAAGCGCAAATACAAGGAAGAGATGC

TCCAGGTCATCGCGCCTGAAATCTACGGTCCACCGGTGAAGGATGAAAAAAAGC

CCCGCAAAATCAAGCGGGTCAAAAATAACAAAAAGGAAGAAGATGACGATGAT

GGGCTGGTGGAGTTTGTGCGCGAGTTCGCCCCAAGACGGCGCGTGCAGTGGCGC

GGCGAGCGTTCCAGCACTACTTTTAAACGGTCCTATGATGAGGTGTACGGGGAT

GACGATATTCTTGAGCAGGCGGCAGACCGCCTTGATGAGTTTGCTTATGGCAAG

CGCACTAGATCCAGTCCCAAAGAGGAGGCTGTGTCCATTCCCTTGGATCATGGA

AATCCCACCCCCAGCCTCAAACCAGTCACCTTGCAGCAAGTGCTGCCCGTGCCTG

CGCGGAGAGGCGTAAAGCGCGAGGGTGAGGACCTATATCCTACCATGCAGCTAA

TGGTGCCCAAGCGCCAGAGGCTAGAAGACGTACTGGAGAAAATGAAAGTGGAT

CCCGATATCCAGCCTGAGGTCAAAGTAAGACCTATCAAGGAAGTGGCGCCAGGT

TTGGGAGTACAAACCTTCGACATCAAGATTCCCACCGAGTCCATGGAAGTGCAG

ACCGAACCTGCAAAACCCACAACCACCTCAATTGAGGTGCAAACGGAACCCTGG

ACGCCCGCGCCCGTTGTCGCCCCCAGCACCACTCGAAGATCACGACGAAAGTAC

GGCCCAGCAAGTCTTCTAATGCCCAACTATGCTCTGCACCCATCCATCATTCCCA

CTCCGGGTTACAGAGGCACTCGCTACTATCGAAACCGGAGCAACACCTCTCGCC

GCCGCAAACCACCTGCAAGTCGCACTCGCAGTCGCCGCCGCCGCAACACTGCCA

GCAAAGTGACTCCCGCCGCCCTGGTGCGGAGAGTGTACCGCGATGGTCGCGCTG

AACCTCTGACGCTGCCGCGCGCGCGCTACCATCCAAGCATCACCACTTAATGACT

GTTGACGCTGCCTCCTTGCAGATATGGCCCTCACTTGCCGCCTTCGCGTCCCCAT SEQ

ID Sequence

NO

TACTGGCTACCGAGGAAGAAACTCGCGCCGTAGAAGGATGTTGGGGCGAGGGA

TGCGCCGCCACAGACGAAGGCGCGCTATCAGCAGACGATTAGGGGGTGGCTTTT

TGCCAGCTCTTATACCCATCATCGCCGCAGCGATCGGGGCGATACCAGGCATAG

CTTCCGTGGCGGTTCAGGCCTCGCAGCGCCACTAACATTGGAAAAAACTTATAA

ATAAAAAATAGAATGGACTCTGACGCTCCTGGTCCTGTGACTATGTTTTTGTAGA

GATGGAAGACATCAATTTTTCATCCCTGGCTCCGCGACACGGCACGAGGCCGTA

CATGGGCACCTGGAGCGACATCGGCACGAGCCAACTGAACGGGGGCGCCTTCAA

TTGGAGCAGTATCTGGAGCGGGCTTAAAAATTTTGGCTCGACCGTAAAAACCTA

TGGGAACAAAGCTTGGAACAGCAGCACAGGGCAGGCTCTGAGAAATAAGCTTA

AGGAACAAAACTTCCAACAGAAGGTGGTCGATGGGATCGCCTCTGGTATTAACG

GCGTAGTGGATTTGGCCAACCAGGCTGTACAAAAACAGATAAACAGCCGCCTGG

ACCCGCCGCCCGCAACCCCTGGTGAAATGGAAGTGGAGGAAGAACTTCCTCCGC

TGGAAAAGCGGGGCGACAAGCGTCCGCGACCCGAGCTGGAGCAGACACTGGTG

ACGCGCGCAGACGAGCCCCCTTCATACGAGGAGGCAGTAAAGCTCGGAATGCCC

ACTACCAGGCCTGTAGCTCACATGGCTACCGGGGTAATGAAACCTTCTCAGACA

CATCGACCCGCCACCTTGGACTTGCCTCCTCCCCCTGCTTCTGCGGCACCTGTTCC

CAAACCTGTCGCTACCAGAAAGCCCACCGCCGTACAGCCCGTCGCCGTAGCCAG

ACCGCGTCCTGGGGGCACACCGCGCCCGAAAGCAAACTGGCAAAGTACTCTGAA

CAGCATCGTGGGTCTGGGCGTGCAGAGTGTAAAGCGCCGTCGCTGCTATTAATT

AAATATGGAGTAGCGCTTAACTTGCTTGTCTGTGTGTATGTATCATCACCACGCC

GCCGCAGCAGAGGAGAAAGGAAGAGGTCGCGCGCCGAGGCTGAGTTGCTTTCA

AGATGGCCACCCCATCGATGATGCCCCAATGGGCATACATGCACATCGCCGGAC

AGGATGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTCGCCCGTGCAACAG

ACACCTACTTCAGTATGGGGAACAAGTTTAGAAACCCCACAGTGGCGCCCACCC

ACGATGTGACCACCGACCGTAGCCAGCGACTGATGCTGCGCTTCGTGCCCGTTG

ACCGGGAGGACAATACATACTCTTACAAAGTGCGGTACACCCTCGCCGTGGGCG

ACAACAGAGTGCTTGACATGGCCAGCACATTCTTTGACATTAGGGGGGTGCTTG

ATAGAGGTCCTAGCTTCAAGCCATATTCCGGCACAGCTTACAATTCACTGGCTCC

TAAGGGCGCGCCTAACACATCTCAGTGGATAGTTACAACGGGAGAAGACAATGC

CACCACATACACATTTGGCATTGCTTCCACGAAGGGAGACAATATTACTAAGGA

AGGTTTAGAAATTGGGAAAGACATTACTGCAGACAACAAGCCCATTTATGCCGA

TAAAACATATCAGCCAGAGCCTCAAGTTGGAGAAGAATCATGGACTGATATTGA

TGGAACAAATGAAAAATTTGGAGGTAGAGCTCTTAAACCAGCTACTAAAATGAA

GCCATGCTACGGGTCTTTTGCAAGACCTACAAACATAAAAGGGGGCCAAGCTAA

AAACAGAAAAGTAACACCAACCGAAGGAGATGTTGAAGCTGAGGAGCCAGATA

TTGATATGGAATTTTTCGATGGTAGAGAAGCTGCTGACGCTTTTTCGCCTGAAAT

TGTGCTTTACACGGAAAATGTCAATTTGGAAACTCCAGACAGCCATGTGGTATA

CAAGCCAGGAACTTCTGATGGTAACTCTCATGCAAATTTGGGTCAACAAGCCAT

GCCTAACAGACCCAATTACATTGGCTTCAGGGATAACTTTGTAGGTCTTATGTAC

TACAACAGTACTGGAAATATGGGAGTTTTGGCCGGCCAAGCATCACAACTGAAT

GCAGTGGTTGACTTGCAGGACAGAAACACTGAACTGTCATATCAGCTTTTGCTTG

ATTCTCTGGGAGACAGAAGCAGATACTTCAGCATGTGGAATCAGGCTGTGGACA

GCTATGATCCCGATGTTCGTATTATTGAAAATCATGGCGTCGAGGATGAACTGCC

TAATTACTGTTTTCCTCTGGATGGCATAGGACCAGGGAACAAATATCAAGGCATT

AAACCTAGAGACACTGCATGGGAAAAAGATACTAAAGTTTCTACAGCTAATGAA

ATAGCCATAGGCAACAATCTGGCTATGGAAATTAATATCCAAGCTAATCTTTGG

AGAAGTTTTCTGTACTCCAATGTGGCTTTGTACCTTCCAGATGTTTACAAGTACA

CGCCAACTAACATTACTCTGCCCGCTAACACCAACACCTATGAGTACATGAACG

GGCGAGTGGTTTCCCCATCTCTGGTCGATTCATACATCAACATTGGCGCCAGGTG

GTCTCTTGACCCAATGGACAATGTGAATCCATTTAACCACCACCGCAATGCTGGC

CTACGCTACCGGTCCATGCTTCTGGGCAATGGCCGTTATGTGCCTTTCCACATAC

AAGTGCCTCAAAAATTCTTTGCTGTCAAGAACCTACTTCTTCTACCTGGCTCCTA

CACCTATGAGTGGAACTTCAGAAAGGATGTGAACATGGTCCTGCAAAGTTCCCT SEQ

ID Sequence

NO

TGGAAATGACCTCAGAACAGATGGTGCTACCATAAGTTTCACCAGCATCAACCT

CTATGCCACCTTCTTCCCCATGGCTCACAACACCGCTTCAACTCTTGAAGCCATG

CTGCGCAACGATACCAATGATCAGTCATTCAACGACTACCTCTCTGCAGCTAACA

TGCTTTACCCCATCCCTGCCAATGCAACCAACATTCCAATTTCCATCCCATCTCG

CAACTGGGCAGCCTTCAGGGGCTGGTCCTTCACCAGACTCAAAACCAAGGAGAC

TCCATCTCTTGGATCAGGGTTCGATCCCTACTTCGTTTATTCTGGATCTATTCCCT

TGACTCCTCAGTCAGCTGGCCTGGCAATGACAGGCTGTTGTCTCCAAATGAGTTT

GAAATCAAGCGCACTGTGGATGGGGAAGGATACAATGTGGCCCAATGCAACAT

GACCAAAGACTGGTTCCTGGTTCAGATGCTTGCCAACTACAACATTGGCTACCA

TTCCAGCCTATGAGCAGGCAGGTGGTTGATGAGGTTAATTACACTGACTACAAA

GCCGTCACCTTACCATATCAACACAACAACTCTGGCTTTGTAGGATACCTTGCGC

CTACTATGAGACAAGGGGAACCTTACCCAGCCAATTATCCATACCCGCTCATCG

GAACTACTGCCGTTAAAAGTGTTACCCAAAAAAAGTTCCTGTGCGACAGGACCA

TGTGGCGCATACCGTTCTCCAGCAACTTCATGTCCATGGGAGCCCTTACGGACCT

GGGACAGAACCTGCTCTATGCCAACTCGGCCCATGCGCTGGACATGACTTTTGA

GGTGGATCCCATGGATGAGCCCACCCTGCTTTATCTTCTTTTCGAAGTCTTCGAC

GTGGTCAGAGTGCACCAGCCACACCGCGGCGTCATCGAGGCCGTCTACCTGCGC

ACACCGTTCTCGGCCGGCAACGCCACCACATAAGAAGCCTCTTGCTTCTTGCAAG

CAGCAGCTGCAGCCATGTCATGCGGGTCCGGAAACGGCTCCAGCGAGCAAGAGC

TCAAAGCCATCGTCCGAGACCTGGGTTGCGGACCCTATTTCCTGGGAACCTTTGA

CAAGCGTTTCCCGGGGTTCATGGCCCCCGACAAGCTCGCCTGCGCCATAGTCAA

CACTGCCGGACGCGAGACGGGGGGAGAGCACTGGCTGGCTTTTGGTTGGAACCC

GCGCTCCAACACCTGCTACCTTTTTGATCCTTTTGGGTTCTCGGATGAGCGACTC

AAACAGATTTACCAGTTTGAGTACGAGGGGCTCCTGCGCCGCAGTGCCCTTGCT

ACCAAAGACCGCTGCATCACCCTGGAAAAGTCCACCCAGAGCGTGCAGGGCCCA

CGCTCAGCCGCCTGTGGACTTTTTTGCTGTATGTTCCTTCATGCCTTTGTGCACTG

GCCCGACCGCCCCATGAACGGAAACCCCACCATGAAGTTGCTGACTGGGGTGCC

CAACAGCATGCTCCAATCTCCCCAAGTGCAGCCCACCCTGCGCCGCAACCAGGA

GGCGCTATATCGCTTCCTAAACACCCACTCATCTTACTTTCGTTCTCACCGCGCA

CGCATCGAAAGGGCCACCGCGTTTGACCGTATGGATATGCAATAAGTCATGTAA

ACTCATTCGTTTTCATTATTCACTCAGAAATCAAATGGGTTCTGGCGGGAGTCAA

AGTGACCCGCGGGCAGGGATACGTTGCGGAACTGTAACCTGTTCTGCCACTTGA

ACTCGGGGATCACCAACTTGGGAACTGGAATCTCGGGAAAGGTGTCTTGCCACA

ACTTTCTGGTCAGCTGCAGGGCGCCAAGTAGGTCAGGAGCAGAGATCTTGAAAT

CACAGTTGGGACCGGCATTCTGGACACGGGAGTTGCGGTACACTGGGTTGCAAC

ACTGGAACACCATCAAGGCTGGGTGTCTCACGCTTGCCAGCACGGTCGGGTCAC

TGATGGTAGTCACATCCAAGTCTTCAGCATTGGCCATCCCAAAGGGGGTCATCTT

ACAGGTCTGCCTGCCCATCACGGGAGCGCAGCCTGGCTTGTGGTTGCAATCGCA

ATGAATGGGGATCAGCATCATCCTGGCTTGGTCGGGGGTTATCCCTGGGTACAC

GGCCTTCATGAAGGCTTCGTACTGCTTGAAAGCTTCCTGAGCCTTACTTCCCTCG

GTATAGAACATCCCACAGGACTTGCTGGAAAATTGATTAGTAGCACAGTTGGCA

TCATTTACACAGCAGCGGGCATCGTTGTTGGCCAACTGGACCACATTTCTGCCCC

AGCGGTTCTGGGTGATCTTGGCTCTGTCTGGGTTCTCCTTCATAGCGCGCTGTCC

GTTCTCGCTCGCCACATCCATCTCGATAATGTGGTCCTTCTGAATCATGATAGTG

CCATGCAGGCATTTCACCTTGCCTTCATAATCGGTGCATCCATGAGCCCACAGAG

CGCACCCGGTGCACTCCCAACTATTGTGGGCGATCTCAGAATAAGAATGTACCA

ATCCCTGCATGAATCTTCCCATCATCGCTGTCAGGGTCTTCATGCTACTAAATGT

CAGCGGGATGCCACGGTGCTCCTCGTTCACATACTGGTGGCAGATACGCTTGTAC

TGCTCGTGCTGCTCTGGCATCAGCTTGAAAGAGGTTCTCAGGTCATTATCCAGCC

TGTACCTCTCCATTAGCACAGCCATCACTTCCATGCCCTTCTCCCAGGCAGATAC SEQ

ID Sequence

NO

CAGGGGCAAGCTCAAAGGATTCCTAACAGCAATAGAAGTAGCTCCTTTAGCTAT

AGGGTCATTCTTGTCGATCTTCTCAACACTTCTCTTGCCATCCTTCTCAATGATGC

GCACCGGGGGGTAGCTGAAGCCCACGGCCACCAACTGAGCCTGTTCTCTTTCTTC

TTCGCTGTCGTGGCCGATGTCTTGCAGAGGGACATGCTTGGTCTTTCTGGGCTTC

TTCTTGGGAGGGATCGGGGGAGGACTGTTGCTCCGTTCCGGAGACAGGGATGAC

CGCGAAGTTTCGCTTACCAGTACCACCTGGCTCTCGATAGAAGAATCGGACCCC

ACGCGACGGTAGGTGTTCCTCTTCGGGGGCAGAGGTGGAGGCGACTGAGATGGG

CTGCGGTCTGGCCTTGGAAGCGGATGGCTGACAGAGCCCATTCCGCGTTCGGGG

GTGTGCTCCCGTTGGCGGTCGCTTGACTGATTTCCTCCGCGGCTGGCCATTGTGT

TCTCCTAGGCAGAGAAACAACAGACATGGAAACTCAGCCATCACTGCCAACATC

GCTGCAAGCGCCATCACACCTCGCCCCCAGCAGCGACGAGGAGGAGAGCTTAAC

CACCCCACCACCCAGTCCAGCTACCACCACCTCTACCCTCGATGATGAGGAGGA

GGAGGTCGACGCAGCCCAGGAGATGCAGGCGCAGGATAATGTGAAAGCGGAAG

AGATTGAGGCAGATGTCGAGCAGGACCCGGGCTATGTGACACCGGCGGAGCAC

GAGGAGGAGCTGAAACGTTTTCTAGACAGAGAGGATGACGACCGCCCAGAGCA

TCAAGCAGATGGCGATCACCAGGAGGCTGGCATCGGGGATCAAGTTGCCGACTA

CCTCACCGGGCTTGGGGGGGAAGACGTGCTCCTCAAACATCTAGCAAGGCAGTC

GAACATAGTTAAAGACGCACTACTCGACCTCACCGAAGTGCCCATCAGTGTGGA

AGAGCTTAGCCGCGCCTACGAGCTGAACCTCTTTTCGCCTCACATACCCCCCAAG

CGGCAGCCAAACGGCACCTGCGAGGCCAACCCTCGACTGAACTTCTATCCAGCT

TTCCAGTCTCCTGCCGCGCCAACCGCACCCGCGCCGATGCCCTTCTCAACTTGGG

TCCGGGAGCTCGCTTACCTGATATAGCTTCCTTGGAAGAGGTTCCAAAAATCTTT

GAGGGTCTGGGAAGTGATGAGACTCGGGCCGCAAATGCTCTGCAACAGGGAGA

GAATGGCATGGATGAACATCACAGCGCTTTAGTGGAACTGGAGGGTGACAATGC

CCGGCTTGCAGTGCTCAAGCGCAGTATCGTGGTCACCCATTTTGCCTACCCCGCT

GTTAACCTGCCCCCCAAAGTTATGAGCGCTGTTATGGACCATCTGCTCATCAAAC

GAGCAAGACCCCTTTCAGAAAACCAGAACATGCAGGATCCAGACGCCTCGGACG

AGGGCAAGCCGGTAGTCAGTGACGAGCAGCTATCTCGCTGGCTGGGTACCAACT

CCCCCCGAGATTTGGAAGAGAGGCGCAAGCTTATGATGGCTGTAGTGCTAGTAA

GCTAGAGGAGAACCTGCACTACACCTTTAGACATGGCTTCGTGCGGCAGGCATG

CAAGATCTCCAACGTGGAGCTTACCAACCTGGTTTCTTACATGGGCATTTTGCAT

GAGAACCGGCTAGGGCAGAGCGTCCTGCACACCACCCTTAAAGGGGAGGCCCG

CCGTGACTACATCCGAGACTGTGTCTACCTTTACCTCTGCCATACCTGGCAGACT

GGCATGGGTGTGTGGCAACAGTGTTTGGAAGAGCAGAACCTAAAAGAGCTGGA

CAAGCTCTTGCAAAGATCCCTCAAAGCCCTGTGGACAGGTTTTGATGAGCGCAC

CGTCGCCTCGGACCTGGCAGACATCATCTTCCCCGAGCGTCTCAGGGTTACTCTG

CGAAACGGCCTGCCAGACTTTATGAGCCAGAGCATGCTTAACAACTTTCGCTCTT

TCATCCTGGAACGCTCCGGTATCCTGCCTGCCACCTGCTGTGCGCTGCCCTCCGA

CTTTGTGCCTCTCACCTACCGCGAGTGCCCACCGCCGCTATGGAGCCACTGCTAC

CTGTTCCGCCTGGCCAACTACCTCTCCTACCACTCGGATGTTATAGAGGATGTGA

GCGGAGACGGTCTGCTGGAATGCCACTGCCGCTGCAATCTTTGCACACCCCACC

GCTCCCTTGCCTGCAACCCCCAGTTGCTGAGCGAGACCCAGATCATCGGCACCTT

CGAGTTGCAGGGTCCCAGCAGTGAAGGCGAGGGGTCTTCTCCGGGGCAGAGTCT

GAAACTGACACCGGGGCTGTGGACCTCCGCCTACCTGCGCAAGTTTCATCCCGA

GGATTACCACCCCTATGAGATCAGGTTCTATGAGGACCAGTCACATCCTCCCAA

AGTCGAGCTCTCAGCCTGCGTCATCACCCAGGGAGCAATTCTGGCCCAATTGCA

AGCCATCCAAAAATCCCGCCAAGAATTTCTACTGAAAAAGGGAAGCGGGGTCTA

CCTTGACCCCCAGACCGGTGAGGAGCTCAACACAAGGTTCCCCCAGGATGTCCC

ATCGCCGAGGAAGCAAGAAGCTGAAGGTGCAGCTGACGCCCCCAGAGGATATG

GAGGAAGACTGGGACAGTCAGGCAGAGGAGGAGATGGAAGATTGGGACAGCCA

GGCAGAGGAGGTGGACAGCCTGGAGGAAGACAGTTTGGAGGAGGAAGACGAGG SEQ

ID Sequence

NO

AGGCAGAGGAGGTGGAAGAAGCAACCGCCGCCAAACAGTTGTCATCGGCGGCG

GAGACAAGCAAGTCCCCAGACAGCAGCACGGCTACCATCTCCGCTCCGGGTCGG

GGGGTCCAGCGGCGGCCCAACAGTAGATGGGACGAGACCGGGCGATTCCCAAA

CCCGACCACCGCTTCCAAGACCGGTAAGAAGGAGCGACAGGGATACAAGTCCTG

GCGTGGACACAAAAACGCTATCATCTCCTGCTTGCATGAATGCGGGGGCAACAT

ATCCTTCACCCGGCGATACCTGCTCTTCCACCACGGTGTGAACTTCCCCCGCAAT

ATCTTGCATTACTACCGTCACCTCCACAGCCCCTACTGCAGTCAGCAAGTCCCGG

CAACCCCGACAGAAAAAGACAGCAGCGACAACGGTGACCAGAAAACCAGCAGT

TAGAAAATCTACAACAAGTGCAGCAGGAGGAGGACTGAGGATCACAGCGAACG

AGCCAGCGCAGACCAGAGAGCTGAGGAACCGGATCTTTCCAACCCTCTATGCCA

TCTTCCAGCAGAGTCGGGGGCAAGAGCAGGAACTGAAAGTAAAAAACCGATCT

CTGCGCTCGCTCACCAGAAGTTGTTTGTATCACAAGAGCGAAGACCAACTTCAG

CGCACTCTCGAGGACGCCGAGGCTCTCTTCAACAAGTACTGCGCGCTGACTCTTA

AAGAGTAGCCCTTGCCCGCGCTTATTCGAAAACGGCGGGAATCACGTCACCATT

GGCACCTGTCCTTTGCCCTAGTCATGAGTAAAGAGATTCCCACGCCTTACATGTG

GAGCTATCAGCCCCAAATGGGGTTGGCAGCAGGCGCCTCCCAGGACTACTCCAC

CCGCATGAATTGGCTTAGCGCCGGGCCCTCAATGATATCACGGGTTAATGATAT

ACGAGCTTATCGAAACCAGTTACTCCTAGAACAGTCAGCTCTCACCACCACACC

CCGCCAACACCTTAATCCCCGAAATTGGCCCGCCGCCCTGGTGTACCAGGAAAC

TCCCGCTCCCACCACCGTACTACTTCCTCGAGACGCCCAGGCCGAAGTTCAGATG

ACTAACGCAGGTGTACAGCTGGCGGGCGGTTCCGCCCTATGTCGTCACCGACCT

CAACAGAGTATAAAACGCCTGGTGATCAGAGGCCGAGGTATCCAGCTCAACGAC

GAGTCGGTTAGCTCTTCGCTTGGTCTGCGACCAGACGGAGTCTTCCAGATCGCCG

GCTGTGGGAGATCTTCCTTCACCCCTCGTCAGGCTGTACTGACTTTGGAGAGTTC

GTCCTCGCAGCCACGCTCGGGCGGCATCGGAACTCTCCAGTTCGTGGAGGAGTT

TACTCCCTCTGTCTACTTCAACCCCTTCTCCGGCTCTCCTGGCCAGTACCCAGACG

AGTTCATACCGAACTTCGACGCAATCAGCGAGTCAGTGGATGGCTATGATTGAT

GTCTAATGGTGGCGCGGCTGAGCTAGCTCGACTGCGACACCTAGACCACTGCCG

CCGCTTTCGCTGCTTCGCCCGGGAACTCACCGAGTTCATCTACTTCGAACTCCCC

GAGGAGCACCCTCAGGGTCCGGCCCACGGAGTGCGGATTACCATCGAAGGGGG

AATAGACTCTCGCCTGCATCGAATCTTCTCCCAGCGACCCGTGCTGATTGAGCGC

GACCAGGGAAATACAACCATCTCCATTTACTGCATCTGTAACCACCCCGGATTGC

ATGAAAGCCTTTGCTGTCTTGTTTGTGCTGAGTTTAATAAAAACTGAGTTAAGAC

CCTCCTACGGACTACCGCTTCTTCAATCAGGACTTTACAACACCAACCAGATCTT

CCAGAAGACCCAGACCCTTCCTCCTCTGATCCAGGACTCTAACTCTACCTTACCA

GCACCATCCACTACTAACCTTCCCGAAACTAACAAGCTTGGATCTCATCTGCAAC

ACCGCCTTTCACGAAGCCTTCTTTCTGCCAATACTACCACTCCCAAAACCGGAGG

TGAGCTCCGCGGTCTCCCTACTGACGACCCCTGGGTGGTAGCGGGTTTTGTAACG

TTAGGAGTAGTTGCGGGTGGGCTTGTGCTAATCCTTTGCTACCTATACATACCTT

GCTGTGCATATTTAGTCATATTGCGCTGTTGGTTTAAAAAATGGGGGCCATATTA

GTCGTGCTTGCTTTACTTTCGCTTTTGGGTCTGGGCTCTGCTAATCTCAATCCTCT

TGATCACGATCCATGTCTAGACTTCGACCCAGAAAACTGCACACTTACTTTTGCA

CCCGACACAAGCCGTCTCTGTGGAGTTCTTATTAAGTGCGGATGGGACTGCAGG

TCCGTTGAAATTACACATAATAACAAAACATGGAACAATACCTTATCCACCACA

TGGGAGCCAGGAGTTCCCGAGTGGTATACTGTCTCTGTCCGAGGTCCTGACGGTT

CCATCCGCATTAGTAACAACACTTTCATTTTTTCTGAAATGTGCGATCTGGCCAT

GTTCATGAGCAGACAGTATGACCTATGGCCTCCCAGCAAAGAGAACATTGTGGC

ATTTTCCATTGTTTATTGCTTGGTAACATGCATCATCACTGCTATCATTTGTGTGT

GCATACACTTGCTTATAGTTATTCGCCCTAGACAAAGCAATGAGGAAAAAGAGA

AAATGCCTTAACCTTTTTCCTCATACCTTTTCTTTACAGCATGGCTTCTGTTACAG

CTCTAATTATTGCCAGCATTGTCACTGTCGTTCACGGGCAAACAATTGTCCATAT

TACCTTAGGACATAATCACACTCTTGTAGGGCCCCCAATTACTTCAGAGGTTATT

TGGACCAAACTTGGAAGTGTTGATTATTTTGATATAATTTGCAACAAAACTAAAC SEQ

ID Sequence

NO

CAATATTTGTAATCTGTAACAGACAAAATCTCACGTTAATTAATGTTAGCAAAAT

TTATAACGGTTACTATTATGGTTATGACAGATCCAGTAGTCAATATAAAAATTAC

TTAGTTCGCATAACTCAGCCCAAATTAACAGTGCCAACTATGACAATAATTAAA

ATGGCTAATAAAGCATTAGAAAATTTTACATCACCAACAACGCCCAATGAAAAA

AACATTCCAAATTCAATGATTGCAATTATTGCGGCGGTGGCATTGGGAATGGCA

CTAATAATAATATGCATGTTCCTATATGCTTGTTGCTATAAAAAGTTTCAACATA

AACAGGATCCACTACTAAATTTTAACATTTAATTTTTTATACAGATGATTTCCAC

TACAATTTTTATCATTATTAGCCTTGCAGCTGTAACTTATGGCCGTTCACACCTAA

CTGTACCTGTTGGCTCAACATGTACACTACAAGGACCCCAAGAAGGCTATGTCA

CTTGGTGGAGAATATATGATAATGGAGGGTTCGCTAGACCATGTGATCAGCCTG

GTATAAAATTTTCATGCAACGGAAGAGACTTGACCATTATTAACATAACATCAA

ATGAGCAAGGCTTCTATTATGGAACCAACTATAAAAATAGTTTAGATTACAACA

TTATTGTAGTGCCAGCCACCACGTCTGCTCCCCGCAAATCCACTTTCTCTAGCAG

CAGTGCCAAAGCAAGCACAATTCCTAAAACAGCTTCTGCTATTTTAAAGCTTCCA

AAAATCGCTTTAAGTAATTCCACAGCCGCTCCCAATACAATTCCTAAATCAACAA

TTGGCATCATTACTGCCGTGGTAGTGGGATTAATGATTATATTTTTGTGCATAAT

GTACTACGCCTGCTGCTATAGAAAACATGAACAAAAAGGTGATGCATTACTAAA

TTTTGATGTTTAATTTTTTATTAGTATTATGATATTGTTTCAATCAAATACCACTA

ACACTATCAATGTGCAGACTACTTTAAATCATGACATGGAAAACCACACTACCT

CCTATGCATACAATGTTCATAGAAATTCTAAAAGACGTCCCATCTATTCTTCTAT

CAGTATGGTGAACATCAATCATGATCCCTAGAAATTTCTTCTTCACCATACTCAT CTGTGCTTTCAATGTCTGTGCTACTTTCACAGCAGTAGCCACTGCAAGCCCAGAC

TGCGAATTGCCTACCTACGTCACCATCCCGAATACCGCAATCAAAATGTTGCGGC

ACTTCTTAGGCTTATTTAAAACCATGCAGGCTATGCTACCAGTCATTTTAATTCT

GCTACTACCCTGCATTGCCCTAGCTTCCACCGCCACTCGCGCTACACCTGAACAA

CTTAGAAAATGCAAATTTCAACAACCATGGTCATTTCTTGATTGCTACCATGAAA

AATCTGATTTTCCCACATACTGGATAGTGATTGTTGGAATAATTAACATACTTTC

CCAATGCACTGGGTTACCCACAAGAACCAAATGAACATATCCCACTACAACACG

TACAACAACCACTAGCACTGGTAGAGTATGAAAATGAGCCACAACCTTCACTGC

CCCCTGCCATTAGTTACTTCAACCTAACCGGCGGAGATGACTGACCCAATCGCCA

CATCATCCACCGCTGCCAAGGAGCTGCTGGACATGGACGGACGTGCCTCAGAAC

AGCGACTCATCCAACTACGCATTCGTCAGCAGCAGGAACGAGCAGTAAAAGAGC

TAAGGGATGCCATTGGGATTCACCAGTGCAAAAAAGGCATATTCTGCTTAGTAA

AACAATCCAAAATCTCCTACGAGATCACCGCTACTGACCATCGTCTCTCATACGA

GCTCGGTCCGCAGCGACAAAAATTCACCTGCATGGTGGGAATCAACCCCATAGT

TATCACCCAGCAGTCTGGAGATACTAAGGGTTGCATCCACTGTTCCTGTGATTCC

ACCGAGTGCATCTACACACTGCTGAAGACCCTCTGCGGCCTTCGAGACCTCCTAC

CCATGAACTAATCATTGCCCCCTCCCTTACCCAATCCAAATATTAATAAAGACAC

TTACTTGAAATCAGCAATACAGTCTTTGTCAAAACTTTCTACCAGCAGCACCTCA

CCCTCTTCCCAACTCTGGTACTCTAAACGTCGGAGGGTGGCATACTTTCTCCACA

CTTTGAAAGGGATGTCAAATTTTATTTCCTCTTCTTTGCCCACAATCTTCATTTCT

TTATCCCCAGATGGCCAAGCGAGCTCGGCTAAGCACTTCCTTCAACCCGGTGTAC

CCTTATGAAGATGAAAGCAACTTACAACACCCATTTATAAATCCTGGTTTCATTT

CCCCTGACGGGTTCACACAAAGTCCAAACGGGGTTTTAAGTCTTAAATGTGTTAA

TCCACTTACCACTGCAAGCGGCTCCCTCCAACTTAAAGTGGGAAGTGGTCTTACA

GTAGACACTACTGATGGATCCTTAGAAGAAAACATCAAAGTTAACACCCCCCTA

ACAAAGTCAAACCATTCTATAAATTTACCAATAGGAAACGGTTTGCAAATAGAA

CAAAACAAACTTTGCAGTAAGCTCGGAAATGGTCTTACATTTGACTCTTCCAATT

CTATTGCACTCAAAAATAACACTTTATGGACAGGTCCAAAACCAGAAGCCAACT SEQ

ID Sequence

NO

GCATAATTGAATACGGGAAAGAAAACCCAGATAGCAAACTAACTTTAATCCTTG

TAAAAAATGGAGGAATTGTTAATGGATATGTAACGCTAATGGGAGCCTCAGACT

ATGTTAACACCTTATTTAAAAACAAAAATGTCTCCATTAATGTAGAATTATACTT

TGATGCCACTGGTCATATATTACCAGACTTATCTTCTCTTAAAACAGATCTACAA

CTAAAATACAAGCAAACCACTCACTTTAGTGCAAGAGGTTTTATGCCAAGTACT

ACAGCGTATCCATTTGTCCTTCCTAATGCGGGAACAGATAATGAAAATTATATTT

TTGGTCAATGCTACTACAAAGCAAGCGATGGCGCCCTTTTTCCGTTGGAAGTTAC

TGTTACGCTTAATAAACGCCTGCCAGATAGTCGCACATCCTATGTTATGACTTTT

TTATGGTCCTTGAATGCTGGTCTAGCTCCAGAAACTACTCAGGCAACCCTGATAA

CCTCCCCATTTACCTTTTCCTATATTACAGAGGATGACTGACAACAAAAATAAAG

CCCTTCCCATTTAACAGAATACACCAATCTCTCCCCACGCACAGCTTTAAACATT

TGGATACCATTAGAGATAGACATAGTTTTAGATTCCACATTCCAAACAGTTTCAG

AGCGAGCCAATCTGGGGTCAGTGATACATAAAAATGCATCGGGATAGTCTTTTA

AAGCGCTTTCACAGTCCAACTGTTGCGGATGCGACTCCGGAGTCTGAATCACGG

TCATCTGGAAGAAGAACGATGGGAATCATAATCCGAAAACGGAATCGGGCGATT

GTGTCTCATCAACCCCACAAGCAGCCGCTGTCTGCGTCGCTCCGTGCGACTGCTG

TTTATAGGATCGGGATCCACAGTGTCCTGAAGCATGATTTTAATAGCCCTTAACA

TTAACTTTCTGGTGCGATGCGCGCAGCAACGCATTCTTATTTCACTTAGATTACT

ACAGTAGGTACAGCACATTATCACAATATTGTTTAATAAA

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTGGGGCGTGGTCGTCGCTGATTGGCCGAGAAACGGTGATGCAAATG NO: ACGTCACGACGCACGGCTAACGGTCGCCGCGGAGGCGTGGCCTAGCCCGGAAGC 1439 AAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAATGGCC

GATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCAGATGCAAGTGA

AATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAAATA

CCGATCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGATT

GTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGAG

CCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCCG

CTCCCAGAGTGTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGCAACTGTGCC

CTTGGACATGGCCGCATTATTGCTGGATGACTTTGTGAGTACAGTATTGGAGGAT

GAACTGCAACCAACTCCGTTCGAGCTGGGGCCCACACTTCAGGACCTCTATGAT

CTGGAGGTAGATGCCCAGGAGGACGACCCGAACGAAGAGGCTGTGAATTTAAT

ATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCTACA

CCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACGAA

CTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAA

CGGGGTGAGCAGAGTATGGCTATAATCTCAGACTGTGCTTGTGTGGTTGTGGAA

GAGCATTTTGTGTTGGACAATCCTGAGGTGCCTGGGCAAGGCTGTAGATCCTGCC

AATATCACCGGGATCAGACCGGAGACCAAAATGCTTCCTGTGCTCTGTGTTACAT

GAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGCTG

AGTGCTTAACACATCACTGTGTGATGCTTGAACAGCTGTGCTAAGTGTGGTTTAT

TTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGACC

ACCCGTCTCCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGATCAGACCCAC

CCCAGTCAGACTCAGTGGGGAGAGGCGAATGGCTGTTGACAAAATCGAGGACTT

GTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCAG

GAACTAGGCGCAGCTGTGCTGAGTCATGTGTAAATAAAGTTGTACAATAAAAGT

ATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCATAGTCCTA

TATAAGTGGCAACACCTGGGCACTCGGGCACAGACCTTCAGGGAGTTCCTGATG

GATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGAGGAT

AGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTATCTC

GCCTGGTGTACACAGTTAAGAAGGATTATAAAGAGGAATTTGAAAATATTTTTG

CTGACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTTCCAG SEQ

ID Sequence

NO

GAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCGGG

GGGGATACATCCTGGACTTCGCGGCCATGCACCTGTGGAGGGCCTGGATCAGGC

AGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGGTC

TTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGGCCA

TGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGAT

TGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATGG

CCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACC

GAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACCTGGCAC

GAGCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATATGG

CCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGAGG

CCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGGTGA

CCAAGACGGTGCATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGAGG

TGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATGA

GAGCCGGAGTGATGAATATGAATTCCATGATCTTTATGAACATGAAGTTCAATG

GAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCATG

GATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCCAA

GAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTCTC

TACCGAGGGCAATGCTAGAGTGAGGCACTGCTCTTCCCTGGAGACGGGCTGCTT

CTGCCTGGTGAAGGGCACAGCCTCTTTGAAGCATAATATGGTGAAGGGCTGCAC

GGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGTCATATCCT

GAAGAACATCCATGTGACCTCCCACCCACGTAAGAAGTGGCCAGTGTTTGAGAA

TAACCTACTGATCAAGTGCCATGTGCACCTGGGCGCCAGAAGGGGTACCTTCCA

GCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCTT

CTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGAT

ACTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCA

GACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCA

GACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGAC

ACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAAGGTGACTATAAAGGCG

GGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACTGGCG

GGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATG

GGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGTGCT

TCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCTCGA

CAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTGG

CTTCAAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCAAGTTCCATCAT

CGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGTTGGAAGCTCTGAGCCGCCA

GCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAACAGCAGCAGCAGCA

AAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTAT

TGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACA

TGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTGCT

CTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCT

GGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGG

TGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGTA

GTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGTGGGTT

CATGTTGTGCAGCACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAATTTGTC

ATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCC

CAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCGGCT

TTGGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTGAGA

TCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACG

ATGGTTCCCTCGGGCCCCGGGGCAAAGTTCCCCTCGCAGATCTGCATCTCCCAGG

CTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAACGG SEQ

ID Sequence

NO

TTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGG

ACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGT

AGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGA

GCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGTCCC

CGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCC

CGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGTCCC

AGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGG

GGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCTGCC

AGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCACGG

TGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCC

TGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAAT

TGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCT

TGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAA

AGCTTGGGTGCGAGAAAGACGGACTCGGGGGCGAATGCATCCGCTCCGCAGTGG

GCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGCTCTGGCTGCTCGGGGTCA

TCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGACTTG

ATGGGCCTGTCCTGCAGGGGCGTTCCGCGGTCCTCCTCGTAGAGAAACTCGGAC

CACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGA

GGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACTTTTTCCACGGTATGCAGGCA

CATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACG

TGACCCGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCC

TCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCC

TCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGG

AGGATTTGATGTTGGCTTGCCCTGCCGCGATGCTTTTTAGGAGACTTTCATCCAT

AGGGCGTTTGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCACGGT

CGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACACACT

TCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGC

CGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGG

GCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGGGCAGCA

CATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCGGGAC

CCACTCGCGGGCGGCCATTGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGG

CATGGGATGCGTGAGCGCGGAGGCGTACATGCCGCATATGTCATAGACATAGAT

GGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCT

GGCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGA

GATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCAT

GCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGCA

AGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGA

GCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGATGA

TGTCATAACCCGTCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTACTCC

TCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAG

AGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCA

CGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCG

AAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTCGC

GCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATGAAAT

TGCGGGTGATGCGGAAAGGGCCAGGCACGGAGGCTCGGTTGTTGATGACCTGGG

CGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAGAGTT

CCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGTAGGT

GAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCTAGCGCCCACTCCTGGAGATG

TGGGTTGGCCTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAG SEQ

ID Sequence

NO

CTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGAC

GCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGC

GAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCATGACCAG

CATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTAC

ATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGA

ACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGA

AATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGT

ACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCT

TGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGC

GTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGG

GAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGCGC

GCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTC

TGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACT

TGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGC

GCTCCCGGCGGCAGCGGCGGTTCCGGTCCCGCGGGCAGGGGCGGCAGAGGCAC

GTCGGCGTGGCGCTCGGGCACGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTG

CGCGACGACGCGGCGGTTGACATCCTGAATCTGCCGCCTCTGCGTGAAGACCAC

TGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTC

ATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAG

GCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCG

CGCGCTCGACGGTGGCGGCGAGGTCGTTGGAGATGCGACCCATGAGCTGCGAGA

AGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTATAGACCACGTCCCCGTCGG

CGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGCGA

AGACGGCGTAGTTGCGCAGGCGCTGGAATAGGTAGTTGATGGTGGTGGCGATGT

GCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTGATGT

CGCCAATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGTTGA

AAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCTAGGAGCCTGATGA

GTTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGAGCCTCCTCCTC

TTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTG

GTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGC

TCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTT

CGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGT

CCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGGTGTAG

GGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGT

CTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGACGC

TGTTAGAATTGCGGTTGCTGATGATGTAATTAAAGTAGGCGTTTTTGAGGCGGCG

GATGGTGGCGAGCAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCG

CTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCA

TGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTG

ACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCG

GCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCG

ACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGCCATGAGC

GACCAGTTAACGGTCTGCAGGCCAGGCTGCACGACCTCCGAGTACCTGAGCCGC

GAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACTG

GTATCCGACTAGGAAGTGCGGCGGCGGCTGGCGATAGAGCGGCCAGCGCTGGGT

GGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGA

GGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAAC

TCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGC

ACGGTCTGACCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGA

AAGCGGTTGAGCGGGCTCTTCCTCCGTAGTCTGGCGGAACGCAAACGGGTTAGG

CCGCGCGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAA

CGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGC SEQ

ID Sequence

NO

ACCCCACCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTG

AGTCGCGGCAGAACCCGGTTCGAGGACGGCCGCGGCGAGCGGGACTTGGTCACC

CCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCC

CCGGCGACCACCGCAACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACA

GACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGT

CCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTACG

TGCCTCCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATG

CGCGACTGCCGTTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAG

CGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCC

GCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGT

GAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCATGTGCGCACGCTGAT

CGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGC

CATCGTGCAGAATCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGT

GCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATCGCCG

AGCCCGAGGGCCGCTGGCTGCTGGAGCTGATTAACATCTTGCAAAGCATTGTAG

TGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCGG

TGCTTAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGC

CCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGG

TGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGG

CCGTCAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGCC

TGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACTTTGACA

TGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACG

GTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACCCGTTGCG

ATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAG

GCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGA

CAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCT

CGCACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGA

GAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGA

GCGCGTGGGCCGCTACAACAGCACGAATGTGCAGTCCAACCTGGACCGGCTGGT

GACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCC

TGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAACGTGC

CGCGCGGGCAGGACGATTATACCAACTTTATCAGCGCGCTGCGGCTGATGGTGA

TAGCAGACAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAACCTGCG

CGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCAACGGTGAGCAGCTT

GCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGC

GGCAGCGTGAACCGCAACTCGTACCTGGGTCACCTGCTGACGCTGTACCGCGAG

GCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACTAGCGTG

AGCCGCGCACTGGGTCAAAACGACACCGACAGTCTGAGGGCCACCCTGAACTTC

TTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGCGCTGTCGGCCGAG

GAGGAGCGCATCTTGAGATATGTGCAGCAGAGCGTAGGACTTTTCTTGATGCAG

GAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAACCT

AGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACTTGCAC

CGCGCGGCGGCCATGAACTCGGACTACTTTACAAACGCCATCCTGAACCCGCAC

TGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGATATGCCCGACCCCAAC

GACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCCCCGACCTTGCAA

AAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGTGCGGTGGGTCGGAG

CCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGC

AGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTG

CTGCAGCCCCCGCGGGTCAAGAACGCCATGGCCAATAACGGGATAGAGAGTCTG SEQ

ID Sequence

NO

GTTGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGAGCCTGCG

CCCGTGCCGCGGCGACAGCGTCACGACCGGCAGCGGGGCCTGGTGTGGGACGAC

GAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGC

CAACCCGTTCGCACATCTGCAGCCCAAACTGGGGCGACGGATGTTTTGAATGCA

AAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGG

CGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGG

CGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAG

AAACAGCATTCGTTACTCGGAGCTGGCTCCGCTGTACGACACCACTCGCGTGTAT

TTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCAC

AGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCC

AGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATCTGAAG

ACCATTCTGCACACAAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAG

TTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAAGGGGCTGATGCAAA

TGATAGAAGCAAGGATATCTTAGAGTATGAATGGTTTGAGTTTACCCTGCCCGA

GGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGA

AAACTACTTGCAAGTGGGGCGGCAACATGGCGTGCTGGAGAGCGATATCGGAGT

CAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGT

GATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCC

GGGCTGCGGGGTGGACTTTACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCG

CAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGG

GGGCAACATCCCCGCTCTGCTTGATGTGGAAGCATACCTCAACAGCAAGAATGA

TAAGGAGGAGGCTACCAAGAATGCAAACAGAGATGCTGACAATGGAGGTGGTG

AAACTAGGGGAGATACTTTTCTCACCACCGAACAGCTAAGAGCTGCTGGCAAGG

AGCTGGTTATTAAGCCCATCAAGGAAGATGCTAGCAAGAGGAGCTATAATGTCA

TAGATGGCACCCATGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGG

GGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCAC

CTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCTGACCTCATGCAAGACCCCGT

CACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTC

ATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCA

TCCGCAGCTACACTTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGAT

CCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCT

CTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGA

GTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGG

GCATAGTCGCGCCGCGCGTGCTATCCAGTCGCACCTTCTAAAAAATGTCTATTCT

CATCTCACCCAGCAATAACACCGGCTGGGGTATTACTAGGCCCAGCACCATGTA

CGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTT

CCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTCCCGCCGCCGCCGTGCG

CACCACCGTTGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTACAC

CCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCTCG

CGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGA

GCACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGG

GCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCCGCCACTGCACCCCCCGCAG

GCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATGA

CCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGC

GCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCC

CGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTC

GCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAA

GCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCG

AGTTCGCTCCGCGGCGGCGGGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGT

TGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGA

GCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCG

GCGGAGCGGGCGGGCGAGTTTGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCT

GATCTCGCTGCCGCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCGTGAC SEQ

ID Sequence

NO

CCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCG

CGAGGGCGAGAACATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCG

CGTGGAGGAAGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGG

TGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTC

AGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGC

AGACCGACCCCTGGCTTCCAGCCTCCACCGCTACCGTCTCCACTTCTACCGCCGC

CACGGCTACCGAGCCTCACAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCTGA

TGCCCAACTACGTGTTGCATCCTTCCATTATCCCGACGCCGGGCTACCGCGGTAC

CCGATATTACGCCAGCCGCAGGCGCCCAGCCACCAAGCGCCGCCGCCGCACCAC

CCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCGGGGCCG

CTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGC

TGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCC

GAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGTGGCCTGA

ACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCG

CGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGT

TGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCT

GACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTG

GCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACC

AGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAA

AATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACG

GGGCAGTTGTTGAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAAGGTGGT

GGACGGCCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGT

GCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGA

TGGAAGATGCAACTCCTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGATG

CGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGCCGTC

AAGGCCGGCATGCCAACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATG

AAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCAAAGGCA

GCTCCGGTTGTGCAGCCCCCTCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCC

GCCGCCAGGCCCAGAACTGGCAGAGCACGCTGCACAGTATCGTGGGCCTAGGAG

TGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAGGACACTA

AAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGC

CACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGC

CTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTA

CTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGT

GACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGA

GGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCG

GGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGG

TCCCAGCTTCAAACCCTACTCGGGCACAGCTTACAACAGCCTGGCCCCAAAGAG

CGCCCCCAATCCAAGTCAGTGGACCGCCAATGAAAAACAAACTGGCGGCCAACC

AAAATCTGTTACCCAAACATTTGGATCTGCTCCAATGGGAGGCAGCAATATTACT

ATTGAAGGATTGGTTATTGGAACTAAGGAGGAAGAAGGCAATGCCACTGAAGA

AATATTCGCAGATAAAACATTCCAGCCAGAACCTCAAGTAGGAGAAGAAAACTG

GCAGGAAACAGAAGCCTTCTATGGAGGAAGGGCTCTTAAAAAGGATACCAAAA

TGAAACCATGTTACGGTTCATTTGCTAGACCCACCAATGAAAAAGGAGGGCAAG

CAAAATTAAAGCTCAACGATCAGGGTCAGCCAACTAAAGATTATGACATAGACC

TGGCATTCTTTGATACTCCGGGCGGAACACCTCCAACAGGCAGTGGTCAACAGG

AAGAATACAAAGCAGACATTGTTATGTACACTGAAAATGTCAACCTTGAAACCC

CAGACACCCACGTGGTATATAAGCCAGGAAAAGAGGATGAGAGTTCTGAAATA

AATTTGACACAGCAGTCCATGCCCAACAGACCTAACTACATTGGCTTTAGGGAC

AACTTTGTGGGGCTCATGTATTACAACAGCACCGGCAATATGGGTGTGCTGGCT

GGTCAGGCTTCTCAGTTGAACGCTGTGGTCGACTTGCAAGACAGAAATACCGAG

CTATCTTACCAGCTATTGCTAGATTCTCTGGGCGACAGGACCAGATACTTTAGCA

TGTGGAACTCTGCGGTGGACAGCTATGATCCCGATGTCAGGATCATTGAGAATC SEQ

ID Sequence

NO

ACGGTGTGGAAGATGAACTTCCAAACTATTGCTTCCCATTGAATGGTACTGGCAC

CAATTCCACTTATCAAGGCGTAAAGGTGAAAACAGGTCAGGATGGAGCTGAGGA

GACCGAGTGGGAAAAAGATGAAACTGTTGCAAGACAAAATCAAATCGCCAAGG

GCAACGTCTATGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTC

TGTACTCGAACGTAGCCCTGTACCTGCCTGACTCATACAAGTACACGCCGGCCA

ACGTCACGCTGCCCGCCAACACCAACACCTACGAGTACATGAACGGCCGCGTGG

TAGCCCCCTCGCTGGTGGACGCCTACATCAACATTGGCGCCCGCTGGTCGCTGGA

CCCCATGGACAATGTCAACCCCTTCAACCACCACCGCAACGCGGGCCTGCGCTA

CCGCTCCATGCTTCTGGGCAACGGACGCTACGTGCCCTTCCACATTCAAGTGCCC

CAAAAGTTCTTTGCCATCAAGAACCTGCTCCTGCTACCCGGCTCCTACACCTACG

AGTGGAACTTCCGCAAGGATGTCAACATGATCCTGCAGAGTTCCCTCGGAAACG

ACCTGCGCGTCGACGGCGCATCCGTCCGCTTCGACAGCGTCAACCTCTACGCCAC

CTTCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAAC

GACACCAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACC

CCATCCCGGCCAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGG

CCGCCTTCCGCGGCTGGAGTTTCACCCGTCTGAAAACCAAGGAAACTCCCTCCCT

CGGCTCGGGTTTTGACCCCTACTTTGTCTACTCGGGCTCCATCCCCTACCTCGAC

GGAACCTTCTACCTCAACCACACCTTCAAGAAGGTTTCCATCATGTTCGACTCCT

CGGTCAGCTGGCCCGGCAACGACCGGCTGCTCACACCGAACGAGTTCGAGATCA

AGCGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAG

GACTGGTTCCTCGTCCAGATGCTTTCCCACTACAACATCGGTTACCAGGGCTTCC

ATGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCC

CATGAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCAC

CCTGCCCTTCCAGCACAACAACTCGGGCTTCACCGGCTACCTAGCACCCACCATG

CGCCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCTCCACCG

CAGTCCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCA

TCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAA

CATGCTCTACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCC

CATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGA

GTGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACACCCTTCT

CCGCCGGCAACGCCACCACATAAGCATGAGCGGCTCCAGCGAAAGAGAGCTCG

AGCGCTTCCCTGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACAC

GGCCGGCCGCGAGACCGGAGGCGTGCACTGGCTCGCCTTCGGCTGGAATCCGCG

CTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTTTCGGACCGCCGGCTCAAG

CAGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGCAGCGCCCTGGCTTCCT

CGCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCG

ACTCCGCCGCCTGCGGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGG

CCCGACCGACCCATGGACGGAAACCCCACCATGAACTTGCTGACGGGGGTGCCC

AACGGCATGCTACAATCGCCACAGGTGCTGCCCACCCTCAGGCGCAACCAGGAG

GAGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCG

CCATCGAACATGCCACCGCTTTTGACAAAATGAAACAACTGCGTGTATCTCAAT

AAACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCG

AAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGG

TACTGGTACTTGGGATGCCACTTGAACTCGGGGATCACCAGTTTGGGAACAGCG

ATCTCGGGGAAGGTTTCGCTCCACATGCGCCGGCTCATTTGCAGGGCGCCCAGT

ATGTCAGGCGCGGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGCGCGCGC

GAGTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTGCTTC

ACGCTGGCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGT

TGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGC

TCTGAGGCTTGTGGTTACACTCGCAGTGCACTGGCATCAGCATCATCCCCGCACC

GCGCTGCATATTCGGGTAGAGGGCCTTAACAAAGGCCGAGATCTGCTTGAAAGC

TTGCTGGGCCTTGGCCCCCTCGCTGAAGAACAGCCCGCAGCTCTTCCCACTGAAC SEQ

ID Sequence

NO

TGGTTATTTCCGCACCCGGCATCCTGCACGCAGCAGCGCGCGTCATGGCTGGTCA

GTTGCACCACGCTACGTCCCCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGCTG

CTCCTTCAACGCGCGCTGGCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGG

TCCTTGTGGATCATCACCGTCCCGTGCAGACACTTGAGCTGGCCTTCCACCTCGG

TGCAGCCATGGTCCCACAGGGCGCAGCCGGTGCACTCCCAGTTCTTGTGCGCGA

TCCCGCTGTGACTGAAGATGTAACCTTGCAACATGCGGCCCATCACGGTGCTAA

ATGATTTACTGGTGCTGAAGGTCAGTTGCAGGCCGCGGGCCTCCTCGTTCATCCA

GGTCTGACACATCTTCTGGAAGATCTCGGTCTGCTCGGGCATTAGCTTGTAGGCA

TCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGCATCC

ATGCCCTTCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTC

AGGACACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCA

ACAGAACCGGAGGCTGGCTGAATCCCACTCCTACGATCACGGCATCTTCCTGGG

GCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTTTTCCTGGGTTGCTTC

ACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGGCGAGGGG

CTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTG

GCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCT

AGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACC

ACCCACGAACAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGT

CTAGAAACCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGACGA

GACCGACGCTGGGCTCGAGCATGGCTACCTAGAGGAGGACATGCTGCTGAAACA

CCTGCAGCGCCAGTCCCTCATCCTCAGGGACGCCCTGGCCGACCGGAGCGAGAC

CCCCCTCAGCGTTGAGGAGCTAAGTCGGGCCTACGAGCTCAACCTTTTCTCGCCG

CGCGTGCCCCCCAAACGCCAGCCCAACGGCACCTGCGAGCCCAACCCGCGTCTC

CAAGAACCAAAAGATCCCCGTCTCCTGTCGCGCCAACCGCACCCGCGCCGACGC

GCTCCTAGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGA

GGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACG

CTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTG

GAAGGTGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAGCTCACCCAC

TTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATC

AGCTCATCATGCCCCACATCGAAGCCCTCGATGAAAGTCAGGAACAGCGGCCCG

AGGACGCCCAGCCCGTGGTCAGCGACGAGCAGCTCGCGCGCTGGCTCGGGACCC

GCGACCCCCAGGCCCTGGAGCAGCGGCGCAAGCTCATGCTGGCCGTGGTCCTGG

TCACCCTCGAGCTGGAATGCATGCGCCGCTTCTTCACCGACCCCGACACCCTGCG

CAAGGTCGAGGAGACCCTGCACTACACTTTCAGGCACGGTTTCGTCAGGCAGGC

CTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCTTGCCTGGGGATCCTG

CACGAGAACCGCCTGGGGCAGACCGTGCTTCACTCTACCCTCAAGGGCGAGGCG

CGGCGGGACTACATCCGCGACTGCGTCTTTCTCTTTCTTTGCCATACATGGCAGT

CGGCCATGGGTGTGTGGCAGCAGTGTCTAGAGGACGAGAACCTGAAGGAGCTG

GACAAGCTTCTTGCTAGAAATCTTAAAAAGCTGTGGACGGGCTTCGACGAGCGC

ACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCAGAGCGCCTGAGGCAGACG

CTGAAAGGCGGACTGCCCGACTTCATGAGCCAGAGCATGTTGCAAAACTACCGC

ACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCTTTCCCCT

CCGACTTTGTTCCACTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTG

CTACCTCTTGCAGCTGGCCAACTACATCTCCTACCACTCGGACGTGATCGAGGAC

GTGAGCGGCGAGGGGCTTCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCG

CACCGCTCCCTGGTCTGCAACCCCCAGCTCCTAAGCGAGACCCAGGTCATTGGTA

CCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGG

GGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCCA

TGAGATAAAGTTCTTCGAGGACCAATCGCGCCCGCAGCACGCGGATCTCACGGC

CTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCAAAAATC

CCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGAC SEQ

ID Sequence

NO

GGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAG

CCACTAGTGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGA

ATGGGAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAG

GCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGTCACG

GATACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAG

GGTGACGGTAAGCACGAGCGGCAGGGCTACCGATCATGGAGGTCCCACAAAGC

CGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCG

CTACCTGCTGTTCCACCGCGGAGTAAACATCCCCCGCAACGTGTTGCATTACTAC

CGTCACCTTCACAGCTAAGAAAAAATCAGAAGTAAGAGGAGTCGCCGGAGGAG

GCCTGAGGATCGCGGCGAACGAGCCCTTGACCACCAGGGAGCTGAGGAACCGG

TCAAAGTAAAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAA

AAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACAA

GTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGG

GAATTACCTCATCGCCACCATGAGCAAGGAGATTCCCACCCCTTACATGTGGAG

CTATCAGCCCCAGATGGGCCTGGCCGCGGGCGCCTCCCAGGACTACTCCACCCG

CATGAATTGGCTAAGTGCCGGCCCCTCGATGATCTCACGGGTCAACGGGGTCCG

TAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAG

GGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCC

CGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCATGAC

TAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACA

ATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACGACG

AGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAGCCG

GAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGAGCA

GCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTTGTGGAGGAGTT

TGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCCGGAC

GAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCTACGACTGA

ATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACCACTGCC

GCCGCCTGCGCTGCTTTGCCCGGGAGAGCTGCGGACTCATCTACTTTGAGTTTCC

CGAGGAGCACCCCAACGGCCCTGCGCACGGAGTGCGGATCACCGTAGAGGGCA

CCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTTGAGCG

GGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCTACCCCGAAGTTG

CATGAGAATTTTTGCTGTACTCTGTGTGCTGAGTTTAATAAAAGCTGAAATCAGA

CTCTACTCTGGAATCCAGTGTCGTCATAACATCACAAAGACCATCAACTTCACCA

CCGAAGAACAGGTAAACTTTACCTGCAAACCACACAAGAAGTACATCATCTGGT

TATATCAGAACTCTACTCTAGCTGTAGCCAACACCTGCTCGAACGACGGTGTTCT

TCTACCAAACAACCTCACAAGTGGACTTACCTTCTCTGTTAGAAGGGCAAAGCT

AATTCTCTATCGCCCTATCTTAGAAGGAACTTACCATTGTCACAGCGGACCTTGT

CACCACATTTTCCATTTGGTGAACGTCACCAGCAGCAGCAACAGCTCAGAAACT

AACCTCTCTCGTACTAACAGACCTCAATTCGGAGGTGAGCTAAGGCTTCCCCCTT

CTGAGGAGGGGGTTAGCCCATACGAAGTGGTCGGGTATTTGATTTTAGGGGTGG

TACTGGGTGGGTGCATAGCGGTGCTAGCTCAGCTGCCTTGCTGGGTGGAAATCA

AAATCTTTATATGCTGGGTCAGACATTGTGGGGAGGAACCATGAATGGGCTCTT

GCTGATTATCCTTTCCCTGGTGGGGGGTGTACTGTCATGCCACGAACAGCCACGA

TGTAACATCACCACAGGCAATCATATGAGCAGAGAGTGCACTGTAGTCATTAAA

TGCGAGCACGACTGCCCACTAAACATTACATTCAAGAATAACACCATGGGAAAT

GTATGGGTGGGTTTCTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTC

GTGATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGA GAACATGATTGGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTGATGTCAGGTC TGCTGGTAGGGGCTTTAGTGTGGTTCCTCAAACGCAAGCCCAGGTATGGAAATG

TTGACCAGTGTCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGGCAGGAATTAT SEQ

ID Sequence

NO

TAACTTAAATGTATCATGGGGAATGAATCTAACTTTAGTGGGACCATCAGACCT

ACCAGTTACATGGTATGACGGAAAGGGAATGCAGTTTTGTGATGGAAATACAAT

TAAGAACCCACAAATCAAGCATAGCTGTGATCAACAGAATCTAACTTTACTTAA

TGCTGACAAGTCTCATGAAAGGACTTACCTAGGTTACAGACATGACAGTAAGGG

AAAAGTAGACTATAAGGTTACAGTCATACCACCTCCTCCAACCACTCGCAAGCC

TTTGTCAGAGCCTCATTATGTTACTGTAACTATGGGCTATAACATAACTTTAGTG

GGACCCTCAGACCTGCCAGTTACATGGTATGATGGAGAAGGAAATAAATTCTGC

GATGGAGAAAAAGTTGAACATGCAGAATTTAATCATACATGTAACATCCAGAAC

CTGACACTGCTTTTTGTCAACTTAACGCATAATGGAGCATACATTGGTTATAACA

AAGACGGTTCTGATAGAGAATTATATGAGGTGTCAGTCAAAACCTTGTTTCAGA

ACGGGGCTGGACAAAGTAAGGTTGAACAAGGTAATAAATGGAAAACTAATACC

ACTCAAAGTGGTGGTAAAAAAACCAAAACAGATCATAGAAACCAGAGTCCAAA

AAGAAAATCAACAAATAATCTTCAACCAACACAATTGTATGTTAGACCTTTTACT

AATGTTAGTTTAACTGGACCTCCAAATGGCAAGGTTACTTGGTATGACGGCGAA

AATCTAACTTTAATTAATGTAACCAGCACTTATGATGGCATCTATTATGGCACTG

ATGAAAAAGATAAGGCAAATCGTTACAGAATAAAAGTAAATACTACAAATCAC

AAAACTGTTAAAATTAAGCCACATACCAGAGAACCTCCTGCTAAACAAGAAAAA

CAGTTTGAATTACAAACTGCAGAAACTGATGAAAACGAATCAAAAATTCCATCA

ACTACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTTGTAACTCTAATCATTG

TCTTCATCTGCTACATCTGCTGCCGCAAGCGTCCCAGGTCATACAATCATATGGT

AGACCCACTACTCAGCTTCTCTTACTGAAACTCAGTCACTCTCATTTCAGAACCA

TGAAGGCTTTCACAGCTTGCGTTCTGATTAGCTTATTCACACTTAGTTCAGCTGG

TTATATTCAAGTTAATGTGACTAGAGGTGGAAACATTACATTAAATGGACCACT

ACAAAATACTACATGGTTAAGATACCACCTAAATGGTTGGCAACATATTTGTAC

ATGGTCTGGTCCATCATATAAGTGCCATACTAATAATGGAAGCATTACAATTTTT

GCTATTAACATCACTTCTGGAACTTATAAAGCCGAAGGATATAAAAAAGAGGTT

AGGACTTTTTCATCTAAAAATCAAAGACATACAATTGAAGATTCTGGTGATTATG

AGGAACATAAAATACTTTTGTATAATTTAACAATATTTGAACTGCCAACCACTAA

AGCACCCACCACAGTTAGGACAACTAGGGAAACAACTGCACAGCCTACTACAAA

TCCCACCACTCAGACAACTACTAGTCCAACAACACAGCCCACTACAATTACAAC

TAGGGAGGTAACTACTCACACTACACAGTTAGACACTACAGTGCAGAATAGTAC

TGTGTTAATCAGGTTTTTGTTGAGGGAGGAAAGTACTACTGAACAGACAGAGGC

TACCTCAATTGCCTTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTCAATAAAT

GAAACCATCGTGCCGATGATGCTGGAACAAGATTTAAGAGGTTTGGATATGCAA

ATCACTTTTCTGGTTGTCTGTGGAATCTTTATTCTCGCTGTCCTTCTCTACTTTGTC

TGCTGCAAGGCCAGAGAGAAATCTAGGCGGCCCATCTACAGGCCAGTAATCGGG

GAACCTCAGCCCCTCCAAGTGGACGGAGGCTTAAGAAATCTTCTCTTCTCTTTTA

CAGTATGGTGATCAGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTCTGT

CTCTTCAACATCTGCGCTGCCTTTGCGGCCGTCTCGCACGCATCGCCCGACTGTC

TCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGC

AGCATTGTCTGCGTGGTCATTACCTTCCTGCAGCTTATCGACTGGTGCTGCGCGC

GCTACAATTACCTACACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAA

TATTAAGGCTCATCTGACTATGCAGACTCTGCTCATACTGCTATCCCTCCTATCCC

CTGTCCTTGCTGCTAAAGACTATTCTCAATGTAAATTTGCGGACATATGGAATTT

CTTAGACTGCTATGATGCGAAAATTGATATGCCCTCCTATTACTTGGTAATTGTG

GGAATAGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCATGATATACCCCTGTTT

TGATCTCGGCTGGAACTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTC

ACTAGCTTCCACGCCACCACCCACACCGCCTCCCCGCAGAAATCAGTTTCCACTG

ATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTC

ACATAACCGGCGGCGATGACTGACCACCACCTGGACCTCGAGATGGACGGCCAG

GCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCC

GCCAAGGAGCTCCTCGATGCCATCAACATCCACCAGTGCAAGAAGGGAATCTTC SEQ

ID Sequence

NO

TGCCTGGTCAAACAGGCAAAGATTACCTACGAGCTCGTGTCCGGCGGCAAGCAG

CATCGCCTCGCCTATGAGCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTG

GGCGTCAACCCCATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATC

CACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTCCCTCCTTAAGACCCTTTGCG

GACTCCGCGACCTCCTCCCCATGAACTGATGTTGATTAAAATCCCAAAAACCAAT

CAGCCCATTTCCCCATCCCCATTTACTCAAGAATAAATTATTGGAACTATTCATT

CAATAAAGATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTTAG

CAGCACCTCGGTTCCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCG

AACTTCCTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTG

TCTTCCCTCTCAGATGTCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTC

TACCCCTATGGCTACGCGCGGAATCAGAACATCCCCTTCCTCACTCCCCCCTTTG

TATCCTCCGATGGATTCAAAAACTTCCCCCCTGGGGTCCTGTCGCTCAAACTAGC

TGACCCAATAGCCATCGTCAATGGGGATGTCTCACTCAAAGTGGGAGGGGGTCT

CACTTTGCAAGATGGAACTGGAAAACTAACAGTCAATACTGAACCACCTTTGCA

ACTTGCAAACAACAAATTAGGGATTGCTTTGGACGCTCCATTTGATGTTATAGAT

AATAAACTCACAATGTTAGCAGGCCATGGCTTGTCTATTATAACAAAAGAAACA

TCAACATTGCCTGGCTTAGTTAATACTCTTGTAGTATTAACTGGAAAGGGTATTG

GAACAGAATCAACAGATAATGGTGGAAGCGTATGTGTGAGAGTTGGAGAAGGT

GGCGGCTTATCATTTAATAATGATGGAGACTTGGTAGCATTTAATAAAAAAGAA

GATAAGCGCACCCTATGGACAACTCCAGACACATCTCCAAATTGCAAGATTGAT

CAGGATAAGGACTCTAAGTTAACTCTGGTCCTTACAAAGTGTGGAAGTCAAATA

TTGGCTAATGTGTCATTAATTGTCGTAGCTGGTAAGTACAAAATTATCAATAACA

ATACTCAACCATCTCTCAAAGGATTTACCATTAAATTATTGTTTGATCAAAATGG

AGTACTTATGGAATCTTCAAATCTTGGTAAATCATATTGGAACTTTAGAAATGAA

AATTCAATTATGTCAACAGCTTATGAAAAAGCTATTGGATTCATGCCTAATTTGG

TAGCCTATCCAAAACCTACCGCTGGCTCTAAAAAATATGCAAGAGATATAGTTT

ATGGAAACATCTACCTTGGTGGAAAGCCAGATCAACCAGTAACCATTAAAACTA

CCTTTAATCAGGAAACTGGATGTGAATATTCTATCACATTTGATTTTAGTTGGGC

CAAGACTTATGTAAATGTTGAATTTGAAACAACCTCTTTTACCTTTTCCTATATCG

TATTGATTTTTACACCAGCACGAGTAGTCAGTCTCCCACCACCAGCCCATTTCAC

AGTGTACACGGTTCTTTCAGCACGGGTGGCCTTAAATAGGGGAATGTTCTGATTA

GTGCGGGAACTGAACTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAA

CGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCC

TCACAGTCCAAAGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACT

CGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAGCAGTCTCTGCC

GTCGGGGCTCTGTGCGGCTGCTGCATATGGGATCGGGATCGCAAGTCTCTCTGAC

TATAATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGCACCGC

ATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCATGTTAT

TCAGCAGCCCATAATTTAGGGCGCTCCAGCCAAAGCTCATGTTGGGGATGATGG

AACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAAGTGCCTGCCTCTCAT

GAACACACTGCCCATGTACA

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTTTGGGGCGGAGCCAACGCTGATTGGACGAGAAGCGGT NO: GATGCAAATAACGTCACGACGCACGGCTAACGGCCGGCGCGGAGGCGTGGCCT 1440 AGGCCGGAAGCAAGTCGCGGGGCTAATGACGTATAAAAAAGCGGACTTTAGAC

CCGGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGC

GGATGCAAGTGAAATTAGGTCATTTTGGCGCCAAAACTGAATGAGGAAGTGAAA

AGTGAAAAATACCTGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGAC

CGTGTGAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAA

CCAGTTGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAAAGTGTGAGAAAAATGAGACACCTGCGCCTCCTGTCTTC SEQ

ID Sequence

NO

AACTGTGCCTATTAACATGGCCGCATTATTGCTGGAGGACTATGTGAGTACAGTA

TTGGAGGACGAACTACATCCATCTCCATTTGAGCTGGGACCTACACTTCAGGACC

TTTATGATTTGGAGGTAGATGCCCATGATGACGACCCAAACGAAGAGGCTGTGA

ATTTAATATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGCCAGCGAAGCTGT

ACCTACACCACTTCATACACCGACTTTGTCACCCATACCTGAATTGGAAGAGGA

GGACGAGTTAGACCTCCGATGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGA

GGACGAACAGGGTGAGCAGAGCATGGCTCTAATCTCAGAATATGCTTGTGTGGT

TGTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAG

ATCCTGCCAGTACCACCGGGATAAGACCGGAGACACAAACGCCTCCTGCGCTCT

GTGTTACATGAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGA

GAGAGGCTGAGTGCTTAACACATAACTGGGTGATGCTTAAACAGCTGTGCTAAG

AAGAAAACCACCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGC

ACAAACCCACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAA

ATTGAGGACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTG

AAACGCCCCAGGAACTAGGCGCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGT

ACAATAAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGG

GCTTAGTCCTATATAAGTGGCAACACCTGGGCACTGGGCACAGACCTTCAGGGA

GTTCCTGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTT

GTAGAGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACT

CCTCTATCTCGACTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAA

AATCTTTTTGCTGATTGCTCTGGCCTGCTAGATTCTCTGAATCTCGGCCACCAGTC

CCTTTTCCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACT

AACTGAGCAGGGGCTACATTCTGGACTTCGCAGCCATGCACCTGTGGAGGGCAT

GGGTGAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTATACAGCCAGCAG

CTCCGGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGA

GGCAGGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAG

GAGCTGAATTGAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGA

CATCCATGGCTAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGG

ATGATGACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATT

ACCTGGCACGAGCTACAGATGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGAT

AAATATGGCCTGGAGCAGATAAAAACACATTGGTTGAACCCAGATGAGGATTGG

GAGGAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTAC

ATAGTGACCAAGACCGTGAATATTAGACATGCCTGCTACATTTCAGGGAACGGG

GCAGAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATG

GGAATGAGAGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAG

TTCAATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACC

CTGCATGGCTGCAGTTTCTTTGGCTTCAACAATATGTGCGCCGAGGTCTGGGGCG

CTTCCAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAA

GACCTAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGG

GAGTCTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGATACGG

GCTGCTTCTGCCTGGTGAAGGGTACGGCCTCTCTGAAGCATAATATGGTGAAGG

GCTGCACAGATGAGCGCATGTACAACATGCTAACATGCGACTCGGGGGTCTGTC

ATATCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGT

TTGAGAATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCA

CCTTCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAAAACG

ATGCCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTA

CAAGATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGG

GGGCAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGA

GACCAGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGG

AGGACACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAA SEQ

ID Sequence

NO

CGGCGGGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCG

GGATGGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGTCCA

GTGCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCG

CTTGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAG

ACTGGCCTCGAGCTATATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCC

ATCATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGC

CGCCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAG

CAGCAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATC

TTTATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTG

AGAGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGG

TACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCG

TGCTCTGGGGTCGTGTTGTAGATAATCCAGTCATAGCAGGGGCGCTGGGCGTGG

TGCTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTG

TAGGTGTTGGCAAAGCGGTTAAGCTGGGAGGGATGCATGCGGGGGGAGATGAT

GTGCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGG

GGGTTCATATTGTGCAGGACCACCAGAACGGTGTAGCCCGTGCACTTGGGGAAC

TTATCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGC

CCGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTG

CGGCTTTGGCAAAAACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGT

GAGATCATCATAAGACATTTTAATGAATTTGGGGCGAAGGGTGCCAGATTGGGG

GACGATCGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCC

CAGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAA

ACGGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTTAACAGC

TGGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGG

TGGTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCG

TTGAGCATGTCTCTCACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGGAGGCGGT

CCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGA

GCCCGTCGGCCATGGGCATCTTGGCAAGGGTCTGCGAGAGGAGCTCCAGGCGGT

CCCATAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGC

GGCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGAGTGAGGGTGGTCTCCGTC

ACGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTC

ATCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAG

CAGTTGACCATGAGCTTGTAGTTAAGGGCCTCGGCGGCGTGGCCCTTGGCACGG

AGCTTGCCTTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGC

GTAGAGCTTGGGTGCGAGAAAGACGGACTCGGGAGCGAAGGCGTCCGCTCCGC

AGTGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGG

ATGAGTCTGTGTCCGCGTTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGG

ACTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTC

GGACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGT

GCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCA

GACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGC

CACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCAATGCTTTTTAGGAGACTTTCATC

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCAAAGGAGCCA

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACAC ACTTCCATTCTGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC AGCCGCGATTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCA GGGGCTCGTTGGTCCAGCAGAGGCGTCCGCCCTTGCGCGAGCAGAACGGGGGCA SEQ

ID Sequence

NO

GCACATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

GACAGAGTTCCTTGTCAAAATAATCGATTTTTGAGGATGCATCATCCAAGGCCAT

CTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCGTAGACAT

AGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGG

ATGCTGGCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAAGCGGG

GCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGAT

GGCATGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTG

GGGCAAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGC

AACGAGCTCGGCGGTGACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCACG

GATGATGTCATAACCCGCCTCTTCTTTCTTCTCCCACAGCGCGCGGTTGAGGGCG

TACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCAC

GGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCT

TCTCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCA

GGGCGAAGGTATCCCTAACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGT

CGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGG

GGTTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCA

TGAAATTGCGGGTGATGCGGAAAGGGCCCGGAACGGAGGCTCGGTTGTTGATGA

CCTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGT

GTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTG

GAGATGTGGGTTGGCTTGCATGAATGAAGCCCAGAGCTCGCGGGCCATGAGGGT

CTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGG

GGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCG

CACGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCGGAGAATTTCAT

GACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGT

TTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGG

GAAGAACTGGATTTCCTGCCACCAGTTGGTCGAGTGGCTGTTGATGTGATGAAA

GTAGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCC

GCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCG

TCCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCG

CCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCG

CGCGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAAACGAG

GGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAG

GGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATG

GTACTTGATCTCCACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCG

TAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCG

GACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGTGGCGGTAGAG

GCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGG

CGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTTTGCGTGAAGA

CCACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGG

CGTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTG

GTAGGCGATCTCGGACATGAACTGCTCGATTTCCTCCTCCTGGAGATCGCCGCGG

CCCGCGCGCTCTACGGTGGCGGCAAGGTCATTCGAGATGCGACCCATGAGCTGC

GAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAAACCACGTCCCCG

TCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGC

GTAAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGC

GATGTGCTCGGTGACGAAGAAGTACATAATCCAGCGGCGCAGGGGCATTTCGCT

GATGTCGCCAATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAA

GTTGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCT

GATGAGTTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCAGGGGGCCTC

CTCCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCG

GTGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACG SEQ

ID Sequence

NO

AAGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGA

CCCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGG

GGTGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACAATGCATCTTATCAATTGC

GGTGTAGGGCACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGG

AAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTG

TGGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGA

GGCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGC

GGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGT

AGTAGTCATGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCAT

GCGGGTGACCCCGACGCCCCTGAACGGCTGCACGAGCGCCAGGTCGGCGACGAC

GCGCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTC

CATGTCGACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGC

CATAAGCGACCAGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCGGAGTACCT

GAGCCGCGAGAAGGCGCGCGAGTCGAAGACATAGTCGTTGCAGGTGCGCACGA

GGTACTGGTATCCGACTAGAAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGC

GCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCAAGCATGAGTCGGTGGTAGC

CGTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGC

GGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGGGGCAGGAAATAGTCCATG

GTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGATGCTCTAGAGGCAA

AAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGG

GTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGC

GACTAACGTGGTATTGGCACTCCCGTCTCGACCCAAGCCCGATAGCCGCCAGGA

TACGGCGGAGAGCCCTTTTTGTCGGCCGAGGGGAGTCGCTAGACTTGAAAGCGG

CCGAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCA

GGGTTGAGTCGCGGCAGAACCCGGTTCAAGGACGGCCGCGGCGAGCGGGACTT

GGTCACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGA

CACCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCA

GCCACAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGAC

TGGGGGCGCCGTCCCCGGAGCGACATCCCCGCGTGCAGCTGCAGAAGGACGTGC

GCCCGGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGC

CCGAGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGC

CTGGACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACG

GGGATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACAGCCTAC

GAGCAGACGGTGAAGCAGGAACGCAACTTTCAAAAGAGTTTCAACAACCACGT

GCGCACCCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGA

CCTGGCGGAGGCCATTGTGCAGAACCCGGACAGCAAGCCTCTGACGGCACAACT

GTTCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCT

AAACATCGCCGAGCCCGAGGGCCGCTGGCTGCTGGAGCTGATCAACATCTTGCA

AAGCATCGTAGTGCAGGAGCGCAGCCTGAGCTTGGCCGAGAAGGTGGCGGCGA

TCAACTACTCGGTGCTAAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGA

CGCCGTACGTGCCCATAGACAAGGAGGTGAAAATAGACAGCTTTTACATGCGCA

TGGCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACC

GCATCCACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAG

CTGATGCTAAGCCTGCGCCGGGCGCTGGTAGGTGGCGCCGCCGGCGGCGAGGAG

TCCTACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTG

GAGGCCGCCTACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGA

GCAAGCCCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCT

AGCATCGGACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCG

CAACCCCGAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTTTCGGCCATTCT

GGAGGCGGTGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGAT

CGTGAACGCGCTGGCGGAGAACAAGGCTATTCGTCCCGACGAGGCTGGGCTGGT SEQ

ID Sequence

NO

ATACAACGCCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTC

CAACCTGGACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGC

GGTTCAAGAACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGA

CGCAGCCGGCGAACGTGCCGCGCGGGCAGGACGATTATACCAACTTTATCAGCG

CGCTGCGGCTGATGGTGACCGAGGTTCCCCAGAGCGAGGTGTACCAGTCGGGCC

AGGCTTTCAAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACC

GGTCGACGGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGA

TCGCGCCCTTCACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGTCACC

TGCTGACGCTGTACCGCGAGGCCATAGGCCAGGCACAGGTGGACGAGCAGACCT

TCCAGGAGATCACTAGTGTAAGCCGCGCGCTGGGTCAGAACGACACCGACAGTC

TGAGGGCCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGC

AGTATGCGCTGTCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAGCAGAGCG

TAGGGCTGTTTCTGATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGA

CCGCGCGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTTATCAATA

AGCTGATGGACTACCTGCACCGCGCGGCGTCCATGAACTCGGACTACTTTACCA

ATGCCATTTTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGT

ACGACATGCCTGACCCCAACGACGGGTTTTTGTGGGACGACGTGGACAGCGCGG

TGTTCTCACCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCG

AGGGCACGGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCC

GGGCTCGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACG

AGTACCTAAACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCA

ATAACGGGATAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTC

AGGACCATAGGGAGCCTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAG

CGGGGCCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGAC

TTGGGCGGGAGCGGTGGGGTCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGG

CGACGGATGTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCT

CTTCCTTGTTAGAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTAC

GAGAGCGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTAT

ATGGCTCCTACGGAGGGCAGAAACAGCATTCGTTACTCAGAGCTGGCTCCGCTG

TACGACACCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCC

CTGAACTACCAAAACGACCACAGCAACTTTCTGACCACGGTGGTGCAAAACAAC

GATTTCACCCCCGCCGAGGCTAGCACGCAGACGATAAATTTTGACGAGCGGTCG

CGGTGGGGCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAAC

GAGTACATGTTTACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAAACAC

CCACAGGGGGTAGAAGCAACAGATTTAAGCAAGGATATCTTAGAGTACCAGTGG

TTTGAGTTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGA

TGAACAACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGC

TGGAGAGCGATATCGGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGG

ACCCCGTGACCAAGCTGGTGATGCCAGGGGTCTACACCTATGAGGCCTTCCACC

CGGACGTGGTGCTGCTGCCTGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTAA

GCAACCTTCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCA

TGTATGAGGATCTCGAAGGGGGCAACATTCCCGCACTTCTGAATGTGACCAAGT

ACCTGGAAAGCAAGAAGAAGCTAGAGGAGAATGCCGCTAAGGCTAATGGTCCT

GCAAGAGGAGACAGTAGTGTCTCAAGAGAGGTGGAAAAGGCAGCTGAAAAAGA

GCTTGTCATTGAGCCCATCAAGCAAGATGATAGCAAGAGAAGTTACAACCTCAT

TGAGGGTACCCATGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGG

GGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCAC

CTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGT

CACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTC

ATGCCTTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCA

TCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGAT

CCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCT SEQ

ID Sequence

NO

CTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGA

GTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGG

GCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTCT

CATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTA

CGGAGGAGCCAAGAAACGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTT

TCGCGCTCCCTGGGGCGCATACAAGCGCGGGCGGACTTCCACCGCCGCCGCCGT

GCGCACCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGATGCGCGCAACTA

TACCCCCGCCCCCTCCACCGTGGACGCGGTCATTGACAGCGTGGTGGCCGACGC

GCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACC

GGAGCACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCA

CGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCACTGCACCCACCC

CCGCAGGCAGGACTCGCAGACGAGCGGCCGCTGCCGCCGCCGCGGCCATCTCTA

GCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGG

GCGTGCGCGTGCCCGTGCGCACTCGTCCTCCTCGTCCCTGATCTAATGCTTGTGT

CCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAG

GTCGTCGCCCCGGAGATTTACGGACCCCCGGACCAGAAACCCCGCAAAATCAAG

CGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGA

GTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGTGTGTT

GCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGAG

CAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGC

GGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCTGA

TCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGAAACCCGTGACCC

TGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTTAAGCGCG

AGGGCGAGAGCATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGGCGCG

TGGAGGACGTGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTG

CGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTGCAAACCGTGGACATTCAG

ATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAA

ACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGTCTCCACTTCTACCGCCGCCA

CGGCCACCGAGCCTCCCAGGAGGCGAAGATGGGGCCCTGCCAACCGGCTGATGC

CCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGCACCCG

GTACTACGCCAGCCGCAGGCGCCCAGCCAGTAAACGCCGCCGCCGCACCGCCAC

CCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTGACCACGCGCCGGGGCCG

CTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGC

TGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCC

GAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGTGGCCTGA

ACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCG

CGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGT

TGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCT

GACACACCTGGTCCTGTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTG

GCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACC

AGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAA

AATTTCGGCTCGACGCTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACT

GGGCAGTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAAAAGGTGGT

GGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGT

GCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGA

TGGAAGATGCAACTCCTCCGCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGAC

GCGGAGGAGACGATCCTGCAGGTGGACGAGCCGCCCTCGTACGAGGAGGCCGT

AAAGGCCGGCATGCCCACCACGCGCATCATCGCGCCACTGGCCACGGGTGTAAT

GAAACCCGCCACCCTTGACCTGCCTCCACCACCCACGCCCGCTCCACCGAAGGC

AGCTCCGGTAGTGCAGCCCCCTCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGC

CCGCCGCCAGGCCCAAAACTGGCAAAGCACGCTGCACAGTATTGTGGGCCTGGG

AGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGAAAGAGAGGAAGGAAGACAC

TAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATG SEQ

ID Sequence

NO

GCCACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGAC

GCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACG

TACTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCCCCAACCCACGAT

GTGACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGC

GAGGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAAC

CGGGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTTCTGGACCGC

GGCCCCAGCTTCAAACCCTACTCGGGCACGGCTTACAACAGCCTGGCCCCCAAG

GGCGCCCCCAATTCCAGTCAGTGGGATGCTCAAGAAAAAAATGGACAAGGAGG

AAATGACATGGTTACCAAAACTCACACATTTGGCGTGGCTGCTATGGGAGGAAC

AAATATTACAAACCAGGGTTTGTTAATTGGAACTGAAGAAACAGCCGATAATCC

TCCAAAGGAAATCTTTGCAGACAAATTATTCCAGCCAGAACCTCAAGTAGGAGA

GGAAAACTGGCAAGACAGCAATGCATTCTATGGAGGCAGGGCTCTTAAGAAGG

AAACTAAAATGAAACCATGCTATGGATCTTATGCTAGACCAACAAACACAAGTG

GCGGACAGGCTAAGCTTAAAACTGGTGACAATATCGATCCTACCAAGGATTTCG

ACATAGATCTTGCTTTCTTCGATACTCCTGGCGGAAATCCTCCAGCAGGTGGTAG

TGGAACGGAAGAATACAAAGCAGATATTGTTATGTACACTGAAAATGTCAACCT

TGAAACACCTGACACTCATGTGGTGTACAAACCAGCCAAAGAGGATGAAAGTTC

TCAGGCCAACTTGGTTCAGCAGTCCATGCCCAACAGACCCAACTACATTGGCTTC

AGAGACAATTTTGTGGGGCTCATGTATTACAACAGCACTGGCAACATGGGAGTG

CTGGCTGGTCAGGCCTCTCAGTTGAATGCTGTGGTGGACTTGCAAGACAGAAAC

ACAGAGCTGTCTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGAACCAGATACT

TTAGCATGTGGAACTCTGCGGTGGACAGCTATGATCCAGATGTCAGAATCATTG

AAAATCACGGTGTGGAAGATGAGCTTCCAAACTATTGCTTTCCATTGGATGGCTC

TGGTACCAATGCTGCCTACCAAGGTGTAAAGGTTCAAGATGGTGAAGACGGGGA

TAAAGAAACTGAATGGGAAAAAGATACCAAAGTCGCAGATCGTAACCAACTGT

GCAAGGGTAACATCTTCGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGA

GTTTTCTGTACTCGAACGTGGCCCTGTACCTGCCCGACTCCTACAAGTACACGCC

GGCCAACATCACGCTGCCCGCCAACACCAACACCTACGAGTACATGAACGGCCG

CGTGGTAGCCCCCTCGCTGGTGGACGCATACGTCAACATCGGTGCGCGCTGGTC

GCTGGACCCCATGGACAACGTCAACCCCTTCAACCACCACCGCAACGCGGGCCT

GCGCTACCGCTCCATGCTTCTCGGCAACGGCCGCTACGTGCCCTTCCACATCCAA

GTGCCCCAAAAGTTCTTTGCCATTAAGAACCTGCTCCTGCTCCCCGGCTCCTACA

CCTACGAGTGGAACTTCCGCAAGGATGTCAACATGATCCTGCAGAGTTCCCTCG

GAAACGACCTGCGCGTCGACGGCGCCTCCGTGCGCTTCGACAGCGTCAACCTCT

ACGCTACCTTCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCT

GCGCAACGACACCAACGACCAGTCCTTTAACGACTACCTCTCGGCCGCCAACAT

GCTCTACCCCATACCGGCCAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCGC

AACTGGGCTGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAAGACCAAGGAAACT

CCTTCCCTTGGCTCGGGTTTCGACCCCTACTTTGTCTACTCGGGCTCCATCCCCTA

CCTCGACGGGACCTTCTACCTCAACCACACCTTCAAAAAGGTGTCCATTATGTTC

GACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAATGAGTTC

GAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACAT

AACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCAG

GGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTTTTCCGCAACT

TCCAGCCCATGAGCAGGCAGGTGGTGGATGAGATCAACTACAAGGACTACAAG

GCCGTCACCCTGCCCTTCCAGCACAACAACTCTGGCTTCACCGGCTACCTCGCAC

CCACCATGCGTCAGGGGCAGCCTTACCCCGCCAACTTCCCTTACCCGCTCATCGG

CTCCACCGCAGTCCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATG

TGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGTGCCCTCACCGACCTGG

GTCAGAACATGCTCTATGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGG

TGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGT

GGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCAC

ACCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCGGTTCCAGCGAACGA SEQ

ID Sequence

NO

GAACTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCCTACTTTTTGGGCACCC

ACGACAAGCGCTTCCCGGGCTTCCTAGCCGGCGACAAGCTGGCCTGCGCCATCG

TCAACACGGCCGGCCGCGAGACCGGAGGCGTGCACTGGCTCGCCTTCGGCTGGA

ACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGCCG

GCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGAAGCGCCCT

GGCCTCCTCGCCCGACCGCTGTCTCAGCCTCGAACAGTCCACCCAGACCGTGCA

GTGCACTGGCCCGACCGACCCATGGACGGAAACCCCACCATGAACTTGCTGACG

GGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCCCACCCTCCGGCGC

AACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTACTTCCGATCCC

ACCGCGCCGCCATCGAACACGCCACCGCTTTTGACAAAATGAAACAACTGCGTG

TATCTCAATAAACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATT

TAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCC

ACGTTGCGGTACTGGTACTTGGAAAGCCACTTGAACTCGGGGATCACCAGTTTG

GGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGG

GCGCCCAGCATGTCAGGGCCGGAGATCTTGAAATCACAGTTGGGGCCGGTGCTC

TGCGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTG

GGGTACTTCACACTGGCAAGCACGCTCTTGTCGCTAATCTGATCCTTGTCCAGGT

CCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGA

AGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACGGGCATCAGCATCA

TCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACGAAGGCCGCGATCT

GCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAGAACAGACCGCAGCTCTT

CCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGCACGCAGCAGCGCGCGTC

ATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCACCTTAGCC

TTGCTGGGCTGCTCCTTCAGCGCGCGCTGTCCGTTCTCGCTGGTCACATCCATCTC

CACCACGTGGTCCTTGTGAATCATCACCGTTCCATGCAGACACTTGAGCTGACCT

TCCACCTCGGTGCAGCCGTGATCCCACAGGACGCAGCCGGTGCACTCCCAATTCT

TGTGCGCGATCCCGCTGTGGCTGAAAATGTAACCTTGCAACAGGCGACCCATAA

TGGTGCTAAATGATTTCTGGGTGGTGAATGTCAGTTGCATCCCGCGGGCCTCCTC

GTTCATCCAGGTCTGGCACATCTTCTGGAAGATCTCGGTCTGCTCCGGCATGAGC

TTGTAAGCATCGCGCAAGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTC

ATGGTATCCATGCCCTTCTCCCATGACGAGACCAGAGGCAGACTCAGGGGGTTG

CGCACGTTCAGGACACCAGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGC

CTTCCTTCAACAGAACCGGAGGCTGGCTGAATCCCACTCCCACGATCACGGCGT

CTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTCTTTCTG

CGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCG

GCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGG

GCGGAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCA

TTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAG

GACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAG

CCGGCTCGTCTAAAACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGG

CCAGGAGGAGACCGACGCTGGGCTCGAACATGGCTACCTGGGAGGAGAGGAGG

ATGTGCTGCTAAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTGGC

CGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCT

CAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACCTGCGA

GCCCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTTGCC

ACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCATCTCCTGTCGCGCCAATC

GCACTCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGCATACCTGATA

TCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGA

CGCGCGCGGCAAACGCTCTGAAAGAAACAGCAGAGGAAGAGGGTTACACTAGC

GCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCTTAAGCGCAGC

GTCGAGCTCACCCATTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGC SEQ

ID Sequence

NO

GTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTTGATGAAAGTC

AGGAACAGCGCCCCGAGAACGCCCAGCCCGTGGTCAGCGACGAGATGCTCGCG

CGCTGGCTCGGGACCCGCGACCCCCAGGCCCTGGAGCAGCGGCGCAAGCTCATG

CTGGCCGTGGTCCTGGTCACCCTTGAGCTCGAATGCATGCGCCGCTTTTTTACCG

ACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACACTTTCAGACACG

GTTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCT

CCTGCCTGGGGATCCTACACGAGAACCGCTTGGGACAGACCGTGCTCCACTCTA

CCCTGAAGGGCGAGGCGCGGCGGGACTACATCCGCGACTGCGTCTTTCTCTTTCT

CTGCCACACATGGCAAGCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAGGACGA

GAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGAC

GGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCCGA

GCGCCTGAGGCAGACGCTGAAAGGAGGGCTGCCCGACTTCATGAGCCAGAGCAT

GTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACC

TGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGC

CGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACTACATTGCCCACCACTC

GGATGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCACTGTCGCTG

CAACCTATGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCTACTGAGCGAG

ACCCAGGTCATCGGTACCTTTGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCG

CTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCG

AGGACTACTACGCCCATGAGATAAAGTTCTTCGAGGACCAATCGCGTCCGCAGC

ACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGC

ACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCT

ACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCG

AGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAATGGGACAGCC

AGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAGACTTGGAAGA

GGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGG

CAGCCCCTCCGGTCACGGATACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTA

GATGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGACAGGGCTACCGATCA

TGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAAC

ATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCA

ACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCAAGTCAAAGGA

GTCGCCGGAGGAGGAGGCCTGAGGATCGCGACGAACGAGCCCTTGACCACCAG

GGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTTTCAGCAAAGTCGA

GGTCAGCAGCAAGAGCTCAAAGTAAAAAACCGGTCTCTGCGCTCGCTCACCCGC

AGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCC

GAGGCTCTGTTCCACAAGTACTGCGCGCTGACTCTTAAAGACTAAGGCGCGCCC

ACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGCAAGGAGATTCCC

ACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCCGCGGGCGCCTCC

CAGGACTACTCCACCCGCATGAACTGGCTTAGTGCCGGCCCCTCGATGATCTCAC

GGGTCAACGGGGTCCGTAACCATCGAAACCAGATATTGTTGCAGCAGGCGGCGG

TCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGT

GTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGC

CGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTG

CCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCAC

ACAGCTCAACGACGAGTTGGTGAGCTCTTCAATCGGTCTGCGACCGGACGGAGT

GTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCCCAACCAGGCCTACCT

GACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCGGGAGGCATCGGAACCCTCCA

GTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGCTCGCCA

GGCCTCTACCCGGACGAGTTTATACCGAACTTCGACGCAGTGAGAGAAGCGGTG

GACGGCTACGACTGAATGTCCTATGGTGACTCGGCTGAGCTCGCTCGGTTGAGG

CATCTGGACCACTGCCGCCGCCTGCGCTGCTTTGCCCGGGAGAGCTACGGCCTCA

TCTACTTTGAGCTGCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCGGA

TCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAAC SEQ

ID Sequence

NO

CCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCATTTG

TCCTACCCCGAAGTTGCATGAGAATTTTTGTTGTACTCTTTGTGGTGAGTTTAATA

AAAGCTAAACTCTTGCAATACTCTGGACCTTGTCGTCATCAACTCAACGAGACCG

TCTACCTCACCAACCAGACTGAGGTAAAACTTACCTGCAGACCACACAAGACCT

ATATCATCTGGTTCTTCGAGAACACCTCATTTGCAGTCTCCAACACTCACTGCAA

CGACGGTGTTGAACTTCCCAACAACCTTTCCAGTGGACTGAGTTACAATACACGT

AGAGCTAAGCTCATCCTCTACAATCCTTTTGTAGAGGGAACCTACCAGTGCCAG

AGCGGACCTTGCTTCCACAGTTTTACTTTGGTGAACGTTACCGGCAGCAGCACAG

CCGCTCCAGAAACTAACCTTCCTTCTGATACTATCAAACCTTGTTTCGGAGGTGA

GCTAAGGCTTCCCCCTTCTCAGGAGGGGGTTAGCCCATACGAAGTGGTCGGGTA

TTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTAGCTCAGCTGCCT

TGCTGGGTGGAAATCAAAATCTTTATATGCTGGGTAAGACATTGTGGGGAGGAA

CTATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGGTGTGCTGTCATG

CCACGAACAGCCACGATGTAACATCACCACAGGCAATGAGAGGAACGACTGCTC

TGTAGTTATCAAATGCGAGCACCATTGTCCTCTCAACATTACATTCAAAAATAAG

ACCATGGGAAATGTATGGGTGGGATTCTGGCAACCAGGAGATGAGCAGAACTAC

ACGGTCACTGTCCATGGTAGCAATGGCAATCACACTTTCGGTTTCAAATTCATTT

TTGAAGTCATGTGTGATATCACACTACATGTGGCTAGACTTCATGGCTTGTGGCC

CCCTACCAAGGATAACATGGTGGGTTTTTCTTTGGCTTTTGTGATCATGGCCTGC

TTGATGTCAGGTCTGCTGGTAGGGGCTCTAGTGTGGTTTCTGAAACGCAAGCCCA

AACCATGAATACAGTGAACCGTATCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGT

CAGGCAGGATTTCATACTATCAATGCTACATGGTGGGCTAATATAACTTTAGTGG

GACCCCCAGACACACCAGTCACTTGGTATGATACTCAAGGATTGTGGTTTTGCAA

TGGCAGTAGAGTTAAGAATCCTCAAATCAGACATACATGTAATGATCAAAACCT

TACTTTGATCCATGTGAACAAAACTTATGAAAGAACATACATGGGTTATAATAG

ACAAGGGACTAAAAAAGAAGACTACAAAGTTGTAGTTATACCACCTCCTCCTGC

TACTGTAAAACCACAGCCAGAGCCAGAGTATGTGTTTGTTTATATGGGAGAGAA

CAAAACTCTAGAAGGTCCTCCGGGAACTCCAGTCACATGGTTTAATCAGGATGG

AAAGAAATTTTGTGAAGGAGAAAAAGTTCTTCATCCAGAATTTAACCACACCTG

TGACAAACAAAACCTTATACTACTGTTTGTGAATTTTACACATGATGGAGCTTAC

CTTGGGTACAATCATCAAGGAACCCAGAGAACACACTATGAAGTTACAGTATTA

GATCTTTTTCCAGATTCTGGCCAAATGAAAATTGAAAATCATAGTGAGGAAACA

GAGCAAAAAAATGATGAACATCATAACTGGCAGAAACAGGGTGGGCAAAAACA

GGGTGGGCAAAAAACAAATCAAACAAAAGTTAATGACAGGAGAAAAACAGCGC

AAAAAAGACCATCAAAGCTAAAGCCGGCAACTATTGAGGCAATGCTGGTTACAG

TGACTGCCGGGTCTAACTTAACTTTGGTTGGACCTAAAGCAGAAGGAAAAGTTA

CTTGGTTTGATGGAGATTTAAAAAGACCATGTGAGCCTAATTACAGACTAAGAC

ACGAATGTAATAATCAAAACTTAACTCTGATTAATGTAACTAAAGATTATGAGG

GAACTTACTATGGTACAAATGACAAAGATGAGGGCAAAAGGTACAGAGTGAAA

GTAAATACTACAAATTCTCAATCTGTGAAAATTCAGCCATATACCAGACAAACT

ACTCCTGATCAAGAGCACAAATTTGAATTACAGTTCGAAACTAATGGAAATTAT

GATTCAAAAATTCCCTCAACCACTGTGGCAATCGTGGTGGGTGTGATTGCGGGCT

TCATAACTCTGATCATTGTCTTCATATGCTACATCTGCTGCCGCAAGCGTCCCAG

GGCATACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTAAGACTCAGTC

ACTTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCCTAGT

CACACTTAGTGTAGCTATTAAAAATCAATATCATGTTCATAATGTTACCAGAGAT

GGATATATCACATTAAATGTAACAATTGATAATACTACCTGGACAAGATATCATT

TAAATAAGTGGCATCAAATTTGTACGTGGTCAGACCCATCATACAAATGTCACA

GCAATGGCAGCATTACCATTCATGCTTTCAATATTACTTCTGGCCAGTACAAAGC

TGAAAGTTTTACTAACTGGTTTAGATATTACGGTAATCATAAACATGAAATTCAT

ATTTTTAACATAACTGTAATTGAGCATCCTACAACAAAAGCACCCACCACTGCTA

ATACAGCTACATCAATTAAATCAACAACCACACAGCCTACTACTAGGGAGACAA SEQ

ID Sequence

NO

CTCAACCTACCACCACAGTCAGTACAACTACTGAGACCACTACTCAAACTACAC

AGCTAGACACAACAGTGCAGAATAGCACTGTGTTGGTTAGGTATCTGTTGAGGG

AGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTTAGCAGCACTG

CAAATTTAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATCATTGATGAATCA

TCAGCCTTTCTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTTTGTGGGATCT

TTATTCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAGAAATCTAG

GAGGCCCATCTACAGGCCAGTAATCGGGGAACCTCAGCCACTCCAAGTGGAAGG

GGGTCTAAGGAATCTTCTTTTCTCTTTTTCAGTATGGTGATCAGCCATGATTCCTA

GGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACATCTGCGCTGCCTTTGCA

GCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCAACCTACCTCCTCT

TTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCATCACCTTC

CTGCAGCTTATCGACTGGTGCTGTGCGCGCTACAATTATCTCCATCACAGTCCCG

AATACAGGGACAAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCATGCAGAC

TCTGCTCATGCTGCTATCCCTCCTATCCCCTGCCCTAGCCACTTATGCTGATTACT

CTAAATGCAAATTCGCAGACATATGGAATTTCTTAGATTGCTATCAGGAAAAAA

TTGATATGCCCTCCTATTACTTGGTGATTGTGGGAATAGTCATGGTCTGCTCCTG

CACTTTCTTTGCCATCATGATTTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTG

AAGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCACCCA

CACCGCCTCCTCGCAGAAATCAGTTCCCCCTGATACAGTACTTAGAAGAGCCCCC

TCCCCGACCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGA

CCACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCA

ACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTTGATGCCAT

CAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGAT

CACCTACGAGCTCGTGTCCAACGGCAAACAGCATCGCCTTACCTATGAGATGCC

CCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCAC

CCAGCAGTCGGGCGAGACCAACGGCTGCATCCACTGCTCCTGCGAAAGCCCCGA

GTGCATCTACTCCCTTCTCAAGACCCTTTGCGGACTCCGCGACCTCCTCCCCATG

AACTGATGTTGATTAAAAGCCCAGAAACCAATCAGACCCTTCCTCATTTCCCCAT

CCCAATACTCATAAGAATAAATCATTGGAATTAATCATTCAATAAAGATCACTTA

CTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGCTCAGCAACACCTCGGTACCC

TCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAACTTCCTCCACACCT

TGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTTAGATG

TCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTAC

GCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCCGATGGAT

TCAAAAACTTCCCCCCTGGGGTACTGTCACTCAAACTGGCTGATCCAATCACCAT

TACCAATGGGGATGTATCCCTCAAGGTGGGAGGTGGTCTCACTTTGCAAGATGG

AAGCCTAACTGTAAACCCTAAGGCTCCACTGCAAGTTAATACTGATAAAAAACT

TGAGCTTGCATATGATAATCCATTTGAAAGTAGTGCTAATAAACTTAGTTTAAAA

GTAGGACATGGATTAAAAGTATTAGATGAAAAAAGTGCTGCGGGGTTAAAAGAT

TTAATTGGCAAACTTGTGGTTTTAACAGGAAAAGGAATAGGCACTGAAAATTTA

GAAAATACAGATGGTAGCAGCAGAGGAATTGGTATAAATGTAAGAGCAAGAGA

AGGGTTGACATTTGACAATGATGGATACTTGGTAGCATGGAACCCAAAGTATGA

CACGCGCACACTTTGGACAACACCAGACACATCTCCAAACTGCACAATTGCTCA

AGATAAGGACTCTAAACTCACTTTGGTACTTACAAAGTGTGGAAGTCAAATATT

AGCTAATGTGTCTTTGATTGTGGTCGCAGGAAAGTACCACATCATAAATAATAA

GACAAATCCAAAAATAAAAAGTTTTACTATTAAACTGCTATTTAATAAGAACGG

AGTGCTTTTAGACAACTCAAATCTTGGAAAAGCTTATTGGAACTTTAGAAGTGG

AAATTCCAATGTTTCGACAGCTTATGAAAAAGCAATTGGTTTTATGCCTAATTTG

GTAGCGTATCCAAAACCCAGTAATTCTAAAAAATATGCAAGAGACATAGTTTAT

GGAACTATATATCTTGGTGGAAAACCTGATCAGCCAGCAGTCATTAAAACTACC

TTTAACCAAGAAACTGGATGTGAATACTCTATCACATTTAACTTTAGTTGGTCCA

AAACCTATGAAAATGTTGAATTTGAAACCACCTCTTTTACCTTCTCCTATATTGC SEQ

ID Sequence

NO

ATTGATTTTTACACCAGCACGAGTAGACAGTCTCCCACCACCAGCCCATTTTACA

GTGTACACGGTTCTCTCAGCACGGGTAGCCTTAAATAGGGAAATATTCTCATTAG

TGCGGGAATTGGACTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAAC

GGGGGTCGGTGATTGAAATAAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCT

CACAGTCCAAGGTCACAGTCTGGTGGAACAAGAAGAACGCACAGATTCATACTC

GGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAGCAGTCTCTGCCG

CCGGGGCTCGGTGCGGCTGCTGCAAATGGGATCGGGATCACAAGTCTCTCTGAC

TATGATCCCAACAGCCTTCAGCATCAGTCTCCTGGTGCGACGGGCACAGCACCG

CATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCATGTTA

TTCAGCAGCCCATAATTCAGGGCGCTCCAGCCAAAGCTCATGTTGGGAATGATG

GAACCCACGTGACCATCGTACCAGATG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTTTGGGGCGGAGCCAATGCTGATTGGCCGAGAAGCGGT NO: GATGCAAATGACGTCACGACGCACGGCTGACGGTCGCCGCGGAGGCGTGGCCTA 1441 GCCCGGAAGCAAGTCGCGTGGCTGATGACGTATAAAAAGCGGACTTTAGACCCG

GAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGA

TGCAAGTGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGC

GAAAAATACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTT

GACCGATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTCC

GTGTCAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAAC

CAGTCGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCT

GAGCTCCGCTCCCAGAGTGTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGAA

ACTGTGCCTATGGACATGGCTGTGCTTCTACTGGATGACTTTGTGAATACAGTAT

TGGAGGATGAACTGCATCCAACTCCGTTTGAGCTGGGACCCACACTTCAGGACC

TATATGATCTGGAGGTAGATGCCCATGATGACGACCCGAACGAAGAGGCTGTGA

ATTTAATATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTAT

ACCTACTCCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAG

GACGAACTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAG

GACGAACAGGGTGAGCAGAGCATGGCTATAATCTCAGACTATGCTTGTGTGGTT

GTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAGA

TCCTGCCAATATCACCGGGATCAGACCGGAGACCCAAATGCTTCATGCGCTCTGT

GTTACATGAAAAAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGA

GAGGCTGAGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTG

CGACCACCCGTCTTCCCCCGATCTCACAGATGACACGCCCCTGCAAGTGATCAG

ACCCACCCCAGTCAGACTCAGTGGGGAGAGGCGAATGGCTGTTGACAAAATCGA

GGACTTGTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACG

CCCCAGGAACTAGGCGCAGCTGTGCTGAGTCATGTGTAAATAAAGTTGTACAAT

AAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTA

GTCCTATATAAGTGCTAACACCTGGGCACTTAGGCACAGACCTTCAGGAGCTCCT

GATGGAGGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGA

GGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTA

TCTCGCCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAATCTTT

TTGCCGACTGCTCTGGCCTGCTTGATTCTCTGAATTTTGGCCACCAGTCCCTTTTC

GGGGTTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAACTGA

GCAGGGGCTACATTCTGGACTTCGCGGCCATGCACCTGTGGAGGGCCTGGGTCA

GGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGG

GTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAGG

CCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTG

GATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAGGGTGCTGACATCCA

TGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATG

ACAGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACCTGG SEQ

ID Sequence

NO

CATGAGCTACAGATGGAGTGCAGGGATGAGGTGGGCCTGATGCAGGATAAATAT

GGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGA

GGCCATTAAGAAATATGCCAAGATAGCCCTACGCCCAGATTGCAAGTACAGGGT

GACCAAGACGGTGCATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGA

GGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAAT

GAGAGCCGGAGTGATGAATATGAATTCCATGATCTTTATGAACATGAAGTTCAA

TGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCA

TGGCTGCGACTTTTTCGGCTTTAACAATATGTGCGCAGAGGTCTGGGGCGCTTCC

AAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACCC

AAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTC

TCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGAGACGGGCTGC

TTCTGCCTGGTGAAGGGCACAGCCTCTCTGAAGCATAATATGGTGAAGGGCTGC

ACGGATGAGCGCATGTACAACATGCTGACATGCGACTCGGGGGTCTGCCATATT

CTGAAGAACATCCATGTGACCTCCCACCCCCGGAAGAAGTGGCCAGTGTTTGAG

AATAACCTGCTTATCAAGTGCCACGTGCACCTGGGTGCCAGAAGGGGCACCTTC

CAGCCGTACCAGTGTAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCC

TTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGA

TCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCA

GACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACCA

GACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGAC

ACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAAGGTGACTATAAAGGCG

GGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACTGGCG

GGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATG

GGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGTGCT

TCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCTTGA

CAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTGG

CTTCGAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCATCAT

CGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGCCA

GCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGCAAAA

TAAATGATTCAATAAACACAGATTCTGATTCAAAAGCAAAGCATCTTTATTATTT

ATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTTTCCCGATCATTGAGAGTGCGG

TGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACATGGGC

ATGAGCCCGTCCCGGGGGTGTAGGTAGCACCACTGCATGGCCTCGTACTCTGGG

GTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGATG

ATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGTTG

GCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGTTT

GGCCTGGATCTTGAGGTTGGCAATGTTGCCGCCCAGATCCCGCCTGGGGTTCATG

TTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTATCATGC

AACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCAGG

TTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGCGGCTTTGG

CAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTGAGATCAT

CATAAGACATTTTAATAAATTTGGGGCGGAGGGTGCCAGATTGGGGGACGATGG

TTCCCTCGGGCCCCGGGGCAAAGTTCCCCTCGCAGATCTGCATCTCCCAGGCTTT

CATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAACGGTTTC

CGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGACTT

GCCGCACCCGGTTGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAGTT

CAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGCAT

GTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGTCTCCGCC

GAGCGAGAGTAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGAGCCCGTC

GGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGTAGCTCCAGGCGGTCCCAGAG

CTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGGGT

TGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCTGCCAGCG

TCATGTCCTTCCATGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCACGGTGAA SEQ

ID Sequence

NO

GGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTTCGCTTGAGACTCATCCTGCT

GGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTGAC

CATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTTGCC

CTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGAGCT

TGGGTGCGAGAAAGACGGACTCGGGGGCGAAGGCGTCCGCTCCGCAGTGGGCG

CAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGGTGTTCGGGGTCAAAA

ACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCATGAGTCT

GTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGACTTGAT

GGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCA

CTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGG

GGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAGGCACAT

GTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGA

CCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCA

CTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCT

CGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGG

TCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCATAGAGG

GCATTGGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCACGGTCGG

CGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGCACTTCCA

TTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCGCG

GTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGGGCTC

GTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCAGCACATC

AAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCGGGACATAG

TTCCTTGTCAAAATAGTCTATTTTTGAGGATGCATCATCCAAGGCCATCTGCCAC

TCGCGGGCGGCCATCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGGCATG

GGGTGCGTGAGCGCGGAGGCATACATGCCGCAGATGTCATAGACATAGATGGGC

TCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCTGGCG

CGCACGTAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGAGATT

GGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCGTGCG

AGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGTGGCAGGC

GGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAGCT

CGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGATGATGT

CATAACCCGCTTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTACTCCTC

GTCATCCTTCCAATACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGA

GCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCAC

GGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGA

AGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTCGCA

GCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAGG

CAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATGAAATT

GCGGCTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGACCTGGGC

GGCGAGGACGATCTCGTCGAAGCCGTTGATATTGTGCCCGACGATGTATAGTTC

CATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGTAGGTG

AGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGGGCCCACTCCTGGAGATGT

GGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGC

TCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGGTGACG

CAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACGGCG

AGATCGCGAGCGAGGGTGACCAGCTCGGGGTCCCCCGAGAATTTCATGACCAGC

ATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTACA

TCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAA

CTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGAA

ATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGTA

CTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTT

GAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGC SEQ

ID Sequence

NO

GTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGG

GAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGCGC

GCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTC

TGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACT

TGATTTCCACTGGGGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGT

GCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCAC

GTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTG

CGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACCAC

CGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTC

ATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAG

GCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCG

CGCGCTCGACGGTGGCGGCGAGGTCATTTGAGATGCGACCCATGAGCTGCGAGA

AGGCGCCCAGCCCGCTCTCGTTCCAGACGCGGCTGTAGACTACGTCCCCGTCTGC

GTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGAA

GACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTG

CTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTGATGTC

GCCGATGGCCTCCAGCCTTTCCATGGCTTCGTAGAAATCCACGGCGAAGTTGAA

AAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCGGATGAG

CTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTCT

TCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTGG

TGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCT

CGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTT

CGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGT

CCCCGTTGGGCAGCGATAGGGCGCTGACGATGCATCTTATCAATTGCGGTGTAG

GGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGT

CTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGTAGCCCCGTGGACGC

TGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTAAGGCGGCG

GATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCG

CTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCA

TGCATGAGCCTCTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTG

ACCCCGACGCCCCTGAGCGGTTGCACAAGCGCCAGGTCGGCGACGACGCGCTCG

GCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCG

ACGAAGCGGTGGTAGGCCCCGGTGTTAATGGTGTAGGTGCAGTTGGCCATGAGC

GACCAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCGC

GAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACTG

GTATCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGCTGGGT

GGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGA

GGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAAC

TCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGC

ACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGA

AGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGC

CGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTAAC

GTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGCG

GAGAGCCCTTTTTGCCGGCCGAGGGGGGTCGCTAGACTTGAAAGCGGCCGAAAA

CCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGA

GTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCACCC

CGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCC

CGGCGACCACCGCGACCGCGGCCGTAGCAGGCACCGGCGCTAGCCAGCCACAG ACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGTC CCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACATGCGCCCGGCGTACGT GCCTCCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATGC SEQ

ID Sequence

NO

GCGACTGCCGTTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAGC

GCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCC

GCGCGCGCGCACGTGGCTGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGTG

AAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCATGTGCGCACGCTGATC

GCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGCC

ATCGTGCAGAATCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTG

CAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATCGCCGA

GCCCGAGGGCCGCTGGCTGCTGGAGCTGATTAACATCTTGCAAAGCATCGTAGT

GCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCGGT

GCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGCC

CATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGGT

GCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGGC

CGTGAGCGCGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGCCT

GCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCGAGGAGTCCTACTTCGACAT

GGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACGG

TCCAGAGGACGACTTGGATGAGGAAGAGGAGGAGGATGCACCCGCTGCGGGGT

ACTGACGCCTCCGTGATGTGTTTTTAGATGCAGCAAGCCCCGGACCCCGCCATAA

GGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAGGCCG

CGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGACAAC

AGCCACAGGCCAACAGACTTTCGGCCATTCTGGAGGCGGTGGTCCCCTCTCGGA

CCAACCCCACGCATGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAGAAC

AAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAGCGC

GTGGGCCGCTACAACAGCACAAACGTGCAGTCCAACCTGGATCGGCTGGTGACG

GACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGATTCAAGAACGAGGGCCTTGG

CTCGCTGGTGGCGCTGAACGCCTTCCTGGCAACGCAGCCGGCGAACGTGCCGCG

CGGGCAGGACGATTATACCAACTTTATCAGCGCGCTGCGGCTGATGGTGACCGA

CAGACAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAACCTGCGCGG

GCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACGGTGAGCAGCTTGCT

GACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGCGG

CAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTGTACCGCGAGGC

CATAGGCCAGGCGCAGGTGGATGAGCAGACCTTCCAGGAGATCACGAGCGTGA

GCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCTGAACTTCT

TGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGCACTGTCGGCCGAGG

AGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCAGG

AGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAACCTA

GCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACCTGCACC

GCGCGGCGGCCATGAACACGGACTACTTTACCAACGCCATCCTGAACCCGCACT

GGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCAACG

ACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCGCCGACTTTTCAAA

AGCGCCAGGAGGCGCCGCCGAGCGAGGGAGCGGTGGGGAGGAGCCCCTTTCCT

AGCTTAGGGAGTTTGCATAGTTTGCCGGGCTCGGTGAACAGCGGCAGGGTGAGC

CGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTGCAGCCG

CCACGGGCCAAGAACGCCATGGCCAATAACGGGATAGAAAGTCTGGTGGACAA

ACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGACGCGCCCGCGCCGCG

GCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACTCGG

CCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGTGGGGCCAACCCGT

TCGCGCATCTGCAGCCCAGACTGGGGCGGCGGATGTTTTGAAATGCAAAATAAA

ACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGCGCGGT

GGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTG

GAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGC

ATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCGTGTACTTGGTGG

ACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGCAACT SEQ

ID Sequence

NO

TCCTGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCCAGCACGC

AGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATCTGAAGACCATTC

TGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGG

CGCGGGTGATGGTGTCTAGGAAAAAGGCGGAAGGGGCTGATGAGAATGATAGG

AGCAAGGATATTCTAGAGTATCAGTGGTTTGAGTTTACCCTGCCCGAGGGCAAC

TTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAACTAC

TTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATCGGAGTCAAGTTT

GACAGCAGGAATTTCAAGCTGGGCTGGGACCCGGTGACCAAGCTGGTGATGCCA

GGGGTCTACACATACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCTGGCTGT

GGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAGAAG

CAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGGGGGCAAC

ATCCCCGCTCTCCTGGATACCAAAAAATATCTGGATAGCAAGAAAGACATTGAA

GATGCAAAGCAGAAAGCGGCGCAGGCAGGTGGTGAGATCAGAGGAGACAGTGC

TGATACTAGAGCTGCAGAGAAGGCGGCTGAAAAAGAGCTGGTTATTGAACCCAT

CGAGCAAGATGAAAGCAAGAGGAGCTATAATGTGATCAAGGGGACCCATGACA

CCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGGGACCCCGAGAAGGGGG

TGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACCTGCGGCGCGGAGCAAG

TCTACTGGTCGCTGCCGGACCTCATGCAAGACCCGGTCACCTTCCGCTCCACCCA

GCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAA

GAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTATACCTCC

CTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGCCCGCCCG

CGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACGGGA

CGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGACG

CCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCG

TGTGCTTTCCAGTCGCACCTTCTAAAAAAATGTCTATTCTCATCTCGCCCAGCAA

TAACACCGGCTGGGGTATTACTAGGCCCAGCACCATGTACGGAGGAGCCAAGAA

GCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGGGGC

GCTTACAAGCGCGGGCGGACTCCCGCCGCTGCCGTGCGCACCACCGTTGACGAC

GTCATCGACTCGGTGGTCGCCGACGCGCGCAACTATACTCCCGCCCCCTCGACCG

TGGACGCGGTCATTGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCA

AGAGTCGGCGGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCATGCGC

GCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCATGATG

CGAGCCGCGCGCCGCGCTGCCACTGCACCCCCCGCAGGCAGGACTCGCAGACGA

GCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCAGGCGCGGA

AACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACC

CGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTC

AAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGG

ACCCCCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGG

TGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAA

ATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGCACGGCGGTGGTGT

TCACGCCCGGCGAGCGGTCCTCGGTCAGGATGAAACGTAGCTATGACGAGGTGT

ACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCC

TACGGGAAGCGGTCGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAGAG

CAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGC

GGTGCTGCTGCCGAGCCGCGGGGTCAAGCGCGAGGGCGAAAACATGTACCCGA

CCATGCAGATCATGGTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCG

TGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGTGC

CGGGCCTGGGCGTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCG

ACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCTA

CTTCTACCGCCACCGCATCCACTTCTACCATGGCTACCGAGCCTCCAAGGAGGCG

AAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTACGTGTTGCATCCTTCCAT

CATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCAGGCGCCC

AGCCGCCAAACGCCGCCGCCGCACCACCACCCGCCGCCGTCTGGCCCCCGCCCG SEQ

ID Sequence

NO

CGTGCGCCGCGTAACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCG

CTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGG

CTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCG

CAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGC

GCAGGCGCCTGAGTGGCGGGTTCCTGCCCGCGCTCATCCCCATAATCGCCGCGG

CCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCC

GTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTT

TTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGC

CGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCT

TCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGA

CCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCAGTTGTTAAGGGAAAAG

CTCAAAGACCAGAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATT

AACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCG

CCTGGACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCTTCCTCC

GCCCAAAGGCGAGAAGCGGCCGCGGCCCGACGCGGAGGAGACGATCCTGCAGG

TGGACGAGCCGCCCTCGTACGAGGAGGCCGTCAAGGCCGGCATGCCCACTACGC

GCATTATCGCGCCGCTGGCCACGGGTGTAATGAAACCCGCCACCCTTGACCTGC

CTCCACCACCCACGCCCGCTCCACCGAAGGCAGCTCCGGTCGTGCAGGCCCCCC

CGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGC

AGAGCACGCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCC

GATGCTTTTGAGAGAGAGGAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTG

CCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTG

GGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCT

GGTGCAGTTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAG

GAACCCCACGGTGGCCCCGACCCACGATGTGACCACGGACCGGTCCCAGCGTCT

GACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGC

GCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACGTA

CTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTACTCGGGC

ACAGCTTACAACAGCCTGGCCCCCAAGGGCGCCCCCAATCCCAGTCAGTGGACT

ACCAAAGAAAAGCAGACCGGAGTAAATGCAGGAGACAAAGAAGTTACAAAGAC

ATTTGGACTTGCCGCCATGGGAGGCAGTAATATTTCTAAGGACGGTTTGCAGATT

GGAACTGACACAACACCAGATGCTGTAAAACCAATATATGCAGACAAAACTTAC

CAGCCAGAACCTCAAGTGGGAGAAGAAAACTGGCAGGATAATGATGAATATTA

TGGCGGCAGGGCTCTTAAAAAAGATACTAAAATGAAGCCATGCTATGGTTCCTT

TGCTAAACCCACAAACAAGGAAGGTGGCCAGGCTAAATTGAAAGAAACACCCA

ATGGTGCTGATCCTCAATATGATGTGGACATGGCCTTCTTCGATTCAACCACTAT

AAACATTCCAGATGTAGTGTTATACACTGAAAATGTAGATTTGGAAACTCCAGA

TACACATGTGGTGTACAAACCAGGCAAAGAGGATGAAAGTTCTGAAGCTAACTT

AACTCAGCAGTCCATGCCAAACAGACCAAACTACATTGGCTTCAGAGACAACTT

TGTGGGGCTCATGTATTACAACAGCACTGGAAACATGGGTGTGCTGGCTGGTCA

GGCTTCCCAATTGAATGCTGTGGTCGACTTGCAAGACAGAAACACAGAGCTGTC

TTACCAGCTTTTGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTGG

AACTCTGCGGTGGACAGTTATGATCCCGATGTCAGGATCATTGAAAATCATGGT

GTGGAAGATGAACTTCCAAACTATTGCTTCCCCTTGGACGGTGTTCAAACTAATT

CAGCCTACCAAGGTGTTAAACTAAAGGCTAATCAAGCAGGAGGTGGAGCTAATG

GAGACTGGGAAAAGGATGATACCATTTCAGCCCATAATCAAATTGGAAAGGGCA

ACATCTTTGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTA

CTCGAACGTGGCTCTGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAACGTC

ACGCTGCCCACCAACACCAATACCTATGAGTACATGAACGGCCGCGTGGTGGCA

CCCTCGCTGGTGGATGCCTACATCAACATCGGCGCCCGCTGGTCGCTGGACCCCA

TGGACAATGTCAACCCCTTCAACCACCACCGCAACGCGGGCCTGCGCTACCGCT

CCATGCTTCTGGGAAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAA

AGTTCTTTGCCATCAAGAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGAGTG SEQ

ID Sequence

NO

GAACTTCCGCAAGGACGTCAACATGATCCTGCAGAGTTCCCTCGGCAACGACCT

GCGCGTCGACGGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTC

TTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGAC

ACCAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCA

TCCCGGCCAAGGCCACCAACGTACCCATCTCCATCCCCTCGCGCAACTGGGCCG

CCTTCCGCGGCTGGAGTTTCACCCGTCTCAAGACCAAGGAAACTCCCTCCCTCGG

CTCGGGTTTCGACCCCTACTTTGTCTACTCGGGCTCGATCCCCTACCTTGACGGG

ACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGG

TCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGC

GCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGAC

TGGTTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCACG

TGCCCGAGGGATACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCAT

GAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCCT

GCCCTTCCAGCACAACAACTCGGGCTTCGTCGGCTACCTCGCACCCACCATGCGC

CAGGGGCAGCCTTACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAGCC

GTGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATC

CCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACA

TGCTCTACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCAT

GGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTG

CACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCG

CCGGCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCGGC

CTTCCCGGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCC

GGCCGCGAGACCGGAGGCGTGCACTGGCTCGCCTTCGGCTGGAACCCGCGCTCG

CGCACCTGCTACATGTTCGACCCCTTCGGGTTCTCGGACCGCCGGCTCAAACAGA

TTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGAAGCGCCCTCGCCTCCTCGCC

CGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTC

CGCCGCCTGCGGACTCTTCTGTTGCATGTTCTTGCATGCTTTCGTGCACTGGCCCG

ACCGACCCATGGACGGGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACG

GCATGCTACAATCGCCACAGGTGCTGCCCACCCTCCGGCGCAACCAGGAGGAGC

TCTACCGCTTCCTCGCGCGCCACTCCCCCTACTTTCGCTCCCACCGCGCCGCCATC

GAACACGCCACCGCTTTTGATAAAATGAAACAACTGCGTGTATGACTGAAATAA

ACAGCACTTTTATTTTACACAAGCACTGGAGTATATGCAAGTTATTTAAAAGTCG

AAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGG

TACTGGTACTTGGGCTGCCACTTGAACTCGGGGATCACCAGTTTGGGCACTGGG

GTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGGCGCCCAGC

ATGTCCGGGGCTGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGCGCGCGC

GAGTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTGCTTC

ACGCTGGCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGGTCCTCGGCGT

TGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGAACGC

TGTGGGGCTTGTGGTTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCC

GCGCTGCATATTCGGGTAGAGGGCCTTGACGAAGGCCGTGATCTGCTTGAAAGC

TTGCTGGGCCTTGGCCCCCTCGCTGAAGAACAGGCCGCAGCTCTTCCCGCTGAAC

TGGTTATTCCCACATCCGGCATCTTGCACGCAGCAGCGGGCGTCATGGCTGGTCA

GTTGCACCACGCTTCGACCCCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGCTG

TTCCTTCAACGCGCGCTGTCCGTTCTCGCTGGTCACATCCATCTCCACCACGTGG

TCCTTGTGGATCATCACCGTTCCGTGCAGACACTTGAGCTGGCCTTCCACCTCGG

TGCATCCGTGGTCCCACAGGGCGCAGCCGGTGCACTCCCAGTTCTTGTGCGCGAT

CCCGCTGTGGCTGAAGATGTAACCTTGTAACAGGCGGCCCATGACGGTGCTAAA

GGTTTTCTGGGTGGTGAAGGTCAGTTGCAGCGCGCGGGCCTCCTCGTTCATCCAG

GTCTGGCACATCTTTTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCAT

CGCGCAGGCCGCTTTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCCAT

GCCCTTCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTCAG SEQ

ID Sequence

NO

AATACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAAC

AGAACCGGCGGCTGGCTGAATCCCACTCCCACGATCACGGCATCTTCTTCCTGGG

GCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTCTTCCTGGCTTGCTTC

TTTGGCAGTTTTGGAGGGCTGTCTACGGGGACCACGTCCTCCTCGGAAGACCCG

GAGCCCACCCGCTGGTACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGAG

GGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGA

GTGGCCTCTCGGTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTC

CTAGGGGAAGATGGAGCCGCGTAAGCAGGAGCAGGAGGAGGAGAACTTAACCA

CCCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTGGAAGATCGTCTAGAAC

CCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGAC

GCTGGGCTCGAGCATGGCTACCTAGGAGGAGATGTGCTGCTGAAACACTTGCAG

CGCCAGTCCCTCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTC

AGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTG

CCCCCCAAACGCCAGCCCAACGGCACCTGCGAGCCCAACCCGCGTCTCAACTTC

ACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGACGCGCTCC

TCGCTCTGGGGCCCGGCGCACGCATACCTGATATCGCTTCCCTGGAAGAGGTGC

CCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGA

AAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTGGAAGGC

GACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAGCTCACCCACTTCGCC

TACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTCA

TCATGCCCCACATCGAGGCCCTCGATGAAAGTCAGGAGCAGCGCCCCGAGGACG

CCAAACCCGTGGTCAGCGACGAGATGCTCGCGCGCTGGCTCGGGACCCGCGACC

CCCAGGCCCTGGAGCAGCGGCGCAAGCTCATGCTGGCCGTGGTCCTGGTCACCC

TCGAGCTGGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAGG

TCGAGGAGACCCTGCACTACACTTTCAGGCACGGGTTCGTCAGGCAGGCCTGCA

AGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGTCTGGGGATCCTGCACG

AGAACCGCCTGGGGCAGACCGTGCTCCACTCCACCCTGAAGGGCGAGGCGCGCC

GGGACTATGTCCGCGACTGCATCTTTCTATTTCTCTGCCACACCTGGCAAGCGGC

CATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAGCTGGACA

AGCTTCTTGCTAGAAACCTCAAAAAGCTGTGGACGGGCTTCGACGAGCGGACCA

CCGCCGCCGACCTGGCCGAGATCGTTTTCCCCGAGCGCCTGAGGCAGACGCTGA

AAGGCGGGCTTCCCGACTTCATGAGCCAGAGCATGTTGCAAAACTACCGCACTT

TCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCCTTCCCCTCCGA

CTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTAC

CTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGATGTGATCGAGGACGTG

AGCGGCGAGGGGCTGCTCGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCAC

CGCTCCCTGGTCTGCAACCCCCAGCTCCTGAGCGAAACCCAGGTCATCGGTACCT

TCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCGGGGT

TGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCCACG

AGATAAAGTTCTTCGAGGACCAATCGCGCCCGCAGCACGCGGATCTCACGGCCT

GCGTCATCACCCAGGGCGCCATCCTCGCCCAATTGCACGCCATCCAAAAATCCC

GCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGG

GCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCCGCTAGTG

GAGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGAAGAATGGG

AGGAGGAGAGTACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGC

AACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGTCACGGA

TACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGG

TGACGGTAAGCACGAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCG

CGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCT

ACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTACCG

TCACCTTCACAGCTAAGAAAAAGCAAGTAAGAGGAGTCGCCGGAGGAGGAGGA

GGCCTGAGGATCGCGGCGAACGAGCCATTGACCACCAGGGAGCTGAGGAACCG SEQ

ID Sequence

NO

CTCAAAGTAAAAAATCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACA

AAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACA

AGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCG

GGAATTACCTCATCGCCACCACCATGAGCAAGGAGATTCCCACACCTTACATGT

GGAGCTATCAGCCCCAGATGGGCCTGGCCGCGGGCGCCTCCCAGGACTACTCCA

CCCGCATGAACTGGCTCAGTGCCGGGCCCTCGATGATCTCACGGGTCAACGGGG

TCCGTAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGC

CCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAA

TCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCAT

GACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCC

ACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACG

ACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAG

CCGGAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGA

GCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTTGTGGAGG

AGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCC

GGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCTACG

ACTGAATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACC

ACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGA

GTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGA

GGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTC

GAGCGTGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCTACCCCG

AAGTTGCATGAGAATTTTTGCTGTACTCTGTGTGCTGAGTTTAATAAAAGCTAAA

CTCCTACAATACTCTGGGATCCCGTGTCGTCGCACTCGCAACGAGACCTTCAACC

TTACCAATCAGACTGAGGTAAAACTCAACTGCAGACCAGGGGACAAATACATCC

TCTGGCTCTTTGAGAACACTTCCTTCGCGGTCTCCAACACCTGCGCCAACGACGG

TATTGAAATACCCAACAACCTTACCAGTGGACTAACTTACACCACCAGAAAGAC

TAAGCTAGTACTCTACAATCCTTTTGTAGAGGGAACCTACCACTGCCAGAGCGG

ACCTTGCTTCCACACTTTCACTTTGGTGAACGTTACCGGCAGCAGCACAGCCGCT

CCAGAAACATCTAACCTTCTTTCTGATACTAACACTCCTAAAACCGGAGGTGAGC

TCTGGGTTCCCTCTCTAACAGAGGGGGGTAAACATATTGAAGCGGTTGGGTATTT

GATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTGTATTACCTTCCTTGC

TGGATCGAAATCAAAATCTTTATTTGCTGGGTCATACATTGTTGGGAGGAACCAT

GAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTTGGGGGTGTACTGTCATGCCAC

GAACAGCCACGATGTAACATCACCACAGGCAATGAGAGGAGTGTGATATGCAC

AGTAGTCATCAAATGCGAGCATACATGTCCTCTCAACATCACATTCAAGAATAA

GACCATGGGAAATGCATGGGTGGGCGATTGGGAACCAGGAGATGAGCAGAACT

ACACGGTCACTGTCCATGGTAGCAATGGAAATCACACTTTCGGTTTCAAATTCAT

TTTTGAAGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGG

CCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTTTTGTGATCATGGCCT

GTGCAATGTCAGGTCTGCTGGTAGGGGCTATAATATGGTTCCTGAGGCACAAGC

CCAGGTATGGAAATCTGGAAAAGGAAAAATTGCTATAAATGTTTTTCTTTCCACA

GCATCATGAATACAGTGATCCGTATCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGT

CAGGCAGGATTTCATACTATCAATGCTACATGGTGGGCTAATATAACTTTAGTGG

GACCCTCAGATACGCCAGTCACCTGGTATGATAAACAGGGAATGCAGTTCTGTG

ATGGAAATACAGTTAAGAATCCTCAAATAAGACATGAGTGTAATGAGCAAAACC

TTACACTAATTCATGTGAACAAAACCCATGAAAGGACATACATGGGTTATAATA

GACAGAGTACTCATAAGGAAGACTATAAAGTCATAGTTATACCGCCTCCTCCTG

CTACTGTAAAGCCACAGTCAGGTCCAGAGTATGTATATGTTAATATGGGAGAGA

ATAAAACATTAGTTGGACCTCCAGGAATACCAGTTACTTGGTATGACGGAGAAG

GAAATAAATTCTGCGATGGAAAAAAAGTTGAACATGCAGAATTTAATCATACAT

GTGACGTGCAAAATCTTACACTGTTGTTTATAAATCTTACACATGATGGGGCTTA

TCTTGGCTATAATCACCAGGGAACTAAAAGAACTTGGTATGAGGTTGTAGTGAC SEQ

ID Sequence

NO

AGATGGTTTTCCAAAATCAGGGGAGATGAAAATCGAAGATCAGAGTAGACAAA

CAGAACAAAAACAAACTGGGCAAAAACAAAATGAGCATAAACAGGGTGGGCAG

AAACAGGAGGGGCAAAAAGAGACAAGTCAAAAGAAAGCTAATGACAAACAGA

AGGCGACACACAGGAGGCCATCAAAACTAAAGCCGCACACACCTGAAGCAAAA

CTGATTACAGTTTCTAGTGGGTCTAACTTAACATTACTTGGGCCAGATGGAAAGG

TCACTTGGTATGATGATGATTTAAAAAGACCATGTGAACCTGGATATAAGTTAA

ACTGTAAGTGTGACAATCAAAACCTAACCCTAATCAATGTAACTAAACTTTATG

AGGGAGTTTACTATGGTACTAATGACGGAGGCAACGGCAAAAGATACAGAGTA

AAAGTAAACACTACGAATTCTCAAAATGTGAAAATTCAGCCGTACACCAGGCCT

ACTACTCCTGATCAGAAACACAGATTTGAATTGCAAATTGATTATAATCAAGAC

AATGACAAAATTCCATCAACTACTGTGGCAATCGTGGTGGGTGTGATTGCGGGC

TTCATAACTCTGATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCAA

GGGCATACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTGAGACTCAGT

CACTTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCATAG

TCACACTTAGTTCAGCTGCAATGATTAATGTTAATGTCACTAGAGGTGGTAAAAT

TACATTGAATGGGACTTATCCACAAACTACATGGACAAGATATCATAAAGATGG

ATGGAAAAATATCTGTGAATGGAATGTTACAGCCTATAAATGCTTCAGTAATGG

AAGCATTACAATTACTGCCACTGCTAATATTACTTCTGGCACAATCAAGGCAGA

AAGCTATAAAAATGAAATGAAAAAAATGGTATATAAAAATAACAAGACAACAT

TTGAAGATTCTGGAAATTATGAGTATCAGAAATTATCTTTTTATAATCTGACAAT

TATTGAGCTGCCAACTACTAAGGCTCCCACAGTTAGGACAACGCAGCCTACCAC

TGTACCCACTACACATCCAACCACCACAGCCAGTACAACTACTGAGACCACAAC

TCACACTACAGTGCAGAATAGTACTGTATTGGTTAGGTATTTGTTAAGAGAGGA

AAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAA

TTTAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATCATTGATGCATGGCCAG

CCTTACTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTTTGTGGGATCTTTAT

TCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAAAAATCTAGGAGA

CCCATCTACAGGCCAGTAATCGGGGATCCTCAGCCTCTCCAAGTGGAAGGGGGT

TCTTCCTATTTAACATCCTTTTCTGTCTATTCAACGTGTGCGCTGCCTTCGCGGCC

GTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGC

CCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCGTCACCTTCCTGC

AGCTCATCGACTGGTGCTGCGCGCGCTACAATTATCTCCACCACAGTCCCGAATA

CAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATTTGACCATGCAGACTCTG

CTCATACTGCTATCCCTCCTCTCCCCTGCCCTCGCTGATGATGATTACTCTAAGTG

CAAATTTGTGGAGCTATGGAATTTCTTAGACTGCTATGATGCTAAAATGGATATG

CCATCCTATTACTTGGTGATTGTGGGGATAGTCATGGTCTGCTCCTGCACTTTCTT

TGCCATCATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATTC

ACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCACCCACACCTCCT

CCCCGCAGAAATCAGTTTCCCCTGATTCAGTACTTAGAAGAGCCCCCTCCCCGAC

CCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACCACCTGG

ACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCC

GTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTTGATGCCATCAACATCCACC

AGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGAGC

TCGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCCCCAGCAGAAGC

AGAAGTTCACCTGCATGGTGGGCATCAACCCCATAGTCATCACCCAGCAGTCGG

GCGAGGCCAGCGGTTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACT

CCCTCCTCAAGACCCTTTGCGGACTCCGCGACCTTCTCCCCATGAACTGATGTTG

ATTAAAATCCCAGAAACCAATCAGCCCCTTACCCCATTCCCCTCCCACAATTACT

CATAAGAATAAATCATTGGAATTAATGATTCAATAAAGATCACTTACTTGAAAT

CTGAAAGTATGTCTCTGGTGTAGTTGTTCAGCAGCACCTCGGTACCCTCCTCCCA

GCTCTGGTACTCCAGTCCTCGGCGGGCGGCGAACTTCCTCCACACCTTGAAAGG

GATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGATGTCAAAGA SEQ

ID Sequence

NO

GGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGA

ATCAGAATATCCCCTTCCTTACTCCCCCCTTTGTCTCATCCGATGGATTCAAAAA

CTTCCCACCTGGGGTCCTGTCACTCAAACTGGCTGACCCAATCGCCATCACTAAT

GGGGATGTCTCACTCAAGGTGGGAGGGGGACTAACTGTGGAACAAGATAGTGG

AAACCTAAGTGTAAACCCTAAGGCTCCATTGCAAGTTGGAACAGACAAAAAACT

GGAATTGGCTTTAGCACCTCCATTTGATGTCAGAGATAACAAGCTAGCTATTCTA

GTAGGAGATGGATTAAAGGTAATAGATAGATCAATATCTGATTTGCCAGGTTTG

TTAAACTATCTTGTAGTTTTGACTGGCAAAGGAATTGGAAATGAAGAATTAAAA

AATGACGATGGTAGCAATAAAGGAGTCGGTTTATGTGTGAGAATTGGAGAAGGA

GGTGGTTTAACTTTTGATGATAAAGGTTATTTAGTAGCATGGAACAATAAACATG

ACATCCGCACACTTTGGACAACTTTAGACCCTTCTCCAAATTGTAAGATAGATAT

AGAAAAAGACTCAAAACTAACTTTGGTACTGACAAAGTGCGGAAGTCAGATTTT

GGCAAATGTATCTCTAATTATAGTCAACGGAAAGTTCAAGATCCTTAATAACAA

AACAGACCCATCCCTACCTAAATCATTTAACATCAAACTACTGTTTGATCAAAAT

GGAGTTCTATTGGAAAATTCAAACATTGAAAAACAGTACCTAAACTTTAGAAGT

GGAGACTCTATTCTTCCAGAGCCATATAAAAATGCAATTGGATTTATGCCTAATT

TACTAGCTTATGCTAAAGCTACAACTGATCAGTCTAAAATTTATGCAAGGAACA

CTATATATGGAAATATCTACTTAGATAATCAGCCATATAATCCAGTTGTAATTAA

AATTACTTTTAATAATGAAGCAGATAGTGCTTATTCTATCACTTTTAACTATTCAT

GGACCAAGGACTATGACAATATCCCTTTTGATTCTACTTCATTTACCTTCTCCTAT

ATCGCCCAAGAATGAAAGACCAATAAACATGTTCTCATTTGAAAATTTTCATGTA

TCACAGTGTAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGGGAATGTTCT

GATTAGCACGAGAACTGGATTTAGTGTCTATAAGCCACACAGTTTCCTGGCGAG

CCAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGC

GGGCCTCGCAGTCCAAGGTCACAGTCTGGTGGAACGAGAAGAACGCACAGATTC

ATACTCGGAAAACAGGATGGGTCTGTGCCTTTCCATCAGCGCCCTCAACAGTCTC

TGCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCACAAGTCTCT

CTGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGC

ACCGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCAT

GTTATTCAGCAGCCCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGGAT

GATGGAACCCACGTGACCATCGTACCAGATGCGGCAATATATCAGGTGCCTGCC

CCTCATGAACACACTGCCCATATACATGATCTC

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTGGGGCGGGGCCGCCGCTGATTGGCTGTTGGGAGAGCCGTTACTGA NO: CGTCACGACGCACGGCGTCAACGGTCGGCGCGGAGGCGTGGCCTAGCCCGGAA 1442 GCAAGTCGCAGCCCTGATGACGTATAAAAAAGCGGACTTTAGACCCGGAAATGG

CCGATTTTCCCGCGGCTACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGT

GAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGTGAAAAA

TACCGGGCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGA

AGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAACCAGTCGA

GCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTCC

GCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTTCTACCTTCAACTGTGCC

CGGCGACCTGGCTGTGATAATGCTGGAGGACTTTGTGAATACAGTTCTGGAGGA

CGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGACCTCTATGAT

CTGGAGGTAGATGCCCATGATGACGACCCTAACGAAGAGGCTGTGAATTTAATA

TTTCCAGAATCTATGATTCTCCAGGCTGACATAGCCAGCGAAGCTATAGTTACTC

CACTTCATACCCCGACTCTGCCACCAATACCTGAATTGGAAGAGGAGGACGAGC

TAGACCTTCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGAAC

AGGGTGAGCAGAGCATGGCTCTAATCTCAGACTATGCTTGTGTGGTTGTGGAAG

AGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAGATCCTGCC

AATATCACCGGGATAAGACTGGAGATCCTAGTGCCTCCTGCGCTCTGTGTTACAT SEQ

ID Sequence

NO

GAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGCTG

AGTGCTTAACACATAACTGTAATGCTTGAACAGCTGTGCTAAGTGTGGTTTATTT

TTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGACCAC

CCGTCTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGTTCAGACCCACCC

CAGTCAGAGCCAGTGGAGAGAGGCGAGCAGCTGTTGAAAAAATTGAGGACTTG

TTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCCCAGG

AACTAGGCGCAGATGCGCTTAGTCATCTGTAAATAAAGTTGTACAATAAAAGTA

TATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTCCTATA

TAAGTGGCAACACCTGGGCACTTAGGCACAGACCTTCAGGGAGCTCCTGATGGA

GGTGTGGACTATCCTTGCGGACTTTAACAAGACACGCCGGCTTGTAGAGGATAG

TTCAGACGGGTGCTCCGGTTTCTGGAGGCACTGGTTTGGATCTCCTCTATCTCGC

CTGGTGTACACTGTTAAGAAGGATTATCAGGAGGAATTTGAAAATCTTTTTGCCG

ATTGCTCTGGCCTGCTTGATTCACTGAATCTCGGCCACCAGGCTCTTTTCCAGGA

AAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGCCGCACTACAGCCGGTGTT

GCATTTGTGGTGTTTCTGGTTGACAAATGGAGCCAGCAAACCCACCTAACCAGG

GATTACATCCTGGACTTCACGGCCATGCACCTGTGGAAGGCCTGGGTCAGGCAG

CGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGGTCTT

CTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAGATGAGGGAGGCCATG

GACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGATTG

AATCAGGTATCCAGCCTGTATCCAGAGCTTAGCAAGGTGCTGACAACCATGGCC

AGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGACCGA

GCTGACAGCCAGCCTGATGAATCGCAGGCGACCTGAGCGCATTACCTGGCACGA

GCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAATATGGCCT

GGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGAGGCCA

TTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGGTGACCA

AGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGAGGTGA

TCATTGATACCCTGGATAAGGCTGCCTTCAGGTGTTGCATGATGGGAATGAGAG

CCGGTGTGATGAATATGAATTCCATGATCTTCATGAACATCAAGTTCAATGGAG

AGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCATATGACCCTGCATGGCT

GTAATTTCTTTGGCTTTAACAACATGTGTGCAGAAGTCTGGGGTGCTTCCAAGAT

CAGGGGATGTAAGTTTTTTGGCTGCTGGATGGGAGTGGTCGGAAGGCCCAAGAG

CGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAGTGCTACCTGGCCGTGTCTACC

GAGGGCAATGCTAGAGTGAGACATTGCTCTTCCATGGAGACGGGTTGCTTCTGC

CTGGTGAAGGGTACAGCCTCGATCAAGCATAATGTGATCAAGGGGTGTACTGAT

GAGCGCATGTATAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCCTGAAG

AACATCCATGTGACCTCCCACCCCAGGAAGAGGTGGCCATCATTTGAAAATAAT

GTCCTGATCAAGTGCCACGTGCACCTGGGAGCCAGAAGGGGCACCTTCCAGCCG

TACCAGTGCAACTTTAGCCAGACCAAGCTGCTGCTGGAGAACGATGCCTTCTCC

AGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGATCCTG

AGATACGATGAGACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAGGCA

CACCAGGATGCAGCCTGTGGCCCTGGATGTGACAGAGGAGCTGAGACCAGACCA

CCTGGTGATGGCCTGTACCGGAACCGAGTTCAGCTCCAGCGGGGAGGACACAGA

TTAGAGGTAGGTTGAGTGAGTAGTGGGCGTGGCTAAGGTGACTATAAAGGTGGG

TGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGCGGG

GCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATGGG

CCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGTGCTTC

CAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTCGCTCG

ACAGCACCGCCGCAGCCGCGGCAGCAGCAGCCGCCATGACAGCGACGAGACTG

GCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCCGTCCCCAGTTCCATCA

TCGCCGAGGAGAAACTGCTGGCCCTGCTGGCTGAGCTGGAAGCCCTGAGCCGCC

AGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGCAAA

ATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTATTAT

TTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGC SEQ

ID Sequence

NO

GGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACATGG

GCATGAGCCCGTCCCGGGGATGGAGGTAGCACCACTGCATGGCCTCGTGCTCTG

GGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGA

TGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTAGGTGT

TGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGT

TTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGGGGTTCA

TGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTGTCAT

GCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCA

GGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGCGGCTTT

GGCAAAGACGTTCCTGGGATCAGAGACATCATAATTATGCTCCTGGGTGAGATC

ATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGACTGGGGGACGAT

GGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCCAGGCT

TTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAGACGGTT

TCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGAC

TTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAG

TTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTAAGC

ATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGAAGGCGGTCCCCG

TCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGTTCCAACCGGTCCCAG

AGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGG

GTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCGGCCA

GCGTCATGTCCTTCCAGGGTCTCAGGGTCCGAGTGAGGGTGGTCTCCGTCACGGT

GAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCT

GCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTT

GACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGAGCTT

GCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGA

GCTTGGGCGCGAGAAAGACGGACTCGGGGGCGAAGGCGTCCGATCCGCAGTGG

GCGCAGACAGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGCTGCTCGGGGTCA

TCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGGACTTG

ATGGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGAC

CACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGA

GGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACTTTTTCCACCGTGTGCAAGCAC

ATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGTCACGT

GACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCT

CACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAAGTATTCCCT

CTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGA

GGATTTGATGTTAGCCTGCCCCGCCGCGATGCTTTTGAGGAGACTTTCATCCATC

TGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCATAG

AGGGCGTTGGAGAGGAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCACGGT

CGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGCACT

TCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGC

CGCGGTTATGCAAGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCAGGG

GCTCATTCGTCCAGCAGAGGCGCCCGCCCTTGCGCGAGCAGAAAGGGGGCAACA

CATCAAGCAGGTGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCGGAC

CCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGG

CATGGGATGCGTGAGCGCGGAGGCGTACATGCCGCAGATGTCATAGACATAGAT

GGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGATGCT

GGCGCGCACGTAGTCATACAACTCGTGCGAGGGTGCCAAGAAGGCGGGGCCGA

GATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCAT

GCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGGGC

AAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACG SEQ

ID Sequence

NO

AGCTCGGCGGTGACGAGGACATCCATGGCGCAGTAGTCGAGCGTTTCGCGGATG

ATGTCATAACCCGGCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTACT

CCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTA

AGAGCCCAGCATGTAGAATTGGTTCACGGCCTTGTAGGGACAACAGCCCTTCTC

CACCGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGC

GAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGTCGTC

GCAGCCGCCGTACTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTT

AGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATGAA

ATTGCGGGTGATGCGGAAGGGGCCAGGCACGGAGGCTCGGTTGTTGATGACCTG

GGCGGCGAGGACGATCTCGTCGAAGCCATTGATGTTGTGCCCGACGATGTAGAG

TTCCATGAACCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGTAG

GTGAGGTCCTCGGGGCATTGCAGACCGTGCTGCTCGAGCGCCCACTCCTGGAGA

TGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGTGGGTCTGG

AGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCGGGGGTG

ACGCAGTAGAATGTGAGAGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCACG

GCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCTGAGAATTTCATGACC

AGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCT

ACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAA

GAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTA

GAAATCCCTCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCA

GTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCC

CTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCT

GCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGC

GGGAGCCAGGTCCAGATATCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGC

GCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGT

TCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTA

CTTGATTTCTACGGGTGAGTTGGTAGCCGTGTCCACGCATTGCATGAGCCCGTAG

CTGCGCGGGGCCACGACCGTGCCGCGCTTTAGAAGCGGTGTCGCGGACGCGCTC

CCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCACGTCG

GCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTGCGCG

ACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACCACGGGC

CCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTCATTG

ACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCG

ATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCGCGC

GCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCGAGAAGG

CGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGGCGTC

GCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGTGAAGAC

GGCGTAGTTGCGCAGGCGTTGGAAGAGGTAGTTGAGGGTGGTGGCGATGTGCTC

GGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTGATGTCGCC

GATGGCCTCCAGCCTTTCCATGGCTTCGTAGAAATCCACGGCGAAGTTGAAAAA

CTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGAGCTC

GGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCAGGGGCCTCCTCCTCTTCC

TCTTCTTCTTCCATGACGACCTCTTCTATTTCTTCCTCTGGGGGCGGTGGTGGTGG

CGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTCGA

TCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCCGTTCTCG

AGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGGTCCCC

GTTGGGCAGCGAGAGGGCGCTGACTATGCATCTTATCAATTGCGGTGTAGGGGA

CGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGCGTCTAG

CCAATCGCAGTCGCAAGGTAAGCTCAGACACGTAGCAGCCCTGTGGACGCTGTT

AGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGGCGGAT

GGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGCCGCTC

GGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGTCATGC

ATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGTGACC SEQ

ID Sequence

NO

CCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCGGCG

AGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTCGACG

AAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCATGAGCGAC

CAGTTGACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCGCGAG

AAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACTGGTAG

CCCACGAGGAAGTGCGGCGGCGGCTGGCGGTAGAGGGGCCAGCGCTGGGTGGC

CGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGAGGTA

GCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTCGC

GGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGGCACGG

TCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGAAAGC

GGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGGCCGC

GCGTGTACCCCGGTTCGAGTCCCTGCTCGAATCAGGCTGGAGCCGCGACTAACG

TGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGGCGG

CCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTTGAG

TCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCACCCC

GCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCC

CTTTTTTCTTTTTGCCAGATGCATCCCGTCCTGCGCCAAATGCGTCCCACCCCCCC

GGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGA

CAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGGGGCGCCGTCC

CCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGGCGTACGTG

CCCGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGGAGATGCG

CGACTGCCGGTTTCGGGCGGGCAGGGAACTGCGCGAGGGTCTGGACCGCCAGCG

CGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCCGC

GCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGTGA

AGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCTGATCG

CGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCGGAGGCCA

TCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTGC

AGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACATCGCCGAG

CCCGAGGGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATCGTAGTG

CAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCGGTG

CTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGCCC

ATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGGTG

CTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGGCC

GTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGTCTG

CGCCGGGCGCTGGTAGGGGGCGCCACCGGCGGTGAGGAGTCCTACTTCGACATG

GGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACGGT

CCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACCCGTTGCGGG

AAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAGG

CCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGAC

AACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCTC

GGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAG

AACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAG

CGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGACCGGCTGGTG

ACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCCT

GGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCGGCGAACGTGCC

GCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGCTGATGGTGAC

GAGCCGGCAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCAAGAATCTGCG CGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGATCGGTCGACGGTGAGCAGCTT GCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGC GGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGCTCTATAGGGAG SEQ

ID Sequence

NO

GCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAGATCACGAGCGT

GAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGCCACCCTGAACTT

TTTGCTGACCAATAGACAGCAGAAGATCCCGCCGCAGTATGCGCTGTCGGCCGA

GGAGGAAAGAATCCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCA

GGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAAC

CTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGATGGACTACCTGC

ACCGCGCGGCGGCCATGAACTCGGACTACTTTACTAATGCTATACTAAACCCGC

ACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCA

ACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCGCCGACCTTTC

AAAAGCGCCAGGAGGCGCCGCCGAGCGAGGGCGCGGTGGGGAGAAGCCCCTTT

CCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTG

AGCCGGCCGCGCTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTGCAG

CCGCCACGGGCCAAGAACGCCATGGCCAATAACGGGATAGAGAGTCTGGTGGA

CAAACTGAACCGCTGGAAGACCTACGCTCAGGACCATAGGGACGCGCCCGCGCC

GCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACT

CGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGGGCCAACCCGT

TCGCGCATCTGCAGCCCAGACTGGGGCGACGGATGTTTTAATGCAAAATAAAAC

TCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGGCGTGCGGTGG

TGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTGGA

GGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGCATT

CGTTACTCGGAGCTGGCTCCGCTGTACGACACCACTCGCGTGTACTTGGTGGACA

ACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACAGCAACTTCC

TGACCACGGTGGTGCAGAACAACGATTTCACCCCCGCCGAGGCCAGCACGCAGA

CGATAAATTTTGACGAGCGGTCGCGGTGGGGCGGTGATCTGAAGACCATTCTGC

ACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGGCGC

GGGTGATGGTGGCTAGAAAAAAGGCGGAAGGGGCTGATGCAGATGATAGAAGC

AAGGATATCTTAGAGTATGAGTGGTTTGAGTTTACCCTGCCCGAGGGCAACTTTT

CCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAAACTACTTGC

AAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGATATAGGAGTCAAGTTTGAC

AGCAGGAATTTCAAGCTGGGCTGGGATCCGGTGACCAAGCTGGTGATGCCAGGG

GTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGGGCTGCGGG

GTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCAAGAAGCAA

CCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGATCTAGAAGGGGGCAACATC

CCCGCCCTCCTGGATGTCAAGCAATATTTGGATAGCAAAAAGAAGCTTGAGGAA

GCTACCCAGAATGCAACCAGGGCCGCTGGAGATATCAGAGGAGACACCTATGTT

CCAAGAGCTGTGGAACAAGCAGCTGAAAAGGATCTGGTCATTGTACCAGTAACA

CAAGATGAAAGCAAGAGAAGCTATAATGTCATAGATGGCACCCATGACACCCTG

TACCGAAGTTGGTACCTGTCCTATACCTACGGGGACCCCGAGAAGGGGGTGCAG

TCGTGGACGCTGCTCACCACCCCGGACGTCACCTGCGGCGCGGAGCAAGTCTAC

TGGTCGCTGCCGGACCTCATGCAAGACCCCGTCACCTTCCGCTCCACCCAGCAAG

TCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTT

TTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACCTCCCTCACC

CACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGCCCGCCCGCGCCCA

CCATCACCACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACGGGACGCTAC

CGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGACGCCCGTC

GCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCT

CTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATCTCGCCCAGCAATAACACC

GGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAGAAGCGCTCC

CAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGGGGCGCTTACA

AGCGCGGGCGGACTTCCACCGCAGCCGCCGTGCGCACCACCGTCGACGACGTCA

TCGACTCGGTGGTCGCCGACGCGCGCAACTACACCCCCGCCCCCTCCACCGTGG

ACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCAAGA

GCCGGCGGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCATGCGCGCC SEQ

ID Sequence

NO

GCCCGGGCTCTGCTGCGCCGCGCCAGACGCACGGGCCGCCGGGCCATGATGCGA

GCCGCGCGCCGCGCCGCCGCCGCACCCACCCCCGCAGGCAGGACTCGCAGACGA

GCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCAGGCGCGGA

AACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACC

CGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTC

AAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGG

ACCCCCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGG

TGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAA

ATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGCACGGCGGTGGTGT

TCACGCCCGGCGAGCGGTCCTCGGTCAGGATGAAACGTAGCTATGACGAGGTGT

ACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCC

TACGGGAAGCGGTCGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAGAG

CAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGC

GGTGCTGCTGCCTAGCCGCGGGGTCAAGCGCGAGGGCGAGAGCATGTACCCGAC

CATGCAGATCATGGTGCCCAAGCGTCGGCGCGTGGAGGACGTGCTGGACACCGT

GAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGC

CGGGCCTGGGCGTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCA

ACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCTA

CTTCTACCGCCACCGCCTCTACATCCACCATGGCTACCGAGCCTCCCAGGAGGCG

AAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTACGTGTTGCATCCTTCCAT

CATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCAGGCGCCC

AGCCGCCAAACGCCGCCGCCGCACCACCACCCGCCGCCGTCTGGCCCCCGCCCG

CGTGCGCCGCGTGACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCG

CTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGG

CTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCG

CAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGC

GCAGGCGCCTGAGTGGCGGGTTTCTGCCCGCGCTCATCCCCATAATCGCCGCGG

CCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCC

GTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTT

TTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGC

CGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCT

TCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGA

CCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCAGTTGTTAAGGGAAAAG

CTCAAAGACCAGAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATT

AACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCG

CCTGGACCCGCGCCCGCCCACGGTGGTGGAGATGGAAGATGCAAGCCATCCTCC

GCCCAGGGGCGAGAAGCGGCCGCGGCCCGACGCGGAGGAGACTACCCTGCAGG

TGGACGAGCCGCCCTCGTACGAGGAGGCCGTCAAGGCCGGCATGTCCACCACGC

GCATCATCGCGCCACTGGCCACGGGTGTGATGAAACCCGCCACCCTAGACCTGC

CTCCACCACCCGCGCCCGCTCCACCGAAGGCAGCTCCCGCGGTCGTGCAGCCTC

CTCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACT

GGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCC

GCCGATGCTTTTAAGAGAGAAAGGACACTAAAGGGAGAGCTTAACTTGTATGTG

CCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTG

GGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCT

GGTGCAGTTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAG

GAACCCCACGGTGGCTCCCACCCACGATGTGACCACGGACCGGTCCCAGCGTCT

GACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGC

GCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTA

CTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTACTCGGGC

ACGGCTTACAACAGCCTGGCCCCCAAGGGCGCCCCCAACTCCAGTCAGTGGGAT

GCTGAAGAGAAAAAAGATACGCAGGGAAATGAGATGGTCACCAAGACACATAC

ATATGGCGTGGCACCAATGGCAGGAACAAATATAACAAAGAAAGGATTGTTGCT SEQ

ID Sequence

NO

TGGAACAGATGAAACTGCCGAGGCTGGTAAAAAAGATATCTATGCAGATGAAA

CATATCAGCCAGAACCACAGGTAGGAGAAGAAAACTGGCAAGAAAATGAAGCC

TTCTATGGAGGCAGGGCTCTCAAAAAAGAAACAAAAATGAAGCCCTGCTATGGC

TCATTTGCCAGACCTACCAATGAAAAAGGCGGACAAGCTAAATTTAAGCCAGTG

GAAGAGGGGCAGCAACCTAAAGACCTTGACATTACATTGGCTTTCTTTGACACA

CCTGGTGGAACATTGAATGGAAGTGGAACTGAAGAATATAAGGCAGACATTGTG

ATGTACACTGAAAATGTAAATCTGGAAACTCCAGATACCCATGTGGTGTACAAA

CCAGGAACTTCAGATGACAGTTCAGAAATCAATCTAGTTCAGCAGTCCATGCCC

AACAGACCAAACTACATTGGATTCAGAGACAACTTTGTGGGGCTCATGTATTAC

AACAGCACTGGCAATATGGGCGTGCTGGCCGGTCAGGCCTCTCAGTTGAATGCT

GTGGTGGACTTGCAAGACAGAAACACTGAGCTGTCTTACCAGCTCTTGCTAGATT

CTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACTCTGCGGTGGACAGCT

ATGATCCCGATGTCAGGATCATTGAGAATCACGGTGTGGAAGATGAACTTCCAA

ACTATTGTTTCCCATTGGATGGCTCTGGAACTAATTCTACATACCAGGGTGTGAA

AGTTACAACTAATGAAGGAGCTTTGGAAAGCGAATGGGGTAAAGATGAAAGTG

TTGCGAGACAAAATCAAATTTGCAAGGGCAACATCTATGCCATGGAGATCAACC

TCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGCCTTGTACCTGCC

CGACTCCTACAAGTACACGCCGGCCAACGTCAAGCTGCCCGCCAACACCAACAC

CTACGAGTACATGAACGGCCGCGTGGTGGCCCCCTCCCTGGTGGACGCCTACAT

CAACATCGGCGCCCGCTGGTCGCTGGACCCCATGGACAATGTCAACCCCTTCAA

CCACCACCGCAACGCGGGCCTGCGCTACCGCTCCATGCTCCTGGGCAACGGCCG

CTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTG

CTTCTGCTCCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAAGGACGTCAACA

TGATCCTGCAGAGTTCCCTTGGCAACGACCTGCGCGTCGACGGCGCCTCCGTCCG

CTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAATACCGCC

TCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGAC

TACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGC

CCATCTCCATCCCCTCGCGCAACTGGGCTGCCTTCCGCGGCTGGAGTTTCACCCG

GCTCAAGACCAAGGAAACTCCCTCCCTCGGCTCGGGTTTCGACCCCTACTTTGTC

TACTCGGGCTCCATCCCCTACCTCGACGGGACCTTCTACCTCAACCACACCTTCA

AGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGC

TGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACA

ACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTTCAGATGCTCTCCCA

CTACAACATCGGCTACCAGGGCTTCCACGTGCCCGAGGGATACAAGGACCGCAT

GTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTTGATGAGATC

AACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCACAACAACTCGGGC

TTCGTCGGCTACCTCGCACCCACCATGCGCCAGGGGCAGCCCTACCCCGCCAACT

TCCCCTACCCGCTCATCGGCTCCACCGCAGTGCCCTCCGTCACCCAGAAAAAGTT

CCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATG

GGCGCCCTCACCGACCTGGGTCAGAACATGCTCTATGCCAACTCGGCCCACGCG

CTCGACATGACTTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTC

TCTTCGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCG

AGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGAAACGCCACCACATAAGCAT

GAGCGGCTCCAGCGAACGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGG

AAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGAGGCGTGCAC

TGGCTCGCCTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCT

TCGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCA

TGCTGCGCCGAAGCGCCCTGGCCTCCTCGCCCGATCGCTGTCTCAGCCTCGAGCA

GTCCACCCAGACCGTGCAGGGGCCCGACTCTGCCGCCTGCGGACTCTTCTGTTGC

ATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCA

CCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGC

TGCCCACCCTCCGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTC SEQ

ID Sequence

NO

ACCCTACTTTCGCTCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGATAAA

ATGAAACAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGA

GTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCC

GCGCTGGGGAGGGCCACGTTGCGGTACTGGTACTTGGGCTGCCACTTGAACTCG

GGGATCACCAGTTTGGGCACTGGAGTCTCGGGGAAGGTCTCGCTCCACATGCGC

CGGCTCATCTGCAGGGCGCCCAGCATGTCCGGGGCTGAGATCTTGAAATCACAG

TTGGGACCGGTGCTCTGCGCACGCGAGTTGCGGTACACGGGGTTGCAGCACTGG

AACACCATCAGACTGGGATGCTTGACGCTGGCCAGCACGCTCTTGTCGCTGATCT

GATCCTTGTCCAGGTCCTCTGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAG

CTGGCGGCCCAGGAAGGGCACGCTGTGGGGCTTGTGGTTACACTCGCAGTGCAC

GGGCATCAGCATCATTCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGAC

GAAGGCCGTGATCTGCTTGAAAGCTTGCTGGGCCTTGGCCCCCTCGCTGAAGAA

CAGACCGCAGCTCTTCCCGCTGAACTGGTTATTCCCGCAGCCGGCATCCTGCACG

CAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCACGCTTCTCCCCCAGCGGTTCT

GGGTCACCTTGGCCTTGCTGGGCTGTTCCTTCAACGCGCGCTGACCGTTCTCGCT

GGTCACATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCGTCCCGTGCAGA

CACTTGAGCTGGCCTTCCACCTCGGTGCAGCCGTGGTCCCACAGGGCGCTGCCG

GTGCATTCCCAGTTCTTGTGCGCGATCCCGCTGTGGCTGAAGATGTAACCTTGCA

ACAGGCGGCCCATCACGGTACTAAAGCTCTTCTGGGTGGTGAAGGTCAGTTGCA

GGGCGCGGGCCTCCTCGTTCAGCCAGGTCTGGCACATCTTCTGGAAGATCTCGGT

CTGCTCGGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTTTCGACGCGGTAGCG

TTCCATCAGCACGTTCATGGCATCCATGCCCTTCTCCCAGGACGAGACCAGAGGC

AGACTCAGGGGGTTGCGCACGTTCAGAATACCGGGGGTCGCGGGCTCGACAATG

CGTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTC

CCACGATCACGGCATCTTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGT

CACATGCTTGGTCTTCCTGGCTTGCTTCTTTGGCAGTTTTGGAGGGGTGTCTACG

GGGACCACGTCCTCTTCGGAAGACCCGGAGCCCACCCGCTGGTACTTTCGGCGC

TTGGTGGGCAGAGGAGGTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAG

CGCGCCGACCCGTGGCCCCGGGGCGGAGTGGCCTCTCGGTCCATGAACCGGCGC

ACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGGAGCAGCCGCGT

AAGCAGGAGCAGGAGGAGGAGAACTTAACCACCCACGAGCAACCCAAAATCGA

GCAGGACCTGGGCTTGGAAGATCGTCTAGAACCCCCACAGGATGAACAGGAGC

ACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTAC

CTGGGAGGAGGAGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTC

CGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGT

CGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCC

AACGGCACCTGCGAGCCCAACCCGCGTCTCAACTTCTACCCCGTCTTCGCGGTCC

CCGAGGCCCTCGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTC

CTGCCGCGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGC

GCGCATACCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCT

CGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAG

AGGGTCACACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCG

TGCTCAAGCGCAGCGTCGAGCTCACCCATTTCGCCTACCCCGCCGTCAACCTCCC

GCCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCACATCGAGGC

TCTCGATGAAAGTCAGGAGCAGCGCCCCGAGGACGCCCGGCCCGTGGTCAGCGA

CGAGATGCTCGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCCCTGGAGCAGCG

GCGCAAGCTCATGCTGGCCGTGGTGTTGGTAACCCTCGAGCTGGAATGCATGCG

CCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTA

CACTTTCAGGCACGGGTTCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCT

GACCAACCTGGTCTCCTGCCTGGGGATCCTGCACGAGAACCGCCTGGGGCAGAC

CGTGCTCCACTCGACCCTGAAGGGCGAGGCGCGGCGGGACTATGTCCGCGACTG

CGTCTTTCTCTTTCTCTGCCACACCTGGCAAGCGGCCATGGGCGTGTGGCAGCAG

TGTCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTC SEQ

ID Sequence

NO

AAAAAGCTGTGGACGGGCTTCGACGAGCGGACCACCGCCGCCGACCTGGCCGA

GATCGTTTTCCCCGAGCGCCTGAGGCAGACGCTGAAAGGCGGTCTGCCCGACTT

CATGAGCCAGAGCATGATACAAAACTACCGCACTTTCATTCTCGAGCGATCTGG

GATGCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGAGCTAC

CGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGCCAACT

ACATCGCCTACCACTCGGACGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCG

AGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTGCAACCC

CCAGCTCCTGAGCGAAACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCA

GGAGTCCACCGCTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCT

GCGCAAATTTGTACCCGAGGACTACCACGCCCACGAGATAAAGTTCTTCGAGGA

CCAATCGCGCCCGCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGC

GATCCTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAA

AAGGGTAGAGGGGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGT

CTCCCTCAGAATGCCGAGGAAGAAGCCGCTAGTGGAGGAGGAGGTGATGGAAG

AAGAATGGGACAGCCAGGCAGAGGAGGACGACTGGGAGGAGGAGGAGAGTAC

AGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCC

GTCGCCGCACCATCCGCGCCGGCAGCCCCGGCGGTCACGGATACAACCTCCGCT

CCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACGGTAAGCACGAG

CGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTG

CAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCG

GGGTGAACATCCCCCGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGA

AAAAATCAGAAGTAAGAGGAGTCGCCGGAGGAGGAGGAGGCCTGAGGATCGCG

GCGAACGAGCCCTCGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTT

CGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAG

CTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTC

ACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATC

GCCACCACCATGAGCAAAGAGATTCCCACACCTTACATGTGGAGCTATCAGCCC

CAGATGGGCCTGGCCGCGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGG

CTCAGTGCCGGGCCCTCGATGATCTCACGGGTCAACGGGGTCCGTAACCATCGA

AACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTC

AACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACT

ACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGT

GTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATA

AAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAG

CTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAG

ATCCTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAG

CCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGG

TCTACTTCAACCCCTTCTCGGGCTCGCCAGGCCTCTACCCGGACGAGTTCATCCC

GAACTTCGACGCGGTCAGCGAATCGGTGGACGGCTACGACTGAATGTCCTATGG

TGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGC

TGCTTCGCCCGGGAGAGCTGCGGCCTCATCTACTTTGAGCTGCCCGAGGAGCAC

CCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCT

CACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGC

GCCACCACCTACACCGTCTACTGCATCTGTCCCCAGCCGAAGTTGCATGAGAATT

TTTGTTGTACTCTTTGTGCTGAGTTTAATAAAAGCTGAAATAAGAATCTTCTCTG

GACCTTGTCATCGACCTCGGAACACCACCGTTTTACTCACCAATCAGACCAAGGT

TCGTCTGAACTGTACAACCAGCAGGAAGTACCTTCTCTGGACTTTTCAAAACACC

TCACTCGCTGTTGTCAACGCCCGTGACGACGACGGTGTTTTAATCCCCAATAACC

TCACCAGTGGACTTACTTTCAGCACCAGAAAAACTAAGCTCGTCCTCCACAAAC

CTTTTGTAGAGGGAACCTACCAGTGCCGACACGGACCTTGTGTTCACAACTTCCA

TTTGGTGAACCTTACCAGCAGCAGTACAGTTGCTCCTGAAACAACTAACCTTTCT

TCTGATACTAACAAACCTCGTGTCGGAGGTGAGCTTTGGGTTCCCTCTCTAACAG SEQ

ID Sequence

NO

AGGGTGGGAGTCATATTGAAGTGGTCGGGTATTTGATTTTAGGGGTGGTCCTGG

GTGGGTGCATAGCGGTGCTATATCACCTTCCTTGCTGGGTCGAAATCAGAGTCTT

TATCTGCTGGGTCAGACATTGTGGGGAGGAACCATGAAGGGGCTCTTGCTGATT

ATCCTTTCCCTGGTGGGGGGTTTACTGGCCTGCCACGAACAGCCACGATGTAACA

TCACCACAGGCAATGAGAGGAACGACTGCTCTGTAGTGATCAAATGCGAGCACC

AGTGTCCTCTCAACATTACATTCAAAAATAAGACCATGGGAAATGTATGGGTGG

GATTCTGGCAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCG

ATGGAAATCACACTTTCGGTTTCAAATTCATTTTTGAAGTCATGTGTGATATCAC

ACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATGGTT

GGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTGATGTCAGGTCTGCTGGTAGG

GGCTCTAGTGTGGTTCCTAAAGCGCAAGCCCAGGTACGGAAATGAGGAGAAGG

TATTATTGGTCATTGGGGTAAAAATATAACACTAGTTGGACCGACAGAAAAACC

TATTGAATGGCATGGACCAAGAGTTCAGCTTTGCGATGGTCCAAAAATTTTACAT

ACAGAATTTAATCACACCTGTAATGAACAGAATCTCACTCTGATATTCTTGAACA

ACACTTTTAATGGGAAGTACTATGGTATTAGAAAGGATGGGTTTGGAATGAAAC

AGTACAATCTTAAGGTTATTGCACCAAAAGCTTCTACTCGCAAACCTCTTTCCCC

ACCTCAGCAAATTAATGTCAGAATGGGACAAAATGTAACTCTAGTTGGGCCAGT

AGATACTCCAGTTAATTGGCATGGACCAAAACATGAACTGTGTAGAGGAAATCA

AAAAATACATCCAGAAGTTAATCATACATGCAATGAACAGAACCTCACATTGCT

GTTTGTTAACTACACTTTCTGGGGAGCATACTTTGGATTTAACAGATATGGTACT

GACAGAGTGCATTATGAGGTTACAATAATAGATGGCTTCGAAAATGCGGGGCAG

CAAAAAGATGATGAGCCAAGTCAGCACAAGCCTAGCAGTAAAGATAGGCCAAA

TCCAAAAGTAAAAAATCCTCAGAAACAAAACACACACAAGACAAACATGCAGA

ACAAAAAGGATATTGATAAAGATTTTCCAAGAGGATCTAATCAAACTCTTGTGG

GACCTCCTGGTTCAAAAGTTGACTGGTATGAAGGAAAAAATGGTGACCTTGTAA

AACTCTGCGATGGAAAGTCTGGTTTAAAGGTTTCATGCAATGATCAAAACATCA

CTTTGATTGATGTGAATGAAACCTATGCTGGAACTTATTATGGCTCTAACAATGA

CGACCATAGACAGTATAGAGTTACTGTCTATACAATACCGCGTAATAAAACTGT

TAAAATTCAACCTCATACCACAAAAGGAACCACAGGGGGTACCACAGTTAATGA

ACAGTTTGCTCTGCATCAAGGTAATGATGAAACCAATCAAGATGATGAACAAAT

TCCATCAACTACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTCATAACTCTG

ATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCCAGGGCTTACAATC

ATATGGTAGACCCACTACTCAGCTTCTCTTACTGAGACTCAGTCACTCTCATTTC

AGAACCATGAAGGCTTTCACAGCTTTTGTTCTGATTAGCCTAGTCACACTTAGTT

CAACTGCTGCGGCTGCTTGTTATCATAAGCTTAATCTTACTAGAGGAGAAAACAT

TACACTAACAGGTGCAGGAATTAATAATACATGGTCAGTATATCACCATGATGG

ATCAAAGAATGGATATCAAGAAGTATGTCCATGGAATGACGGTCGCTATGTCTG

TAATGGAGATAGCAGTACTATTACTAATCTTACAGTTGTAGCTAATGCAAATTTA

ACAAGCAGAAAATTTAAATCATATAGTTATAACAATAATGATGGATATGAAACT

GTTAAGTTATGTATTTATGAGATTACAATCATTGAAATTCCAACAACCAAAGCTC

CAACCACAGTTAGGACAACTAGGGAAACAACCACACAGTTAACTACTAGAGAA

ACAACGCAGCCTACCACTGTGCCCACCACACATACTGAAACCACTACTCAAACT

ACACAGCTATACACAACAGTGCAGAATAGTACTGTGATTGTTAGGTATCTGTTG

AGGGAGGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGC

ACTGCAAATTTAACTTCGCTTGCTTCGGTTAATGAAACCGTCATCGCATTGAAAC

TGGATCAAGATCGAGGTTTGGATATGCAAATTACTTTTCTAATTGTCTGTGGGAT

CTTTATTCTTGCGGTTCTTCTCTACTATGTCTTTTGCAAGGCCAGATCAAAGTCTC

ATAGAACAATCTACAGGCCAGTAATCGGGGATCCTCAGCCACTCCAAGTGGAAG

AGGTTCTTCCTATTTAACATCCTCTTCTGTCTCTTCAACGTGTGCGCTGCCTTCGC GGCCGTCTCGCACGCCTCGCCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTC SEQ

ID Sequence

NO

TTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCGTCACCTT

CCTGCAGCTCATCGACTGGTGCTGCGCGCGCTACAATTATCTCCACCACAGTCCC

GAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCATGCAGA

CTCTGCTCATACTGCTATCCCTATTCTCCCATACCCTCGCTGATGATTACTCTAAG

TGCAAATTTGTAGAGCTATGGAATTTCTTAGACTGCTATGATGCTAAAATGGACA

TGCCTTCCTATTACTTGGTGATTGTGGGGATAGTCATGGTTTGCTCCTGCACTTTC

TTTGCCATTATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATT

CACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCACCCACACCGCC

TCCCCGCAGAAATCAGTTCCCCCTGATTCAGTACTTAGAAGAGCCCCCTCCCCGA

CCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACAACCAC

CTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGC

GTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATC

CACCAGTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTAC

GAGCTCCTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCCCCAGCAG

AAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAG

TCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATC

TACTCCCTCCTCAAGACCCTTTGCGGACTTCGCGACCTCCTCCCAATGAACTGAT

TGATTAAAGCCCATAAACCAATCAATCCCCTTCCCCATCACCTCAATAAACAATC

ATTGGAAATAAACATTCAATAAAGATCACTTACTTGAAATCTGAAAGTATGTCTC

TGGTGTAGTTGTTCAGCAGCACCTCGGTCCCCTCCTCCCAGCTTTGGTACTCCAG

TCCCCGGCGGGCGGCAAACTTCCTCCACACCTTGAAAGGGATGTCAAATTCCTG

GTCCACAATTTTCATTGTCTTCCCTCTCAGATGTCAAAGAGGCTCCGGGTGGAAG

ATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGAATCAGAATATCCCCTT

CCTCACTCCCCCCTTTGTCTCCTCCGATGGATTCCAAAACTTCCCCCCTGGGGTCC

TGTCACTCAAACTGGCTGACCCAATAGCCATTGACAATGGGAATGTCTCACTCA

AGGTGGGAGGGGGGCTCACTGTGGAACAAGATAGTGGAAAGTTAATTGTGAATC

CTAAGGCTCCCTTGCAAGTTGCAAATGGGCAATTGGAATTAGCATATGATGCTCC

ATTTGATGTTAAAAACAACATGCTTACTATTAAAGCAGGCCATGGCTTAGCAGT

GGTAACAAAAGACAATACTAGTTTACAACCACTACTGGGTACCCTTGTTGTGTTA

ACTGGCAAAGGCATTGGCACTGGCACAAGTGCTCACGGTGGAACCATAGATGTG

AGAATAGGGAAAAACGGAAGTCTTGCATTTGACAAAGATGGAGATTTGGTGGCC

TGGGACAACGAAAACGACAGGCGCACTCTATGGACAACTCCAGACACATCTCCA

AATTGCAAAATGAGTAAAGAAAAAGATTCAAAGCTTACTCTTACCCTAACAAAA

TGTGGAAGCCAAATTCTAGGAAGTGTATCTTTATTAGCGGTCAGTGGGGAATAT

CTAAATATGACCACAAACACTAATAGAACAATAACAATTAAATTGTTGTTCGAT

GCTAAGGGTGTCTTATTGACTTCTTCTTCAATTAGTGGTGATTACTGGAACTTCA

GAAATAATAACTCCACTGTGTCGAATAAATATGAAAATGCAGTGGCGTTTATGC

CTAATTTAACTGCATATCCTAAACCAACTACAACGAAAAGTTATGCTAGGAGCT

ACATTTATGGAAACGTTTATTTGGGAGCACTATCTTACCAACCAGTTATTATAAA

GATAAGTTTTAATCAGGAAAAAGATGTAAACTGTGCATACTCTATTACATTTGAG

TATACTTGCACTAAGGATTATGCTAATCAGCAATTTGATGTGAGTTCCTTTACCT

TCTCCTATATTGCCCAAGAATGAAAGACCAATAAACGTGTTTTCATTTGAAAATT

TTCATGTATCTTTATTGATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCACC

AGCCCATTTCACAGTGTAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGGC

AATGTTCTGATTAGTGCGGGAACTGGACTTGGGGTCTATAATCCACACAGTTTCC

TGGCGAGCCAAACGGGGGTCGGTGATTGAGATGAATCCGTCCTCTGAAAAGTCA

TCCAAGCGGGCCTCACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCA

CAGATTCATACTCGGAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCA

ACAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGC

AAGTCTCTCTGACTATGATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCG

GGCACAGCACCGCATCCTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATT

ATCACCATGTTATTCAGCAGCCCATAATTCAGGGCGCTCCAGCCAAAGCTCATGT

TGGGGATGATGGAACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAGGT SEQ

ID Sequence

NO

GCCTGCCCCTCATGAACACACTGCCCATATACATGATCTCTTTGGGCATGTTTCT ATTCACAATCTGACGGTACCAGGGGA

SEQ CATCATCAATAATATACCTTACACTGGATTTGAGCCAATATTAAAATGAAGTGG ID GCGGAGTGAATAGTTAATTGACCGTAGGCGTGGTTTGCAAGTTTGCCGAAGCCG NO: GATGTGACGCGTGTGGGAGCCGGGCGCGCCGGATGTGACGCGTTAGTCGCCATT 1443

GGTAAAAGTGATTTGCGGAAGTGAAAACTGTTTACGTCAGTTTTATTATAGGCG

AGTAATATTTACCGAGGGCAAAGTGAACTTTGAGCCACTACGTGGTGGTTTCGA

TACGTGAGCGATAGGGAAACTCCACGTTGGTGTCCAAAGGACACGTTTATTGTT

CTGTCAGCTGGGTATTTAATCCCGCTGCGTTTGTCAAGAGGCCACTCTTGAGTGC

CAGCGAGAAGAGTTTTCTCTGCGAGCTGACATACGGCGCCATTATGAGAACTGA

AATAACTCCTTTGGTGTTGTCCTATGAAGAAGCCGATGACATATTGGAGCATTTG

TTCACGAACTGTATGATATTGATGTGGAGTCTGCCGGTGAGGATTCTAATGAACA

GGCTGTGAATGATTTTTTTCCGGAATCGTTTATTTTAGCTGCTGCTGAAGGGGTA

ATATTACCGGAGCCCCCTGTGCTTTCTCCTATTTGTGAACCTATTGGTGGTGAAT

GTATGCCACAGTTGTGTTCTGAAGATATGGATTTGTTGTGTTATGAGGCGGCTTT

TCCCTGTAGCGACTCTGAAGGTGAGCAAGACGAAAACGGAATGGCGCATGTTTC

TGCAGCTGCAGCGGCGGCTGCTGCTAATAGAGAACGTGAGGAGTTTCAGTTAGA

CCATCCGGAGTTGCCTGGACATGATTGTAAGTCCTGCGAGTACCACCGGAATAG

TACTGGAAACACTGACTTAATGTGCTCTTTGTGTTATCTGCGAGCCTACAGCATG

CGGACAGCACTACGGATGACAATGAGAGACCGTCGCCCCCAGAACTGGGAGAT

GTAGTTCCGGAAGGAGTAGTGAAACCTGTACCTCAGCGGGTGACTGGGAGGCGA

CGTGCTGTGGAAAGTATTTTGGATTTGATCCAAGAGGAAGAATGTGAACAAACA

GTGCCTGTTGATTTGTCAGTGAAACGCCCTAAATGTAATTGATGAACTTTGCACA

CCTGGCAATAAAATGGGAGTTTTGTGTGAGTCACGTATAATAAACTGTTTGCGTG

TTTTATTTGGGCGTGGTTAGTAGGCATATAAAGGTGGGTTGGCGCTGCCTAGCAT

GAGATAGTGAAGAATGGAGCTAGAAGCTGTGTTGCAAAGTTTTCAGAGCGTTCG

TCAGCTTCTGCAGTATACCTCTAAAAACACTTCAGGTTTTTGGAGATATCTGTTT

GGTTCTACTTTCAGCAAGGTGGTACATAGGGTGAAGGAAGATTACAGAGAGGAA

TTTGAAAACATATTGACCGACTGTCCAGGGCTTTTAGCTTCATTAGATCTTTGCC

GGTCCCACCTGAGCTGGGATTACATGCTGGATTACATGGCAATGCATTTGTGGA

GGGCATGGCTGAAGAGGAGGGTTTGCATTTACTCGCTGGCGCGGCCTCTAACCA

TGCCGCCGTTGCAGGAGGAGCAGCAGAACACTACGACGGAGGAGTAAACATGG

AACCACAGGTGCAAGAAGGCCATGAACCTGACCCCGACGAAGGGCCTAGTTGTG

CAGATGTTAAAAAGCGGGAAAGAAAAGAAAGTTTAAAGGAAGCTGTCCTTAAT

AGGCTGACTGTTAACCTAATGTCTCGCCCGCGCTTGGAAACTGTATATTGGCAGG

AATTGCAGGATGAATTTAAGCAGGGACACATGCATCTACAATACAAGTACAGTT

TTGAGCAGCTAAAAACCCACTGGCTAGAACCATGGGAGGATTTAGAGTGTGCTA

TTAAAGCTTTTGCTAAAGTAGCTTTACGCCCTGACTGTACTTATAATATCTCTAA

GACAGTAACTATTACGTCATGTACGTACATTATAGGCAATGGGGCAGTAGTTGA

GGTGGACACTAATGATAGAGTTGCTTTTAGGTGTCGTATGCAGGGCATGGGACC

GGGGGTGGTAGGTTTGGATGGCATTACATTTATGAATGTTAGGTTTGCTGGAGA SEQ

ID Sequence

NO

AAAATTTAAGGGCATTATGTTTGAGGCTAACACAAGTGTTGTGTTGCATGGTGTG TACTTTCTTAACTTCAATAACACGTGTGTAGAGTGTTGGAATAAGGTATCTGCCA

AAATGTCTGTAAAAAAGTGCTTGTTTGAGAAATGTGTGCTTGCTTTAATTGTAGA

AGGGGATGCACACATTAGACATAATGCAGCTTCAGAAAATACCTGTTTTATTCTA

CTGAAGGGAATGGCTATTTTAAAGCACAATATGGTTTGCGGGTTGTCTGATCAG

ACAATGCGACGGTTTGTTACCTGTGCTGATGGAAATTGCCACACTTTGAAAACTG

TTCATATTGTGAGTCATGCTAGATATTGTTGGCCTGTGTGTGACCATAACATGTT

TATGCGCTGCACAATACATTTGGGTCTACGGCGGGGTGTGTTTAGACCTTCCCAG

TGTAACTTTAGTCATTCAAATGTTTTGCTGGAGCCCGAGGCGTTTTCCAGAGTGA

GTTTAAATGGGGTGTTTGATTTATCTGTGGAATTATACAAGATTATCAGGTATGA

CGATGCTGCCCGTCATCGCTGCCGGCAGTGCGAATGTGGCAGTAGTCATCTAGA

ACTTCGCCCCGTCATGCTGAATGTAACTGAGGAGCTAAGAAGTGACCATCTTAC

CCTGTCTTGTCTGCGAACCGACTATGAGTCTAGCGATGAAGACAACTAAGGTAA

GTGGGCGGAGCTATGTGGGACTATAAAATGCTTAAAGGAATTGTAAAGTTGTTT

TTGTTATTTTGGCAGCGCAATGAACGGAACTGCTGGGGACAACGCTGTGCTTTTT

GATGGAGGGGTTTTCAGCCCTTATTTGACGTCAAGGTTACCGTATTGGGCCGGAG

TGCGTCAGAATGTGGTAGGATCTACTCCAGACGGACGACCTGTAGCGCCTGCAA

ATTCGTCAACGTTAACCTATGCAACTGTGGGACCTTCGCCGTTGGATACCGCCGC

CGCCGCTGCAGCTTCTGCGGCGGCTTGTACGGCTCGTAATATGGCAGCTGATTTT

AGTCTCTACAGCCAATTGACATCGAATGCCGCAATGCGCACTGCAGTCCGAGGA

GACATTTTAACTGTTATGCTTGCAAAGCTTGAGACCTTAACTGCTCAGCTAGAGG

AGCTGTCGCACAAGGTCGAAGAATTAGCTGATGCTACCACTCCCACCCTACCAC

AACCTGTTAGTCAATAAAAAAGCTTTAAATTGTATGCTGTTTGACTGTTTATTGA

ACGGTGAATGTATTCCAATATTTTGTAAAGGTGGGCTTGTATGTTAAGGTACATT

GGCATAAGACCATCTGTGGGATGCAGGTAGGACCACTGTAGGGCTTCTTGCTCA

GGGGTGGTGTTGTAAATAATCCAATCGTAGCAACAGCGCTGGGCATGGTGGTGA

AATATATCTTTAAGCAACAAGCTGATTGCTAAGGGAAGACCTTTAGTGTAGGTA

TTTATAAAGCGGTTAAGCTGGGTGGGGTGCATACGGGGGGACATAATATGTAGT

TTTGATTGTATTTTGAGATTGGCAATATTTCCTGCCAGATCTCTCCTTGGATTCAT

GTTGTGGAGAACCACAAAAACAGTGTAGCCAGTGCATTTGGGGAATTTATCATG

AAGTTTGGAAGGAAAGGCATGAAAAAATTTGGAGACGCCTTTGTGGCTTCCCAG

ATTTTCCATACACTCATCCATTATTATAGCAATTGGCCCGCAAGCGGCAGCTTTA

CGTACGAGAGCTTAACAAATTTAGGGCAGAGCGTTCCGGACTGTGGGATAATGG

TTCCCTGGGGTCCTGGGGCATAATTTCCCTCACAAATTTGCATTTCCCAAGATTT

AATTTCCGAAGGCGGAATCATGTCCACTTGGGGAACAATAAAAAAAACAGTTTC

TGGAGCAGGTGTGACCAGCTGGGCGGAAAGCAAGTTACGCAACAACTGAGATTT

CCCACATCCAGTAGGTCCATAAATCACCCCAATAACTGGCTGCAAGTGATAGTTT

AACGAGGTGCAGCTGCCGTCGTCGCGGAGAAGCGGAGCCACATCGTTCATCATT

TGCTTGACTTGCATGTTTTGCTTGACAAGTTCCCTCAGAAGGCGTTCACCGCCCA

AGGAGAGCAACTCTTGCAAAGAGTTGAAAGTTTTTAATGGTTTTAGACCGTCAG

CCATTGGCATGTGGTCCAGGGTTTGTTTTAACAGTTGCAAGCGGTCCCATAGCTC

AGTTATATTTTCTATTCCATCTCGATCCAACAGACTTCCTCGTTGCGGGGATTGG

GCTGGCTGTTGCTGTAAGGAACAAGGCGATGAGCATCCAAGTGCACCAGGGTTT

TGTCCTTCCATGGACGTAAGGTGCGTGTCAGGGTTGTTTCGGTCACGGTGAACGG

ATGCGCCCCTGGTTGGGCGCTGGCCAGCGTGCGCTTTAAGCTGGTGCGGCTGGT

GCTGAAGTGTGTGTCTTCTCCCTGTGCTTCGGCAAGGTAGCATTTTAACATGAGT

TCATAAGATAAGGCATCCGTGGCGTGACCTTTAGCCCGTATTTTCCCCTTTGAAG

TGCTGCCACAATCAGAACACTGAAGGCATTTAAGGGCGTACAGTTTCGGAGCCA

AAAAAACAGACTCTGGAGCGTAAGCATCTGCACCGCAGTTAGCACAAACAGTTT

CGCATTCCACCGACCAGGTCAGCTCAGGATAAGATGGATCAAAAACAAGTTTCC SEQ

ID Sequence

NO

TCTGTGACAAAAAGACTGTCTGTGTCTCCGTATACAGATTTAATGGGTCTGTCCT

TTAGGGCTATTCCACGGTCCTCCTCGTAGAGAAACTCTGACCACTCTGACACAAA

GGCCCTAGTCCAAGCCAGTACAAACGAGGCCACATGGGAAGGGTACCGATCGTT

ACTAATTAAAGGGTTGGAACTTTCCAAGGTGTGCAAGCACATGTCCTCTTCTTCA

GCATCTATGAATGTGATTGGTTTGTAGGTGTAAGTCACGTGATCAGAGTTCCCTG

GTGGGGGGCTATAAAAAGGGGTGGGACACTGATCTTCATCGCTGTCTTCGGCTT

CGCTGTTTACGAGCGCCAGCTGTTGGGGTGAGTACGCGCGCTGAAAGGCAGGCA

ACACATCTGTACTCAAAGTATCAGTTTCTATAAACGATGAGGATTTGATGTGCAA

ACGGCCTGCTGCAATTTCTTTTATGAGCCCCTCTTCCATTTGATCAGAAAAAACA

ATTTTTTTGTTATCTAATTTTGTAGCAAAGGATCCGTACAGGGCGTTTGAAAGTA

ACTTGGCTATAGATCTTAGCGTTTGGTTTTTGTCCCTGTCTGCCCGTTCTTTTGCG

GCGATATTGAGTTGTACATATTCACGAGCAATGCATTTCCAAGTGGGAAAAACG

GTGGTACGTTCGTCTGGTAATAATCGCAGACGCCACCCGCGATTATGCAGTGTA

ACTAAGTCTACACTGGTGACCACTTCGCCGCGCAAGCTCTCATTAGTCCAGGCTA

AACGACCGCCTTTTCGAGAGCAAAAAGGAGGAAGAACATCTAGCTGGTTCTCAT

CTGGAGGATCAGCATCCACAGTAAAAATACCAGGACATAAAATTTTATCAAAAT

AATCAATTTTGGAAGTATGATTTTCAAGTGCCACCTGCCATTGCCGTACGGCTAA

TGCTCTCTCGTAAGGGTTAAGGGGAGGACCCCAAGGCATAGGGTGTGTAAGGGC

TGATGCATACATGCCACAAATATCATATACATATATGGGTTCCTGTATAACACCT

ATATAGGTAGGATAACACCTGCCGCCGCGAATGCTTGCGCGAACATAGTCGTAT

AGTTCGTGCGAAGGCGCCAAAAGGTTAGGGCCTAAATGTGTGCGTTTTGGTTTCT

CTGCGCGATACAAAATTTGTCTGAAAAGCGCATGAGAGTTAGAGGAGATGGTGG

GACGTTGAAACACATTGAAGTGTGCCTGCTGAAGACCCACCGACTGATTAACAA

TAAAGGGAAACCATCTGCATCAGCGCGGTAAGAACCAAGCATGTAAAATTGATT TATGGCCTTGTAGGGACAACAACCTTTTTCTACAGGCAGGGCATAAGCTTCAGC GGCCTTTCTTAAAGATGTATGAGTTAAAGCAAAAGTGTCCCTGACCATTACTTTT AAATACTGATATTTAAAGTCCTGGTCGTCACATCCTCCTTGCTCCCACAGCAGGA

ATAAAATTTTACCAGCTCTTGGAATAAAATTTCTAGAGATTTTAAATGGCGCAGG

TACATCTGACCGATTGTTTATGACCTGCGCGGCAAGAACTATTTCGTCAAATCCA

TTAATATTGTGCCCCACTATGTATAACTCTAGAAATCTTGGCTGCCCCTTAATGA

CAGGAGCTTTTTTAAGCTGTTCAAAGGTCAGATCGTCAGGACTAACTAGACCATT

TTGCTGTTGCGCCCACTGATGCAACTGCGGATTGTTTTGTAAAAAAGTATTCCAG

AGGTTAGCGGCTAAAGACGTTTGCAAGCGATTTCTGTAGGTACGGAATTGCTGA

ATTGGTCCCATCCAAGTTCTAAGGCAAGTTGTAATGCGTGCGCTACGAGACTACT

GTCCCCAGACAGTTTCATTACCAGCATAAATGGTACAAGTTGCTTTCCAAACGAG

CCCATCCAGGTGTAGGTTTCTATGTCATAGGTAATAAAAAGACGTTCAGTGCGA

GGATGCGAACCGACCGGGAAAAACTGGATCTCCTGCCACCAGTTGGAAGAGTGG

GCGTTAATGTGGTGGAAGTAGAAATCTCGCCGGCGAGCAGAGCATTCATGTCGA

TGTTTGTAAAAGCGTGCGCAGTATTCGCATCGTTGCATGGGCTGTATGTGTTGAA

TGAGGTGCACCTGACGACCGCGCACCAAAAAGCGCATGGGAAAATGGATGCCA

CTTCTTGGCAATTGCCGTTCGTTGTCTTCCTGTTCTGTTGCATTGTTGTCACCGTTT

GGATCCTTGAAAGTGAAAACGGAAAGGGTAACGGCGCCTCGACCGCTGCACGTC

CATATTTCGGCTCGAGCGGGGCTGAAGCAGGAAATCAAAGCTTGCAGTCTGGAA

CTGTCCATGGTATCACTCATAAAGGAAAGCGCGTCTGCGGGGAAAGCTTGCAAG

TTAACTTCGCAAAGGCGGGTAAGAGCAGGCCGTAGGTGAAGGTGATACTTAATT

TCAAGAGGAGTGCCATTGGTAGAATCTATTGCGTGCAGTGTGCCGTAAGCCCGA

GGTGCAATTACTGTTCCGCGGTGAGCAACACGCCTGCTTAAAAGCGACGGCGCG SEQ

ID Sequence

NO

CAGGAACTGGGACTTCCGCTTCTGCGGGGGCATGAGGCAGCCGTATGTCGGCCT

GACGTTCTGGTAGTGGAAGGTGCTGAGCCCGTAGTTGACTGGCATGGGCGACGA

CCCGACGATTGATGTTCTGAATTTGTCGACGTTGTGTAAACACCACCGGTCCCGT

TGTTTTGAACCTGAAAGAAAGTTCAACAGAATCAATTTCAGCGTCATTTACTGCA

GCCTGCCTCAGAATTTCCTGAATATCCCCTGAGTTATCTTGGTAGGCAATTTCTG

CCATTAGTTGATCAATTTCTTCCTCTTGGAGATCTCCATGACCCGCTCGTTCAATG

GTAGCTGCAAGGTCATTAGAGATGCGTCCCATAAGCTGTGAAAATGCGTTGAGT

CCAATTTCGTTCCAGACGCGGCTGTACACAACTCCTCCGTCGCTGTCTCTGGCAC

GCATAACCACTTGCGCCAAGTTAAGTTCCACAAAGCGCGCAAACACACCGTAGT

TGCGTAAACGCTGAAACAGGTAGTTTAAGGTAGTAGCTATGTGTTCTGAAACAA

AAAAATAAAGAATCCACCGACGAAGCGTGAGCTCGTTGATGTCTCCCAGAGCTT

CCAAACGTTCCATGGCTTCGTAAAAGTCAACTGCAAAAGTAAAAAACTGGGAGT

TTCGAGCCGCAACAGTTAATTCTTCTTCTAAAAGACGAATAATTTCAGCCACCGT

GTGGCGCACTTCAAGCGCAAAAGCCTCCGGGGCTTCTTCTTCCTGTTCCTCTTCT

ACTTCCATTGTTTCTTCTTGAACCGCGGGCGGAGAGGGTAGCCTTCTTCGTCGCC

GGCGAACGGGCAACCTGTCCACAAATCTTTCAATCATTTCGCCCCGGCGGCGGC

GCATAGTTTCCGTCACTGCTCGACCATTTTCACGTGGGCGAAGCTCGAAAAGTCC

ACCCCTTAGTTCTAGGGTAGGAAATGCGTTGCGAGGTGTGTTTGGTAGCGACAC

AGCGCTTACTATGCATTTTATGATTTGCTGCGTAGGAACTCCGCGCCAGGACCTA

AGCGACTGCATATCTACTGGGTCTGAAAACCTTTCAAGGAAGGCGTCAATCCAG

TCACAGTCACAAGGTAGGCTAAGTTTTGTTTGCTGTGAATCACCGGGATGTTGAA

CGATGTTGCTAATCATGTAATTAAAATAGGCTGTTTTAAGTCTGCGGATGGTTTT

AAGAAGCACCACGTCTTTTGGTCCGGCTTGTTGAACTCGCAGGCGGTCTGCCATT

CCCCACACACTACTTTGACAACGTCCAAGATCTTTGTAGTAGTCATGCATGAGCC

TTTCCACTGGTACTTCGCGGTCTTGGCGATCAGCCATGTGCGTTGCACCATAGCC

TTGTAATGGTTGCAATAAAGCTAAATCTGCAACTACCCGTTCAGCAAGTACTGCC

TGCTGTATTTGGGTAAGAGTATTTTCAAAGTCATCCATATCTACAAAGCGGTGGT

AAGCTCCTGTGTTAATGGTGTAACTGCAGTTGGTCATTACTGACCAATTAACAGT

GTGGATGCCTGGCTGTATGGTTTCTGTGTATCGTAAGCGCGAGTAAGCTCGAGA

GTCAAAAACATAATCGTTGCAAGTGCGCACCAAATACTGATAGCCCACTAGAAA

ATGAGGAGGAGGTTCTCGATATAACGGCCACCGAAGTGTAGCCGCCGCACCGGG

AGCAAGATCTTCTAACATGAGGCGGTGGTATTCATATATGTATCTGGACATCCAC

GTGATGCCGGCGGCAGTGGTTGTTGCCCGGGCAAACTCGCGAACTTGGTTCCAA

ATGTTGCGCAGGGGTAAAAAGCGTTCAATGGTTGGGACGCTTTGACCGGTGAGG

CGTGCGCAGTCTTGAATGCTCTAGATGTAAAGAAAATGAAAGTCTGTAAGCGAC

TCCCCTCTGTGGCCTGGCGGAAAAGTCACAAGGGTACCACAGCGAGGAACCCCG

GTTCGAAACCGGCAGGATCCGCTGTGAGCGTATATAGGGCGTCTGCGCGTGGAA

CCCAGCCAAAGACCCCCAGACACGGAGAGGAGTCTTTTGTTTTTTTTTAGATGCA

TCCCGTCCTGCGACAGATGCGACCTCAATCCAGGGCACCCACGCCCTCAGGACC

AATAGCGCTTGGGGGCTCTGGCGAACCTGAAGAGCCTCCCACGTTGGAGTTGGA

AGAAGGAGAAGGCTTAGCCCGTCTGGGCGCTCACTCTCCTGAGCGACACCCAAG

GGTGCAGCTTACTCGCGATAGTCGTGCGGCGTTTGTGCCTCGGCAAAATATGTTT

CGAGATAACAGCGGGCAGGAGGCTGAGGAAATGAGAGACTGTAGATTCAGGGC

CGGTCGCGAGCTGCGTTGCGGACTTAATCGCGAGCGACTGCTGCGAGAGGAAGA

CTTTGAGCCGGATGAACGTTCTGGGATTAGTCCCGCGCGAGCTCATGTTTCCGCG

GCCAACTTAGTGTCAGCCTATGAACAAACCGTTACAGAGGAACGTAATTTTCAA

AAAAGCTTTAATAATCACGTGCGCACGCTAATTGCACGTGAAGAAGTGGCTATT

GGTTTAATGCATCTTTGGGACTTTGTGGAAGCGTATGTGCATAATCCAGCAAGCA

AACCTTTGACCGCCCAGCTCTTCTTGATAGTACAACATAGTAGAGATAATGAAA

CGTTTAGAGACGCAATGCTTAACATTGCTGAGCCACAGGGTCGGTGGCTACTTG

ATTTAATTAATATCTTGCAAAGTATTGTGGTTCAGGAACGCAGTCTTAGTTTAGC

AGACAAAGTGGCTGCGGTTAATTATTCCATGTTAAGTTTGGGAAAGTTCTATGCT

CGCAAGATATACAAAAGTCCATATGTTCCCATTGACAAGGAAGTAAAAATAGAC SEQ

ID Sequence

NO

AGTTTTTACATGCGCATGGCACTAAAGGTACTAACATTGAGCGACGATTTGGGA

GTATACCGCAATGATCGAATCCACAAAGCGGTGAGCGCAAGTCGTCGAAGAGA

ACTTAGTGACAAGGAACTTATGCACAGCCTGCAAAGGGCGCTAACTGGAGCCGG

AACAGAGGATGAGGCCTTTTTTGATATGGGCGCAGATCTAAAGTGGCAGCCAAG

CGCCCGCGCCCTGGAGGCGGCTGGCCAGGATGATGATGATGATGATGACGAAGA

CCAGTATGAGGACTGACCGGGCCGTACCTTTTGTTAGATGCAGCGACCGGCTAT

CATCACGGACGGGGCCCGTAACCTGGATCCCGCGGTCACGGCGGCCATGCAAAG

TCAGCCTTCTGGAGTTACGGCTTCAGATGACTGGACAGCGGCCATGGATCGTATT

ATGGCTTTAACGGCGCGCAGTCCTGAGGCTTTTCGCCAGCAGCCGCAAGCTAAT

CGGTTTTCTGCCATTTTGGAAGCAGTAGTGCCGTCTCGAACTAATCCCACCCACG

AGAAAGTGCTAACCATAGTGAACGCTCTGTTGGACAGCAAAGCTATTCGTAAAG

ATGAGGCTGGCCTAATATACAACGCTCTTCTGGAGCGTGTGGCGCGCTACAACA

GTACCAACGTACAGGCTAACTTGGACCGGATGGGTATGGATGTAAAGGAGGCGC

TTGCGCAACGAGAGCGATTTCATCGCGACGGCAATCTTGGCTCCCTGGTTGCGCT

AAATGCTTTTTTAAGCACTCAGCCGGCTAATGTTCCGCGTGGTCAAGAAGATTAT

ACAAACTTTATAAGCGCTTTGCGCCTGATGGTTACTGAAGTTCCACAAAGCGAA

CCGTAAATTTAAGCCAGGCTTTTAAGAATTTGCAAGGCCTGTGGGGGGTACGCG

CTCCTGTGGGTGATCGCTCAACTGTCTCCAGTCTGTTAACGCCAAATTCTCGGTT

ATTATTGTTGTTAATCGCTCCTTTTACCAACAGCGATAGTTTAAGTAGGGATTCG

TACCTAGGTCACTTAATTACTTTATATCGCGAAGCCATTGGTCAAGCGCAGGTAG

ATGAGCAAACGTATCAAGAAATAACCAGCGTGAGTCGCGCTCTGGGACAGGAG

GATACAGGCAGTTTGGAAGCCACGCTGAACTTTTTACTAACAAACCGCCGTCAA

CAAGTGCCTCCGCAATACAGTTTGAATGCAGAAGAAGAGCGCATACTGCGCTAC

ATTCAGCAATCAGTGAGCTTGTATCTAATGCGCGAAGGCGCAACGCCCAGTGCC

GCTTTAGATATGACTGCGCGCAACATGGAGCCGTCATTCTACTCTTCCAATAGAG

CATTTATTAATCGTTTAATGGATTACCTTCACCGAGCCGCGGCTATGAACGGAGA

CTGGAGAATTTGATTTACCGGAGGGAAACGATGGCTTTTTGTGGGATGATGTTAC

AGACAGTCTCTTCAGCCCGGCAGCCATTGGTCACCATGGTAAAAAGGAGGGAGC

AGATGAAGGTCCGTTACTGAGCTCTCGGGCAAGTTCTCCGTTTCCCAGCCTAAGC

AGTATTAACAGCGGTCGTACAACAAGACCGAAACTATCAGGAGAAAGCGAGTA

TTTAAATGATCCCCTGTTACGTCCAGCACGCGACAAAAATTTTCCAAATAATGGC

ATAGAGAGCTTAGTAGACAAAATGTCTCGTTGGAAAACGTATGCGCAAGAGCGG

CATGAATGGGAAGAGAGACAACCCAAACCAGTGCCCCCTCCGAGACAACGCTG

GCAACGGCGTAAAAAAGGAGCGCATGCGCTTGACGAAGGAAGCGATGACTCAG

CAGATGACAGTAGTGTGCTAGACCTAGGAGGGACAGGGAACCCATTTGCTCATT

TGCGTCCGCAAGGTCAACTAGGGCCGTTGTATTGAACAAAATAAAAGCACTCTT

ACCAAAGCCATGGCGACCAGCGTTCGTCTTATTTGTTTTTTCCGTTAGCTGCAAA

ATGAGGCGCGCGGTGGAACTGCAGACAGTGGCTTTTCCCGAGGCACCACCACCC

TCTTACGAAACCGTGATGGCAGCAGCTCAGACTTCCGCACTGGAAGCTCCCTAC

GTGCCTCCCCGCTATTTGGCTCCTACGGAGGGAAGAAATAGCATCCGTTATTCAG

AGTTGTCACCTTTATACGATACCACTCGAGTGTACCTAGTGGACAACAAGTCTTC

TGACATCGCTTCTTTAAACTACCAAAATGATCACAGCAACTTTCTAACCACTGTA

GTCCAAAACAACGACTATTCCCCTATAGAAGCCGGTACACAAACTATTAATTTTG

ACGAAAGGTCCCGATGGGGCGGTGATTTGAAAACTATTTTGCATACCAACATGC

CCAACGTAAATGATTTTATGTTTACAACTAAATTTAAGGCCAGGGTAATGGTGTC

TAGAAAAAAAGATAGTGAAGACCAGTCCAAAGACATTTTGAAATACGAGTGGG

CAGAATTTGTGTTACCCGAAGGTAACTACTCGGAAACCATGACTATCGACTTAAT

GAACAACGCAATCATCGAGCATTACTTGCGAGTTGGCCGTCAGAACGGCGTGCT

AGAAAGCGACATTGGAGTTAAGTTTGACACCAGAAACTTTCGCCTGGGTTGGGA

CCCCGAAACTAAATTAGTAACTCCGGGAGTGTATACTAACGAGGCTTTTCATCCA

GATATAGTATTGCTACCAGGATGCGGAGTGGACTTCACGGAGAGCAGATTAAGC SEQ

ID Sequence

NO

AACATGCTGGGAATCAGAAAAAGACAGCCTTTTCAGGAGGGTTTTGTTATCATG

TATGAAGACTTAGAAGGGGGAAATATCCCAGCGCTTTTAGATGTTAAAAAATAC

GAAGACAGCTTGCAGCCAGACGGCACCGTAAGAGGTGACAACTTTATTGCCTTA

AACAAGGCCGCAAAAATCGAAGCAGTCGAGGCTGATTCCAAAGGCCGAAGTTA

CAACTTGCTTCCCGACAAAAAAAATACTAAGTACCGTAGCTGGTATTTGGCATA

CAACTATGGAGATCCAGAAAAAGGTGTTCGTTCTTGGACTCTTCTAACAACCCCA

GACGTGACAGGCGGTTCCGAGCAGGTCTATTGGTCGCTTCCCGATATGATGCAA

GATCCGGTGACTTTTCGCTCCTCGCGTCAAGTCAGCAACTATCCGGTAGTTGCGG

CCGAACTAATGCCGGTTCACGCCAAAAGCTTCTACAACGAACAAGCCGTCTACT

CACAGCTTATCCGCCAGTCAACCGCGCTTACACACGTGTTTAATCGCTTTCCCGA

GAACCAGATACTAGTGCGTCCACCAGCTGCTACCATCACTACCGTCAGTGAAAA

CGTTCCCGCTCTCACAGATCACGGGACCCTGCCGCTGCGTAGCAGTATCAGTGG

AGTTCAGCGAGTCACCATCACTGACGCCCGCCGCCGGACCTGTCCTTACGTTTAC

AAAGCACTGGGCATAGTTTCTCCACGAGTACTTTCTAGTCGCACTTTCTAAAAAG

TGTACAAACATGTCCATCTTGGTTTCGCCAAGTAACAACACGGGCTGGGGATTG

GGAGCTGGCCGCATGTACGGAGGAGCTAAAACCAGGTCCAGCCAACATCCAGTT

CGCGTCCGCGGACACTATCGAGCGCCATGGGGAGCACATACCCGCGGACGCACT

GGTCGCACCACTGTGGACGATGTTATCGACTCGGTCGTAGCCGATGCTCGGAAA

TACCGTCCACCAGCCAATACAGCAGGGTCTACCGTTGATGCGGTCATTGATGAG

GTAGTGGCAAACGCACGAGCTTATGCCAGACGTCGCAGAAGGCCGCGTCGGCGC

CGACCTACTGCTGCTGTGCGTGCGGCTAGAGCGTTAGTGCGACGCGCTAGACGC

GTCGGACGACGAGCTATGCTGCGAGCAGCCAGGCAGGCTGTAACGCCTGCCGGT

AGAGCGCGGAGACAGGCCGCAGCTGCGGCCGCAACAGCTATTGCCAACCTAGCC

GCTCCCAGACGAGGAAATGTGTACTGGGTGCGCGACGCGGTAACTGGGACTCGA

GTCCCGGTTCGTACGCGTCCACCTCACCCTTAGAAGACAAAGAGTTGATTGATA

ACCTGTTATGTATGCCCAGCATGACCAAACGCAAGTTCAAAGAAGAGCTGCTGC

AGGCCGTCGCGCCTGAAATATACGGCCCAGCGGATTACATTACCAAGCGCGAAA

TCAAGCATGTTAAAAAACTGGACCAAAAAAAAGAGGAAGAAATGGCCGCAGCG

CTAGCGGACGAAGTCGACTTCGTGCGCTCCTTTGCGCCCAGACGTAGAATACAG

TGGAAAGGGCGGTCAGTAAAGCGAGTTTTGCGACCCGGCACCACAATAGTTTTT

TCTCCTGGGGAGCGAACGGCTATGCGCCCCCTCAAGCGCGAATACGATGAAGTG

TATGCCGATGATGACATTTTGGAACAGGCTGCCCAACAGGCTGGTGAATTCGCC

TATGGAAAAAGAAGCCGTTACGACGACAAAATTGCTATTCCTTTGGACGAGGGA

AATCCCACACCCAGTTTAAAGGCTGTCACTTTACAACAAGTATTACCTGTGCTCG

CGACCTCAGAAGAAAAGCGAGGCATAAAAAGGGAAGCTATGAATGACTTACAG

CCCACAATGCAACTTATGGTGCCTAAGCGGCAAAAGTTAGAGGACGTACTAGAG

TACATGAAGGTGGATCCCAACATTCAGCCGGACGTAAAAATACGTCCCATAAAA

AAAGTTGCCCCAGGATTAGGAGTCCAAACAGTGGACATCCAAATTCCCGTACAA

GCTGCGCAAAGTAAAACTATGGAAACCCAGACTTCGCCAATAAAAACAGCAGTG

GACAGCGGCATGCAAACCGAGCCTTGGTACCCGCCAACTTTTACAAGAAAAAAA

CGCCACTACAAACAAACAAACGCGCTCTTGCCAGAATACGTGCTACATCCTTCC

ATTGTGCCCACGCCGGGGTATCGCGGGTCAACTTTCCAGCGCAGAGCCCTAGTTT

ATAGCCGCAGAAGAACTCCGTCGCGACGCAGACGTCGACGCAGAGCCAATTTAG

CTCCAGCATCAGTACGCCGCGTTGTACGAAAAGGGCGCACACTGACGCTTCCAT

CTGTGCGTTACCACCCTAGCATACTCTAATAAGCTGCGCTGCCGTTTTACAGATG

GCTCTTACTTGCCGAATGCGCATACCCATTCCAGGATACAGAGGAAGATCTCATC

GGAGGAGAGGGCTGACCGGGAACGGTCGATTTCGGCGACGTAGCGCGCGCAGG

CGCATGAAGGGCGGGGTACTTCCCCTGCTAATTCCACTTATTGCCGCGGCCATCG

GAGCCGTACCCGGAATTGCTTCAGTTGCCTTGCAGGCTTCTCGAAAAAATTAAAT

TAAAATCAAAAGAAATAAAAAAGGAATAACTTCCAACTTATTACTGGTACTGTG

ACTGTTTTATGCAGACTAAATGGAAGACATCAATTTTTCGTCGCTGGCCCCGCGA

CACGGCACGCGGCCGTATATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTG

AACGGGGGCGCCTTCAATTGGAACAGTATCTGGAGCGGTCTTAAAAATTTTGGT SEQ

ID Sequence

NO

TCCACAATTAAGACATATGGCTCCAAGGCGTGGAACAGCCAAACCGGCCAGATG

CTAAGGGACAAGTTAAAAGACCAGAACTTCCAACAAAAAGTGGTAGACGGTCT

GGCTTCTGGAATCAATGGAGTTGTAGACATAGCTAATCAAGCTGTGCAAAAACA

AATTGCCAACCGTTTAGAGCCGCGACCCGACGAAGTAATGGTAGAGGAAAAGTT

ACCGCCTCTGGAAACGGTGCCCGGATCAGTTCCGTCCAAAGGAGAAAAGCGGCC

GCGGCCAGATGCAGAGGAAACTCTAGTCACGCACACCATAGAGCCCCCTTCCTA

TGAGGAAGCAGTTAAACAAGGAGCAGCTTTGGCACCTACTACTTATCCCATGAC

CAAGCCTATTCTACCCATGGCTACCAGGGTGTATGGGAAAAATGAAAATACGCC

TATGACTCTCGAGATTCCTCCCTTGCCAGAACCTACTGTTGCGGAACCTGTGGTT

ACTGCTCCCATTGTTTCAACTGTATCGCGTCCAGAAGTGCGGCCTGTTGCCGTAG

CAAGCTCACGAAACCCGCGATCCGCTAATTGGCAAAGCACCCTAAACAGCATTG

TGGGACTGGGAGTAAAGTCTTTAAAACGCAGACGCTGCTATTAACATTAAACAA

AACATAGTGTTAACTCCCGTCTGTATACGCCTCTATGTTAGCGCCAGAGGACCAA

CGCTCGAATTGCAGTTATTACCAGCGCTTTCAAGATGGCCACTCCCTCGATGATG

CCGCAGTGGTCTTACATGCACATCGCCGGTCAGGACGCCTCGGAGTACCTGAGT

CCCGGTCTGGTGCAATTCGCCCGCGCCACGGACACCTACTTCACCCTGGGAAAC

AAGTTTAGGAATCCCACTGTGGCTCCCACCCATGATGTCACCACCGACCGCTCGC

AGCGATTGACGCTGCGTTTTGTGCCCGTGGATCGGGAAGATACTGCTTATTCTTA

CAAGGCTCGCTTTACGCTGGCTGTGGGGGACAATCGCGTGCTGGACATGGCTAG

TTCTTACTTTGATATTAGAGGGGTGCTGGATCGCGGTCCCAGTTTTAAGCCTTAT

TCGGGTACCGCCTATAACTCACTGGCGCCAAAAGGCGCCCCTAATGCTTCACAG

TGGTCTGATAATAATAAGGTGAACACTTTTGGGCAGGCTCCGTATCTTAGTGACT

CTATTACTGCCGATGGTATTAAAGTTGGAACAGATACCGCCCAAGCAGGGGCGG

CGGTTTACGCTGACAAAAAATACCAGCCTGAGCCGCAGGTAGGGGCAAGTGAAT

GGAATACCAGTATTACAAACGTTAAAGCAGGGGGTAGGGCATTAAAACAAACG

ACTGCCATGCAGCCGTGCTACGGCTCATATGCTCGCCCGACCAACGAAAAAGGG

GCAGCCACTCCTCAAGTTGTGTTTTACACTGAAGATGTAAATCTAGAAATGCCGG

ACACCCATCTTGTGTTTAAGCCGGCTGTTCCTAATGGAACAATTGCGTCCGAGTC

CTTGTTGGGACAGCAAGCAGCGCCAAATAGAGCAAATTACATTGCATTCAGAGA

TAACTTTATTGGATTAATGTACTACAACAGCACAGGGAACATGGGTGTCCTTGCC

GGACAAGCTTCACAGCTAAACGCAGTAGTGGACTTACAAGACAGAAATACGGA

GCTGTCTTACCAGTTAATGCTAGATGCTCTTGGCGACAGAGCGCGGTATTTCTCA

CTGTGGAATTCTGCAGTGGACAGTTACGACCCTGATGTTCGCATCATTGAGAATC

ATGGGGTTGAGGATGAACTCCCAAATTATTGCTTTCCTCTCAGCGCAGTGGGAG

ACATAAAGAGTTACAAAGGCATTAAGCAAAACAACGGAGGGGGCGGTAACTGG

GCTGCGGACGACACTGTTGGCGACAAAAACGATATAGGCATTGGTAACATTGCC

GCTATGGAAATTAACTTGCAGGCCAATTTATGGAGAAGTTTTCTGTATTCAAATG

TGGGGCTGTATCTGCCTGACGACTTGAAATACACCCCCGGGAACATAAAACTTC

CAGAAAACAAAAACACCTACGAGTACATGAACGGGCGCGTGACTGTTCCCGGTT

TGGTAGATACCTACGTTAACATTGGCGCGCGCTGGTCTCCTGATGTAATGGATAA

CATAAACCCTTTTAACCACCACCGAAACGCAGGGTTGCGCTATAGGTCCATGTTA

CTGGGCAACGGTAGGTTTGTTCCGTTTCACATTCAGGTACCTCAGAAATTTTTCG

CTATTAAGAATTTGCTGCTGTTACCAGGGTCCTACACTTATGAGTGGAACTTCAG

AAAAGATGTAAACATGATACTTCAGAGCACCCTGGGCAATGATCTTAGAGTGGA

CGGAGCCAGCATTCGCTTTGACAACATTGCCCTGTATGCAAACTTCTTCCCCATG

GCTCACAATACAGCTTCTACATTGGAAGCCATGCTGCGAAATGACACCAATGAC

CAGTCTTTTAACGATTACTTGTGCGCGGCGAACATGTTGTATCCCATTCCAGCAA

ATGCCACCAGCGTGCCCATTTCAATACCTTCGCGAAATTGGGCAGCCTTCAGAG

GGTGGAGTTTTACTCGCCTTAAAACTAAAGAAACACCTTCTCTTGGTTCAGGGTT

TGACCCCTATTTTGTTTACTCTGGAACTATTCCCTACCTGGACGGGACTTTTTACC

TGAACCACACTTTTAAAAAGGTGTCAATCATGTTTGACTCCTCTGTCAGCTGGCC

TGGAAATGACAGGCTGTTAACACCAAATGAATTTGAAATAAAACGTTCTGTAGA SEQ

ID Sequence

NO

CGGGGAAGGCTACAATGTGGCCCAATGTAATATGACCAAAGATTGGTTTCTAAT

ACAAATGCTTAGTCATTATAATATTGGATACCAGGGTTTCTACGTTCCAGAGAGC

TACAAAGACCGCATGTATTCTTTCTTCAGAAACTTTCAGCCCATGAGCAGGCAGG

TTGTAGACACTACTGAATACAAAGAGTATAAAAAAGTAACCGTGGAATTCCAGC

ATAACAACTCAGGGTTTGTGGGATACCTGGGTCCTACTATGCGCGAGGGACAAG

CTTATCCTGCGAACTATCCCTATCCTCTCATTGGAAAAACAGCTGTACAGAGCGT

CACACAAAAAAAGTTTCTCTGTGACCGTGTGATGTGGCGCATTCCATTTTCTAGC

AATTTTATGTCAATGGGGGCGTTGACAGACCTCGGGCAAAATATGCTGTATGCA

AATTCGGCCCATGCGTTAGATATGACATTTGAAGTTGACCCCATGGAAGAGCCC

ACCCTTCTTTATGTTTTGTTTGAAGTTTTCGACGTGGTGCGCATTCATCAGCCACA

CCGCGGAGTCATTGAAGCGGTCTATCTGCGCACACCCTTCTCCGCGGGTAACGCC

ACCACCTAAAGAAGGCACTTTCCCAGATCGCTGTAATGGGTTCAAGCGAACAGG

TGACAAACGTTTTCCCGGTTTTGTGTCTCGCGACCGGTTATCATGCGCTATTGTTA

ACACTGCCGGTCGCGAAACTGGGGGCGTACACTGGCTGGCCTTTGCATGGAATC

CCAAATCGCACACTTGCTATTTATTTGATCCATTTGGATTTTCTGATCAGCGGCTC

AAACAAATCTATCAGTTTGAGTACGAAAGTCTGTTGCGTCGTAGTGCGCTAGCG

GCTACTAACGACCGATGCGTCACCTTAGAAAAGTCAACACAAACTGTACAAGGA

CCGTTTTCTGCAGCGTGCGGCCTGTTTTGTTGTATGTTCTTACATGCTTTTACTCA

CTGGCCTGACCATCCAATGGATAAGAATCCCACTATGAATCTACTGACTGGGGTT

CCAAATAGTATGTTACAAAGTCCGCAGGTGGAGGACACACTGCGGAGAAATCAG

CAAGAACTATATATTTTCTTAAACAAATTGTCACCTTACTTTCGCAACAACCGCC

AACGCATAGAAAAAGCCACCTCTTTCACTAAAATGAAAAATTGATACAAATACC

CATGTACGTAATGCATTAATAAACAATTTTATTAGAGAATTGATTACAAGACTGT

TTGGTGGGCAGGGCTATGTTTCTATACTGCAAACGCGGATGCCACTTGAACTCTG

GAATAACAAGCCGAGGAAGCGGGCCTTCGAAATTTTCTCCCCATAGCTGTCGCA

CAAGCTGCAATGCACCCATAACATCAGGAGCTGATATCTTGAAGTCGCAATTAG

GACCGGCGTTACCGCGCGCATTGCGATAAACTGGATTTGCGCACTGAAAAACCA

GCAAACATGGATACTTAATACTGGCTAGGGCTCCAGGGTCGGTGACTTCGTTAA

CGTCGATGTTTTCAACATTGCTGAGGTTAAATGGAGTAATTTTACACAGCTGACG

CCCCATGCGTGGCAGGCCATCTTGCTTGTTTAAACATTCACAACGAACTGGCATC

AGGAACCGCTTCTGCCCCTGTCGCATGTGAGGGTAGTCGGCCAACATGAAAGCT

TCAATTTGCCTAAAAGCCATTTGAGCCTTCGTTCCTTCTGAATAAAACAAACCGC

ATGACTTTCCGGAAAAAGAATTATTTCCGCAGCCGACATCATTAAAACAGCAGC

CTTGGCTTTAGATGGATTTTCTTTTAGTGCTCGCTGCCCGCTCTCGCTGGTTACAT

CCATCTCTATCAAGTGCTCTTTGCGCACCATTTCCATGCCGTGCAGGCATCTCAG

CTCCCCTTCGCGTTCAGTGCACTGGTGCTCCCATACACAGCAACCAGTTGGTTCC

CAGGTATTTTGTTGAACACCGGCATAGGCTTGCATATATCCTTGTAAGAAGCGTC

CCATAAGCTCCTGAAAGGTTTTCTGGGATGAAAAAGTTAGCTGCAACCCGCGTTT

AAAACCTAAAGCTGGCGCGCTCGTCGTGATCCACATGGTACTTCTCCATCAGCAT AGCCATTGCCTCCATGCCTTTTTCCCAAGCTGATATCAGAGGCTCGCTCGTGGGG

GCATGATGCATAATGCGAACAGGGGGCATGCTGAAACCCATGACTCCTAACACT

AGCCATGGACCTCCTGGCTTTTTTCTTTGGAGGCAAAGGCACAGCCTCCAGGTCT

TCTTCGCTTTCTGAGTCCAAAAAGTACCGACCCATTTTTGGAGGCGGCGGCTGAG

TGTTGCGGTCTGGGGTGCGCTCCCTCTGTGGGTGTTGATTGCTGGCCATTATTTA

ATCCTAGGCAAAGAAACACATCATGGATCCGCAGTCAAAGGAAAACTTAACCGC

CCCCACCGATACTGCTGTTGCTGCCATGGAAAAGAACAAATGTCTACTCATACCC SEQ

ID Sequence

NO

CAAGATGCACCGCTTGCGCAGGACTCGGGCTACGTGACTCCCCCCGAGGAATTG

GAAGGCTCTCTTCTAATCCAAGAGCAACCAAATAAGGAACAGGCAGAAAGCAA

TGAGCAAAACGCTGGGCTCCATGACTACCTAGACAAGGGAGATGTCTTGCTTAA

ACATTTACAGCGACAAAGCATTATTGTTCGCGACGCCGTAGCTGACCGCTCTTTA

TTGCCAGTTTCAATCGCGGAACTTTCTTGCGCATACGAACGCAACCTCTTTTCTC

CCCGTGTGCCACCCAAACGACAAGCCAATGGTACCTGCGAACCAAATCCTCGGC

TGAACTTTTACCCGGTTTTTGCGATACCAGAAGCTCTGGCAACATATCACATTTT

TTTCAAAAATCATAGAATACCTCTGTCTTGCCGAGCCAACCGCAGTCGCGCAGAT

AAGCTCCTTACCCTTAGCGGTGGTGCTTCCATACCTGGTATAGTGTCCTTGGAAG

AGGTGCCTCGGATTTTCGAAGGCTTGGATCGCGACGAAAAGCGAGCAGCAAACG

CCCTACAAACAGAAAACAAGCAAAATCAAAGTGCGCTCATAGAACTAGAAGGG

GACAATGCCCGTTTGGCCATTTTAAAACGCAATGTTGAAGTAACTCACTTCGCAT

ACCCGGCAGTGAATCTTCCGCCAAAGGTTATGAGCGCAGTAATGAATCAACTAC

TAATTAAGCGCGCCCAGCCCATTGACAAAGATGCAAACTTGCAAGATTCAGAGG

CATCAGATGATGGAAAACCAGTTGTAAGCGACGAACAGCTAATTAAATGGCTGG

GAACAGACGACCCCGCCAAACTACAGCAGCGGCGTAAACAAATGATGGCGGCA

CGTTGCGCAAAATTGAAGAATGTCTCCACTACACCTTTCGGCATGGTTATGTGCG

CCAAGCCTGCAAAATTTCCAATGTGGAGCTAAGCAACCTTATCTCATACATGGGT

ATTTTGCACGAAAACAGATTGGGACAAAGTGTGCTACATTCAACGCTCCGCGAC

GAAGCGCGCAGAGATTACGTGCGGGACTGTATTTATCTTTTTTTGCTACATACTT

GGCAAACCGGAATGGGGGTGTGGCAACAATGTTTGGAAGAAACTAACCTCAGA

GAACTCAACAAACTGCTTGACAGAGCGTTGAAATCACTATGGACAGGTTTCGAC

GAAAGAACGGTAGCGGCAGATCTGGCCAACATCATTTTTCCAGAACGGCTCATG

ATAACCTTGCAAAATGGTCTGCCTGACTTTATGAGTCAAAGTATGCTGCATAATT

ACCGTTCTTTCATATTGGAGCGATCTGGCTTGTTACCTAGCATGTGCTGTGCGCTT

CCTTCAGATTTTGTGCCCATACATTTTAGAGAATGTCCCCCTCCTCTGTGGAGTC

ACTGCTACTTGTTCAAACTTGCCAATTACTTAGCTTACCACTCAGACCTTATGAC

GGATTCCAGCGGAGAAGGATTAATGGAGTGTCACTGTCGCTGCAATTTATGCAC

TCCTCACCGTTCGCTGGTGTGCAATACCGAACTGCTTAGTGAAAGCCAGGTTATT

GGTACGTTTGAAATGCAAGGGCCGCACTCTGATAGCAATCTCACCACAAACCTG

AGGCTGACACCTGGCCTTTGGACTTCCGCTTACCTGCGCAAATTTGAACCCCTAG

ATTACCACGCACACGTTATTAATTTTTATGAAGATCAGTTAAAGCCCCCTAAAGC

GCCACTAACGGCCTGCGTCATTACGCAGGGAAAAATTTTAGCCCAATTACAAGC

CATTAAACAAGCGCGCGAAGAATTCTTACTCACAAAAGGACGCGGAGTGTACCT

TGACCCCCAGACCGGCGAGGAACTGAACCTTCCATCACCTCTGTGTGCTACTGCA

TCCTCTCCCCATTCGCAGCATGTCCCCGAAAACCGCAAAACAAGCTATTGCGCA

GCAACGCTCAAAGAAGCAGCTACAACAGCAGGAAATCTGGGAGGAAGATTCTT

GGGACAGTCAGGCACAGGAGGACCAGGACTTGGAAGAATGGGAGGAGGAAAGC

CTAGACGAGGATCCAGAGGAGGACGGTTCCAAGGACGGAGCGACCGCCGCAAA

ACCGTCGCTTTCAACCGAACCCTCTCCAGTGAAACACACTGTCAACAAATCTCAG

AAAGCGAGCCGTAGATGGGACACCACTGAAGCCAGCGTCGTAAACATGGGTAA

GAAATGCAAGCAGGTGCGGCGGGGCTACTGCTCATGGCGGGCTCATAAAAGTAA

TATTATAGCCTGCTTGCAACACTGCGGGGGAAACATCTCATTTGCAAGGCGGTAT

CTGCTCTTTCACGATGGAGTGGCAATTCCTAGGAATGTTCTCCATTACTACCGTC

ATCTCTACAGCCCCTTCGAAGAGATCCACAAAGAATCGACGTCTTACGGACCAG

CAGGCCACTAGAAAAACCGGCAGCAGCAACAAGGAAAGTCCAGAGGCGCGCGA

GTTAAGAAAACGCATTTTTCCCACTCTATATGCTATTTTTCAGCAGAGCCGAGGC

CAAGAACACGAACTGAAAATAAAAAACAGATCCCTCCGTTCACTTACCCGCAGC

TGTCTCTACCTCAAAAGCGAAGACCAGTTGCAACGCACCTTGCAGGACGCTGAA

GCTCTGTTCAATAAATACTGCTCCCTCTCGCTTAAAGAGTAAAAAAAGCCCGCGC

GCGGACTTCTGACAAGCGGGAAAGTGACGTCACATTTATAACAGGATGAGTAAA

GATATTCCCACGCCTTACATGTGGAGTTTTCAACCTCAAATGGGGCTAGCGGCGG SEQ

ID Sequence

NO

GTGCGGCTCAAGACTACTCTACTAAAATGAATTGGTTGAGCGCCGGCCCACATA

TGATTTCCCAAGTAAATGGAATTCGCGCCCGGCGAAACCAAATGCTACTACAAC

AAGCCGCTCTCACCGCTACACCGCGTAACCAGCTTAACCCACCCTCTTGGCCCTC

TGCCCTATTGTACCAGGAAAGTCCCCCTCCTACAACGGTACTTTTGCCTCGCGAC

GCCCAGGCCGAAGTCCGCATGACTAATGCTGGCGCACAACTCGCGGGCGGCGCA

CGTCATAGTTTCAGGTATAAAGGTCGCCCTGGGCCGTACTCATCTTCTGCTATAA

AAACAATACGCATTAGAGGAAAAGGTATTCAGCTGAACGACGAGGCAACATCG

CCACTGGGACTCAGGCCCGACGGAGTGTTTCAGCTGGCAGGCTCCGGCCGCTCG

TCCTTCACTACTCGTCAAGCCTACCTAACACTTCAGAGTTCGTCAACAGCTCCAA

GATCCGGCGGGATTGGAACTCTTCAATTTGTGGAGGAATTTACTCCATCTGTTTA

CTTTAATCCCTTTTCGGGCTCGCCTGGACACTATCCTGACGCCTTCATACCCAACT

TTGACGCCGTGAGCGAATCTGTGGATGGTTATGATTAATGTCTAATGGAGCGGC

CGACAGAGCGCGGCTGCGACATTTAGACCACTGTCGCCAACCTCGCTGCTTTGCT

CGAGACATCTGCGTGTTTACTTACTTTGAGCTGCCAGAGGAACACCCTCAGGGA

CCAGCTCACGGCGTAAGGATAACAGTTGAAAAAGGAATTGATACACACCTCATT

AAATTTTTTACCAAACGTCCGCTATTGGTTGAAAAGGATCAAGGGAATACTGTAT

TAACTCTATATTGCATTTGTCCTGCCCCCGGATTACATGAAGATTTTTGCTGTCAT

TTGTGTGCTGAATTTAATCATTTGTAGTGGCGGTTTACCGCCTGAAGAAGAACCT

AACTGTCATCCGCCTCTCAGTAACATTAAAATTAACCTTTCAATCTCTGACATTA

CTCTTCGCTGCAATTTTTTCTCCACCCATCTCACCTGGAGTTTTAACGGAAAACCC

GTCGCCGAGGTAAAATTAAAGTTTGAGCTACACAAAGAAAACATCACTTTATTT

GCACCTATTCACCTGGGATACTACCGCTGCGCAGCTCCACCCTGTCAGCAAGCCT

TTTTCGTTTCTCCGATTATTAACAGAAAACCTGCTACAACAACACCTGTTACTCG

GCAAAACATCCAGACGACTTCTCCTACTAAAGGTATAGAGGAAATTGTGTACTT

TTCAAACTTTACAAACCACATACTTTTAAACTGTTCCTGCTCTAACTCCTTAATCT

CATGGTTTGCTAATAGCACTTTGTGTAAAGCTTTTTACCAACAAAAACTTTTGTA

TTCTGCCAATTTAACACTGTGTAACCAAACCACTTCTTCCCACCTTACTCTACTAC

CACCTTTTGTCGCTGGTCGTTATTTTTGCTTAGGAGCTGCCGGTACTAGCCCCTGT

CAACAGCATTGGAGATTAACTTATCGCCCAACGCCAGTAACGCCTTCTGTAATA

ACAGAGGCTTTCACCTCTAATACCCTGCTTCTATATAGTGGTCTTGTGGCTCTTAC

TTTATTTCTAATTTCTAACTTGTTTCTAGTGCAGCATCTGTATTTGTACTAATCAT

GCTTAGTATTTTAGTCTTTGTTTTTTTACCTCTCCTCCTACATGCTCAAACATCTG

AGAAACCATTGAAAGTATTTGTGGAAGTTGGCCATAATGTAACCCTCCCCCATCT

CATGCCTGATTCACACGAAACAGGCCATGTGACTTGGCTAGTAGAAACATCAGA

TTACGGTGTAGCTTCTCCAAACAACTTTATTTTTAGTGGACAAAAACTATGCCAG

TTTACTTCCAGAACTATGGTGTGGCCTTATGCCAATTTAGATTTTAACTGCGCTA

ATTACGACCTCCATTTGTTTCGGCTTAAGGTAGAAAATTCAGCAATTTACAATGT

TAAAAATACCATCAATGCATCTGAAATGAACATCTACTACCAATTAACAGTAAT

TGACATTCTTCCACCCAAATGCATCATTACTTCAAAGTACCTCACAAATAATTAT

TGTCACATTACCATTAACTGCACCAACTCAGTGTATCCAAACAAAGTTCAGTTTA

ATAATGTTAGTCGATTCTATTATGGATACGCCAAGGGAGGCCCAAACCTACCCA

ATTATTTTACCACTAATTTCAATGTATCAGGTATTACTAAAAGCTTTAACCACAG

TTACCCTTTTAATGAGCTGTGTGATGACCCCGTGTTCCAACCTCAGAATAATTTA

ACAAACACGGTAATTTTCTTAGTAATAATTGCATTTAGCGTTCTCATTATTATAG

TCTTCAACTTTTGCAGCAGTGAGTCACATTGATCCTGATTGTATAGCACCCTTTG

CGGTGTATTTGATTTTTACATTTGTGACCGCCACGTGCGTCTGCAGTCTTATAACT

TTACTTCTTACCTCGCTTCAATTTTTTGATTACTACTACGTGCGATACGTTTACCG

CAGACATCACCCTCGCTATCAAAACCCCCAAATTGCAGCTCTTCTTCATCTACAG

CCATGAAAGCAGCGTTAGCCATCTTCATGTTAACTCCAATGTTGGCCACTTCTTG

TAAGCTTCACGTGCCATGGACTTTCTTAGACTGCTACACCAAAGAGACAGATTAC

ATAGGCTGGGTGTATGGGATTATGTCTGTCTTAGTTTTTGTATCCTGTGTAGTTTC SEQ

ID Sequence

NO

CTTAAAACTTTATACGCTTATTAATTTTAGTTGGAATCAATACACTGATGATCTC

CCTGAGTACCCCCACCACCAGGATGATTTACCCCTAAACATTGTACTTCCACAGC

CCCCACGTCCTCCTTCGGTTGTTAGCTATTTTAAGTTCGCCGGTGAAGATGATTG

AACCAGACCTACAAATGGATGGAACAATGACCGAACAGAGGCTGCTTGCTGATC

GCGCTAGGCGTCGCCAACAGGATCAAAAAAATAAAGAGTTACTTGATTTACAAA

CTACGAGAGTTTACCAGGCAAAGAGCATCAACTCTGCTACACGCTGCCTGCTCA

GCGACAAAGCTTCACCGCAGTCGTGGGTTCGGTGCCTATTAAAGTGTCCCAACA

AGCAGGACAGCAAGAAGGCTCCATTTGCTGCCTATGTAACAGCCCTGAATGTTT

GTACACTTTAATAAAAACACTGTGCGGCATAAGAAATCTTTTACCAATGAATTA

AATAAATCACTCACCTGAAATTTAAAAATACATTGTGGTCTCCATGTACTCTTAC

AAAATTTCCTTCTTCCCAACTATCAAAGCCAATAGACTTGCAAACAGCAAATTTT

CTCCAAATTTTAAATGGAATGTCAGAATTTTCTTCCCAATTCCTACCCACCATCTT

AATGACGACTTCAACCCCGTTTACCCTTTTGACCCATATGACACAGCGCATGTGC

CCTTTGTTACACCCCCTTTTACTTCTTCCAATGCTTTTCAAGAAAAACCACCCGGT

GTATTATCACTTAATTACAAAGATCCCATTGTTACTGAAAATGGATCCCTTACCC

TAAAGTTAGGGAACGGAATAAAGCTTAATTCACAAGGTCAACTTACAACCACTA

ACACTAAAGTACTAGAACCCCTTGCCCACACCTCACAGGGTCTTACACTTTCTTG

GAGCGCCCCATTATCAGTTAAGGCCAGTGCACTTACACTTAATACAATGGCACC

ATTCACAACAACAAACGAAAGCTTAAGCTTGGTCACTGCCCCTCCCATTACAGT

GGAAGCTTCACAATTGGGCTTAGCCACTGTAGCACCTCTAAGCTTAGACGGAGG

GGGAAACCTTGGTTTGGATCTTCTCGCTCCCTTAGTTGTAAACTCTAGCAACGCG

CTAACCCTATCTGCTTCAGATCCGTTAACTGTAAATTCCAATAGTTTAGGATTAA

ATATTACCAGTCCCATTACACTAATAAACGGATCCTTGGCTTTAGCCACATCCCC

TCCTCTGGACACCACAGGATCTACTTTAAATCTTTCTGTTGCTGCTCCTCTCAGTG

TTTCACAGAACGCACTCACTGTTTCAACCGGTAATGGTCTTCAAGTATCAGGATC

TCAATTAGTAACAAGAATAGGAGATGGTTTACGATTTGATAATGGGGTTATAAA

AGCATATGTTGCCGGGGGAATGAGACTCTCAGGGGGTAAAATAATTTTAGATGT

TAATTATCCCTTTGATGCAAGCAACAACCTTTCATTGAGGAGAGGATCAGGCCTC

ATATATAATGAGTCTACAAACTGGAACTTAACAACTGATATCAGCACCGAAAAA

GGCCTAACGTTTAGTGGGAACCAAATAGCTATCAACGCAGGTCCAGGTCTCACG

TTTAATAACCGCAAGCTTCAGGTAAAATTGGGCGCGGGACTCACTTTTGATTCAA

ATGATAATATTGCCTTAAATAGTATTGCTACTCCGTATGATCCTTTAACGTTGTG

GACAACTCCGGATCCTCCGCCCAACTGCACTCTCAGACAAGAACTTGATGCAAA

ACTAACTTTGTGTTTAACAAAGAACGAATCTATTGTGAATGGCATAGTTAGTTTG

ATAGGTGTTAAGGGGGATCTCTTACATATTCAACCTACCACCACCACTGTGGGAC

TGCATTTAGTGTTTGATCGACAGGGACGATTGGTCACAACAACGCCCACTGCCTT

AGTTCCCCAGGCTTCCTGGGGATATAAACAAGGTCAATCGGTATCTAGCAGCGC

TGTTGCTAATGCTTTAGGATTCATGCCTAATGTAAGTGCTTACCCTAGACCAAAC

GCGGGTGAAGCCAAAAGTCAGATGTTAAGTCAGACATATTTACAGGGAGATACA

ACTAAACCTATTACAATGAAAGTTGTATTTAATGGCAATGCAACAGTGGATGGA

TACTCTCTAACATTTATCTGGACAGGTGTGTCAAACTATCTAAACCAACAGTTTT

CAACACCATCTTGTTCATTTTCGTATATTGCCCAAGAATAAAAAAAACACAAATT

TCTTCCCATTTCACCTTGTATACCTCCCTCTCCCACTTTGTTGCGGAAAACAGCTG

CGCTTGAATGTTTCTACTTTGGTTTTTTGGTGTTAACGTCCACACGGTTTCCTTCT

GGGCAAAACGACAGTCGGTGATACAAACAAATCCTTCGCCCGCACAGTCTCTTA

AACTGCATTCCATTTTATCCTACAAAAGGTAACAACAGTCAGTGTCCATCAGCCG

CCCATGGGTTTTCTCGATGATTGTAATCTCCAAATAAAATTGCTTGATGATGCAT

AATAAGACCCTTTAGCAGTCGCTGACGATGGCCTTCGCACCAACTATGTTTTAGT

GGGCGAACAGTGTTCTCAGCAATTACTTTAACAACTTTTAACATTAATAGTCTGG

TACGACGAGCGCAACAGCGCATGCGTATTTCACTTAAGTCTTTGCAATAGTCACA SEQ

ID Sequence

NO

GCACAACACTAACATGTTATTTAAAATTCCATAATTAAAGGTACTCCATCCAAAA

CTAATCTTTTCTAGCGCTAACCAAGCATGGCCATCATACATAATTTTAACATAAA

TCAAATGGCGACCTCTAACAAAGGTGCTTCCCACATACATTATTTCTTTTGGCAT

AAAATGGTTAACAACCTCCCGATACCAAAAACACCTTTTGTTAATTAATGTTCCA

TATACAGCCATTTTGAACCAGCGTCCTAAAAGCATCCCAGCTGACATACACTGTA

GTGAACCCGGACGCTGGCAATGACAATGTATTAGCCACCGCTCATAACCATGTA

ACAATTGAGTAATTTCAACATCTATGGTGGCACAACACAAACACACACTCATGT

ATTTTTTTAAAATAAACATCTCATAATTAGTTAAAATCATATCCCATGGTATTGG

CCATTCTTGCAATACAGTAAACCCTACACATGAAGGAATACCTCTTACCTCACTT

ACATTATGCAAAGTCAGACTATTACACTCAGGCCATGCAGAATTCTCTGACAAA

GTAGCTTTTGACTGCTGTTCACAAGGTGGTAGATGGTACTTGCTGTACGGCGCCA

GTCTGCAACCATACCGTCTGTCGCGCTGCATCGTACACCACAGACTTGCGAGCGT

CTTCGTACTTTGAATAACAAAACCACGTACGCCCACTGGTTACAGCGCCGCGTCC

CTTTTGCTTTCGACGTTGGCGTTCAGTCACAAACGCAAAATATAACCACTCTCGC

AGGCTTAATAGAATGTACTCAGCTTCAGGTGTGATCTTCAAATTATGCTCTTTAA

CAAAGCGGATAGTATCCACACAGGTCGCATGGGCCAAACCAAGCCATCCAATAC

AGGCAGCTGTATCCCGACATATGGGAGGTTGAGGAATACAAGGCAAAGGCATA

AAAGCTAATCAAGACGGTCAGCAAGTATTTGAATGCGTAAATCTCGCAGGTGGC

AGCGATCACCTCCGCTGTGCTGGTGAAAAATCACAGCCAGATCAAATTGTAAGC

GGTTTTCCAAATGTTCAACAACAGCATCTAAAAGAGCCACGGCTCTAATTTCCAC

AAACAAAAGTAAAGCAAATGCGTTATCATGAAACTCTTCTATCATCAGACTGCC

TGACTGAACCATTCCCAAATAATTTTCATTCTTCCACTGTTGTATTATTTGAACAC

ACTGATTTTGCAGGTTTAAGCCATGAATATTAAAAAGCTCTGTAAGGGCGCCCTC

CACCGCCATCCGCAGGCAGTACTTCATATTTGCTGAAAAAAGTCTGGATCTTCAA

ACACCTGCAGTAAATTCAGTAGATTTACATTAGGCTCCACACCTTGCTCTCGCAG

CTGACATCTTAAAGCCAGTTGTATAAAATCATGCAAATCAGAAGCCAG

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTACGGGGCGGAGCCAACGCTGATTGGTCGAGAAACGGT NO: GATGCAAATGACGTCACGACACACGGCCGACGGTCGCCGCGGAGGCGTGGCCTA 1444 GCCCGGAAGCAAGTAGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGACC

CGGAAACGGACGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCG

GATGCAAGTGAAATTGGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAA

GTGAAAAATACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACT

TTGACCGATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTC

CGTGTCAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAA

CCAGTCGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAGAGTGTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGG

AACTGTGCCCTTGGACATGGCCGCATTATTGCTGGATGACTTTGTGAGTACAGTA

TTGGAGGATGAACTGCAACCAACTCCGTTCGAGCTGGGACCCACACTTCAGGAC

CTCTATGATTTGGAGGTAGATGCCCAGGAGGACGACCCGAACGAAGATGCTGTG

AATTTAATATTTCCAGAATCTCTGATTCTTCAGGCTGACATAGACAGCGAAGCTC

TACCTACTCCACTTCATACTCCAACTCTGTCACCCATACCTGAATTGGAAGAGGA

GGACGAGTTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGA

GGACGAACAGGGTGAGCAGAGCATGGCTCTAATTTCAGACTATGCTTGTGTGGT

TGTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGGAAGGCTGTAG

ATCCTGCCAATATCACCGGGATCAGACCGGAGACCCTAACGCCTCCTGCGCTCT

GTGTTACATGAAAAAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGA

GAGAGGCTGAGTGCTTAACACATATCTGTGATGCTTGAACAGCTGTGCTAAGTG

TGGTTTATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCGCCCTCAGAA

GACGACCACCCGTCTCCCCCCGATCTCACAGATGACACGCCCCTGCAAGTGATC

AGACCCACCCCAGTCAGACTCAGTGGCGAGAGGCGAATGGCTGTTGACAAAATT

GAGGACTTGTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAA

CGCCCCAGGAACTAGGCGCAGTTGCGTTTAGTCATGTGTAAATAAAGTTGTACA SEQ

ID Sequence

NO

ATAAAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCT

TAATCCTATATAAGTGCTAACACCTGGGCACTCAGGCACAGACCTTCAGGGAGC

TCCTGATGGAGGTGTGGACTATCCTTGGAGACTTTAACAAGACACGCCGGCTTGT

AGAGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCC

TCTATCTCGCCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAA

TCTTTTTGCCGACTGCTCTGGCCTGCTTGATTCTTTGAATTTTGGCCACCAGTCCC

AGCCGGGGTTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAA

CTGAGCAGGGGCTACATTCTGGACTTCGCGGCCATGCACCTGTGGAGGGCCTGG

GTCAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCT

CCGGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGG

CAGGCCATGTACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGA

GCTGGATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAGGGTGCTGACA

TCCATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGAT

GATGACAGAGCTGACGGCCAGTCTGATGAATCGCAAGCGCCCAGAGCGCATTAC

CTGGCACGAGCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATA

AATATGGCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGG

AGGAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACA

GGGTGACCAAGACCGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGG

CAGAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGG

GAATGAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGT

TCAATGGAGAGAAGTTTAATGGGGTGATGTTCATGGCCAACAGCCACATGACCC

TGCACGGATGCAGTTTCTTCGGCTTCAACAATATGTGTGCCGAGGTGTGGGGCGC

TGCTAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAG

ACCCAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGG

AGTCTCTACCGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCTTGGAGACGGG

CTGCTTCTGCCTGGTGAAGGGCACAGCCTCTCTGAAGCATAATATGGTGAAGGG

CTGCACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGTCA

TATCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTT

TGAGAATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCAC

CTTCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGA

TGCCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTAC

AAGATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGG

GGCAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAG

ACCAGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGA

GGACACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAAGGTGACTATAAA

GGCGGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACC

GGCGGGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGG

GATGGGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAG

TGCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCT

TGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGAC

TGGCCTCGAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCAT

CATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCG

CCAGCTGGCCGCACTGACCCAGCAGGTGTCCGAGCTCCGCGAACAGCAGCAGCA

AAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTTTAT

TTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAGAGTGC

GGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTACATGG

GCATGAGCCCGTCCCGGGGGTGGAGGTAACACCACTGCATGGCCTCGTGCTCTG

GGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTGCTGGA

TGATGTCCTTGAGGAGGAGACTAATGGCCACGGGGAGCCCCTTGGTGTAGGTGT

TGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGTGCAGT

TTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGGGGGTTCA

TGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACTTGTCAT SEQ

ID Sequence

NO

GCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCCGCCCA

GGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGCGGCTTT

GGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTGAGATC

ATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGGACGAT

CGTTCCCTCGGGCCCCGGGGCAAAGTTCCCCTCGCAGATCTGCATCTCCCAGGCT

TTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAACGGTT

TCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCTGGGAC

TTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTGGTAG

TTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGTTGAGC

ATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGAAGGCGGTCCCCG

TCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGTCCCAG

AGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTTCGGGG

GTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCTGCCAG

CGTCATGTCCTTCCATGGTCTCAGGGTCCGCGTGAGCGTGGTCTCTGTCACGGTG

AAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCATCCTG

CTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGCAGTTG

ACCATGAGCTTGTAGTTAAGGGCCTCGGCGGCGTGGCCCTTGGCACGGAGCTTG

CCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCGTAGAG

CTTGGGTGCTAGAAAGACGGACTCGGGGGCGAAAGCATCCGCTCCGCAGTGGGC

GCAGACGGTCTCGCACTCGACTAGCCAGGTGAGCTCGGGCTGCTCGGGGTCAAA

TGTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGACTTGAT

GAGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCGGACCA

CTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTGCGAGG

GGTAGCGGTCGTTGTCCACCAGGGGGTCCACTTTTTCCACGGTATGCAGACACAT

GTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCACGTGA

CCGGGGGTCCCAGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGTCCTCA

CTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCT

CGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGG

TCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCATAGAGG

GCGTTGGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCACGGTCGG

CGCGCTCCTTGGCCGCGATGTTAAGCTGGACATACTCGCGCGCGACGCACTTCCA

TTCGGGGAAGATGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCCAGCCGCG

GTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCTCGCAGGGGCTC

GTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCAGCACATC

AAGCAGGTGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCTGGACAGAG

TTCCTTGTCAAAATAGTCTATTTTTGAGGATGCATCATCTAAGGCCATCTGCCAC

TCGCGGGCGGCCATTGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCAGGGCATG

GGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATAGACATAGATGGG

CTCCGAGAGGATGCCGATGTATGTGGGATAACAGCGCCCCCCGCGGATGCTGGC

GCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGGGCCGAGAT

TGGTCCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGGCATGCG

AGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGCGGCAGGC

GGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGACGAGCT

CGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGATGATGT

CATAACCCGTCTCTCCTTTCTTCTCCCATAGCTCGCGGTTGAGGGCGTACTCCTCG

TCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGGTAAGAG

CCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTCTCCACG

GGGAGAGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGGGCGAA

GGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCGTCGCAG

CCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGGTTAGGC SEQ

ID Sequence

NO

AGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCATGAAATTG

CGGGTTATGCGGAAAGGGCCAGGCACGGAGGCTCGGTTGTTGATGACCTGGGCG

GCGAGGACGATCTCGTCGAAGCCGTTAATGTTGTGCCCGACGATGTAGAGTTCC

ATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGTAGGTGA

GGTCCTCGGGGCATTGCAGGCCGTGCTGCTCTAGCGCCCACTCCTGGAGATGTG

GGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCTGGAGCT

CGTCGCGAAAGAGGCGGAACTGCTGGCCTACGGCCATCTTTTCGGGGGTGACGC

AGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCGCGGCG

AGATCGCGAGCGAGGGCGACCAGCTCGGGGTCACCCGAGAATTTCATGACCAGC

ATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTTCTACA

TCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGAAGAA

CTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGTAGAA

ATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGCAGTA

CTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTCCCTT

GAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCCTGC

GTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCGCGG

GAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGGCGC

GCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGGTTC

TGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGTACT

TGATTTCTACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTAGCT

GCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGACGC

GCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGGCAC

GTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCGTG

CGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACCAC

TGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCGTC

ATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAG

GCGATTTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCCCG

CGCGCTCGACGGTGGCGGCGAGGTCATTCGAGATGCGACCCATGAGCTGCGAGA

AGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGTCGG

CGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCGCGA

AGACGGCGTAGTTGCGCAGGCGCTGGAAAAGGTAGTTGAGGGTGGTGGCGATGT

GCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATTTCGCTGATGT

CGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGTTGA

AAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCTGATGA

GCTCGGCGATGGTGGCGCGTACCTCGCGCTCGAAATCCCCGGGGGCCTCCTCCTC

TTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGTGGTG

GTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGC

TCGATCATCTCCCCGCGGCGGCGACGCATGGTCTCGGTGACGGCGCGACCCCGT

TCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGGCGGG

TCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGGTGTA

GGGGACGTGAGTGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAAAGC

GTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTGGAC

GCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGG

CGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGGAGC

CGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGTAGT

CATGCATGAGCCTTTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATGCGGGT

GACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTC

GGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCATGTC

GACGAAGCGGTGGTAGGCCCCTGTGTTGATGGTGTAAGTGCAGTTGGCCATAAG

CGACCAGTTAACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGAGCCG

CGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGGTACT

GGTATCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGCTGG

GTGGCCGGCGCGCCCGGGGCCAGATCCTCGAGCATGAGGCGGTGGTAGCCGTAG SEQ

ID Sequence

NO

AGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAA

CTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGTCGG

CACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACG

AAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAG

GCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGACTA

ACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATACGG

CGGAGAGCCCTTTTTGCCGGCCGAGTGGGGTCGCTAGACTTGAAAGCGGCAGAA

AATCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGGGTT

GAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGTCAC

CCCGCCGATTTAAAGACCCACAGCCAGCCGACTCTCCAGTTACGGGAGCGAGCC

CCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCACA

GCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTTGGGG

CGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCCGG

CGTACGTGCCTCCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCGAGG

AGATGCGCGACTGCCGTTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACC

GCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGGGATC

AGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAG

ACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACG

CTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCTGGCG

GAAGCCATCGTGCAGAATCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTG

GTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAACAT

CGCCGAGCCCGAGGGCCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCAT

CGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACT

ACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGT

ACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGC

TCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCC

ACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATG

TTGAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCTGGCGGCGAGGAGTCCTAC

TTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCC

GCCTACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACC

CGCTGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGTCCCAGCAAGCCCC

GGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGA

CGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAATCCCGA

GTCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGT

GGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGC

GCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGC

CCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGA

CCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGA

ACGAGGGCCTGGGCTCGCTGGTGGCACTGAACGCCTTCCTGGCGACGCAGCCGG

CGAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGCGCGCTGCGGC

TGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCTGGCCCGGACTACT

TTTTCCAGACGAGCCGGCAGGGCCTGCAGACGGTGAACCTGAGCCAGGCTTTCA

AGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGACG

GTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCCT

TCACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCACCTGCTGACGC

TGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACCTTCCAGGAG

ATCACGAGCGTGAGCCGCGCGCTGGGGCAGAACGACACCGACAGTCTGAGGGC

CACCCTGAACTTTTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTACGC

ACTGTCGGCCGAGGAGGAAAGGATCCTGAGATATGTGCAGCAGAGCGTAGGGC

TGTTCCTGATGCAGGAGGGCGCCACCCCCAGCGCCGCGCTGGACATGACCGCGC

GCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGA

TGGACTACCTGCACCGCGCGGCGGCCATGAACACGGACTACTTTACTAATGCTA SEQ

ID Sequence

NO

TACTAAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACA

TGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCT

CCCCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGC

GCGGTGGGTCGCAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCT

CGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGCGAGGACGAGTAC

CTGAACGACTCGCTGCTGCAGCCGCCACGGGTCAAGAACGCCATGGCCAATAAC

GGGATAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGA

CCATAGGGATGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCC

TGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCG

GGAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAAACTGGGGCGTCGGA

TGTTTTGAAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTT

GTTAGAGATGAGGCGCGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGC

GTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTC

CTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGACA

CCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACT

ACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCA

CCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGG

GCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACA

TGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAAAAGGCGGAA

GGGGCTGATGCAAATGATAGGAGCAAGGATATCTTAGAGTATCAGTGGTTTGAG

TTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAAC

AACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAGAATGGCGTGCTGGAG

AGCGATATCGGAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCCG

GTGACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGAC

GTGGTACTGCTGCCGGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAAC

CTCCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAAGGCTTCAGAATCATGTAT

GAGGATCTAGAAGGGGGCAACATCCCCGCCCTCCTGAATGTCAAGGAGTATCTG

AAGGATAAGGAAGAAGCTGGCACAGCAGCAGGAAAAGAAATTGAGTTGAAGGC

CATTTTGAAAGATGATTCAGACAGAAGCTACAATGTGATCGAGGGAACCACAGA

CACCCTGTACCGCAGTTGGTACCTGTCCTATACCTACGGGGATCCCGAGAAGGG

AGTGCAGTCGTGGACACTGCTCACCACTCCGGACGTCACCTGCGGCGCGGAGCA

AGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTCACCTTCCGTTCTACC

CAGCAAGTCAGCAACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCC

AAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACCT

CCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTCTGCCGGCCGCC

CGCGCCCACCATCACCACCGTTAGTGAAAACGTGCCTGCTCTCACAGATCACGG

GACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGA

CGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCG

CGCGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTCTCATCTCGCCCAGCA

ATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAGA

AGCGCTCCCAGCAGCACCCCGTCCGCGTCCGCGGCCACTTCCGCGCTCCCTGGG

GCGCTTACAAGCGCGGGCGGACTTCCACCGCCGTGCGCACCACCGTCGACGACG

TTATCGACTCGGTGGTCGCCGACGCGCGCAACTACACCCCCGCCCCCTCCACCGT

GGACGCGGTCATCGACAGCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCAA

GAGCCGGCGGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCCATGCGCG

CCGCCCGAGCTCTGCTGCGCCGCGCCAGACGCACGGGTCGCCGGGCCATGATGC

GAGCCGCGCGCCGCGCTGCCACTGCACCCACCCCCGCAGGCAGGACTCGCAGAC

GAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCAGGCGCG

GAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCA

CCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATG

TCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTAC

GGACCCCCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGA

GGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGT SEQ

ID Sequence

NO

AAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGCACGGCGGTGG

TGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAAGCGTAGCTATGACGAGG

TGTACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTC

GCCTACGGGAAGCGGTCGCGCGAAGAGGAACTGATCTCGCTGCCGCTGGACGAG

AGCAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAG

GCGGTGCTGCTGCCGAGCCGAGGGGTCAAGCGCGAGGGCGAGAGCATGTACCC

GACCATGCAGATCATGGTGCCCAAGCGCAGGCGCGTGGAGGACGTGCTGGACAC

CGTGAAAATGGATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGC

GCCGGGCCTGGGCGTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGT

CGACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGC

CTCCACCGCTACCGTCTACACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGG

AGGCGAAGATGGGGCGCCGCCAGCCGGCTGATGCCCAACTACGTGGTGCATCCT

TCCATCATCCCGACGCCGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCAGG

CGCCCAGCCGCCAAACGCCGCCGCCGCACCGCCACCCGCCGCCGTCTGGCCCCC

GCCCGCGTGCGCCGCGTAACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACC

GTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGA

GATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCC

CGCCGCAGGAGAGGCATGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGC

CATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCGCGCTCATCCCCATAATCGCC

GCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAG

CGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTAT

ATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGC

GGCCGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGC

GCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCC

GGACCTATGGGAACAAGGCCTGGAATAGTAGCACGGGGCAGTTGTTAAGGGAA

AAGCTCAAAGACCAGAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGG

CATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACA

GCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCCTC

CGCCACCAAGGGGCGAAAAGCGCCCGCGGCCTGACGCGGAGGAGACGATCCTG

CAGGTTGACGAGCCGCCATCGTACGAGGAGGCCGTCAAGGCCGGCATGCCCACC

ACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGAAACCCGCCACCCTTGAC

CTGCCTCCACCACCCACGCCCGCTCCACCGAAGGCAGCTCCGGTTGTGCAGGCC

CCCCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAAC

TGGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGC

CGCCGATGCTATTGAGAGAGAGGAAAGAGGACACTAAAGGGAGAGCTTAACTT

GTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGC

CGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCC

CGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACA

AGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGTGACCACGGACCGGTCCC

AGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGT

ACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCA

GCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTA

TTCGGGCACGGCTTACAACAGCCTGGCCCCAAAAGGTGCCCCCAACTCCAGTCA

GTGGGAGCAGAAAAAAACTACTGGTGGAGGCAATGACATGGAAACGCATACTT

ATGGCGTTGCAGCCATGGGTGGAGAAGACATTACAGAAAAGGGCCTTCAAATTG

GCATTGATGAAACTAAAGAAGAAAATAACAAGATATTTGCAGACAAAACATTCC

GCGGTAGAGCTCTTAAGAAGGACACCAAAATGAAACCATGCTATGGCTCATTTG

CCAGACCTACTAATGAAAAGGGAGGTCAGGCTAAATTTGTACTTGACCAGGAAG

GAAAGCCAACTAAAAATCATGATATCACAATGGCTTTCTTTGATACTCCTGGTGG

ACAATTGAATGGAAAAGATGAGCTTAAGGCAGACATTGTCATGTACACTGAAAA

TGTCAACCTGGAAACACCTGACACGCATGTTGTTTACAAACCTGGAACTTCAGAT

GACAGTTCAGAAATCAATTTGGTTCAACAGTCCATGCCAAATAGACCCAACTAC SEQ

ID Sequence

NO

ATTGGCTTCAGGGACAACTTTGTAGGGCTCATGTATTACAACAGCACTGGCAAC

ATGGGTGTGCTGGCAGGTCAGGCCTCTCAGTTGAATGCTGTGGTGGATTTGCAA

GACAGAAACACAGAGCTATCTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGA

ACCAGATACTTTAGCATGTGGAACTCTGCGGTGGACAGCTATGATCCAGATGTT

AGGATCATTGAGAATCACGGTGTGGAAGATGAACTTCCAAACTATTGCTTCCCA

TTGGATGGCGCTGGAACTAATGCAGTTTACCAAGGTGTAAAAATTACAGATGGA

AATGATGGTGATGTCAATGATGACTGGGAAAAAGACACCGCAGTATCTGAACGT

AATCAGATATGCAAGGGCAACATCTATGCCATGGAGATCAACCTCCAGGCCAAC

CTGTGGAAGAGTTTTCTGTACTCGAATGTGGCCCTGTACCTGCCCGACTCCTACA

AGTACACGCCGGCCAACGTCAAGCTGCCCGCCAACACCAACACCTACGAGTACA

TGAATGGCCGCGTGGTAGCCCCCTCGCTGGTGGACGCTTACATCAACATCGGCG

CCCGGTGGTCGCTGGACCCCATGGACAATGTCAATCCCTTCAACCACCACCGCA

ACGCGGGCCTGCGCTACCGCTCCATGCTGTTGGGCAACGGCCGCTACGTGCCCTT

CCACATCCAAGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTCCTGCTCCCA

GGCTCCTACACCTACGAGTGGAACTTCCGCAAGGACGTCAACATGATCTTGCAG

AGTTCTCTCGGCAACGATCTGCGCGTCGACGGCGCCTCCGTCCGCTTCGACAGCG

TCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACTGCCTCCACCCTGGA

AGCCATGCTGCGCAACGACACCAACGATCAGTCCTTCAACGACTACCTCTCGGC

CGCCAACATGCTCTACCCCATCCCGGCCAAGGCCACCAACGTGCCCATTTCCATC

CCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGAGTTTCACCCGGCTCAAGACC

AAAGAAACTCCCTCCCTCGGTTCTGGTTTCGACCCATACTTTGTCTACTCTGGCTC

CATCCCCTATCTCGACGGGACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCC

ATCATGTTCGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCG

AACGAGTTCGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCA

ATGCAACATGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAACATC

GGCTACCAGGGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTC

TTCCGCAACTTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAACTACAAG

GACTACAAGGCCGTTACCCTGCCCTTCCAGCACAACAACTCGGGCTTCACCGGCT

ACCTCGCACCCACCATGCGTCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCC

GCTCATCGGCCAGACAGCCGTGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGA

CAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTT

ACCGACCTGGGTCAGAACATGCTCTACGCCAACTCGGCCCACGCGCTCGACATG

ACCTTCGAGGTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAG

TTTTCGACGTGGTCAGAGTGCACCAACCGCACCGCGGCGTCATCGAGGCCGTCT

ACCTGCGCACGCCCTTCTCCGCCGGCAACGCCACCACATAAGCATGAGCGGCTC

CAGCGAAAGAGAGCTCGCGGCCATCGTGCGCGACCTGGGCTGCGGGCCCTACTT

TTTGGGCACCCACGACAAGCGCTTCCCGGGCTTCCTCGCCGGCGACAAGCTGGC

CTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGGGGCGTGCACTGGCTCGC

CTTCGGCTGGAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTC

TCGGACCGCCGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCGC

CGCAGCGCCCTGGCCTCCTCGCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACCC

AGACCGTGCAGGGGCCCGACTCCGCCGCCTGCGGACTTTTCTGTTGCATGTTCTT

GCATGCCTTCGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCACCATGAA

CTTGCTGACGGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCCCAC

CCTCAGGCGCAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCATTAC

TTTCGATCCCACCGCGCCGCCATCGAACACGCCACCGCTTTTGACAAAATGAAA

CAACTGCGTGTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGAGTATAT

GCAAGTTATTTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTG

GGGAGGGCCACGTTGCGGTACTGGAACTTGGGATACCACTTGAACTCGGGGATC

ACCAGTTTGGGCACTGGGGTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTC

ATCTGCAGGGCGCCCAGCATGTCCGGGGCGGAGATCTTGAAATCGCAGTTGGGA

CCGGTGCTCTGTGCGCGCGAGTTGCGGTACACGGGGTTGCAGCACTGGAACACC

ATCAGACTGGGGTACTTCACACTGGCCAGCACGCTCTTGTCGCTGATCTGATCCT SEQ

ID Sequence

NO

TGTCCAGGTCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGC

GGCCCAAGAAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGCACGGGCA

TTAGCATCATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACAAAGG

CCGAGATCTGCTTGAAAGCTTGCTGGGCCTTGGCTCCCTCGCTAAAAAACAGCCC

GCAGCTCTTCCCGCTGAACTGGTTATTCCCGCACCCGGCATCCTGCACGCAGCAG

CGCGCGTCATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCA

CCTTGGCCTTGCTGGGTTGCTCCTTCAGCGCGCGCTGCCCGTTCTCGCTGGTCAC

ATCCATCTCCACCACGTGGTCCTTGTGGATCATCACCGTTCCATGCAGACACTTG

AGCTGGCCTTCCACCTCGGTGCAGCCGTGATCCCACAGGGCGCAGCCGGTGCAC

TCCCAGTTCTTGTGCGCGATCCCGCTGTGGCTGAAGATGTAACCTTGCAACATGC

GGCCCATGATGGTGCTAAATGCTTTCTGGGTGGTGAAGGTCAGTTGCAGACCGC

GGACCTCCTCGTTCATCCAGGTCTGGCACATCTTTTGGAAGATCTCGGTCTGCTC

GGGCATGAGCTTGTAAGCATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCAT

CAACACGTTCATGGCATCCATGCCCTTCTCCCAAGACGAGACCAGAGGCAGACT

CAGGGGGTTGCGTACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGCGTTT

TCCGTCCTTGCCTTCCTTCAACAGAACCGGCGGCTGGCTGAATCCCACTCCCACG

ATCACGGCTTCTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTT

CGGAAGACCCGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAG

GTGGCGGCGAGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCTGAACCGTGGC

CCCGGGGCGGAGTGGCCTCTCGGTCCATGAACCGGCGCACGTCCTGACTGCCGC

CGGCCATTGTTTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAG

GAGGAGGACTTAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTC

GAAGAGCCGGCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGAGCAAGA

CGCAGGCCAGGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAGGAG

AGGAGGATGTGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTACGGGACG

CTCTGGCCGACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCT

ACGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAACCCAACGGCA

CCTGCGAGCCCAACCCGCGTCTCAACTTCTACCCCGTCTTTGCGGTCCCCGAGGC

CCTTGCCACCTATCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGC

GCCAACCGCACCCGCGCCGACGCGCTCCTAGCTCTGGGACCCGGCGCGCGCATA

CCTGATATCGCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGG

GACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGAGGGTCA

CACTAGCGCCCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCAGTGCTCAA

GCGCAGCGTCGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAG

GTCATGCGTCGCATCATGGATCAGCTTATCATGCCCCACATCGAGGCCCTCGATG

AAAGTCAGAAGCAGCGCCCCGAGGACACCCGGCCCGTGGTCAGCGACGAGCAG

CTTGCGCGCTGGCTCGGGACCCGCGACCCCCAGGCCCTGGAGCAGCGGCGCAAG

CTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGCTCGAATGCATGCGCCGCTTCT

TCAGCGACCCCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACACTTTCA

GGCACGGTTTCGTCAGGCAGGCATGCAAGATTTCCAACGTGGAGCTGACCAACC

TGGTCTCCTGCCTGGGGATCCTGCACGAGAACCGCCTGGGGCAGACCGTGCTCC

ACTCTACCCTCAAGGGCGAGGCGCGGCGGGACTATGTCCGCGACTGCGTCTTTCT

CTTTCTCTGCCACACATGGCAGTCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAG

GACGAGAACCTGAAGGAGCTGGACAATCTTCTTGCTAGAAATCTTAAAAAGCTG

TGGACGGGCTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGTGTTC

CCCGAGCGCCTGAGGCAGACACTGAAAGGCGGGCTGCCCGACTTCATGAGCCAG

AGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGATCGGGGATGCTGCCCG

CCACCTGCAACGCTTTCCCCTCCGACTTTGTCCCGCTGATCTACCGCGAGTGTCC

CCCGCCGCTGTGGAGCCACTGCTATCTCTTGCAGCTGGCCAACTACATCGCCTAC

CACTCGGACGTGATCGAGGACGTGAGCGGCGAGGGGCTTCTCGAGTGCCACTGC

CGCTGCAACCTGTGCTCCCCGCACCGCTCTCTGGTCTGCAACCCCCAGCTCCTAA

GCGAGACCCAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCG SEQ

ID Sequence

NO

CTCCGCTGAAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGT

ACCCGAGGACTACCACGCCCATGAGATAAAGTTCTTCGAGGACCAATCGCGCCC

TCAGCACGCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCA

ATTGCATGCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGG

GGTCTACCTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCA

TGCCGAGGAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAATGGGAC

AGCCAGGCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAGAATTGG

AAGAGGTGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCG

CCGGCAGCCCCGCCGGTCACGGATACAACCTCCGCAGCTCCGGCCAAGCCTCCT

CGTAGATGGGATCGAGTGAAGGGCGACGGTAAGCACGAGCGGCAGGGCTACCG

ATCATGGAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGG

GAACATCGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCC

CGCAACGTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCAAGTCAG

AGGAGTCGCCGGAGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCCT

TGACCACCAGGGAGCTGAGGAACCGGATCTTCCCCACTCTTTATGCCATTTTTCA

GCAGAGTCGAGGTCAGCAGCAAGAGCTCAAAGTAAAAAATCGGTCTCTGCGCTC

GCTCACCCGCAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCT

CGAAGACGCCGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACTA

AGGCGCGCCCACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGCA

AGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCCG

CGGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCCT

CGATGATCTCACGGGTCAACGGGGTCCGCAGTCATCGAAACCAGATATTGTTGG

AGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGC

CCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCG

TGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGG

CGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCG

AGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGCG

ACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCGTCCTTCACTCCCAA

CCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCAT

CGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTC

TCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGTG

AGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAGCTC

GCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTTGCCCGGGAG

AGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCAC

ACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTGGTCAGGTTCT

TCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCG

TCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTTGT

GGTGAGTTTAATAAAAGCTAAACTCTTGCAATACTCTGGACCTTGTCGTCGTCAA

CTCAACGAGACCGTCTACCTCACCAACCAGACTGAGGTAAAACTCACCTGCAGA

CCACACAAGACCTATATCATCTGGTTCTTCGAGAACACCTCATTTGCAGTCTCCA

ACACTCACTGCAACGACGGTGTTGAACTTCCCAACAACCTTTCCAGTGGACTGA

GTTACGATACACGTAGAGCTAAGCTCGTCCTCTACTATCCTTTCATAGAGGGAAC

CTACCAGTGCCTGAGTGGACCTTGCTTCCACAGTTTTACTTTGGTGAACGTTACC

GACAGCAGCACAGCCGCTCCAGAAACTAACCTTCCTTCTGATACTAACAAACCT

CGTTTCGGAGGTGAGCTAAGGCTTCCCCCTTCTGAGGAGGGGGTTAGCCCTTACG

AAGTGGTCGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCT

AGCTCAGCTGCCTTGCTGGGTAGAAATCAAAATCTTTATATGCTGGGTCAGACAT

TGTGGGGAGGAACTATGAAGGGGTTCTTGCTGATTATCCTTTCCCTGGTGGGGGG

TGTGCTGTCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATGAGAG

GAGTGTCATATGCACAGTAGTCATCAAATGCGAGCATGAATGCCCTCTCAACAT

CACATTCAAAAACCGTACCATGGGGAATGCATGGGTGGGCGACTGGGAACCAG

GAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACTT SEQ

ID Sequence

NO

ACTTCATGGCTTGTGGCCCCCTACCAAGGAAAACATGGTTGGGTTTTCTTTGGCT

TTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTTGTAGGGGCTCTAGTTTGGTT

CCTGAAGCGCAAGCCCAGGTACGGAAATGAGGAGAAGGAAAAATTGCTATAAA

TCTTTTTCTTTTCGCAGAACCATGAATACTTTGACCAGTGTCGTGCTGCTCTCTCT

TCTTGTAGCTGTTAGTCAGGGACTATCGGAATCTAAAGTTGTACAAATACCATAC

GGCAGTGATTATGTTTTAGTGGGACCAAGAGATCCACCAGTTCAATGGTTTGGG

GGTGGAGATTTTACTATGTTCTGTAATGGAAGTAAAACTCACTTGCGTAACATAA

GACACACTTGTAATGAACAAAACCTGACTTTACTGTCAGTTGGCTATGGCCATAG

AGGTGATTACTATGGTTATAGGCATGATAACACAGACAGAGAACATTATAAGGT

TATAATCCAAGCACCTGCGCCAAAAACCAGAAAACCCCTTTCAAAAATAAAATA

TGTTAATGTTACCATGGGCCAAAATCTAACACTAAGCGGACCACCAGGAACGCC

AGTTACATGGCTTGGTGAGGGACACAAACTTTGCGAAGGCAAAAATGTTTTCTA

TCGCGAACTTAACCACACTTGTACAGAAAAGGACCTTATCCTATTGTTTGTAAAT

AGGACGCATAATGGTCCTTATATTGGTTACAACAAAGAAGGTACAGACAGAGAA

CAATATGAAGTGTCAGTATTAGATTTAATGCCAATTGCAGGACAAGGTTTGGATT

CAAAAATAAAAAAAGAACAGAAAAGCCTTCCTAAAAGAAAGCCAAAAGATAAA

GTAAAAGAGGTTAACTTTCCAACAGGATCTAATCAGACACTGATTGGACCTCCT

GGACAAAAAATTGATTGGCATGTGAGCAGTAATGATGGACAGTTTAAAAAACTG

TGTGAAACTAAAGATGGAAAACATTCTTGCCATGGGCAGAACATAACAATTTTA

AACATTAGCAGATCAGATGAAGGGTCTTACTATGGTTCCAGTAATGACGCTTCA

ACGCACTATAAGCTTACTGTGTATGACAAATCAAGCTTTGGTAAACCGAAAATC

AAGATTGATCCATACACCACAAAGGGAACAACCACTGAAAATCATCATGAGTTT

GAATTACAACAGGGAAATGATCAAACAGAAGAATCAAAAATTCCATCTACTACT

GTGGCAATCGTGGTGGGAGTGATTGCGGGATTCATAACTATAATCATTGTGATTC

TGTGCTACATCTGCTGCCGCAAGCGTCCCAGGACTTACAATCATATGGTAGACCC

ACTACTCAGCTTCTCTTACTGAGACTCAGTCACTTTCATTTCAGAACCATGAAGG

CTTTCACAGCTTGCGTTCTGATTAGCATAATCACACTTAGTTTAGCAGCACCTAA

ACCAGAAGTATATACACAAGTTAATGTCACTAGGGGTGGGAATGCTACACTAGA

TGGACCATTTAACAATAACACATGGACAAGATATCATGACGATGGGAAAAAAA

GCGGATGGATGAATATTTGTAAATGGTCAGACCCATCATACACATGTCATAGTA

ATGGAAGCCTTAGTATTTTTGCTTTCAACATTAGTTCAGGTAAATATAAAGTTCA

AAGTTACACTAACAGTTATAATGGATTAGATGGTTATGAAAAACTTGAAGTTAA

AATGTTTAATCTAACAGTAATTGAGCCTCCAACCACTAGAGCACCCACCACAGTT

AGGACAACTAAGGACACAACACAGCCTACCACTGCACCCACTACACATCCAACC

ACCACAGCCAGTACAACTATTGAAACCACTACTCAAACTACAGTGCAGAATACT

AGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTGGAC

TAATGAAACCGGAGTATCATTGATGCATGGCCAGCCTTACTCAGGTTTGGATATT

CAAATTACTTTTCTGGTTGTTTGTGGGATCTTTATTCTTGTGGTTCTTCTGTACTTT

GTCTGCTGCAAAGCCAGAGAAAAATCTAGGAGGCCCATCTACAGGCCAGTAATC

GGGGATCCTCAGCCTCTCCAAGTGGAAGGGGGTCTAAGGAATCTTCTCTTCTCTT

TTTCAGTATGGTGATTCAGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTT

CTGTCTATTCAACGTGTGCGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGAC

TGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCTGCTAACCTGCACCTGCGT

CTGCAGCATTGTCTGCCTGGTCGTCACCTTCCTGCAGCTCATCGACTGGTGCTGC

GCGCGCTACAATTATCTCCACCACAGTCCCGAATACAGGGACGAGAACGTAGCC

AGAATCTTAAGGCTCATTTGACCATGCAGACTCTGCTCATACTGCTATCCCTCCT

CTCCCCTGCCCTCGCTGATGATGATTACTCTAAGTGCAAATTTGTGGAGCTATGG

AATTTCTTAGACTGCTATGATGCTAAAATGGATATGCCATCCTATTACTTGGTGA

TTGTGGGGATAGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCATGATCTACCCC

TGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATTCACATACACACTAGAAAGCA

GTTCACTAGCCTCCACGCCACCACCCACACCTCCTCCCCGCAGAAATCAGTTTCC

CCTGATTCAGTACTTAGAAGAGCCCCCTCCCCGACCCCCTTCCACTGTTAGCTAC SEQ

ID Sequence

NO

TTTCACATAACCGGCGGCGATGACTGACCACCACCTGGACCTCGAGATGGACGG

CCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCG

GGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCACCAGTGCAAGAAGGGCAT

CTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGAGCTCGTGTCCAACGGCAA

ACAGCATCGCCTCACCTATGAGATGCCCCAGCAGAAGCAGAAGTTCACCTGCAT

GGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTG

CATCCACTGCTCCTGCGAAAGCCCTGAGTGCATCTACTCCCTCCTCAAGACCCTT

TGCGGACTCCGCGACCTCCTCCCCATGAACTGATGTTGATTAAAAGCCCAGAAA

CCAATCAGTCCCTTCCCCCATTTACCCATTTCCCCAATTCTCATAAATCATTGGAA

TTAATCATTCAATAAAGATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTA

GTTGTTTAGCAGCACCTCGGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGG

CGGGCGGCAAACTTCCTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACA

ATTTTCATTGTCTTCCCTCTCAGATGTCAAAGAGGCTCCGGGTGGAAGATGACTT

CAACCCCGTCTACCCCTATGACTACGCGCGGAATCAGAATATCCCCTTCCTCACT

CCCCCCTTTGTCTCCTCCGATGGATTCAAAAACTTCCCCCCTGGTGTCCTGTCACT

CAAACTGGCTGACCCAATCACCATCACTAATGGGGATGTCTCGCTCAAGGTGGG

AGGGGGACTCGCCTTGCAAGAAGGAAGTGGACAGCTAACAGTCAATACTAAAG

CTCCATTGCAAGTTGCAAATGATAAATTAGAATTAGCACTTGATGCTCCATTTCA

AGAAAAAAATGGAAAACTGGTATTGAAAACAGGACATGGTTTAGCTGTTTTAAC

TAAAGATAACACCCACATACCAGACTTAATTGGAACCCTTGTAGTAGTAACTGG

AAATGGAATTGGTACAGGTAGTGTAGCTGGCGGAGGAACCATAGATGTAAGACT

TGGAGATGATGGTGGACTCTCATTTGATAAAAAGGGTGATTTAGTAGCCTGGAA

TAAAAAAGATGACAGGCGCACTTTATGGACAACGCCAGATCCATCGCCAAATTG

TAGAATTGAAGTTGCAAAGGATGCAAAACTTACTCTTGTCTTAACAAAGTGCGG

AAGTCAGATTTTAGCTTCTGTTTCAATTATTGTACTAAAAGGAACGTATGAATAT

GCAAAGAAGGAGACAAGCGTTAAAGAGTTCAGTATTAAGTTACTGTTTGATAAA

AATGGAGTGCTTTTGCCTGAATCTAATTTGGATAAAGATTATTGGAACTACAGAA

GTGATGATTTAACTATAGCCAAGCCATATGAAAATGCAGTACCTTTCATGCCAA

ATTTAAAGGCATACCCAAAACCTGATACAACTACTCAAACAACTCCAGGAGATA

AAAAAAGCAGTGGTAAAAATAAAATTGTGAGTAATGTGTATTTTGGAGGTGAGG

TTTATCAGCCAGGAGTTATAGTTGTTGCTTTTAATCAAGAAAAGGAAGCAAACT

GTGCTTACTCCATAACTTTGAAATTTGGATGGGGAAAGACATATGAAACACCCA

TACCATTTGATACCTCTTCTTTCACCTTCTCTTACATTGCTCAAGAAAATGAAGAC

AAAGAACAATAAAGTGTTTTGAACTGAATTTATGTATCTTTATTGATTTTTACAC

CAGCACGGGTAGTCAGCCTCCCACCACCAGCCCATTTCACAGTGTAAACAATTCT

CTCAGCACGGGTGGCCTTAAATAGGGGAATGTTCTGATTAGCACGGGAACTGGA

TTTAGTGTCTATAATCCACACAGTTTCCTGGCGAGCCAAACGGGGGTCGGTGATT

GAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCTCGCAGTCCAAGGTC

ACAGTCTGGTGGAACGAGAAGAACGCACAGATTCATACTCGGAAAACAGGATG

GGTCTGTGCCTTTCCATCAGCGCCCTCAACAGTCTCTGCCGTCGGGGCTCGGTGC

GGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTATGATCCCCACAG

CCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGCACCGCATCCTGATCTCTGC

CATGTTCTCACAGTAAGTGCAGCACATAATCACCATGTTATTCAGCAGCCCATAA

TTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGGATGATGGAACCAACGTGACCA

TCGTACCAGATGCGGCAGTATATCAGGTGCCTGCCCCTCATGAACACACTGCCC

ATATACATGATCTCTTTGGGCATATCTCTGTTCACAATCTGACGGTACCAGGGGA

AGCGCTGGTTGAACATGCACCCGTAAATGACTCTCCTGAACCACACGGCCAGCA

GGGCGCCTCCAGCCCGACACTGCAGGGAGC SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTAGGGCGTGGCCAACGCTGATTGGCCGTTGCAACGACCGTTAGTGAC NO: GTCACGACGCACGGCGTCAACGGTCGGCGCGGAGGCGTGGCCTAGGCCGGAAG 1445 CAAGTCGCGGGTCTGATGACGTCTAAAAAAGCGGACTTTAGACCCGGAAATGGC

CGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGGATGCAAGTG

AAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAGCGAAAAAT

ACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGACTTTGACCGAT

AGTCCGGTGTTTATGTCACCTGGTCAGCTGATCCACAGGGTATTTAAACCAGTCG

AGACCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTCTGAGCTC

CGCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCAGCAACTGTG

CCTATGGACATGGCTGTGCTTCTGCTGGACGACTTTGTGAATACAGTATTGGAGG

ACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGACCTCTATG

ATCTGGAGGTAGATGCCCATGAGGACGACCCGAACGAAGAGGCTGTGAATTTAA

TATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTATTCCTAC

TCCACTTCATACTCCAACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACGA

GTTAGACCTCCGGTGCTACGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGACGA

ACAGGGTGAGCAGAGCATGGCTCTAATCTCAGACTATGCTTGTGTGGTTGTGGA

AGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGGAAGGCTGTAGATCCTG

CCAATATCACCGGGATCAGACCGGAGACCCTAATGCCTCCTGCGCTCTGTGTTAC

ATGAAAACCACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAGGC

TGAGTGCTTAACACATCTCTGTGTGATGCTTGAACAGCTGTGCTAAGTGTGGTTT

ATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAGA

CCACCCGTCACCCCCTGATCTCACAGATGACACGCTCCTGCAAGTGTACAGACCC

ACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGACAAAATTGAGGA

CTTGTTGCAGGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGCCC

CAGGAACTAGGCGCAGCTGCGCTGAGTCATGTGTAAATAAAGCTGTATAATAAA

AGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGAC

CTATATAAGTGGCAACACCTGGACACTCAGACACAGACCTTCAGGGAGCTCCTG

ATGGAGGTGTGGACTATCCTTGCAGACTTTAACAAGACACGCCGGCTTGTAGAG

GATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTAT

CTCGCCTGGTGTACACAGTTAAGAAGGATTATAGCGAGGAATTTGAAAATCTTTT

TTCCGACTGCTCTGGCCTGCTTGATTCACTGAATTTTGGCCACCAGTCCCTTTTCC

AGGAAAGGGTCCTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCG

CAGGGGCTACATCCTGGACTTCGCGGCCATGCACCTGTGGAGGGCCTGGATCAG

GCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCCGGG

TCTTCTTCATCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGGAGGC

CATGGACGACAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGG

ATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAGGGTGCTGACATCCAT

GGCCAGGGGAGTGAAGCGGGAGAGGAGCGATGGGGGCAATACCGGGATGATGA

CCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTACCTGGC

ATGAGCTACAGCTGGAGTGCAGGGATGAGGTCGGCCTGATGCAGGATAAATATG

GCCTGGAGCAGATAAAAACCCACTGGTTGAACCCAGATGAGGATTGGGAGGAG

GCCATTAAGAAGTATGCCAAGATTGCCCTGCGCCCAGATTGCAAGTACAGGGTG

ACCAAGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCAGAG

GTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAATG

AGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCAAT

GGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGCAT

GGCTGTGATTTCTTCGGCTTCAACAATATGTGTGCAGAGGTCTGGGGCGCCGCTA

AGATCAGGGGATGTAAGTTTTATGGCTGTTGGATGGGCGTGGTCGGAAGACCCA

AGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGTCT

CTACCGAGGGCAATGCTCGAGTGAGACACTGCTCTTCCATGGAGACGGGCTGCT SEQ

ID Sequence

NO

TCTGCCTGGTGAAGGGCACAGCCTCGATCAAGCATAATATGGTGAAGGGCTGCA

CGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCC

TGAAGAACATCCATGTGACCTCCCACCCCAGGAAGAAGTGGCCAGTGTTTGAGA

ATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGTCAGAAGGGGTACCTTCC

AGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCT

TCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGAT

CCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGCAG

ACACACCAGGATGCAACCGGTGGCCCTGGATGTGACCGAGGATCTGCGACCCGA

CCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACAC

AGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAAGGCGACTATAAAGGTGGG

TGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGCGGG

CACTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGGGATGGG

CCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGTGCTTC

CAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTCGCTCG

ACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACTG

GCCTCGAGCTACATGCCAAGCAGCAACAGCAGCCCCTCCGTCCCCAGTTCCATC

ATCGCCGATGAGAAACTGCTGGCCCTGCTGGCAGAGCTGGAAGCCCTGAGCCGC

CAGTTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGCAG

CAAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTT

TATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GGAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCGGG

GGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACT

TGTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG

ACGATGGTTCCCTCGGGACCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGATAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGT

GGTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGT

TGAGCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGT

CCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGA

GCCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGT

CCCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCT

GCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCA

CGGTGAATGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATGAGCTCGTAGTTGAGTGCCTCGGCGGCGTGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCG

TAGAGCTTGGGTGCAAGAAAGACGGACTCGGGGGCAAAGGCGTCCGCTCCGCA

GTGGGCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGCTCGGGCCGCTCGGG

GTCAAAAACCAGTTTTCCCCCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCCA

TGAGTCTGTGTCCGCGTTCGGTGACAAACAAGCTGTCTGTGTCCCCGTAGACGGA

CTTGATGGGCCTGTCCTGCAAGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCG

GACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG

CGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACGGTATGCAG SEQ

ID Sequence

NO

ACACATGTCCCCCTCCTCCGCATCCAGGAAGGTGATTGGCTTGTAGGTGTAGGCC

ACGTGACCCGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCG

TCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATT

CCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCGATGCTTTTGAGTAGACTTTCATC

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

TAGAGGGCGTTTGAGAGAAGCTTGGCGATGGATCTCATGGTCTGATTTTTGTCAC

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACAC

ACTTCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACACTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCGCCCGCCCTTGCGCGAGCAGAAAGGGGGCA

GCACATCCAAGAGGTGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

CTGCCACTCGCGGGCGGCCATTGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

TGGCATGGGATGCGTGAGCGCGGAGGCGTACATGCCGCAGATGTCGTAGACATA

GATGGGCTCCGCGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGAT

GCTGGCGCGCACATAGTCATACAACTCATGCGACGGGGCCAAAAAGGCGGGGC

CGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGATGG

CATGCGAGTTTGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGG

GCAAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGA

CGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCGGA

TGATGTCATAACCCGTCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCGTA

CTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGG

TAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCTTC

TCCACGGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGTCAGG

GCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAATCCGAGTCG

TCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGGGG

TTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCCCGCGGCATG

AAATTGCGGGTGATGCGGAAAGGGCCCGGCACGGAGGCTCGGTTGTTGATGACC

TGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGTAG

AGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCCTCGT

AGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCTAGCGCCCACTCCTGGA

GATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGTCT

GGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGGGG

TGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCA

CGGCTAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCATGA

CCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTT

CTACATCGTAGGTGACAAAGAGCCGTTCCGTGCGAGGATGAGAGCCGATTGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAAGT

AGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCGCG

CGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGG

CGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAGGG

TTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATGGT

ACTTGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGA

CGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGCAGAGG

CACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGC

GTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGTCGCCTCTGCGTGAAGAC

CACTGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGC

GTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGG SEQ

ID Sequence

NO

TAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGC

CCGCGCGCTCGACGGTGGCGGCGAGGTCGTTGGAGATGCGGCCCATGAGCTGCG

AGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCCGT

CGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCGCG

CGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGGCG

ATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGCTG

ATGTCGCCCATGGCCTCTAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAAGT

TGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCGGA

TGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTCCT

CCTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGGT

GGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAA

GCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACC

CCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGGG

CGGGTCCCCGTTGGGCAGCGAGAGGGCGCTGACGATGCATCTTATCAATTGCGG

TGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGAA

AGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGTG

CGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGG

AGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTAGT

AATCATGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTCTTCCATGC

GGGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGC

GCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCGTCCA

TGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCCA

TGAGCGACCAGTTAACGGTCTGCAGGCCGGGCTGCACGACCTCGGAGTACCTGA

GCCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAGG

TACTGGTATCCGACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCAGCGC

TGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTATCCG

TAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGG

GAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATGGT

CGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAA

ACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGT

TAGGCCGCGCGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGCGA

CTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGATA

GAAAACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAGG GTTGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGCGGGACTTGGT CACCCCGCCGATTAAAGACCCACAGCCAGCCGACTTCTCCAGTTACGGGAGCGA

CCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCGCTAGCCAGCCA

CAGCCACAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCGAGACTGGG

GGCGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGACGTGCGCCC

GGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGAGGAGCCCG

AGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTG

GACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGCAGACGGG

GATCAGCCCCGCGCGCGCGCATGTGGCGGCGGCCAACCTGGTGACGGCCTACGA

GCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAACCATGTGCG

CACGCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCTGTGGGACCT

GGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTT

CCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGA

ACATCGCCGAGCCCGAGGGCCGCTGGCTGCTGGAGCTGATCAACATCTTGCAGA

GCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATC

AACTACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACG

CCGTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACATGCGCATG SEQ

ID Sequence

NO

GCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAACGACCGC

ATCCACAAGGCCGTGAGCGCGAGCCGGCGGCGCGAGCTAAGCGACCGCGAGCT

GATGCTGAGCCTGCGCCGGGCGCTGGTAGGCGGCGCCGCCGGCGGCGAGGAGTC

CTACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGA

GGCCGCCTACGGTCCAGAGGACTTGGATGAGGAAGAGGAAGAGGAGGAGGATG

CACCCGTTGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGCAGCAAGCCC

CGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGG

ACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACCCGCAACCCCG

AGTCCTTTAGACAACAGCCGCAGGCCAACAGACTTTCGGCCATTCTGGAGGCGG

TGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACG

CGCTGGCGGAGAACAAGGCCATTCGTCCCGACGAGGCTGGGCTGGTATACAACG

CCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGG

ACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAG

AACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCGACGCAGCCG

GCGAACGTGCCGCGCGGGCAGGACGATTATACCAACTTTATCAGCGCGCTGCGG

CTGATGGTGACCGAGGTTCCCCAGAGCGAGGTGTACCAGTCGGGTCCGGACTAC

AAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCGAC

GGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCGCCC

TTCACCGACAGCGGCAGTGTGAACCGCAACTCGTACCTGGGTCACCTGCTGACG

CTGTACCGCGAGGCCATAGGCCAGGCACAGGTGGACGAGCAGACCTTCCAGGA

GATCACTAGTGTAAGCCGCGCGCTGGGGCGGAACGACACCGACAGTCTGAGGGC

CACCTTGAACTTCTTGCTGACCAATAGACAGCAGAAGATCCCGGCGCAGTATGC

GCTGTCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAGCAGAGCGTAGGGCT

GTTCCTGATGCAGGAGGGGGCCACACCCAGCGCCGCGCTGGACATGACCGCGCG

CAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAATAAGCTGAT

GGACTACCTGCACCGCGCGGCGTCCATGAACTCGGACTACTTTACCAATGCCATT

TTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATG

CCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGCGGTGTTCTCA

CCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGCGAGCGAGGGTGC

GGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTTGCCGGGCTCG

GTGAACAGCGGCAGGGTGAGCCGCCCGCGCTTGCTGGGCGAGGACGAGTACCTG

AACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGCCATGGCCAATAACGGG

ATAGAAAGTCTGGTGGACAAACTGAACCGCTGGAAGACCTACGCTCAGGACCAT

AGGGAGCCTGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCT

GGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGG

GAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAGACTGGGGCGACGGAT

GTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGT

TAGAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTCGTACGAGAGCGT

GATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCT

ACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCTGTACGACACC

ACTCGCGTGTATTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACC

AAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCC

CCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGGGGCG

GTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGT

TCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGAAAGCATCCCAAAGATG

TGCCAGTTAATGATTTAAGCAAGGATATCTTAGAGTATGAGTGGTTTGAGTTTAC

CCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAACAACGC

CATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGCGTGCTGGAGAGCGA

TATCGGAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCCGGTGAC

CAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGT

GCTGCTGCCTGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCT

GGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTATGAGGA SEQ

ID Sequence

NO

TCTCGAAGGGGGCAACATCCCCGCACTTCTGAATGTGACCAAGTACCTGGAAAG

CAAGAAGAAGCTAGAGGAGGCAGTGGAGAATGCCGCTAAGGCTAATGGTCCTG

CAAGAGGAGACAGTAGTGTCTCAAGAGAGGTGGAAAAGGCAGCTGAAAAAGAG

CTTGTCATTGAGCCCATCAAGCAAGATGATAGCAAGAGAAGTTACAACCTCATC

GAGGGTACCCATGACACCCTGTACCGAAGCTGGTACCTGTCCTATACCTACGGG

GACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCACCACCCCGGACGTCACC

TGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTC

ACCTTCCGCTCTACCCAGCAAGTCAGCAACTACCCCGTGGTTGGCGCCGAGCTCA

TGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCCGTCTACTCCCAGCTCAT

CCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATC

CTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAGTGAAAACGTGCCTGCTC

TCACAGATCACGGGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAG

TGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGG

CATAGTCGCGCCGCGTGTGCTTTCCAGTCGCACCTTCTAAAAAATGTCTATTCTC

ATCTCGCCCAGCAATAACACCGGCTGGGGTATTACTAGGCCCAGCGCCATGTAC

GGAGGAGCCAAGAAGCGCTCCCTGCAGCACCCCGTCCGCGTCCGCGGCCACTTC

CGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTGCCACCGCCGCCGCCGTG

CGCACCACCGTTGACGACGTCATCGACTCGGTGGTCGCCGACGCGCGCAACTAT

ACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGTGGTGGCCGACGCA

CGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCGCCAGGCGCCACCG

GAGCACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCAC

GGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCTACTGCACCCCCCGC

AGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCCGCGGCCATCTCTAGCAT

GACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGT

GCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTC

CCTCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTC

GTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATC

AAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCG

CGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGT

GTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAG

GAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGACATCCTGGACCAGG

CGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAG

CTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGAGCCTGAAGCCCGTG

ACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAG

CGCGAGGGCGAGAACATGTACCCGACCATGCAGATCATGGTGCCCAAGCGCCGG

CGCGTGGAGGAAGTGCTGGACAGCGTGAAAATGGATGTGGAGCCCGAGGTCAA

GGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTACAGACCGTGGACAT

TCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGT

GCAGACCGACCCCTGGCTTCCAGCCTCCACCTCTACCGCCTCTACTTCTACCGCC

GCCACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGCGCCGCCAGCCGGCT

GATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGCCGGGCTACCGCGGC

ACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAGCAAACGCCGCCGCCGCACC

GCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCGTAACCACGCGCCGG

GGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAGCATCCTTTAATCCG

TGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCCGCCTGCGCATCCCC

GTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCATGGCAGGCAGCGG

CCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCT

GCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACGATCCCGGGCATAGC

TTCCGTGGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTA

TCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGCACCTGGAACGAGATC

GGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGG

CTTAAAAATTTCGGCTCGACGCTCCGGAACTATGGGAACAAGGCCTGGAATAGT SEQ

ID Sequence

NO

AGCACGGGGCAGTTGTTAAGGGAAAAGCTCAAAGACCAGAACTTCCAGCAGAA

GGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGTGGACATCGCGAACCA

GGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGCGGCCGTCCACGGTGGT

GGAGATGGAAGATGCAACTCCGCCCAAGGGCGAGAAGCGGCCGCGGCCCGACG

CGGAGGAGACGATCCTGCAGGTGGATGAGCCTCCCTCGTACGAGGAGGCCGTCA

AGGCCGGCATGCCCACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGA

AACCCGCCACCCTTGATCTGCCTCCACCACCCACGCCCGCTCCACCGAAGGCAG

CTCCGGTTGTGCAGGCCCCCCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCC

GCCGCCAGGCCCAGAACTGGCAGAGCACACTGCACAGTATCGTGGGCCTGGGAG

TGAAAAGTCTGAAGCGCCGCCGATGCTATTGAGAGAGAGGAAAGAGGACACTA

AAGGGAGAGCTTAACTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGC

CACCCCCTCGATGATGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGC

CTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTA

CTTCAGCCTGGGCAACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGT

GACCACGGACCGGTCCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGA

GGACACCACGTACTCGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCG

GGTGCTAGACATGGCCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGG

TCCCAGCTTCAAACCCTACTCGGGCACGGCCTACAACAGCCTGGCCCCCAAGGG

TGCCCCTAATTCCAGTCAGTGGGAAGAAAAAAAGAATGGAGCTGGAAATCAAA

CCGAAACTCATACGTATGGCGTCGCTCCCATGGGCGGAACTAACATTACAATTA

ATGGTTTGCAAATTGGAACTGAGGAAGAAGATGGAAATCCTACAAAGGAAATTT

TTGCAGATAAAACATTCCAGCCTGAACCTCAAATAGGAGAAGAAAACTGGCAGG

ACACTGAGAATTTTTATGGCGGCAGAGCTCTTAAGAAAGACACCAAAATGAAAC

CTTGCTATGGCTCTTTTGCCAGACCTACTAACGAAAAGGGAGGTCAAGCTAAGTT

AAAACTTGACGCCCAAGGTCAGCCAACTAAAGATTATGACATTGACCTGGCTTT

CTTTGACTCACCTGGAGGAAACACAGCAACTGGTGGTCAAGAAGAGCTTAAAGC

AGACATTGTCATGTACACTGAGAATGCTTATCTGGAAACACCAGATACCCATGT

AGTTTACAAGCCAGGAACTTCTGATGACAGTTCTGCCGCCAACTTGGTTCAGCAG

TCCATGCCCAACAGGCCAAACTACATCGGCTTCAGAGACAACTTTGTGGGTCTC

ATGTATTATAACAGCACTGGCAACATGGGTGTGCTGGCTGGTCAGGCCTCTCAGT

TGAATGCCGTGGTTGACTTGCAAGACAGAAACACAGAGCTGTCTTACCAGCTCT

TGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGCATGTGGAACTCTGCGGT

GGACAGTTACGATCCCGATGTCAGGATCATTGAGAATCATGGCGTGGAAGATGA

ACTTCCAAACTATTGCTTCCCATTGGACGGCTCTGGCACCAATGCAGCTTATCAA

GGTGTTAAAGTTAAAAATGGGGAAGATGGTGATATTGAGAGCGAATGGGAAAA

AGACACCAATGTCGCAGCTCGTAACCAACTGTGCAAGGGCAACATCTTCGCCAT

GGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTCGAACGTGGC

CCTGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAACGTCAAGCTGCCCAC

CAACACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCCCCCTCGCTGGT

GGACGCCTACATCAACATCGGCGCCCGCTGGTCGTTGGACCCCATGGACAACGT

CAACCCCTTCAACCACCACCGCAATGCGGGCCTGCGCTACCGCTCCATGCTTCTG

GGCAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAGTTCTTTGCCA

TCAAGAACCTGCTCCTGCTCCCGGGCTCCTACACCTACGAGTGGAACTTCCGCAA

GGACGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGATCTGCGCGTCGACGG

CGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTTCCCCATGGCG

CACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACACCAACGACCAG

TCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATCCCGGCCAAGG

CCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTG

GAGTTTCACCCGGCTCAAGACCAAGGAAACTCCATCCCTCGGCTCGGGTTTCGA

CCCCTACTTTGTCTACTCGGGCTCCATCCCCTATCTCGACGGGACCTTCTACCTCA

ACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTCGGTCAGCTGGCCCGG

CAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAAGCGCAGCGTCGACGG

GGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGGTTCCTCGTCCA SEQ

ID Sequence

NO

GATGCTCTCCCACTACAACATCGGCTACCAGGGTTTCCACGTGCCCGAGGGCTAC

AAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCAGGCAGGTG

GTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACCCTGCCCTTCCAGCAC

AACAACTCGGGTTTCACCGGCTACCTCGCACCCACCATGCGTCAGGGGCAGCCC

TACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAGCCGTGCCCTCCGTCA

CCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCA

ACTTCATGTCCATGGGCGCCCTTACCGACCTGGGTCAGAACATGCTCTACGCCAA

CTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATGGATGAGCCCAC

CCTCCTCTATCTTCTCTTTGAAGTTTTCGACGTGGTCAGAGTGCACCAGCCGCAC

CGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCGGCAACGCC

ACCACCTAAGCATGAGCGGCTCCAGCGAAAGAGAGCTCGCGGCCATCGTGCGCG

CCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGAC

CGGAGGCGTGCACTGGCTCGCCTTTGGCTGGAACCCGCGCTCGCGCACCTGCTA

CATGTTCGACCCCTTTGGGTTCTCGGACCGCCGGCTCAAGCAGATTTACAGCTTC

GAGTACGAGGCCATGCTGCGCCGCAGCGCCCTGGCCTCCTCGCCCGACCGCTGT

CTCAGTCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGACTCCGCCGCCTGC

GGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGACCGACCCA

TGGACGGAAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGCATGCTAC

AATCGCCACAGGTGCTACCCACCCTCCGGCGCAACCAGGAGGAGCTCTACCGCT

TCCTCGCGCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCGCCATCGAACACGC

CACCGCTTTTGATAAAATGAAACAACTGCGTGTATGACTCAAATAAACAGCACT

TTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGAAGGGGTTCT

CGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGTACTGGTACTT

GGGATACCACTTGAACTCGGGAATCACCAGTTTGGGCACTGGGGTCTCGGGGAA

GGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGGCGCCCAGCATGTCAGGCGC

GGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGTGCGCGCGAGTTGCGGTA

CACAGGGTTGCAGCACTGGAACACCATCAGACTGGGGTACTTCACACTGGCCAG

CACGCTCTTGTCGCTGATCTGATCCTTGTCCAGATCCTCGGCGTTGCTCAGGCCG

AACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCTCTGAGGCTTG

TGGTTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCCGCGCTGCATAT

TAGGGTAGAGGGCCTTGACAAAGGCCGCGATCTGCTTGAAAGCTTGCTGGGCCT

TGGCCCCCTCGCTGAAAAACAGCCCACAGCTCTTCCCGCTGAACTGGTTATTCCC

GCACCCGGCATCATGCACGCAGCAGCGCGCGTCATGGCTGGTCAGTTGCACCAC

GCTTCGGCCCCAGCGGTTCTGGGTCACCTTAGCCTTGCTGGGCTGCTCCTTCAAC

GCGCGCTGACCGTTCTCGCTGGTCACATCCATCTCCACCACGTGGTCCTTGTGGA

TCATCACCGTCCCATGCAGACACTTGAGCTGGCCTTCCACCTCGGTGCAGCCGTG

GTCCCACAGGGCGCAGCCGGTGCACTCCCAGTTCTTGTGCGCGATCCCGCTGTGG

CTGAAGATGTAACCTTGCAACATGCGGCCCATGATGGTGCTAAATGCTTTCTGGG

TGGTGAAGGTCAGTTGCATCCCGCGGGCCTCCTCGTTCATCCAGGTCTGGCACAT

CTTTTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGCATCGCGCAGGCCG

CTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGCATCCATGCCCTTCTCCC

AGGACGAGACCAGCGGCAGACTCAGAGGGTTGCGCACGTTCAGGACACCAGGG

GTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCAACAGAACCGGCG

GCTGGCTGAATCCCACTCCCACGATCACGGCATCTTCCTGGGGCATCTCTTCGTC

GGGGTCTACCTTGGTCACATGCTTGGTCTTCCTGGCTTGCTTCTTTTTTGGAGGGC

TGTCCACGGGGACCACGTCCTCCTCGGAAGACCCGGAGCCCACCCGCTGATACT

TTCGGCGCTTGGTGGGCAGAGGAGGTGGTGGCGGCGAGGGGCTCCTCTCCTGCT

CCGGCGGATAGCGCGCCGACCCGTGACCCCGGGGCGGAGTGGCCTCTCGGTCCA

TGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGGGAAGATGG

AGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCCACGAGCAA

CCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAGAACCCCCA

CAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACCGACGCTGG SEQ

ID Sequence

NO

GCTCGAGCATGGCTACCTGGGAGGAGAGGAGGATGTGCTGCTGAAACACCTGCA

GCGCCAGTCCATCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAAACCCCCCT

CAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCGCCGCGCGT

GCCCCCCAAACGCCAGCCCAACGGCACCTGCGAGCCCAACCCGCGTCTCAACTT

CTATCCCGTCTTTGCGGTCCCCGAGGCCCTTGCCACCTATCACATCTTTTTCAAGA

ACCAAAAGATCCCCGTCTCCTGTCGCGCCAACCGCACCCGCGCCGACGCGCTCC

TCGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAGAGGTGC

CCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGA

AAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTTGGAAGGC

GACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTTGAGCTCACCCACTTCGCC

TACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTCA

TCATGCCCCACATCGAGGCCCTCGATGAGACCCAAGAGCAGCGCCCAGAGGACG

CCCGGCCCGTGGTCAGCGACGAGCAGCTCGCGCGCTGGCTCGGGACCCGCGACC

CCCAGACCCTGGAGCAGCGGCGCAAGCTGATGCTGGCCGTGGTCCTGGTCACCC

TCGAGCTCGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGCGCAAGG

TCGAGGAGACCCTGCACTACACTTTCAGGCACGGCTTCGTCAGGCAGGCCTGCA

AGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCTGCATG

AGAACCGCCTTGGGCAGACCGTGCTCCACTCTACCCTGAAGGGCGAGGCGCGGC

GGGACTATGTCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACATGGCAAGCAGC

CATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTAAAGGAGCTGGACA

AGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGACGGGCTTCGACGAGCGCACCG

TCGCCTCGGACCTGGCCGAGATCGTCTTCCCTGAGCGCCTTAGGCAGACGCTGA

AAGGCGGGCTGCCCGACTTCATGAGCCAAAGCATGTTGCAAAACTACCGCACTT

TCATTCTCGAACGATCGGGGATCCTGCCCGCCACCTGCAACGCCTTCCCCTCCGA

CTTTGTCCCGCTTAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTAC

CTCTTGCAGTTGGCTAACTACATCGCCCACCACTCGGATGTGATCGAGGACGTGA

GCGGCGAGGGGCTGCTAGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACC

GCTCCCTGATCTGCAACCCCCAGCTACTCAGCGAGACCCAGGTCATCGGTACCTT

CGAGCTGCAAGGTCCGGAGAAGTCCACCGCTCCGCTGAAACTCACGCCGGGGTT

GTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGCTGACTACCACGCCCATGAG

ATAAAGTTCTTCGAGGACCAATCGCGTCCGCAGCATGCGGATCTCACGGCCTGC

GTCATCACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCAAAAATCCCGC

CAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGACGGGC

GAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGAGCCGCT

AGTGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAATGG

GAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCAGGCAA

CAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGCCGGTCACGGATA

CAACCTCCGCTCCGGTCAAGCCTCCTCGTAGATGGGATCGAGTGAAGGGTGACG

GTAAGCACGAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCGCGATC

ATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCCGCTACCTGC

TCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTACCGTCACCT

TCACAGCTAAGAAAAAATCAGAAGTAAGAGGAGTCGCCGGAGGAGGCCTGAGG

ATCGCGGCGAACGAGCCCTTGACCACCAGGGAGCTGAGGAACCGGATCTTCCCC

ACTCTTTATGCCATTTTTCAGCAAAGTCGAGGTCAGCAGCAAGAGCTCAAAGTA

AAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAACGAA

GATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCCACAAGTACTGC

GCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAATTAC

CTCATCGCCACCATGAGCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCAG

CCCCAGATGGGCCTGGCCGCAGGCGCCTCCCAGGACTACTCCACCCGCATGAAC

TGGCTCAGTGCCGGCCCCTCGATGATCTCACAGGTCAACGGGGTCCGTAACCAT

CGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAG

CTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCA

ACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCA SEQ

ID Sequence

NO

GGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGT

ATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTG

AGCTCTTCAATCGGTCTGCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGG

AGATCCTCCTTCACTCCCCACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGG

AGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTC

GGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATA

CCGAACTTCGATGCAGTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCAAT

GGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTG

CGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGAGTTTCCCGAGGAGC

ACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGT

CTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGG

CGCCACCACCTACACCGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAAT

TTTTGTTGTACTCTGTGTGCTGAGTTTAATAAAAGCTAAACTCCTACAATACTCT

GGGATCCCGTGTCGTCGCACTCGCAACGAGATCTTCAACCTCACCAACCAGACT

GAGGTAAAACTCAACTGCAGACCAGGGGGCAAATACATCCTCTGGCTCTTTGAA

AACACTTCCTTCGCAGTCTCCAACGCCTGCGCCAACGACGGTATTGAAATACCCA

ACAACCTTACCAGTGGACTAACTTACACTACCAGAAAGACTAAGCTAGTACTCT

ACAATCCTTTTGTAGAGGGAACCTACCACTGCCAGAGCGGACCTTGCTTCCACAC

TTTCACTTTGGTGAACGTTACCGACAGCAGCGCAGCCGCTCCAGAAACATCTAA

CCTTTTTGATACTAACACTCCTAAAACCGGAGGTGAGCTCTGGGTTCCCTCTTTA

ACAGAGGGGGGTAAACATATTGAAGCGGTTGGGTATTTGATTTTAGGGGTGGTC

CTGGGTGGGTGCATAGCGGTGCTGTATTACCTTCCTTGCTGGATCGAAATCAAAA

TCTTTATCTGCTGGGTCATACATTGTTGGGAGGAACCATGAAGGGGCTCTTGCTG

ATTATCCTTTTCCTGGTTGGGGGTGTACTGTCATGCCACGAACAGCCACGATGTA

ACATCACCACAGGCAATGAGAGGAGTGTGATATGCACAGTAGTCATCAAATGCG

AGCATACATGTCCTCTCAACATCACATTCAAGAATAAGACCATGGGAAATTCAT

GGGTGGGCGATTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCATG

TATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAAC

ATGGTTGGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCT

GGTAGGGGCTTTAGTATGGTTCCTGAAGCGCAAGCCTAGGTATGGAAATGAGGA

GAAGGAAAAATTGCTATAAATCTTTTTCTTTTCACAGCACCATGAATACTTTGAC

CAGTGTCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGGCAGGAATTATTAACT

TAAATGTATCATGGGGAATGAATCTAACTTTAGTGGGACCATCAGACCTGCCAG

TTACATGGTATGATGGAAAGGGAATGCAGTTTTGTGATGGAAATACAATTAAGA

ACCCACAAATCAAGCATAGCTGTAATCAACAGAATCTAACTTTACTTAATGCTG

ACAAGTCTCATGAAAGAACTTACCTAGGTTACAGACATGACAGTAAGGGAAAAG

TAGACTATAAGGTTACAGTCATACCACCTCCTCCAGCCACTCGCAAGCCTTTGTC

AGAGCCTCATTATGTTACTGTGACTATGGGCGATAACATAACTTTAGTGGGACCC

TCAGACCTGCCAGTTACATGGTATGATGGAGAAGGAAATAAATTCTGCGATGGA

GAAAAAGTTGAACATGCAGAATTTAATCATACATGTAACATCCAGAACCTGACA

CTGCTCTTTGTCAACTTAACGCATAATGGAGCATACATTGGTTATAACAAAGACG

GTTCTGATAGAGAATTATATGAGGTGTCAGTCAAAACCTTGTTTCAGAACGGGG

CTGGACAAGGTAATAAAGGGAAACCTAATACTGCTCAAAGTGGTGGTAAAAAA

ACCAAAACAGAACATAGAAACCAGAGTCCAAAAAGAAAATCAACAAATAACCT

TCAGCCAACACAATTGTATGTTAGGCCTTTTACTAATGTTAGTTTAACTGGACCT

CCAAATGGCAAGGTTACTTGGTATGATGGCGAACTTAATGATCCATGTGAACAA

GCAGCACTTATGATGGCATCTATTATGGCACTGATGAAAAAGATAAGGCAAATC GTTACAGAATAAAAGTAAATACTACAAATCACAAAACTGTTAAAATTAAGCCAC ATACCAGAGAACCTCCTGCTGTACAAGAAAAACAGTTTGAATTACAAGATGCAG AAACTGATGAAAACGAATCAAAAATTCCCTCAGCTACTGTGGCAATCGTGGTGG GAGTGATTGCGGGCTTTGTAACTCTGATCATTGTCTTCATATGCTACATCTGCTG SEQ

ID Sequence

NO

CCGCAAGCGTCCCAGGTCATACAATCATATGGTAGACCCACTACTCAGCTTCTCT

TACTGAAGCTCAGTCACTCTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGT

TCTGATTAGCATAGTCACACTTAGTTCAGCTGCAATGATTAATGTTAATGTCACT

AGAGGTGGTAAAATTACATTGAATGGGACTTATCCACAAACTACATGGACAAGA

TATCATAAAGATGGATGGAAAAATATCTGTGAATGGAATGTTACTGCATATAAA

TGCTTCAATAATGGAAGCATTACTATTACTGCCACTGCCAACATTACTTCTGGCA

CATACAAAGCTGAAAGCTATAAAAATGAAATCAAAAAACTAACCTATAAAAAC

AACAAAACCACATTTGAAGATTCTGGAAATTATGAACATCAAAAATTATCTTTTT

ATATGTTGACAATAATTGAACTGCCTACAACTAAGGCTCCCACCACAGTTAGGA

CAACTATTAAGACCACTACTCACACTACAGTGCAAAATACTACTTTATTGATTGG

GTTTTTACTGAGAGAGAATGAAAGTACTACTGAACAGACAGAGGCTACCTCAAG

TGCCTTCAGCAGCACTGCAAATTTAACTTCGCTTGCTTGGACTAATGAAACCGGA

GTATCATTGATGCATGGCCAGCCTTACTCAGGTTTGGATATTCAAATTACTTTTCT

GGTTGTCTGTGGGATCTTTATTCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAG

CCAGAGAGAAATCTAGGAGGCCCATCTACAGGCCAGTGATTGGGGAACCTCAGC

CACTCCAAGTGGATGGAGGCTTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTG

ATCAGCCATGATTCCTAGGTTCTTCCTATTTAACATCCTCTTTTGTCTCTTCAACA

TCTGTGCTGCCTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTAGGGCCTTT

CCCCACCTACCTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCT

GCGTGGTCATCACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTATAATTA

TCTCCACCACAGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCT

CATCTGACCATGCAGACTCTGCTCATGCTGCTATCCCTCCTATCCCCTGCCCTCGC

CACTTCTGCTGACTCTAAATGCAAATTCGCGGAGATATGGAATTTCTTAGATTGC

TATCAGGAGAAAATTGATATGCCCTCCTATTACTTGGTGTTTGTGGGAATAGTCA

TGGTCTGCTCCTGCACTTTCTTTGCCATCATAATCTACCCCTGTTTTGATCTCGGC

TGGAACTCTGTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCC

ACGCCACCGCCCACACCGCCTCCCCGCAGAAATCAGTTCCCACTGATTCAGTACT

TAGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGG

CGGCGATGACTGACCACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGC

AGCGCATCCTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGC

TCCTCGATGCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTTGTCAA

ACAGGCAAAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCAC

CTATGAGCTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCC

CATAGTCATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTG

CGAAAGCCCCGAGTGCATATACTCCCTCCTCAAGACCCTTTGCGGACTCCGCGAC

CTCCTCCCCATGAACTGATGTTGATTAAAAGCCCGAAAACCAATCAGACCCTTCC

CCCATTTCCCCATTCCCAATTACTCATAAAATAAATCATTGGAATTAATCATTCA

ATAAAAATCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAACA

GCACCTCGGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAA

CTTCCTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTC

TTCCCTCTCAGATGGCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCT

ACCCCTATGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGT

CTCCTCCGATGGATTCCAAAACTTCCCCCCTGGGGTCCTGTCACTCAAACTAGCT

GACCCAATAGCCATCGTCAATGGGAATGTCTCACTCAAAGTGGGAGGGGGTCTC

ACTTTGCAAGATGGAACTGGAAAACTAACAGTCAATGCTGATCCACCTTTGCAA

CTTACAAACAACAAATTAGGGATTGCTTTGGACGCTCCATTTGATGTTATAGATA

ATAAACTCACATTGTTAGCGGGCCATGGCTTGTCTATTATAACAAAAGAAACAT

CAACACTGCCTGGCTTGATTAATACTCTTGTAGTATTAACTGGAAAGGGTATTGG

AACAGAATCAACAGATAATGGCGGAAGCGTATGTGTTAGAGTTGGAGAAGGTG

GCGGCTTATCATTTAATAATGATGGAGACTTGGTAGCATTTAATAAAAAAGAAG

ATAAGCGCACCCTATGGACAACTCCAGACACATCTCCAAATTGCAAGATTGATC

AGGATAAGGACTCTAAGTTAACTCTGGTCCTTACAAAGTGTGGAAGTCAAATAT

TGGCTAATGTGTCATTAATTGTCGTAGCTGGTAAGTACAAAATTATCAATAACAA SEQ

ID Sequence

NO

TACTCAACCAGCTCTCAAAGGATTTACCATTAAATTATTGTTTGATGAAAATGGA

GTACTTATGGAATCTTCAAATCTTGGTAAATCATATTGGAACTTTAGAAATGAAA

ATTCAATTATGTCAACAGCTTATGAAAAAGCTATTGGATTCATGCCTAATTTGGT

AGCCTATCCAAAACCTACCGCTGGCTCTAAAAAATATGCAAGAGATATAGTTTA

TGGAAACATCTACCTTGGTGGAAAGCCAGATCAACCAGTAACCATTAAAACTAC

CTTTAATCAGGAAACTGGATGTGAATATTCTATCACATTTGATTTTAGTTGGGCC

AAGACTTATGTAGATGTTGAATTTGAAACAACCTCTTTTACCTTTTCCTATATCGC

TATTGATTTTTACACCAGCACGGGTAGTCAGTCTCCCACCACCAGCCCATTTCAC

AATGTACACGGTCCTTTCAGCACGGGTGGCCTTAAATAGGGGAATGTCCTGATT

AGTGCGGGAACTGGTTTTAGTGTCTATAATCCACACAGTTTCCTGGCGAGCCAAA

CGGGGGTCGGTGATTGAGATGAAGCCGTCCTCTGGAAAGTCATCCAAGCGGGCC

TCACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACT

CGGAAAACAGGATAGGTCTGTGCCTCTCCATCAGCGCCCTCAACAGTCTCTGCC

GCCGGGGCTCGGTGCGACTGCTGCAGATGGGATCGGGATCGCAAGTCTCTTTGA

CTATGATCCCCACAGCCTTCAGCAACAGTCTCCTGGTGCGACGGGCACAGCACC

GCATCCTGATCTCACTCAAGTTCTCACAGTAAGTGCAGCACATAATCACCATGTT

ATTCAGCAGCCCATAATTCAGGGCGCTCCAGCCAAAGCTCATGTTGGGGATAAT

GGAACCCACGTGACCATCGTACCAGATGCGGCAGTATATCAGGTGCCTGCCCCT

CATGAACACACTGCCCATATACATGATCTCTTTGGGCATGTCTCTGTTCACAATC

TGACGGTACCAGGGGAAGCGCTGGTTGAACATGCACCCGTAAATGACTCTCCTG

AACCACACGGCCAGCAG

SEQ CATCATCAATAATATACCCCACAAAGTTTACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTTTGGGGCGGAGCCAACGCTGATTGGACGAGAAGCGGT NO: GATGCAAATGACGTCACGACGCACGGCCGACGGTCGCCGCGGAGGCGTGGCCTA 1446 GCCCGGAAGCAAGTCGCGGAGCTGATGACGTATAAAAAAGCGGACTTTAGACCC

GGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGCGG

ATGCAAGTGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAAAG

TGAAAAATACCGGTCCCGCCCAGGGTGGAATATTTACCGAGGGCCGAGAGACTT

TGACCGATTACGTGGGGGTTTCGATTGCGGTGTTTTTTTCGCGAATTTCCGCGTC

CGTGTCAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAA

CCAGTCGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAGAGTCTGAGAAAAATGAGACACCTGCGCCTCCTGCCTGG

AACTGTGCCTATGGACATGGCTGTGCTTTTACTGGATGACTTTGTGAATACAGTA

TTGGAGGACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGAC

CTTTATGATCTGGAGGTAGATGCCCATGATGACGACCCGAACGAAGAGGCTGTG

AATTTAATATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTA

TACCTACTCCACTTCATACACCGACTTTACCACCCATACCTGAATTGGAAGAGGA

GGACGAACTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGA

GGACGAACGGGGTGAGCAGAGTATGGCTATAATATCAGACTATGCTTGTGTGGT

TGTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCAGGGCAAGGCTGTAG

ATCCTGCCAATATCACCGGGATCAGACCGGAGACCCAAATGTTTCCTGCGCTCTG

TGTTACATGAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAG

AGAGGCTGAGTGCTTAACACATAACTGTAATGCTTGAACAGCTGCGCTAAGTGT

GGTTTATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAG

AAGACCACCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCACA

GACCCACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTG

AGGACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAAC

GCCCCAGGAACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAA

TAAAAGTATATGTGACGCATGCAAGGTGTGGTTTGACTCATGGGCTGGGCTTAG

TCCTATATAAGTGGCAACACCTGGGCACTCGGGCACAGACCTTCAGGGAGTTCC

TGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAG

AGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCT SEQ

ID Sequence

NO

ATCTCGCCTGGTGTACACAGTTAAGAAGGATTATAAAGAGGAATTTGAAAATCT TTTTGCTGACTGCTCTGGTCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTT TCCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAG

GAGCAGGGGCTACATCCTGGACTTCGCAGCCATGCACCTGTGGAGGGCCTGGAT

CAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTCTACAGCCAGCAGCTCC

GGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCA

GGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTTGGAAGAGGAGC

TGGATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACAAC

CATGGCCAGGGGAGTGAAGAGGGAGAGGAGTGATGGGGGCAATACCGGGATGA

TGACCGAGCTGACTGCCAGCCTGATGAATCGGAAGCGCCCAGAGCGCCTTACCT

GGTACGAGCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAA

TATGGCCTGGAGCAGATAAAAACTCACTGGTTGAACCCAGATGAGGATTGGGAG

GAGGCCATAAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACATA

GTGACCAAGACGGTGAATATCAGACATGCCTGCTACATCTCAGGGAACGGGGCA

GAGGTGGTCATCGATACCCTGGACAAGTCAGCATTCAGGTGTTGCATGATGGGA

ATGAGAGCCGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTC

AATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTG

CATGGTTGCAGCTTCTTCGGTTTCAACAACATGTGCGCCGAGGTCTGGGGAGCTG

CTAAGATCAGGGGCTGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGAC

CCAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAGTGCTACCTGGGGG

TGTCTACAGAGGGCAATGCTAGAGTGAGACATTGCTCTTCCCTGGAGACGGGCT

GCTTCTGCCTGGTGAAGGGCACAGCTTCGATCAAGCATAATGTGGTGAAAGGCT

GCACGGATGAGCGCATGTACAACATGCTGACCTGCGACTCAGGGGTCTGTTATA

TCCTGAAGAACATCCATGTGACCGCCCACCCCAGAAAGAAGTGGCCAGTGTTTG

AGAATAACCTGCTAATCAAGTGCCATATGCACCTGGGAGCCAGAAGGGGCACCT

TCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATG

CCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAA

GATCCTGAGATACGATGAAACCAGGTCCAGGGTGCGCGCTTGCGAGTGCGGGGG

CAGACACACCAGGATGCAGCCTGTGGCCCTGGATGTGACAGAGGAGCTGAGACC

AGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGA

CACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGACTATAAAGGT

GGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACCGGC

GGGCCGGAGTTCGTCAGAATGTGATGGGATCTACGGTGGATGGGCGCCCAGTGC

TTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTCGC

TCGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGA

CTGGCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCTGTGCCCAGTTCCA

TCATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTAGAAGCCCTGAGCC

GCCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGATCTCCGCGAGCAACAGCAGC

AGCAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCT

TTATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGA

ACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGT

GCTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGT

GCTGGATGATGTCCTTGAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGT

AGGTGTTGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATG

TGCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCGCCCAGATCCCGCCTGG

GGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACT

TATCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGATACATCATAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG SEQ

ID Sequence

NO

ACGATGGTTCCCTCGGGCCCCGGGGCAAAGTTCCCCTCACAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGT

GGTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGT

TGAGCATGTCTCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCGAGAAGGCGGT

CCCCGCCCAGCGAGAGGAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGA

GTCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGTTCGAGACGGT

CCCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGC

GGCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGTGTGGTCTCCGTC

ACGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTC

ATCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAG

CAGTTGACCATGAGCTCGTAGTTGAGGGCCTCGGCGGCGTGGCCCTTGGCGCGG

AGCTTGCCCTTGGAAGAGCGCCCACAGGCGGGACAGAGGAGGGATTGCAGGGC

GTAGAGCTTGGGCGCGAGAAAGACCGACTCGGGGGCGAAGGCGTCCGCTCCGC

AGTGGGCGCAGACGGTCTCGCACTCAACTAGCCAGGTGAGCTCGGGCTGCTCGG

GGTCAAAAACCAGTTTTCCACCGTTCTTTTTGATGCGCTTCTTACCTCGCGTCTCC

ATGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACG

GACTTGATGGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAAC

TCGGACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCAC

GTGCGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGC

AGACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAG

GCCACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTG

CTCGTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGG

TATTCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAA

CACGGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGA

CGCACTTCCATTCGGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGC

GCCAGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGC

GCAGTGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGGG

GCAGCACATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGC

CCGGACAGAGTTCCTTGTCAAAATAATCAATTTTTGAGGATGCATCATCCAAGGC

CATCTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTGAGGGGCGGACC

CCAGGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATAGA

CATAGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGC

GGATGCTGGCGCGCACGTAGTCATACAACTCGTGCGAGGGGGCCAAGAATGCGG

GGCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAG

ATGGCGTGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCG

TGAGGCAGGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTG

GCGACGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCG

CGGATGATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGG

CGTACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGC

ACGGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCC

CTTCTCCACGGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGT

CAGGGCGAAGGTATCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGA

GTCGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAG

GGGGTTAGGTAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCCGCTCGCGG

CATGAAATTGCGGGTGATGCGGAAAGGACCCGGGACGGAGGCTCGGTTGTTGAT

GACCTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGAT

GTAGAGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTGAGCTCC SEQ

ID Sequence

NO

TCGTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCT

GGAGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGG

GTCTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCT

GGGGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAA

GCGCACGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCTCCCGAGAATTT

CATGACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTA

GGTTTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGAT

TGGGAAGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATG

AAAGTAGAAATCTCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCG

TCCGCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGC

GCGTCCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGT

TCGCCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGC

CCGCGCGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGAC

GAGGGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGG

CAGGGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAG

ATGGTACTTGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGC

CCGTAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTC

GCGGACGCGCTCCCGGCGGCAGCGGCGGTTCCGGCCCCGCGGGCAGGGGCGGC

AGAGGCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCG

CTGGCGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTG

AAGACCACCGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATC

TCGGCGTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGT

CCTGGTAGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCC

GCGGCCCGCGCGCTCCACGGTGGCGGCGAGGTCATTCGAGATGCGGCCCATGAG

CTGCGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTC

CCCGTCGGCGTCGCGCGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTG

CCGCGCGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGG

TGGCGATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCT

CGCTGATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGC

GAAGTTGAAAAACTGGGCGTTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAG

CCGAATGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAATCCCCGGGGGC

CTCCTCCTCTTCCTCTTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGG

GGGCGGTGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGT

CGACGAAGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGG

CGCGACCCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGT

AATGGGGCGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACGATGCATCTTATCA

ATTGCGGTGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTT

CGAGGAAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCA

GCCCTGTGGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGT

TTTTGAGGCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCT

GGATGCGGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGT

TCTTGTAGTAGTCATGCATGAGCCTCTCGATGTCATCACTGGCGGAGGCGGAGTC

TTCCATGCGGGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGC

GACGACGCGCTCGGCGAGGATGGCCTGTTGCACGCTGGTGAGGGTGTCCTGGAA

GTCGTCCATGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCA

GTTGGCCATGAGCGACCAGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCGGA

GTACCTGAGCCGCGAGAACGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCG

CACGAGGTACTGGTAGCCAACTAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCG

GCCAGCGCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGT

GGTAGCCGTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAG

GCGCGCGGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATA

GTCCATGGTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTA

GAGGCAAAAACGAAAGCGGATGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAAC SEQ

ID Sequence

NO

GCAAACGGGTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCT GGAGCCGCGACTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGC

GAAAGCGGCCGAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAG CATCGCCAGGGTTGAGTCGCGGCAGAACCCGGTTCGCGGACGGCCGCGGCGAGC GGGACTTGGTCACCCCGCCGATTTAAAGACCCACAGCCAGCCGACTTCTCCAGTT

TGCGTCCCACCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGGCGCCGGCG

CTAGCCAGCCACCGCAGACAGAGATGGACTTGGAAGAGGGCGAAGGGCTGGCG

AGACTGGGGGCGCCGTCCCCGGAGCGACACCCCCGCGTGCAGCTGCAGAAGGA

CGTGCGCCCGGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACCGCAGCGGGGA

GGAGCCCGAGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGGGAGCTGCGCG

AGGGCCTGGACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAGCCGAACGAGC

AGACGGGGATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAACCTGGTGACG

GCCTACGAGCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGAGTTTCAACAA

CCACGTGCGCACGCTGATCGCGCGCGAGGAGGTGGCCCTGGGCCTGATGCACCT

GTGGGACCTGGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGCCTCTGACGGC

GCAGCTGTTCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGTTCAGGGAGGC

GCTGCTGAACATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGCTGATCAACAT

CTTGCAGAGCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCGAGAAGGTGGC

GGCGATCAACTACTCGGTGTTGAGCCTGGGCAAGTTTTACGCGCGCAAGATTTA

CAAGACGCCGTACGTGCCCATAGACAAGGAGGTGAAGATAGACAGCTTTTACAT

GCGCATGGCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGCGTGTACCGCAA

CGACCGCATCCACAAGGCCGTGAGCACGAGCCGGCGGCGCGAGCTGAGCGACC

GCGAGCTGATGCTTAGCCTGCGCCGGGCGCTGGTAGGGGGCGCCGCCGGCGGCG

AGGAGTCCTACTTCGACATGGGGGCGGACCTGCATTGGCAGCCGAGCCGGCGCG

CCTTGGAGGCCGCCTACGGTCCAGAGGACTTGGATGAGGATGAGGAAGAGGAG

GAGGATGCACCCGCTGCGGGGTACTGACGCCTCCGTGATGTGTTTTTAGATGTCC

CAGCAAGCCCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGT

CTAGCATCGGACGACTGGGAGGCCGCGATGCAACGCATCATGGCCCTGACGACC

CGCAACCCCGAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTCTCGGCCATT

CTGGAGGCGGTGGTCCCCTCTCGGACCAACCCCACGCACGAGAAGGTGCTGGCG

ATCGTGAACGCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAGGCCGGGCTG

GTGTACAACGCCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACGAACGTGCAG

TCCAACCTGGACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAG

CGGTTCAAGAACGAGGGCCTGGGCTCGCTGGTGGCGCTGAACGCCTTCCTGGCG

ACGCAGCCGGCGAACGTGCCGCGCGGGCAGGACGATTACACCAACTTTATCAGC

GCGCTGCGGCTGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCGGGC

CCGGACTACTTTTTCCAGACTAGCAGACAGGGCTTGCAGACGGTGAACCTGAGC

CAGGCTTTCAAGAACCTGCGCGGACTGTGGGGCGTGCAGGCGCCCGTGGGCGAC

CGGTCGACGGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTGCTGCTGCTG

ATCGCGCCCTTCACCGACAGCGGCAGCGTGAACCGCAACTCGTACCTGGGCCAC

CTGCTGACGCTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGACGAGCAGACC

TTCCAGGAGATCACGAGCGTGAGCCGCGCGCTGGGGCAGAACGACACCGACAG

TCTGAGGGCCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAGATTCCGGC

GCAATACGCGCTGTCGGCCGAGGAGGAGCGCATCCTGAGATATGTGCAGCAGAG

TGTAGGGCTTTTCCTGATGCAGGAGGGCGCCACCCCCAGCGCCGCGCTGGACAT

GACCGCGCGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCGTTCATCAA

TAAGCTGATGGACTACCTGCACCGCGCGGCGGCCATGAACACGGACTATTTCAC

CAACGCCATCCTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGA

GTACGACATGCCCGACCCCAACGACGGGTTCCTGTGGGACGACGTGGACAGCGC

GGTGTTCTCCCCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCCCGTGAG

CGAGGGCGCGGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCATAGCTT SEQ

ID Sequence

NO

GCCGGGCTCGGTGAACAGCGGCAGGGTGAGCCGCCCGCGCTTGCTGGGCGAGG

ACGAGTACCTGAACGACTCGCTGCTGCAACCGCCACGGGTCAAGAACGCCATGG

CCAATAACGGGATAGAGAGTCTGGTGGACAAATTGAACCGCTGGAAGACCTACG

CTCAGGACCATAGGGACGCGCCCGCGCCGCGGCGACAGCGCCACGACCGGCAG

CGGGGCCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTGGAC

TTGGGCGGGAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAGCCCAGACTGGGG

CGACGGATGTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCGTTCT

CTTCCTTGTTAGAGATGAGGCGCGCGGTGGTGTCTCCTCCTCCCTCGTACGAGAG

CGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCT

CCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGAC

ACCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAAC

TACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTC

ACCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCGGTCGCGGTGG

GGCGGTGATCTGAAGACCATTCTGCACACCAACATGCCCAATGTGAACGAGTAC

ATGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAAGCATCCAGAG

GGGGTAGTTGAAACAGATTTGAGTCAGGATAAGCTTGAGTATCAGTGGTTTGAG

TTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACCATAGACCTGATGAAC

AACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGACAAAATGGCGTGCTGGAG

AGCGATATAGGAGTCAAGTTTGACAGCAGGAATTTCAAGCTGGGCTGGGACCCG

GTGACCAAGCTGGTGATGCCGGGGGTCTACACCTACGAGGCCTTCCACCCGGAC

GTGGTGCTGCTGCCGGGCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAAC

CTCCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGAATCATGTAT

GAGGATCTAGAAGGGGGCAACATCCCCGCTCTGCTGGATGTGGAAGCATACCTC

AACAGCAAGAATGATATGGAGGAGGCTACCAAGAATGCAAACAGAGCTGCTGA

CAATGGAGGTGGTGAAACTAGGGGAGATACTTTTCTCACCACCGAACAGCTGAG

AGCCGCTGGCAAGGAGCTTGTTATTAAGCCAATCAAGGAAGATGCTAGCAAGAG

GAGCTACAATGTCATAGATGGCACCCATGACACCCTGTACCGAAGCTGGTACCT

GTCCTATACCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTCAC

CACCCCGGACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGCTGCCGGACCT

CATGCAAGACCCCGTCACCTTCCGCTCCACCCAGCAAGTCAGCAACTACCCCGT

GGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGCC

GTCTACTCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGCT

TCCCCGACAACCAGATCCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCAG

TGAAAACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTAT

CCGCGGAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCTA

CGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTTC

TAAAAAATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTACTA

GGCCCAGCACCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGTCC

GCGTCCGCGGTCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGACTT

CTACCGCCGCCGCCGTGCGCACCACCGTCGACGACGTCATCGACTCGGTGGTCG

CCGACGCGCGCAACTACACCCCCGCCCCCTCCACCGTGGACGCGGTCATCGACA

GCGTGGTGGCCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGG

ATCGCCAGGCGCCACCGGAGTACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTG

CGCCGCGCCAGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCT

GCCACTGCACCCACCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCC

GCCGCGGCCATCTCTAGCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTG

CGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCT

GATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAA

GGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGA

CCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGG

GGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGG

GGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCG

GCGAGCGGTCCTCGGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACG SEQ

ID Sequence

NO

ACGACATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAG

CGGTCGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACG

CCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTG

CCGAGCCGCGGGGTCAAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGAT

CATGGTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGG

ATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGG

GCGTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAAC

CCTCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCCTCCACCGCTA

CCGTCTCCACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGAT

GGGGCGCCGCCAGCCGGCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCC

GACGCCGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCAGGCGCCCAGCCAG

CAAACGCCGCCGCCGCACCGCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCG

CCGCGTGACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCAC

CCCAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCAC

TTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAG

AGGCATGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGC

GCCTGAGTGGCGGCTTTCTACCCGCGCTCATCCCCATAATCGCCGCGGCCATCGG

CACGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGT

GCGAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTTTTAGAATG

GAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATG

GGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGG

AGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGG

AACAAGGCCTGGAATAGTAGCACTGGGCAGTTGTTAAGGGAAAAGCTCAAAGA

CCAGAACTTCCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGT

GGTGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACC

CGCGGCCACCCACGGTGGTGGAGATGGAAGATGCAACTCCTCCGCCGCCTAAGG

GCGAGAAGCGGCCGCGGCCCGACGCGGAGGAGACGATCCTGCAGGTGGACGAG

CCGCCCTCGTACGAGGAGGCCGTGAAGGCCGGCATGCCCACCACGCGCATCATC

GCGCCACTGGCCACGGGTGTAATGAAACCCGCCACCCTTGACCTGCCTCCACCA

CCCACGCCCGCTCCACCGAAGGCAGCTCCGGTCGTGCAGGCCCCCCCGGTGGCG

ACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACG

CTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTAT

TGAGAGATAGGAAAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTAC

CGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTA

CATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGTCCGGGTCTGGTGCA

GTTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCC

CACGGTGGCTCCCACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCT

GCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCATACAAGGCGCGCTT

CACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGA

CATCCGCGGCGTCCTGGACCGCGGCCCCAGCTTCAAACCCTACTCGGGCACGGC

TTACAACAGTCTGGCTCCCAAGGGCGCCCCCAACTCCAGTCAGTGGGAACAGAA

AAAGGCCAATGGGGGAGCTGATGAAATGGAAACACACACCTTTGGCGTGGCTGC

TATGGGAGGAAAAAATATTACAGACAAGGGTTTGCAAATTGGAACAGATGAAA

CCAAAGAGGATGATGAAGATGAGATATATGCTGACAAAACTTTTCAACCAGAAC

CTCAAGTTGGAGAAGAAAACTGGAAAGAAACATTTGTTTATTATGGAGGAAGAG

CCATTAAGAAAGACACAAAAATGAAGCCTTGTTATGGTTCCTATGCCAGACCTA

CTAATGAAAAGGGCGGACAGGCTAAATTTTTAAATGGAGAAAATGGTCAACCAT

CTAAAGAACAAGACATAACAATGGCTTTCTTTGATCTAAGGCAAGCTGATGCAG

GAGGTAATAAAAATCAAGCAGACGTGGTTATGTATGCCGAAAATATTAATCTTG

AAACTCCAGACACTCATGTGGTGTATAAGCCAGGCAAGGAAGATGCAAGCTCTG

AAATTAATTTAACTCAGCAGTCCATGGCCAACAGACCCAACTACATCGGCTTCA

GGGACAACTTTGTGGGGCTGATGTACTACAACAGCACTGGTAACATGGGTGTGC

TGGCTGGTCAAGCATCTCAGTTGAACGCTGTGGTCGACTTGCAAGACAGAAACA SEQ

ID Sequence

NO

CAGAGCTGTCTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGAACCAGATACTT

TAGCATGTGGAACTCTGCAGTGGACAGCTATGATCCCGATGTCAGGATCATTGA

GAATCACGGTGTGGAAGATGAACTTCCAAACTATTGTTTTCCATTGGACGGATGT

GGCAGCAGTACTGCTTTTCAGGGAGTTAAAGTAACGAATCCGGCTACCAGTACG

AATAATAACACACAATGGGGTGTTAACGATGAAGTTGCAACACATAACCAAATT

GCCAGAGGCAACCTGTACGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAG

AGTTTTCTGTACTCGAATGTGGCCCTGTACCTGCCCGACTCCTACAAGTACACGC

CGGCCAACATCACGCTGCCCACCAACACCAACACCTACGAGTACATGAACGGCC

GCGTGGTAGCCCCCTCGCTGGTGGACGCCTACATCAACATCGGCGCGCGCTGGT

CGCTGGACCCCATGGACAATGTCAACCCCTTCAACCACCACCGCAACGCGGGCC

TGCGCTACCGCTCCATGCTGCTGGGCAACGGCCGCTACGTGCCCTTCCACATCCA

AGTGCCCCAAAAGTTCTTTGCCATCAAGAACCTGCTACTGCTCCCGGGCTCCTAC

ACCTACGAATGGAACTTCCGCAAGGATGTCAACATGATCCTGCAGAGTTCCCTC

GGCAACGACCTGCGCGTCGACGGCGCCTCCGTGCGCTTCGACAGCGTCAACCTC

TACGCCACCTTCTTCCCAATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGC

TGCGCAATGACACCAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACA

TGCTCTATCCCATCCCGGCCAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCG

CAACTGGGCCGCCTTTCGCGGCTGGAGTTTCACACGGCTCAAGACCAAGGAAAC

TCCCTCCCTCGGCTCGGGTTTCGACCCCTACTTTGTCTACTCGGGCTCCATCCCCT

ACCTCGACGGAACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTT

CGACTCCTCGGTCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTT

CGAGATCAAGCGCAGCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACA

TGACCAAGGACTGGTTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCA

GGGCTTCCACGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTCTTCCGCAAC

TTCCAGCCCATGAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAG

GCCGTCACCCTGCCCTTCCAGCACAACAACTCGGGCTTCACCGGCTACCTCGCAC

CCACCATGCGCCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGG

CTCCACCGCAGTGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCAT

GTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTTACCGACCTG

GGTCAGAACATGCTCTATGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAG

GTGGACCCCATGGATGAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACG

TGGTCAGAGTGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCA

CGCCCTTCTCCGCCGGCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACG

CCACGACAAGCGCTTCCCGGGTTTCCTCGCCGGCGACAAGCTGGCCTGCGCCAT

CGTCAACACGGCCGGCCGCGAGACCGGAGGCGTGCACTGGCTCGCCTTCGGCTG

GAACCCGCGCTCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGC

CGGCTCAAGCAGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGCAGCGCC

CTGGCCTCCTCGCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGC

AGGGGCCCGACTCCGCCGCCTGCGGACTTTTCTGTTGCATGTTCTTGCATGCTTT

CGTGCACTGGCCCGACCGACCCATGGACGGAAACCCCACCATGAACTTGCTGAC

GGGGGTGCCCAACGGCATGCTACAATCGCCACAGGTGCTGCCCACCCTCAGGCG

AAACCAGGAGGAGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTACTTTCGCTCC

CACCGCGCCGCCATCGAACACGCCACCGCTTTTGACAAAATGAAACAACTGCGT

GTATCTCAATAAACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTAT

TTAAAAGTCGAAGGGGTTCTCGCGCTCGTCGTTGTGCGCTGCGCTGGGGAGGGC

CACGTTGCGGAACTGGTACTTGGGATACCACTTGAACTCGGGGATCACCAGTTT

GGGCACTGGGGTCTCGGGGAAGGTTTCGCTCCACATGCGCCGGCTCATCTGCAG

GGCGCCCAGCATGTCAGGCGCGGAAATCTTGAAATCGCAGTTGGGACCGGTGCT

CTGCGCGCGCGAGTTGCGGTACACTGGGTTGCAGCACTGGAACACCATCAGACT

GGGGTACTTCACACTGGCCAGCACGCTCTTGTCGCTGATCTGATCCTTGTCCAGG

TCCTCGGCGTTGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGG

AAGGGCACGCTCTGAGGCTTGTGGTTACACTCGCAGTGAACGGGCATCAGCATC SEQ

ID Sequence

NO

ATCCCCGCGCCGCGCTGCATATTCGGGTAGAGGGCCTTGACAAAGGCCGTGATC

TGCTTGAAAGCTTGCTGGGCTTTGGCCCCCTCGCTGAAAAACAGGCCGCAGCTCT

TCCCGCTGAACTGGTTATTCCCGCACCCGGCATCATGCACGCAGCAGCGCGCGTC

ATGGCTGGTCAGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCACCTTGGCC

TTGCTGGGTTGCTCCTTCAGCGCACGCTGCCCGTTCTCACTGGTCACATCCATCTC

CACCACGTGGTCCTTGTGGATCATCACCGTCCCATGCAGACACTTGAGCTGACCT

TCCACCTCGGTGCAGCCGTGGTCCCACAGGGCACTGCCGGTACACTCCCAATTCT

TGTGCGCGATCCCGCTGTGGCTGAAGATGTAACCTTGCAACAGGCGACCCATCA

CGGTGCTAAATGTTTTCTGGGTGGTGAAGGTCAGTTGCAGGGCGCGGGCCTCCTC

GTTCATCCAGGTCTGGCACATCTTCTGGAAGATCTCGGTCTGCTCGGGCATGAGC

TTGTAAGCATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTC

ATGGTATCCATACCCTTCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTG

CGCACGTTCAGGACACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGC

CTTCCTTCAGCAGAACCGGAGGCTGGCTGAATCCCACTCCCACGATCACGGCAT

CTTCCTGGGGCATCTCTTCGTCGGGGTCTACCTTGGTCACATGCTTGGTCTTCCTG

CGGAGCCCACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCG

AGGGGCTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCG

GAGTGGCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGT

TTCCTAGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACT

TAACCACCCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCG

GCTCGTCTAGAACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCA

GGAGGAGACCGACGCTGGGCTCGAGCATGGCTACCTGGGAGGAGAGGAGGATG

TGCTGCTGAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTGGCCG

ACCGGAGCGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCA

ACCTCTTCTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACATGCGAGC

CCAACCCGCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTTGCCAC

ACCCGCGCCGACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGCATACCTGATATC

GCTTCCCTGGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACG

CGCGCGGCGAACGCTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGC

CCTGGTAGAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGT

CGAGCTCACCCACTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGT

CGCATCATGGATCAGCTCATCATGCCCCACATCGAGGCCCTCGATGAAAGTCAG

GAGCAACGCCCCGAGGACGCCCGGCCCGTGGTCAGCGACGAGATGCTCGCGCGC

TGGCTCGGGACCCGCGACCCCCAGGCTTTGGAACAGCGGCGCAAACTCATGCTG

GCCGTGGTCCTGGTCACCCTCGAGCTAGAATGCATGCGCCGCTTCTTCAGCGACC

CCGAGACCCTGCGCAAGGTCGAGGAGACCCTGCACTACACTTTCAGACACGGTT

TCGTCAGGCAGGCCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCT

GCCTGGGGATCCTGCACGAGAACCGCCTGGGACAGACCGTACTCCACTCTACCC

TAAAGGGCGAGGCGCGGCGGGACTATGTCCGCGACTGCGTCTTTCTCTTTCTCTG

CCACACATGGCAGTCTGCCATGGGTGTGTGGCAGCAGTGTCTCGAGGACGAGAA

CCTGAAGGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAAATCTGTGGACGGG

CTTCGACGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCAGAGCG

CCTGAGGCAGACGCTGAAAGGCGGGCTGCCCGACTTCATGAGCCAGAGCATGTT

GCAAAACTACCGCACTTTCATTCTCGAGCGATCGGGGATGCTGCCCGCCACCTGC

AACGCTTTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGC

TGTGGAGCCACTGCTATCTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGA

CGTGATCGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCACTGCCGCTGCAA

CCTGTGCTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCTACTTAGCGAGACC

CAGGTCATCGGTACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTG

AAACTCACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAG

GACTACCACGCCCATGAAATAAAGTTCTTCGAGGACCAATCGCGGCCGCAGCAC SEQ

ID Sequence

NO

GCGGATCTCACGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGCAC

GCCATCCAAAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTAC

CTGGACCCCCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAG

GAAGAAGCAGGAGCCGCTAGTGGAGGAGATGGAAGAAGAATGGGACAGCCAG

GCAGAGGAGGACGAATGGGAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGG

TGGAAGAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCA

GCCCCGGCGGTCACGGATACAACCTCCGCAGCTCCGGTCAAGCCTCCTCGTAGA

TGGGATCGAGTGAAGGGTGACGGTAAGCACGAGCGGCAGGGCTACCGATCATG

GAGGGCCCACAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACAT

CGCTTTCGCCCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAAC

GTGTTGCATTACTACCGTCACCTTCACAGCTAAGAAAAAGCAAGTCAGAGGAGT

CGCCGGAGGAGGAGGAGGCCTGAGGATCGCGGCGAACGAGCCCTCGACCACCA

AGGTCAGCAGCAAGAGCTCAAAGTAAAAAATCGATCTCTGCGCTCGCTCACCCG

CAGTTGCTTGTACCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGC

CGAGGCTCTGTTCCACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCC

CACCCGGAAAAAAGGCGGGAATTACCTCATCGCCACCATGAGCAAGGAGATTCC

CACCCCTTACATGTGGAGCTATCAGCCCCAGATGGGCCTGGCAGCGGGCGCCTC

CCAGGACTACTCCACCCGCATGAACTGGCTCAGTGCCGGCCCCTCGATGATCTCA

CGGGTCAACGGGGTCCGCAGTCATCGAAACCAGATATTGTTGGAGCAGGCGGCG

GTCACCTCCACGCCCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTG

GTGTATCAGGAAATCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTG

GCCGAAGTCCGCATGACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGG

TGCCCGCTCCGCCCACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGC

ACACAGCTCAACGACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGA

GTGTTCCAACTAGCCGGAGCCGGGAGATCCTCCTTCACTCCCAACCAGGCCTACC

TGACCTTGCAGAGCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACTCTCC

AGTTTGTGGAGGAGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCC

AGGCCTCTACCCGGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGT

GGACGGCTACGACTGAATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAG

GCATCTGGACCACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACT

CATCTACTTTGAGTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCG

GATCACCGTAGAGGGCGCCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCA

ACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCAT

CTGTCCTACCCCGAAGTTGCATGAGAATTTTTGCTGTACTCTTTGTGCTGAGTTTA

ATAAAAGCTGAAATAAGAATCTTCTCTGGACCTTGTCATCGACCTCGGAACAGC

ACCGTCTTACTCACCAATCAGACCAAGGTTCGTCTGAACTGCACAACCAACAGG

AAGTACCTTCTCTGGACTTTCCAAAACACCTCACTCGCTGTTGTCAACGCCCGTG

ACGACGACGGTGTTTTAATCCCCAACAACCTCACCAGTGGACTTACTTTCAGCAC

AAGAAAAACTAAGCTCGTCCTCCACAAACCTTTTGTAGAGGGAACCTACCAGTG

CCGACACGGACCCTGTGTTCACAACTTCCATTTGGTGAACCTTACCAGCAGCAGT

ACAGTTGCTCCTGAAACAACTAACCTTTCTTCTGATACTAACAAACCTCGTGTCG

GAGGTGAGCTTTGGGTTCCCTCTCTAACAGAGGGTGGGAGTTCTATTGAAGTGGT

TGGGTATTTGATTTTAGGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTATATCAC

CTTCCTTGCTGGGTCGAAATCAGAGTCTTTATCTGCTGGGTCAGACATTGTGGGG

AGGAACCATGAAGGGGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGGTGTACTG

TCATGCCACGAACAGCCACGATGTAACATCACCACAGGCAATGAGAGAAGCGA

ATGCTCTATAGTGATCAAATGTGAGCACAAATGTTCTCTCAACATCACATTCAAG

AATAAGACCATGGGAAATGTATGGGTGGGATTCTGGCAACCAGGAGATGAGCA

GAACTACACGGTCACTGTCCATGGTAGCGATGGAAATCACACTTTCGGTTTCAA

ATTCATTTTTGAAGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGC

TTGTGGCCCCCTACCAAGGAGAACATGGTTGGGTTTTCTTTGGCTTTTGTGATCA

TGGCCTGTGCAATGTCAGGTCTGCTGGTAGGGGCTATAATATGGTTCCTGAGGCA SEQ

ID Sequence

NO

CAAGCCCAGGTATGGAAATCTGGAAAAGGAAAAATTGCTATAAATGTTTTTCTT

TCCACAGCATCATGAATACAGTGATCCGTATCGTGCTGCTCTCTCTTCTTGTAGC

TTTTAGTCAGGCAGGATTTCATACTATCAATGCTACATGGTGGGCTAATATAACT

TTAGTGGGACCCTCAGATACGCCAGTCACCTGGTATGATAAACAGGGAATGCAG

TTCTGTGATGGAAATACAGTTAAGAATCCTCAAATAAGACATGAGTGTAATGAG

CAAAACCTTACACTAATTCATGTGAACAAAACCCATGAAAGGACATACATGGGT

TATAATAGACAGAGTACTCATAAGGAAGACTATAAAGTCATAGTTATACCGCCT

CCTCCTGCTACTGTAAAGCCACAGTCAGGTCCAGAGTATGTATATGTTAATATGG

GAGAGAATAAAACATTAGTTGGACCTCCAGGAATACCAGTTACTTGGTATGACG

GAGAAGGAAATAAATTCTGCGATGGAGAAAAAGTTGAACATGCAGAATTTAATC

ATACATGTGACGTGCAAAATCTTACACTGTTGTTTATAAATCTTACACATGATGG

GGCTTATCTTGGCTATAATCACCAGGGAACTAAAAGAACTTGGTATGAGGTTGT

AGTGACAGATGGTTTTCCAAAATCAGGGGAGATGAAAATCGAAGATCAGAGTA

GACAAACAGAACAAAAACAAACTGGGCAAAAACAAAATGAGCATAAACAGGGT

GGGCAGAAACAGGAGGGGCAAAAAGAGACAAGTCAAAAGAAAGCTAATGACA

AACAGAAGGCGACACACAGGAGGCCATCAAAACTAAAGCCGCACACACCTGAA

GCAAAACTGATTACAGTTTCTAGTGGGTCTAACTTAACATTACTTGGGCCAGATG

GAAAGGTCACTTGGTATGATGATGATTTAAAAAGACCATGTGAACCTGGATATA

AGTTAAACTGTAAGTGTGACAATCAAAACCTAACCCTAATCAATGTAACTAAAC

TTTATGAGGGAGTTTACTATGGTACTAATGACGGAGGCAATGGCAAAAGATACA

GAGTAAAAGTAAACACTACGAATTCTCAAAATGTGAAAATTCAGCCGTACACCA

GGCCTACTACTCCTGATCAGAAACACAGATTTGAATTGCAAATTGATTATAATCA

AGACAATGACAAAATTCCATCAACTACTGTGGCAATCGTGGTGGGTGTGATTGC

GGGCTTCATAACTCTGATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGT

CCAAGGGCATACAATCATATGGTAGACCCACTACTCAGCTTCTCTTACTGAGACT

CAGTCACTTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGC

ATAGTCACACTTAGTTCAGCTGCAATGATTAATGTTAATGTCACTAGAGGTGGTA

AAATTACATTGAATGGGACTTATCCACAAACTACATGGACAAGATATCATAAAG

ATGGATGGAAAAATATCTGTGAATGGAATGTTACAGCCTATAAATGCTTCAGTA

ATGGAAGCATTACAATTACTGCCACTGCTAATATTACTTCTGGCACAATCAAGGC

AGAAAGCTATAAAAATGAAATGAAAAAAATGGTATATAAAAATAACAAGACAA

AATTATTGAGCTGCCAACTACTAAGGCTCCCACAGTTAGGACAACGCAGCCTAC

CACTGTACCCACTACACATCCAACCACAACTCACACTACACAGTTAGACACTAC

AGTGCAGAATAGTACTGTATTGGTTAGGTATTTGTTAAGAGAGGAAAGTACTAC

TGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAACTTC

GCTTGCTTCGACTAATGAAACCGGAGTATCATTGATGTATGGCCAACATTACCCA

GGTTTGGATATACAAATCACTTTCTTGATTGTCTGTGGGGTCTTTATTCTCGCTGT

CCTTCTCTACTTTGTCTGCTGCAAAGCCAGAGAGAAATCTAGTAGGCCCATCTAC

AGGCCAGTAATCGGGGAGCCTCAGCCACTGCAAGTGGAAGGGGGTCTAAGGAA

TCTTCTCTTCTCTTTTTCAGTATGGTGATCAGCCATGATTCCTAGGTTCTTCCTATT

TAACATCCTCTTCTGTCTCTTCAACATCTGCGCTGCCTTCGCGGCCGTCTCGCACG

CCTCGCCCGACTGTCTCGGGCCCTTCCCCACCTACCTCCTCTTTGCCCTGCTCACC

TGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCGTCACCTTCCTGCAGCTCATCG

ACTGGTGCTGCGCGCGCTACAATTATCTCCACCACAGTCCCGAATACAGGGACG

AGAACGTAGCCAGAATCTTAAGGCTCATATGACCATGCAGACTCTGCTCATACT

GCTATTCCTCCTATCTCCTGCCCTTGCTGATGATGATTACTCTAAGTGCAAATTTG

TGGAGCTATGGAATTTCTTAGACTGCTATGATGCTAAAATGGATATGCCTTCCTA

TTACTTGGTAATTGTGGGGATAGTCATGGTCTGCTCCTGCACTTTCTTTGCCATCA

TGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGAGGCATTCACATACAC

ACTAGAAAGCAGTTCACTAGCCTCCACGCCACCACCCACACCGCCTCCCCGCAG

AAATCAGTTTCCCATGATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCCTTCC

ACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACCACCTGGACCTCGA SEQ

ID Sequence

NO

GATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCGTCAGCA

GCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCACCAGTGCAA

GAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGAGCTCGTGTC

CAACGGCAAACAGCATCGCCTCACCTATGAGATGCCCCAGCAGAAGCAGAAGTT

CACCTGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTCGGGCGAGAC

CAACGGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTCCCTCCTC

AAGACCCTTTGCGGACTCCGCGACCTCCTCCCCATGAACTGATGTTGATTAAAAG

CCCAAAAACCAATCAGCCCCTTACCCCATTCCCCTCCCACAATTACTCATAAGAA

TAAATCATTGGAATTAATGTTTCAATAAAGATCACTTACTTGAAATCTGAAAGTA

TGTCTCTGGTGTAGTTGTTCAGCAACACCTCAGTACCCTCCTCCCAGCTCTGGTA

TTCCAGTCCCCGGCGGGCGGCAAACTTTCTCCACACCTTGAAAGGGATGTCAAA

TTCCTGGTCCACAATTTTCATTGTCTTCCCTCTCAGATGTCAAAGAGGCTCCGGG

TGGAAGATGACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGAATCAGAATA

TCCCCTTCCTCACTCCCCCCTTTGTCTCCTCCGATGGATTCCAAAACTTTCCCCCT

GGTGTGCTGTCACTCAAATTGGCTGACCCAATCACTATCAGTAATGGCGATGTCT

CACTCAAGGTGGGAGGGGGACTCACTGTGGAACAAGATAGTGGAAACCTAAGT

GTGAACCCTAAGGCTCCATTGCAAGTTGGAACAGACAAAAAACTGGAATTGGCT

TTAGCACCTCCATTTGATGTCAGAGATAACAAGCTAGCTATTCTAGTAGGAGATG

GATTAAAGGTAATAGATAGATCAATATCTGATTTGCCAGGATTGTTAAACTATCT

TGTAGTTTTGACTGGCAAAGGAATTGGAAATGAAGAATTAAAAAATGACGATGG

TAGCAATAAAGGAGTCGGTTTATGTGTGAGAATTGGAGAAGGAGGTGGTTTAAC

TTTTGATGATAAAGGTTATTTAGTAGCATGGAACAAGAAACATGACATCCGCAC

ACTTTGGACAACTTTAGACCCTTCTCCAAATTGTAAGATAGATATAGAAAAAGA

CTCAAAATTAACTTTGGTACTGACAAAGTGCGGAAGTCAGATTTTGGCAAATGT

ATCTCTAATTATAGTTAACGGAAAGTTCAAGATCCTTAATAACAAAACAGACCC

ATCCCTACCTAAATCATTTAACATCAAACTACTGTTTGATCAAAATGGAGTTCTA

TTGGAAAATTCAAACATTGAAAAACAGTACCTAAACTTTAGAAGTGGAGACTCT

ATTCTTCCAGAGCCATATAAAAATGCAATTGGATTTATGCCTAATTTACTAGCTT

ATGCTAAAGCTACAACTGATCAGTCTAAAATTTATGCAAGGAACACTATATATG

GAAATATCTACTTAGATAATCAGCCATATAATCCAGTTGTAATTAAAATTACTTT

TAATAATGAAGCAAATAGTGCTTATTCTATCACTTTTAACTATTCATGGACCAAG

GACTATGACAATGTCCCTTTTGATTCTACTTCATTTACCTTCTCCTATATCGCCCA

AGAATGAAAGACCAATAAACATGTTTTCATTTGAAAATTTTCATGTATCTTTATT

GATTTTTACACCAGCACGGGTAGTCAGCCTCCCACCACCAGCCCATTTCACAGTG

TAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGGGAATGTTCTGATTAGCA

CGGGAACTGGATTTAGTGTCTATAAGCCACACAGTTTCCTGGCGAGCCAAACGG

GGGTCGGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCTCA

CAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACTCGG

AAAACAAGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAGCAGTCTTTGCCGCCG

GGGCTCGGTGCGGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTAT

GATCCCCACAGCCTTCAGCATCAGTCTCCTGGTGCGTCGGGCACAGCACCGCATC

CTGATCTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCATGTTATTCA

GCAGCCCATAATTCAGGGTGCTCCAGCCAAAACTCATGTTGGGGATGATGGAAC

CCACGTGACCATCGTACCAGATGCGGCAGTATATCAG

SEQ CATCATCAATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGT ID GGAGTTTGTGACGTGGCGCGGGGCGTGGGAACGGGGCGGGTGACGTAGTAGTGT NO: GGCGGAAGTGTGATGTTGTAAGTGTGGCGGAACACATGTAAGCGCCGGATGTGG 1447 TAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACGGGAAGTGACAATTTTCGC

GCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCAAGTAATATTTGGCC

ATTTTCGCGGGAAAACTGAATAAGAGGAAGTGAAATCTGAATAATTCTGTGTTA

CTCATAGCGCGTAATATTTGTCTAGGGCCGCGGGGACTTTGACCGTTTACGTGGA

TTTTATTATTATAGTCAGCTGACGCGCAGTGTATTTATACCCGGTGAGTTCCTCA SEQ

ID Sequence

NO

AGAGGCCACTCTTGAGTGCCAGCGAGTAGAGTTTTCTCCTCCGAGCCGCTCCGAC

ACCGGGACTGAAAATGAGACATATTATCTGCCACGGAGGTGTTATTACCGAAGA

AATGGCCGCCAGTCTTTTGGACCAGCTGATCGAAGAGGTACTGGCTGATAATCTT

CCACCTCCTAGCCATTTTGAACCACCTACCCTTCACGAACTGTATGATTTAGACG

TGACGGCCCCCGAAGATCCCAACGAGGAGGCGGTTTCGCAGATTTTTCCCGAGT

CTGTAATGTTGGCGGTGCAGGAAGGGATTGACTTATTCACTTTTCCGCCGGCGCC

CGGTTCTCCGGAGCCGCCTCACCTTTCCCGGCAGCCCGAGCAGCCGGAGCAGAG

AGCCTTGGGTCCGGTTTCTATGCCAAACCTTGTGCCGGAGGTGATCGATCTTACC

TGCCACGAGGCTGGCTTTCCACCCAGTGACGACGAGGATGAAGAGGGTGAGGA

GTTTGTGTTAGATTATGTGGAGCACCCCGGGCACGGTTGCAGGTCTTGTCATTAT

CACCGGAGGAATACGGGGGACCCAGATATTATGTGTTCGCTTTGCTATATGAGG

ACCTGTGGCATGTTTGTCTACAGTAAGTGAAAATTATGGGCAGTGGGTGATAGA

GAGCCAGAACCGGAGCCTGCAAGACCTACCCGGCGTCCTAAATTGGTGCCTGCT

ATCCTGAGACGCCCGACATCACCTGTGTCTATAGAATGCAATAGTAGTACGGAT

AGCTGTGACTCCGGTCCTTCTAACACACCTCCTGAGATACACCCGGTGGTCCCGC

TGTGCCCCATTAAACCAGTTGCCGTGAGAGTTGGTGGGCGTCGCCAGGCTGTGG

AATGTATCGAGGACTTGCTTAACGAGTCTGGGCAACCTTTGGACTTGAGCTGTAA

ACGCCCCAGGCCATAAGGTGTAAACCTGTGATTGCGTGTGTGGTTAACGCCTTTG

TTTGCTGAATGAGTTGATGTAAGTTTAATAAAAAGGGTGAGATAATGTTTAACTT

GCATGGCGTGTTAAATGGGGCGGGGCTTAAAGGGTATATAATGCGCTGTGGGCT

AATCTTGGTTACATTTGACCTCATGGAGGCTTGGGAGTGTTTGGAAGATTTTTCT

GCTGTGCGTAACTTGCTGGAACAGAGCTCTAACAGTACCTCCTGGTTTTGGAGGT

TTCTGTGGGGCTCCTCCCAGGCAAAGTTAGTCTGCAGAATTAAGGAGGATTACA

AGTGGGAATTTGAAGAGCTTTTGAAATCCTGTGGTGAGCTGTTTGATTCTTTGAA

TCTGGGTCACCAGGCGCTTTTCCAAGAGAAGGTCATCAAGACTTTGGATTTTTCC

ACACCGGGGCGCGCTGCGGCTGCTGTTGCTTTTTTGAGTTTTATAAAGGATAAAT

GGAGCGAAGAAACCCATCTGAGCGGGGGGTACCTGCTGGATTTTCTGGCCATGC

ATTTGTGGAGAGCGGTGGTGAGACACAAGAATCGCCTACTACTGTTGTCTTCCGT

CCGCCCGGCAATAATACCGACGGAGGAGCAGCAGCAGCAACAGCAGCAGCAGG

AGGAAGCCAGGCGGCGGCGGCGGCAGGAGCAGAGCCCATGGAACCCGAGAGCC

GGCCTGGACCCTCGGGAATGAATGTTGTACAGGTGGCTGAACTGTTTCCAGAAC

TGAGACGCATTTTAACCATTAACGAGGATGGGCAGGGGCTAAAGGGGGTAAAG

AGGGAGCGGGGGGCTTCTGAGGCTACAGAGGAGGTTAGGAATTTAACTTTTAGC

TTAATGACCAGACACCGTCCTGAGTGTGTTACTTTTCAGCAGATTAAGGATAATT

GCGCTAATGAGCTTGATCTGCTGGCGCAGAAGTATTCCATAGAGCAGCTGACCA

CTTACTGGCTGCAGCCAGGGGATGATTTTGAGGAGGCTATTAGGGTATATGCAA

AGGTGGCACTTAGGCCAGATTGCAAGTACAAGATTAGCAAACTTGTAAATATCA

GGAATTGTTGCTACATTTCTGGGAACGGGGCCGAGGTGGAGATAGATACGGAGG

ATAGGGTGGCCTTTAGATGTAGCATGATAAATATGTGGCCGGGGGTACTTGGCA

TGGACGGGGTGGTTATTATGAATGTGAGGTTTACTGGCCCCAATTTTAGCGGTAC

GGTTTTCCTGGCCAATACCAACCTTATCCTACACGGTGTAAGCTTCTATGGGTTT

AACAATACCTGCGTGGAAGCCTGGACCGATGTAAGGGTTCGAGGCTGTGCCTTT

TACTGCTGCTGGAAGGGGGTGGTGTGTCGCCCCAAAAGCAGGGCTTCAATTAAG

AAATGCCTCTTTGAAAGGTGTACCTTGGGTATCCTGTCTGAGGGTAACTCCAGGG

TGCGCCACAATGTGGCCTCCGACTGTGGTTGCTTCATGCTAGTGAAAAGCGTGGC

TGTGATTAAGCATAACATGGTGTGTGGCAACTGCGAGGACAGGGCCTCTCAGAT

GCTAACCTGCTCGGACGGCAACTGTCACCTGCTGAAGACCATTCACGTAGCCAG

CCACTCTCGCAAGGCCTGGCCAGTGTTTGAGCACAACATACTGACCCGCTGTTCC

TTGCATTTGGGTAACAGGAGGGGGGTGTTCCTACCTTACCAATGCAATTTGAGTC

ACACTAAGATATTGCTTGAGCCCGAAAGCATGTCCAAGGTGAACCTGAACGGGG

TGTTTGACATGACCATGAAGATCTGGAAGGTGCTGAGGTACGATGAGACCCGCA SEQ

ID Sequence

NO

CCAGGTGCAGACCCTGCGAGTGTGGCGGTAAACATATTAGGAACCAGCCTGTGA

TGCTGGATGTGACCGAGGAGCTGAGGCCCGATCACTTGGTGCTGGCCTGCACCC

GCGCTGAGTTTGGCTCTAGCGATGAAGATACAGATTGAGGTACTGAAATGTGTG

GGCGTGGCTTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTCATGTAGTTTT

GTATCTGTTTTGCAGCAGCCGCCGCCATGAGCACCAACTCGTTTGATGGAAGCAT

TGTGAGCTCATATTTGACAACGCGCATGCCCCCATGGGCCGGGGTGCGTCAGAA

TGTGATGGGCTCCAGCATTGATGGTCGCCCCGTCCTGCCCGCAAACTCTACTACC

TTGACCTACGAGACCGTGTCTGGAACGCCGTTGGAGACTGCAGCCTCCGCCGCC

GCTTCAGCCGCTGCAGCCACCGCCCGCGGGATTGTGACTGACTTTGCTTTCCTGA

GCCCGCTTGCAAGCAGTGCAGCTTCCCGTTCATCCGCCCGCGATGACAAGTTGAC

GGCTCTTTTGGCACAATTGGATTCTTTGACCCGGGAACTTAATGTCGTTTCTCAG

CAGCTGTTGGAGCTGCGCCAGCAGGTTTCTGCCCTGAAGGCTTCCTCCCCTCCCA

ATGCGGTTTAAAACATAAATAAAAACCAGACTCTGTTTGGATTTGGATCAAGCA

AGTGTATTGCTGTCTTTATTTAGGGGTTTTGCGCGCGCGGTAGGCCCGGGACCAG

TCTGGATGTTCAGATACATGGGCATAAGCCCGTCTCTGGGGTGGAGGTAGCACC

ACTGCAGAGCTTCATGCTGCGGGGTGGTGTTGTAGATGATCCAGTCGTAGCAGG

AGCGCTGGGCGTGGTGCCTAAAAATGTCCTTTAGAAGCAAGCTGATTGCCAGGG

GCAAGCCCTTGGTGTAAGTGTTTACAAAGCGGTTAAGCTGGGATGGGTGCATAC

GTGGGGATATGAGATGCATCTTGGACTGTATTTTTAGGTTGGCTATGTTCCCAGC

CATATCCCTCCTGGGATTCATGTTGTGCAGAACCACCAGCACAGTGTATCCGGTG

CACTTGGGAAATTTGTCATGTAGCTTAGAAGGAAATGCGTGGAAGAACTTGGAG

ACGCCCTTGTGACCTCCAAGATTTTCCATGCATTCGTCCATAATGATGGCAATGG

GCCCACGGGCGGCGGCCTGGGCGAAGATATTTCTGGGATCACTAACGTCATAGT

TGTGTTCCAGGATGAGATCGTCATAGGCCATTTTTACAAAGCGCGGGCGGAGGG

TGCCAGACTGCGGTATAATGGTTCCATCCGGCCCAGGGGCGTAGTTACCCTCAC

AGATTTGCATTTCCCACGCTTTGAGTTCAGATGGGGGGATCATGTCTACCTGCGG

GGCGATAAAGAAAACGGTTTCCGGGGTAGGGGAGATCAGCTGGGAAGAAAGCA

GGTTCCTGAGCAGCTGCGACTTACCGCAGCCGGTGGGCCCGTAAATCACACCTA

TTACCGGCTGCAACTGGTAGTTAAGAGAGCTGCAGCTGCCGTCATCCCTGAGCA

AGGGGGCCACTTCGTTAAGCATGTCCCTGACACGCATGTTTTCCCTGACCAAATC

CGCCAGAAGGCGCTCGCCGCCCAGCGATAGCAGTTCTTGCAAGGAAGCAAAGTT

TTTCAACGGTTTGAGGCCGTCCGCCGTAGGCATGCTTTTGAGCGTTTGACCAAGC

AGTTCCAGGCGGTCCCACAGCTCGGTCACGTGCTCTACGGCATCTCGATCCAGCA

TATCTCCTCGTTTCGCGGGTTGGGGCGGCTTTCGCTGTACGGCAGTAGTCGGTGC

TCGTTCAGACGGGCCAGGGTCATGTCTTTCCACGGGCGCAGGGTCCTCGTCAGC

GTAGTCTGGGTCACGGTAAAGGGGTGCGCTCCGGGCTGCGCGCTGGCCAGGGTG

CGCTTGAGGCTGGTCCTGCTGGTGCTGAAGCGCTGCCGGTCTTCGCCCTGCGCGT

CGGCCAGGTAGCATTTGACCATGATGTCATAGTCCAGCCCCTCCGCGGCGTGGC

CCTTGGCGCGCAGCTTGCCCTTGGAGGAGGCGCCGCACGAGGGGCAGTGCAGAC

TTTTGAGGGCGTAGAGCTTGGGCGCGAGAAATACCGATTCCGGGGAGTAGGCAT

CCGCGCCGCAGGCCCCGCAGACGGTCTCGCATTCCACGAGCCAGGTGAGCTCTG

GCCGGTTGGGGTCAAAAACCAGGTTTCCCCCATGCTTTTTGATGCGTTTCTTACC

TCTGGTTTCCATGAGCCGGTGTCCACGCTCGGTGACGAAAAGGCTGTCCGTGTCC

CCGTATACAGACTTGAGAGGCCTGTCCTCGAGCGGTGTTCCGCGGTCCTCCTCGT

ATAGAAACTCGGACCACTCTGAGACGAAGGCTCGCGTCCAGGCCAGCACGAAG

GAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCTCC

AGGGTGTGAAGACACATGTCCCCCTCTTCGGCATCAAGGAAGGTGATTGGTTTG

TAGGTGTATGCCACGTGACCGGGTGTTCCTGAAGGGGGGGTATAAAAGGGGGTG

GGGGCGCGTTCGTCCTCACTCTCTTCCGCATCGCTGTCTGCGAGGGCCAGCTGTT

GGGGTGAGTACTCCCTCTGGAAAGCGGGCATGACTTCTGCGCTAAGGTTGTCAG

TTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAG SEQ

ID Sequence

NO

GCAAACGACCCGTAGAGGGCGTTGGACAGCAACTTGGCGATGGAGCGCAGGGT

TCGCGCGCAACGCACCGCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACC

AGGTGCACGCGCCAACCGCGGTTGTGCAGGGTGACAAGGTCAACGCTGGTGGCT

ACCTCTCCGCGTAGGCGCTCGTTGGTCCAGCAGAGGCGGCCGCCCTTGCGCGAG

CAGAATGGCGGTAGGGGGTCTAGCTGCGTCTCGTCCGGGGGGTCCGCGTCCACG

GTAAAGATCCCGGGCAACAGGCGCGCGTCGAAGTAGTCTATCTTGCATCCTTGC

AAGTCTAACGCCTGCTGCCATGCGCGGGCGGCAAGCGCGCGCTCGTATGGGTTG

AGTGGGGGACCCCATGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGCA

GATGTCGTAAACGTAGAGGGGCTCCCTGAGTATTCCAAGATATGTAGGGTAGCA

TCTTCCACCGCGGATGCTGGCGCGCACGTAATCGTATAGTTCGTGCGAGGGGGC

GAGGAGGTCGGGACCGAGGTTGCTACGGGCGGGCTGCTCTGCTCGAAAGACGAT

CTGCCTGAAGATGGCATGCGAGTTGGATGATATGGTTGGACGCTGGAAGACGTT

GAAGCTGGCGTCTGTGAGACCTACCGCGTCACGCACGAAGGAGGCGTAGGAGTC

GCGCAGCTTGTTGACCAGCTCGGCGGTGACCTGCACGTCTAGGGCGCAGTAGTC

GGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTCTTGGATCGGAAACCCGTC

GGCCTCCGAACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGGCCTGGTAGGC

GCAGCATCCCTTTTCTACGGGTAGCGCGTATGCCTGCGCGGCCTTCCGGAGCGAG

GTGTGGGTGAGCGCAAAGGTGTCCCTGACCATGACTTTGAGGTACTGGTATTTG

AAGTCAGTGTCGTCGCATCCGCCCTGCTCCCAGAGCAAAAAGTCCGTGCGCTTTT

TGGAACGCGGGTTTGGTAGGGCGAAGGTGACATCGTTGAAGAGTATCTTTCCCG

CGCGAGGCATAAAATTGCGTGTGATGCGGAAGGGTCCCGGCACCTCGGAACGGT

TGTTAATTACCTGGGCGGCGAGCACGATCTCGTCAAAGCCGTTGATGTTGTGGCC

CACGATGTAAAGTTCCAAGAAGCGCGGGGTGCCCTTAATGGAGGGCAATTTTTT

AAGTTCCTCGTAGGTAAGCTCTTCAGGGGAGCTGAGCCCGTGCTCTGACAGGGC

CCAGTCTGCAAGATGAGGGTTGGAAGCAACGAATGAGCTCCACAGGTCACGGGC

CATTAGCATTTGCAGGTGGTCGCGAAAGGTCCTAAACTGGCGACCTATGGCCAT

CCAAGGTCCACGGCTAGGTCTCGCGCGGCGGTCACTAGAGGCTCATCTCCGCCG

AACTTCATGACCAGCATGAAGGGCACGAGCTGCTTTCCAAAGGCCCCCATCCAA

GTATAGGTCTCTACATCGTAGGTGACAAAGAGACGCTCGGTGCGAGGATGCGAG

CCGATCGGGAAGAACTGGATCTCCCGCCACCAGTTGGAGGAGTGGCTGTTGATG

TGGTGAAAGTAGAAGTCCCTGCGACGGGCCGAACACTCGTGCTGGCTTTTGTAA

AAACGTGCGCAGTACTGGCAGCGGTGCACGGGCTGTACATCCTGCACGAGGTTG

ACCTGACGACCGCGCACAAGGAAGCAGAGGGGGAATTTGAGCCCCTCGCCTGGC

GGGTTTGGCTGGTGGTCTTCTACTTCGGCTGCTTGTCCTTGACCGTCTGGCTGCTC

GAGGGGAGTTACGGTGGATCGGACCACCACGCCGCGCGAGCCCAAAGTCCAGA

TGTCCGCGCGCGGCGGTCGGAGCTTGATGACAACATCGCGCAGATGGGAGCTGT

CCATGGTCTGGAGCTCCCGCGGCGTCAGGTCAGGCGGGAGCTCCTGCAGGTTTA

CCTCGCATAGCCGGGTCAGGGCGCGGGCTAGGTCCAGGTGATACCTGATTTCCA

GGGGCTGGTTGGTGGCGGCGTTGATGGCTTGCAAGAGGCCGCATCCCCGCGGCG

CGACTACGGTACCGCGCGGCGGGCGGTGGGCCGCGGGGGTGTCCTTGGATGATG

CATCTAAAAGCGGTGACGCGGGCGGGCCCCCGGAGGTAGGGGGGGCTCGGGAC

CCGCCGGGAGAGGGGGCAGAGGCACGTCGGCGCCGCGCGCGGGCAGGAGCTGG

TGCTGCGCGCGGAGGTTGCTGGCGAACGCGACGACGCGGCGGTTGATCTCCTGA

ATCTGGCGCCTCTGCGTGAAGACGACGGGCCCGGTGAGCTTGAACCTGAAAGAG

AGTTCGACAGAATCAATTTCGGTGTCGTTGACGGCGGCCTGGCGCAAAATCTCCT

GCACGTCTCCTGAGTTGTCTTGATAGGCGATCTCGGCCATGAACTGCTCGATCTC

TTCCTCCTGGAGATCTCCGCGTCCGGCTCGCTCCACGGTGGCGGCGAGGTCGTTG

GAGATGCGGGCCATGAGCTGCGAGAAGGCGTTGAGGCCTCCCTCGTTCCAGACG

CGGCTGTAGACCACGCCCCCTTCGGCATCGCGGGCGCGCATGACCACCTGCGCG

AGATTGAGCTCCACGTGCCGGGCGAAGACGGCGTAGTTTCGCAGGCGCTGAAAG SEQ

ID Sequence

NO

AGGTAGTTGAGGGTGGTGGCGGTGTGTTCTGCCACGAAGAAGTACATAACCCAG

CGCCGCAACGTGGATTCGTTGATATCCCCCAAGGCCTCAAGGCGCTCCATGGCCT

CGTAGAAGTCCACGGCGAAGTTGAAAAACTGGGAGTTGCGCGCCGACACGGTTA

ACTCCTCCTCCAGAAGACGGATGAGCTCGGCGACAGTGTCGCGCACCTCGCGCT

CAAAGGCTACAGGGGCCTCTTCTTCTTCTTCAATCTCCTCTTCCATAAGGGCCTC

CCCTTCTTCTTCTTCTGGCGGCGGTGGGGGAGGGGGGACACGGCGGCGACGACG

GCGCACCGGGAGGCGGTCGACAAAGCGCTCGATCATCTCCCCGCGGCGACGGCG

CATGGTCTCGGTGACAGCGCGGCCGTTCTCGCGGGGGCGCAGTTGGAAGACGCC

GCCCGTCATGTCCCGGTTATGGGTTGGCGGGGGGCTGCCGTGCGGCAGGGATAC

GGCGCTAACGATGCATCTCAACAATTGTTGTGTAGGTACTCCGCCACCGAGGGA

CCTGAGCGAGTCCGCATCGACCGGATCGGAAAACCTCTCGAGAAAGGCGTCTAA

CCAGTCACAGTCGCAAGGTAGGCTGAGCACCGTGGCGGGCGGCAGCGGGCGGC

GGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGG

TCTTGAGACGGCGGATGGTCGACAGAAGCACCATGTCCTTGGGTCCGGCCTGCT

GAATGCGCAGGCGGTCGGCCATGCCCCAGGCTTCGTTTTGACATCGGCGCAGGT

CTTTGTAGTAGTCTTGCATGAGCCTTTCTACCGGCACTTCTTCTTCTCCTTCCTCTT

GTCCTGCATCTCTTGCATCTATCGCTGCGGCGGCGGCGGAGTTTGGCCGTAGGTG

GCGCCCTCTTCCTCCCATGCGTGTGACCCCGAAGCCCCTCATCGGCTGAAGCAGG

GCCAGGTCGGCGACAACGCGCTCGGCTAATATGGCCTGCTGCACCTGCGTGAGG

GTAGACTGGAAGTCATCCATGTCCACAAAGCGGTGGTATGCGCCCGTGTTGATG

GTGTAAGTGCAGTTGGCCATAACGGACCAGTTAACGGTCTGGTGACCCGGCTGC

GAGAGCTCGGTGTACCTGAGACGCGAGTAAGCCCTTGAGTCAAAGACGTAGTCG

TTGCAAGTCCGCACCAGGTACTGGTATCCCACCAAAAAGTGCGGCGGCGGCTGG

CGGTAGAGGGGCCAGCGTAGGGTGGCCGGGGCTCCGGGGGCGAGGTCTTCCAA

CATAAGGCGATGATATCCGTAGATGTACCTGGACATCCAGGTGATGCCGGCGGC

AGTGGTTGAGGCGCGCGAAAAGTCGCGGACGCGGTTCCAGATGTTGCGCAGCGG

CAAAAAGTGCTCCATGGTCGGGACGCTCTGGCCGGTTAGGCGCGCGCAGTCGTT

GACGCTCTAGACCGTGCAAAAGGAGAGCCTGTAAGCGGGCACTCTTCCGTGGTC

TGGTGGATAAATTCGCAAGGGTATCATGGCGGACGACCGGGGTTCGAACCCCGG

ATCCGGCCGTCCGCCGTGATCCATGCGGTTACCGCCCGCGTGTCGAACCCAGGT

GTGCGACGTCAGACAACGGGGGAGCGCTCCTTTTGGCTTCCTTCCAGGCGCGGC

TGGAAAGCGAAAGCATTAAGTGGCTCGCTCCCTGTAGCCGGAGGGTTATTTTCC

AAGGGTTGAGTCGCGGGACCCCCGGTTCGAGTCTCGGGCCGGCCGGACTGCGGC

GAACGGGGGTTTGCCTCCCCGTCATGCAAGACCCCGCTTGCAAATTCCTCCGGA

TGCGCCCCCCTCCTCAGCAGCGGCAAGAGCAAGAGCAGCGGCAGACATGCAGG

GCACCCTCCCCTTCTCCTACCGCGTCAGGAGGGGCAACATCCGCGGCTGACGCG

GCGGCAGATGGTGATGACGAACCCCCGCGGCGCCGGGCCCGGCACTACCTGGAC

TTGGAGGAGGGCGAGGGCCTGGCGCGGCTAGGAGCGCCCTCTCCTGAGCGACAC

CCAAGGGTGCAGCTGAAGCGTGACACGCGCGAGGCGTACGTGCCGCGGCAGAA

CCTGTTTCGCGACCGCGAGGGAGAGGAGCCCGAGGAGATGCGGGATCGAAAGT

TCCATGCAGGGCGCGAGTTGCGGCATGGCCTGAACCGCGAGCGGTTGCTGCGCG

AGGAGGACTTTGAGCCCGACGCGCGGACCGGGATTAGTCCCGCGCGCGCACACG

TGGCGGCCGCCGACCTGGTAACCGCGTACGAGCAGACGGTGAACCAGGAGATTA

ACTTTCAAAAAAGCTTTAACAACCACGTGCGCACGCTTGTGGCGCGCGAGGAGG

TGGCTATAGGACTGATGCATCTGTGGGACTTTGTAAGCGCGCTGGAGCAAAACC

CAAATAGCAAGCCGCTCATGGCGCAGTTGTTTCTTATAGTGCAGCACAGCAGGG

ACAACGAGGCATTCAGGGATGCACTGCTAAACATAGTAGAGCCCGAGGGCCGCT

GGCTACTCGATTTGATAAATATTCTGCAGAGCATAGTGGTGCAGGAGCGCAGCT

TGAGCCTGGCTGACAAGGTGGCCGCCATTAACTATTCCATGCTCAGTCTGGGCA

AGTTTTACGCCCGCAAGATATACCATACCCCTTACGTTCCCATAGACAAGGAGGT

AAAGATCGAGGGGTTCTACATGCGCATGGCGCTGAAGGTGCTTACCTTGAGCGA SEQ

ID Sequence

NO

CGACCTGGGCGTTTATCGCAACGAGCGCATCCACAAGGCCGTGAGCGTGAGCCG

GCGGCGCGAGCTCAGCGACCGCGAGCTGATGCACAGCCTGCAAAGGGCCCTGGC

TGGCACGGGCAGCGGCGATAGAGAGGCCGAGTCCTACTTTGACGCGGGCGCTGA

CCTGCGCTGGGCCCCAAGCCGACGCGCCCTGGAGGCAGCTGGGGCCGGACCTGG

GCTGGCGGTGGCACCCGCGCGCGCTGGCAACGTCGGCGGCGTGGAGGAATATGA

CGAGGACGATGAGTACGAGCCAGAGGACGGCGAGTACTAAGCGGTGATATTTCT

GATCAGATGATGCAAGACGCAACGGACCCGGCGGTGCGGGCGGCGCTGCAGAG

CCAGCCGTCCGGCCTTAACTCCACGGACGACTGGCGCCAGGTCATGGACCGCAT

CATGTCGCTGACTGCGCGCAACCCTGACGCGTTCCGGCAGCAGCCACAGGCCAA

CCGGCTCTCCGCAATTCTGGAAGCGGTGGTCCCGGCGCGCGCAAACCCCACGCA

CGAGAAGGTGCTGGCGATCGTAAACGCGCTGGCCGAAAACAGGGCCATCCGGTC

CGATGAGGCCGGCCTGGTCTACGACGCGCTGCTTCAGCGCGTGGCTCGTTACAA

CAGCGGCAACGTGCAGACCAACCTGGACCGGCTGGTGGGGGATGTGCGCGAGG

CCGTGGCGCAGCGTGAGCGCGCGCAGCAGCAGGGCAACCTGGGCTCCATGGTTG

CACTAAACGCCTTCCTGAGTACACAGCCCGCCAACGTGCCGCGGGGACAGGAGG

ACTACACCAACTTTGTGAGCGCACTGCGGCTAATGGTGACTGAGACACCGCAAA

GTGAGGTGTACCAGTCCGGGCCAGACTATTTTTTCCAGACCAGTAGACAAGGCC

TGCAGACCGTAAACCTGAGCCAGGCTTTCAAGAACTTGCAGGGGCTGTGGGGGG

TGCGGGCTCCCACAGGCGACCGCGCGACCGTGTCTAGCTTGCTGACGCCCAACT

CGCGCCTGTTGCTGCTGCTAATAGCGCCCTTCACGGACAGTGGCAGCGTGTCCCG

GGACACATACCTAGGTCACTTGCTGACACTGTACCGAGAGGCCATAGGTCAGGC

GCATGTGGACGAGCATACTTTCCAGGAGATTACAAGTGTTAGCCGCGCGCTGGG

GCAGGAGGACACGGGCAGCCTGGAGGCAACCCTAAACTACCTGCTGACCAACC

GGCGGCAGAAGATCCCCTCGTTGCACAGTTTAAACAGCGAGGAGGAGCGCATTT

TGCGCTATGTGCAGCAGAGCGTGAGCCTTAACCTGATGCGCGACGGGGTAACGC

CCAGCGTGGCGCTGGACATGACCGCGCGCAACATGGAACCGGGCATGTATGCCT

CAAACCGGCCGTTTATCAATCGCCTAATGGACTACTTGCATCGCGCGGCCGCCGT

GAACCCCGAGTATTTCACCAATGCCATCTTGAACCCGCACTGGCTACCGCCCCCT

GGTTTCTACACCGGGGGATTCGAGGTGCCCGAGGGTAACGATGGATTCCTCTGG

GACGACATAGACGACAGCGTGTTTTCCCCGCAACCGCAGACCCTGCTAGAGTTG

CAACAGCGCGAGCAGGCAGAGGCGGCGCTGCGAAAGGAAAGCTTCCGCAGGCC

AAGCAGCTTGTCCGATCTAGGCGCTGCGGCCCCGCGGTCAGATGCTAGTAGCCC

ATTTCCAAGCTTGATAGGGTCTCTTACCAGCACTCGCACCACCCGCCCGCGCCTG

CTGGGCGAGGAGGAGTACCTAAACAACTCGCTGCTGCAGCCGCAGCGCGAAAA

GAACCTGCCTCCGGCGTTTCCCAACAACGGGATAGAGAGCCTAGTGGACAAGAT

GAGTAGATGGAAGACGTATGCGCAGGAACACAGGGATGTGCCCGGCCCGCGCC

CGCCCACCCGTCGTCAAAGGCACGACCGTCAGCGGGGTCTGGTGTGGGAGGACG

ATGACTCGGCAGACGACAGCAGCGTCCTGGATTTGGGAGGGAGTGGCAACCCGT

TTGCGCACCTTCGTCCCAGGCTGGGGAGAATGTTTTAAAAAAAAAAAAGCATGA

TGCAAAATAAAAAACTCACCAAGGCCATGGCACCGAGCGTTGGTTTTCTTGTATT

CCCCTTAGTATGCGGCGCGCGGCGATGTATGAGGAAGGTCCTCCTCCCTCCTACG

AGAGCGTGGTGAGCGCGGCGCCAGTGGCGGCGGCGCTGGGTTCCCCCTTCGATG

CTCCCCTGGACCCGCCGTTCGTGCCTCCGCGGTACCTGCGGCCTACCGGGGGGA

GAAACAGCATCCGTTACTCTGAGTTGGCACCCCTATTCGACACCACCCGTGTGTA

CCTTGTGGACAACAAGTCAACGGATGTGGCATCCCTGAACTACCAGAACGACCA

CAGCAACTTTCTAACCACGGTCATTCAAAACAATGACTACAGCCCGGGGGAGGC

AAGCACACAGACCATCAATCTTGACGACCGGTCGCACTGGGGCGGCGACCTGAA

AACCATCCTGCATACCAACATGCCAAATGTGAACGAGTTCATGTTTACCAATAA

GTTTAAGGCGCGGGTGATGGTGTCGCGCTCGCTTACTAAGGACAAACAGGTGGA

GCTGAAATATGAGTGGGTGGAGTTCACGCTGCCCGAGGGCAACTACTCCGAGAC

CATGACCATAGACCTTATGAACAACGCGATCGTGGAGCACTACTTGAAAGTGGG

CAGGCAGAACGGGGTTCTGGAAAGCGACATCGGGGTAAAGTTTGACACCCGCA

ACTTCAGACTGGGGTTTGACCCAGTCACTGGTCTTGTCATGCCTGGGGTATATAC SEQ

ID Sequence

NO

AAACGAAGCCTTCCATCCAGACATCATTTTGCTGCCAGGATGCGGGGTGGACTT

CACCCACAGCCGCCTGAGCAACTTGTTGGGCATCCGCAAGCGGCAACCCTTCCA

GGAGGGCTTTAGGATCACCTACGATGACCTGGAGGGTGGTAACATTCCCGCACT

GTTGGATGTGGACGCCTACCAGGCAAGCTTGAAAGATGACACCGAACAGGGCG

GGGGTGGCGCAGGCGGCGGCAACAACAGTGGCAGCGGCGCGGAAGAGAACTCC

AACGCGGCAGCCGCGGCAATGCAGCCGGTGGATGACATGAACGATCATGCCATT

CGCGGCGACACCTTTGCCACACGGGCGGAGGAGAAGCGCGCTGAGGCCGAGGC

AGCGGCCGAAGCTGCCGCCCCCGCTGCGGAGGCTGCACAACCCGAGGTCGAGA

AGCCTCAGAAGAAACCGGTGATTAAACCCCTGACAGAGGACAGCAAGAAACGC

AGTTACAACCTAATAAGTAATGACAGCACCTTCACCCAGTACCGCAGCTGGTAC

CTTGCATACAACTACGGCGACCCTCAGGCCGGGATCCGCTCATGGACCCTGCTTT

GCACTCCTGACGTAACCTGCGGCTCGGAGCAGGTATACTGGTCGTTGCCCGACA

TGATGCAAGACCCCGTGACCTTCCGCTCCACGAGCCAGATCAGCAACTTTCCGGT

GGTGGGCGCCGAGCTGTTGCCCGTGCACTCCAAGAGCTTCTACAACGACCAGGC

CGTCTACTCCCAGCTCATCCGCCAGTTTACCTCTCTGACCCACGTGTTCAATCGCT

TTCCCGAGAACCAGATTTTGGCGCGCCCGCCAGCCCCCACCATCACCACCGTCA

GTGAAAACGTTCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAACAGCA

TCGGAGGAGTCCAGCGAGTGACCATTACTGACGCCAGACGCCGCACCTGCCCCT

ACGTTTACAAGGCCCTGGGCATAGTCTCGCCGCGCGTCCTATCGAGCCGCACTTT

TTGAGCAAGCATGTCCATCCTTATATCGCCCAGCAATAACACAGGCTGGGGCCT

GCGCTTCCCAAGCAAGATGTTTGGCGGGGCCAAGAAGCGCTCCGACCAACACCC

AGTGCGCGTGCGCGGGCACTACCGCGCGCCCTGGGGCGCGCACAAACGCGGCCG

CACTGGGCGCACCACCGTCGATGACGCCATCGACGCGGTGGTGGAGGAGGCGCG

CAACTACACGCCCACGCCGCCGCCAGTGTCCACCGTGGACGCGGCCATTCAGAC

CGTGGTGCGCGGAGCCCGGCGCTACGCTAAAATGAAGAGACGGCGGAGGCGCG

TAGCACGTCGCCACCGCCGCCGACCCGGCACTGCCGCCCAACGCGCGGCGGCAG

CCCTGCTTAACCGCGCACGTCGCACCGGCCGACGGGCGGCCATGCGAGCCGCTC

GAAGGCTGGCCGCGGGTATTGTTACTGTGCCCCCCAGGTCCAGGCGACGAGCGG

CCGCCGCAGCAGCCGCGGCCATTAGTGCTATGACTCAGGGTCGCAGGGGCAACG

TGTACTGGGTGCGCGACTCGGTTAGCGGCCTGCGCGTGCCCGTGCGCACCCGCC

CCCCGCGCAACTAGATTGCAATAAAAAACTACTTAGACTCGTACTGTTGTATGTA

TCCAGCGGCGGCGGCGCGCATCGAAGCTATGTCCAAGCGCAAAATCAAAGAAG

AGATGCTCCAGGTCATCGCGCCGGAGATCTATGGCCCCCCGAAGAAGGAAGAGC

AGGATTACAAGCCCCGAAAGCTAAAGCGGGTCAAAAAGAAAAAGAAAGATGAT

GATGATGAACTTGACGACGAGGTGGAACTGTTGCACGCGACCGCGCCCAGGCGG

CGGGTACAGTGGAAAGGTCGACGCGTAAGACGTGTTTTGCGACCCGGCACCACC

GTAGTCTTTACGCCCGGTGAGCGCTCCACCCGCACCTACAAGCGCGTGTATGATG

AGGTGTACGGCGACGAGGACCTGCTTGAGCAGGCCAACGAGCGCCTCGGGGAG

TTTGCCTACGGAAAGCGGCATAAGGACATGCTGGCGTTGCCGCTGGACGAGGGC

AACCCAACACCTAGCCTAAAGCCCGTGACACTGCAGCAGGTGCTGCCCGCGCTT

GCACCGTCCGAAGAAAAGCGCGGCCTAAAGCGCGAGTCTGGTGACTTGGCACCC

ACCGTGCAGCTGATGGTACCCAAGCGTCAGCGACTGGAAGATGTCTTGGAAAAA

ATGACCGTGGAGCCTGGGCTGGAGCCCGAGGTCCGCGTGCGGCCAATCAAGCAG

GTGGCACCGGGACTGGGCGTGCAGACCGTGGACGTTCAGATACCCACCACCAGT

AGCACTAGTATTGCCACTGCCACAGAGGGCATGGAGACACAAACGTCCCCGGTT

GCCTCGGCGGTGGCAGATGCCGCGGTGCAGGCGGCCGCTGCGGCCGCGTCCAAA

ACCTCTACGGAGGTGCAAACGGACCCGTGGATGTTTCGCGTTTCAGCCCCCCGG

CGTCCGCGCCGTTCGAGGAAGTACGGCGCCGCCAGCGCGCTACTGCCCGAATAT

GCCCTACATCCTTCCATCGCGCCTACCCCCGGCTATCGTGGCTACACCTACCGCC

CCAGAAGACGAGCAACTACCCGACGCCGAACCACCACTGGAACCCGCCGCCGCC

GTCGCCGTCGCCAGCCCGTGCTGGCCCCGATTTCCGTGCGCAGGGTGGCTCGCG

AAGGAGGCAGGACCCTGGTGCTGCCAACAGCGCGCTACCACCCCAGCATCGTTT

AAAAGCCGGTCTTTGTGGTTCTTGCAGATATGGCCCTCACCTGCCGCCTCCGTTT SEQ

ID Sequence

NO

CCCGGTGCCGGGATTCCGAGGAAGAATGCACCGTAGGAGGGGCATGGCCGGCC

ACGGCCTGACGGGCGGCATGCGTCGTGCGCACCACCGGCGGCGGCGCGCGTCGC

ACCGTCGCATGCGCGGCGGTATCCTGCCCCTCCTTATTCCACTGATTGCCGCGGC

GATTGGCGCCGTGCCCGGAATTGCATCCGTGGCCTTGCAGGCGCAGAGACACTG

ATTAAAAACAAGTTGCATGTGGAAAATCAAAATAAAAAGTCTGGACTCTCACGC

TCGCTTGGTCCTGTAACTATTTTGTAGAATGGAAGACATCAACTTTGCGTCACTG

GCCCCGCGACACGGCTCGCGCCCGTTCATGGGAAACTGGCAAGATATCGGCACC

AGCAATATGAGCGGTGGCGCCTTCAGCTGGGGCTCGCTGTGGAGCGGCATTAAA

AATTTCGGTTCCACCGTTAAGAACTATGGCAGTAAGGCCTGGAACAGCAGCACA

GGCCAGATGCTGAGGGACAAGTTGAAAGAGCAAAACTTTCAGCAAAAGGTGGT

AGATGGTCTGGCCTCTGGCATTAGCGGGGTGGTGGACCTGGCCAACCAGGCAGT

GCAAAATAAGATTAACAGTAAGCTTGATCCCCGCCCTCCCGTAGAGGAGCCTCC

ACCGGCCGTGGAGACAGTGTCTCCAGAGGGGCGCGGCGAAAAGCGTCCGCGCC

CCGACAGGGAAGAAACTCTGGTGACGCAAATAGACGAGCCTCCCTCGTACGAGG

AGGCACTAAAGCAAGGCCTGCCCACCACCCGTCCCATCGCGCCCATGGCTACCG

GAGTGCTGGGCCAGCACACGCCCGTAACGCTGGACCTGCCTCCCCCCGCCGACA

CCCAGCAGAAACCTGTGCTGCCAGGCCCGTCCGCCGTTGTTGTAACCCGTCCTAG

CCGCGCGTCCCTGCGCCGTGCCGCCAGCGGTCCGCGATCGTTGCGGCCCGTAGC

CAGTGGCAACTGGCAAAGCACACTGAACAGCATCGTGGGTCTGGGGGTACAATC

CCTGAAGCGCCGACGATGCTTCTAATAGCTAACGTGTCGTATGTGTGTCATGTAT

GCGTCCATGTCGCCGCCAGAGGAGCTGCTGAGCCGCCGCGCGCCCGCTTTCCAA

GATGGCTACCCCTTCGATGATGCCGCAGTGGTCTTACATGCACATCTCGGGCCAG

GACGCCTCGGAGTACCTGAGCCCCGGGCTGGTGCAGTTTGCCCGCGCCACCGAG

ACGTACTTCAGCCTGAATAACAAGTTTAGAAACCCCACGGTGGCGCCTACGCAC

GACGTGACCACAGACCGGTCCCAGCGTTTGACGCTGCGGTTTATCCCTGTGGACC

GCGAGGATACTGCGTACTCGTACAAGGCGCGGTTTACCCTAGCTGTGGGTGATA

ACCGTGTGCTGGACATGGCTTCCACGTACTTTGACATTCGCGGCGTGCTGGACCG

GGGCCCCACTTTTAAGCCCTACTCCGGCACTGCCTACAACGCCCTAGCTCCCAAG

GGTGCCCCCAACTCATGCGAGTGGGATGAAGATGATACTCAGGTACAGGTAGCG

GCTGAAGACGATCAAGACGACGACGAAGAAGAGGAACAACTACCTCAGCAGAG

AAATGGCAAAAAAACTCACGTATATGCTCAGGCACCGTTTGCTGGCGAAGCAAT

TAACAAAAACGGCCTGCAGATAGGAACTAACGGTGCAGCCACTGAAGGAAATA

AGGAAATTTACGCAGATAAAACTTATCAACCTGAACCACAAATAGGAGAATCAC

AGTGGAACGAAGCCGAATCGTCCGTAGCAGGTGGAAGGGTTCTTAAAAAGACTA

CTCCCATGAAACCATGCTATGGCTCCTATGCCAGACCTACCAATTCTAACGGAGG

TCAGGGCGTTATGGTTGAACAAAATGGTAAATTGGAAAGTCAAGTAGAAATGCA

ATTTTTTTCAACTTCTGTAAATGCTATGAACGAGGCAAACGCTATTCAACCTAAA

CTAGTGTTGTATAGTGAAGATGTAAATATGGAAACCCCAGACACTCATCTTTCTT

ATAAGCCTGGAAAAAGTGATGATAATTCTAAGGCAATGTTGGGTCAACAATCTA

TGCCAAACAGACCCAATTACATAGCTTTCAGGGACAATTTTATTGGCCTAATGTA

TTACAACAGCACTGGTAACATGGGTGTTCTTGCTGGTCAGGCATCACAGCTAAAT

GCTGTCGTAGATTTGCAAGACAGAAACACAGAGCTGTCCTACCAACTTTTGCTTG

ATTCTATTGGTGATCGAACCAGATACTTTTCCATGTGGAATCAGGCTGTAGACAG

CTACGATCCAGATGTTAGAATTATCGAGAACCATGGAACTGAGGATGAATTGCC

AAATTATTGTTTTCCTCTTGGCGGAATTGGGGTGACGGACACCTATCAAGCTATT

AAGGCTACAAATGGAAATGGAGGCGCCACTACCTGGGCTCAGGACAATACTTTT

GCAGAACGAAATGAAATAGGGGTGGGAAATAACTTTGCCATGGAAATTAACCTG

AATGCCAACCTATGGAGAAATTTCCTTTACTCCAATATTGCGCTGTACCTGCCAG

ACAAGCTAAAATACAACCCCACCAATGTGGAAATATCTGACAATCCCAACACCT

ACGACTACATGAACAAGCGAGTGGTGGCTCCCGGGCTGGTGGATTGCTACATTA

ACCTTGGGGCGCGCTGGTCTCTGGACTACATGGACAACGTTAATCCCTTTAACCA

CCACCGCAATGCGGGCCTGCGTTACCGCTCCATGTTGTTGGGAAACGGCCGCTA SEQ

ID Sequence

NO

CTCCTGCCAGGCTCATACACATATGAATGGAACTTCAGGAAGGATGTTAACATG

GTTCTGCAGAGCTCTCTGGGAAACGATCTTAGGGTTGACGGGGCTAGCATTAAG

TTTGACAGCATTTGTCTTTACGCCACCTTCTTCCCCATGGCCCACAACACGGCCT

CCACGCTGGAAGCCATGCTTAGAAATGACACCAACGACCAGTCCTTTAATGACT

ATCTTTCCGCCGCCAACATGCTATACCCCATACCCGCCAACGCCACCAACGTGCC

CATCTCTATCCCCTCGCGCAACTGGGCGGCTTTCCGAGGCTGGGCGTTTACGCGC

CTTAAGACTAAGGAAACCCCATCCCTGGGTTCCGGCTACGACCCTTACTATACCT

ACTCTGGCTCCATACCCTACCTAGACGGAACCTTTTACCTTAATCACACCTTCAA

AAAGGTGGCCATCACCTTTGACTCTTCTGTTAGCTGGCCTGGCAATGACCGTCTG

CTTACCCCCAACGAGTTTGAAATCAAGCGTTCAGTCGACGGAGAGGGCTACAAC

GTTGCTCAATGCAACATGACCAAAGACTGGTTCTTGGTACAGATGCTGGCCAAC

TACAACATAGGCTACCAGGGCTTTTATATCCCAGAAAGCTACAAGGACCGCATG

TACTCCTTCTTTAGAAACTTCCAGCCCATGAGCCGTCAGGTGGTGGACGATACCA

AATACAAGGACTACCAACAGGTGGGCATCCTTCACCAGCACAATAACTCTGGCT

TTGTTGGTTACCTCGCTCCCACCATGCGAGAGGGACAGGCTTACCCCGCCAACTT

CCCCTACCCGCTTATAGGCAAGACCGCGGTTGACAGTATTACCCAGAAAAAGTT

TCTTTGCGACCGCACCCTTTGGCGCATTCCATTCTCCAGTAACTTTATGTCCATGG

GCGCACTCACAGACCTGGGCCAAAACCTTCTCTATGCAAACTCCGCCCACGCGC

TAGACATGACTTTTGAGGTGGATCCCATGGACGAGCCCACCCTTCTTTATGTTTT

GTTTGAAGTCTTTGACGTGGTCCGTGTGCACCAGCCGCACCGCGGCGTCATCGAG

ACCGTGTACCTGCGCACGCCCTTCTCGGCCGGCAACGCCACAACATAAAGAAGC

AAGCAACATCAACAACAACTGCCGCCATGGGCTCCAGTGAGCAGGAACTGAAA

GCCATTGTCAAAGATCTTGGTTGTGGACCATATTTTTTGGGCACCTATGACAAGC

GCTTCCCAGGCTTTGTTTCCCCACACAAGCTCGCCTGTGCCATAGTTAACACGGC

CGGTCGCGAGACTGGGGGCGTACACTGGATGGCCTTTGCCTGGGACCCGCGCTC

AAAAACATGCTACCTTTTTGAGCCCTTTGGCTTTTCTGACCAGCGTCTCAAGCAG

GTTTACCAGTTTGAGTACGAGTCACTTCTGCGCCGTAGCGCCATTGCCTCTTCCC

CCGACCGCTGTATAACGCTGGAAAAGTCCACTCAAAGCGTGCAGGGGCCCAACT

CGGCCGCCTGTGGCCTGTTCTGCTGCATGTTTCTCCACGCCTTCGCCAACTGGCC

CCAAACTCCCATGGATCACAACCCCACCATGAACCTTATTACCGGAGTACCCAA

CTCCATGCTTAACAGTCCCCAGGTACAGCCCACCCTGCGCCGCAACCAGGAACA

GCTCTACAGCTTCCTGGAGCGCCACTCGCCCTACTTCCGCAGACACAGTGCGCAA

ATT AGGAGTGCCACTTCTTTTTGTCACTTGAAAAACATGTAAAAATAATGT ACTA

GGAGACACTTTCAATAAAGGCAAATGCTTTTATTTGTACACTCTCGGGTGATTAT

TTACCCCCCACCCTTGTCGTCTGCGCCGTCTAAAAATCAAAGGGGTTCTGCCGCG

CATCGCTATGCGCCACTGGCAGTGACACGTTGCGATACTGGTGTTTAGTGCTCCA

CTTAAACTCAGGCACAACCATTCGCGGCAGCTCGGTAAAGTTTTCACTCCACAG

GCTGCGCACCATCACCAACGCGTTTAGCAGGTCGGGCGCCGATATCTTGAAGTC

GCAGTTGGGGCCTCCGCCCTGCGCGCGCGAGTTGCGATACACAGGGTTGCAGCA

CTGGAACACTATCAGCGCCGGGTTGTGCACGCTGGCCAGCACGCTCTTGTCGGA

GATCAGATCCGCGTCTAGGTCCTCCGCGTTGCTCAGGGCGAACGGAGTCAACTTT

GGTAGCTGCCTTCCCAAAAAGGGCGCGTGCCCAGGCTTTGAGTTGCACTCGCAC

CGTAGTGGCATCAGAAGGTGACCGTGCCCGGTTTGGGCGTTAGGATACAGCGCC

TGCATAAAAGCCTTGATCTGCTTAAAAGCCACCTGAGCCTTTGCGCCTTCAGAGA

AGAACATGCCGCAAGACTTGCCGGAAAACTGATTGGCCGGACAGGCCGCGTCGT

GCACGCAGCACCTTGCGTCGGTGTTGGAGATCTGCACCACATTTCGGCCCCACCG

GTTCTTCACGATCTTGGCTTTGCTAGACTGCTCCTTCAGCGCGCGCTGCCCATTTT

CGCTCGTCACATCCATTTCAATCACGTGCTCCTTATTTATCATAATGCTCCCGTGT

AGACACTTAAGCTCGCCTTCGATCTCAGCGCAGCGGTGCAGCCACAACGCGCAG

CCCGTGGGCTCGTGGTGCTTGTAGGTCACCTCTGCAAACGACTGCAGGTACGCCT

GCAAGAATCGCCCCATCATCGTCACAAAGGTCTTGTTGCTGGTGAATGTCAGCTG

CAACCCGCGGTGCTCCTCGTTTAGCCAGGTCTTGCATACGGCCGCGAGAGCTTCC

ACTTGGTCAGGCAGTAGCTTGAAGTTCGCCTTTAGATCGTTATCCACGTGGTACT SEQ

ID Sequence

NO

TGTCCATTAGCGCGCGCGCAGCCTCCATGCCCTTCTCCCACGCAGACACGATCGG

CAGACTCAACGGGTTCATTACCGTGCTTTCACTTTCTGCTTCACTGGGCTCTTCCT

CTTCCTCTTGAGTCCGCATACCCCGCGCCACTGGGTCGTCTTCATTCAGCCGCCG

CACCGTGCGCTTACCTCCCTTGCCGTGCTTGATTAGCACCGGTGGGTTGCTGAAA

CCCACCATTTGTAGCGCCACATCTTCTCTTTCTTCCTCGCTGTCCACAATCACCTC

GCGTTGGCCAAATCCGCCGCCGAGGTTGATGGCCGCGGGCTGGGTGTGCGCGGC ACCAGCGCGTCCTGTGACGAGTCTTCTTCGTCCTCGGACTCGAGACGCCGCCTCA

ACGTCCTCCATGGTTGGGGGACGTCGCGCCGCACCGCGTCCGCGCTCGGGGGTG

GTTTCGCGCTGCTCCTCTTCCCGACTGGCCATTTCCTTCTCCTATAGGCAGAAAA

AGATCATGGAGTCAGTCGAGAAGGAGGACAGCCTAACCGCCCCCTCTGAGTTCG

CCACCACCGCCTCCACCGATGCCGCCAACGCGCCTACCACCTTCCCCGTCGAGGC

ACCCCCGCTTGAGGAGGAGGAAGTGATTATCGAGCAGGACCCAGGTTTTGTAAG

CGAAGACGACGAGGACCGCTCAGTACCAACAGAGGATAAAAAGCAAGACCAGG

ACGACGCAGAGGCAAACGAGGAACAAGTCGGGCGGGGGGACCAAAGGCATGGC

GACTACCTAGATGTGGGAGACGACGTGCTGTTGAAGCATCTGCAGCGCCAGTGC

GCCATTATCTGCGACGCGTTGCAAGAGCGCAGCGATGTGCCCCTCGCCATAGCG

GATGTCAGCCTTGCCTACGAACGCCACCTGTTCTCACCGCGCGTACCCCCCAAAC

GCCAAGAAAACGGCACATGCGAGCCCAACCCGCGCCTCAACTTCTACCCCGTAT

ACCCCTATCCTGCCGTGCCAACCGCAGCCGAGCGGACAAGCAGCTGACCTTGCG

ACAGGGCGCTGTCATACCTGATATCGCCTCGCTCGACGAAGTGCCAAAAATCTTT

GAGGGTCTTGGACGCGACGAGAAGCGCGCGGCAAACGCTCTGCAACAGGAAAA

CAACGAAAATGAAAGTTACTCTGGAGTGCTGGTGGAACTTGAGGGTGACAACGC

GCGCCTAGCCGTGCTTAAACGCAGCATCGAGGTCACCCACTTTGCCTACCCGGC

ACTTAACCTGCCCCCCAAGGTTATGAGCACAGTCATGAGCGAGCTGATCGTGCG

CCGTGCACGGCCCCTAGAGAGGGATGCAAACTTGCAAGAACAAACAGAGGAGG

GCCTGCCCGCAGTTGGCGACGAGCAGCTAGCGCGCTGGCTTCAGACGCGCGAGC

CTGCCGACTTGGAGGAGCGACGTAAGCTAATGATGGCCGCAGTGCTCGTTACCG

TGGAGCTTGAGTGCATGCAGCGGTTCTTTGCTAACCCGGAGATGCAGCGCAAGC

TAGAGGAAACGTTGCACTACACCTTTCGCCAGGGCTACGTGCGCCAGGCCTGCA

AGATCTCCAACGTGGAGCTCTGCAACCTGGTCTCCTACCTTGGAATTTTGCACGA

AAACCGCCTTGGGCAAAACGTGCTTCATTCCACGCTCAAGGGCGAGGCGCGCCG

CGACTACGTCCGCGACTGCGTTTACTTGTTTCTATGCTACACCTGGCAGACGGCC

ATGGGCGTGTGGCAGCAGTGCCTGGAGGAGCGCAACCTCAAGGAGCTGCAGAA

GCTGCTAAAGCAAAACTTGAAGGACCTATGGACGGCCTTCAATGAGCGCTCCGT

GGCCGCGCACCTGGCGGACATCATCTTCCCCGAACGCCTGCTTAAAACCCTGCA

ACAGGGTCTGCCAGACTTTACCAGTCAAAGCATGTTGCAAAACTTTAGGAACTTT

ATCCTAGAGCGCTCAGGAATTCTGCCCGCCACCTGCTGTGCGCTTCCTAGCGACT

TTGTGCCCATTAAGTACCGCGAATGCCCTCCGCCGCTTTGGGGTCACTGCTACCT

TCTGCAGCTAGCAAACTACCTTGCCTACCACTCCGACATCATGGAAGACGTGAG

CGGTGACGGCCTACTGGAGTGTCACTGTCGCTGCAACCTATGTACCCCGCACCGC

TCCCTGGTCTGCAATTCGCAGCTGCTTAGCGAGAGTCAAATTATCGGTACCTTTG

AGCTGCAGGGTCCCTCGCCTGACGAAAAGTCCGCGGCTCCGGGGTTGAAACTCA

CTCCGGGGCTGTGGACGTCGGCTTACCTTCGCAAATTTGTACCTGAGGACTACCA

CGCCCACGAGATTAGGTTCTACGAAGACCAATCCCGCCCGCCCAATGCGGAGCT

TACCGCCTGCGTCATTACCCAGGGCCACATCCTTGGCCAATTGCAAGCCATCAAC

AAAGCCCGCCAAGAGTTTCTGCTACGAAAGGGACGGGGGGTTTACTTGGACCCC

CAGTCCGGCGAGGAGCTCAACCCAATCCCCCCGCCGCCGCAGCCCTATCAGCAG

CAGCCGCGGGCCCTTGCTTCCCAGGATGGCACCCAAAAAGAAGCTGCAGCTGCC

GCCGCCGCCACCCACGGACGAGGAGGAATACTGGGACAGTCAGGCAGAGGAGG

TTTTGGACGAGGAGGAGGAGACGATGGAAGACTGGGACAGCCTAGACGAGGAA SEQ

ID Sequence

NO

GCTTCCGAGGCCGAAGAGGTGTCAGACGAAACACCGTCACCCTCGGTCGCATTC

CCCTCGCCGGCGCCCCAGAAATCGGCAACCGTTCCCAGCATTGCTACAACCTCC

GCTCCTCAGGCGCCGCCGGCACTGCCCGTTCGCCGACCCAATCGTAGATGGGAC

ACCACTGGAACCAGGGCCGGTAAGTCCAAGCAGCCGCCGCCGTTAGCCCAAGAG

CAACAACAGCGCCAAGGCTACCGCTCGTGGCGCGGGCACAAGAACGCCATAGTT

GCTTGCTTGCAAGAGTGTGGGGGCAACATCTCCTTCGCCCGCCGCTTTCTTCTCT

ACCATCACGGCGTGGCCTTCCCCCGTAACATCCTGCATTACTACCGTCATCTCTA

CAGCCCCTACTGCACCGGCGGCAGCGGCAGCAACAGCAGCGGCCACGCAGAAG

CAAAGGCGACCGGATAGCAAGACTCTGACAAAGCCCAAGAAATCCACAGCGGC

GGCAGCAGCAGGAGGAGGAGCACTGCGTCTGGCACCCAACGAACCCGTATCGA

CCCGCGAGCTTAGAAACAGGATTTTTCCCACTCTGTATGCTATATTTCAACAGAG

CAGGGGCCAAGAACAAGAGCTGAAAATAAAAAACAGGTCTCTGCGCTCCCTCAC

CCGCAGCTGCCTGTATCACAAAAGCGAAGATCAGCTTCGGCGCACGCTGGAAGA

CGCGGAGGCTCTCTTCAGCAAATACTGCGCGCTGACTCTTAAGGACTAGTTTCGC

GCCCTTTCTCAGATTTAAGCGCGAAAACTACGTCATCTACAACGGCCACACCCG

GCGCCAGCACCTGTCGTCAGCGCCATTATGAGCAAGGAAATTCCCACGCCCTAC

ATGTGGAGTTACCAGCCACAAATGGGACTTGCGGCTGGAGCTGCCCAAGACTAC

TCAACCCGAATAAACTACATGAGCGCGGGACCCCACATGATATCCCGGGTCAAC

GGTATACGCGCCCACCGAAACCGAATTCTCCTGGAACAGGCGGCCATTACAACC

ACACCTCGTAATAACCTTAATCCCCGTAGTTGGCCCGCTGCCCTGGTTTACCAGG

AAAGTCCCGCTCCCACCACTGTGGTACTTCCCAGAGACGCCCAGGCCGAAGTCC

AAATGACTAACTCAGGGGCGCAGCTTGCGGGCGGCTTTCGTCATAGGGTGCGGT

CGCCAGGGCAGGGTATAACTCACCTGAAAATCAGAGGGCGAGGTATTCAGCTCA

ACGACGAGTCGGTGAGCTCCTCGCTTGGTCTCCGTCCGGACGGAACATTTCAGAT

CGGCGGCGCCGGCCGCTCTTCATTCACGCCTCGTCAGGCGATCCTAACTTTGCAG

ACCTCGTCCTCGGAGCCGCGCTCCGGAGGCATTGGAACTCTACAATTTATTGAGG

AGTTCGTGCCTTCGGTTTACTTCAACCCCTTTTCTGGACCTCCTGGCCACTACCCG

GACCAGTTTATTCCCAACTTTGACGCGGTGAAGGACTCGGCGGACGGCTACGAC

TGAATGACTAGTGGAGAGGCAGAGCAACTGCGTCTAACACACCTCGACCACTGC

CGCCGCCACAAGTGCTTTGCCCGCGACTCCGGTGAGTTTTCCTATTTTGAGTTGC

CCGAAGAGCATATCGAGGGCCCGGCGCACGGCGTCCGGCTCACCACCCAGGTAG

AGCTTACACGTAGCTTGATTCGGGAGTTTACCAAGCGCCCCCTGCTAGTGGAGC

GGGAGCGGGGTCCCTGTGTTCTAACCGTGGTTTGCAACTGTCCTAACCCTGGATT

ACATCAAGATCTTTGTTGTCATCTCTGTGCTGAGTATAATAAATACAGAAATTAG

AAGCAGACCAAAGCAAACCTCACCTCCGGTTTGCACAAGCGGGCCAATAAGTAC

CTTACCTGGTACTTTAACGGCTCTTCATTTGTAATTTACAACAGTTTCCAGCGAG

ACAAAGTAAGTTTGCCACACAACCTTTTCGGCTTCAACTATACCATCAAGAAAA

ACACCACCACCCTCCTTACCTGCCGGGAACGTACGAGTGCGTCACCGGTTGCTGC

GCCCACACCTACAGCCTGACCGTAACCAGACATTACTCCCATTTTCCCAAAACAG

GAGGTGAGCTCAACTTCCGAAAATCAGGGCAAAAAGCATTTTGCTGATTGTAGT

CGGGGTGCTGAGATTTTTTAATTAAGTATATGAGCAATTCAAGTAACTCTACAAG

CTTGTCTAATTTTTCTGGAATTGGGGTCGGGGTTATCCTTACTCTTGTAATTCTGT

TTATTCTTATACTAGCACTTCTGTGCCTTAGGGTTGCCGCTTGCTGCACGCACGTT

AATTTTATGCATGCTCGCCCTTGCGGCAGTCTGCAGTGCTGCCAAAAAGGTTGAG

TTTAAGGAACCAGCTTGCAATGTTACATTTAAATCCGAAGCTAATGAATGCACC

ACTCTTATAAAATGCACCACAGAACATGAAAAGCTTATTATTCGCCACAAAGAC

AAAATTGGCAAGTATGCTGTATATGCTATTTGGCAGCCAGGTGATACTAACGAC

TATAATGTCACAGTCTTCCAAGGTGAAAATCATAAAACTTTTATGTATAAATTTC

CATTTTATGAAATGTGCGATATTACCATGTACATGAGCAAACAGTACAAGTTGTG

GCCCCCACAAAAGTGTTTAGAGAACACTGGCACCTTTTGTTCCACCGCTCTGCTT

ATTACAGCGCTTGCTTTAGTATGTACCCTACTTTATCTCAAATACAAAAGCAGAC SEQ

ID Sequence

NO

GCAGTTTTATTGATGAAAAGAAAATGCCTTGATTTTCCGCTTGCTAAACCCTTGC

CAACAAAAGCCAATGTATAATAATGTAACCACCGCGGTGTTACTGCTTGTATTCC

CCTGGACAATTTACTCTATGTGGGATATGCGCCAGGCGGGAAAGATTATACCCA

CAACCTTCAAATCAAACTTTCCTGGACGTTAGCGCCTGACTTCTGCCAGCGCCTG

CACTGCAAATTTGATCAAACCCAGCTTCAGAGAGATGACCGGCTCAACCATCGC

GCCCACAACGGACTATCGCAACACCACTGCTACCGGACTAAAATCTGCCCTAAA

TTTACCCCAAGTTCATGCCTTTGTCAATGACTGGGCGAGCTTGGGCATGTGGTGG

TTTTCCATAGCGCTTATGTTTGTTTGCCTTATTATTATGTGGCTTATTTGTTGCCTA

AAGCGCAGACGCGCCAGACCCCCCATCTATAGGCCTATCATTGTGCTCAACCCA

CACAATGAAAAAATTCATAGATTGGACGGTCTGAAACCATGTTCTCTTCTTTTAC

AGTATGATTAAATGAGACATGATTCCTCGAGTCCTTATATTATTGACCCTTGTTG

CGCTTTTCTGTGCGTGCTCTACATTGGCCGCGGTCGCTCACATCGAAGTAGATTG

CATCCCACCTTTCACAGTTTACCTGCTTTACGGATTTGTCACCCTTATCCTCATCT

GCAGCCTCGTCACTGTAGTCATCGCCTTCATTCAGTTCATTGACTGGATTTGTGT

GCGCATTGCGTACCTTAGGCACCATCCGCAATACAGAGACAGGACTATAGCTGA

TCTTCTCAGAATTCTTTAATTATGAAACGGATTGTCACTTTTGTTTTGCTGATTTT

CTGCGCCCTACCTGTGCTTTGCTCCCAAACCTCAGCGCCTCCCAAAAGACATATT

TCCTGCAGATTCACTCAAATATGGAACATTCCCAGCTGCTACAACAAACAGAGC

TGCCATGAACCACCCTACTTTCCCAGCGCCCAATGTCATACCACTGCAACAGGTT

ATTGCCCCAATCAATCAGCCTCGCCCCCCTTCTCCCACCCCCACTGAGATTAGCT

ACTTTAATTTGACAGGTGGAGATGACTGAATCTCTAGATCTAGAATTGGATGGA

ATTAACACCGAACAGCGCCTACTAGAAAGGCGCAAGGCGGCGTCCGAGCGAGA

ACGCCTAAAACAAGAAGTTGAAGACATGGTTAACCTGCACCAGTGTAAAAGAG

GTATCTTTTGTGTGGTCAAGCAGGCCAAACTTACCTACGAAAAAACCACTACCG

GCAACCGCCTTAGCTACAAGCTACCCACCCAGCGCCAAAAACTGGTGCTTATGG

TGGGAGAAAAACCTATCACCGTCACCCAGCACTCGGCAGAAACAGAAGGCTGCC

TGCACTTCCCCTATCAGGGTCCAGAGGACCTCTGCACTCTTATTAAAACCATGTG

TGGCATTAGAGATCTTATTCCATTCAACTAACAATAAACACACAATAAATTACTT

ACTTAAAATCAGTCAGCAAATCTTTGTCCAGCTTATTCAGCATCACCTCCTTTCC

CTCCTCCCAACTCTGGTATTTCAGCAGCCTTTTAGCTGCGAACTTTCTCCAAAGTC

TAAATGGGATGTCAAATTCCTCATGTTCTTGTCCCTCCGCACCCACTATCTTCATA

TTGTTGCAGATGAAACGCGCCAGACCGTCTGAAGACACCTTCAACCCTGTGTAC

CCATATGACACGGAAACCGGCCCTCCAACTGTGCCTTTCCTTACCCCTCCCTTTG

TGTCGCCAAATGGGTTCCAAGAAAGTCCCCCCGGAGTGCTTTCTTTGCGTCTTTC

AGAACCTTTGGTTACCTCACACGGCATGCTTGCGCTAAAAATGGGCAGCGGCCT

GTCCCTGGATCAGGCAGGCAACCTTACATCAAATACAATCACTGTTTCTCAACCG

CTAAAAAAAACAAAGTCCAATATAACTTTGGAAACATCCGCGCCCCTTACAGTC

AGCTCAGGCGCCCTAACCATGGCCACAACTTCGCCTTTGGTGATCTCTGACAACA

CTCTTACCATGCAATCACAAGCACCGCTAACCGTGCAAGACTCAAAACTTAGCA

TTGCTACCAAAGAGCCACTTACAGTGTTAGATGGAAAACTGGCCCTGCAGACAT

CAGCCCCCCTCTCTGCCACTGGTAACAACGCCCTCACTATCACTACCTCACCTCC

TCTTACTACTGCAAATGGTAGTCTGGCTGTTACCATGGAAAACCCACTTTACAAC

AACAATGGAAAACTTGGGCTCAAAATTGGCGGTCCTTTGCAAGTGGCCACCGAC

TCACATGCACTAACACTAGGTACTGGTCAGGGGGTTGCAGTTCATAACAATTTGC

TACATACAAAAGTTACAGGCGCAATAGGGTTTGATACATCTGGCAACATGGAAC

TTAAAACTGGAGATGGCCTCTATGTGGATAGCGCCGGTCCTAACCAAAAACTAC

ATATTAATCTAAATACCACAAAAGGCCTTGCTTTTGACAACACCGCAATAACAA

TTAACGCTGGAAAAGGGTTGGAATTTGAAACAGACTCCTCAAACGGAAATCCCA

TAAAAACAAAAATTGGATCAGGCATACAATATGATACCAATGGAGCTATGGTTG

CAAAACTTGGAACAGGCCTCAGTTTTGACAGCTCCGGAGCCATAACAATGGGCA

GCATAAACAATGACAGACTTACTCTTTGGACAACACCAGACCCATCCCCAAATT SEQ

ID Sequence

NO

GCAGAATTGCTTCAGATAAAGACTGCAAGCTAACTCTGGCGCTAACAAAATGTG

GCAGTCAAATTTTGGGCACTGTTTCAGCTTTGGCAGTATCAGGTAATATGGCCTC

CATCAATGGAACTCTAAGCAGTGTAAACTTGGTTCTTAGATTTGATGACAACGG

AGTGCTTATGTCAAATTCATCACTGGACAAACAGTATTGGAACTTTAGAAACGG

GGACTCCACTAACGGTCAACCATACACTTATGCTGTTGGGTTTATGCCAAACCTA

AAAGCTTACCCAAAAACTCAAAGTAAAACTGCAAAAAGTAATATTGTTAGCCAG

GTGTATCTTAATGGTGACAAGTCTAAACCATTGCATTTTACTATTACGCTAAATG

GAACAGATGAAACCAACCAAGTAAGCAAATACTCAATATCATTCAGTTGGTCAT

GGAACAGTGGACAATACACTAATGACAAATTTGCCACCAATTCCTATACCTTCTC

CTACATTTCCCAGGAATAAAGAATCGTGAACCTGTTGCATGTTATGTTTCAACGT

CACCACCACATAGCTTAT

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGTT ID TTTGAATTTTAACGGTTTCGGGGCGGAGCCAACGCTGATTGGACGAGAGAAGAC NO: GATGCAAATGACGTCACGACGCACGGCGTTAACGGTCGCCGCGGAGGCGTGGCC 1448 TAGCCCGGAAGCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGAC

CCGGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGC

GGATGCAAGTGAAATTAGGTCATTTTGGCGCGAAAACTGAATGAGGAAGTGAAA

AGCGAAAAATACCGGTCCCTCCCAGGGCGGAATATTTACCGAGGGCCGAGAGAC

TTTGACCGATTACGTGGGGGTTTCGATTGCGGTGTTTTTTCGCGAATTTCCGCGTC

CGTGTCAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCGCAGGGTATTTAAA

CCAGTCGAGTCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAGAGACCGAGAAAAATGAGACACCTGCGCCTCCTGCCTTC

AACTGTGCCCGGTGAGCTGGCTGTGCTTATGCTGGAGGACTTTGTGGATACAGTA

TTGGAGGACGAACTGCATCCAAGTCCGTTCGAGCTGGGACCCACACTTCAGGAT

CTCTATGATCTGGAGGTAGATGCCCATGATGACGACCCTAACGAGGAGGCTGTG

AATTTAATATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAACGAATCTA

CTCCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAGGACG

AACTAGACCTCCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGATG

AACGGGGTGAGCAGACCATGGCTCTGATCTCAGACTATGCTTGTGTGACTGTGG

AGGAACAAGTAGTGATTGAAAATTCTACCGAGCCAGTGGAGGGCTGTAGAAAAT

GCCAGTACCACCGGGATAAGTCTGGAGACCCGAACGCATCATGCGCTCTGTGCT

ATATGAAACAGACTTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAGAGAG

GCTGAGTGCTTAACACATCACTGTGTATTGCTTAAACAGCTGTGCTAAGTGTGGT

TTATTTTTGTTTCTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAAGAAG

ACCACCCGTCTCCCCCTGATCTCACAGATGACACGCCCCTGCAAGTGCACAGAC

CCACCCCAGTCAGAGCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATTGAG

GACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAACGC

CCCAGGAACTAGGCGCAGCTGCGCTTAGTCATGTGTAAATAAAGTTGTACAATA

AAAGTATATGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAG

TCCTATATAAGTGGCAACACCTGGGCACTGGGCACAGACCTTCAGGGAGTTCCT

GATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGGCTTGTAGA

GGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCCTCTA

TCTCGCCTGGTGTACACAGTTAAGAAGGATTATAAAGAGGAATTTGAAAATATT

TTTGCTGACTGCTCTGGCCTGCTAGATTCTCTGAATCTTGGCCACCAGTCCCTTTT

CCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGC

AGCAGGGGCTACATCCTGGACTTCGCAGCCATGCACCTGTGGAGGGCCTGGATC

AGGCAGCGGGGACAGAGAATCTTGAATTACTGGCTTCTACAGCCAGCAGCTCCG

GGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGCAG

GCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCT

GGATTGAATCAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCC

ATGGCCAGGGGAGTTAAGAGGGAGAGGAGCGATGGGGGTAATACCGGGATGAT SEQ

ID Sequence

NO

GACCGAGCTGACGGCCAGCCTGATGAATCGGAAGCGCCCAGAGCGCCTTACCTG

GTACGAGCTACAGCAGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGATAAAT

ATGGCCTGGAGCAGATAAAAACCCATTGGTTGAACCCAGATGAGGATTGGGAGG

AGGCTATTAAGAAGTATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACATAG

TGACCAAGACCGTGAATATCAGACATGCCTGCTACATCTCGGGGAACGGGGCAG

AGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGGAA

TGAGAGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTTCA

ATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCTGC

ATGGCTGCAGTTTCTTCGGCTTCAACAATATGTGCGCAGAGGTCTGGGGCGCTTC

CAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGACC

CAAGAGCGAGATGTCTGTGAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGAGT

CTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGAGACGGGCTG

CTTCTGCCTGGTGAAGGGCACAGCCTCTCTGAAGCATAATATGGTGAAGGGCTG

CACGGATGAGCGCATGTACAACATGCTGACCTGCGATTCGGGGGTCTGCCATAT

CCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTTGA

GAATAACCTGCTGATCAAGTGCCATATGCACCTGGGAGCCAGAAGGGGCACCTT

CCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGC

CTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAG

ATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGGGA

AGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGACC

AGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGA

CACAGATTAGAGGTAGGTCGAGTGAGTAGTGGGCGTGGCTAAGGTGACTATAAA

GGCGGGTGTCTTACGAGGGTCTTTTTGCTTTTCTGCAGACATCATGAACGGGACC

GGCGGGGCCTTCGAAGGGGGGCTTTTTAGCCCTTATTTGACAACCCGCCTGCCGG

GATGGGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGATGGGCGCCCAG

TGCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAGCTCGTCGCT

CGACAGCACCGCCGCAGCCGCGGCAGCCGCAGCTGCCATGACAGCGACGAGAC

TGGCCTCGAGCTACATGCCCAGCAGCGGCAGCAGCCCCTCTGTGCCCAGTTCCAT

CATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCG

CCAGCTGGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAGCAGCAACAGCA

GCAAAATAAATGATTCAATAAACACAGATTCTGATTCAAACAGCAAAGCATCTT

TATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCTTTGAGAAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTA

GGTATTGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGGG

GGTTCATGTTGTGCAGGACCACCAGGACGGTGTAGCCCGTGCACTTGGGGAACT

TGTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCATTCATCCATGATGATGGCGATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGATACATCATAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG

ACGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCACAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCTGGGGTGATGAGCTGCGAAGAGAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACGGGTTGCAGGT

GGTAGTTCAAGGACATGCAGCTGCCGTCGTCCCGGAGGAGGGGGGCCACCTCGT

TGAGCATGTCTCTGACTTGGAGGTTTTCCCGAACGAGCTCGCCGAGGAGGCGGT

CCCCGCCCAGCGAGAGGAGCTCTTGCAGGGAAGCAAAGTTTTTCAGGGGCTTGA

GTCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGT

CCCAGAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGC SEQ

ID Sequence

NO

GGCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGAGTGAGGGTGGTCTCCGTC

ACGGTGAAGGGGTGAGCCCCTGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTC

ATCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGAGTCGGCGAGATAG

CAGTTGACCATGAGCTCGTAGTTGAGGACCTCGGCGGCGTGGCCCTTGGCGCGG

AGCTTGCCCTTGGAAGAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGC

GTAGAGCTTGGGGGCGAGAAAGACGGACTCGGGAGCGAAAGCGTCCGCTCCGC

AGTGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCTGGCTGCTCGG

ATGAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACG

GACTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACT

CGGACCACTCTGAGACAAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACG

TGCGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACCTTTTCCACCGTGTGCA

GACACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGC

CACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

CATCTGGTCAGAAAAGACTATTTTTTTATTGTCAAGCTTGGTGGCGAAGGAGCCA

TAGAGGGCATTGGAGAGAAGCTTGGCGATGGATCTCATTGTCTGATTTTTGTCAC

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATACTCGCGCGCGACGC

ACTTCCATTCCGGGAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAACGGTGGCA

GCACATCAAGCAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATGCCCG

CTGCCACTCGCGGGCGGCCAGCGCTCGCTCGTAGGGGTTAAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATAGACAT

AGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGG

ATGCTGGCGCGCACGTAGTCATACAACTCATGCGAGGGGGCCAAGAAGGCGGG

GCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGAT

GGCATGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTG

GGGCAAGCGGACCGAGTCGCGGATGAAGTGCGCGTAGGAGTCTTGCAGCTTGGC

GACGAGCTCGGCGGTGACGAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCG

GATGATGTCATAACCCGCTTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGGGCG

TACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCAC

GGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCT

TTTCCACGGGGAGGGCGTAAGCTTGTGCGGCCTTGCGGAGCGAGGTGTGCGTCA

GGGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGT

CGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGG

GATTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCA

TGAAATTGCGGGTGATGCGGAAAGGGCCCGGGACGGAGGCTCGGTTGTTGATGA

CCTGGGCGGCAAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGT

GTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCGAGCGCCCACTCCTG

GAGATGTGGGTTGGCTTGCATGAAGGAAGCCCAGAGCTCGCGGGCCATGAGGGT

CTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCTGG

GGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCG

CACGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGTTCCCCCGAGAATTTCAT

GACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGT

TTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGG

GAAGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAA

GTAGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCC

GCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCG SEQ

ID Sequence

NO

TCCCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGCTTTCATGTTCG

CCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCG

CGCGGGAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAG

GGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAG

GGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATG

GTACTTGATCTCCACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCG

TAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCG

GGCGTGCTCCCGGCGGCAGCGGCGGTTCTGGCCCCGCGGGCAGGGGCGGCAGA

GGCACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTG

GCGTGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAG

ACCACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCT

GCGTCATTGACGGCGGCCTGACGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCT

GGTAGGCGATCTCGGACATGAACTGTTCGATCTCCTCCTCCTGGAGATCGCCGCG

GCCCGCGCGCTCCACGGTGGCGGCGAGGTCATTGGAGATGCGGCCCATGAGCTG

CGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACGCGGCTGTAGACCACGTCCCC

GTCGGCGTCGCGTGCGCGCATGACCACCTGCGCGAGGTTGAGCTCCACGTGCCG

CGTGAAGACGGCGTAGTTGCGCAGGCGCTGGAAGAGGTAGTTGAGGGTGGTGG

CGATGTGCTCGGTGACGAAGAAGTACATGATCCAGCGGCGCAGGGGCATCTCGC

TGATGTCGCCGATGGCCTCCAGCCTTTCCATGGCCTCGTAGAAATCCACGGCGAA

GTTGAAAAACTGGGCATTGCGGGCCGAGACCGTGAGCTCGTCTTCCAGGAGCCT

GATGAGCTCGGCGATGGTGACGCGCACCTCGCGCTCGAAATCCCCGGGGGCCTC

CTCTTCTTCCTCTTCTTCCATGACGACCTCTTCTTCTATTTCTTCCTCTGGGGGCGG

TGGTGGTGGCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGA

AGCGCTCGATCATCTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGAC

CCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATGGG

GCGGGTCCCCGTTGGGCAGCGATAGGGCGCTGACGATGCATCTTATCAATTGCG

GTGTAGGGGACGTGAGCGCGTCGAGATCGACCGGATCGGAGAATCTTTCGAGGA

AAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCTCAAACACGTAGCAGCCCTGT

GGACGCTGTTAGAATTGCGGTTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAG

GCGGCGGATGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCG

GAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTGACACCGGCTCAGGTTCTTGTA

GTAGTCATGCATGAGCCTCTCAATGTCATCACTGGCGGAGGCGGAGTCTTCCATG

CGGGTGACCCCGACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACG

CGCTCGGCGAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCCTGGAAGTCATCC

ATGTCGACGAAGCGGTGGTAGGCCCCGGTGTTGATGGTGTAGGTGCAGTTGGCC

ATGAGCGACCAGTTGACGGTCTGCAGGCCGGGTTGCACGACCTCGGAGTACCTG

ATCCGCGAGAAGGCGCGCGAGTCGAAGACGTAGTCGTTGCAGGTGCGCACGAG

GTACTGGTAGCCGACTAGGAAGTGCGGTGGCGGCTGGCGGTAGAGCGGCCAGC

GCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGC

CGTAGAGGTAGCGGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGC

GGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAATAGTCCATG

GTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTCATTGACGCTCTAGAGGCAA

AAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGG

GTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTGGAGCCGC

GACTAACGTGGTATTGGCACTCCCGTCTCGACCCGAGCCCGATAGCCGCCAGGA

TACGGCGGAGAGCCCTTTTTGCCGGCCGAGGGGGTCGCTAGACTTGAAAGCGGC

TGAAAACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATCGCCAG

GGTTGAGTCGCGGCGAGCGGGACTTGGTCACCCCGCCGATTTAAAGACCCACAG

CCAGCCGACTTCTCCAGTTACGGGAGCGAGCCCCCTTTTTTCTTTTTGCCAGATG

CATCCCGTCCTGCGCCAAATGCGTCCCACCCCCCCGGCGACCACCGCGACCGCG

GCCGTAGCAGGCGCCGGCGCTAGCCAGCCACAGACAGAGATGGACTTGGAAGA

GGGCGAAGGGCTGGCAAGACTGGGGGCGCCGTCCCCGGAGCGACACCCCCGCG

TGCAGCTGCAGAAGGACGTGCGCCCGGCGTACGTGCCTGCGCAGAACCTGTTCA SEQ

ID Sequence

NO

GGGACCGCAGCGGGGAGGAGCCCGAGGAGATGCGCGACTGCCGGTTTCGGGCG

GGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAGCGCGTGCTGCGCGACGAGGA

TTTCGAGCCGAACGAGCAGACGGGGATCAGCCCCGCGCGCGCGCACGTGGCGGC

GGCCAGCCTGGTGACGGCCTACGAACAGACGGTGAAGCAGGAGCGCAACTTCC

AAAAGAGTTTCAACAACCACGTGCGCACGCTGATCGCGCGCGAGGAGGTGGCCC

TGGGCCTGATGCACCTGTGGGACCTGGCGGAGGCCATCGTGCAGAACCCGGACA

GCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTGCAGCACAGCAGGGACAACG

AGGCGTTCAGGGAGGCACTGCTGAACATCGCCGAGCCCGAGGGTCGCTGGCTGC

TGGAGCTGATCAACATCTTGCAGAGCATCGTAGTGCAGGAGCGCAGCCTGAGCC

TGGCCGAGAAGGTGGCGGCGATCAACTACTCGGTGCTGAGCCTGGGCAAGTTTT

ACGCGCGCAAGATTTACAAGACGCCGTACGTGCCCATAGACAAGGAGGTGAAG

ATAGACAGCTTTTACATGCGCATGGCGCTCAAGGTGCTGACGCTGAGCGACGAC

CTGGGCGTGTACCGCAACGACCGCATCCACAAGGCCGTGAGCACGAGCCGGCGG

CGCGAGCTAAGCGACCGCGAGCTGATGCTGAGCCTTCGCCGGGCGCTGGTAGGG

GGCGCTGCCGGCGGCGAGGAGTCCTACTTCGACATGGGGGCGGACCTGCATTGG

CAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACGGTCCAGAGGACTTGGAAGAG

GATGAGGAAGAGGAGGAGGATGCACCCGCTGCGGGGTACTGACGCCTCCGTGA

GCCAGCCGTCCGGTATAGCATCGGACGACTGGGAGGCCGCGATGCAACGCATCA

TGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGACAACAGCCGCAGGCCAACA

GACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCTCGGACCAACCCCACGCACG

AGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAGAACAAGGCCATCCGTCCCG

ACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAGCGCGTGGGCCGCTACAACA

GCACGAACGTGCAGTCCAACCTGGACCGGCTGGTGACGGACGTGCGCGAGGCCG

TGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCCTGGGCTCGCTGGTGGCGCTGA

ACGCCTTCCTGGCGACGCAGCCGGCGAACGTGCCGCGCGGGCAGGACGATTACA

CCAACTTTATCAGCGCGCTGCGGCTGATGGTGACCGAGGTTCCCCAGAGCGAGG

TGTACCAGTCTGGCCCGGACTACTTTTTCCAGACGAGCCGGCAGGGCTTGCAGA

CGGTGAACCTGAGCCAGGCTTTCAAGAACCTGCGCGGGCTGTGGGGCGTGCAGG

CGCCCGTGGGCGACCGGTCGACGGTGAGCAGCTTGCTGACGCCCAACTCGCGTC

TGCTGCTGCTGCTGATCGCGCCCTTCACCGACAGCGGCAGCGTGAACCGCAACT

CGTACCTGGGCCATCTGCTGACGCTGTACCGCGAGGCCATAGGCCAGGCGCAGG

TGGACGAGCAGACCTTCCAGGAGATCACTAGCGTGAGCCGCGCGCTGGGGCAGA

ACGACACCGACAGTCTGAGGGCCACCCTGAACTTCTTGCTGACCAATAGACAGC

AGAAGATCCCGGCGCAATATGCGCTGTCGGCCGAGGAGGAAAGGATCCTGAGA

TATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCAGGAGGGGGCCACCCCCAGC

GCCGCGCTGGACATGACCGCGCGCAACATGGAACCTAGCATGTACGCCGCCAAC

CGGCCGTTCATCAATAAGCTGATGGACTACCTGCACCGCGCGGCGGTCATGAAC

ACGGACTACTTTACAAACGCCATCCTGAACCCGCACTGGCTCCCGCCGCCGGGG

TTCTACACGGGCGAGTACGACATGCCCGACCCCAACGACGGGTTCCTGTGGGAC

GACGTGGACAGCGTGGTGTTCTCGCCGACCTTTCAAAAGCGCCAGGAGGCGCCG

CCGAGCGAGGGCGCGGTGGGGAGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCAT

AGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGGC

GAGGACGAGTACCTGAACGACTCGCTGCTGCAGCCGCCACGGGCCAAGAACGCC

ATGGCCAATAACGGTATAGAGAGTCTGGTGGACAAACTGAACCGTTGGAAGACC

TACGCTCAGGACCATAGGGATGCGCCCGCGCCGCGGCGACAGCGCCACGACCGG

CAGCGGGGCCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGCGTGTTG

GACTTGGGCGGGAGCGGTGGGGTCAACCCGTTCGCGCATCTGCAGCCCAAACTG

GGGCGACGGATGTTTTGAAATGCAAAATAAAACTCACCAAGGCCATAGCGTGCG

TTCTCTTCCTTGTTAGAGATGAGGCGTGCGGTGGTGTCTTCCTCTCCTCCTCCCTC

GTACGAGAGCGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCTCCGCG

GTATATGGCTCCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTGGCTCC

GCAGTACGACACCACTCGCGTGTACTTGGTGGACAACAAGTCGGCGGACATCGC SEQ

ID Sequence

NO

TTCCCTGAACTACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTGCAGAA

CAACGATTTCACCCCCGCCGAGGCCAGCACGCAGACGATAAATTTTGACGAGCG

GTCGCGGTGGGGCGGTGATCTGAAGACCATTCTGCACACTAACATGCCCAATGT

GAACGAGTACATGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCTAGGAA

GCATCCAGAGGGGGTAGTTGAAACAGATTTGAGTCAGGATAAGCTTGAATATGA

GTGGTTTGAGTTTACCCTGCCCGAGGGAAACTTTTCCGAGACCATGACCATAGAC

CTGATGAACAACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAAAATGGC

GTGCTGGAGAGCGATATCGGAGTCAAGTTTGACAGCAGAAATTTCAAGCTGGGC

TGGGACCCGGTGACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAGGCCTTC

CACCCGGACGTGGTGCTGCTGCCGGGCTGCGGGGTGGATTTCACCGAGAGCCGC

CTGAGCAACCTCCTGGGCATTCGCAAGAAGCAACCTTTCCAAGAGGGCTTCAGA

ATCATGTATGAGGATCTAGAAGGTGGCAACATCCCCGCCCTCCTTGATGTGCCCA

AGTACTTGGAAAGCAAGAAGAAAGTTGAAGACGAAACTAAAAATGCAGCTGCG

GCTACAGCCGATACAACCACTAGGGGTGATACATTTGCAACTCCAGCGCAAGAG

ACAGCAGCTGATAAGAAGGTAGAAGTCTTGCCCATTGAAAAGGATGAGAGTGGT

AGAAGTTACAACCTGATCCAGGGGACCCACGACACGCTGTACCGCAGTTGGTAC

CTGTCCTATACCTACGGGGACCCCGAGAAGGGGGTGCAGTCGTGGACGCTGCTC

ACCACCCCGGACGTTACCTGCGGCGCGGAGCAAGTCTACTGGTCACTGCCGGAC

CTCATGCAAGACCCCGTCACCTTCCGCTCCACCCAGCAAGTCAGCAACTACCCCG

TGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAACGACCTCGC

CGTCTACTCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTCTTCAACCGC

TTCCCCGACAACCAGATCCTCTGCCGCCCGCCCGCGCCCACCATCACCACCGTCA

GTGAAAACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGCGCAGCAGTA

TCCGCGGAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCACCTGTCCCT

ACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAGTCGCACCTT

CTAAAAAAATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGGGGTCTTAC

TAGACCCAGCACCATGTACGGAGGAGCCAAGAAGCGCTCCCAGCAGCACCCCGT

CCGCGTCCGCGGCCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGCGGGCGGAC

TTCCACCGCCGTGCGCACCACCGTCGACGACGTCATCGACTCGGTGGTCGCCGA

CGCGCGCAACTACACTCCCGCCCCCTCCACCGTGGACGCGGTCATCGACAGCGT

GGTGGCCGACGCGCGCGACTATGCCAGACGCAAGAGCCGGCGGCGACGGATCG

CCAGGCGCCACCGGAGCACGCCCGCCATGCGCGCCGCCCGGGCTCTGCTGCGCC

GCGCCAGACGCACGGGCCGCCGGGCCATGATGCGAGCCGCGCGCCGCGCTGCCA

CTGCACCCACCCCCGCAGGCAGGACTCGCAGACGAGCGGCCGCCGCCGCCGCTG

CGGCCATCTCTAGCATGACCAGACCCAGGCGCGGAAACGTGTACTGGGTGCGCG

ACTCCGTCACGGGCGTGCGCGTGCCCGTGCGCACCCGTCCTCCTCGTCCCTGATC

TAATGCTTGTGTCCTCCCCCGCAAGCGACGATGTCAAAGCGCAAAATCAAGGAG

GAGATGCTCCAGGTCGTCGCCCCGGAGATTTACGGACCACCCCAGGCGGACCAG

AAACCCCGCAAAATCAAGCGGGTTAAAAAAAAGGATGAGGTGGACGAGGGGGC

AGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGCGGCGCGTAAATTGGAAGGGGCG

CAGGGTGCAGCACGTGTTGCGGCCCGGCACGGCGGTGGTGTTCACGCCCGGCGA

GCGGTCCTCGGTCAGGAGCAAGCGTAGCTATGACGAGGTGTACGGCGACGACGA

CATCCTGGACCAGGCGGCGGAGCGGGCGGGCGAGTTCGCCTACGGGAAGCGGT

CGCGCGAAGAGGAGCTGATCTCGCTGCCGCTGGACGAAAGCAACCCCACGCCGA

GCCTGAAGCCCGTGACCCTGCAGCAGGTGCTGCCCCAGGCGGTGCTGCTGCCGA

GCCGCGGGGTCAAGCGCGAGGGCGAGAGCATGTACCCGACCATGCAGATCATG

GTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGGATGTG

GAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTGGGCGTG

CAAACCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAACCCTCG

ACCAGCATCGAGGTGCAAACCGACCCCTGGCTCCCAGCCTCCACCGCTACCGTC

TCCACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGATGGGGC

GCCGCCAGCCGGCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCCGACGC

CGGGCTACCGCGGCACCCGGTACTACGCCAGCCGCCGGCGCCCAGCCAGCAAAC SEQ

ID Sequence

NO

GCCGCCGCCGCACCGCCACCCGCCGCCGTCTGGCCCCCGCCCGCGTGCGCCGCG

TGACCACGCGCCGGGGCCGCTCGCTCGTTCTGCCCACCGTGCGCTACCACCCCAG

CATCCTTTAATTCGTGTGCTGTGATACTGTTGCAGAGAGATGGCTCTCACTTGCC

GCCTGCGCATCCCCGTCCCGAATTACCGAGGAAGATCCCGCCGCAGGAGAGGCA

TGGCAGGCAGCGGCCTGAACCGCCGCCGGCGGCGGGCCATGCGCAGGCGCCTG

AGTGGCGGCTTTCTGCCCGCGCTCATCCCCATAATCGCCGCGGCCATCGGCACGA

TCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTCGCAGCGCCGTTGATGTGCGA

ATAAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTTTTAGAATGGAA

GACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGTTCATGGGC

ACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCAATTGGAGC

AGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACGCTCCGGACCTATGGGAAC

AAGGCCTGGAATAGTAGCACGGGGCAGTTGCTAAGGGAAAAGCTCAAAGACCA

GAACTTTCAGCAGAAGGTGGTGGACGGGCTGGCCTCGGGCATTAACGGGGTGGT

GGACATCGCGAACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCTGGACCCGC

GGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCTTCCGCCGCCCAAAGGCG

AGAAGCGGCCGCGGCCCGACGCGGAGGAGACGATCCTGCAGGTGGACGAGCCG

CCCTCGTACGAGGAGGCCGTCAAGGCCGGCATGCCCACCACGCGCATCATCGCG

CCGCTGGCCACGGGTGTAATGAAACCCGCCACCCTTGACCTGCCTCCACCACCC

GCGCCCGCTCCACCGAAGGCAACTCCGGTTGTGCAGGCCCCCCCGGTGGCGACC

GCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCACGTTG

CACAGTATCGTAGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTATTGA

AAGAGAGGAAAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACCGC

CAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTACAT

GCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAGTT

TGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGGAACCCCAC

GGTGGCCCCGACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTGCG

CTTCGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTCAC

TCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACTTACTTTGACAT

CCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACCCTACTCGGGCACAGCTTA

CAACAGCCTGGCCCCCAAGGGCGCCCCCAACTCCAGTCAGTGGGAACAGAAAA

AGGCCAATGCTGGAGAACAAAAGGAAACACATACTTATGGTGTAGCTCCTATGG

GTGGAGAAAACATTACAATTAGCGGTTTGCAAATTGGAACAGATACTACAAATG

GCAAACAAGACCCGATATATGCTAATAAGCTGTATCAACCAGAGCCTCAAGTAG

GAGAAGAAAACTGGCAGGAAACAGAAGCCTTCTATGGAGGAAGGGCTCTTAAA

AAGGAAACCAAGATGAAACCATGCTATGGCTCATTTGCCAGACCCACAAATGAA

AAAGGAGGACAGGCAAAACTAAGAGACCCTGAAAAAAGTCAAGAAGATTTTGA

CATAGACCTAGCATTCTTTGATACTCCGGGAGGAACTTTAACAGGTGGTGGAAC

GGAATACAAAGCAGACATTGTTATGTGCACTGAAAATGTTAATCTTGAAACCCC

GGACACCCACGTGGTGTATAAACCAGGCAAAGATGATGACAGTTCAGAAATCAA

CTTGGTTCAGCAGTCCATGCCCAACAGACCTAACTACATCGGCTTCAGGGACAA

CTTTGTGGGTCTCATGTACTACAACAGCACTGGCAACATGGGTGTGCTGGCCGGT

CAGGCTTCTCAGTTGAATGCTGTGGTCGACTTGCAAGACAGAAACACAGAGCTG

TCTTACCAGCTCTTGCTAGATTCTCTGGGCGACAGAACCAGGTACTTTAGCATGT

GGAACTCTGCGGTGGACAGCTATGATCCCGATGTCAGGATCATTGAGAATCACG

GTGTGGAAGATGAACTTCCCAACTATTGCTTCCCATTGGATGGGTCTGGCACCAA

TGCTGCTTATGAAGGTGTAAAAGTTAAAAATGGACAAGATGGGGATCAAGAGA

GCGAATGGGAAAAAGACACCAATGTGGCAGATCGAAACCAAATATGCAAGGGC

AACATCTACGCCATGGAGATCAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTG

TACTCGAACGTGGCGCTGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAAC

GTCACGCTGCCCACCAACACCAACACCTACGAGTACATGAATGGCCGCGTGGTA

GCCCCCTCGCTGGTGGACGCCTACATCAACATCGGCGCCCGCTGGTCGCTGGATC

CCATGGACAACGTCAACCCCTTCAACCACCACCGCAACGCGGGCCTGCGCTACC

GCTCCATGCTTCTGGGCAACGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCA SEQ

ID Sequence

NO

AAAGTTCTTTGCCATCAAGAACCTGCTCCTGCTTCCCGGCTCCTACACCTACGAG

TGGAACTTCCGCAAGGATGTCAACATGATCCTGCAAAGTTCCCTCGGCAACGAC

CTGCGCGTCGACGGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTATGCCACCT

TCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACG

ACACCAACGACCAGTCCTTCAACGACTACCTCTCAGCCGCCAACATGCTCTACCC

CATCCCGGCCAAGGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGC

CGCCTTCCGCGGATGGAGTTTCACCCGGCTCAAGACCAAAGAAACTCCCTCCCTC

GGCTCGGGTTTCGACCCCTACTTTGTCTACTCGGGTTCCATCCCCTACCTCGACG

GGACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATCATGTTCGACTCCTC

GGTCAGCTGGCCCGGCAACGACCGGCTGCTCACGCCGAACGAGTTCGAGATCAA

GCGCAGCGTCGACGGGGAGGGCTACAATGTGGCCCAATGCAACATGACCAAGG

ACTGGTTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCA

TGTGCCAGAGGGTTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCC

ATGAGCAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCCGTCACC

CTGCCATTCCAGCACAACAACTCGGGCTTCACCGGCTACCTCGCACCCACCATGC

GTCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCCAGACAG

CCGTGCCCTCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCA

TCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAA

CATGCTCTACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCC

CATGGATGAGCCCACCCTCCTCTATCTTCTCTTTGAAGTTTTCGACGTGGTCAGA

GTGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCT

CCGCCGGCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGC

GGCCATCGTGCGCGACCTGGGCTGCGGGCCCTACTTTTTGGGTACCCACGACAA

GCGCTTCCCGGGTTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACG

GCCGGCCGCGAGACCGGGGGCGTGCACTGGCTCGCCTTCGGCTGGAACCCGCGC

TCGCGCACCTGCTACATGTTCGACCCCTTTGGGTTCTCGGACCGCCGGCTCAAGC

AGATTTACAGCTTCGAGTACGAGGCCATGCTGCGCCGCAGCGCCCTGGCCTCCTC

GCCCGACCGCTGTCTCAGCCTCGAACAGTCCACCCAGACCGTGCAGGGGCCCGA

CTCCGCCGCCTGCGGACTTTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGC

CCGACCGACCCATGGACGGAAACCCCACCATGAACTTGCTGACGGGGGTGCCCA

ACGGCATGCTACAATCGCCACAGGTGCTGCCCACCCTCCGGCGCAACCAGGAGG

AGCTCTACCGCTTCCTCGCGCGCCACTCCCCTTACTTTCGCTCCCACCGCGCCGC

CATCGAACACGCCACCGCTTTTGACAAAATGAAACAACTGCGTGTATCTCAATA

AACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGTCGA

AGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGGA

ACTGGTACTTGGGCTGCCACTTGAACTCGGGGATCACCAGTTTGGGCACTGGGG

TCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGGCGCCCAGCA

TGTCAGGCGCGGAGATCTTGAAATCGCAGTTGGGGCCGGTGCTCTGCGCGCGCG

AGTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTACTTCA

CACTGGCCAACACGCTCTTGTCGCTGATCTGATCCTTGTCCAGATCCTCGGCGTT

GCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGCT

CTGAGGCTTGTGGTTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCC

GCGCTGCATATTCGGGTAGAGGGCCTTGACGAAGGCCGCGATCTGCTTGAAAGC

TTGCTGGGCCTTGGCCCCCTCGCTGAAAAACAGGCCGCAGCTCTTCCCGCTGAAC

TGATTATTCCCGCACCCGGCATCATGGACGCAGCAGCGCGCGTCATGGCTGGTC

AGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTCACCTTGGCCTTGCTGGGTT

GCTCCTTCAGCGCACGCTGCCCGTTCTCACTGGTCACATCCATCTCCACCACGTG

GTCCTTGTGGATCATCACCGTCCCATGCAGACACTTGAGCTGGCCTTCCACCTCG

GTGCAGCCGTGGTCCCACAGGGCACTGCCGGTGCACTCCCAGTTCTTGTGCGCG

ATCCCGCTGTGGCTGAAGATGTAACCTTGCAACAGGCGACCCATGATGGTGCTA

AAGCTCTTCTGGGTGGTGAAGGTCAGTTGCAGACCGCGGGCCTCCTCGTTCATCC

AGGTCTGGCACATCTTTTGGAAGATCTCGGTCTGCTCGGGCATGAGCTTGTAAGC

ATCGCGCAGGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACATTCATGGTATCC SEQ

ID Sequence

NO

ATGCCCTTCTCCCAGGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTC AGAACACCGGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCA ACAGAACCGGCGGCTGGCTGAATCCCACTCCCACGATCACGGCTTCTTCCTGGG GCATCTCTTCGTCTGGGTCTACTTTGGTCACATGCTTGGTCTTTCTGGCTTGCTTC

CCCGCTGATACTTTCGGCGCTTGGTTGGCAGAGGAGGTGGCGGCGAGGGGCTCC

TCTCCTGCTCCGGCGGATAGCGCGCTGAACCGTGGCCCCGGGGCGGAGTGGCCT

CTCGGTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCTAGGG

GAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACCACCC

ACGAGCAACCAAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGTCTAG

AACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGAGACC

GACGCTGGGCTCGAGCATGGCTATCTGGGAGGAGAGGAGGATGTGCTGCTCAAA

CACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTGGCCGACCGGAGCGAA

ACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTTCTCGC

CGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACATGCGAGCCCAACCCGCGTC

TCAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTCGCCACCTATCACATCTTT

TTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGAC

GCGCTCCTCGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCTGGAAG

AGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGGCGAAC

GCTCTGAAAGAAACAGCAGAGGAAGAGGGTCACACTAGCGCCCTGGTAGAGTT

GGAAGGTGACAACGCCAGGCTGGCCGTGCTCAAGCGCAGCGTCGAGCTCACCCA

CTTTGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGAT

CAGCTCATCATGCCCCACATCGAGGCCCTCGATGAAAGTCAGGAGCAGCGCCCC

GAGGACGCCCGGCCCGTGGTCAGCGACGAGATGCTCGCGCGCTGGCTCGGGACC

CGCGACCCCCAGGCTTTGGAACAGCGGCGCAAGCTGATGCTGGCCGTGGTCCTG

GTCACCCTCGAGCTCGAATGCATGCGCCGCTTCTTCAGCGACCCCGAGACCCTGC

GCAAGGTCGAGGAGACCCTGCACTACACTTTCAGGCACGGTTTCGTCAGGCAGG

CCTGCAAGATCTGCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGGGATCCT

GCACGAGAACCGCCTGGGACAGACCGTGCTCCACTCGACCCTGAAGGGCGAGGC

GCGGCGGGACTATGTCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACATGGCAA

GCAGCCATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAACT

GGACAAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGACAGGCTTCGACGAGCG

CACCGTCGCCTCGGACCTGGCCGAGATCGTGTTCCCCGAGCGCCTAAGGCAGAC

GCTGAAAGGCGGGCTGCCCGACTTCATGAGCCAGAGCATGTTGCAAAACTACCG

CACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCCTTCCCC

TCAGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACT

GTTACCTCTTGCAGCTGGCCAACTACATCGCCTACCACTCGGACGTGATCGAGGA

CGTGAGCGGCGAGGGGCTGCTCGAATGCCACTGCCGCTGCAACCTGTGCTCCCC

GCACCGCTCCCTGGTCTGCAACCCCCAGCTCCTTAGCGAGACCCAGGTCATTGGT

ACCTTCGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTCACGCCG

GGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACCACGCCC

ATGAGATAAAGTTCTTCGAGGACCAATCGCGTCCGCAGCACGCGGATCTCACGG

CCTGCGTCATCACCCAGGGCACGATCCTCGCCCAATTGCACGCCATCCAAAAAT

CCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCCCCAGA

CGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGCAGGA

GCCGCTAGTGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACG

AATGGGAGGAGGAGACAGAGGAGGAAGAATTGGAAGAGGTGGAAGAGGAGCA

GGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCGCCGGTCAC

GGATACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGAGTGAA

GGGTGACGGTAAGCACGAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAG

CCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGCCCGCC

GCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCATTACTA

CCGTCACCTTCACAGCTAAGAAAAAGCAAGTAAGAGGAGTCGTCGGAGGAGGA SEQ

ID Sequence

NO

GGAGGCCTGAGGATCGCGGCGAACGAGCCCTCGACCACCAGGGAGCTGAGGAA

GAGCTCAAAGTAAAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACC

ACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTTCC

ACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAG

GCGGGAATTACCTCATCGCCACCATGAGCAAGGAGATTCCCACCCCTTACATGT

GGAGCTATCAGCCCCAGATGGGCTTGGCCGCGGGCGCCTCCCAGGACTACTCCA

CCCGCATGAATTGGCTCAGTGCCGGCCCCTCGATGATCTCACGGGTCAACGGGG

TCCGTAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGC

CCAGGGCAAAGCTCAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAA

TCCCCGGGCCGACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCAT

GACTAACTCAGGTGTCCAGCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCC

ACAATCGGGTATAAAAACCCTGGTGATCCGAGGCAGAGGCACACAGCTCAACG

ACGAGTTGGTGAGCTCTTCGATCGGTCTGCGACCGGACGGAGTGTTCCAACTAG

CCGGAGCCGGGAGATCGTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGA

GCAGCTCTTCGGAGCCTCGCTCCGGAGGCATCGGAACCCTCCAGTTTGTGGAGG

AGTTTGTGCCCTCGGTCTACTTCAACCCCTTCTCGGGATCGCCAGGCCTCTACCC

GGACGAGTTCATACCGAACTTCGACGCAGTGAGAGAAGCGGTGGACGGCTACG

ACTGAATGTCCCATGGTGACTCGGCTGAGCTCGCTCGGTTGAGGCATCTGGACC

ACTGCCGCCGCCTGCGCTGCTTCGCCCGGGAGAGCTGCGGACTCATCTACTTTGA

GTTTCCCGAGGAGCACCCCAACGGCCCTGCACACGGAGTGCGGATCACCGTAGA

GGGCACCACCGAGTCTCACCTGGTCAGGTTCTTCACCCAGCAACCCTTCCTGGTC

GAGCGGGACCGGGGCGCCACCACCTACACCGTCTACTGCATCTGTCCGACCCCG

AAGTTGCATGAGAATTTTTGCTGTACTCTTTGTGGTGAGTTTAATAAAAGCTAAA

CTCTTGCAATACTCTGGACCTTGTCGTCATCAACTCAACGAGACCGTCTACCTTA

CCAACCAGACTGAGGTAAAACTCACCTGCAGACCACACAAGACCTATATCATCT

GGTTCTTCGAGAACACCTCATTTGCAGTCTCCAACACTCACTGCAACGACGGTGT

TGAACTTCCCAACAACCTTTCCAGTGGACTGAGTTACGATACACGTAGAGCTAA

GCTCATCCTCTACAATCCTTTTGTAGAGGGAACCTACCAGTGCCAGAGCGGACCT

TGTACTCACACCTTCCATTTGGTGAACGTTACCGGCAGCAGCACAGCCGCTCCAG

AAACTAACCTTCCTTCTGATACTATCAAACCTCGTTTCGGAGGTGAGCTAAGGCT

TCCCCCTTCTGAGGAGGGGGTTAGCCCTTACGAAGTGGTCGGGTATTTGATTTTA

GGGGTGGTCCTGGGTGGGTGCATAGCGGTGCTAGCTCAGCTGCCTTGCTGGGTA

GAAATCAAAATCTTTATATGCTGGGTCAGACATTGTGGGGAGGAACTATGAAGG

GGCTCTTGCTGATTATCCTTTCCCTGGTGGGGGGTGTGCTGTCATGCCACGAACA

GCCACGATGTAACATCACCACAGGCAATGAGAGGAGTGTCATATGCACAGTAGT

CATCAAATGCGAGCATGAATGCCCTCTCAACATCACATTCAAAAACCGTACCAT

GGGGAATGCATGGGTGGGCGACTGGGAACCAGGAGATGAGCAGAACTACACGG

AGTCATGTGTGATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCT ACCAAGGAAAACATGGTTGGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTTA TGTCAGGTCTGCTGGTAGGAGCTCTAGTGTGGTTCCTGAAACGCAAGCCCAGGT

ATGAATACTTTGACCAGTGTCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGGC

AGGAATTATTAACTTAAATGTATCATGGGGAATGAATCTAACTTTAGTGGGACC

CTCAGACCTGCCAGTTACATGGTATGATGGAAAGGGAATGCAGTTTTGTGATGG

AAATACAATTAAGAACCCACAAATCAAGCATAGCTGTAATCAACAGAATCTAAC

TTTACTTAATGCTGACAAGTCTCATGAAAGAACTTACCTAGGTTACAGACATGAC

AGTAAGGAAAAAGTAGACTATAAGGTTACAGTCATACCACCTCCTCCAGCCACT

CGCAAGCCTTTGTCAGAGCCTCATTATGTTACTGTGACTATGGGCGATAACATAA

CTTTAGTGGGACCCTCAGACCTGCCAGTTACATGGTATGATGGAGAAGGAAATA

AATTCTGCGATGGAGAAAAAGTTGAACATGCAGAATTTAATCATACATGTAACA

TCCAGAACCTGACACTGCTCTTTGTCAACTTAACGCATAATGGAGCATACATTGG SEQ

ID Sequence

NO

TTATAACAAAGACGGTTCTGATAGAGAATTATATGAGGTGTCAGTCAAAACCTT

GTTTCAGAACGGGGCTGGACAAAGTAAGGTTGAACAAGGTAATAAAGGGAAAC

CTAATACTGCTCAAAGTGGTGGTAAAAAAACCAAAACAGAACATAGAAACCAG

AGTCCAAAAAGAAAATCAACAAATAACCTTCAGCCAACACAATTGTATGTTAGG

CCTTTTACTAATGTTAGTTTAACTGGACCTCCAAATGGCAAGGTTACTTGGTATG

ATGGCGAACTTAATGATCCATGTGAACAAAAGTACAAACTCAGAACTTTTTGCA

ATCAGCAAAATCTAACTTTAATTAATGTAAGCAGCACTTATGATGGCATCTATTA

TGGCACTGATGAAAAAGATAAGGCAAATCGTTACAGAATAAAAGTAAATACTAC

AAATCACAAAACTGTTAAAATTAAGCCACATACCAAAGAACCTCCTGCTGTACA

AGAAAAACAGTTTGAATTACAAGATGCAGAAACTGATGAAAACGAATCAAAAA

TTCCCTCAGCTACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTTGTAACTCT

GATCATTGTCTTCATATGCTACATCTGCTGCCGCAAGCGTCCCAGGTCATACAAT

CATATGGTAGACCCACTACTCAGCTTCTCTTACTGAAACTCAGTCACTCTCATTT

CAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCATAGTCACACTTAGT

TCAGCTGCAATGATTAATGTTAATGTCACTAGAGGTGGTAAAATTACATTGAATG

GGACTTATCCACAAACTACATGGACAAGATATCATAAAGATGGATGGAAAAATA

TCTGTGAATGGAATGTTACTGCATATAAATGCTTCAATAATGGAAGCATTACTAT

TACTGCCACTGCCAACATTACTTCTGGCACATACAAAGCTGAAAGCTATAAAAA

TGAAATCAAAAAACTAACCTATAAAAACAACAAAACCACATTTGAAGATTCTGG

AAATTATGAACATCAAAAATTATCTTTTTATATGTTGACAATAATTGAACTGCCT

ACAACTAAGGCTCCCACCACAGTTAGGACAACTACAGAAACAACCACACATCCA

GAGAGAATGAAAGTACTACTGAACAGACAGAGGCTACCTCAAGTGCCTTCAGCA

GCACTGCAAATTTAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATCATTGAT

GCATGGCCAGCCTTACTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTCTGTG

GGATCTTTATTCTTGTGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAGAA

ATCTAGGAGGCCCATCTACAGGCCAGTGATTGGGGAACCTCAGCCACTCCAAGT

GGATGGAGGCTTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTGATCAGCCATG

ATTCCTAGGTTCTTCCTATTTAACATCCTCTTTTGTCTCTTCAACATCTGTGCTGC

CTTCGCGGCCGTCTCGCACGCCTCGCCCGACTGTCTAGGGCCTTTCCCCACCTAC

CTCCTCTTTGCCCTGCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCGTGGTCAT

CACCTTCCTGCAGCTCATCGACTGGTGCTGCGCGCGCTATAATTATCTCCACCAC

AGTCCCGAATACAGGGACGAGAACGTAGCCAGAATCTTAAGGCTCATCTGACCA

TGCAGACTCTGCTCATGCTGCTATCCCTCCTATCCCCTGCCCTCGCCACTTCTGCT

GACTCTAAATGCAAATTCGCGGAGATATGGAATTTCTTAGATTGCTATCAGGAG

AAAATTGATATGCCCTCCTATTACTTGGTGATTGTGGGAATAGTCATGGTCTGCT

CCTGCACTTTCTTTGCCATCATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCT

GTTGAGGCATTCACATACACACTAGAAAGCAGTTCACTAGCCTCCACGCCACCG

CCCACACCGCCTCCCCGCAGAAATCAGTTCCCACTGATTCAGTACTTAGAAGAG

CCCCCTCCCCGGCCCCCTTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATG

ACTGACCACCACCTGGACCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATC

CTGCAACTGCGCGTCCGTCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGAT

GCCATCAACATCCACCAGTGCAAGAAGGGCATCTTCTGCCTTGTCAAACAGGCA

AAGATCACCTACGAGCTCGTGTCCGGCGGCAAGCAGCATCGCCTCACCTATGAG

CTGCCCCAGCAGAAGCAGAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTC

ATCACCCAGCAGTCGGGCGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAGC

CCCGAGTGCATATACTCCCTCCTCAAGACCCTTTGCGGACTCCGCGACCTCCTCC

CCATGAACTGATGTTGATTAAAAGCCCGAAAACCAATCAGACCATTCCCCCATTT

CCCCATTCCCAATTACTCATAAAATAAATCATTGGAATTAATCATTCAATAAAAA

TCACTTACTTGAAATCTGAAAGTATGTCTCTGGTGTAGTTGTTCAACAGCACCTC

GGTACCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGCGAACTTCCTC

CACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATTGTCTTCCCTC

TCAGATGGCAAAGAGGCTCCGGGTGGAAGATGACTTCAACCCCGTCTACCCCTA SEQ

ID Sequence

NO

TGGCTACGCGCGGAATCAGAATATCCCCTTCCTCACTCCCCCCTTTGTCTCCTCC

GATGGATTCCAAAACTTCCCCCCTGGGGTCCTGTCACTCAAACTAGCTGACCCAA

TAGCCATCGTCAATGGGAATGTCTCACTCAAAGTGGGAGGGGGTCTCACTTTGC

AAGATGGAACTGGAAAACTAACAGTCAATGCTGATCCACCTTTGCAACTTACAA

ACAACAAATTAGGGATTGCTTTGGACGCTCCATTTGATGTTATAGATAATAAACT

CACGTTGTTAGCGGGCCATGGCTTGTCTATTATAACAAAAGAAACATCAACACT

GCCTGGCTTGATTAATACTCTTGTAGTATTAACTGGAAAGGGTATTGGAACAGA

ATCAACAGATAATGGCGGAAGCGTATGTGTTAGAGTTGGAGAAGGTGGCGGCTT

ATCATTTAATAATGATGGAGACTTGGTAGCATTTAATAAAAAAGAAGATAAGCG

CACCCTATGGACAACTCCAGACACATCTCCAAATTGCAAGATTGATCAGGATAA

GGACTCTAAGTTAACTCTGGTCCTTACAAAGTGTGGAAGTCAAATATTGGCTAAT

GTGTCATTAATTGTCGTAGCTGGTAAGTACAAAATTATCAATAACAATACTCAAC

CAGCTCTCAAAGGATTTACCATTAAATTATTGTTTGATGAAAATGGAGTACTTAT

GGAATCTTCAAATCTTGGTAAATCATATTGGAACTTTAGAAATGAAAATTCAATT

ATGTCAACAGCTTATGAAAAAGCTATTGGATTCATGCCTAATTTGGTAGCCTATC

CAAAACCTACCGCTGGCTCTAAAAAATATGCAAGAGATATAGTTTATGGAAACA

TCTACCTTGGTGGAAAGCCAGATCAACCAGTAACCATTAAAACTACCTTTAATCA

GGAAACTGGATGTGAATATTCTATCACATTTGATTTTAGTTGGGCCAAGACTTAT

GTAAATGTTGAATTTGAAACAACCTCTTTTACCTTTTCCTATATCGCCCAAGAAT

TTACACCAGCACGGGTAGTCAGTCTCCCACCACCAGCCCATTTCACAGTATAAAC

AATTCTCTCAGCACGGGTGGCCTTAAATAGGGAAATGTTCTGATTAGTGCGGGA

ACTGGACTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAGCGGGGATC

GGTGATTGAGATGAAGCCGTCCTCTGAAAAGTCATCCAAGCGGGCCTCACAGTC

CAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGATTCATACTCGGAAAAC

AGGATGGGTCTGTGCCTCTCCATCAGCGCCCTCAGCAGTCTCTGCCGTCGGGGCT

CTGTGCGGCTGCTGCAGATGGGATCGGGATCGCAAGTCTCTCTGACTATGATCCC

CACAGCCTTCAGCATCAGCCTCCTGGTGCGACGGGCACAGCACCGCATCCTGAT

CTCTGCCATGTTCTCACAGTAAGTGCAGCACATAATCACCATGTTATTCAGCAGC

CCATAATTCAGGGTGCTCCAGCCAAAGCTCATGTTGGGGATAATGGAACCCACG

TGACCATCGTACCAGATGCGGCAGTATATCAGGTGCCTGCCCCTCATAAACACA

CTGCCCATATACATGATCTCTTTGGGCATGTTTCTGTTCACAATCTGACGGTACC

AGGGGAAGCGCTGGTTGAACATGCACCCGTAAATGACTCTCCTGAACCACACGG

CCAGCAGGGTGCCTCCCGCCCGA

SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCTTATAGATGGAATGGTGCCAATATGTAAATGAGGTG ID ATTTTAAAAAGTGTGGGCTGTGTGGTAATTGGCTGTGGGGTTAACGGCTAAAAG NO:

1449 GTTGTCGCGGTAAATGTGACGTAAACAAAGGCTTTTTTTCTCACGGAACTACTTA

GTGTTCCCACGGTATTTAACAGGAAATGAGGTAGTTTTGGCCGGATGCAAGTAA

AAATTGTTCATTTTCGCGCGAAAACTAAATGAGGAAGTGGTTTTCTGAATAATGC

GGTATTTATGGCAGGGTGGAGTATTTGTTCAGGGCCAGGTAGACTTTGACCCATT

ACGTGGAGGTTTCGATTACCGCGGAGGTTTCGATTACCGTGTTTTTTACCTAAAT

CGGTATTTATACCTCAGGGTTTGTGTCAAGAGGCCACTCTTGAGTGCCAGCGAGA AGAGTTTTCTCCTCTGCGCCGGCAGTTTAATATTAAAAAAATGAGACACTTGCGA TTTCTGCCTCAGGAAATAATTTCTGCTGAGACTGGAAACGAAATACTGGAGTTTG

CTCCTACGCTTCAGGAACTGTATGATTTAGAGGTAGAGGGATCGGAGGATTCTA

AGGATTAGAATTAGATCCGCCTTTGGACACTTTCGATACTCCAGGGGTGATTGTG

GAAAGCGGTACAGGTGTAAGAAAATTACCTGATTTGGGTTCCGTGGACTGTGAT

TTGCACTGCTATGAAGACGGGTTTCCTTTGAGTGATGAGGAGGACCGTGAAAAG

GAGCAGTTTATGCAGACTGCAGCGGGTGAGGGAGTGAAGGCTGCCAGTGTTGGT

TTTCAGTTGGATTGCCCGGAGCTTCCTGGACATGGCTGTAAGTCTTGTGAATTTC

ACAGGAAAAATACTGGAGTAAAGGAACTGTTATGTTCGCTTTGTTATATGAGAG

CGCACTGCCACTTTATTTACAGTAAGTGTGTTTAAGTTAAAATTTAAAGGAATAT

GCTGTTTTTCACATGTATATTGAGTGGGAGATTTGTGCTTCTTATTATAGGTCCTG

TGTCTGATGCTGATGAGTCACCATCTCCTGATTCTACTACCTCACCTCCTGAGATT

CAAGCACCTGTTCCTGTGGACGTGCACAAGCCCATTCCTGTAAAGCTTAAGCCTG

GAAAACGTCCAGCAGTGGAAAAACTTGAGGACTTGTTACAGGGTGGGGACGGA

CCTTTGGACTTGAGTACACGGAAACGGCCAAGACAATAAGTGTTTACTTAAGGT

GACGTCAATATTTGTGTGAGAGTGCAATGTAATAAAAATATGTTAACTGTTCACT

GTGGTTAGCTCATAGAAGCTGGCTTTGATTCATGGAGGTTTGGGCCATTTTGGAA

GACCTTAGAAAGACTAGGCAACTGTTAGAGAACGCTTCGGACGGAGTCTCCGGT

TTTTGGAGATTCTGGTTCGCTAGTGAAATAGCTAGGGTAGTTTTTAGGATAAAAC

AGGACTATAAAGAAGAATTTGAAAAGTTGTTGGTAGATTGCCCAGGACTTTTTG

AAGCTCTTAATTTGGGTCATCAAGTTCACTTTAAAGAAAAAGTTTTATCAGTTTT

AGACTTTTCGACCCCAGGTAGAACTGCTGCTGCTGTGGCTTTTCTTACTTTTATAT

TAGATAAATGGATCCCGCAGACTCATTTCAGCAGGGGATACGTTTTGGATTTCGT

AGCCACAGCATTGTGGAGAACATGGAAGGTTCGCAAGATGAGGACAATCTTAGG

TTACTGGCCAGTGCAGCCTTTGGGTGTAGCGGGAATCCTGAGGCATCCACCGGT

CATGCCAGCGGTTCTGGAGGAGGAACAGCAAGAGGACAACCCGAGAGCCGGCC

TGGACCCTCCAGTGGAGGAGGCGGAGTAGCTGACTTGTCTTCTGAACTGCAACG

GGTGCTTACTGGATCTACGTCCACTGGACGGGATAGGGGCGTTAAAAGGGAGAG

GGCATCTAGTGGTACTGATGCTAGATCTGAGTTGGCTTTAAGTTTAATGAGTCGC

AGACGTCCTGAAACCATTTGGTGGCATGAGGTCCAGAAAGAGGGAAGGGATGA

AGTTTCTGTATTGCAGGAGAAATATTCACTGGAACAGGTGAAAACATGTTGGTT

GGAGCCTGAGGATGATTGGGAGGTGGCCATTAAAAATTATGCCAAGATAGCTTT

GAGGCCTGATAAACAGTATAAGATTACTAGACGGATTAATATCCGGAATGCTTG

TTACATATCTGGAAATGGGGCTGAGGTGGTAATAGATACTCCAGACAAGACAGT

TATTAGATGCTGCATGATGGATATGTGGCCTGGAGTAGTCGGTATGGAAGCAGT

AACTTTTGTAAATGTTAAGTTTAGGGGAGATGGTTATAATGGAATAGTGTTTATG

GCCAATACCAAACTTATATTGCATGGTTGTAGCTTTTTTGGTTTTAACAATACCT

GTGTAGATGCCTGGGGACAGGTTAGTGTACGGGGATGTAGTTTCTATGCGTGTTG

GATTGCCACAGCTGGCAGAACCAAGAGTCAATTGTCTCTGAAAAAATGCATATT

CCAAAGATGTAACCTGGGCATTCTTAATGAAGGCGAAGCAAGGGTCCGCCACTG SEQ

ID Sequence

NO

CGCTTCTACAGATACTGGATGTTTTATTTTAATTAAGGGCAATGCCAGCGTAAAG

CATAACATGATTTGCGGTGCTTCCGATGAGAGGCCTTATCAAATGCTCACTTGTG

CCGGTGGGCATTGTAACATGCTGGCTACTGTGCATATTGTTTCTCATCAACGCAA

AAAATGGCCTGTTTTTGATCACAATGTGTTGACCAAGTGTACCATGCATGCAGGT

GGGCGTAGAGGAATGTTTATGCCTTACCAGTGTAACATGAATCATGTAAAAGTG

TTGTTAGAACCAGATGCCTTTTCCAGAATGAGTCTAACAGGAATGTTTGACATGA

ACATGCAAATCTGGAAGATCCTGAGGTATGATGATACAAGATCGAGGGTGCGCG

CATGCGAATGCGGAGGCAAGCATGCCAGGTTCCAACCGGTGTGTGTAGATGTGA

CTGAAGATCTGAGACCGGATCATTTGGTTATTGCCCGCACTGGAGCAGAGTTCG

GATCCAGTGGAGAAGAAACTGACTAAGGTGAGTATTGGGAAAACTTTGGGGTGG

GATTTTCAGATGGACAGATTGAGTAAAAATTTGTTTTTCTGTCTTGCAGCTGTCA

TGAGTGGAAACGCTTCTTTTAATGGGGGAGTCTTCAGCCCTTATCTGACAGGGCG

TCTCCCATCCTGGGCAGGAGTTCGTCAGAATGTTATGGGATCTACTGTGGATGGA

AGACCCGTCCAACCCGCCAATTCTTCAACGCTGACCTATGCTACTTTAAGTTCTT

CACCTTTGGACCCAGCTGCAGCCGCCGCTGCCGCCTCTGTTGCCGCTAACACTGT

GCTTGGAATGGGTTACTATGGAAGCATCCTGGCTAATTCCACTTCCTCTAATAAC

CCTTCTACCCTGACTCAGGACAAGTTACTTGTCCTTTTGGCCCAGCTGGAGGCTT

TGACCCAACGTCTGGGTGAACTTTCTCAGCAGGTGGCCGAGTTGCGAGTACAAA

CTGAGTCTGCTGTTGGCACGGCAAAGTCTAAATAAAAAAATTCCAGAATCAATG

CGCGCACGGTATGCCCTAGACCACCGATCTCGATCATTGAGAACACGGTGGATT

TTTTCCAAAATCCTATAAAGGTGGGATTGAATGTTTAGATACATGGGCATTAGGC

CGTCTTTGGGGTGGAGATAGCTCCATTGAAGGGATTCATGCTCCGGGGTAGTGTT

GTAAATTACCCAGTCATAACAAGGTCGCTGTGCATGGTGTTGCACAATATCTTTT

AGAAGTAGGCTGATTGCCACAGATAAGCCCTTGGTGTAGGTGTTTACAAACCGG

TTGAGCTGGGAGGGGTGCATTCGGGGTGAAATTATGTGCATTTTGGATTGGATTT

TTAAGTTGGCAATATTGCCGCCAAGATCTCGTCTTGGGTTCATGTTATGAAGTAC

CACCAAGACGGTGTATCCGGTACATTTAGGAAATTTATCGTGCAGCTTGGATGG

AAAAGCGTGGAAAAATTTGGAGACACCCTTGTGTCCTCCGAGATTTTCCATGCA

CTCATCCATGATAATAGCAATAGGGCCGTGGGCAGCAGCGCGGGCAAACACGTT

CCGTGGGTCTGACACATCATAGTTATGTTCCTGAGTTAAATCATCATAGGCCATT

TTAATAAATTTGGGACGGAGAGTACCCGATTGGGGTATGAATGTTCCTTCGGGC

CCCGGAGCATAGTTCCCCTCACAGATTTGCATTTCCCAAGCTTTCAGTTCCGAGG

GTGGAATCATGTCCACCTGGGGGGCTATAAAGAACACCGTTTCTGGGGCTGGAG

TAATTAGTTGGGATGATAGCAAGTTTCTGAGCAATTGAGATTTGCCACATCCGGT

GGGGCCATAAATGATTCCGATTACAGGTTGCAGTTGGTAGTTTAGGGAACGGCA

ACTGCCGTCTTCTCGAAGCAAGGGGGCCACCTCGTTCATCATTTCCCTTACATGC

ATATTTTCCCGCACCAAATCCATTAGGAGGCGCTCTCCTCCTAGTGATAGAAGTT

CTTGTAGTGAGGAAAAGTTTTTCAGCGGTTTTAGACCGTCAGCCATGGGCATTTT

GGAGAGAGTCTGTTGCAAAAGTTCTAGTCTGTTCCACAGTTCAGTGATGTGTTCT

ATGGCATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTTGGACGGCTCCTGGA

GTAGGGTATGAGACGATGGGCGTCCAGCGCTGCCAGGGTTCGGTCCTTCCAGGG

TCTCAAAGTTCGGGTCAGGGTTGTTTCCGTCACAGTGAAGGGGTGTGCGCCTGCT

TGGGCGCTTGCCAGGGTGCGCTTCAGACTCATCCTGCTGGTCGAAAACTTGTGCC

GCTTGGCGCCCTGTATGTCGGCCAAGTAGCAGTTTACCATGAGTTCGTAGTTGAG

CGCCTCGGCTGCGTGGCCCTTGGCGCGGAGCTTACCTTTGGAAGTTTTCTTGCAT

ACCGGGCAGTATAGGCATTTCAGCGCATACAGCTTGGGCGCAAGGAAAATGGAT

TCTGGGGAGTATGCATCCGCGCCGCAGGAGGCGCAAACAGTTTCACATTCCACC

AGCCAGGTTAAATCCGGTTCATTGGGGTCAAAAACAAGTTTTCCGCCATATTTTT

TGATGCGTTTCTTACCTTTGGTCTCCATGAGTTGGTGTCCTCGTTGAGTGACAAA

CAGGCTGTCCGTGTCCCCGTAGACTGATTTTACAGGCCTCTTTTCCAGTGGAGTG

CCTCGGTCTTCTTCGTATAGGAACTCTGACCACTCTGATACAAAGGCGCGCGTCC

AGGCCAGCACAAAGGAGGCTATGTGGGAGGGGTAGCGATCGTTGTCAACCAGG SEQ

ID Sequence

NO

GGGTCCACCTTTTCCAAAGTATGCAAACACATGTCACTCTCTTCAACATCCAGGA

ATGTGATTGGCTTGTAGGTGTATTTCACGTGACCTGGGGTCCCAGCTGGGGGGGT

ATAAAAGGGGGCGGTTCTCTGCTCTTCCTCACTGTCTTCCGGATCGCTGTCCAGG

AACGTCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCTCTGCA

CTCAGGTTGTCAGTTTCTAAGAACGAGGAGGATTTGATATTGACAGTGCCGCTTG

TCAAGTTTGGTGGCAAATGATCCATACAGGGCGTTGGATAAAAGTTTGGCAATG

GATCGCATGGTTTGGTTCTTTTCCTTGTCCGCGCGCTCTTTGGCAGCGATGTTGAG

TTGGACATACTCGCGTGCCAGGCACTTCCATTCGGGGAAGATAGTTGTCAATTCA

TCTGGCACAATTCTCACTTGCCACCCTCGGTTATGCAAGGTAATTAAATCCACAC

TGGTGGCCACCTCGCCTCGAAGGGGTTCGTTGGTCCAGCAGAGCCTACCTCCTTT

CCTAGAACAGAAAGGTGGAAGTGGGTCTAGCATAAGTTCATCGGGAGGGTCTGC

ATCCATGGTAAAGATTCCAGGAAGTAAATCCTTATCAAAATAGCTGATGGGAGT

GGGGTCATCTAAGGCCATTTGCCATTCTCGAGCTGCCAGTGCGCGCTCATATGGG

TTAAGGGGACTGCCCCAGGGCATGGGATGGGTGAGTGCAGAGGCATACATGCCA

CAGATGTCATAGACGTAGATGGGATCCTCAAAGATGCCTATGTAGGTTGGATAG

CATCGCCCCCCTCTGATACTTGCTCGCACATAGTCATATAGTTCATGTGACGGCG

CTAGCAGCCCCGGACCCAAGTTGGTGCGATTGGGTTTTTCTGTTCTGTAGACAAT

CTGGCGAAAGATGGCGTGAGAATTGGAAGAGATGGTGGGTCTTTGAAAAATGTT

GAAGTGGGCATGAGGTAGACCTACAGAGTCTCTGATAAAGTGGGCATAAGATTC

TTCAAGCTTGGTTACCAGTTCGGCAGTGACAAGTACGTCCAGGGCGCAGTAGTC

AAGTGTTTCTTGAATGATGTCATAACCTGGTTGGTTTTTCTTTTCCCACAGTTCGC

GGTTCAGAAGGTATTCTTCGCGATCCTTCCAGTACTCTTCTAGCGGAAACCCGTC

TTTGTCTGCACGGTAAGATCCTAGCATGTAGAACTGATTAACTGCCTTGTAAGGG

CAGCAGCCCTTCTCTACGGGTAGAGAGTATGCTTGAGCAGCTTTTCGTAGCGAA

GCGTGAGTAAGGGCGAAGGTGTCTCTAACCATGACTTTGAGAAATTGGTATTTA

AAGTCCATGTCGTCACAGGCTCCCTGTTCCCAGAGTTGGAAGTCTACCCGTTTCT

TGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAGAGAATCTTACCGG

CTCTGGGCATAAAATTGCGAGTGATGCGAAAAGGCTGTGGTACTTCCGCTCGAT

TGTTGATCACCTGGGCAGCTAGGACGATCTCGTCGAAGCCGTTGATGTTGTGTCC

TACAATGTATAATTCTATGAAACGCGGCGTGCCTCTGACGTGAGGTAGCTTATTG

AGCTCATCAAAGGTTAGGTCTGTAGGGTCAGATAAGGCGTAGTGTTCAAGGGCC

CATTCGTGCAGATGAGGATTTGCATGTAGGAATGATGACCAAAGATCCACCGCC

AGTGCTGTTTGTAACTGGTCCCGATACTGACGAAAATGCTGGCCAATTGCCATTT

TTTCTGGAGTGACACAGTAGAAGGTTTCGGGATCTTGTTGCCATCGATCCCACTT

AAGTTTAATGGCTAGATCGTGGGCCATGTTGACGAGACGCTCTTCTCCTGAGAGT

TTCATGACCAGCATGAAAGGAACTAGTTGTTTGCCAAAGGACCCCATCCAGGTG

TAAGTTTCCACATCGTAGGTCAGGAAGAGTCTTTCTGTGCGAGGATGAGAGCCG

ATCGGGAAAAACTGGATTTCCTGCCACCAGTTGGAGGATTGGCTGTTGATGTGA

TGGAAGTAGAAGTTTCTGCGGCGCGCCGAGCATTCGTGTTTGTGCTTGTACAGAC

GGCCGCAGTAGTCGCAGCGTTGCACGGGTTGTATCTCGTGAATGAGCTGTACCT

GGCTTCCCTTGACGAGAAATTTCAGTGGGAAGCCGAGGCCTGGCGATTGTATCT

CGTGCTCTTCTATATTCGCTGTATTGGCCTGTTCATCTTCTGTTTCAATGGTGGTC

ATGCTGACGAGCCCCCGCGGGAGGCAAGTCCAGACCTCGGCGCGGGAGGGGCG

GAGCTGAAGGACGAGAGCGCGCAGGCTGGAGCTGTCCAGAGTCCTGAGACGCT

GCGGACTCAGGTTAGTAGGTAGGGACAGAAGATTAACTTGCATAATCTTTTCCA

GGGCGTGCGGGAGGTTTAGATGGTACTTGATTTCCACAGGTTCGTTTGTAGAGAC

GTCAATGGCTTGCAGGGTTCCGTGTCCTTTGGGTGCCACTACCGTACCTTTGTTTT

TTCTTTTGATCGGCGGTGGCTCTCTTGCTTCTTGCATGCTTAAAAGCGGTGACGG

GGACGCGCGCCGGGCGGCAGCGGTTGTTCCGGACCCGGGGGCATGGCTGGTAGT

GGCACGTCGGCGCCGCGCACGGGCAGGTTCTGGTACTGCGCTCTGAGAAGACTT

GCGTGCGCCACCACGCGTCGATTGACGTCTTGTATCTGACGTCTTTGGGTGAAAG

CTACCGGCCCCGTGAGCTTGAACCTGAAAGAGAGTTCAACAGAATCAATTTCGG SEQ

ID Sequence

NO

TATCGTTAATAGCAGCTTGTCTCAGTATTTCTTGTACGTCACCAGAGTTGTCCTG

GTAGGCGATCTCCGCCATGAACTGCTCGATTTCTTCCTCCTGAAGATCTCCGCGA

CCCGCTCTCTCGACGGTGGCCGCGAGGTCATTGGAGATACGGCCCATGAGTTGG

GAGAATGCATTCATGCCCGCCTCGTTCCAGACGCGGCTGTAAACCACGGCCCCC

TCGGAGTCTCTTGCGCGCATCACCACCTGAGCGAGGTTAAGCTCCACGTGTCTGG

TGAAGACCGCATAGTTGCATAGGCGCTGAAAAAGGTAGTTGAGTGTGGTGGCGA

TGTGTTCGGCGACAAAGAAATACATGATCCATCGTCTCAGCGGCATTTCGCTGAC

ATCGCCCAGAGCTTCCAAGCGCTCCATGGCCTCGTAGAAGTCCACGGCAAAATT

AAAAAACTGGGAGTTTCGCGCGGACACGGTCAATTCCTCCTCGAGAAGACGGAT

GAGTTCGGCTATGGTGGCCCGTACTTCGCGTTCAAAGGCTCCCGGCATCTCTTCT

TCCTCTTCTATCTCTTCTTCCACTAACATCTCTTCTTCGTCTTCAGGCGGGGGCGG

AGGGGGCACGCGGCGACGTCGACGGCGCACGGGCAAACGGTCGATGAATCGTT

CAATGACCTCTCCGCGGCGGCGGCGCATGGTTTCAGTGACGGCGCGGCCGTTCT

CGCGCGGTCGCAGAGTAAAAACACCGCCGCGCATCTCCTTAAAGTGGTGACTGG

GAGGTTCTCCGTTTGGGAGGGAAAGGGCGCTGATTATACATTTTATTAATTGGCC

CGTAGGGACTGCGCGCAGAGATCTGATCGTGTCAAGATCCACGGGATCTGAAAA

CCTTTCAACGAAAGCGTCTAACCAGTCACAGTCACAAGGTAGGCTGAGTACGGC

TTCTTGTGGGCGGGGGTGGTTATGTGTTCGGTCTGGGTCTTCTATTCCTTCTTCAT

CTCGGGAAGGTAAGACGATGCTGCTGGTGATGAAATTAAAGTAGGCAGTTCTAA

GACGGCGGATGGTGGCGAGGAGCACCAGGTCTTTGGGTCCGGCTTGCTGGATAC

GCAGGCGATTGGCCATTCCCCAAGCATTATTCTGACATCTAGCCAGATCTTTGTA

GTAGTCTTGCATCAGCCGTTCTACGGGCACTTCTTCTTCACCCGTTCTGCCATGCA

TACGTGTGAGTCCAAACCCGCGCATTGGTTGGACCAGTGCCAAGTCAGCTACGA

CTCTTTCGGCGAGGATGGCTTGCTGTACTTGGGTGAGGGTGGCTTGAAAGTCATC

AAAATCCACGAAGCGGTGGTAAGCCCCGGTATTGATGGTGTAAGCACAGTTGGC

CATGACTGACCAGTTAACTGTTTGGTGACCAGGGCGCACGAGCTCGGTGTATTTA

AGGCGCGAATAGGCGCGGGTGTCAAAGATGTAATCGTTGCAGGTGCGCACCAGA

TACTGGTACCCTATAAGAAAATGCGGTGGTGGTTGGCGGTAGAGAGGCCATTGT

TCTGTAGCTGGAGCGCCGGGGGCGAGGTCTTCCAACATAAGGCGGTGATAGCCG

TAAATGTACCTGGACATCCAGGTGATTCCTGCGGCGGTAGTGGAAGCCCGAGGA

AACTCGCGTACGCGGTTCCAAATGTTGCGTAGCGGCATGAAGTAGTTCATTGTA

GGCACGGTTTGACCAGTGAGGCGCGCGCAGTCATTGATGCTCTATAGACACGAA

GAAAATGAAAGCGTTCAGCGACTCGACTCTGTAGCCTGGAGGAACGTGAACGGG

TTGGGTCGCGGTGTACCCCGGTTCAAGACTTGTACTCGAGCCGGCCGGAGCCGC

GGCTAACGTGGTATTGGCACTCCCGTCTCGACCCAGCCTACAAAAATCCAGGAT

ACGGAATCGAGTCGTTTTGCTGGTTGCTGAATGGCAGGGAAGTGAGTCCTATTTT

CCCCCCTCGCAGCAGCAGCAACCACAAAAGGCTGTCCCTGCAACTACTGCAACT

GCCGCCGTGAGCGGTGCGGGACAGCCCGCCTATGATCTGGACTTGGAAGAGGGC

GAAGGACTGGCACGTCTAGGTGCGCCCTCGCCCGAGCGGCATCCGCGAGTTCAA

CTGAAAAAAGATTCTCGCGAGGCGTATGTGCCCCAACAGAACCTATTTAGAGAC

AGAAGCGGCGAGGAGCCAGAGGAGATGCGAGCTTCCCGCTTTAACGCGGGTCGT

GAGCTGCGTCACGGTTTGGACCGAAGACGAGTGTTGCGGGACGAGGATTTCGAA

GTTGATGAAGTGACAGGGATCAGTCCTGCCAGGGCACACGTGGCTGCAGCCAAC

CTTGTATCGGCTTACGAGCAGACAGTAAAGGAAGAGCGTAACTTCCAAAAGTCT

TTTAATAATCATGTGCGAACCCTGATTGCCCGCGAAGAAGTTACCCTTGGTTTGA

TGCATTTGTGGGATTTGATGGAAGCTATCATTCAGAACCCTACTAGCAAACCTCT

GACCGCACAGCTGTTTCTGGTGGTGCAACACAGCAGAGACAACGAGGCTTTCAG

AGAGGCGCTGCTCAACATCACTGAACCCGAGGGGAGATGGTTGTATGATCTTAT

CAACATTTTACAGAGTATCATAGTGCAGGAGCGGAGCCTGGGCCTGGCCGAAAA

GGTGGCTGCCATCAATTACTCGGTTTTAAGTTTGGGAAAATATTACGCTCGCAAG

ATCTACAAGACTCCATACGTTCCCATAGACAAGGAGGTGAAGATAGATGGGTTC

TACATGCGCATGACGCTCAAGGTCTTGACCCTGAGCGATGATCTTGGGGTGTACC SEQ

ID Sequence

NO

GCAATGACAGAATGCATCGCGCCGTGAGCGCCAGTAGGAGGCGCGAGTTAAGC

GACAGGGAACTGATGCACAGTTTGCAAAGAGCTCTGACTGGAGCTGGAACAGA

GGGTGAGAATTACTTTGACATGGGAGCTGACTTGCAGTGGCAGCCTAGTCGCAG

GGCTCTAAGCGCCGCGACGGCAGGATGTGAGCTTCCTTACATAGAAGAGGCGGA

TGAAGGCGAGGAGGAAGAGGGCGAGTACTTGGAAGACTGATGGCGCAACCCGT

GTTTTTTGCTAGATGGAACAGCAAGCACCGGATCCCGCAATGCGGGCGGCGCTG

CAGAGCCAGCCGTCCGGCATTAACTCCTCGGACGATTGGACCCAGGCCATGCAA

CGTATCATGGCGTTGACGACTCGCAACCCCGAAGCCTTTAGACAGCAACCCCAG

GCCAACCGTCTATCGGCCATCATGGAAGCTGTAGTGCCTTCCCGCTCTAATCCCA

CTCATGAGAAGGTCCTGGCCATTGTGAACGCGTTGGTGGAGAACAAAGCTATTC

GTCCAGATGAGGCCGGACTGGTATACAACGCTCTTTTAGAACGCGTGGCTCGCT

ACAACAGTAGCAATGTACAAACCAATTTGGACCGTATGATAACAGATGTACGCG

AAGCCGTGTCTCAGCGTGAAAGGTTCCAGCGCGACGCCAACCTGGGTTCGCTAG

TGGCGTTAAATGCTTTTTTGAGTACTCAGCCTGCTAATGTGCCGCGTGGTCAACA

GGATTATACTAACTTTTTGAGTGCGTTGAGACTGATGGTATCTGAAGTACCTCAG

AGCGAAGTGTATCAGTCCGGACCTGACTACTTCTTTCAGACTAGCAGACAGGGT

TTGCAGACGGTAAATCTGAGCCAAGCTTTTAAAAACCTTAAAGGTTTGTGGGGA

GTGCATGCCCCGGTAGGAGAAAGAGCAACCGTGTCTAGCTTGTTAACTCCAAAC

TCCCGCCTACTACTACTGTTGGTAGCTCCTTTCACCGACAGCGGCAGCATCGACC

GTAATTCCTATTTGGGTTACCTACTAAACCTGTATCGCGAAGCCATAGGGCAAAG

CCAGGTGGACGAGCAGACCTATCAAGAAATTACCCAAGTCAGTCGCGCTTTGGG

TCAGGAAGACACTGGCAGTTTGGAAGCCACTCTGAACTTCTTGCTTACCAATCGG

TCTCAGAAGATCCCTCCTCAATATGCTCTTACTGCGGAGGAGGAGAGGATCCTTA

CTGCGGCATTGGACATGACAGCGCGAAATATGGAGCCCAGCATGTATGCCAGTA ACCGGCCTTTCATTAACAAACTGCTAGACTACTTGCACAGAGCTGCCGCTATGAA CTCTGATTATTTTACCAATGCCATCTTAAACCCGCACTGGCTGCCCCCACCTGGT TTCTACACGGGCGAATATGACATGCCCGACCCTAATGACGGGTTTCTGTGGGAC

AAGGCGGCGATAGAATGCATTCTTCTGCATCGCTGTCCGGGGTCATGGGTGCTA

CCGCGGCTGAGCCCGAGTCTGCAAGTCCTTTTCCTAGTCTACCCTTTTCTTTACAC

AGTGTACGTAGCAGCGAAGTGGGTAGAATAAGTCGCCCGAGTTTAATGGGCGAA

GAGGAATACCTAAACGATTCCTTGCTTAGACCGGCGAGAGAAAAAAATTTCCCA

AACAATGGAATAGAAAGTTTGGTGGATAAGATGAGTAGATGGAAGACTTATGCT

CAGGATCACAGAGACGAGCCTGGGATCATGGGGACTACAAGTAGAGCGAGCCG

TAGACGCCAGCGTCATGACAGACAGAGGGGTCTTGTGTGGGAAGATGAGGATTC

GGCCGATGATAGCAGCGTGTTGGACTTGGGTGGGAGAGGAAGGGGCAACCCGTT

TGCTCATTTGCGCCCTCGCTTGGGTGGTATGTTGTAAAAAAAAATAAAAAGGAA

AACTCACCAAGGCCATGGCGACGAGCGTACGTTCGTTCTTCTTTATTATCTGTGT

CTAGTATAATGAGGCGAGTCGTGCTAGGCGGAGCGGTGGTGTATCCGGAGGGTC

CTCCTCCTTCGTACGAGAGCGTGATGCAGCAGCAGGCGACGGCGGTGATGCAAT

CCCCACTGGAGGCTCCCTTTGTACCTCCGCGATACCTGGCACCTACGGAGGGCA

GAAACAGCATTCGTTACTCGGAACTGGCACCTCAGTACGATACCACCAGGTTGT

ATCTGGTGGACAACAAGTCGGCGGACATTGCTTCTCTGAACTATCAGAATGACC

ACAGCAACTTCTTGACCACGGTGGTGCAGAACAATGACTTTACCCCTACGGAAG

CCAGTACCCAGACCATTAACTTTGATGAACGATCGCGGTGGGGCGGTCAGCTAA

AGACCATCATGCATACTAACATGCCCAACGTAAACGAGTATATGTTTAGTAACA

ACTTCAAAGCGCGTGTGATGGTGTCCAGAAAACCTCCCGAAGGTGCTGCAGTTG

GGGATACATATGATCACAAGCAGGATATTTTGGAATATGAGTGGTTTGAGTTTA

CTTTGCCAGAAGGCAACTTTTCAGTTACTATGACCATTGATTTGATGAACAATGC

CATCATAGATAACTACTTGAAAGTGGGCAGACAGAATGGAGTGCTTGAAAGTGA

CATTGGTGTTAAGTTCGACACCAGGAACTTCAAGCTGGGATGGGATCCCGAAAC

CAAGTTGATTATGCCTGGAGTGTATACGTATGAAGCCTTTCATCCTGACATTGTC SEQ

ID Sequence

NO

TTACTGCCTGGCTGTGGAGTGGACTTTACCGAAAGTCGTTTGAGCAACCTTCTTG

GTATCAGAAAAAAACAGCCATTTCAAGAGGGTTTTAAGATTTTGTATGAAGATT

TAGAAGGAGGTAATATTCCGGCCCTCTTGGATGTAGATGCCTATGAGAACAGTA

AGAAAGAACAAAAAGCCAAAATAGAAGCTGCTGCGGAAGCTAAGGCAAACATA

GTTGCCAGCGACTCTACAAGGGTTGCTAACGCTGGAGAGGTCAGAGGAGACAAT

TTTGCACCAACACCTGTTCCGACTGCAGAATCATTATTGGCCGATGTATCTGGAG

GAACGGACGTGAAACTCACTATTCAACCTGTAGAAAAAGATAGTAAGAATAGA

AGCTATAATGTGTTGGAAGATAAAATCAACACAGCCTATCGCAGTTGGTACCTTT

CGTACAATTATGGCGATCCCGAAAAAGGAGTGCGTTCCTGGACATTGCTCACCA

CCTCAGATGTCACCTGCGGAGCAGAGCAGGTCTACTGGTCGCTTCCAGACATGA

TGCAGGATCCTGTCACTTTCCGCTCCACTAGACAAGTCAGCAACTACCCTGTGGT

GGGTGCAGAGCTTATGCCCGTCTTCTCAAAGAGCTTCTACAACGAACAAGCTGT

GTACTCCCAGCAGCTCCGCCAGTCCACCTCGCTTACGCACGTCTTCAACCGCTTT

CCTGAGAACCAGATTTTAATCCGTCCGCCGGCGCCCACCATTACCACCGTCAGTG

AAAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGTTGCGCAGCAGTATCC

GGGGAGTCCAACGTGTGACCGTTACTGACGCCAGACGCCGCACCTGTCCCTACG

TGTACAAGGCACTGGGCATAGTCGCACCGCGCGTCCTTTCAAGCCGCACTTTCTA

AAAAAATGTCCATTCTTATCTCGCCCAGTAATAACACCGGTTGGGGTCTGCGCGC

TCCAAGCAAGATGTACGGAGGCGCACGCAAACGTTCTACCCAACATCCCGTGCG

TGTTCGCGGTCATTTTCGCGCTCCATGGGGTGCCCTCAAGGGCCGCACTCGCGTT

CGAACCACCGTCGATGATGTAATCGATGAGGTGGTTGCCGACGCCCGTAATTAT

ACTCCTACTGCGCCTACATCTACTGTGGATGCAGTTATTGACAGTGTAGTGGCTG

ACGCTCGCAACTATGCTCGACGTAAGAGCCGGCGAAGGCGCATTGCCAGACGCC

ACCGAGCTACCACTGCCATGCGAGCCGCAAGAGCTCTGCTACGAAGAGCTAGAC

GCGTGGGACGAAGAGCCATGCTTAGGGCGGCCAGACGTGCAGCTTCGGGCGCCA

GCGCCGGCAGGTCCCGCAGGCAAGCAGCCGCTGTCGCAGCGGCGACTATTGCCG

ACATGGCCCAAACGCGAAGAGGCAATGTATACTGGGTGCGTGACGCTGCCACCG

GTCAACGTGTACCCGTGCGCACCCGTCCCCCTCGCACTTAGAAGATACTGAGCA

GTCTCCGATGTTGTGTCCCAGCGGCGAGGATGTCCAAGCGCAAATACAAGGAAG

AAATGCTGCAGGTTATCGCACCTGAAGTCTACGGCCAACCGCTGAAGGATGAAA

AAAAACCCCGCAAAATCAAGCGGGCTAAAAAGGACAAAAAAGAAGAGGAAGA

TGGCGATGATGGGCTGGCGGAGTTTGTGCGCGAGTTTGCCCCACGGCGACGCGT

GCAATGGCGTGGACGCAAAGTTCGACATTTGTTGAGACCTGGAACTTCGGTGGT

CTTTACACCCGGCGAGCGTTCAAGCGCTACTTTTAAGCGTTCCTATGATGAGGTG

TACGGGGATGATGATATTCTTGAGCAGGCGGCTGACCGATTAGGCGAGTTTGCT

TATGGCAAGCGTAGTAGAATAAATCCCAAGGATGAGACAGTGTCCATACCCTTG

GATCATGGAAATCCCACCCCTAGTCTTAAACCGGTCACTTTGCAGCAAGTGTTAC

CCGTAACTCCGCGAACAGGTGTTAAACGCGAAGGTGAAGATTTGTATCCCACTA

TGCAACTAATGGTACCCAAACGCCAAAAGTTGGAGGACGTTTTGGAGAAAGTAA

AAGTGGATCCAGATATTCAACCTGAGGTTAAAGTGAGACCCATTAAGCAGGTAG

CGCCTGGTCTGGGAGTACAAACTGTAGACATTAAGATTCCCACTGAAAGTATGG

AAGTGCAAACTGAACCCGCAAAGCCTACTGCCACCTCCACTGAAGTGCAAACGG

ATCCATGGATGCCGATGCCTATTACAACTGACGCCGCCGGTCCCACTCGAAGAT

CCCGACGAAAGTACGGTCCAGCAAGTCTGTTGATGCCCAACTATGTTGTACACC

CATCTATTATTCCTACTCCTGGTTACCGAGGCACTCGCTACTATCGCAGCCGAAA

CAGTACCTCCCGCCGTCGCCGCAAGACACCTGCAAATCGCAGTCGTCGCCGTAG

ACGCACAAGCAAACCGACTCCCGGCGCCCTGGTGCGGCAAGTGTACCGCAATAG

TAGTGCGGAACCTTTGACACTGCCGCGTGCGCGTTACCATCCAAGTATCATCACT

TAATCAATGTTGCCGCTGCCTCCTTGCAGATATGGCCCTCACTTGTCGCCTTCGC

GTTCCCATCACTGGTTACCGAGGAAGAAATTCGCGCCGTAGAAGAGGGATGTTG

GGGCGCGGAATGCGACGCTACAGGCGACGGCGTGCTATCCGCAAGCAATTGCGG

CAGGCATAGCTTCCGTGGCGGTTCAGGCCTCGCAACGACATTGACATTGGAAAA SEQ

ID Sequence

NO

AAAAAAGTATAAATAAAAAAAAATACAATGGACTCTGACACTCCTGGTCCTGTG

ACTATGTTTTCTTAGAGATGGAAGACATCAATTTTTCATCCTTGGCTCCGCGACA

CGGCACGAAGCCGTACATGGGCACCTGGAGCGACATCGGCACGAGCCAACTGA

ACGGGGGCGCCTTCAATTGGAGCAGTATCTGGAGCGGGCTTAAAAATTTTGGCT

CAACCATAAAAACATACGGGAACAAAGCTTGGAACAGCAGTACAGGACAGGCG

CTTAGAAATAAACTTAAAGACCAGAACTTTGAACAAAAAGTAGTCGATGGGATA

GCTTCCGGCATCAATGGAGTGGTAGATTTGGCTAATCAGGCTGTGCAGAAAAAG

ATAAACAGTCGTTTGGACCCGCCGCCAGCAACCCCAGGTGAAATGCAAGTGGAG

GAAGAAATTCCTCCGCCAGAAAAACAAGGCGACAAGCGTCCGCGTCCCGATTTG

GAAGAGACGCTGGTGACGCGCGTAGATGAACCGCCTTCTTATGAGGAAGCAACG

AAGCTTGGAATGCCCACCACTAGACCGATAGCCCCTATGGCTACCGGGGTGATG

AAACCTTCTCAGTTGCATCGACCCGTCACTTTGGATTTGCCCCCTCCCCCTGCTGC

TACTGCTGTACCCGCTTCTAAGCCTGTCGCTGCCCCGAAACCAGTCGCCGTAGCC

AGGTCACGTCCCGGGGGCGCTCCTCGTCCAAATGCGCACTGGCAAAATACTCTG

AACAGCATTGTGGGTCTAGGCGTGCAAAGTGTAAAACGCCGTCGCTGCTTTTAA

TTAAATATGGAGTAGCGCTTAACTTGCCTATCTGTGTATATGTGTCATTACACGC

CGTCACAGCAGCAGAGGAAAAAAGGAAGAGGTCGTGCGTCGACGCTGAGTTAC

TTTCAAGATGGCCACCCCATCGATGCTGCCCCAGTGGGCATACATGCACATCGCC

GGACAGGATGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTCGCCCGCGCC

ACAGACACCTACTTCAATCTGGGAAATAAGTTTAGAAATCCCACCGTAGCGCCG

ACCCACGATGTGACCACCGATCGTAGCCAGCGGCTCATGTTGCGCTTCGTGCCCG

TTGACCGGGAGGACAATACATACTCTTACAAAGTGCGGTACACACTGGCCGTGG

GCGACAACAGAGTGCTGGATATGGCCAGCACGTTCTTTGACATTAGGGGCGTGT

TGGACAGAGGTCCCAGTTTCAAACCCTATTCTGGTACGGCTTACAACTCTCTGGC

TCCTAAAGGCGCTCCAAATACATCTCAGTGGATTGCAGAAGGTGTAAAAAATGG

TGAGGAGCGCGTAACAGAAGAGGAAAACAATACTACTACTTACACTTTTGGCAA

TGCTCCCGTAAAAGCTGAAGCTGAAATTACAAAAGAAGGACTCCCAATAGGTTT

GAAAGTTTCAGATGAAGAAAGTAAACCGATTTATGCTGATAAAACATATCAGCC

AGAACCTCAGCTGGGAGATGAAACTTGGACTGACCTTGATGGAAAGACCGAAA

AGTATGGGGGCAGGGCTCTCAAACCAGATACTAAAATGAAACCATGCTACGGGT

CCTTTGCCAAACCTACTACTGTGAAAGGCGGTCAGGCAAAACCAAAAACAACGG

AGCAGCCAAATCAGAAAGTCGAATATGATATTGACATGGAGTTTTTTGATGCGG

CATCACAGAAAACAAACTTAAGTCCTAAAATTGTCATGTATGCAGAAAATGTAA

ATTTGGAAACTCCAGACACTCATGTAGTGTACAAACCTGAATCAGAAGACACAA

GTTCCGAAGCTAATTTGGGACAACAGTCTATGCCCAACAGACCCAACTACATTG

GCTTCAGAGATAACTTTATTGGACTTATGTACTATAACAGTACTGGTAACATGGG

GGTGCTGGCTGGTCAAGCGTCTCAGTTAAATGCAGTGGTTGACTTGCAGGACAG

AAACACAGAACTTTCTTACCAACTCTTGCTTGACTCTCTGGGCGACAGAACCAGA

TACTTTAGCATGTGGAATCAGGCTGTGGACAGTTATGATCCTGATGTACGTGTTA

TTGAAAATCATGGTGTGGAAGATGAACTTCCAAACTATTGTTTTCCACTGAATGG

CATAGGGGTTCCAACAACCAGTTACAAATCAATAGTTTCAAATGGAGACAATGC

ACCTAATTGGAAGGAACCTGAAGTAAATGGAACAAGTGAGATCAGACAGGGTA

ATTTGTCTGCCATGGAAATTAACCTTCAAGCCAATCTATGGCGAAGTTTCCTTTA

TTCCAATGTGGCTCTGTATCTCCCAGACTCGTACAAATACACCCCGTCCAATGTC

ACTCTTCCAGAAAACAAAAACACCTACGACTACATGAACGGGCGGGTGGTGCCG

CCATCTCTAGTAGACACCTATGTGAACATTGGCGCCAGGTGGTCTCTGGATGCTA

TGGACAATGTCAACCCATTCAACCACCACCGTAACGCTGGCTTGCGTTACCGATC

CATGCTTCTGGGTAACGGACGTTATGTGCCTTTCCACATACAAGTGCCTCAAAAA

TTCTTCGCTGTCAAAAACCTGCTGCTTCTCCCAGGCTCCTACACTTATGAGTGGA

ACTTCAGAAAGGATGTGAACATGGTGCTACAGAGTTCCCTTGGTAACGACCTAC

CCCCATGGCTCACAACACCGCTTCCACCCTTGAAGCCATGCTGCGGAATGACAC CAATGATCAGTCATTCAACGACTACCTATCTGCAGCTAACATGCTCTATCCCATT SEQ

ID Sequence

NO

CCTGCCAATGCAACCAATATTCCCATTTCCATTCCTTCTCGCAACTGGGCGGCTT

TCAGAGGCTGGTCATTTACCAGACTCAAAACCAAAGAAACTCCCTCTTTGGGGT

CTGGATTTGACCCCTACTTTGTCTATTCTGGTTCTATTCCCTACCTGGATGGTACC

TTCTACCTGAACCACACTTTTAAGAAGGTTTCCATCATGTTTGACTCTTCAGTGA

GCTGGCCTGGAAATGACAGGTTACTATCTCCCAACGAATTTGAAATAAAGCGCA

CTGTGGATGGCGAAGGCTACAACGTAGCCCAATGCAACATGACCAAAGACTGGT

TCTTGGTACAGATGCTCGCCAACTACAACATCGGCTATCAGGGCTTCTACATTCC

CAGGCAGGTGGTTGATGAGGTCAATTACAAAGACTTCAAGGCCGTCGCCATACC

CTACCAACACAACAACTCTGGCTTTGTGGGTTACATGGCTCCGACCATGCGCCAA

GGTCAACCCTATCCCGCTAACTATCCCTATCCACTCATTGGAACAACTGCCGTAA

ATAGTGTTACGCAGAAAAAGTTCTTGTGTGACAGAACCATGTGGCGCATACCGT

TCTCGAGCAACTTCATGTCTATGGGGGCCCTTACAGACTTGGGACAGAACATGCT

TTATGCCAACTCAGCTCATGCTCTGGACATGACCTTTGAGGTGGATCCCATGGAT

GAGCCCACCCTGCTTTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCATC

AGCCACATCGCGGCATCATCGAGACAGTCTACCTGCGTACACCGTTCTCGGCCG

GTAACGCTACCACGTAAAAAGCTTCTTGCTTCTTGCAAACAGCAGCAGCTGCAA

CCATGGCCTGCGGATCCCAAAACGGCTCCAGCGAGCAAGAGCTCAGAGCCATTG

GGGGTTCATGGCCCCCGATAAGCTCGCCTGTGCCATTGTAAACACGGCCGGACG TGAGACGGGGGGAGAGCACTGGTTGGCTTTCGGTTGGAACCCACGTTCTAACAC

AGTTTGAATATGAGGGTCTCCTGCGCCGCAGCGCTCTTGCTACCAAGGACCGCTG

TATTACGCTGGAAAAATCTACCCAGACCGTGCAGGGCCCCCGTTCTGCCGCCTGC

GGACTTTTCTGCTGCATGTTCCTTCATGCCTTTGTGCACTGGCCTGACCGTCCCAT

GGACGGAAACCCCACCATGAAATTGCTGACTGGAGTGCCAAACAACATGCTTCA

TTCTCCTAAAGTCCAGCCCACCCTGTGTGACAATCAAAAAGCACTCTACCATTTT

CTCAATACCCATTCGCCTTATTTTCGCTCCCATCGTACACACATCGAAAGGGCCA

CTGCGTTCGACCGTATGGATGTGCAATAATGACTCATGTAAACAACGTGTTGAAT

AAACAGCACTTTATTTTTTACATGTATCAAGGCTCTGGATTACTTATTTATTTACA

AGTCGAATGGGTTCTGACGAGAATCAGAATGACCCGCGGGCAGTGATACGTTGC

GGAACTGATACTTGGGTTGCCACTTGAATTCGGGAATCACCAACTTGGGAACCG

GTATATCGGGTAGGATGTCACTCCACAGCTTTCTGGTCAGCTGCAAAGCTCCCAG

CAGGTCAGGAGCCGAAATCTTGAAATCACAATTAGGACCAGTGCTCTGAGCGCG

AGAGTTGCGGTACACCGGATTGCAGCACTGAAACACCATCAGCGACGGATGTCT

CACGCTTGCCAGCACGGTGGGATCTGCAATCATGCCCACATCCAGATCTTCAGC

ATTGGCAATGCTGAACGGGGTCATCTTGCAGGTCTGCCTACCCATGGCGGGCAC

CCAATTAGGCTTGTGGTTGCAATCGCAGTGCAGGGGGATTAGTATCATCTTGGCC

TGATCCTGTCTGATTCCTGGATACACGGCTCTCATGAAAGCATCATATTGCTTGA

AAGCCTGCTGGGCTTTACTACCCTCGGTATAGAACATCCCGCAGGACCTGCTCGA

AAACTGGTTAGCTGCGCAGCCGGCATCATTCACACAGCAGCGGGCGTCATTGTT

GGCTATTTGCACCACACTTCTGCCCCAGCGGTTTTGGGTGATTTTGGTTCGCTCG

GGATTCTCCTTCAAGGCTCGTTGTCCATTCTCGCTGGCCACATCCATCTCGATAA

TCTGCTCCTTCTGAATCATAATAGTGCCATGCAGGCACTTCAGCTTGCCCTCATA

ATCATTGCAGCCATGAGGCCACAACGCACAGCCTGTACATTCCCAATTATGGTG

GGCGATCTGAGAAAAAGAATGTATCATTCCCTGCAGAAATCTTCCCATCATCGT

GCTCAGTGTCTTGTGACTAGTGAAAGTTAACTGGACGCCTCGGTGCTCCTCGTTT

ACGTACTGGTGACAGATGCGCTTGTATTGTTCGTGCTGCTCAGGCATTAGTTTAA

AAGAGGTTCTAAGTTCGTTATCCAGCCTGTACTTCTCCATAAGTACACACATCAC

TTCCATGCCCTTCTCCCAAGCAGACACCAGGGGCAAGCTAATCGGATTCTTAACA

GTACAGGCAGCAGCTCCTTTAGCCAGAGGATCATCTTTGGCAATCTTTTCAATGC

TTCTTTTGCCATCCTTCTCAACGATGCGCACGGGCGGGTAGCTGAAACCTACTGC

TACAAGCTGCGCCTCTTCTCTTTCTTCTTCGCTGTCTTGACTGATGTCTTGCATGG SEQ

ID Sequence

NO

GAACATGTTTGGTCTTCCTTGGCTTCTTTTTGGGGGGTATCGGGGGAGGAGGACT

GTCGCTCCGTTCCGGAGACAGGGAGGATTGTGAAGTTTCGCTCACCATTACCAA

CTGACTGTCGGTAGAAGAACCTGACCCCACACGGCGACAGGTGTTTCTCTTCGG

GGGCAGAGGTGGAGGCGATTGCGAAGGGCTGCGGTCCGACCTGGAAGGCGGAT

GACTGGCAGAACCCCTTCCGCGTTCGGGGGTGTGCTCCCTGTGGCGGTCGCTTAA

CTGATTTCCTTCGCGGCTGGCCATTGTGTTCTCCTAGGCAGAGAAACAACAGACA

TGGAAACTCAGCCATTGCTGTCAACATCGCCACAAGTGCCATCACATCTCGTCGT

CAGCGACGAGGAAAAGGAGCAGAGCTTAACCATTCCACCGCCCAGTCCTGCCAC

CACCTCTACCCTAGAAGATAAGGAGGTCGACGCATCTCATGACATGCAGAATAA

AAAAGCGAAAGAGTCTGAAACAGACATCGAGCAAGACCCGGGCTATGTGACAC

CGGTGGAACACGAGGAAGAGTTGAAACGCTTTCTAGAGAGAGAGGATGAAAAC

TGCCCAAAACAGCAAGCGGATAACTATCACCAAGATGCTGGAAATAGGGATCA

GAACACCGACTACCTCATAGGGCTTGACGGGGAAGACGCGCTCCTTAAACATCT

AGCAAGACAGTCACTCATAGTCAAGGATGCATTATTGGACAGAACTGAAGTGCC

ACTCCCCCCAAACGCCAGCCAAACGGCACCTGCGAGCCAAATCCTCGCTTAAAC

AAATCAAAAAATTCCAGTCTCCTGCCGCGCTAATCGCACCCGCGCTGACGCCCT

ACTTAATCTGGGACCTGGTTCACGCTTACCTGATATAGCTTCCTTGGAAGAGGTT

CCAAAAATCTTCGAGGGTCTGGGCAATAATGAGACTCGGGCCGCAAATGCTCTG

CAAAAGGGAGAAAATGGCATGGATGAGCATCACAGCGTTCTGGTGGAATTGGA

GGGCGATAATGCCAGACTCGCAGTACTCAAGCGAAGCGTCGAGGTCACACACTT

TGCATACCCCGCTGTCAACCTGCCCCCTAAAGTCATGACGGCGGTCATGGACCA

GTTACTCATTAAGCGCGCAAGTCCCCTTTCAGAAGACATGCATGACCCAGACGC

CTGTGATGAGGGTAAACCAGTGGTCAGTGATGAGCAGCTAACCCGATGGCTGGG

CACCGACTCTCCCCGGGATTTGGAAGAGCGTCGCAAGCTTATGATGGCCGTAGT

GCTGGTTACCGTAGAACTAGAGTGTCTCCGGCGTTTCTTTACCGATTCAGAAACC

TTGCGCAAACTCGAAGAGAATCTGCACTACACTTTTAGACACGGCTTTGTGCGGC

AGGCGTGCAAGATATCTAACGTGGAACTCACCAACCTGGTTTCCTACATGGGTA

TTCTGCATGAGAATCGTCTAGGACAAAGCGTGCTGCACAGCACCCTTAAGGGGG

AAGCCCGCCGTGATTACATCCGCGATTGTGTCTATCTCTACCTGTGCCACACGTG

GCAAACCGGCATGGGTGTATGGCAGCAATGTTTAGAAGAACAGAACTTGAAAG

AGCTTAACAAGCTCTTACAGAAATCTCTTAAGGTTCTGTGGACAGGGTTCGACG

AGCGCACCGTCGCTTCCGACCTGGCAGACCTCATCTTCCCAGAGCGTCTTAGGGT

TACTTTGCGAAACGGACTGCCTGACTTTATGAGCCAGAGCATGCTTAACAATTTT

CGCTCTTTCATCCTGGAACGCTCCGGTATCCTGCCCGCCACCTGCTGCGCACTGC

CCTCCGACTTTGTGCCTCTCACCTACCGCGAGTGCCCCCCGCCGCTATGGAGTCA

CTGCTACCTGTTCCGTCTGGCCAACTACCTCTCCTACCACTCGGATGTGATCGAG

GATGTGAGCGGAGACGGCTTGCTGGAGTGTCACTGCCGCTGCAATCTGTGCACG

CCCCACCGGTCCCTAGCTTGCAACCCCCAGTTGATGAGCGAAACCCAGATAATA

GGCACCTTTGAACTGCAAGGCCCCAGCAGCCAAGGCGATGGGTCTTCTCCTGGG

CAAAGTTTAAAACTGACCCCGGGACTGTGGACCTCTGCCTACTTGCGCAAGTTTG

CCCCGGAAGATTACCACCCCTATGAAATCAAGTTCTATGAGGACCAATCACAGC

CTCCAAAGGCCGAACTTTCGGCCTGCGTCATCACCCAGGGGGCAATTCTAGCCC

AATTGCAAGCCATCCAAAAATCCCGCCAAGAATTTCTACTAAAAAAGGGTAAGG

GGGTCTACCTTGACCCCCAGACCGGCGAGGAACTCAACACAAGGTTCCCTCAGG

ATGTCCCAACGACGAGAAAGCAAGAAGTTGAAGGTGCAGCCGCCGCCCCCAGA

AGATATGGAGGAAGATTGGGACAGTCAGGCAGAGGAAGCGGAGGAGGACAGTC

TGGAGGACAGTCTGGAGGAAGACAGTTTGGAGGAGGAAAACGAGGAGGCAGAG

GAGGTGGAAGAAGTAACCGCCGGCAAACAGTTATCCCCGGCTGCGGAGACAAG

CAACAGCGCTATCATCTCCGCTCCGAGTCGAGGAACGCGGCGGCGTCCCAGCAG

TAGATGGGACGAGACCGGACGCTTCCCAAACCCAACCACCGCTTCCAAAACCGG

TAAGAAGGATCGGCAGGGATACAAGTCCTGGCGGGGGCATAAGAATGCCATCA SEQ

ID Sequence

NO

TCTCCTGCTTGCATGAGTGCGGGGGAAACATATCCTTCACGCGACGCTACTTGCT

ATTCCACCATGGGGTGAACTTTCCGCGCAATGTTTTGCATTACTACCGTCACCTC

CACAGCCCCTACTATAGCCAGCAAATCCCGGCAGTCTCGACAGAAAAAGACAGC

GGCGGCGACCTCCAACAGAAAACCAGCAGCGGCAGTTAAAAAATACACAACAA

GTGCAGCAACAGGAGGATTAAAGATTACAGCCAACGAGCCAGCGCAAACCCGA

GAGCTAAGAAATCGGATCTTTCCAACCCTGTATGCCATCTTCCAGCAGAGTCGG

GGCCAAGAGCAGGAACTGAAAATAAAAAACCGATCTTTGCGTTCGCTCACCAGA

AGTTGTTTGTATCACAAGAGCGAAGATCAACTTCAGCGCACTCTTGAGGACGCC

GAGGCTCTCTTCAACAAGTACTGCGCGCTGACTCTTAAAGAGTAGGCAGCGACC

GCGCTTATTCAAAAAAGGCGGGAATTACATCATCCTCGTCATGAGTAAAGAAAT

TCCCACGCCTTACATGTGGAGTTATCAGCCCCAAATGGGATTGGCGGCAGGCGC

CTCCCAGGACTACTCCACCCGCATGAATTGGCTCAGCGCCGGGCCTTCTATGATT

TCTCGAGTTAATGATATACGCGCCTACCGAAACCAAATACTTTTGGAACAGTCA

GCTCTTACCACCACGCCCCGCCAACACCTTAATCCCCGAAATTGGCCTGCCGCCC

TAGTGTACCAGGAAAGTCCCGCTCCCACCACTGTATTACTTCCTCGAGACGCCCA

GGCCGAAGTCCAAATGACTAATGCAGGTGCGCAGTTAGCTGGCGGCTCCACCCT

ATGTCGTCACAGGCCTCGGCATAATATAAAACGCCTGGTAATCAGAGGCAGAGG

TATCCAGCTCAACGACGAGTCGGTGAGCTCTCCGCTTGGTCTACGACCAGACGG

AATCTTTCAAATTGCCGGCTGCGGGAGATCTTCCTTCACCCCTCGTCAGACTGTT

TTGACTTTGGAAAGTTCGTCTTCGCAACCCCGCTCGGGCGGAATCGGGACCGTTC

AATTTGTGGAGGAGTTTACTCCCTCTGTCTACTTTAACCCTTTCTCCGGATCTCCT

GGGCACTACCCGGACGAGTTCATACCGAACTTCGACGCAATTAGCGAGTCAGTG

GACGGCTACGATTGATGTCTGGTGACGCGGCTGAGCTATCTCGGCTGCGACATTT

AGACCACTGCCGCCGCTTTCGCTGCTTTGCCCGGGAACTCATTGAGTTCATTTAC

TTCGAACTCCCCAAGGATCACCCTCAAGGTCCGGCCCACGGAGTGCGGATTACT

ATCGAAGGCAAAATAGACTCTCGCCTGCATCGAATTTTCTCCCAGCGGCCCGTGC

TGATCGAGCGAGACCAGGGAAACACCACGGTTTCCATCTACTGCATTTGTAATC

ACCCAGGATTGCATGAAAGCCTTTGCTGTCTTATGTGTACTGAGTTTAATAAAAA

CTGAATTAAGACTCTCCTACGGACTGCCGCTTCTTCAACCCGGATTTTACAACCA

GAAGAACGAAACTTTTCCTCTCGTCCAGGACTCTGTTAACTTCACCTTTCCTACT

CACAAACCAGAAGCTCAACGACAACACCGCTTTTCCAGAAGCATTTTCCCTACT

AATACTACTTTCAAAACCGGAGGTGAGCTCCACAGTCTCCCCACAGAAAACCCT

TGGGTGGAAGCGGGCCTTGTAGTGCTAGGAATTCTTGCGGGTGGGCTTGTGATT

ATTCTTTGCTACCTATACACACCTTGCTTCACTTTCCTAGTGGTGTTGTGGTATTG

GTTTAAAAAATGGGGCCCATACTAGTCTTGCTTGTTTTACTTTCGCTTTTGGAAG

CGGGTTCTGCCAATTACGATCCATGTCTAGACTTTGACCCAGAAAACTGCACACT

TACTTTTGCACCCGACACAAGCCGCATCTGTGGAGTTCTTATTAAGTGCGGATGG

GAATGCAGGTCCGTTGAAATTACACACAATAACAAAACCTGGAACAATACCTTA

TCCACCACATGGGAGCCAGGAGTTCCCCAGTGGTACACTGTCTCTGTCCGAGGTC

CTGACGGTTCCATCCGCATTAGTAACAACACTTTCATTTTTTCTAAAATGTGCGA

TCTGGCCATGTTCATGAGCAAACAGTATTCTCTATGGCCTCCCAGCAAGGACAAC

ATTGTAACGTTCTCCATTGCTTATTGCTTGTGCGCTTGCCTTCTTACTGCTTTACT

GTGCGTATGCATACACCTGCTTGTAACCACTCGTATCAAAAACGCCAATAACAA

AGAAAAAATGCCTTAACCTCTTTCTGTTTACAGACATGGCTTTTCTTACAGCTCT

CATACTTGTCAGCATTGTCACTGCCGCTCACGGACAAACAGTCGTCTCTATCCCT

CTAGGTCATAATTACACTCTCATAGGACCCCCAATCACTTCAGAGGTCATTTGGA

CCAAACTGGGAAGCGTTGATTACTTTGATATAATCTGTAACAAAACAAAACCAA

TAATAGTAACCTGCAACATACAAAATCTTACATTAATTAATGTTAGCAAAGTTTA

CAGCGGTTACTATTATGGTTATGACAGATACAGTAGTCAATATAGAAATTACTTG

GTTCGTGTTACCCAGTCCAAAACCACGAAAATGCCAAATATGGCAGAAATTCGA

TCCGATGACAATTCTCTAGAAACTTTTACATCTTCCACCACACCTGACGAAAAAA

ATATCCCAGATTCAATGATTGCAATTATCGCAGCGGTGGCAGTGGTGATGGCAC

TACCAGTAATATGCATGCTTTTATATGCTTGTCGCTACAAGAAGTTTCATCCTAA SEQ

ID Sequence

NO

TTTCCACTACCACATTCCTTATGCTTACTAGTATAGCAACTCTGACTTCTGCTCGC

TCACACCTCACTGTAACTATAGGCTCAAACTGCACACTAAAAGGACCTCAAGGT

GGTCATGTCTTTTGGTGGAGAATATATGACAATGGATGGTTTACAAAACCATGTG

ACCAACCTGGTAGATTTTTCTGCAACGGCAGAGACCTAACCATTATCAACGTGA

CAGCAAATGACAAAGGCTTCTATTATGGAACCGACTATAAAAGTAGTTTAGATT

ATAACATTATTGTACTGCCATCCACCACTCCAGCACCCCGCAAAACTACTTTCTC

TAGCAGCAGTGCCGCTAACAATACAATTTCCAATCCAACCTTTACCGCGCTTTTA

AAACGCACTGTGAATAATTCTACAACAATTTCCACTTCAACAATCAGCATCATCG

CTGTCGTGACAATTGGAATATCTATTCTTGTTTTTACCATAACCTACTACACCTGC

TGCTATAAAAAAGACGAACATAAAGGTGATCCATTACTTAGATTTGATATTTAAT

TTTCTTCTTCACCATACTCATCTGTGCTTTTAATGTTTGCGCTACTTTCACAGCAG TAGCCACAGCAAGCCCAGACTGTATAGGAGCATTTGCTTCCTATGCACTGTTTGC

AACTTCTAGACTGGATCCTTGTGCGAATTGCCTACCTGCGCCACCATCCCGAATA

CCGCAACCAAAATATCGCGGCACTTCTTAGACTTATCTAAAACCATGCAGGCTAT

ACTACCAATATTTTTGCTTCTATTGCTTCCCTACGCTGTCTCAACCCCAGCTACCT

ATAGTACTCCACCAGAACACCTTAGAAAATGCAAATTCCAACAACCGTGGTCAT

TTCTTGCTTGCTATCGAGAAAAATCTGAAATTCCCCCAACTTTAATAATGATTGC

TGGAATAATTAATGTAATCTGTTGCACCATAATTTCATTTCTAATCTACCCCCTAT

TTGATTTTGGCTGGAACGCTCCCAATGCACATGATCATCCCCAAGACCCAGAGG

AACACATTCCCCTACATAACATGCAACAACCAATAGCGCTAATAGAATACGAAA

GTGAACCACAACCCCCACTACTCCCTGCTATTAGTTACTTCAACCTAACCGGCGG

AGATGACTGAAACACTCACCACCTCCAATTCCGCCGAGGATCTGCTTGATATGG

ACGGCCGCGTCTCAGAACAGCGACTCGCCCAACTACGCATCCGCCAGCAGCAGG

AACGCGTGGCCAAAGAGCTCAGAGATGTCATCCAAATTCACCAATGCAAAAAAG

GCATATTCTGTTTGGTAAAACAAGCCAAAATATCCTACGAGATCACCGCTACCA

ACCATCGCCTCTCTTACGAGCTTGGCCCCCAACGACAAAAATTTACCTGCATGGT

GGGAATCAACCCCATAGTTATCACCCAACAAAGTGGAGATACTAAGGGTTGCAT

TCACTGCTCCTGCGAATCCATTGAGTGCACCTACACCCTGCTGAAGACCCTATGC

GGACTAAGAGACCTGCTACCCATGAATTAAAAAAATGATTAATAAAAAATCACT

TACTTGAAATCAGCAATAAGGTCTCTATTGAAATTTTCTCCCAGCAGCACCTCAC

TTCCCTCTTCCCAACTCTGGTATTCTAAACCCCGTTCAGCGGCATACTTTCTCCAT

ACTTTAAAGGGGATGTCAAATTTTAGCTCCTCTCCTGTACCCACAATCTTCATCT

CTTTCTTCCCAGATGACCAAGAGAGTCCGGCTCAGTGACTCCTTCAACCCTGTCT

ACCCCTATGAAGATGAAAGCACCTCCCAACACCCCTTTATAAACCCAGGGTTTAT

TTCCCCAAATGGCTTCACCCAAAGCCCAGACGGAGTTCTTACTTTAAAATGTTTA

ACCCCGCTAACAACCACAGGCGGGTCTCTACAGCTAAAAGTGGGAGGGGGACTT

ACAGTAGATGACACTGATGGGACCTTACAAGAAAACATAGGTACCACCACACCA

CTTGTTAAGACTGGGCACTCTATAGGTTTATCCCTAGGAGCCGGATTGGGAACA

GATGAAAATAAACTTTGTACCAAATTGGGAAAAGGACTTACATTCAATTCAAAC

AACATTTGCATTGATGACAATATTAACACCCTGTGGACAGGAATTAACCCCACC

GAAGCCAACTGTCAAATGATGGACTCCAGTGAATCTAATGATTGCAAATTAATT

CTAACACTAGTTAAAACTGGAGCCCTAGTCACTGCATTTGTTTATGTTATAGGAG

TATCTAACAATTTTAATATGCTAACTACATACAGAAATATAAATTTTACTGCGGA

GCTGTTTTTTGATTCTGCGGGTAATTTACTAACTAGCCTGTCATCCCTAAAAACTC

CACTTAATCATAAATCAGGACAAAACATGGCTACTGGTGCCATTACTAATGCTA

AAAGTTTCATGCCCAGCACAACTGCTTATCCTTTCAATAATAATTCTAGAGAAAA

AGAAAACTACATTTACGGAACCTGTCACTACACAGCTAGTGATCACACTGCTTTT

CCCATTGACATATCTGTCATGCTTAACCAAAGAGCAATAAGAGCTGATACATCA

TATTGTATTCGTATAACTTGGTCCTGGAACACAGGAGATGCCCCAGAGGGGCAA

ACCTCTGCTACAACCCTAGTTACCTCCCCATTTACCTTTTACTACATCAGAGAAG SEQ

ID Sequence

NO

ACGACTGACAAATAAAGTTTAACTTGTTTATTTGAAAATCAATTCACAAACTTCG

AGTAGTTATTTTGCCTCCCCCTTCCCATTTAACAGAATATACCAATCTCTCCCCAC

GCACAGCTTTAAACATTTGGATACCATTAGAGATAGACATGGTTTTAGATTCCAC

ATTCCAAACAGTTTCAGAGCGAGCCAATCTGGGGTCAGTGATAGATAAAAATCC

ATCGGGATAGTCTTTTAAAGCGCTTTCACAGTCCAACTGCTGCGGATGCGACTCC

GGAGTCTGGATCACGGTCATCTGGAAGAAGAACGATGGGAATCATAATCCGAAA

ACGGGATCGGGCGATTGTGTCTCATCAAACCCACAAGCAGCCGCTGTCTGCGTC

GCTCCGTGCGACTGCTGTTTATGGGATCGGGATCCACAGTGTCCTGAAGCATGAT

TTTAATAGCCCTTAACATTAACTTTCTGGTGCGATGCGCGCAGCAACGCATTCTT

ATTTCACTTAGATTAATACAGTAGGTACAGCACATTATTACAATATTGTTTAATA

AACCATAATTAAAAGCACTCCAGCCAAAACTCATATCTGATATAATCGCCCCTG

CATGACCATCATACCAAAGTTTAATATAAATTAAATGACGTTCCCTCAAAAACA

CACTACCCACATACATGATCTCTTTTGGCATGTGCATATTAACAATCTGTCTGTA

CCATGGACAACGTTGGTTAATCATGCAGCCCAATATAACCTTCCGGAACCACAC

TGCCAACACCGCTCCCCCAGCCATGCATTGAAGTGAACCCTGCTGATTACAATG

ACAATGAAGAATCCAATTCTCTCGACCATGAATCACTTGAGAATGAAAAATATC

TATAGTAGCACAACATAGACATAAATGCATGCATCTTCTCATAATTTTTAACTCC

TCAGGATTTAGAAACATATCCCAAGGAATAGGAAGCTCTTGCAGAACAGTAAAG

CTGGCAGAACAAGGAAGACCACGAACACAACTTACACTATG

SEQ

ID Sequence

NO

SEQ CATCATCAATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTAAATTTTAACGGTTTTAGGGCAGGGCCAATGTTAATTGGTTAACAAGCGGTA NO: ATGCAGTTGACGTCAAGACGCACGGCCGGCGGTTGCCGCAGAGGCGTGGCCTAG 1450 CCCGGAAGCAAGTCGCAGGGCCGATGACGTATAAAAAAGCGGACTTTAAACCC

GGAAACGGCCGATTTTCCCACGGCCACGCCCGGATATGAGGTAATTTTGGGCGG

TTGCAAGTAAAATTAGGACATGGTGGCGCCAAAACTGAATGAGGAAGTGAAAA

GCGAAAAATACCGGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCAACAGACT

GTGTTAAATCCGGTGTTTATGTTACACATCAGCTGATCCACAGGGTATTTAAACC

AGTTAAGTCCGTCAAGAGACTACTCTTGAGTGCCAGCGAGTAGAGTTTTCTCTAA

ACTGTGCTCCCAAAGTTTAAGAAAAATGAGACACCTGCACCTCCTGTCTTCAACT

GTGCCTATTGACATGGCCGCATTATTGCTGGAGGACTATGTAAATACAATATTGG

AGGACGAACTGCATTTATCTCCGTTTGAGCTGGGACCCACACTTCAGGACCTATA

TGATTTGGAGGTAAATGCCCAGGAGAACGACCCAAACGAAGAGGCTGTGAATTT

AATATTTCCAGAATCTATGATTCTTCAGGCTGACATAGCCAGCGAAGCTGTACCT

ACTTCAGTTTATACACCGACTCTGCCGCCTATACCTAAATTGGAAGAGGAGGAT

AAGCTAGACCTTCGGTGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAGGAC

GAACGGGGTGAGCAGAGCGTGGCTATAATCTCAGACTATGCGTGTGTGGTTGTG

GAAAATCATTTTGTGTTGGACAATCCTGAGGTGCCAGGGCAAGGCTGTAAATCC

TGTCAATATCACCGGGAACAGACCGGAGACCCAAATGCTTCCTGCGCTCTGTGTT

ACATGAAAATGAGCTTCAGCTTTATTTACAGTAAGTGGAGTAAATGTAAGAGAG

GCTAAGTGCTTAAGACATTACTGTGCTTTGCTTGAACAGCTGTACTAAGTGTGGT

TTATTTTTGTTACTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTTAGAAGAAG

ACCACCCGTCTCCCCCTGATCTTACAAATGACACGCCCCTGCAAGTGCGCAAACC

CACCCCGGTTAGACCGAGTGGCGAGAGGCGAGCGGCTGTTTACAAAATTGAGGA

TTTGTTGCAGGACGTGGGTGGGAATGAACCTTTGAACCTGAGCTTGAAACGCCC

CAGGAACTAGGCGCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGTACAATAAA

AGTATGTGTGACGCATGCAAGGTGTGGTTTATGACTCATGGGCGGGGCTTAGTC

CTATATAAGTGGTAACACCTGGGCACTTAGGCACAAACTTTAGGAAGTTCCTAA

TGGATGTGTGGAGTATTCTTGGGGAATTTAACAAGACACGCCGGCTTGTGGAGG

ATAGTTCAGACGGGTGCTCCGGGTTTTGGAGACACTGGTTTGGAACTCCTCTATC

GCCGACTGTTCTGGCCTGCTAGATTCTTTAAATTTTGGCCACCAGTCCCTTTTCCA

GGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTACAGCCGG

GGTTGCTTTTGTGGTTTTTTTGGTTGACAAATGGAGCCAGGACACCCAACTAAGC

AGGGGCTACATTCTGGACTTTGCAGCCATGCACCTGTGGAGGGCCTGGATGAGG

CAGCGGGGACAGAGAATCTTGAACTACTGGCTTTTACAGCCAGCAGCGTCGGGT

CTTCTTCATCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGGGAGGCC

ATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGAGCTGGA

TTAAATGAGGTATCCAGCCTGTACCCAGAGCTTAGCAAGGTGCTGACATCCATG

GCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGCTGATGAC

CGAGCTAACTGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGTATTACCTGGCA

CGAGCTACAGCAGGAGTGCAGGGATGAGATAGGCCTGATGCAGGATAAATATG

GCCTGGAGCAAATAAAAACCCATTGGTTGAACCCAGACGAGGATTGGGAGGAG

GCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAGGGTG

ACTAAGACCGTGAATATTAAACATGCCTGCTACATCTCGGGGAACGGGGCAGAG

GTGGACATCGATACTCTGGACAAGTCAGCCTTCAGGTGTTGCATGATGGGAATG

AGAGTAGGAGTAATGAATATGAATTCCATGATCTTTATAAACATAAAGTTCAAT

GGAGAGAAGTTTAATGGGGTACTGTTTATGGCCAACAGCCACATGACCCTGCAT

AGATTAGGGGATGTAAGTTTTACGGCTGCTGGATGGGCGTGGTTGGAAGACCCA AGAGCGAGATGTCTGTAAAGCAGTGTGTGTTTGAAAAATGCTACCTGGGAGTCT GTACCGAGGGCAATGCTAGAGTAAGACACTGCTCTTCCCTAGAAACGGGCTGCT SEQ

ID Sequence

NO

TTTGCCTGGTGAAGGGCACAGCCTCGATTAAGCATAATGTGGTAAAGGGCTGCA

CGGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCATATCC

TGAAGAACATCCATGTGACCTCCCACCCCAGAAAAAAGTGGCCAGTGTTTGAGA

ATAACCTGCTGATTAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACCTTCC

AGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGATGCCT

TCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACAAGAT

CCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGTGGCAG

ACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGCGACCAG

ACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAGGACA

CAGATTAGAGGTAGGTTTAAGTAGTGGGCGTGGCTAAGGTAAGTATAAAGGCGG

GCCGGAGTTCGTCAGAATGTGATGGGATCAACGGTGGACGGGCGCCCAGTGCTT

CCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGACGAGCTCGTCGCTT

GACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACT

GGCCTCGAGCTACATGCCCAGCAGCGGTAGCAGCCCCTCCATCCCCAGTTCCATC

ATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCTGAGCTGGAAGCCCTGAGCCGC

CAGCTGACCGCCCTGACCCAGGAGGTGTCCGAGCTCCGCGAACAGCAGCAGCAG

CAAAATAAATGATTTAATAAACACAAATTTTGATTCAAACAGCAAAGCATCTTT

ATTATTTATTTTTTCGCGCGCGGTAGGCCCTGGTCCACCTCTCCCGATCATTAAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTGAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

TTCTGGGGTTGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTAAGGAGGAGACTGATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCAAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GTAGTTTGGCCTGGATCTTAAGGTTGGCGATGTTACCGCCCAGATCCCGCCGGGG

GTTCATGTTGTGCAGGACCACCAGGACAATGTAGCCCGTGCACTTGGGGAACTT

GTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCCC

GCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGTGGGCTGCG

GCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCGTAATTATGCTCTTGGGTGA

GATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGTGGGA

CGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCCA

GGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAAT

GGTTTCCGGGGCGGGGGTGATGAGCTGCGAGGAGAGCAGGTTTCTTAACAGCTG

GGACTTGCCGCACCCGGTTGGGCCGTAGATGACCCCGATGACGGGTTGCAGGTG

GTAGTTCAAGGAGATGCAACTGCCGTCGTCCCGGAGGAGGGGGGCTACCTGGTT

AAGCATGTCTCTGACTTGGAGGTTTTCCCGAACAAGCTCGCTGAGGAGGCGGTC

CCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCCAGGCGGTC

CCAGAGCTCGGTGACGTGCTCTACGGCATCTGGATCCAGCAGACTTCCTCGTTTC

GGGGGTTGGGACGACTGCGACTGTAGGGCACAAGACGATGGGCGTCCAGCGCG

GCCAGCGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGGGTGGTCTCCGTTA

CGGTGAATGGGTGGGCCCCGGGCTGGGCGCTTGCAAGTGTGCGCTTCAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCAAGATAGC

AGTTAACCATGAGCTGGTAGTTCAGGGCCTTGGCGGCATGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAAAGCGCCCGCAGGCGGGACAGAGGAGGGATTGCAGGGCG

TACAGTTTGGGCGCGAGAAAGACCGACTCGGGGGCAAAGGCGTCCGCTCCGCAG

TGGGCGCAGACGGTCTCGCACTCGACAAGCCAGGTGAGCTCGGGCTGCTTGGGG

AAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCGGTGTCCCCGTAGACGGA CTTGATTGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAAAGAAACTCG GACCACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG CGAGGGGTAGCGGTCGTTTTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAGA SEQ

ID Sequence

NO

CACATGTCCCCCTCCTCCGCATCCAAGAAGGTGATTGGCTTGTAGGTGTAGGCCA CGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTCGT CCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTATTC CCTCTCAAGAGCGGGCATAACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGA

GGTCGGCGCGCTCCTTGGCCGCAATGTTGAGCTGGACATATTCGCGCGCAACGC

ACTTCCATTCGGGAAAAACAGTGGTGCGCTCGTCGGGCACAATCCTGACGCGCC

AGCCTCGGTTATGCAGGGTGACCAGGTCCACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTAGTCCAGCAGAGGCGCCCGCCCTTGCGCGAGCAAAAAGGTGGTA

ACACATCAAGCAAATGCTCGTCAGGGGGGTCCGCATCGATGGTAAAGATGCCCG

GACAGAGTTCCTTGTCAAAATAATCAATTTTTAAGGATGCATCATCCAAGGCCAT

TTGCCAGTTGCGGGCGGCCAGGGCTCGCTCGCAGGGGTTCAGGGGCGGACCCCA

GGGCATGGGATGCGTAAGCGCGGAGGCGTACATGCCGCAGATGTCATACACATA

GATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGGAT

GCTGGCGCGCACGTAGTCATACAACTCATGCGAGGGTGCCAAGAAGGCGGGGCC

AAGATTGGTGCGCTGGGGCTGCTCGGCGCGAAAGACGATCTGGCGAAAGATGGC

ATGCGAGTTGGAGGAAATAGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTGGG

GCAGGCGGACCGAGTCGCGGATAAAGTGCGCGTAGGAGTCTTGCAGCTTGGCGA

CCAGCTCGGCAGTGACAAGGACGTCCATGGCGCAGTAGTCCAGTGTTTCGCGGA

TAATGTCATAACCCGCCTCTCCTTTTTTCTTCCACAGCTCGCGGTTAAGGGCGTA

CTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCACGG

TAAGAGCCCAGCATGTAGAAATGGTTAACGGCCTTGTAGGGACAGCAGCCCTTC

TCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCAGG

GCAAAGGTGTCCCTGACCATGACTTTCAAAAACTGGTACTTAAAGTCCGAGTCG

TCGCAGCCGCCGTGCTCCCAGAGCTCAAAATCGGTGCGCTTCTTTGAGAGGGGG

TTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGTGGCATA

AAATTGCGGGTGATGCGGAAAGGGCCCGGAACGCAGGCTCGGTTGTTGATAACC

TGGGCGGCTAGGACAATCTCGTCAAAGCCGTTGATGTTGTGCCCGACAATGTAT

AGTTCCATGAATCGCGGGCGGCCTTTGATGTGCGGCAGCTTTTTAAGCTCCTCGT

AGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGCTCCAGTGCCCACTCCTGAA

GATGTGGGTTGGCTTGCATGAAGGAAACCCAGAGCTCGCGGGCCATAAGGGTCT

GGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCGGGGG

TGATGCAGTAGAAGGTAAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCGCA

CGGCAAGATCGCGAGCAAGGGCGACCAGCTTGGGGTCCCCGGAGAATTTCATGA

CCAGCATGAAGGGGACAAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGTTT

CTACATCGTAGGTAACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGGGA

AGAACTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTAATGTGATGAAAGT

AGAAATCTCTCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCCGC

AGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACAAGATACACAGCGCGTC

CCTTGAGGAGGAACTTCAGGAGTGGCGGCCCTGGCTGGTGGTTTTCATGTTCGCC

TGCGTAGGACTTACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACAAGCCCGCG

CGGGAGCCAGGTCCAAATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAGGG

CGCGCAGTTGGGAGCTGTCCATGGTGTTGCGGAGATCCAGGTCCGGGGGCAGGG

TTTTAAGGTTGACCTCGTAGAGGCGGGAGAGGGCGTGCTTAAGATGCAGATGGT

ACTTGATCTCCACGGGTGAGTTGGTGGCCGTGTCCACGCATTGCATGAGCCCGTA

GCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCGGA

CGCGCTCCTGGCGGCAGCGGCGGTTCCGGCCCCGTGGGCAGGGGCGGCAGAGGC

ACGTCGGCGTGGCGCTCGGGCAGGTCCCGGTGCTGCGCCCTGAGAGCGCTGGCG

TGCGCGACGACGCGGCGGTTGACATCCTGGATCTGCCGCCTCTGCGTGAAGACC

ACGGGCCCCGTGACTTTGAACCTGAAAGACAGTTCAACAGAATCAATCTCGGCG

TCATTGACGGCGGCCTGCCGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGT SEQ

ID Sequence

NO

AGGCGATCTCGGACATGAACTGCTCGATCTCCTCCTCCTGGAGATCGCCGCGGCC

CGCGCGCTCGACGGTGGCGGCAAGGTCATTTGAGATGCGACCCATAAGCTGCGA

AAAGGCACCCAGGCCGCTCTCGTTCCAAACGCGGCTGTAAACCACGTCCCCGTC

AACGTCGCGCGCGCGCATGACCACCTGCGCAAGGTTCAGCTCCACGTGCCGCGT

AAAGACGGCGTAGTTGCGCAGGCGCTGAAAAAGGTAGTTAAGGGTGGTGGCGA

TGTGCTCGGTGACAAAGAAGTACATGATCCAGCGGCGCAGGGGCATTTCGCTGA

TGTCGCCAATGGCCTCCAGCCTTTCCATGGCCTCGTAAAAGTCCACGGCAAAGTT

AAAAAACTGGGCGTTGCGGGCCGATACCGTGAGCTCGTCTTCCAGGAGCCGGAT

GAGCTCGGCAATGGTGGCGCGCACCTCGCGCTCAAAATCCCCGGGAGCCTCCTC

TTGTTCCTCTTCCATGACGACCTCTTCTTCTATTTCCTCTGGGGGCGGTGGTGGTG

GCGGGGCCCGACGACGACGGCGACGCACCGGGAGACGGTCGACGAAGCGCTCG

ATCATTTCCCCGCGGCGGCGACGCATGGTTTCGGTGACGGCGCGACCCTGTTCGC

GAGGACGCAGCGTGAAGACGCCGCCGGTCATCTCCCGGTAATAGGGCGGGTCCC

CGTTGGGTAGCGAAAGGGCGCTAACGATGCATCTTATCAATTGCGGCGTAGGGG

ACGTAAGCGCGTCAAGATCGACCGGATCGGAGAATCTTTGGAGGAAAGCGTCTA

GCCAATCGCAGTCGCAAGGTAAGCTTAAACACGTAGCAGCCCTGTGGACGCTGT

TAGAATTGCGATTGCTGATGATGTAATTGAAGTAGGCGTTTTTGAGGCGGCGGA

TGGTGGCGAGGAGGACCAGGTCCTTGGGTCCCGCTTGCTGGATGCGAAGCCGCT

CGGCCATGCCCCAGGCCTGACCCTGACACCGGCTCAGGTTCTTGTAGTAGTCATG

CATGAGCCTCTCAATGTCATCATTTGCGGCGGAGGCGGAGTCTTCCATGCGGGTA

ACCCCAACGCCCCTGAGCGGCTGCACGAGCGCCAGGTCGGCGACGACGCGCTCG

GCAAGGATGGCCTGTTGCACGCGGGTGAGGGTGTCTTGGAAGTCGTCCATGTCA

ACAAAGCGGTGGTAGGCCCCGGTGTTAATGGTGTAGGTGCAGTTGGCCATAAGC

GACCAGTTAACGGTCTGCAGGCCGGGCTGCACAACCTCGGAGTACCTAAGCCGC

GAGAAGGCGCGCGAGTCAAAGACGTAGTCGTTGCAGGTGCGCACAAGGTACTG

GTATCCAACTAGGAAGTGCGGCGGCGGCTGGCGGTACAGCGGCCAGCGCTGGGT

GGCCGGCGCGCCCGGGGCCAGGTCCTCGAGCATGAGGCGGTGGTAGCCGTAGA

GGTAGCGGGACATCCAGGTAATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAAC

TCGCGGACGCGGTTCCAGATGTTGCGCAGCGGTAGGAAATAGTCCATGGTCGGC

ACGGTCTGGCCGGTAAGACGCGCGCAGTCATTGACGCTCTAGAGGCAAAAACGA

AAGCGGTTGAGCAGGCTCTTCCTCCGTAGCCTGGCGGAACGCAAACGGGTTAGG

CCGCGCGTGTACCCCGGTTCGAGTCCCCTCGAATCAGGCTAAAGCCGCGACTAA

CGTGGTATTGGCACTCCCGTCTCGACCCAAGCCCGATAGCCGCCAGGATACGGT

ACCCCGCCGGGTAGTGGCTCGCGCCCGTAGTCTGGAGAAGCATTGCCAGGGTTA

CTTTTGCCAGATGCATCCCGTCCTGCGCCAAATGCGTCCCACCCCCCCGGCGACC

ACCGCAACCGCGGCCGTAGCAGGCGCCGGCGCTGTACAACAGCAGACAGAGAT

GGACTTGGAAGAGGGCGAAGGGCTGGCAAGACTGGGGGCACCGTCCCCGGAGC

GACACCCCCGCGTGCAGCTGCAAAAGGACGTGCGCCCGGCGTACGTGCCTGCGC

AGAACCTGTTCAGGGACCGCAGTGGGGAGGAGCCCGAGGAGATGCGCGACTGC

CGGTTTCGGGCGGGCAGGGAGCTGCGCGAGGGCCTGGACCGCCAGCGCGTGCTG

CGCGACGATGATTTCGAGCCGAACGAGCAGACGGGGATCAGCCCCGCGCGCGC

GCACGTGGCGGCGGCCAACCTGGTGACGGCCTACGAGCAGACGGTGAAACAGG

AGCGCAACTTCCAAAAGAGTTTCAACAACCACGTGCGCACCCTGATTGCGCGCG

AGGAGGTGGCCCTGGGCCTGATGCACCTATGGGACCTGGCGGAGGCCATCGTGC

AAAACCCGGACAGCAAGCCTCTGACGGCGCAGCTGTTCCTGGTGGTGCAGCACA

GCAGGGACAACGAGGCGTTTAGGGAGGCGCTGCTAAACATTGCCGAGCCCGAG

GGTCGCTGGCTGCTGGAGCTGATTAACATCTTGCAGAGCATCGTAGTGCAGGAG

CGCAGCCTGAGCCTGGCCGAGAAGGTGGCGGCGATCAACTACTCAGTGCTGAGC

CTGGGCAAGTTTTACGCGCGCAAGATTTACAAGACGCCGTACGTGCCCATAGAC

AAAGAGGTGAAGATAGACAGCTTTTACATGCGCATGGCGCTCAAGGTGCTGACG

CTGAGCGACGACCTGGGCGTGTACCGCAACGACCGCATCCACAAGGCCGTGAGC SEQ

ID Sequence

NO

ACAAGCCGGCGGCGCGAGCTGAGCGACCGCGAGCTGATGCTGAGCCTGCGCCG GGCGCTGGTAGGGGGCGCCGCCAGCGGCGAAGAGTCCCACTTTGACATGGGGGC GGACCTGCATTGGCAGCCGAGCCGGCGCGCCTTGGAGGCCGCCTACGGTCCAGA GGACTTGGATGAGGATGAGGAAGAGGAGGAGGATGCACCCGCTGCGGGGTACT

TAAGGGCGGCGCTGCAAAGCCAGCCGTCCGGTCTAGCATCGGACGACTGGGAGG

CCGCGATGCAACGCATTATGGCCCTGACGACCCGCAACCCCGAGTCCTTTAGAC

AACAGCCGCAGGCCAACAGACTCTCGGCCATTCTGGAGGCGGTGGTCCCCTCTC

GGACCAACCCCACGCACGAGAAGGTGCTGGCGATCGTGAACGCGCTGGCGGAG

AACAAGGCCATCCGTCCCGACGAGGCCGGGCTGGTGTACAACGCCCTGCTGGAG

CGCGTGGGCCGCTACAACAGCACGAACGTGCAGTCCAACCTGGACCGGCTGGTG

ACGGACGTGCGCGAGGCCGTGGCGCAGCGCGAGCGGTTCAAGAACGAGGGCCT

GCGCGGGCAGGACGATTACACCAATTTTATCAGCGCGCTGCGGCTGATGGTGAC

AAGCCGGCAGGGCCTGCAGACGGTGAACCTAAGCCAGGCTTTCAAGAACCTACG

CGGGCTGTGGGGCGTGCAGGCGCCCGTGGGCGACCGGTCAACGGTGAGCAGCTT

GTTGACGCCCAACTCGCGGCTGCTGCTGCTGCTGATCGCACCCTTCACCGACAGC

GGCAGCGTAAACCGCAACTCGTACCTGGGCCACCTGCTAACGCTGTACCGCGAG

GCCATAGGCCAGGCGCAGGTGGACGAGCAAACCTTCCAGGAGATCACAAGCGT

AAGCCGTGCACTGGGGCAGAACGACACCGACAGTTTGAGGGCCACCCTAAACTT

CCTGCTGACCAATAGACAGCAGAAAATTCCGCCGCAGTACGCACTGTCGGCCGA

GGAAGAAAGGATTCTGAGATATGTGCAGCAGAGCGTAGGGCTGTTCCTGATGCA

GGAGGGGGCCACCCCCAGCGCCGCGCTGGACATGACCGCGCGCAACATGGAAC

CTAGCATGTACGCCGCCAACCGGCCGTTTATTAATAAGTTGATGGACTACCTGCA

CCGCGCGGCGTCCATGAACTCGGACTACTTTACCAATGCCATCTTGAACCCGCAT

TGGCTCCCGCCGCCAGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCAAC

AGAGACAGGAAGCAATGCGCACGCCTAGCGAGGGCGCTGTGGGAAGGAGCCCC

TTTCCTAGCTTAGGAAGTTTGCATAGCCTACCTAACTCGGTAAACAGCGGCAGG

GTGAGCCGGCCGCATTTGCTGGGCGAGGACGAGTACCTGAACGACTCGCTGCTG

CGGCCGCCGCGGGCCAAGAACGCCATGGCCAATAACGGGATAGAAAGTCTGGT

GGACAAACTAAACCGCTGGAAGACCTACGCTCAGGATCATAGGGACGCGCCCGC

ACCGCGGCGACAGCGCCACGACCGGCAGCGGGGCCTGGTGTGGGACGACGAGG

ACTCGGCCGACGATAGCAGCGTGTTGGACTTGGGCGGGAGCGGTGGTGGGGCCA

ACCCGTTCGCGCATCTGCAGCCCAGACTGGGGCAACGGATGTTTTGAATGCATA

AAATAAAACTCACCAAGGCCATAGCGTGCGTTCTCTTCCTTGTTAGAGATGAGG

CGCGCGGTGGTGTCCTCTCCTCCTCCCTCGTACGAGAGCGTGATGGCGCAGGCA

ACCCTGGAGGTTCCGTTTGTGCCTCCGCGGTATATGGCTCCTACGGAGGGCAGA

AACAGCATTCGTTACTCGGAGCTGGCTCCGCAGTACGACACCACTCGCGTGTACT

TGGTGGACAACAAGTCGGCGGACATCGCTTCCCTGAACTACCAAAACGACCACA

GCAACTTCCTGACCACGGTGGTGCAGAACAACGATTTCACCACCGCCGAGGCCA

GCACGCAGACGATAAATTTTGACGAGCGGTCCCGGTGGGGCGGTGATCTGAAGA

CCATTCTGCACACCAACATGCCCAATGTGAACGAGTACATGTTCACCAGCAAGT

TTAAGGCGCGGGTGATGGTGGCTAGGAAGCACCCAGAAGGGGTAGACAACACA

GATTTGAGTCAGGATAAGCTTGAATATCAGTGGTTTGAGTTTACCCTGCCCGAGG

GCAATTTTTCCGAGACCATGACCATAGACCTGATGAACAACGCCATCTTGGAAA

ACTACTTGCAAGTGGGGCGTCAAAATGGCGTGCTGGAGAGCGATATTGGAGTCA

AGTTTGACAGCAGAAATTTCAAGCTGGGCTGGGACCCGGTAACTAAGCTGGTGA

TGCCGGGGGTCTACACCTACGAGGCCTTCCACCCGGACGTGGTGCTGCTGCCGG

GCTGCGGGGTGGACTTCACCGAGAGCCGCCTGAGCAACCTCCTGGGCATTCGCA

AGAAGCAACCTTTCCAAGAGGGTTTCAGGATCATGTATGAGGATCTAGAAGGCG

GCAACATCCCCGCACTTCTAAATGTAACCAAGTACTTGGAAAGCAAGAAGACGC SEQ

ID Sequence

NO

TACAGAAGGCAGTGGAAAATGCTGCTAAAGTTAATGCTCCTGCAAGAGGAGATA

GCAGTGTCCCAAGAGCTGTAGAAAAGGCTGCTGAGAAGGAGCTAGAGATTGTTC

CCATTGAAAAGGATGACAGCAACAGAAGTTATAATATTATACCTGGAACCACGG

ACACCCTGTACCGCAGTTGGTACCTGTCCTATACCTACGGGGACCCCAAAAAGG

GGGTACAGTCGTGGACGCTGCTCACCACCCCGGACGTTACCTGCGGCGCGGAGC

AAGTTTACTGGTCGCTGCCGGACCTCATGCAAGACCCCGTCACCTTTCGCTCCAC

CCAGCAAGTCAGCAACTACCCCGTGGTTGGCGCCGAGCTCATGCCCTTCCGCGC

CAAAAGCTTTTACAACGATCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACC

TCCCTCACCCACGTCTTCAACCGCTTCCCCGACAACCAGATCCTGTGCCGCCCGC

CCGCGCCCACCATCACCACCGTTAGTGAAAACGTGCCTGCTCTCACAGATCACG

GGACGCTACCGCTGCGCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTTACTG

ACGCCCGTCGCCGCACCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCC

GCGCGTGCTCTCCAGTCGCACCTTCTAGAAAATGTCCATTCTCATCTCGCCCAGC

AATAACACCGGCTGGGGTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAG

AAGCGCTCCCAACAGCACCCCGTTCGCGTCCGCGGCCACTTTCGCGCTCCCTGGG

GCGCTTACAAGCGCGGGCGGACCTCTGCCCCCGCCGCCGTGCGCACCACCGTCG

ACGACGTCATTGACTCCGTAGTCGCTGACGCGCGCAACTACACCCCCGCCCCCTC

CACCGTGGACGCGGTCATTGACAGCGTGGTGGCTGACGCGCGCGACTATGCCAG

ACGCAAGAGCCGGCGGCGACGGATTGCCAGGCGCCACCGGAGCACGCCCGCCA

TGCGCGCCGCCCGGGCTCTGCTGCGCCGCGCCAGACGCACTGGCCGCCGGGCCA

TGATGCAAGCCGCGCGTCGCGCCGCCGCCGCACCCACCCCCACAGGCAGGACTC

GCAGACGAGCGGCCGTTGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCA

GGCGCGGAAACGTGTACTGGGTGCGCGACTCCATCACGGGCGTGCGCGTGCCCG

TGCGCACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCG

ACGATGTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGA

GATTTACGGACCCCCGGCGGACCAGAAACCCCGCAAAATCAAACGGGTTAAAA

AAAAGGATGAGGTGGGCGAGGGGGCAGTAGAGTTTGTGCGCGAGTTTGCTCCGC

GGCGGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGC

ACGGCGGTGGTGTTTACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAAGCGTAGC

TATGACGAGGTGTACGGCGACAACGACATCCTGGACCAGGCGGCGGAGCGGGC

GGGCGAGTTCGCCTACGGGAAGCGGTCGCGCGAAGAGGAGCTGATCTCGCTGCC

GCTGGACGAGAGCAACCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGT

GCTGCCCCAGGCGGTGCTGCTGCCGAGCCGCGGGGTCAAGCGCGAGGGCGAGA

ACATGTACCCGACCATGCAGATCATGGTGCCCAAGCGTCGGCGCGTGGAGGACG

TGCTGGACACCGTGAAAATGGATGTGGAGCCCGAGGTTAAGGTGCGCCCCATTA

AGCAGGTGGCGCCGGGCCTGGGCGTGCAGACCGTGGACATTCAGATCCCCACCG

ACATGGATGTCGACAAAAAACCCTCGACCAGCATCGAGGTGCAGACCGACCCCT

GGCTCCCAGCCTCCACCGCCTTTACATCCACGGCCACCGAGCCTTCCAGGAGGC

GAAGATGGGGCCCTGCCAACCGGCTGATGCCCAACTACGTGTTGCATCCTTCCAT

CATCCCGACGCCGGGCTACCGCGGCACCCGGTATTACGCCAGCCGCAGGCGCCC

CGCAGGCAAGCGCCGCCGCCGCACCACCACCCGCCGCCGTCTGGCCCCCGCCCG

CGTGCGCCGCGTAACTACGCGCCAGGGCCGCTCGTTTGTTCTGCCCACCGTGCGC

TACCACCCCAGCATCCTTTAATCCGTGTGCTGTAATACTGTTGCAGAGAGATGGC

TCTCACTTGCCGCCTGCGCATTCCCGTCCCGAATTACCGAGGAAGATCCCGCCGC

AGGAGAGGCATGGCAGGCAGCGGCCTAAACCGCCGCCGGCGGCGGGCCATGCG

CAGGCGCCTGAGTGGCGGGTTCCTGCCTGCGCTTATCCCCATAATCGCCGCGGCC

ATTGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAAGCGTCGCAGCGCCGTT

AATGTGCAAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCTGTATATTTTTA

GAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGCACGCGGCCGT

TCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGGGGCGCCTTCA

ATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTTGGCTCAACGCTCCGGACCT

ATGGGAACAAGGCCTGGAATAGTAGCACAGGGCAAATGTTAAGGGAAAAGCTC

GCAGACCAGAACTTCCAGCAAAAGGTGGTGGACGGCCTGGCCTCAGGCATTAAC SEQ

ID Sequence

NO

GGGGTAGTGGACATTGCAAACCAGGCCGTGCAGCGCGAGATAAACAGCCGCCT

GAACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTCCTCCGCCCAG

GGGCGAGAAGCGGCCGCGGCCTGACGCGGAGGAGACGACCCTGCAGGTAGACG

AGCCGCCCTCGTACGAGGAGGCCCTTAAGGCCGGCATGCCCACCACACGCATCA

TTGCGCCAATGGCCACGGGTGTCATGAAACCCGCCACCCTTGACCTGCCTTCACC

ACCCGTGCCCGCTCCACCAAAGGCAGCTCCGGTCGTGCAGGCCCCCCCGGTGGC

AACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAGAACTGGCAGAGCAC

GCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAGCGCCGCCGATGCTA

TTAAGAGAGGAAAGAGGACACTAAAGGGAGAGCTTAACTTGTATGTGCCTTACC

GCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGATGCCGCAGTGGGCGTAC

ATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGAGCCCGGGTCTGGTGCAG

TTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCAACAAGTTTAGAAACCCC

ACGGTGGCTCCCACCCACGATGTGACCACGGACCGGTCCCAGCGTCTGACGCTG

CGCTTTGTGCCCGTGGATCGCGAGGACACCACGTACTCGTACAAGGCGCGCTTC

ACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGGCCAGCACGTACTTTGAC

ATCCGCGGCGTTTTGGACCGCGGTCCCAGCTTTAAACCCTACTCGGGCACGGCTT

ACAACAGTTTGGCCCCCAAGGGCGCCCCAAACTCCAGTCAGTGGATTACAAAAC

AAACTAATGCTGGAAACGAAACTACAAAAACTCACACATACGGTGTCGCTGCCA

TGGGAGGCGCTGACATAACAATTAAGGGTCTGCAAATTGGTGTTGACAAAACTG

AAAACAAAAATGAGCCTATCTATGCAAACGAAATCTATCAGCCAGAACCTCAAG

TAGGAGAAGAAAACCTGCAAGATGTTGAAAATTACTATGGAGGCAGAGCCCTTA

AAAAGGAAACCAAAATGAAGCCTTGTTATGGCTCATTTGCTAGACCCACAAATG

AAAAAGGAGGGCAGGCTGTATTTAAAACTGGAAATGATGGCCAGCCAACTACTG

AGCATGACATAACAATGGCTTTCTTTGATACTCCTGGCGACACTAATGCTGAAGA

CACAGAACTTGAAGCAGACATTGTTATGTACACCGAAAATGTTAATCTTGAAAC

TCCAGATACTCATGTGGTGTACAAGCCAGGACCTTTAGAAGACAGTTCAGAAAT

TAATTTAACACAGCAGTCCATGCCAAACAGGCCAAACTACATTGGCTTCAGGGA

CAACTTTGTAGGCCTTATGTACTACAACAGCACTGGCAACATGGGTGTGCTAGCT

GGTCAGGCCTCTCAGTTGAATGCTGTGGTTGACTTACAAGACAGAAACACGGAG

CTGTCTTACCAGCTTTTGCTAGATTCTCTGGGTGACAGAACCAGATACTTTAGTA

TGTGGAACTCTGCGGTGGACAGTTACGATCCAGATGTCAGGATTATTGAGAATC

ACGGTGTGGAAGATGAACTTCCAAACTATTGCTTTCCATTGGACGGAGCTGGTA

CTAATGCTACATATCAGGGTGTTAAAGTTAAAAATGGACAGGATGGTGACAACA

ACGCAGAATGGGAGAAAGACAATGCAGTTGCGGATCGAAACCAAATTTGCAAG

GGTAACATCGTCGCCATGGAAATTAACCTTCAGGCCAACCTGTGGAAAAGTTTT

CTGTACTCGAACGTGGCCTTGTACCTGCCCGACTCCTTTAAGTACACGCCGGCCA

ACGTCACACTGCCCACCAACACCAACACCTACGAGTACATGAACGGGCGCGTGG

TGGCCCCCTCGCTGGTGGACGCTTACGTTAACATTGGCGCCCGCTGGTCACTGGA

CCCCATGGACAACGTTAACCCCTTTAACCACCACCGCAACGCGGGCCTGCGCTA

TCGCTCCATGCTGCTGGGCAACGGGCGCTACGTGCCCTTTCACATCCAAGTGCCC

CAAAAGTTCTTTGCCATTAAAAACCTGCTCCTGCTCCCGGGCTCCTACACCTACG

AGTGGAACTTCCGCAAGGACGTCAACATGATCCTGCAGAGTTCCCTGGGCAACG

ACCTGCGCGTCGACGGCGCCTCCGTCCGCTTTGACAGTGTGAACCTCTACGCCAC

CTTCTTCCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAAC

GACACCAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTTTACC

CCATCCCGGCCAAGGCCACCAACGTGCCCATTTCCATCCCCTCGCGCAACTGGGC

CGCCTTTCGCGGCTGGAGTTTTACCCGCCTAAAAACCAAGGAAACTCCCTCACTC

GGCTCGGGTTTCGACCCCTACTTTGTCTACTCAGGCTCCATCCCCTACCTTGACG

GGACCTTCTACCTCAACCACACCTTCAAGAAGGTCTCCATTATGTTCGACTCCTC

GGTTAGCTGGCCCGGCAATGACCGGCTGCTTACGCCGAACGAGTTCGAGATTAA

GCGCAGCGTCGACGGGGAGGGCTATAACGTGGCCCAATGCAACATGACCAAGG

ACTGGTTCCTTATCCAGATGCTTTCCCACTACAACATTGGCTACCAGGGCTTCCA

CGTGCCTGAGGGCTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCC SEQ

ID Sequence

NO

ATGAGTAGGCAGGTGGTCGATGAGATTAACTACAAGGATTACAAGGCCGTTGCC

CTGCCCTTCCAGCACAACAACTCGGGCTTCACCGGCTACCTCGCACCTACCATGC

GCCAGGGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTTATTGGAGAGACCG

CCGTGCCCTCCGTCACCCAAAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCA

TCCCATTCTCCAGCAACTTCATGTCTATGGGCGCCCTTACCGACCTGGGTCAAAA

CATGCTTTACGCCAACTCGGCGCACGCGCTCGACATGACCTTTGAGGTGGACCCC

ATGGATGAGCCCACCCTCCTCTATCTTCTCTTTGAAGTTTTCGACGTGGTCAGAG

TGCACCAGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTC

CGCCGGCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACAAGAGCTCGCG

CGCTTCCCGGGCTTCCTCGCCGGCAACAAGCTGGCATGCGCCATCGTCAACACG

GCCGGCCGCGAGACCGGGGGCGTGCACTGGCTTGCCTTTGGCTGGAACCCGCGC

TCGCGCACCTGCTACATGTTTGACCCCTTTGGGTTTTCGGACCGCCGGCTTAAGC

AGATTTACAGCTTCGAGTACGAGGCCATGTTGCGTCGCAGCGCCCTGGCCTTATC

GCCCGACCGCTGTCTCAGCCTCGAGCAGTCCACCCAGACCGTGCAGGGGCCCGA

CTCCGCCGCCTGCGGACTCTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGC

CCGATCGACCCATGGACGGGAACCCCACCATGAACTTGCTAACGGGGGTGCCCA

ATGGCATGCTACAATCGCCACAGGTGCTGCCCACCCTCCGGCGCAACCAGGAGG

AGCTCTACCGCTTCCTTGCGCACCACTCCCCCTACTTTCGCTCCCACCGCGCCGC

CATTGAACACGCCACCGCTTTTGATAAAATGAAACAACTGCGTGTATGACTCAA

ATAAACAGCACTTTTATTTTACATGCACTGGAGTATATGCAAGTTATTTAAAAGT

CAAAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGAAGGGCCACGTTGC

GGTACTGGTACTTGGGCTGCCACTTAAACTCGGGGATCACCAGTTTGGGAACAG

CAATCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATCTGCAGGGCGCCCA

GCATGTCCGGGGCTGAAATTTTAAAATCGCAGTTGGGACCGGTGCTCTGCGCGC

GCGAGTTGCGGTACACGGGGTTGCAGCACTGAAACACCATCAAACTGGGGTACT

TTACGCTGGCCAGCACGCTCTTATCGCTAATCTGATCCTTGTCCAGGTCCTCGGC

GTTGCTCAGGCCGAACGGGGTCATCTTACACAGCTGGCGGCCCAGGAAGGGCAC

GCTGTGGGGCTTGTGGTTACACTCGCAGTGCACGGGCATTAGCATCATCCCTGCG

CCGCGCTGCATATTCGGGTACAGGGCCTTAATAAAGGCCATAATCTGCTTAAAA

GCTTGCTGGGCCTTGGCTCCCTCGCTAAAAAACAGGCCGCAGCTTTTCCCGCTAA

ACTGGTTATTCCCGCACCCGGCATCCTGCACGCAGCAGCGCGCGTCATGGCTGGT

CAGTTGCACCACGCTTCTCCCCCAGCGGTTCTGGGTCACTTTGGCCTTGCTGGGT

TGCTCCTTCAACGCGCGCTGACCGTTCTCGCTGGTCACATCCATCTCCACCACAT

GGTCCTTGTGGATCATTACCGTCCCGTGCAGACACTTGAGCTGGCCTTCCACCTC

GATCCCGCTGTGGCTAAAGATGTAACCTTGCAACAGGCGACCCATTACGGTGCT AAAGCTCTTCTGGGTGGTAAAGGTCAGTTGCATCCCGCGGGCCTCCTCGTTTATC

CATCGCGCAGGCCGCTGTCAACGCGGTAGCGTTCCATCAGCACGTTCATGGTATC

CATGCCCTTCTCCCAGGACGAAACCAAAGGCAGACTCAGGGGGTTGCACACGTT

CAGAATACCGGGGGTCGCGGGCTGGACAATGCGTTTTCCGTCCTTGCCTTCCTTC

AACAGAACCGGCGGCTGGCTGAATCCCACTCCCACGATCACGGCATCTTCCTGG

GGCATCTCTTCGTCGGGGTTTACCTTGGTCACATGTTTGGTCTTTCTGGGCTGCTT

CTTTTTTGGAGGGCTGTCCAGTGGAACCACGTCCTCCTCGGAAGACCCGGAGCCC

ACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTAGCGGCGGCGAGGGG

CTCCTTTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTG

GCCTCTCGGTCCATAAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCT

AGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGAGAACTT

AACCACCCACGAGCAACCCAAAATCAAGCAGGACCTGGGCTTGGAAGAGCCGG

CTCGTCTAGAACCCCCACAGGATGAACAGAAGGAAACCAACGCTGGGCTGGAG

CATGGCTACCTGGGAGGACAGGAGGATGTGCTGCTAAAACACTTGCAGCGCCAG

TCCTTTATCCTCCGGGACGCTCTGGCCGACCGAAGCAAAACCCCCCTCAGCGTCC SEQ

ID Sequence

NO

AGGAGCTGTGTCGGGCCTATGAGCTCAACCTCTTCTCGCCGCGCGTGCCCCCCAA

ACGCCAGCCCAACGGCACCTGCGAGCCCAACCCGCGTCTTAACTTTTACCCCGTC

TTTGCAGTCCCCGAGGCCCTTGCCACTTATCACATCTTTTTTAAGAACCAAAAGA

TCCCCGTTTCCTGCCGTGCCAACCGCACCCGCGCCGACGCGCTCCTCGCTCTGGG

GCCCGGCGCGCGCATACCTGATATTGCTTCCCTGGAAGAGGTGCCCAAGATCTTC

GAAGGGCTTGGTCGGGACGAGACGCGCGCGGCGAACGCTCTGAAAGAAACAGC

AGAGGAACAGGGTTACACTAGCGCCCTGGTAGAGTTGGAAGGCGATAACGCCA

GGCTGGCCGTGCTTAAGCGCAGCGTCGAGCTCACCCATTTTGCCTACCCCGCCGT

TAACCTCCCGCCCAAGGTCATGCGTCGCATCATGGATCAGCTCATCATGCCCCAC

ATTGAGGCCCTTGATGAAAGCCAAAAGCAGCGCCCTGAGGACGCCCAGCCCGTG

GTTAGCGACGAAATGCTTGCGCGCTGGCTCGGAAACCGCGACCCCCAGTCCCTG

GAGCAGCGGCGTAAGCTCATGCTGGCCGTGGTCCTGGTCACCCTCGAGTTGGAA

CTGCACTACACTTTTAGGCACGGCTTTGTCAGGCAGGCCTGCAAGATCTCCAACG

TGGAGCTAACCAACCTGGTCTCCTGCCTGGGGATCCTACACGAGAACCGCCTGG

GGCAGACTGTGCTTCACTCGACCCTCAAGGGCGAGGCACGGCGGGACTACATCC

GCAGCAGTGTCTCGAGGACGAGAACCTGAAGGAGCTGGACAAGCTTCTTGCTAA

AAACCTTAAAACGTTGTGGACGGGCTTTGACGAGCGCACCGTCGCCTTGGACCT

GGCCGAAATTGTTTTTCCCGAACGCCTAAGGCAGACGCTAAAAGGCGGGCTGCC

CGACTTTATGAGCCAGAGCATGTTGCAAAACTACCGCACTTTCATTCTCGAGCGA

TCGGGGATCCTGCCCGCCACCTGCAACGCCTTCCCCTCCGACTTTGTCCCGCTGA

GCTACCGCGAGTGTCCCCCGCCGCTGTGGAGCCACTGCTACCTCTTGCAGCTGGC

CAACTACATTGCCTACCACTCGGACGTGATCGAGGACGTAAGCGGCGAGGGGCT

GCTTGAGTGCCACTGCCGCTGCAACCTGTGCTCCCCGCACCGCTCCCTGGTCTGC

AACCCCCAGCTCCTGAGCGAGACCCAGGTCATCGGTACCTTCGAGCTGCAAGGT

CCGGAGAAGTCCACCGCTCCGCTGAAACTTACGCCGGGGTTGTGGACTTCCGCG

TACCTGCGCAAATTTGTACCCCAGGACTACCACGCCCACGAAATAAAGTTCTTTG

AGGACCAATTGCGCCCGCAGCACGCGGATCTTACGGCCTGCGTCATCACCCAGG

GCACGATCCTCGCCCAATTGCACGCCATCCAAAAATCCCGCCAAGAGTTTCTTCT

GAAAAAGGGTAAAGGGGTCTACCTGGACCCCCAGACGGGCGAAGTGCTTAACC

CGGGTCTCCCCCAGCATGCCAAGAAAGAAGCAGGAGCCACTAGTGGAGGAGAT

GGAAGAAGAATGGGACAGCCAGGCAGAGGAGGACGAATGGGAGGAGGAAGAA

TTGGAAGAGGTGGAACAGGAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATC

CGCGCCGGCAGCCCCTCCGGTCAAGCCTCCTCGTAGATGGGATCGAGTAAAGGG

TGACGGTAAGCACCAGCGGCAGGGCTACCGATCATGGAGGGCCCACAAAGCCG

CGATTATTGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTTGCCCGCCGCTA

CCTGCTTTTCCACCGCGGGGTAAACATCCCCCGCAACGTGTTGCATTACTACCGT

CACCTTCACAGCTAACAAAAAGCAAGTAAAAGAAGTCGCCGGAGGAGGAGGCC

TGAGGATTGCGGCGGACGAGCCCTTGACCACCAGGGAGCTAAGGAACCGAATCT

TCCCCACTCTTTATGCCATTTTTCAGCAGAGTCGAGGTCAGCAGCAAGAGCTTAA

AGTAAAAAATCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTACCACAAAAA

CGAAGATCAGCTGCAGCGCACTCTTGAAGACGCCGAGGCTTTGTTCCACAAGTA

CTGCGCGCTTACTCTTAAAGACTAAGGCGCGCCCACCCGGAAAAAAGGCGGGAA

TTACCTCATCGCCAGCACCATGAGCAAGGAGATTCCCACACCTTACATGTGGAG

CTATCAGCCCCAGATGGGCCTAGCCGCGGGCGCCTCCCAGGACTACTCCACCCG

CATGAACTGGCTTAGTGCCGGGCCCTCGATGATCTCACAAGTCAACGGGATCCG

TAACCATCGAAACCAGATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAG

GGCAAAGCTTAACCCGCGTAATTGGCCCTCCACCCTGGTGTATCAGAAAATCCC

CGGGCCAACTACCGTACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCATGAC

TAACTCAGGTGTCCAGCTGGCGGGCGGCGCTTCCCGGTGTCCGCCCAGACCCGA

CTTAGGTATAAAAACACTGCTGATCCGAGGCAAAGGCATACAACTTAACAACGA

GTTGGTGAGCTCTTCCATTGGTCTGCGACCCGACGGAGTGTTTCAACTAGCCGGA SEQ

ID Sequence

NO

GCCGGGAAATCGTCCTTCACTCCCAACCAGGCCTACCTGACCTTGCAGAGCAGC

TCTTCGCAGCCTCGCTCCGGAGGCATTGGAACTCTCCAGTTCGTGGAGGAGTTTG

TGCCCTCGGTTTACTTTAACCCCTTTTCAGGCTCCCCAGGCCTCTACCCCGACGA

GTTCATACCGAACTTCGACGCAGTTAGAGAAGCGGTCGACGGCTACGACTGAAT

GTCCTATGGTGACTCGGCTGAGCTTGCTCGGTTAAGGCATCTGGACCACTGCCGC

CGCCTGCGCTGCTTTGCCCGGGAGAGCTGCGGCCTTGTTTACTTTAAGCTGCCCG

AGGAGCACCCTAACGGCCCTGCACACGGAGTGCGGATCACCGTAGAGGGCACC

ACCGGGGCGCCACCACCTACACCGTGTACTGCATTTGTCCAACCCCGAAGTTGC

ATGAGAATTTTTGCTGTACTCTTTGTGGTGAGTTTAATAAAAGCTGAAATAAGAC

TCTACTCTGGAATCCAGTGTCGTCATAATCGCACCAAGACCATTAACTTTACCAC

CCAGGAACAGGTGAACTTTACCTGCAAACCCCACAAGAAGTACCTCATCTGGTT

CCTCAAGAACACTACTTTTGCAGTAGTTAACACCTGTGACAACGACGGTGTTCTT

CTTCCCAACAATCTTACCAGTGGACTAGCCTTCTCTGTTAAAAGGGCAAAGCTAA

TTCTTCATCGCCCTATTGTAGAAGGAACTTACCATTGTCAGAGCGGACCTTGTCA

TCACATTTTCCATTTGGTGAACGTCACCAGCAGCAGCAACAGCTCAGAAACTAA

CCTCTCTTCTCGTACTAACAGACCTCAATTCGGAGGTGAGCTAAGGCTTCCCCCT

TGTAAGGAGGGGGTTAGCCCATACAAGGTGGTCGGGTATTTAATTTTAGGGGCG

GTCCTGGGTGGGTGCATAGCGGTGCTAGCCCAACTGCCTTGCTGGGTGGAAATC

AATCTTTATCTGCTGGGTTAGATATTGCGGGGAGGAACCATGAAGGGGCTTTTGC

TAATTATCCTTTCCCTGGTGGGGGGTGTACTGTCATGCCACGAACAGCCACGATG

TAACATTACCACAGGCAATGAGAGGAGTGTTATATGTACAGTAGTTATTAAATG

CGAGCATCAATGCCCTCTCAACATTACATTTAAAAACCGTACCATGGGGAATGC

ATGGGTAGGCTACTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCA

GATATCACACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAG AACATGGTTGGGTTTTCTTTGGCTTTTGTAATTATGGCCTGCTTTATGTCAGGTCT

TTTAACCAGTGTCGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTGAGGCAGGAATTA

TTAACTTAAATGTATCATGGGGAATCAATCTAACTTTAGTGGGACCATTAGACCT

GCCAGTTACATGGTATGATGGAAAGGGAATGCAGTTTTGTGATGGAAATACAAT

TAAAAACCCACAAATCAAGCATAGCTGTAATCAACAAAATCTAACTTTACTTAA

TGCTGACAAGTCTCATGAAAGGACTTACTTAGGTTACAGACATGACAGTAAGGG

AAAAGTAGACTATAAGGTTACAGTCATACCACCTCCTTCAACCACTCGCAAGCC

TTTGTCACAGCCTCACTATGTTACTGTGACTATGAACCATAACATGACTTTAGTG

GGTCCCTTAAACCTGCCAGTTACATGGTATGATGGAGAAGGAAATAAATTGTGC

AATGGAGAAAAAGTTGAGCATGCAGAATTTAATCATACATGTAACATCCAGAAC

CTGACACTGCTCTTTGTTAACTTAACGCATAATGGAGCATACATTGGTTATAACA

AAGACGGTTCTAATAGAGAATTATATGAGGTGTCAGTCAAAACCTTGTTTCAAA

ACGGGGCTAAACAAAGTAAGGTTGAACAAAGTAATATTGGACAAGGTAATACT

GCTCAAAGTGCAAAAAGAAAATCAACAAATAACCTTCAGCCAACACAATTGTAT

GTTAGACCTTTTACTAATGTTAGTTTAACTGGACCTCCAAATGGCAAGGTTATTT

GGTATGATGGCGAACTTAATGATCCATGTGAACAAAAGTACAAACTTAAAACTT

TTTGCAATCAGCAAAATCTAACTTTAATTAATGTAACCAGCACTTATGATGGCAT

CTATTATGGTACTGATGAAAAAGATAAGGCAAATCGTTACAGAATAAAAGTAAA

TACTACAAATCACAAAACTGTTAAAATTAAGCCACATACCAAAGAACCTCCTGC

TGAACAAAAAAAACAGTTTCAATTACAAGTTGCAGAAACTGATCAAAACGAATC

AAAAATTCCCTCAGCTACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTTGTA

ACTCTAATCATTGTTTTTATTTGCTACATCTGCTGCCGCAAGCGTCCAAGGGCAT

ACAATTATATGGTAGACCCACTACTCAGCTTCTCCTACTAAAACTCAGTCATTCT

TATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCATAGTCACAC

TTAGTCTTTCTCAAATCATTAATGTAAATGTTACCAGAGGAGGTAGTATTACATT SEQ

ID Sequence

NO

AAATGGAACTTATAAAAACACTACATGGACAAGATATCACTTAGACTCATGGAA

AAATTTATGCAAGTGGAATATGACAGCTTACAAGTGTTATGATAATGGAAGCAT

TACTATTACTGCCACTGGTAAAATTACTTCTGGCAAATACAAGGCAGAAAGTTA

CAAAAATGAAATTAAGAAATCAGTATTTAAAACTAATAAAACTACATTTGAAGA

TTCTGGAAATTATGAACATCAAAAAATAACTTTCTATCAGCTAACAATTATTCAA

CTACCTACTACTAAGGTACCAACCACCACAGCCAGTACATACACTACACAGCTA

AACACAACAGTGCAGAATAGTACTGTGTTGGTTAGGTACTTGCTGAGGGAGGAA

AGTACTACTCAACAGACAGATGCTACCTTAAGTGCCTTTAGCAGCACTGCAAATT

TAACTTCGCTTGCTTGGACTAATGAAACCGGAGTATTATTAATGCATGGCCAGCC

TTACTCAGGTTTGCATATTCAAATTACTTTTCTGGTTATCTGTGGGATCTTTATTC

TCGTGGTTCTTTTGTACTTTGTTTGCTGCAAAGCCAGAAAAAAATCTAGGAGACC

CATCTACAGGCCAGTAATCGGGAATCCTCAGCCTTTCCAAGTGGAAGGGGGTCT

TCGCACACCTCACCCGACTGTCTTGGGCCATTCCCCACCTACCTTCTCTTTGCCCT

GCTCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCATTACCTTCCTGCAG

CTTATCGACTGGTGCTGCGCGCGCTACAATTATCTTCACCACAGTCCCGAATACA

GGGACAAGAACGTAGCCAAACTCTTAAGGCTTATATGACCATGCAGACTCTGCT

AATACTGCTATCCCTTTTATCCCCCGCCCTTGCCACTTTTGATTACTCTAAATGCA

AATTTGTTGAGCTATGGAATTTCTTAAACTGCTATAATGCTACAATGGATATGCC

TTCCTATTACTTGGTAATTGTGGGAATAGTGATGGTCTGCTCCTGCACTTTCTTTG

CTATTATGATCTACCCCTGTTTTGATCTCGGCTGGAACTCTGTTGGGGCATTTACA

TACACACTACAAAACAGTTCACCAGCCTTCACACCGCCTCCCCGCAGAAATCAG

TTCCCCCTGATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCCTTCCACTGTTA

GTTACTTTCACATAACCGCCGGCGATGACTGACAACCACCTGGACCTTGAGATG

GACGGCCAGGCCTCCGAGCAACGCATCCTGCAACTGCGCGTCCGTCAGCAGCAG

GAGCGAACCGCCAAGGAGCTCCTTGATGCCATCAACATCCACCAGTGCAAGAAA

GCAAGCAGCATCGCCTTGCCTATGAGCTGCCCCAGCAGAAGCAAAAGTTCACCT

GCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGACGGGCGAAACCAGCG

GCTGTATCCATTGCTCCTGCGAAAGCCCCGAGTGTATCTACTCCCTCCTTAAGAC

CCTTTGCGGACTTCGCGACCTCCTACCCATAAACTAATTGATTAAAGTTTAGAAA

CCAATCACACCCCATTCCCCATTTTCCCACATAAACAATCATTAGAAATAATTAC

TTAATAAAAATTACTTACTTGAAATCTAAAAGTATGTCTCTGGTGTAGTTGTTTA

GCAATACCTCGGTCCCCTCCTCCCAGCTCTGGTACTCCAGTCCCCGGCGGGCGGC

GAACTTCCTCCACACCTTGAAAGGGATGTCAAATTCCTGGTCCACAATTTTCATT

GTCTTCCCTCTCAGATGTCAAAGAGGCTCCGGGTGGAAGATGACTTCAATCCCGT

CTACCCCTATGGCTACGCGCGGAATCAAAATATCCCCTTCCTTACTCCCCCCTTT

GTCTCCTCCAATGGATTCCAAAACTTCCCCCCTGGGGTTCTGTCACTCAAACTGG

CTAACCCAATCACCATCACCAATGGAAATGTCTCACTCAAGGTTGGAGGTGGGC

TAACTTTGCAAGAAGAAACTGGAAAACTAACAGTTAATACTGAACCACCTTTGC

AACTTACAAATAACAAATTAGGTATTGCTTTAGACGCTCCATTTGATGTTATAGA

CAATAAGCTGACACTATTAGCAGGCCATGGCTTGTCTATTATAACAAAAGAAAC

ATCAACACTGCCTGGCTTGGTTAATACTCTTGTAGTATTAACTGGAAAGGGTATT

GGAACAGATTCACATAATGGTGGAAATATATGTGTTAGAGTTGCAGAAGGCGGT

GGCTTATCATTTAATGATAATGGAGACTTGGTAGCATTTAATAAAAAAGAAGAT

AAACGCACCCTATGGACAACTCCAGACACATCTCCAAATTGCAGAATTGATCAG

GATAAGGACTCTAAGCTAACTTTGGTCCTTACAAAGTGTGGAAGTCAAATATTA

GCCAATGTGTCATTAATTGTCGTAGCTGGAAGGTACAAAATTATCAATAACAAT

ACTCAACCAGCTCTCAAAGGATTTACCATTAAATTGTTGTTTGATAAAAATGGAG

TCCTTATGGAATCTTCAAATCTTAGTAAATCATATTGGAACTTTCGAAATGAAAA

TTCAATTATGTCAACAGCTTATGAAAAAGCTATTGGTTTTATGCCTAATTTGGTA

GCCTATCCAAAACCTACCACTGGCTCTAAAAAATATGCAAGAGATATAGTTTAT SEQ

ID Sequence

NO

GGAAACATCTACCTTGGCGGAAAGCCACATCAACCAGCAACCATTAAAACTACC TTTAACCAGGAAACTGGATGTGAATACTCTATTACATTTGATTTTAGTTGGGCCA AAACTTATGTAAATGTTGAATTTGAAACTACCTCTTTTACCTTTTCCTATATTGCC

TTAATTTTTACACCAGCGCGGGTACACATTCTCCCACCACCAGCCCATTTTACAG

TGTAAACAATTCTCTCAGTACGGGTGGCCTTAAATAGGGGAAAGTTCTCATTAGT

GCGGGAACTGGACTTGGGGTCTATAATCCACACAGTTTCCTGGCGAGCCAAACG

GGGGTCGGTGATTGAGATGAAGCCGTCCTTTGACAAATCATCCAAGCGGGCCTC

ACAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCACAGACTCATACTCG

GAAAACAGGATGGGTCTGTGCCTCTCCATCAGCGCCCTTAACAGTCTTTGCCGCC

GGGGCTCGGTGCGGCTGCTACAAATGGGATCGGGATCGCAAGTCTCTTTGACTA

TAATCCCCACAGCCCTCAGCATCAGTCTTCTGGTGCGTCGGGCACAGCACCGCAT

TCTAATTTCGCTCATGTTTTCACAGTAAGTGCAGCACATAATCATTATGTTATTCA

GCAGCCCATAATTTAGGGTGCTCCAGCCAAAGCTTATGTTGGGAATGATGGAAC

CCACGTGACCATCGTACCAAATGCGGCAGTATATCAGGTGCCTGCCCCTTATAA

ACACACTGCCCATATACATAATCTCTTTGGGCATATTTCTGTTCACAATCTGCCG

GTACCAGGGGAAGCGCTGGTTAAACATGCACCCGTAAATGACTCTCCTAAACCA

CACGGCCAGCAGGGTGCCTCCCGCCCGGCACTGCAGGGAGCCCGGGGATGAAC

AGTGGCAATGCAGGATCCAGCGCTCGTACCCGCTTACCATCTGGGCTCTCACCA

GATCCAGGGTAGCGGGACACAGGCACACTGACATACATCTTTTTAAAATTTTTAC

TTCCTTTGTGGTCAGGATCATATCCCAGGGGACTGGAAACTCTTGCAGCAG

SEQ

ID Sequence

NO

SEQ CTATCTATATAATATACCCCACAAAGTAAACAAAAGTTAATATGCAAATGAGCT ID TTTGAATTTTAACGGTTGTGGGGCGGAGCCAACGCTAATTGGACGAGAAGCGGT NO: GATGCAAATAACGTCACGACGCACGGCTAACGGCCGGCGCGGAGGCGTGGCCT 1451 AGGCCGGAAGCAAGTCGCGGGGCTGATGACGTATAAAAAAGCGGACTTTAGAC

CCGGAAACGGCCGATTTTCCCGCGGCCACGCCCGGATATGAGGTAATTCTGGGC

GGATGCAAGTAAAATTAGGTCATTTTGGCGCCAAAACTGAATGAGGAAGTGAAA

AGTGAAAAATACCTGTCCCGCCCAGGGCGGAATATTTACCGAGGGCCGAGAGAC

CGTGTGAAAGTCCGGTGTTTATGTCACAGATCAGCTGATCCACAGGGTATTTAAA

CCAGTTGAGCCCGTCAAGAGGCCACTCTTGAGTGCCAGCGAGTAGAGATTTCTC

TGAGCTCCGCTCCCAGAGTCTAAAAAAAATGAGACACCTGCGCCTTCTGTCTTCA

ACTGTGCCTATTAACATGGCCGCATTATTGCTGGAGGACTATGTGAGTACAGTAT

TGGAGGACGAACTACATCCATCTCCATTTGAGCTGGGACCTACACTTCAGGACCT

TTATGATTTGGAGGTAGATGCCCATGATGACGACCCAAACGAAGAGGCTGTGAA

TTTAATATTTCCAGAATCTCTGATTCTTCAGGCTAACATAGCCAGCGAAGCTGTA

CCTACACCACTTCATACACCGACTCTGTCACCCATACCTGAATTGGAAGAGGAG

GACGAGCTAGACCTCCGATGTTATGAGGAAGGTTTTCCTCCCAGCGATTCAGAG

GACGAACAGGGTGAGCAGAGCATGGCTCTAATCTCAGAATATGCTTGTGTGGTT

GTGGAAGAGCATTTTGTGTTGGACAATCCTGAGGTGCCCGGGCAAGGCTGTAGA

TCCTGCCAGTACCACCGGGATAAGACCGGAGACACGAACGCCTCCTGCGCTCTG

TGTTACATGAAAAAGAACTTCAGCTTTATTTACAGTAAGTGGAGTGAATGTGAG

AGAGGCGAGTGCTTAACACATAACTGGGTGATGCTTAAACAGCTGTGCTAAGTG

TGGTTTATTTTTGTTTCTAGGTCCGGTGTCAGAGGATGAGTCATCACCCTCAGAA

GAAGACCACCCGTGTCCCCCTGAGCTGTCAGGCGAAACGCCCCTGCAAGTGCAC

AGACCCACCCCAGTCAGACCCAGTGGCGAGAGGCGAGCAGCTGTTGAAAAAATT

GAGGACTTGTTACATGACATGGGTGGGGATGAACCTTTGGACCTGAGCTTGAAA

CGCCCCAGGAACTAGGCTCAGCTGTGCTTAGTCATGTGTAAATAAAGTTGTACA

ATAAAAGTATATGTGACGCATGCAAGGTGTGGTTCATGATTCATGGGCGGGGCT

TAGTCCTATATAAGTGGCAACACCTGGGCACTGGGGCACAGACCTTTAGGGAGT

TCCTGATGGATGTGTGGACTATCCTTGCAGACTTTAGCAAGACACGCCGACTTGT

AGAGGATAGTTCAGACGGGTGCTCCGGGTTCTGGAGACACTGGTTTGGAACTCC

TCTATCTCGTCTGGTGTACACAGTTAAGAAGGATTATAACGAGGAATTTGAAAA

TCTTTTTGCTGATTGCTCTGGCCTGCTAGATTCTCTGAATCTCGGCCACCAGTCCC

TTTTCCAGGAAAGGGTACTCCACAGCCTTGATTTTTCCAGCCCAGGGCGCACTAC

AGCCGGGGTTGCTTTTGTGGTTTTTCTGGTTGACAAATGGAGCCAGAACACCCAA

CTGAGCAGGGGCTACATTCTGGACTTTGCAGCCATGCACCTGTGGAGGGCATGG

GTGAGGCAGCGGGGACAGAGAATCTTGAACTACTGGCTTATACAGCCAGCAGCT

CCGGGTCTTCTTCGTCTACACAGACAAACATCCATGTTGGAGGAAGAAATGAGG

CAGGCCATGGACGAGAACCCGAGGAGCGGCCTGGACCCTCCGTCGGAAGAGGA

GCTGGATTGAATCAGGTATCCAGCTTGTACCCAGAGCTTAGCAAGGTGCTGACA

TCCATGGCCAGGGGAGTGAAGAGGGAGAGGAGCGATGGGGGCAATACCGGGAT

GATGACCGAGCTGACGGCCAGCCTGATGAATCGCAAGCGCCCAGAGCGCATTAC

CTGGCACGAGCTACAGATGGAGTGCAGGGATGAGTTGGGCCTGATGCAGGATAA

ATATGGCCTGGAGCAGATAAAAACACATTGGTTGAACCCAGATGAGGATTGGGA

GGAGGCCATTAAGAAATATGCCAAGATAGCCCTGCGCCCAGATTGCAAGTACAT

AGTGACCAAGACCGTGAATATTAGACATGCCTGCTACATTTCGGGGAACGGGGC

AGAGGTGGTCATCGATACCCTGGACAAGGCCGCCTTCAGGTGTTGCATGATGGG

AATGAGAGCAGGAGTGATGAATATGAATTCCATGATCTTCATGAACATGAAGTT

CAATGGAGAGAAGTTTAATGGGGTGCTGTTCATGGCCAACAGCCACATGACCCT

GCATGGCTGCAGTTTCTTTGGCTTTAACAATATGTGCGCCGAGGTCTGGGGCGCT

TCCAAGATCAGGGGATGTAAGTTTTATGGCTGCTGGATGGGCGTGGTCGGAAGA

CCCAAGAGCGAGATGTCTGTAAAGCAGTGTGTGTTTGAGAAATGCTACCTGGGA

GTCTCTACCGAGGGCAATGCTAGAGTGAGACACTGCTCTTCCCTGGATACGGGC SEQ

ID Sequence

NO

TGCTTCTGCCTGGTGAAGGGTACGGCCTCTCTAAAGCATAATATGGTGAAGGGC

TGCACAGATGAGCGCATGTACAACATGCTGACCTGCGACTCGGGGGTCTGCCAT

ATCCTGAAGAACATCCATGTGACCTCCCACCCCAGAAAGAAGTGGCCAGTGTTT

GAGAATAACCTGCTGATCAAGTGCCATATGCACCTGGGTGCCAGAAGGGGCACC

TTCCAGCCGTACCAGTGCAACTTTAGCCAGACCAAGCTGCTGTTGGAGAACGAT

GCCTTCTCCAGGGTGAACCTGAACGGCATCTTTGACATGGATGTCTCGGTGTACA

AGATCCTGAGATACGATGAGACCAAGTCCAGGGTGCGCGCTTGCGAGTGCGGGG

GCAGACACACCAGGATGCAGCCAGTGGCCCTGGATGTGACCGAGGAGCTGAGA

CCAGACCACCTGGTGATGGCCTGTACCGGGACCGAGTTCAGCTCCAGTGGGGAG

GACACAGATTAGAGGTAGGTTTGAGTAGTGGGCGTGGCTAATGTGAGTATAAAG

ATGGGCCGGAGTTCGTCAGAATGTGATGGGATCGACGGTGGACGGGCGCCCAGT

GCTTCCAGCAAATTCCTCGACCATGACCTACGCGACCGTGGGGAACTCGTCGCTC

GACAGCACCGCCGCAGCCGCGGCAGCCGCAGCCGCCATGACAGCGACGAGACT

GGCCTCGAGCTACATGCCCAGCAGCAGCAGTAGCCCCTCTGTGCCCAGTTCCATC

ATCGCCGAGGAGAAACTGCTGGCCCTGCTGGCCGAGCTGGAAGCCCTGAGCCGT

CAGCTGGCCGCCCTGACCCAGCAGGTGTCCGAGCTCCGCGAACAGCAGCAGCAG

CAAAATAAATGATTCAATAAACACAGATTCTAATTCAAACAGCAAAGTATCTTT

ATTATTTATTTTTTCGCGCGCGATAGGCCCTGGTCCACCTCTCCCGATCATTGAG

AGTGCGGTGGATTTTTTCCAGGACCCGGTAGAGGTGGGATTGGATGTTAAGGTA

CATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCACCACTGCATGGCCTCGTG

CTCTGGGGTCGTGTTGTAGATGATCCAGTCATAGCAGGGGCGCTGGGCGTGGTG

CTGGATGATGTCCTTGAGGAGGAGACTAATGGCCACGGGGAGCCCCTTGGTGTA

GGTGTTGGCGAAGCGGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGATGT

GCAGTTTGGCCTGGATCTTGAGGTTGGCGATGTTGCCACCCAGATCCCGCCGGG

GGTTCATGTTGTGCAGGACCACCAGAACGGTGTAGCCCGTGCACTTGGGGAACT

TGTCATGCAACTTGGAAGGGAATGCGTGGAAGAATTTGGAGACGCCCTTGTGCC

CGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCGATGGGCCCGTGGGCTGC

GGCTTTGGCAAAGACGTTTCTGGGGTCAGAGACATCATAATTATGCTCCTGGGTG

AGATCATCATAAGACATTTTAATGAATTTGGGGCGGAGGGTGCCAGATTGGGGG

ACGATGGTTCCCTCGGGCCCCGGGGCGAAGTTCCCCTCGCAGATCTGCATCTCCC

AGGCTTTCATCTCGGAGGGGGGGATCATGTCCACCTGCGGGGCGATGAAAAAAA

CGGTTTCCGGGGCGGGGGTGATTAGCTGCGAGGAGAGCAGGTTTCTCAACAGCT

GGGACTTGCCGCACCCGGTCGGGCCGTAGATGACCCCGATGACTGGTTGCAGGT

GGTAGTTCAAGGAGATGCAGCTGCCGTCGTCCCGGAGAAGGGGGGCCACCTCGT

TGAGCATGTCCCTGACTTGGAGGTTTTCCCGGACGAGCTCGCCAAGGAGGCGGT

CCCCGCCCAGCGAGAGCAGCTCTTGCAGGGAAGCAAAGTTTTTCAGTGGCTTGA

GCCCGTCGGCCATGGGCATCTTGGCGAGGGTCTGCGAGAGGAGCTCGAGGCGGT

CCCAAAGCTCGGTGACGTGCTCTACGGCATCTCGATCCAGCAGACTTCCTCGTTT

CGGGGGTTGGGACGACTGCGACTGTAGGGCACGAGACGATGGGCGTCCAGCGCT

GCCAACGTCATGTCCTTCCAGGGTCTCAGGGTCCGCGTGAGCGTGGTCTCCGTCA

CGGTGAAGGGGTGGGCCCCGGGCTGGGCGCTTGCAAGGGTGCGCTTGAGACTCA

TCCTGCTGGTGCTGAAACGGGCACGGTCTTCGCCCTGCGCGTCGGCGAGATAGC

AGTTGACCATAAGCTCGTAGTTAAGGGCCTCGGCGGCGTGGCCCTTGGCGCGGA

GCTTGCCCTTGGAAGAGTGACCGCAGGCGGGACAGAGGATGGATTGCAGGGCGT

AGAGCTTGGGTGCAAGAAAGACGGACTCGGGGGCGAAGGCGTCCGCTCCGCAG

TGGGCGCAGACGGTCTCGCACTCGACGAGCCAGGTGAGCTCGGGGTGTTCGGGG

GAGTCTGTGTCCGCGCTCGGTGACAAACAGGCTGTCTGTGTCCCCGTAGACGGA CTTGATGGGCCTGTCCTGCAGGGGCGTCCCGCGGTCCTCCTCGTAGAGAAACTCG GACCACTCTGAGACGAAGGCGCGCGTCCACGCCAAGACAAAGGAGGCCACGTG CGAGGGGTAGCGGTCGTTGTCCACCAGGGGGTCCACCTTTTCCACCGTGTGCAG SEQ

ID Sequence

NO

ACACATGTCCCCCTCCTCCGCATTCAAGAAGGTGATTGGCTTGTAGGTGTAGGCC

ACGTGACCGGGGGTCCCCGACGGGGGGGTATAAAAGGGGGCGGGTCTGTGCTC

GTCCTCACTCTCTTCCGCGTCGCTGTCCACGAGCGCCAGCTGTTGGGGTAGGTAT

TCCCTCTCGAGAGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTCTAGAAACG

AGGAGGATTTGATGTTGGCCTGCCCTGCCGCAATGCTTTTTAGGAGACTTTCATC

CATCTGGTCAGAAAAAACTATTTTTTTATTGTCAAGCTTGGTGGCAAAGGAGCCA

GGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTGGACATATTCGCGCGCGACAC

ACTTCCATTCGGGAAAGACGGTGGTGCGCTCGTCGGGCACGATCCTGACGCGCC

AGCCGCGGTTATGCAGGGTGACCAGGTCAACGCTGGTGGCCACCTCGCCGCGCA

GGGGCTCGTTGGTCCAGCAGAGTCTGCCGCCCTTGCGCGAGCAGAAAGGGGGCA

GTACATCAAGTAGATGCTCGTCAGGGGGGTCCGCATCGATGGTGAAGATACCGG

CTGCCACTCGCGGGCGGCCATCGCTCGCTCGTAGGGGTTGAGGGGCGGACCCCA

GGGCATGGGATGCGTGAGGGCGGAGGCGTACATGCCGCAGATGTCATAGACAT

AGATGGGCTCCGAGAGGATGCCGATGTAGGTGGGATAACAGCGCCCCCCGCGG

ATGCTGGCGCGCACATAGTCATACAACTCGTGCGAGGGGGCCAAGAAGGCGGG

GCCGAGATTGGTGCGCTGGGGCTGCTCGGCGCGGAAGACGATCTGGCGAAAGAT

GGCATGCGAGTTGGAGGAGATGGTGGGCCGTTGGAAGATGTTAAAGTGGGCGTG

CGGCAGTCGGACCGAGTCGCGGATAAAGTGCGCGTAGGAGTCTTGCAGCTTGGC

GACGAGCTCGGCGGTGACAAGGACGTCCATGGCGCAGTAGTCCAGCGTTTCGCG

GATGATGTCATAACCCGCCTCTCCTTTCTTCTCCCACAGCTCGCGGTTGAGAGCG

TACTCCTCGTCATCCTTCCAGTACTCCCGGAGCGGGAATCCTCGATCGTCCGCAC

GGTAAGAGCCCAGCATGTAGAAATGGTTCACGGCCTTGTAGGGACAGCAGCCCT

TCTCCACGGGGAGGGCGTAAGCTTGAGCGGCCTTGCGGAGCGAGGTGTGCGTCA

GGGCGAAGGTGTCCCTGACCATGACTTTCAAGAACTGGTACTTGAAGTCCGAGT

CGTCGCAGCCGCCGTGCTCCCAGAGCTCGAAATCGGTGCGCTTCTTCGAGAGGG

GGTTAGGCAGAGCGAAAGTGACGTCATTGAAGAGAATCTTGCCTGCTCGCGGCA

TGAAATTGCGGGTGATGCGGAAAGGGCCCGGAACGGAGGCTCGGTTGTTGATGA

CCTGGGCGGCGAGGACGATCTCGTCGAAGCCGTTGATGTTGTGCCCGACGATGT

GTAGGTGAGGTCCTCGGGGCATTGCAGGCCGTGCTGTTCGAGCGCCCACTCCTG

GAGATGTGGGTTGGCTTGCATGAATGAAGCCCAGAGCTCGCGGGCCATGAGGGT

CTGGAGCTCGTCGCGAAAGAGGCGGAACTGCTGGCCCACGGCCATCTTTTCGGG

TGTGACGCAGTAGAAGGTGAGGGGGTCCCGCTCCCAGCGATCCCAGCGTAAGCG

CGCGGCGAGATCGCGAGCGAGGGCGACCAGCTCGGGGTCCCCCGAGAATTTCAT

GACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGT

TTCTACATCGTAGGTGACAAAGAGCCGCTCCGTGCGAGGATGAGAGCCGATTGG

GAAGAATTGGATTTCCTGCCACCAGTTGGACGAGTGGCTGTTGATGTGATGAAA

GTAGAAATCCCGCCGGCGAACCGAGCACTCGTGCTGATGCTTGTAAAAGCGTCC

GCAGTACTCGCAGCGCTGCACGGGCTGTACCTCATCCACGAGATACACAGCGCG

TCCCTTGAGGAGGAACTTCAGGAATGGCGGCCCTGGCTGGTGGTTTTCATGTTCG

CCTGCGTGGGACTCACCCTGGGGCTCCTCGAGGACGGAGAGGCTGACGAGCCCG

CGCGGCAGCCAGGTCCAGATCTCGGCGCGGCGGGGGCGGAGAGCGAAGACGAG

GGCGCGCAGTTGGGAGCTGTCCATGGTGTCGCGGAGATCCAGGTCCGGGGGCAG

GGTTCTGAGGTTGACCTCGTAGAGGCGGGTGAGGGCGTGCTTGAGATGCAGATG

GTACTTGATCTCCACGGGTGAGTTGGTGGTCGTGTCCACGCATTGCATGAGCCCG

TAGCTGCGCGGGGCCACGACCGTGCCGCGGTGCGCTTTTAGAAGCGGTGTCGCG

GACGCGCTCCCGGCGGCAGCGGCACGTTGGCGTGGCGCTCGGGCAGGTCCCGGT

GCTGCGCCCTGAGAGCGCTGGCGTGCGCGACGACGCGGCGGTTGACATCCTGGA

TCTGCCGCCTTTGCGTGAAGACCACTGGCCCCGTGACTTTGAACCTGAAAGACA

GTTCAACAGAATCAATCTCGGCGTCATTGACGGCGGCCTGACGCAGGATTTCTTG

CACGTCGCCCGAGTTGTCCTGGTAGGCGATCTCGGACATGAACTGCTCGATCTCC SEQ

ID Sequence

NO

TCCTCCTGGAGATCGCCGCGGCCCGCGCGCTCGACGGTGGCGGCGAGGTCATTC

GAGATGCGACCCATGAGCTGCGAGAAGGCGCCCAGGCCGCTCTCGTTCCAGACG

CGGCTGTAGACCACGTCCCCGTCGGCGTCGCGCGCGCGCATGACCACCTGCGCG

AGGTTGAGCTCCACGTGCCGCGCGAAGACGGCATAGTTGCGCAGGCGTTGGAAG

AGGTAGTTGAGGGTGGTGGCGATGTGCTCGGTGACGAAGAAGTACATAATCCAG

CGGCGCAGGGGCATTTCGCTGATGTCGCCAATGGCCTCCAGCCTTTCCATGGCCT

CGTAGAAATCCACGGCGAAGTTGAAAAACTGGGCGTTGCGGGCCGAGACCGTG

AGCTCGTCTTCCAGGAGCCTGATGAGTTCGGCGATGGTGGCGCGCACCTCGCGC

TCGAAATCCCCGGGGGCCTCCTCCTCTTCCTCTTCTTCCATGACGACCTCTTCTTC

TATTTCTTCCTCTGGGGGCGGTGGTGGTGGCGGGGCCCGACGACGACGGCGACG

CACCGGGAGACGGTCGACGAAGCGCTCGATCATCTCCCCGCGGCGGCGACGCAT

GGTTTCGGTGACGGCGCGACCCCGTTCGCGAGGACGCAGCGTGAAGACGCCGCC

GGTCATCTCCCGGTAATGGGGTGGGTCCCCGTTGGGCAGCGATAGGGCGCTGAC

AATGCATCTTATCAATTGCGGTGTAGGGCACGTGAGCGCGTCGAGATCGACCGG

ATCGGAGAATCTTTCGAGGAAAGCGTCTAGCCAATCGCAGTCGCAAGGTAAGCT

CAAACACGTAGCAGCCCTGTGGACGCTGTTAGAATTGCGGTTGCTGATGATGTA

GGGTCCCGCTTGCTGGATGCGGAGCCGCTCGGCCATGCCCCAGGCCTGGCCCTG

ACACCGGCTCAGGTTCTTGTAGTAGTCATGCATGAGCCTCTCGATGTCATCACTG

GCGGAGGCGGAGTCTTCCATGCGGGTGACCCCGACGCCCCTGAACGGCTGCACG

AGCGCCAGGTCGGCGACGACGCGCTCGGCGAGGATGGCCTGTTGCACGCGGGTG

AGGGTGTCCTGGAAGTCGTCCATGTCGACGAAGCGGTGGTAGGCCCCTGTGTTG

ATGGTGTAAGTGCAGTTGGCCATAAGCGACCAGTTGACGGTCTGCAGGCCGGGT

TGCACGACCTCGGAGTACCTGAGCCGCGAGAAGGCGCGCGAGTCGAAGACATA

GTCGTTGCAGGTGCGCACGAGGTACTGGTATCCGACTAGAAAGTGCGGCGGCGG

CTGGCGGTAGAGCGGCCAGCGCTGGGTGGCCGGCGCGCCCGGGGCCAGGTCCTC

AAGCATGAGTCGGTGGTAGCCGTAGAGGTAGCGGGACATCCAGGTGATGCCGGC

GGCGGTGGTGGAGGCGCGCGGGAACTCGCGGACGCGGTTCCAGATGTTGCGCAG

GGGCAGGAAATAGTCCATGGTCGGCACGGTCTGGCCGGTGAGACGCGCGCAGTC

ATTGATGCTCTAGAGGCAAAAACGAAAGCGGTTGAGCGGGCTCTTCCTCCGTAG

CCTGGCGGAACGCAAACGGGTTAGGCCGCGTGTGTACCCCGGTTCGAGTCCCCT

CGAATCAGGCTGGAGCCGCGACTAACGTGGTATTGGCACTCCCGTCTCGACCCA

AGCCCGATAGCCGCCAGGATACGGCGGAGAGCCCTTTTTGTCGGCCGAGGGGAG

TCGCTAGACTTGAAAGCGGCCGAAAACCCTGCCGGGTAGTGGCTCGCGCCCGTA

GTCTGGAGAAGCATCGCCAGGGTTGAGTCGCGGCAGAACCCGGTTCAAGGACGG

CCGCGGCGAGCGGGACTTGGTCACCCCGCCGATTTAAAGACCCAACAGCCGACT

GCGCCAAATGCGTCCCACCCCCCCGGCGACCACCGCGACCGCGGCCGTAGCAGG

CGCCGGCGCTAGCCAGCCACAGCCACAGACAGAGATGGACTTGGAAGAGGGCG

AAGGGCTGGCGAGACTGGGGGCGCCGTCCCCGGAGCGACATCCCCGCGTGCAGC

TGCAGAAGGACGTGCGCCCGGCGTACGTGCCTGCGCAGAACCTGTTCAGGGACC

GCAGCGGGGAGGAGCCCGAGGAGATGCGCGACTGCCGGTTTCGGGCGGGCAGG

GAGCTGCGCGAGGGCCTGGACCGCCAGCGCGTGCTGCGCGACGAGGATTTCGAG

CCGAACGAGCAGACGGGGATCAGCCCCGCGCGCGCGCACGTGGCGGCGGCCAA

CCTGGTGACGGCCTACGAGCAGACGGTGAAGCAGGAGCGCAACTTCCAAAAGA

GTTTCAACAACCACGTGCGCACCCTGATCGCGCGCGAGGAGGTGGCCCTGGGCC

TGATGCACCTGTGGGACCTGGCGGAGGCCATCGTGCAGAACCCGGACAGCAAGC

CTCTGACGGCACAGCTGTTCCTGGTGGTGCAGCACAGCAGGGACAACGAGGCGT

TCAGGGAGGCACTGCTGAACATCGCCGAGCCCGAGGGTCGCTGGCTGCTGGAGC

TGATTAACATCTTGCAGAGCATCGTAGTGCAGGAGCGCAGCCTGAGCCTGGCCG

AGAAGGTGGCGGCGATCAACTACTCGGTGCTGAGCCTGGGCAAGTTTTACGCGC

GCAAGATTTACAAGACGCCGTATGTGCCCATAGACAAGGAGGTGAAGATAGAC

AGCTTTTACATGCGCATGGCGCTCAAGGTGCTGACGCTGAGCGACGACCTGGGC SEQ

ID Sequence

NO

GTGTACCGCAACGACCGCATCCACAAGGCCGTGAGCACAAGCCGGCGGCGCGA

GCTGAGCGACCGCGAGCTGATGCTGAGTCTGCGCCGGGCGCTGGTAGGAGGCGC

CACCGGCGGTGAGGAGTCCTACTTTGACATGGGGGCGGACCTGCATTGGCAGCC

GAGCCGACGCGCCTTGGAGGCCGCCTACGGTCCAGAGGACTTGGATGAGGAAG

AGGAAGAGGAGGAGGATGCACCCGTTGCGGGGTACTGACGCCTCCGTGATGTGT

TTTTAGATGCAGCAAGCCCCGGACCCCGCCATAAGGGCGGCGCTGCAAAGTCAG

CCGTCCGGTCTAGCATCGGACGACTGGGAGGCCGCGATGCAACGCATCATGGCC

CTGACGACCCGCAACCCCGAGTCCTTTAGACAACAGCCGCAGGCCAACAGACTC

TCGGCCATTCTGGAGGCGGTGGTTCCTTCTCGGACCAACCCCACGCACGAGAAG

GTGCTGGCGATCGTGAACGCGCTGGCGGAGAACAAGGCCATCCGTCCCGACGAG

GCCGGGCTAGTGTACAACGCCCTGCTGGAGCGCGTGGGCCGCTACAACAGCACA

AACGTGCAGTCCAACTTGGACCGGCTGGTGACGGACGTGCGCGAGGCCGTGGCG

CAGCGCGAGCGGTTCAAGAACGAGGGCCTGGGTTCGCTGGTGGCGCTGAACGCC

TTCCTGGCGACGCAGCCGGCGAACGTGCCGCGCGGGCAGGATGATTATACCAAC

TTTATAAGCGCGCTGCGGCTGATGGTGACCGAGGTGCCCCAGAGCGAGGTGTAC

AACCTGAGTCAGGCTTTCAAGAACCTGCGCGGGCTGTGGGGCGTGCAGGCGCCC

GTGGGCGACCGGTCGACGGTGAGCAGCTTGCTGACGCCCAACTCGCGGCTGCTG

CTGCTGCTGATCGCGCCCTTCACCGACAGTGGCAGCGTGAACCGCAACTCGTAC

CTGGGTCACCTGCTGACGCTGTACCGCGAGGCCATAGGCCAGGCGCAGGTGGAT

GAGCAGACCTTCCAGGAGATCACTAGCGTAAGCCGCGCGCTGGGTCAGAACGAC

ACCGACAGTCTGAGGGCCACCCTGAACTTCTTGCTGACCAATAGACAGCAGAAG

ATCCCGGCGCAGTACGCGCTGTCGGCCGAGGAGGAGCGCATCCTGAGATATGTG

CAGCAGAGCGTAGGGCTGTTCCTGATGCAGGAGGGGGCCACCCCCAGCGCCGCG

CTGGACATGACCGCGCGCAACATGGAACCTAGCATGTACGCCGCCAACCGGCCG

TTTATTAATAAGCTGATGGACTACCTGCACCGCGCGGCGTCCATGAACTCGGACT

ACTTTACCAATGCCATCTTGAACCCGCACTGGCTCCCGCCGCCGGGGTTCTACAC

CAGCGCGGTGTTCTCACCGACCTTGCAAAAGCGCCAGGAGGCGGTGCGCACGCC

CGCGAGCGAGGGCGCGGTGGGTCGGAGCCCCTTTCCTAGCTTAGGGAGTTTGCA

TAGCTTGCCGGGCTCGGTGAACAGCGGCAGGGTGAGCCGGCCGCGCTTGCTGGG

CGAGGACGAGTACCTGAACGACTCGCTGCTGCAGCCGCCGCGGGTCAAGAACGC

CATGGTCAATAACGGGATAGAGAGTCTGGTGGACAAACTGAACCGCTGGAAAA

CCTACGCTCAGGACCATAGGGAACCTGCGCCCGCGCCGCGGCGACAGCGTCACG

ACCGGCAGCGGGGCCTGGTGTGGGACGACGAGGACTCGGCCGACGATAGCAGC

GTGTTGGACTTGGGCGGAAGCGGTGGGGCCAACCCGTTCGCGCATCTGCAACCC

AGACTGGGGCGACGGATGTTTTGAATGCAAAATAAAACTCACCAAGGCCATAGC

GTGCGTTCTCTTCCTTGTTAGAGATGAGGCGCGCGGTGGTGTCTTCCTCTCCTCCT

CCCTCGTACGAGAGCGTGATGGCGCAGGCGACCCTGGAGGTTCCGTTTGTGCCT

CCGCGGTATATGGCTCCTACGGAGGGCAGAAACAGCATTCGTTACTCGGAGCTG

GCTCCGCTGTACGACACCACTCGCGTGTATTTGGTGGACAACAAGTCGGCGGAC

ATCGCTTCCCTGAACTACCAAAACGACCACAGCAACTTCCTGACCACGGTGGTG

CAGAACAACGATTTCACCCCTGCCGAGGCCAGCACGCAGACGATAAATTTTGAC

GAGCGGTCGCGGTGGGGCGGTGATCTGAAGACCATTCTGCACACCAACATGCCT

AATGTGAACGAGTACATGTTCACCAGCAAGTTTAAGGCGCGGGTGATGGTGGCT

AGAAAAAAGGCGGAAGGGGCTGATGCAAATGATAGGAGCAAGGATATCTTAGA

GTATCAGTGGTTTGAGTTTACCCTGCCCGAGGGCAACTTTTCCGAGACCATGACC

ATAGACCTAATGAACAACGCCATCTTGGAAAACTACTTGCAAGTGGGGCGGCAA

AATGGCGTGCTGGAGAGTGATATCGGAGTCAAGTTTGACAGCAGAAATTTCAAG

CTGGGCTGGGACCCGGTGACCAAGCTGGTGATGCCAGGGGTCTACACCTACGAG

GCCTTCCACCCGGACGTGGTGCTGCTGCCGGGCTGCGGGGTGGATTTCACCGAG

AGCCGCCTGAGCAACCTCCTGGGCATTCGCAAGAAGCAACCTTTTCAAGAGGGC

TTCAGAATCATGTATGAGGACCTAGTAGGGGGCAACATCCCCGCTCTCCTGAAT SEQ

ID Sequence

NO

GTCAAGGAGTATCTGAAGGATAAGGAAGAAGCTGGCAAAGCAGATGCAAATAC

TATTAAGGCTCAGAATGATGCCGTCCCAAGAGGAGATAACTATGCATCAGCGGC

AGAAGCCAAAGCAGCAGGAAAAGAAATTGAGTTGAAGGCCATTTTGAAAGATG

ATTCAGACAGAAGCTACAATGTGATCGAGGGAACCACAGACACCCTGTACCGCA

GTTGGTACCTGTCCTATACCTACGGGGATCCCGAGAAGGGGGTGCAGTCGTGGA

CGCTGCTCACCACCCCGGACGTCACCTGCGGCGCGGAGCAAGTCTACTGGTCGC

TGCCGGACCTCATGCAAGACCCCGTCACCTTCCGCTCTACCCAGCAAGTCAGCA

ACTACCCCGTGGTCGGCGCCGAGCTCATGCCCTTCCGCGCCAAGAGCTTTTACAA

CGACCTCGCCGTCTACTCCCAGCTCATCCGCAGCTACACCTCCCTCACCCACGTC

TTCAACCGCTTCCCCGACAACCAGATCCTTTGCCGCCCGCCCGCGCCCACCATCA

CCACCGTCAGTGAAAACGTGCCTGCTCTCACAGATCACGGGACGCTACCGCTGC

GCAGCAGTATCCGCGGAGTCCAGCGAGTGACCGTCACTGACGCCCGTCGCCGCA

CCTGTCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTGCTTTCCAG

TCGCACCTTCTAAAAAATGTCTATTCTCATCTCGCCCAGCAATAACACCGGCTGG

GGTCTTACTAGGCCCAGCACCATGTACGGAGGAGCCAAGAAACGCTCCCAGCAG

CACCCCGTCCGCGTCCGCGGTCACTTCCGCGCTCCCTGGGGCGCTTACAAGCGGG

GGCGGACCTCTGCTCCTGCCGCCGTGCGCACCACCGTCGACGACGTCATCGACTC

GGTGGTCGCCGATGCGCGCAACTACACCCCCGCCCCCTCGACCGTGGACGCGGT

CATCGACAGCGTGGTGGCAGACGCGCGTGACTATGCCAGACGCAAGAGCCGGC

GGCGACGGATCGCCAGGCGCCACCGGAGCACGCCCGCAGGCAGGACTCGCAGA

CGAGCGGCCGCTGCCGCCGCCGCGGCCATCTCTAGCATGACCAGACCCAGGCGC

GGAAACGTGTACTGGGTGCGCGACTCCGTCACGGGCGTGCGCGTGCCCGTGCGC

ACCCGTCCTCCTCGTCCCTGATCTAATGCTTGTGTCCTCCCCCGCAAGCGACGAT

GTCAAAGCGCAAAATCAAGGAGGAGATGCTCCAGGTCGTCGCCCCGGAGATTTA

CGGACCACCCCAGGCGGACCAGAAACCCCGCAAAATCAAGCGGGTTAAAAAAA

AGGATGAGGTGGACGAGGGGGCAGTAGAGTTTGTGCGCGAGTTCGCTCCGCGGC

GGCGCGTAAATTGGAAGGGGCGCAGGGTGCAGCGCGTGTTGCGGCCCGGCACG

GCGGTGGTGTTCACGCCCGGCGAGCGGTCCTCGGTCAGGAGCAAGCGTAGCTAT

GACGAGGTGTACGGCGACGACGACATCCTGGACCAGGCGGCGGAGCGGGCGGG

CGAGTTCGCCTATGGGAAGCGGTCGCGCGAAGAGGAGCTCATCTCGCTGCCGCT

GGACGAAAGCAATCCCACGCCGAGCCTGAAGCCCGTGACCCTGCAGCAGGTGCT

GCCGAGCCGCGGGATCAAGCGCGAGGGCGAGAACATGTACCCGACCATGCAGA

TCATGGTGCCCAAGCGCCGGCGCGTGGAGGACGTGCTGGACACCGTGAAAATGG

ATGTGGAGCCCGAGGTCAAGGTGCGCCCCATCAAGCAGGTGGCGCCGGGCCTTG

GCGTGCAGACCGTGGACATTCAGATCCCCACCGACATGGATGTCGACAAAAAAC

CCTCGACCAGCATCGAGGTGCAGACCGACCCCTGGCTCCCAGCTTCCACCGCTA

CCGCCTCCACTTCTACCGCCGCCACGGCTACCGAGCCTCCCAGGAGGCGAAGAT

GGGGCCCTGCCAACCGGCTGATGCCCAACTACGTGTTGCATCCTTCCATCATCCC

GACGCCGGGCTACCGCGGCACCCGGTATTACGCCAGCCGCTCGCTCGTTCTGCCC

ACCGTGCGCTACCACCCCAGCATCCTTTAATCCGTGTGCTGTGATACTGTTGCAG

AGAGATGGCTCTCACTTGCCGCCTGCGCATCCCCGTCCCGAATTACCGAGGAAG

ATCCCGCCGCAGGAGAGGCATGGCAGGCAGTGGCCTGAACCGCCGCCGGCGGC

GGGCCATGCGCAGGCGCCTGAGTGGCGGCTTTCTGCCCGCGCTCATCCCCATAAT

CGCCGCGGCCATCGGCACGATCCCGGGCATAGCTTCCGTTGCGCTGCAGGCGTC

GCAGCGCCGTTGATGTGCGAATAAAGCCTCTTTAGACTCTGACACACCTGGTCCT

GTATATTTTTAGAATGGAAGACATCAATTTTGCGTCCCTGGCTCCGCGGCACGGC

ACGCGGCCGTTCATGGGCACCTGGAACGAGATCGGCACCAGCCAGCTGAACGGG

GGCGCCTTCAATTGGAGCAGTGTCTGGAGCGGGCTTAAAAATTTCGGCTCGACG

CTCCGGACCTATGGGAACAAGGCCTGGAATAGTAGCACTGGGCAGTTGTTAAGG

GAAAAGCTCAAAGACCAGAACTTCCAGCAAAAGGTGGTGGACGGGCTGGCCTC

GGGCATTAACGGGGTGGTGGACATCGCGAACCAGGCCGTGCAGCGCGAGATAA

ACAGCCGCCTGGACCCGCGGCCGCCCACGGTGGTGGAGATGGAAGATGCAACTC

TTCCGCCGCCCAAGGGCGAGAAGCGACCGCGGCCCGACGCGGAGGAGACAATC SEQ

ID Sequence

NO

CTGCAAGTGGACGAGCCGCCCTCGTACGAGGAGGCCGTCAAGGCCGGCATGCCC

ACCACGCGCATCATCGCGCCGCTGGCCACGGGTGTAATGAAACCCGCTACCCTT

GACCTGCCTCCACCACCCACGCCCGCTCCACCAAAAGCAGCTCCGGTTGTGCAG

CCCCCTCCGGTGGCGACCGCCGTGCGCCGCGTCCCCGCCCGCCGCCAGGCCCAG

AACTGGCAGAGCACGCTGCACAGTATCGTGGGCCTGGGAGTGAAAAGTCTGAAG

CGCCGCCGATGCTATTGAGAGAGAGGAAAGAGGACACTAAAGGGAGAGCTTAA

CTTGTATGTGCCTTACCGCCAGAGAACGCGCGAAGATGGCCACCCCCTCGATGA

TGCCGCAGTGGGCGTACATGCACATCGCCGGGCAGGACGCCTCGGAGTACCTGA

GCCCGGGTCTGGTGCAGTTTGCCCGCGCCACCGACACGTACTTCAGCCTGGGCA

ACAAGTTTAGGAACCCCACGGTGGCTCCCACCCACGATGTGACCACGGACCGGT

CCCAGCGTCTGACGCTGCGCTTCGTGCCCGTGGATCGCGAGGACACCACGTACT

CGTACAAGGCGCGCTTCACTCTGGCCGTGGGCGACAACCGGGTGCTAGACATGG

CCAGCACTTACTTTGACATCCGCGGCGTCCTGGACCGCGGTCCCAGCTTCAAACC

CTACTCGGGCACGGCTTACAACAGCCTGGCCCCCAAGGGCGCCCCTAACTCCAG

TCAGTGGGCGCAGAAAAAGACTGGTGAAGACAATCAAACTGAAACACGCACAT

TTGGTGTGGCCGCTATGGGTGGAATACTTATTGATAAAAATGGTCTTCAGATTGG

AACAGATGAAACTAAACCCGATAACAAGGAAATTTATGCAGACAAAACATTCCA

GCCAGAACCTCAAAAAGGTGAAGAAAACTGGCAAGATGGAGATGTTTTCTATGG

AGGCAGGACTATTAAAAAGGAAACCAAAATGAAGCCATGCTATGGCTCATTTGC

CAGACCCACTAATGAAAAGGGAGGTCAGGCAAAATTTAAAACTAATGCCGAAG

GTCAGCCCACAGAGGAGTTAGACATTGACCTGAACTTCTTTGATATTAATGGAG

GGGCAGGTGATAATGAATTTAACCCAGACATGGTCATGTATGCTGAGAATATGA

ATCTGGAGACGCCAGATACACATGTGGTGTACAAACCTGGAACTTCAGATGACA

GTTCTGAAGCTAACTTAGCGCAGCAGTCCATGCCCAACAGACCAAACTACATTG

GCTTCAGAGACAATTTTGTGGGGCTCATGTACTACAACAGCACTGGCAACATGG

GTGTGCTGGCTGGTCAGGCATCTCAGTTGAATGCTGTGGTCGACTTGCAAGACA

GAAATACTGAGCTGTCTTACCAGCTCTTGCTAGATTCTCTGGGTGACAGAACAAG

ATACTTTAGCATGTGGAACTCTGCGGTGGACAGCTATGATCCCGATGTCAGGATC

ATTGAGAATCACGGTGTGGAAGATGAACTTCCAAACTATTGCTTCCCATTGGATG

GCACTGGCACCAATTCTACATACCAAGGGGTTAAAGAAACAGCTGCTCAGAATG

GATGGGAAAAAGATCCAAATGTTGCTGCTCAGAACCAAATTTGCAAGGGCAACA

TCTATGCCATGGAGATTAACCTCCAGGCCAACCTGTGGAAGAGTTTTCTGTACTC

GAACGTGGCCCTGTACCTGCCCGACTCCTACAAGTACACGCCGGCCAACGTCAC

GCTGCCCGCCAACACCAACACCTACGAGTACATGAACGGCCGCGTGGTAGCCCC

CTCGCTGGTGGACGCCTACATCAACATAGGCGCCCGCTGGTCGCTGGACCCCAT

GGACAATGTCAACCCCTTCAACCACCACCGTAACGCGGGCCTGCGCTACCGCTC

CATGCTTTTGGGCAATGGCCGCTACGTGCCCTTCCACATCCAAGTGCCCCAAAAG

TTCTTTGCCATCAAGAACCTGCTCCTGCTCCCCGGCTCCTACACCTACGAGTGGA

ACTTCCGCAAGGATGTCAACATGATCCTGCAGAGTTCCCTCGGAAACGACCTGC

GCGTCGACGGCGCCTCCGTCCGCTTCGACAGCGTCAACCTCTACGCCACCTTCTT

CCCCATGGCGCACAACACCGCCTCCACCCTGGAAGCCATGCTGCGCAACGACAC

CAACGACCAGTCCTTCAACGACTACCTCTCGGCCGCCAACATGCTCTACCCCATC

CCGGCCAAGGCCACCAACGTGCCCATTTCCATCCCCTCGCGCAACTGGGCCGCCT

TCCGCGGCTGGAGTTTCACCCGGCTCAAGACCAAGGAAACTCCCTCCCTTGGCTC

GGGTTTTGACCCCTACTTTGTCTACTCGGGCTCCATCCCCTACCTCGACGGGACC

TTCTACCTCAACCACACCTTCAAGAAGGTTTCCATCATGTTCGACTCCTCGGTCA

GCTGGCCCGGCAACGACCGGCTGCTTACGCCGAACGAGTTCGAGATCAAGCGCA

GCGTCGACGGGGAGGGCTACAACGTGGCCCAATGCAACATGACCAAGGACTGG

TTCCTCGTCCAGATGCTCTCCCACTACAACATCGGCTACCAGGGCTTCCATGTGC

CCGAGGGCTACAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAG

CAGGCAGGTGGTCGATGAGATCAACTACAAGGACTACAAGGCAGTCACCCTGCC

CTTCCAGCACAACAACTCTGGCTTTACCGGCTACCTGGCACCCACCATGCGTCAG

GGGCAGCCCTACCCCGCCAACTTCCCCTACCCGCTCATCGGCTCCACCGCAGTGC SEQ

ID Sequence

NO

CATCCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTT

CTCCAGCAACTTCATGTCCATGGGCGCCCTCACCGACCTGGGTCAGAACATGCTC

TACGCCAACTCGGCCCACGCGCTCGACATGACCTTCGAGGTGGACCCCATGGAT

GAGCCCACCCTCCTCTATCTTCTCTTCGAAGTTTTCGACGTGGTCAGAGTGCACC

AGCCGCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACGCCCTTCTCCGCCG

GCAACGCCACCACCTAAGCATGAGCGGCTCCAGCGAACGAGAGCTCGCGGCCAT

CCGGGCTTCCTCGCCGGCGACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGC

CGCGAGACCGGGGGCGTGCACTGGCTCGCCTTTGGCTGGAACCCGCGCTCGCGC

ACCTGCTACATGTTCGACCCCTTCGGGTTCTCGGACCGCCGGCTCAAGCAGATTT

ACAGCTTCGAGTACGAGGCCATGCTGCGCCGAAGCGCCCTGGCCTCCTCGCCCG

ATCGCTGTCTTAGCCTCGAACAGTCCACCCAGACCGTGCAGGGGCCCGACTCCG

CCGCCTGCGGACTCTTCTGTTGCATGTTCTTGCATGCCTTCGTGCACTGGCCCGA

CCGACCCATGGACGGGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGG

CATGCTACAATCGCCACAGGTGCTGCCCACCCTCAGGCGCAACCAGGAGGAGCT

CTACCGCTTCCTCGCGCGCCACTCCCCCTACTTTCGCTCCCACCGCGCCGCCATC

GAACACGCCACCGCTTTTGATAAAATGAAACAACTGCGTGTATGACTCAAATAA

ACAGCACTTTTATTTTACACATGCGCTGGAGTATATGCAAGTTATTTAAAAGTCG

AAGGGGTTCTCGCGCTCGTCGTTGTGCGCCGCGCTGGGGAGGGCCACGTTGCGG

TACTGGAACTTGGGCTGCCACTTGAACTCGGGGATCACCAGTTTGGGCACTGGA

GTCTCGGGGAAGGTCTCGCTCCACATGCGCCGGCTCATTTGCAGGGCGCCCAGC

ATGTCAGGGCCGGAGATCTTGAAATCGCAGTTGGGACCGGTGCTCTGCGCGCGC

GAGTTGCGGTACACGGGGTTGCAGCACTGGAACACCATCAGACTGGGGTACTTC

ACACTGGCAAGCACGCTCTTGTCGCTAATCTGATCCTTGTCCAGGTCCTCGGCGT

TGCTCAGGCCGAACGGGGTCATCTTGCACAGCTGGCGGCCCAGGAAGGGCACGC

TCTGAGGCTTGTGGTTACACTCGCAGTGCACGGGCATCAGCATCATCCCCGCGCC

GCGCTGCATATTCGGGTAGAGGGCCTTGACGAAGGCCGCGATCTGCTTGAAAGC

TTGCTGGGCCTTGGCCCCCTCGCTAAAAAACAGGCCGCAGCTCTTCCCGCTGAAC

TGGTTATTCCCGCACCCGGCATCATGCACGCAGCAGCGCGCGTCATGGCTGGTC

AGTTGCACCACGCTCCGTCCCCAGCGGTTCTGGGTTACCTTAGCCTTGCTGGGCT

GCTCCTTCAGCGCGCGCTGTCCGTTCTCGCTGGTCACATCCATCTCCACCACGTG

GTCCTTGTGAATCATCACCGTTCCATGCAGACACTTGAGCTGACCTTCCACCTCG

GTGCAGCCGTGATCCCACAGGACGCAGCCGGTGCACTCCCAATTCTTGTGCGCG

ATCCCGCTGTGGCTGAAAATGTAACCTTGCAACAGGCGACCCATAATGGTGCTA

AATGCTTTCTGGGTGGTGAATGTCAGTTGCATCCCGCGGGCCTCCTCGTTCATCC

AGGTCTGGCACATCTTCTGGAAGATCTCGGTCTGCTCCGGCATGAGCTTGTAAGC

ATCGCGCAAGCCGCTGTCGACGCGGTAGCGTTCCATCAGCACGTTCATGGTATCC

ATGCCCTTCTCCCATGACGAGACCAGAGGCAGACTCAGGGGGTTGCGCACGTTC

AGGACACCAGGGGTCGCGGGCTCGACGATGCGTTTTCCGTCCTTGCCTTCCTTCA

ACAGAACCGGAGGCTGGCTGAATCCCACTCCCACGATCACGGCGTCTTCCTGGG

GCATCTCTTCGTCGGGGTCTACCTTGGTTACATGCTTGGTCTTTCTGGCTTGCTTC

ACCCGCTGATACTTTCGGCGCTTGGTGGGCAGAGGAGGTGGCGGCGGCGAGGGG

CTCCTCTCCTGCTCCGGCGGATAGCGCGCCGACCCGTGGCCCCGGGGCGGAGTG

GCCTCTCGCTCCATGAACCGGCGCACGTCCTGACTGCCGCCGGCCATTGTTTCCT

AGGGGAAGATGGAGGAGCAGCCGCGTAAGCAGGAGCAGGAGGAGGACTTAACC

ACCCACGAGCAACCCAAAATCGAGCAGGACCTGGGCTTCGAAGAGCCGGCTCGT

CTAAAACCCCCACAGGATGAACAGGAGCACGAGCAAGACGCAGGCCAGGAGGA

GACCGACGCTGGGCTCGAGCATGGCTACCTGGGAGGAGAGGAGGATGTGCTGCT

AAAACACCTGCAGCGCCAGTCCCTCATCCTCCGGGACGCCCTGGCCGACCGGAG

CGAAACCCCCCTCAGCGTCGAGGAGCTGTGTCGGGCCTACGAGCTCAACCTCTT

CTCGCCGCGCGTGCCCCCCAAACGCCAGCCCAACGGCACCTGCGAGCCCAACCC

GCGTCTCAACTTCTATCCCGTCTTTGCGGTCCCCGAGGCCCTTGCCACCTATCAC SEQ

ID Sequence

NO

CCAACGCGCTCCTCGCTCTGGGGCCCGGCGCGCGCATACCTGATATCGCTTCCCT

GGAAGAGGTGCCCAAGATCTTCGAAGGGCTCGGTCGGGACGAGACGCGCGCGG

CAAACGCTCTGAAAAAAACAGCAGAGGAAGAGGGTTACACTAGCGCCCTGGTA

GAGTTGGAAGGCGACAACGCCAGGCTGGCCGTGCTTAAGCGCAGCGTCGAGCTC

ACCCATTTCGCCTACCCCGCCGTCAACCTCCCGCCCAAGGTCATGCGTCGCATCA

TGGATCAGCTCATCATGCCCCACATCGAGGCCCTTGATGAAAGTCAGGAACAGC

GCCCCGAGAACGCCCAGCCCGTGGTCAGCGACGAGATGCTCGCGCGCTGGCTCG

GGACCCGCGACCCCCAGGCCCTGGAGCAGCGGCGCAAGCTCATGCTGGCCGTGG

TCCTGGTCACCCTTGAGCTCGAATGCATGCGCCGCTTTTTTACCGACCCCGAGAC

CCTGCGCAAGGTCGAGGAGACCCTGCACTACACTTTCAGACACGGTTTCGTCAG

GCAGGCCTGCAAGATCTCCAACGTGGAGCTGACCAACCTGGTCTCCTGCCTGGG

GATCCTACACGAGAACCGCTTGGGACAGACCGTGCTCCACTCTACCCTGAAGGG

CGAGGCGCGGCGGGACTACATCCGCGACTGCGTCTTTCTCTTTCTCTGCCACACA

TGGCAAGCGGCCATGGGCGTGTGGCAGCAGTGTCTCGAGGACGAGAACCTGAA

GGAGCTGGACAAGCTTCTTGCTAGAAACCTTAAAAAGCTGTGGACGGGCTTTGA

CGAGCGCACCGTCGCCTCGGACCTGGCCGAGATCGTCTTCCCCGAGCGCCTGAG

GCAGACGCTGAAAGGAGGGCTGCCCGACTTCATGAGCCAGAGCATGTTGCAAAA

CTACCGCACTTTCATTCTCGAGCGATCTGGGATGCTGCCCGCCACCTGCAACGCC

TTCCCCTCCGACTTTGTCCCGCTGAGCTACCGCGAGTGTCCCCCGCCGCTGTGGA

GCCACTGCTACCTCTTGCAGCTGGCCAACTACATTGCCCACCACTCGGATGTGAT

CGAGGACGTGAGCGGCGAGGGGCTGCTCGAGTGCCACTGTCGCTGCAACCTATG

CTCCCCGCACCGCTCCCTGGTCTGCAACCCCCAGCTACTGAGCGAGACCCAGGTC

ATCGGTACCTTTGAGCTGCAAGGTCCGCAGGAGTCCACCGCTCCGCTGAAACTC

ACGCCGGGGTTGTGGACTTCCGCGTACCTGCGCAAATTTGTACCCGAGGACTACT

ACGCCCATGAGATAAAGTTCTTCGAGGACCAATCGCGTCCGCAGCACGCGGATC

TCACGGCCTGCGTCATCACCCAGGGCGCGATCCTCGCCCAATTGCACGCCATCCA

AAAATCCCGCCAAGAGTTTCTTCTGAAAAAGGGTAGAGGGGTCTACCTGGACCC

CCAGACGGGCGAGGTGCTCAACCCGGGTCTCCCCCAGCATGCCGAGGAAGAAGC

AGGAGCCGCTAGTGGAGGAGATGGAAGAAGAATGGGACAGCCAGGCAGAGGA

GGACGAATGGGAGGAGGAGACAGAGGAGGAAGACTTGGAAGAGGTGGAAGAG

GAGCAGGCAACAGAGCAGCCCGTCGCCGCACCATCCGCGCCGGCAGCCCCTCCG

GTCACGGATACAACCTCCGCAGCTCCGGCCAAGCCTCCTCGTAGATGGGATCGA

GTGAAGGGTGACGGTAAGCACGAGCGACAGGGCTACCGATCATGGAGGGCCCA

CAAAGCCGCGATCATCGCCTGCTTGCAAGACTGCGGGGGGAACATCGCTTTCGC

CCGCCGCTACCTGCTCTTCCACCGCGGGGTGAACATCCCCCGCAACGTGTTGCAT

TACTACCGTCACCTTCACAGCTAAGAAAAAATCAGAAGTAAGAGGAGTCGCCGG

AGGAGGCCTGAGGATCGCGGCGAACGAGCCCTTGACCACCAGGGAGCTAAGGA

ACCGGATCTTCCCCACTCTTTATGCCATTTTTCAGCAAAGTCGAGGTCAGCAGCA

AGAGCTCAAAGTAAAAAACCGGTCTCTGCGCTCGCTCACCCGCAGTTGCTTGTA

CCACAAAAACGAAGATCAGCTGCAGCGCACTCTCGAAGACGCCGAGGCTCTGTT

CCACAAGTACTGCGCGCTCACTCTTAAAGACTAAGGCGGGAATTACCTCATCGC

CACCATGAGCAAGGAGATTCCCACCCCTTACATGTGGAGCTATCAGCCCCAGAT

GGGCCTGGCCGCAGGCGCCTCCCAGGACTACTCCACCCGCATGAACTGGCTCAG

TGCCGGCCCCTCGATGATCTCACAGGTCAACGGGGTCCGTAACCATCGAAACCA

GATATTGTTGGAGCAGGCGGCGGTCACCTCCACGCCCAGGGCAAAGCTCAACCC

GCGTAATTGGCCCTCCACCCTGGTGTATCAGGAAATCCCCGGGCCAACTACCGT

ACTACTTCCGCGTGACGCACTGGCCGAAGTCCGCATGACTAACTCAGGTGTCCA

GCTGGCCGGCGGCGCTTCCCGGTGCCCGCTCCGCCCACAATCGGGTATAAAAAC

CCTGGTGATCCGAGGCAGAGGCACACAGCTCAACGACGAGTTGGTGAGCTCTTC

AATCGGTCTGCGACCGGACGGAGTGTTCCAACTAGCCGGAGCCGGGAGATCCTC

CTTCACTCCCCACCAGGCCTACCTGACCTTGCAGAGCAGCTCTTCGGAGCCTCGC

TCCGGAGGCATCGGAACCCTCCAGTTCGTGGAGGAGTTTGTGCCCTCGGTCTACT SEQ

ID Sequence

NO

TCAACCCCTTCTCGGGATCGCCAGGCCTCTACCCGGACGAGTTCATACCGAACTT

CGATGCAGTGAGAGAAGCGGTGGACGGCTACGACTGAATGTCCCATGGTGACTC

GGCTGAGCTTGCTCGGTTGAGGCATCTGGACCACTGCCGCCGCCTGCGCTGCTTC

GCCCGGGAGAGCTGCGGACTCATCTACTTTGAATTTCCCAAGGAGCACCCCAAC

GGCCCGGCACACGGAGTGCGGATCACCGTAGAGGGCACCACCGAGTCTCACCTG

GTCAGGTTCTTCACCCAGCAACCCTTCCTGGTCGAGCGGGACCGGGGCGCCACC

ACCTACACCGTCTACTGCATCTGTCCTACCCCGAAGTTGCATGAGAATTTTTGTT

GTACTCTGTGTGCTGAGTTTAATAAAAGCTAAACTCCTACAATACTCTGGAATCC

CGTGTCGTCGCACTCGCAACGAGATCTTCAACCTCACCAACCAGACTGAGGTAA

AACTTAACTGCAGACCGGGGGGCAAATACATCCTCTGGCTCTTTGAAAACACTT

CCTTCGCAGTCTCCAACGCCTGCGCCAACGACGGTATTGAAATACCCAACAACC

TTACCAGTGGACTAACTTACACTACCAGAAAGACTAAGCTAGTACTCTACAATC

CTTTTGTAGAGGGAACCTACCACTGCCAGAGCGGACCTTGCTTCCACACTTTCAC

TTTGGTGAACGTTACCGACAGCAGCACAGCCGCTCCAGAAACATCTAACCTTTTT

GATACTAACACTCCTAAAACCGGAGGTGAGCTCTGGGTTCCCTCTTTAACAGAG

GGGGGTAAACATATTGAAGCGGTTGGGTATTTGATTTTAGGGGTGGTCCTGGGT

GGGTGCATAGCGGTGCTGTATTACCTTCCTTGCTGGAACGAAATCAAAATCTTTA

TCTGCTGGGTCATACATTGTTGGGAGGAACCATGAAGGGGCTCTTGCTGATTATC

CTTTTCCTGGTTGGGGGTGTACTGTCATGCCACGAACAGCCACGATGTAACATCA

CCACAGGCAATGAGAGGAGTGTGATATGCACAGTAGTCATCAAATGCGAGCATA

CATGTCCTCTCAACATCACATTCAAGAATAAGACCATGGGAAATTCATGGGTGG

GCGATTGGGAACCAGGAGATGAGCAGAACTACACGGTCACTGTCCATGGTAGCG

ATGGGAATCACACTTTCGGTTTCAAATTCATTTTTGAAGTCATGTGTGATATCAC

ACTGCATGTGGCTAGACTTCATGGCTTGTGGCCCCCTACCAAGGAGAACATAGTT

GGGTTTTCTTTGGCTTTTGTGATCATGGCCTGCTTTATGTCAGGTCTGCTGGTAGG

GGCTTTAGTATGGTTCCTGAAGCGCAAGCCTAGGTATGGAAATGAGGAGAAGGA

AAAATTGCTATAAATCTTTTTCTCTTCGCAGAACCATGAATACTTTGACCGGTGT

CGTGCTGCTCTCTCTTCTTGTAGCTTTTAGTCAGGCAGGATTTCATACTATCAATG

CTACATGGTGGGCTAATATAACTTTAGTGGGACCCTCAGATACGCCAGTCACAT

GGTATGATAAACAGGGAATGCAGTTCTGTGATGGAAATACAGTTAAGAATCCTC

AAATAAGACATGAGTGTAATGAGCAAAACCTTACACTAATTCATGTGAACAAAA

CCCATGAAAGGACATACATGGGTTATAATAGACAGAGTACTCATAAGGAAGACT

ATAAAGTCATAGTTATACCGCCTCCTCCTGCTACTGTAAAGCCACAGTCAGGTCC

AGAGTATGTATATGTTAATATGGGAGAGAACAAAACCTTAGTTGGACCTCCAGG

AATACCAGTTACTTGGTATGACGGAGAAGGAAATAAATTCTGCGATGGAGAAAA

AGTTGAACATGCAGAATTTAATCATACATGTGACGAGCAAAATCTTACACTGTT

GTTTATAAATCTTACACATGATGGGGCTTATCTTGGCTATAATCGCCAGGGAACT

AAAAGAACTTGGTATGAGGTTGTAGTGACAGATGGTTTTCCAAAATCAGGGGAG

ATGAAAATCGAAGATCAGAGTAGACAAAATGAGCATAAACAGGGTGGGCAGAA

ACAGGAGGGGCAAAAAGAGACAAGTCAAAAGAAAGCTAATGACAAACAGAAG

GCGACACACAGGAGGCCATCAAAACTAAAGCCGCACACACCTGAAGCAAAACT

GATTACAGTTTCTAGTGGGTCTAACTTAACATTACTTGGGCCAGATGGAAAGGTC

ACTTGGTATGATGATGATTTAAAAAGACCATGCGAGCCTGGGTATAAGTTAGGG

TGTAAGTGTGACAATCAAAACCTAACGCTAATCAATGTAACTAAACTTTATGAG

GGAGTTTACTATGGTACTAATGACAGAGGCAACAGCAAAAGATATAGAGTAAA

AGTAAACACTACTAATTCTCAAAGTGTGAAAATTCAGCCATACAACAGGTCTAC

TACTCCTAATCAGAAACACAGATTTGAATTGCAAATTGATTCTAATCAAGACAAT

GACAAAATTCCATCAACCACTGTGGCAATCGTGGTGGGAGTGATTGCGGGCTTC

ATAACTATAATCATTGTCATTCTGTGCTACATCTGCTGCCGCAAGCGTCCCAGGG

CATACAATCATATGGTAGACCCACTACTTAGCTTCTCTTACTGAGACTCAGTCAC

TTTCATTTCAGAACCATGAAGGCTTTCACAGCTTGCGTTCTGATTAGCATAGTCA

CATTAGTATCAGCTGATTACAAACAAGTTCAAGTTAGCAGAGGAGGAAACATTA

CATTAGATGGACCATTCGATAATACTACATGGACAAGATATCATAATGATGGAC SEQ

ID Sequence

NO

ATAAAAATGGTTGGATGAAAATTTGCACATGGACTGGAGCAACATATAAATGTC

AGCAGAAGGGTATAAAAAAGAGGTTAGAACATTTTCATCTAGAAATCAAAAAC

ATACAATTGAAGATTCTGGAGATTATGAACAACAAAAAATATATCTATATAATC

TAACAATAATTGAACCGCCAACTACTAAAGCACCCACCATAGTTAGAACAACTA

CTAGGGAAACAACACATCCAACCACCACAACTCACACTACACATCTAGACACTA

CAGTGCAGAATACTACTTTATTGATTGGGTTTTTAATAAGAGGAAATGAAAGTA

CTACTGATCAGACAGAGGCTACCTCAAGTGCCTTCAGCAGCACTGCAAATTTAA

CTTCGCTTGCTTCGGTAAATGAAACGATCGTGCCAATGATGTATGGCCAACCTTA

CTCAGGTTTGGATATTCAAATTACTTTTCTGGTTGTCTGTGGGATCTTTATTCTTG

TGGTTCTTCTGTACTTTGTCTGCTGCAAAGCCAGAGAAAAATCTAGGAGGCCCAT

CTACAGGCCAGTAATTGGGGATCCTCAGCCTCTCCAAGTGGAAGGGGGTCTAAG

CTATTTAACATCCTCTTCTGTCTATTCAACGTGTGCGCTGCCTTCGCGGCCGTCTC

TCACCTGCACCTGCGTCTGCAGCATTGTCTGCCTGGTCGTTACCTTCCTGCAGCTC

ATCGACTGGTGCTGCGCGCGCTACAATTATCTCCACCACAGTCCCGAATACAGG

GACGAGAACGTAGCCAGAATCTTAAGGCTCATTTGACCATGCAGACTCTGCTCA

TACTGCTATCCCTCCTCTCCCCTGCCCTCGCTGATGATGATTACTCTAAGTGCAA

ATTTGTGGAGCTATGGAATTTCTTAGACTGCTATGATGTTAAAATGGATATGCCA

TCCTATTACTTGGTGATTGTGGGGATAGTCATGGTCTGCTCCTGCACTTTCTTTGC

CATCATGATCTACCCCTGTTTTAATCTCGGCTGGAACTCTGTTGAGGCATTCACA

TACACACTAGAAAGCAGTTCACTAGCTTCCACGCCGCCACCCACACCGCCTCCCC

GCAGAAATCAGTTTCCCATGATTCAGTACTTAGAAGAGCCCCCTCCCCGGCCCCC

TTCCACTGTTAGCTACTTTCACATAACCGGCGGCGATGACTGACAACCACCTGGA

CCTCGAGATGGACGGCCAGGCCTCCGAGCAGCGCATCCTGCAACTGCGCGTCCG

TCAGCAGCAGGAGCGGGCCGCCAAGGAGCTCCTCGATGCCATCAACATCCACCA

GTGCAAGAAGGGCATCTTCTGCCTGGTCAAACAGGCAAAGATCACCTACGAGCT

CGTGTCCGGCGGCAAGCAGCATCGCCTCGCCTATGAGCTGCCCCAGCAGAAGCA

GAAGTTCACCTGCATGGTGGGCGTCAACCCCATAGTCATCACCCAGCAGTCGGG

CGAGACCAGCGGCTGCATCCACTGCTCCTGCGAAAGCCCCGAGTGCATCTACTC

CCTCCTTAAAACCCTTTGCGGACTCCGCAACCTTCTTCCCACAAACTAACTGATT

TAAGCCCAAAAACCAATCAAACCCCCTTTTCCCATCTACCCAAATAAACATTTAT

TGGAAATAATTATTCAATAAAGATCACTTACTTAAAATCTGAAAGTATGTCTTTG

GTGTAGTTGTTTAGCAGCACCTCAGTCCCCTCCTCCCAGCTCTGGTACTCCAGTC

CCCGGCGGGCGGCAAACTTTCTCCACACCTTGAAAGGGATGTCAAATTCCTGGT

CCACAATTTTCATTGTCTTCCCTCTTAGATGACAAAGAGACTCCGGGTGGAAGAT

GACTTCAACCCCGTCTACCCCTATGGCTACGCGCGGAATCAAAATATTCCCTTCC

TCACTCCCCCCTTTGTCTCCTCCAATGGATTTCAAAACTTCCCCCCTGGGGTCCTG

TCACTTAAACTGGCTGACCCAATCACCATTAACAATCAAAATGTATCACTCAAG

GTTGGAGGGGGGCTAACTTTGCAAGAAGAAACTGGAAAATTAACAGTTAATACT

GAACCACCTTTGCATCTTACAAATAACAAATTAGGGATAGCTTTAGACGCTCCAT

TTGATGTTATAGACAATAAGCTTACACTATTAGCAGGCCATGGCTTGTCTATTAT

AACAAAAGAAACATCAACACTGCCTGGCTTGGTTAATACTCTTGTAGTATTAACT

GGAAAGGGTATTGGAACAGATTTATCAAATAATGGTGGAAATATATGTGTTAGA

GTTGGAGAAGGCGGCGGCTTATCATTTAATGACAATGGAGACTTGGTAGCATTT

AATAAAAAAGAAGACAAACGCACCCTATGGACAACTCCAGACACATCTCCAAAT

TGCAGAATTGATCAGGATAAGGACTCTAAGCTAACTTTGGTCCTTACAAAGTGT

GGAAGTCAAATATTAGCCAATGTGTCATTAATTGTTGTAGCTGGAAGGTACAAA

ATTATCAATAACAATACTAATCCAGCTCTTAAAGGATTTACCATTAAATTGTTGT

TTGATAAAAATGGAGTCCTTATGGAATCTTCAAATCTTGGTAAATCATATTGGAA

CTTTCGAAATCAAAATTCAATTATGTCAACAGCTTATGAAAAAGCTATTGGTTTT

ATGCCTAATTTGGTAGCCTATCCAAAACCTACCACTGGCTCTAAAAAATATGCAA SEQ

ID Sequence

NO

GAGATATAGTTTATGGAAACATCTACCTTGGCGGAAAGCCACATCAACCAGTAA

CCATTAAAACTACCTTTAACCAGGAAACTGGATGTGAATACTCTATTACATTTGA

TTTTAGTTGGGCCAAAACTTATGTAAATGTTGAATTTGAAACTACCTCTTTTACCT

TTTCCTATATTGCCCAAGAATAAAGGATAAATAAACGTGTTTTTCATTTAAAAAT

TTCATGTATCTTTATTGATTTTTACACCAGCGCGGGTACACATTCTCCCACCACCA

GCCCATTTTACAGTGTAAACAATTCTCTCAGCACGGGTGGCCTTAAATAGGGGA

AAGTTCTCATTAGTGCGGGAACTGGACTTGGGGTTTATAATCCACACAGTTTCCT

GGCGAGCCAAACGGGGGTCGGTGATTGAGATGAAGCCGTCCTTTGAAAAATCAT

CCAAGTGGGCCTCGCAGTCCAAGGTCACAGTCTGGTGGAATGAGAAGAACGCAC

AGACTCATACTCGGAAAACAAAATGGGTCTGTGCCTCTCCATCAGCGCCCTTAA

CAGTCTCTGCCGCCGGGGCTCGGTGCGGCTGCTACAGATGGGATCGGGATCGCA

AGTCTCTCTCACTATAATCCCCACAGCCTTTAGCATTAGTCTTCTGGTGCGTCGG

GCACAGCACCGCATCCTAATCTCGCTCATGTTTTCACAGTAAGTGCAGCACATAA

TGACCATGTTATTCAGCAGCCCATAATTTAGGGTGCTCCAGCCAAAGCTTATGTT

GGAAATGATGGAACCCACGTGACCATCGTACCAAATGCGGCAGTATATCAGGTG

CCTGCCCCTTATAAACACACTGCCCATATACATAATCTCTTTGGACATGTTTCTAT

TTACAATCTGCCGGTACCAGGGGAAGCGCTGGTTAAACATGCACCCGTAAATGA

CTCTCCTAAACCACACGGCCAGCAGGGTGCCTCCCGCCCGGCACTGCAGGGAGC

CCGGGGATAAACAGTGGCAATGCAGGATCCAGCGCTCGTACCCGCTTACCATCT

GGGCTCTTACCAGATCCAGGGTAGCGGGACACAGGCACACTGACATACATCTTT

TTAAAATTTTTATTTCCTTTCGGGTCAGGATCATATCCCAGGGGACTGGAAACTC

TTGGAGCAGGGTAAAA

SEQ

ID Sequence

NO

SEQ GCGCCAGTCCTCCGATAGACTGAGTCGCCCGGGTACCCGTGTATCCAATAAATC ID CTCTTGCTGTTGCATCCGACTCGTGGTCTCGCTGTTCCTTGGGAGGGTCTCCTCAG NO: AGTGATTGACTACCCGTCTCGGGGGTCTTTCATTTGGGGGCTCGTCCGGGATCTG 1452 GAGACCCCTGCCCAGGGACCACCGACCCACCACCGGGAGGTAAGCTGGCCAGC

AATTGTTCTGTGTCTGTCCATTGTCCTGTGTCTTTGATTGATTTTATGCGCCTGTG

TCTGTACTAGTTGGCCGACTAGATTGGTATCTGGCGGATCCGTGGTGGAACTGAC

GAGTTCGAGACACCCGGCCGCAACCCTGGGAGACGTCCCAGGGACTTCGGGGGC

CATTTTTGTGGCCCGGCCAGAGTCCAACCATCCCGATCGTTTTGGACTCTTTGGT

GCACCCCCCTTAGAGGAGGGGTATGTGGTTCTGGTAGGAGACAGAGGGCTAAAA

CGGTTTCCGCCCCCGTCTGAGTTTTTGCTTTCGGTTTGGAACCGAAGCCGCGCCG

TATTTGTCTGAAAACATGGGCCAGGCTGTTACCACCCCCTTAAGTTTGACTTTAG

ACCACTGGAAGGATGTCGAACGGACAGCCCACAACCTGTCGGTAGAGGTTAGAA

AAAGGCGCTGGGTTACATTCTGCTCTGCAGAATGGCCAACCTTCAACGTCGGAT

GGCCACGAGACGGCACTTTTAACCCAGACATTATTACACAGGTTAAGATCAAGG

TCTTCTCACCTGGCCCACATGGACATCCGGATCAGGTCCCCTACATCGTGACCTG

GGAAGCTATAGCAGTAGACCCCCCTCCCTGGGTCAGACCCTTCGTGCACCCTAA

ACCTCCCCTCTCTCTTCCCCCTTCAGCCCCCTCTCTCCCACCTGAACCCCCACTCT

CGACCCCGCCCCAGTCCTCCCTCTATCCGGCTCTCACTTCTCCTTTAAACACCAA

ACCTAGGCCTCAAGTCCTTCCTGATAGCGGAGGACCACTCATTGATCTACTCACG

GAGGACCCTCCGCCTTACCGGGACCCAGGGCCACCCTCTCCTGACGGGAACGGC

GATAGCGGAGAAGTGGCCCCTACAGAAGGAGCCCCTGACCCTTCCCCAATGGTA

TCCCGCCTGCGGGGAAGAAAAGAACCCCCCGTGGCGGATTCTACTACCTCTCAG

GCGTTCCCCCTTCGCCTGGGAGGGAATGGACAGTATCAATACTGGCCATTTTCCT

CCTCTGACCTCTATAACTGGAAAAATAACAACCCCTCTTTCTCCGAGGACCCAGC

TAAATTGACAGCTTTGATCGAGTCCGTTCTCCTTACTCATCAGCCCACTTGGGAT

GACTGCCAACAGCTATTAGGGACCCTGCTGACGGGAGAAGAAAAACAGCGAGT

GCTCCTAGAGGCCCGAAAGGCGGTTCGAGGGGAGGACGGACGCCCAACTCAGC

TGCCCAATGACATTAATGATGCTTTTCCCTTGGAACGTCCCGACTGGGACTACAA

CACCCAACGAGGTAGGAACCACCTAGTCCACTATCGCCAGTTGCTCCTAGCGGG

TCTCCAAAACGCGGGCAGAAGCCCCACCAATTTGGCCAAGGTAAAAGGGATAAC

CCAGGGACCTAATGAGTCTCCCTCAGCCTTTTTAGAGAGACTCAAGGAGGCCTA

TCGCAGATACACTCCTTATGACCCTGAGGACCCAGGGCAAGAAACCAATGTGGC

CATGTCATTCATCTGGCAGTCCGCCCCGGATATCGGGCGAAAGTTAGAGCGGTT

AGAAGATTTGAAGAGTAAGACCTTAGGAGACTTAGTGAGGGAAGCTGAAAAGA

TCTTTAATAAACGAGAAACCCCGGAAGAAAGAGAGGAACGTATTAGGAGAGAA

ACAGAGGAAAAGGAAGAACGCCGTAGGGCAGAGGATGTGCAGAGAGAGAAGG

AGAGGGACCGCAGAAGACATAGAGAAATGAGTAAGTTGCTGGCTACTGTCGTTA

GCGGGCAGAGACAGGATAGACAGGGAGGAGAGCGAAGGAGGCCCCAACTCGAC

CACGACCAGTGTGCCTACTGCAAAGAAAAGGGACATTGGGCTAGAGATTGCCCC

AAGAAGCCAAGAGGACCCCGGGGACCACGACCCCAGGCCTCCCTCCTGACCTTA

GACGATTAGGGAGGTCAGGGTCAGGAGCCCCCCCCTGAACCCAGGATAACCCTC

AGAGTCGGGGGGCAACCCGTCACCTTCCTAGTGGATACTGGGGCCCAACACTCC

GTGCTGACCCAAAATCCTGGACCCCTAAGTGACAAGTCTGCCTGGGTCCAAGGG

GCTACTGGAGGGAAGCGGTATCGCTGGACCACGGATCGCCGAGTGCACCTAGCC

ACCGGTAAGGTCACCCATTCTTTCCTCCATGTACCAGATTGCCCCTATCCTCTGCT

AGGAAGAGATTTGCTGACTAAACTAAAAGCCCAAATTCACTTTGAGGGATCAGG

AGCTCAGGTTGTGGGACCAATGGGACAGCCCCTGCAAGTGCTGACCCTAAACAT

AGAAGATGAGTATCGGCTACATGAGACCTCAAAAGGGCCAGATGTGCCTCTAGG

GTCCACATGGCTCTCTGATTTTCCCCAGGCCTGGGCAGAAACCGGGGGCATGGG

GCTGGCCGTTCGCCAAGCTCCTCTGATCATACCTCTGAAGGCAACCTCTACCCCC

GTGTCCATAAAACAATACCCCATGTCACAAGAAGCCAGACTGGGGATCAAGCCC

CACATACAGAGACTGCTGGATCAGGGAATTCTGGTACCCTGCCAGTCCCCCTGG SEQ

ID Sequence

NO

AACACGCCCCTGCTACCCGTTAAGAAACCGGGGACTAATGATTATAGGCCTGTC

CAGGATCTGAGAGAAGTCAACAAGCGGGTGGAAGACATCCACCCCACCGTGCCC

AACCCTTACAACCTCTTGAGCGGGCTCCCACCGTCCCACCAGTGGTACACTGTGC

TTGACTTAAAAGATGCTTTTTTCTGCCTGAGACTCCACCCCACCAGTCAGTCTCT

CTTCGCCTTTGAGTGGAGAGATCCAGAGATGGGAATCTCAGGACAATTAACCTG

GACCAGACTCCCGCAGGGTTTCAAAAACAGTCCCACCCTGTTTGATGAAGCCCT

GCACAGGGACCTCGCAGACTTCCGGATCCAGCACCCAGACCTGATTCTGCTCCA

GTATGTAGATGACTTACTGCTGGCCGCCACTTCTGAGCTTGACTGTCAACAAGGT

ACGCGGGCCCTGTTACAAACCCTAGGGGACCTCGGATATCGGGCCTCGGCCAAG

AAAGCCCAAATTTGCCAGAAACAGGTCAAGTATCTGGGGTATCTTCTAAAAGAG

GGTCAGAGATGGCTGACTGAGGCCAGAAAAGAGACTGTGATGGGGCAGCCTAC

TCCGAAGACCCCTCGACAACTAAGGGAGTTCCTAGGGACGGCAGGCTTCTGTCG

CCTCTGGATCCCTGGGTTTGCAGAAATGGCAGCCCCCTTGTACCCTCTCACCAAA

ACGGGGACTCTGTTTGAGTGGGGCCCAGACCAGCAAAAGGCCTACCAAGAGATC

AAGCAGGCTCTCTTAACTGCCCCTGCCCTGGGATTGCCAGACTTGACTAAGCCCT

AACTGGGGCCTTGGCGTCGGCCGGTGGCCTACCTGTCCAAAAAGCTAGACCCAG

TGGCAGCTGGGTGGCCCCCTTGCCTACGGATGGTAGCAGCCATCGCCGTTCTGAC

CAAAGACGCTGGCAAGCTCACCATGGGACAGCCACTAGTCATTCTGGCCCCCCA

TGCAGTAGAGGCACTAGTTAAGCAACCCCCTGATCGCTGGCTCTCCAACGCCCG

AATGACCCACTACCAGGCTCTGCTTCTGGACACGGACCGAGTCCAGTTCGGACC

AATAGTGGCCCTAAACCCAGCTACGCTGCTCCCTCTACCTGAGGAGGGGCTGCA

ACATGACTGCCTTGACATCTTGGCTGAAGCCCACGGAACTAGACCAGATCTTAC

GGACCAGCCTCTCCCAGACGCTGACCACACCTGGTACACAGATGGGAGCAGCTT

CCTGCAAGAGGGGCAGCGCAAGGCCGGAGCAGCAGTAACCACCGAGACCGAGG

TAGTCTGGGCCAAAGCACTGCCAGCCGGGACATCGGCCCAAAGAGCTGAGTTGA

TAGCGCTCACCCAAGCCTTAAAAATGGCAGAAGGTAAGAAGCTGAATGTTTACA

CCGATAGCCGTTATGCTTTTGCCACTGCCCATATTCACGGAGAAATATATAGAAG

GCGCGGGTTGCTCACATCAGAAGGAAAAGAAATCAAAAATAAGGACGAGATCT

TGGCCCTACTGAAGGCTCTCTTCCTGCCCAAAAGACTTAGCATAATTCATTGCCC

GGGACATCAGAAGGGAAACCGCGCGGAGGCAAGGGGCAACAGGATGGCCGACC

AAGCGGCCCGAGAAGTAGCCACTAGAGAAACTCCAGAGACTTCCACACTTCTGA

TAGAAAATTCAGCCCCCTATACTCATGAACATTTTCACTATACGGTGACTGACAT

AAAAGATCTGACTAAACTAGGGGCCACTTATGACGATGCAAAGAAGTGTTGGGT

TTATCAGGGAAAGCCTGTAATGCCTGATCAATTCACCTTTGAACTATTAGATTTT

CTTCATCAATTGACCCACCTCAGTTTCTCAAAAACAAAGGCTCTTCTAGAAAGGA

ACTACTGTCCTTATTACATGCTGAACCGGGATCGAACGCTCAAAGACATCACTG

AGACTTGCCAAGCCTGTGCACAGGTCAATGCCAGCAAGTCTGCCGTCAAACAAG

GGACTAGAGTTCGAGGGCACCGACCCGGCACCCACTGGGAAATTGATTTCACTG

AGGTAAAACCTGGCCTGTATGGGTATAAATATCTTTTAGTTTTCATAGACACTTT

CTCTGGATGGGTAGAAGCTTTCCCAACCAAGAAAGAAACTGCCAAAGTTGTAAC

CAAGAAGCTACTAGAAGAAATCTTCCCCAGATTCGGCATGCCACAGGTATTGGG

AACCGACAATGGGCCTGCCTTCGTCTCCAAGGTAAGTCAGACAGTAGCCGATTT

ACTGGGGGTTGATTGGAAACTACATTGTGCTTACAGACCCCAGAGTTCAGGTCA

GGTAGAAAGAATGAATAGGACAATCAAGGAGACTTTAACTAAATTGACGCTTGC

AACTGGCTCTAGGGACTGGGTGCTCCTGCTTCCCCTAGCCCTGTATCGAGCCCGC

AACACGCCGGGCCCCCATGGTCTCACCCCATATGAAATCTTATATGGGGCACCC

CCGCCCCTTGTAAACTTCCCTGATCCTGACATGGCAAAGGTTACTCATAACCCCT

CTCTCCAAGCCCATTTACAGGCACTCTACCTGGTCCAGCACGAAGTCTGGAGACC

GTTGGCGGCAGCTTACCAAGAACAACTGGACCGGCCGGTAGTGCCTCACCCTTT

CCGAGTCGGTGACACAGTGTGGGTCCGCAGACACCAAACTAAAAATCTAGAACC

CCGCTGGAAAGGACCTTATACCGTCCTACTGACTACCCCCACCGCTCTCAAAGTG

GACGGCATTGCAGCGTGGATCCACGCTGCCCACGTAAAGGCTGCCGACACCAGG SEQ

ID Sequence

NO

ATTGAGCCACCATCGGAATCGACATGGCGTGTTCAACGCTCTCAAAATCCCCTA

AAGATAAGATTGACCCGCGGGACCTCCTAATCCCCTTAATTCTCTTCCTGTCTCT

CAAAGGGGCCAGATCCGCAGCACCCGGCTCCAGCCCTCACCAGGTCTACAACAT

TACCTGGGAAGTGACCAATGGGGATCGGGAGACAGTATGGGCAATATCAGGCA

ACCACCCTCTGTGGACTTGGTGGCCAGTCCTCACCCCAGATTTGTGTATGTTAGC

TCTCAGTGGGCCGCCCCACTGGGGGCTAGAGTATCAGGCCCCCTATTCCTCGCCC

CCGGGGCCCCCTTGTTGCTCAGGGAGCAGCGGGAACGTTGCAGGCTGTGCCAGA

GACTGCAACGAGCCCTTGACCTCCCTCACCCCTCGGTGCAACACTGCCTGGAAC

AGACTTAAGCTGGACCAGGTAACTCATAAATCAAGTGAGGGATTTTATGTCTGC

CCCGGGTCACATCGCCCCCGGGAAGCCAAGTCCTGTGGGGGTCCAGACTCCTTC

TACTGTGCCTCTTGGGGCTGCGAGACAACCGGTAGAGTATACTGGAAGCCCTCC

TCTTCTTGGGACTACATCACAGTAGACAACAATCTCACCTCTAACCAGGCTGTTC

AGGTATGCAAAGACAATAAGTGGTGCAATCCCTTGGCTATCCGGTTTACAAACG

CCGGGAAACAGGTCACCTCATGGACAACTGGACACTATTGGGGTCTACGTCTTT

ATGTCTCTGGACAGGACCCAGGGCTTACTTTCGGGATCCGACTCAGTTATCAAAA

TCTAGGACCTCGGATCCCAATAGGACCAAACCCCGTCCTGGCAGACCAACTTTC

GTTCCCGCTACCTAATCCCCTACCCAAACCTGCCAAGTCTCCCCCCGCCTCTAGT

TCGACTCCCACATTGATTTCCCCGTCCCCCACTCCCACTCAGCCCCCGCCAGCAG

GAACGGGAGACAGATTACTAAATCTAGTACAGGGAGCTTACCAGGCACTCAACC

TTACCAACCCTGATAAAACTCAAGAGTGCTGGTTATGCCTAGTGTCTGGACCCCC

CTATTACGAGGGGGTTGCCGTCCTAGGTACTTATTCCAACCATACCTCTGCCCCA

GCTAACTGCTCCGTGGCCTCCCAACACAAGCTGACCCTGTCCGAAGTGACTGGA

CGGGGACTCTGCATAGGAACAGTCCCAAAAACTCACCAGGCCCTGTGCAACACT

ACCCTTAAGGCAGGCAAAGGGTCTTACTATCTAGTTGCCCCCACAGGAACTATG

TGGGCATGTAACACTGGACTCACTCCATGCCTATCTGCCACCGTGCTTAATCGCA

CCACTGACTATTGCGTTCTCGTGGAATTATGGCCCAGGGTCACCTACCATCCTCC

CAGTTACGTCTATAGCCAGTTTGAAAAATCCCATAGACATAAAAGAGAACCAGT

GTCCTTAACCTTGGCCTTATTATTAGGTGGGCTAACTATGGGTGGCATCGCCGCG

GGAGTAGGGACAGGAACTACCGCCCTGGTCGCCACCCAGCAGTTTCAGCAGCTC

CATGCTGCCGTACAAGATGATCTCAAAGAAGTCGAAAAGTCAATTACTAACCTA

GAAAAGTCTCTTACTTCGTTGTCTGAGGTTGTACTGCAGAATCGACGAGGCCTAG

ACCTGTTGTTCCTAAAAGAGGGAGGACTGTGTGCTGCCCTAAAAGAAGAATGTT

GTTTCTATGCTGACCATACAGGCCTAGTAAGAGATAGTATGGCCAAATTAAGAG

AGAGACTCTCTCAGAGACAAAAACTATTTGAGTCGAGCCAAGGATGGTTCGAAG

GATGGTTTAACAGATCCCCCTGGTTTACCACGTTGATATCCACCATCATGGGGCC

TTCAATTTGTTAAAGACAGGATCTCAGTAGTCCAGGCTTTAGTCCTGACTCAACA

ATACCACCAGCTAAAACCACTAGAATACGAGCCACAATAAATAAAAGATTTTAT

TTAGTTTCCAGAAAAAGGGGGGAATGAAAGACCCCACCAAATTGCTTAGCCTGA

TAGCCGCAGTAACGCCATTTTGCAAGGCATGGAAAAATACCAAACCAAGAATAG

AGAAGTTCAGATCAAGGGCGGGTACACGAAAACAGCTAACGTTGGGCCAAACA

GGATATCTGCGGTGAGCAGTTTCGGCCCCGGCCCGGGGCCAAGAACAGATGGTC

ACCGCGGTTCGGCCCCGGCCCGGGGCCAAGAACAGATGGTCCCCAGATATGGCC

CAACCCTCAGCAGTTTCTTAAGACCCATCAGATGTTTCCAGGCTCCCCCAAGGAC

CTGAAATGACCCTGTGCCTTATTTGAATTAACCAATCAGCCTGCTTCTCGCTTCT

GTTCGCGCGCTTCTGCTTCCCGAGCTCTATAAAAGAGCTCACAACCCCTCACTCG

GCGCGCCAGTCCTCCGATAGACTGAGTCGCCCGGGTACCCGTGTATCCAATAAA

TCCTCTTGCTGTTGCA SEQ

ID Sequence

NO

SEQ TATGCGCCTGCGTCGGTACTAGTTAGCTAACTAGCTCTGTATCTGGCGGACCCGT ID GGTGGAACTGACGAGTTCGGAACACCCGGCCGCAACCCTGGGAGACGTCCCAGG NO: GACTTCGGGGGCCGTTTTTGTGGCCCGACCTGAGTCCAAAAATCCCGATCGTTTT 1453 GGACTCTTTGGTGCACCCCCCTTAGAGGAGGGATATGTGGTTCTGGTAGGAGAC

GAGAACCTAAAACAGTTCCCGCCTCCGTCTGAATTTTTGCTTTCGGTTTGGGACC

GAAGCCGCGCCGCGCGTCTTGTCTGCTGCAGCATCGTTCTGTGTTGTCTCTGTCT

GACTGTGTTTCTGTATTTGTCTGAGAATATGGGCCAGACTGTTACCACTCCCTTA

AGTTTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAACCAGTCG

GTAGATGTCAAGAAGAGACGTTGGGTTACCTTCTGCTCTGCAGAATGGCCAACC

TTTAACGTCGGATGGCCGCGAGACGGCACCTTTAACCGAGACCTCATCACCCAG

GTTAAGATCAAGGTCTTTTCACCTGGCCCGCATGGACACCCAGACCAGGTCCCCT

ACATCGTGACCTGGGAAGCCTTGGCTTTTGACCCCCCTCCCTGGGTCAAGCCCTT

TGTACACCCTAAGCCTCCGCCTCCTCTTCCTCCATCCGCCCCGTCTCTCCCCCTTG

AACCTCCTCGTTCGACCCCGCCTCGATCCTCCCTTTATCCAGCCCTCACTCCTTCT

CTAGGCGCCAAACCTAAACCTCAAGTTCTTTCTGACAGTGGGGGGCCGCTCATC

GACCTACTTACAGAAGACCCCCCGCCTTATAGGGACCCAAGACCACCCCCTTCC

GACAGGGACGGAAATGGTGGAGAAGCGACCCCTGCGGGAGAGGCACCGGACCC

CTCCCCAATGGCATCTCGCCTACGTGGGAGACGGGAGCCCCCTGTGGCCGACTC

CACTACCTCGCAGGCATTCCCCCTCCGCGCAGGAGGAAACGGACAGCTTCAATA

CTGAAGATCCAGGTAAACTGACAGCTCTGATCGAGTCTGTTCTCATCACCCATCA

GCCCACCTGGGACGACTGTCAGCAGCTGTTGGGGACTCTGCTGACCGGAGAAGA

AAAACAACGGGTGCTCTTAGAGGCTAGAAAGGCGGTGCGGGGCGATGATGGGC

GCCCCACTCAACTGCCCAATGAAGTCGATGCCGCTTTTCCCCTCGAGCGCCCAGA

CTGGGATTACACCACCCAGGCAGGTAGGAACCACCTAGTCCACTATCGCCAGTT

GCTCCTAGCGGGTCTCCAAAACGCGGGCAGAAGCCCCACCAATTTGGCCAAGGT

AAAAGGAATAACACAAGGGCCCAATGAGTCTCCCTCGGCCTTCCTAGAGAGACT

TAAGGAAGCCTATCGCAGGTACACTCCTTATGACCCTGAGGACCCAGGGCAAGA

AACTAATGTGTCTATGTCTTTCATTTGGCAGTCTGCCCCAGACATTGGGAGAAAG

TTAGAGAGGTTAGAAGATTTAAAAAACAAGACGCTTGGAGATTTGGTTAGAGAG

GCAGAAAAGATCTTTAATAAACGAGAAACCCCGGAAGAAAGAGAGGAACGTAT

CAGGAGAGAAACAGAGGAAAAAGAAGAACGCCGTAGGACAGAGGATGAGCAG

AAAGAGAAAGAAAGAGATCGTAGGAGACATAGAGAGATGAGCAAGCTATTGGC

CACTGTCGTTAGTGGACAGAAACAGGATAGACAGGGAGGAGAACGAAGGAGGT

CCCAACTCGATCGCGACCAGTGTGCCTACTGCAAAGAAAAGGGGCACTGGGCTA

AAGATTGTCCCAAGAAACCACGAGGACCTCGGGGACCAAGACCCCAGACCTCCC

TCCTGACCCTAGATGACTAGGGAGGTCAGGGTCAGGAGCCCCCCCCTGAACCCA

GGATAACCCTCAAAGTCGGGGGGCAACCCGTCACCTTCCTGGTAGATACTGGGG

CCCAACACTCCGTGCTGACCCAAAATCCTGGACCCCTAAGTGATAAGTCTGCCTG

GGTCCAAGGGGCTACTGGAGGAAAGCGGTATCGCTGGACCACGGATCGCAAAG

TACATCTAGCTACCGGTAAGGTCACCCACTCTTTCCTCCATGTACCAGACTGTCC

CTATCCTCTGTTAGGAAGAGATTTGCTGACTAAACTAAAAGCCCAAATCCACTTT

GAGGGATCAGGAGCTCAGGTTATGGGACCAATGGGGCAGCCCCTGCAAGTGTTG

ACCCTAAATATAGAAGATGAGCATCGGCTACATGAGACCTCAAAAGAGCCAGAT

GTTTCTCTAGGGTCCACATGGCTGTCTGATTTTCCTCAGGCCTGGGCGGAAACCG

GGGGCATGGGACTGGCAGTTCGCCAAGCTCCTCTGATCATACCTCTGAAAGCAA

CCTCTACCCCCGTGTCCATAAAACAATACCCCATGTCACAAGAAGCCAGACTGG

GGATCAAGCCCCACATACAGAGACTGTTGGACCAGGGAATACTGGTACCCTGCC

AGTCCCCCTGGAACACGCCCCTGCTACCCGTTAAGAAACCAGGGACTAATGATT

ATAGGCCTGTCCAGGATCTGAGAGAAGTCAACAAGCGGGTGGAAGACATCCACC

CCACCGTGCCCAACCCTTACAACCTCTTGAGCGGGCTCCCACCGTCCCACCAGTG

AGTCAGCCTCTCTTCGCCTTTGAGTGGAGAGATCCAGAGATGGGAATCTCAGGA SEQ

ID Sequence

NO

CAATTGACCTGGACCAGACTCCCACAGGGTTTCAAAAACAGTCCCACCCTGTTTG

ATGAGGCACTGCACAGAGACCTAGCAGACTTCCGGATCCAGCACCCAGACTTGA

TCCTGCTACAGTACGTGGATGACTTACTGCTGGCCGCCACTTCTGAGCTAGACTG

CCAACAAGGTACTCGGGCCCTGTTACAAACCCTAGGGAACCTCGGGTATCGGGC

CTCGGCCAAGAAAGCCCAAATTTGCCAGAAACAGGTCAAGTATCTGGGGTATCT

TCTAAAAGAGGGTCAGAGATGGCTGACTGAGGCCAGAAAAGAGACTGTGATGG

GGCAGCCTACTCCGAAGACCCCTCGACAACTAAGGGAGTTCCTAGGGACGGCAG

GCTTCTGTCGCCTCTGGATCCCTGGGTTTGCAGAAATGGCAGCCCCCTTGTACCC

TCTCACCAAAACGGGGACTCTGTTTAATTGGGGCCCAGACCAACAAAAGGCCTA

TCAAGAAATCAAGCAAGCTCTTCTAACTGCCCCAGCCCTGGGGTTGCCAGATTTG

ACTAAGCCCTTTGAACTCTTTGTCGACGAGAAGCAGGGCTACGCCAAAGGTGTC

CTAACGCAAAAACTGGGACCTTGGCGTCGGCCGGTGGCCTACCTGTCCAAAAAG

CTAGACCCAGTAGCAGCTGGGTGGCCCCCTTGCCTACGGATGGTAGCAGCCATT

GCCGTACTGACAAAGGATGCAGGCAAGCTAACCATGGGACAGCCACTAGTCATT

CTGGCCCCCCATGCAGTAGAGGCACTAGTCAAACAACCCCCCGACCGCTGGCTT

TCCAACGCCCGGATGACTCACTATCAGGCCTTGCTTTTGGACACGGACCGGGTCC

AGTTCGGACCGGTGGTAGCCCTGAACCCGGCTACGCTGCTCCCACTGCCTGAGG

AAGGGCTGCAACACAACTGCCTTGATATCCTGGCCGAAGCCCACGGAACCCGAC

CCGACCTAACGGACCAGCCGCTCCCAGACGCCGACCACACCTGGTACACGGATG

GAAGCAGTCTCTTACAAGAGGGACAGCGTAAGGCGGGAGCTGCGGTGACCACC

GAGACCGAGGTAATCTGGGCTAAAGCCCTGCCAGCCGGGACATCCGCTCAGCGG

GCTGAACTGATAGCACTCACCCAGGCCCTAAAGATGGCAGAAGGTAAGAAGCTA

AATGTTTATACTGATAGCCGTTATGCTTTTGCTACTGCCCATATCCATGGAGAAA

TATACAGAAGGCGTGGGTTGCTCACATCAGAAGGCAAAGAGATCAAAAATAAA

GACGAGATCTTGGCCCTACTAAAAGCCCTCTTTCTGCCCAAAAGACTTAGCATAA

TCCATTGTCCAGGACATCAAAAGGGACACAGCGCCGAGGCTAGAGGCAACCGG

ATGGCTGACCAAGCGGCCCGAAAGGCAGCCATCACAGAGACTCCAGACACCTCT

ACCCTCCTCATAGAAAATTCATCACCCTACACCTCAGAACATTTTCATTACACAG

TGACTGATATAAAGGACCTAACCAAGTTGGGGGCCATTTATGATAAAACAAAGA

AGTATTGGGTCTACCAAGGAAAACCTGTGATGCCTGACCAGTTTACTTTTGAATT

ATTAGACTTTCTTCATCAGCTGACTCACCTCAGCTTCTCAAAAATGAAGGCTCTC

CTAGAGAGAAGCCACAGTCCCTACTACATGCTGAACCGGGATCGAACACTCAAA

AATATCACTGAGACCTGCAAAGCTTGTGCACAAGTCAACGCCAGCAAGTCTGCC

GTTAAACAGGGAACTAGGGTCCGCGGGCATCGGCCCGGCACTCATTGGGAGATC

TAGATACCTTTTCTGGCTGGATAGAAGCCTTCCCAACCAAGAAAGAAACCGCCA

AGGTCGTAACCAAGAAGCTACTAGAGGAGATCTTCCCCAGGTTCGGCATGCCTC

AGGTATTGGGAACTGACAATGGGCCTGCCTTCGTCTCCAAGGTGAGTCAGACAG

TGGCCGATCTGTTGGGGATTGATTGGAAATTACATTGTGCATACAGACCCCAAA

GCTCAGGCCAGGTAGAAAGAATGAATAGAACCATCAAGGAGACTTTAACTAAAT

TAACGCTTGCAACTGGCTCTAGAGACTGGGTGCTCCTACTCCCCTTAGCCCTGTA

CCGAGCCCGCAACACGCCGGGCCCCCATGGCCTCACCCCATATGAGATCTTATA

TGGGGCACCCCCGCCCCTTGTAAACTTCCCTGACCCTGACATGACAAGAGTTACT

AACAGCCCCTCTCTCCAAGCTCACTTACAGGCTCTCTACTTAGTCCAGCACGAAG

TCTGGAGACCTCTGGCGGCAGCCTACCAAGAACAACTGGACCGACCGGTGGTAC

CTCACCCTTACCGAGTCGGCGACACAGTGTGGGTCCGCCGACACCAGACTAAGA

ACCTAGAACCTCGCTGGAAAGGACCTTACACAGTCCTGCTGACCACCCCCACCG

CCCTCAAAGTAGACGGCATCGCAGCTTGGATACACGCCGCCCACGTGAAGGCTG

CCGACCCCGGGGGTGGACCATCCTCTAGACTGACATGGCGCGTTCAACGCTCTC

AAAACCCCTTAAAAATAAGGTTAACCCGCGAGGCCCCCTAATCCCCTTAATTCTT

CTGATGCTCAGAGGGGTCAGTACTGCTTCGCCCGGCTCCAGTCCTCATCAAGTCT

ATAATATCACCTGGGAGGTAACCAATGGAGATCGGGAGACGGTATGGGCAACTT

CTGGCAACCACCCTCTGTGGACCTGGTGGCCTGACCTTACCCCAGATTTATGTAT SEQ

ID Sequence

NO

GTTAGCCCACCATGGACCATCTTATTGGGGGCTAGAATATCAATCCCCTTTTTCT

TCTCCCCCGGGGCCCCCTTGTTGCTCAGGGGGCAGCAGCCCAGGCTGTTCCAGA

GACTGCGAAGAACCTTTAACCTCCCTCACCCCTCGGTGCAACACTGCCTGGAAC

AGACTCAAGCTAGACCAGACAACTCATAAATCAAATGAGGGATTTTATGTTTGC

CCCGGGCCCCACCGCCCCCGAGAATCCAAGTCATGTGGGGGTCCAGACTCCTTC

TACTGTGCCTATTGGGGCTGTGAGACAACCGGTAGAGCTTACTGGAAGCCCTCCT

CATCATGGGATTTCATCACAGTAAACAACAATCTCACCTCTGACCAGGCTGTCCA

GGTATGCAAAGATAATAAGTGGTGCAACCCCTTAGTTATTCGGTTTACAGACGC

CGGGAGACGGGTTACTTCCTGGACCACAGGACATTACTGGGGCTTACGTTTGTAT

GTCTCCGGACAAGATCCAGGGCTTACATTTGGGATCCGACTCAGATACCAAAAT

CTAGGACCCCGCGTCCCAATAGGGCCAAACCCCGTTCTGGCAGACCAACAGCCA

CTCTCCAAGCCCAAACCTGTTAAGTCGCCTTCAGTCACCAAACCACCCAGTGGG

ACTCCTCTCTCCCCTACCCAACTTCCACCGGCGGGAACGGAAAATAGGCTGCTA

AACTTAGTAGACGGAGCCTACCAAGCCCTCAACCTCACCAGTCCTGACAAAACC

CAAGAGTGCTGGTTGTGTCTAGTAGCGGGACCCCCCTACTACGAAGGGGTTGCC

GTCCTGGGTACCTACTCCAACCATACCTCTGCTCCAGCCAACTGCTCCGTGGCCT

CCCAACACAAGTTGACCCTGTCCGAAGTGACCGGACAGGGACTCTGCATAGGAG

CAGTTCCCAAAACACATCAGGCCCTATGTAATACCACCCAGACAAGCAGTCGAG

GGTCCTATTATCTAGTTGCCCCTACAGGTACCATGTGGGCTTGTAGTACCGGGCT

TACTCCATGCATCTCCACCACCATACTGAACCTTACCACTGATTATTGTGTTCTTG

TCGAACTCTGGCCAAGAGTCACCTATCATTCCCCCAGCTATGTTTACGGCCTGTT

TGAGAGATCCAACCGACACAAAAGAGAACCGGTGTCGTTAACCCTGGCCCTATT

ATTGGGTGGACTAACCATGGGGGGAATTGCCGCTGGAATAGGAACAGGGACTAC

TGCTCTAATGGCCACTCAGCAATTCCAGCAGCTCCAAGCCGCAGTACAGGATGA

TCTCAGGGAGGTTGAAAAATCAATCTCTAACCTAGAAAAGTCTCTCACTTCCCTG

TCTGAAGTTGTCCTACAGAATCGAAGGGGCCTAGACTTGTTATTTCTAAAAGAA

GGAGGGCTGTGTGCTGCTCTAAAAGAAGAATGTTGCTTCTATGCGGACCACACA

GGACTAGTGAGAGACAGCATGGCCAAATTGAGAGAGAGGCTTAATCAGAGACA

GAAACTGTTTGAGTCAACTCAAGGATGGTTTGAGGGACTGTTTAACAGATCCCCT

TGGTTTACCACCTTGATATCTACCATTATGGGACCCCTCATTGTACTCCTAATGAT

TTTGCTCTTCGGACCCTGCATTCTTAATCGATTAGTCCAATTTGTTAAAGACAGG

ATATCAGTGGTCCAGGCTCTAGTTTTGACTCAACAATATCACCAGCTGAAGCCTA

TAGAGTACGAGCCATAGATAAAATAAAAGATTTTATTTAGTCTCCAGAAAAAGG

GGGGAATGAAAGACCCCACCTGTAGGTTTGGCAAGCTAGCTTAAGTAACGCCAT

TTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGGT

CAGGAACAGATGGAACAGCTGAATATGGGCCAAACAGGATATCTGTGGTAAGC

AGTTCCTGCCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGGCCA

AACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGAT

GGTCCCCAGATGCGGTCCAGCCCTCAGCAGTTTCTAGAGAACCATCAGATGTTTC

CAGGGTGCCCCAAGGACCTGAAATGACCCTGTGCCTTATTTGAACTAACCAATC

AGTTCGCTTCTCGCTTCTGTTCGCGCGCTTCTGCTCCCCGAGCTCAATAAAAGAG

CCCACAACCCCTCACTCGGGGCGCCAGTCCTCCGATTGACTGAGTCGCCCGGGT

ACCCGTGTATCCAATAAACCCTCTTGCAGTTGCAGCGCCAGTCCTCCGATTGACT

GAGTCGCCCGGGTACCCGTGTATCCAATAAACCCTCTTGCAGTTGCATCCGACTT

GTGGTCTCGCTGTTCCTTGGGAGGGTCTCCTCTGAGTGATTGACTACCCGTCAGC

GGGGGTCTTTCATTTGGGGGCTCGTCCGGGATCGGGAGACCCCTGCCCAGGGAC

CACCGACCCACCACCGGGAGGTAAGCTGGCCAGCAACTTATCTGTGTCTGTCCG

ATTGTCTAGTGTCTATGACTGATTT SEQ

ID Sequence

NO

SEQ GCGCCAGTCATCCGATAGACTGAGTCGCCCGGGTACCCGTGTTCCCAATAAAGC ID CTTTTGCTGTTTGCATCCGAAACGTGGCCTCGCTGTTCCTTGGGAGGGTCTCCTCT NO: GAGTGATTGACTACCCGGCTCGGGGGTCTTTCATTTGGGGGCTCGTCCGGGATTT 1454 GGAGACCCCCGCCCAGGGACCACCGACCCACCGTCGGGAGGTAAGCTGGCCAG

CGATCGTTTTGTCTCCGTCCCTGTCTTTGTGCGTGTGTGTGTGTGCCGGCATCTAC

GGTTCCGTGGAAGAACTGACGAGTTCGTATTCCCGACCGCAGCCCTGGGAGACG

TCTCAGAGGCATCAGGGGCCCGCTGGGTGGCCCGATCAGTAAGTCCGAGTCCTG

ACCGATTCGGACTATTTGGAGCCCCTCCTTTGTCGGAGGGGGACGTGGTTCTTTT

AGGAGACGAGAGGTCCAAGCCCTCGCCGCCTCCATCTGAATTTTTGCTTTCGGTT

TTTCGCCGAAACCGCGCCGCGCGTCTTGTCTGTCTCAGTGTTGTTTTGTCATTTGT

CTGTTCGTTATTGTTTTGGACCGTTTCTAAAAATATGGGACAGACCGTAACCACC

CCTCTGAGTCTGACCCTAGAACACTGGGGAGACGTCCAGCGCATCGCGTCCAAC

CAGTCCGTGGACGTCAAGAAGAGACGCTGGGTCACCTTCTGCTCTGCCGAGTGG

CCAACTTTCGGTGTAGGGTGGCCGCAAGATGGTACTTTTAATTTGGACATTATTT

TACAGGTTAAATCTAAGGTGTTCTCTCCCGGTCCCCACGGACACCCGGATCAGGT

CCCATACATTGTCACCTGGGAGGCTATTGCCTATGAACCCCCTCCGTGGGTCAAA

CCTTTTGTCTCTCCCAAACTCTCCCTCTCTCCAACCGCTCCCATCCTCCCATCCGG

TCCTTCGACCCAACCTCCGCCCCGATCTGCCCTTTACCCTGCTCTTACCCCCTCTA

TAAAACCCAGACCTTCTAAACCTCAGGTTCTCTCCGATAATGGCGGACCTCTCAT

TGACCTTCTCACAGAAGACCCTCCGCCGTACGGAGAACAGGGACCGTCCTCCTC

TGACGGAGATGGCGACAGAGAAGAGGCCACCTCCACTCCTGAGATTCCTGCCCC

CTCTCCCATGGTGTCTCGCTTGCGGGGCAAAAGAGACCCCCCCCGCGGCAGTTTC

CACCACCTCTCGGGCTTTCCGCACTCCGTTTGGGGGGTAATGGTCAGTTGCAGTA

CTGGCCGGTTTTCCTCCTCGGATCTATATAACTGGAAAAATAATAACCCTTCCTT

CTCCGAAGATCCAGGTAAATTGACTGCCTTAATCGAGTCTGTCCTCACCACCCAC

CAGCCTACTTGGGATGACTGTCAACAGTTGCTGGGGACTCTGCTGACAGGAGAA

GAAAAGCAGCGGGTGCTCCTGGAAGCCAGAAAGGCAGTCCGGGGCGACGATGG

CCGCCCCACCCAATTGCCCAATGAGATCGAGGCTGCTTTCCCCCTCGAACGTCCC

GACTGGGACTACACCACCCTTAGAGGTAGGAACCACCTAGTTCTCTATCGCCAG

CTGCTCTTGGCGGGTCTCCAAAATGCGGGCAGGAGCCCCACCAATTTGGCTAAG

GTAAAAGGAATAACCCAGGGGTCCAACGAGTCGCCCTCGGCCTTTCTAGAGAGA

CTCAAAGAGGCCTATCGCAGATACACTCCTTATGACCCTGAGGACCCTGGGCAA

GAAACCAATGTATCCATGTCGTTCATCTGGCAGTCTGCTCCAGACATTGGTCGAA

AGTTAGAGCGGTTAGAAGACTTAAAAAATAAGACCTTAGGGGACTTAGTGAGAG

AAGCAGAAAGGATCTTTAATAAGAGAGAGACCCCAGAAGAGAGAGAAGAACGT

ATTAAGAGAGAAACAGAGGAAAAAGAGGAGCGCCGTAGGGCAGAGGATGAGC

AGAAAGAGAAAGAGAGGGACCGCAGAAGACAGAGAGAAATGAGCAAACTCTT

GGCCACCGTAGTTACAGGTCAGAGACAGGATAGACAGGGGGGAGAGCGAAGGA

GGCCCCAACTCGATAAGGACCAATGCGCCTACTGCAAAGAAAAGGGACACTGG

GCTAGGGATTGCCCAAAGAAGCCACGGGGGCCCCGAGGACCGAGGCCCCAGAC

CTCCCTCCTGACCCTAGATGACTAGGGAGGTCAGGGTCAGGAGCCCCCCCCTGA

ACCCAGGATAACCCTTACTGTCGGGGGGCAACCAGTCACCTTCCTGGTGGATAC

TGGGGCCCAACACTCCGTGCTGACCCAGAACCCTGGACCCCTAAGTGACAGGTC

TGCCTGGGTCCAAGGGGCTACTGGAGGAAAGCGGTATCACTGGACCACAGATCG

CAAGGTGCACCTGGCTACCGGTAAGGTCACTCACTCTTTCCTCCATGTGCCGGAC

TGCCCTTATCCTTTGCTAGGAAGGGACTTGTTGACTAAGTTAAAGGCCCAGATCC

ACTTCGAGGGATCGGGAGCTCAGGTTGTGGGACCAAAAGGACAGCCCCTGCAGG

TGTTGACCCTTGGCATAGAGGATGAGTATCGGCTACATGAGACCTCAACAGAGC

CGGATGTTTCTCTAGGGTCCACCTGGCTTTCTGACTTTCCCCAGGCCTGGGCAGA

AACCGGGGGCATGGGACTGGCAGTTCGCCAAGCGCCTCTGATTATACCTCTAAA

GGCAACCTCCACCCCTGTGTCCATCAAACAGTACCCCATGTCACACGAAGCCAG

ACTGGGGATCAAGCCCCACATACAGAGACTGTTGGACCAGGGAATATTGGTACC SEQ

ID Sequence

NO

TTGCCAGTCCCCCTGGAACACACCCCTGCTGCCCGTTAAGAAACCAGGGACTAA

TGATTACAGGCCTGTCCAGGATCTGAGAGAAGTCAACAAGCGGGTGGAAGATAT

CCACCCCACCGTGCCCAATCCTTACAACCTCTTAAGTGGACTCCCTCCGTCCCAC

CCACCAGTCAGCCTCTCTTTGCCTTTGAGTGGAGAGATCCAGAAATGGGAATCTC

TGGACAATTGACCTGGACCAGACTCCCACAGGGTTTCAAAAACAGTCCCACCCT

GTTTGATGAGGCATTGCACAGAGACCTAGCAGACTTCCGGATCCAGCACCCAGA

CTTGATCCTGCTACAGTACGTGGATGACTTACTGCTGGCCGCTACTTCCGAACTA

GACTGCCAACAAGGTACTCGGGCCCTTCTACAAACCCTAGGGGACCTCGGATAC

CGGGCCTCGGCCAAGAAAGCCCAAATCTGCCAGAAACAGGTTAAATACCTGGGG

TACCTTCTGAGGGAGGGTCAGAGATGGCTGACTGAGGCTAGAAAAGAGACTGTG

ATGGGGCAACCCGTTCCAAAGACTCCTCGACAACTAAGGGAGTTCCTAGGGACG

GCAGGCTTCTGCCGCCTCTGGATCCCTGGGTTTGCGGAAATGGCGGCCCCCTTGT

ATCCTCTTACCAAAACGGGGACTCTGTTTAATTGGGGCCCAGACCAGCAAAAGG

CCTATCAAGAAATCAAACAGGCCCTTCTAACTGCCCCCGCCCTGGGATTGCCAG

ATTTGACTAAGCCCTTTGAACTCTTTGTCGACGAGAAGCAGGGCTACGCCAAAG

GCGTCCTAACGCAAAAACTGGGACCTTGGCGTCGGCCTGTGGCCTACCTGTCCA

AAAAGCTAGACCCAGTGGCAGCCGGGTGGCCCCCTTGCCTACGGATGGTAGCAG

CCATTGCCGTTCTGACAAAAGATGCAGGCAAGCTAACTATGGGACAGCCGCTAG

TCATCCTGGCCCCCCATGCAGTAGAGGCACTGGTCAAGCAACCCCCTGACCGCT

GGCTATCCAACGCCCGCATGACCCACTACCAGGCAATGCTCCTAGACACTGACC

GAGTTCAGTTCGGACCAGTGGTGGCCCTCAATCCTGCCACCTTGCTCCCTCTACC

GGAAAAAGGAGCCCCCCATGATTGCCTCGAGATCTTGGCTGAAACGCATGGAAC

CAGACCGGATCTCACCGACCAGCCCATCCCAGACGCCGACCACACCTGGTATAC

CGATGGGAGCAGCTTTCTGCAAGAAGGACAGCGAAAGGCTGGGGCAGCAGTGA

CGACTGAAACCGAGGTAATCTGGGCGAGGGCCCTGCCAGCTGGAACGTCAGCCC

AGCGAGCCGAACTGATCGCACTCACCCAAGCCCTGAAAATGGCAGAAGGTAAG

AAGCTAAATGTTTACACTGATAGCCGCTATGCCTTCGCTACGGCCCATGTTCATG

GGGAAATATATAGGAGACGGGGGTTGCTGACCTCAGAAGGCAAGGAAATCAAG

AACAAAAGCGAGATCCTAGCCTTGCTGAAAGCCCTCTTTTTGCCAAAGAGACTC

AGTATTATCCATTGCCCAGGACATCAGAAAGGAGACAGTGCCGAAGCCAGAGGC

AACCGTATGGCAGACCAGGCGGCCCGAGAGGCAGCCACAAAAACAGTTCCAGA

AGCCTCTACACTCCTTATAGAGGACTCGACCCCGTACACGCCTGCCTATCTCCAT

TACACCGAAACAGATCTAAAAAGATTGCGAGAACTGGGGGCCACCTATAATCAG

ATAAAAGGATATTGGGTCCTACAAGGCAAGCCGGTGATGCCCGATCAGTTTGTG

TTTGAATTATTAGACTCCCTTCATAGACTCACCCATCTCAGCCCTCAAAAGATGA

AGGCGCTCCTTGACAGAGAAGAAAGCCCCTACTACATGTTAAACAGGGACAGAA

CTCTTCAGTATGTGGCAGAATCCTGCACAGTCTGTGCTCAAGTAAATGCTAGTAA

AGCCAAAATCGGGGCAGGGGTACGAGTACGCGGGACATCGACCAGTACCCATT

GGGAAATTGACTTCACTGAAGTTAAACCAGGGCTGTACGGGTACAAGTACCTCC

TGGTGTTCGTAGACACCTTCTCTGGCTGGGTGGAAGCCTTCCCAACTAAACGTGA

AACTGCCAAGGTTGTGACCAAGAAGCTATTAGAAGAAATATTCCCAAGATTCGG

GATGCCACAGGTATTGGGTTCCGATAATGGGCCTGCCTTCGTCTCCCAGGTAAGT

CAGTCGGTGGCCGATTTACTGGGGATCGATTGGAAATTACATTGTGCTTATAGAC

CCCAGAGTTCAGGTCAGGTAGAAAGAATGAATAGAACCATCAAGGAGACTCTA

ACTAAATTAAACCTTGCAGCTGGCACTAGAGACTGGGTACTCCTACTCCCCTTAG

CCCTCTACCGAGCCCGGAACACTCCGGGCCCCCATGGACTGACTCCGTATGAAA

TTCTGTATGGGGCACCCCCGCCCCTTGTCAATTTTCATGATCCTGAAATGTCAAA

GTTAACTAATAGTCCCTCTCTCCAAGCTCACTTACAGGCCCTCCAAGCAGTACAA

CGAGAGGTCTGGAAGCCGCTGGCCGCTGCTTATCAGGACCAGCTAGATCAGCCA

GTGATACCACACCCCTTCCGTGTCGGTGACGCCGTGTGGGTACGCCGGCACCAG

ACTAAGAACTTGGAACCTCGCTGGAAAGGACCCTACACCGTCCTGCTGACCACC

CCCACCGCTCTCAAAGTTGACGGCATCTCTGCGTGGATACACGCCGCTCACGTAA SEQ

ID Sequence

NO

AGGCGGCGACAACTCCTCCGGCCGGAGCAGCATGGAAGGTCCAGCGTTCTCAAA

ACCCCTTAAAGATAAGATTAACCCGTGGGGCCCCCTAATAGTTATAGGGATCTT

GGTGAGGGCAGGAGCCTCGGTACAACGTGACAGCCCTCACCAGGTCTTCAATGT

CACTTGGAGAGTTACCAACCTAATGACAGGACAAAACAGTAACGCTACCTCCCT

CCTGGGGACGATGACAGACACCTTCCCTAAACTATATTTTGACTTGTGTGATTTA

GTTGGAGACCATTGGGATGACCCAGAACCCGATATTGGAGATGGTTGCCGCTCT

CCGGGGGGAAGAAAAAGGACAAGACTGTATGACTTCTATGTTTGCCCCGGTCAT

ACTGTACCAATAGGGTGTGGAGGGCCGGGAGAGGGCTACTGTGGCAAATGGGG

ATGTGAGACCACTGGACAGGCATACTGGAAGCCATCATCATCATGGGACCTAAT

TTCCCTTAAGCGAGGAAACACTCCTAAGGATCAGGGCCCCTGTTATGATTCCTCG

GTCTCCAGTGGCGTCCAGGGTGCCACACCGGGGGGTCGATGCAACCCCCTAGTC

TTAGAATTCACTGACGCGGGTAAAAAGGCCAGCTGGGATGCCCCCAAAGTTTGG

GGACTAAGACTCTACCGATCCACGGGGGCCGACCCGGTGACCCGGTTCTCTTTG

ACCCGCCAGGTCCTCAATGTAGGACCCCGCGTCCCCATTGGGCCTAATCCCGTGA

TCACTGAACAGCTACCCCCCTCCCAACCCGTGCAGATCATGCTCCCCAGGCCTCC

TCATCCTCCTCCTTCAGGCGCGGCCTCTATGGTGCCTGGGGCTCCCCCGCCTTCTC

AACAACCTGGGACGGGGGACAGGCTGCTAAACCTAGTAAAAGGAGCCTATCAA

GCACTCAACCTCACCAGTCCCGACAGAACCCAAGGGTGCTGGCTGTGTCTGGTA

TCGGGACCCCCCTACTACGAAGGGGTTGCCGTCCTAGGTACCTACTCCAACCATA

CCTCTGCCCCAGCTAACTGCTCCGTGGCCTCCCAACACAAGCTGACCCTGTCCGA

AGTGACCGGGCAGGGACTCTGCGTAGGAGCAGTTCCCAAAACCCATCAGGCCCT

GTGTAATACCACCCAGAAGGCGAGCGACGGGTCCTACTATCTGGCTGCTCCCGC

CGGGACCATCTGGGCTTGCAACACCGGGCTCACTCCCTGCCTATCTACCACTGTA

CTCAACCTCACCACCGATTACTGTGTCCTGGTTGAGCTCTGGCCAAAGGTGACCT

ACCACTCCCCTGGTTATGTTTATGACCAGTTTGAGAGAAAAACCAAATATAAAA

GAGAGCCGGTGTCATTAACTCTGGCCCTGCTGTTGGGAGGACTTACTATGGGCG

GCATAGCTGCAGGAGTAGGAACAGGGACTACAGCCCTAGTGGCCACCAAACAA

TTCGAGCAGCTCCAGGCAGCCATACATACAGACCTTGGGGCCTTAGAAAAATCA

GTCAGTGCCCTAGAAAAGTCTCTGACCTCGTTGTCTGAGGTGGTCCTACAGAACC

GGAGAGGATTAGATCTGCTGTTCCTAAAAGAAGGAGGATTATGTGCTGCCCTAA

AAGAAGAATGCTGTTTCTATGCAGACCACACTGGCGTAGTAAGGGATAGCATGG

CTAAGCTAAGAGAAAGGCTAAACCAGAGGCAAAAATTGTTCGAATCAGGACAA

GGGTGGTTTGAGGGACTGTTTAACAGGTCCCCATGGTTCACGACCCTGATATCCA

CCATTATGGGCCCTCTGATAGTACTTTTATTAATCCTACTCCTCGGACCCTGCATT

CTCAACCGCTTGGTCCAGTTTGTAAAAGACAGAATTTCGGTGGTGCAGGCCCTG

GTTCTGACCCAACAGTATCACCAACTCAAATCAATAGATCCAGAAGAAGTAGAA

TCGCGTGAATAAAAGATTTTATTCAGTTTCCAGAAAGAGGGGGGAATGAAAGAC

CCCACCATAAGGCTTAGCAAGCTAGCTGCAGTAACGCCATTTTGCAAGGCATGA

AAAAGTACCAGAGCTGAGTTCTCAAAAGTCACAAGGAAGTTTAGTTAAAGAATA

AGGCTGAACAAAACTGGGACAGGGGCCAAACAGGATATCTGTGGTCGAGCACC

TGGGCCCCGGCTCAGGGCCAAGAACAGATGGTACTCAGATAAAGCGAAACTAG

CAACAGTTTCTGGAAAGTCCCACCTCAGTTTCAAGTTCCCCAAAAGACCGGGAA

AAACCCCAAGCCTTATTTAAACTAACCAATCAGCTCGCTTCTCGCTTCTGTTAAC

GCGCTTTTTGCTCCCCAGCCCTATAAAAGAGGGTAAAACCCCACACTCGGT SEQ

ID Sequence

NO

SEQ TGTGGTGGAATGCCACTAGAAACCAGGGAAAACAAGGAGGAGAGTATTACAGG ID GAAGGAGGTGAAGAACCTCATTACCCAAATACTCCTGCTCCTCATAGACGTACC NO: TGGGATGAGAGACACAAGGTTCTTAAATTGTCCTCATTCGCTACTCCCTCTGACA 1455 TCCAACGCTGGGCTACTAAAGCATTGCCTTATGGCTGGAAAGTGGTCACCGAAA

GCGGAAATGATTATACTAGCCGCAGAAAGATCAGAACATTGACAGAGATGACTC

AGGATGAAATTAGAAAAAGGTGGGAAAGTGGATATTGTGACCCCTTCATTGACT

CAGGAAGTGACTCAGATGGACCCTTCTAAAAGCCACAGACAGTAAAAATGTGTT

AGCACTTTATACAATATTATATCTGCTTAAGCTATAGAAGCTTTCACATACTCAG

TAGCTGTTTCACAATCAACAAAACAATGATGATGTAATCATAAGGAAGTAGTTT

AAAATAGGTTAATAAGTTTATTAGTTATATAGAAAATAATATAGGATAAAGTAT

AAGGATTAAGGTATGAGGTGTGTGGCTCAACACGTAGGGTGACAAGAAAATCTA

CTGTAATAGGACACAACACCTCTAAAGTTGCCCGTGGGAAGGTGAAGTGAGATC

GAATCTTTCCTTAACGCAGACAGCTTTTTATCCACTAGGGATAATGTTTTAAGGA

ATACTATAGTAATAGATTGATAGTTTTAACAATGATGGAAATAGTATATAAGGA

TAGTTTCTAGATTGTACGGGAGCTCTCTTCACTACTCGCTGCGTCGAGAGTGTAC

GAGACTCTCCAGGTTTGGTAAGAAATATTTTATATTGTTATAATGTTACTATGAT

CCATTAACACTCTGCTTATAGATTGTAAGGGTGATTGCAATGCTTTCTGCATAAA

ACTTTGGTTTTCTTGTTAATCAATAAACCGACTTGATTCGAGAACCTACTCATAT

ATTATTGTCTCTTTTATACTTTATTAAGTAAAAGGATTTGTATATTAGCCTTGCTA

AGGGAGACATCTAGTGATATAAGTGTGAACTACACTTATCTTAAATGATGTAAC

TCCTTAGGATAATCAATATACAAAATTCCATGACAATTGGCGCCCAACGTGGGG

CTCGAATATAAGTCGGGTTTATTTGTAAATTATCCCTAGGGACCTCCGAGCATAG

CGGGAGGCATATAAAAGCCAATAGACAATGGCTTCAGGAAGTAATGTTGAAGA

ATATGAACTTGATGTTGAAGCTCTGGTTGTAATTTTAAGAGATAGAAATATACCA

AGAAATCCTTTACATGGAGAAGTTATAGGTCTTCGCCTTACTGAAGGATGGTGG

GGACAAATTGAGAGATTTCAGATGGTACGTCTAATATTACAAAATGATGATAAT

GAACCTTTACAGAGACCTAGATATGAGGTAATACAACGAGCTGTAAACCCTCAT

ACAATGTTTATGATATCAGGACCATTAGCTGAACTTCAATTAGCCTTTCAGGATT

TAGATTTACCTGAAGGTCCATTGAGGTTTGGTCCATTGGCAAATGGACATTATGT

TCAAGGAGATCCTTATAGTAGTTCTTACAGACCAGTAACAATGGCCGAAACAGC

CCAAATGACTAGAGATGAACTGGAAGATGTTCTTAATACTCAAAGTGAAATAGA

AATTCAAATGATAAATTTATTGGAGTTGTATGAAGTTGAAACTAGAGCTCTTAGA

AGACAATTAGCTGAGAGATCTAGTACAGGGCAAGGAGGAATATCCCCAGGAGC

TCCTCGTTCTCGACCACCAGTAAGCAGCTTCTCAGGGTTACCAAGTTTGCCCTCT

ATACCTGGGATTCATCCCAGGGCACCTTCACCTCCAAGGGCAACTTCTACTCCGG

GAAATATTCCTTGGAGTTTAGGAGATGATAACCCACCTTCATCTAGTTTTCCTGG

ACCCTCTCAACCTCGTGTTTCTTTCCATCCGGGAAATCCTTTTGTTGAAGAAGAA

GGTCATAGACCTAGATCCCAGTCTAGAGAAAGGAGAAGAGAAATTCTTCCTGCT

CCTGTACCGTCAGCACCTCCTATGATTCAGTATATACCAGTACCACCTCCACCAC

CGATTGGCACGGTTATACCTATTCAGCATATCAGATCTGTAACTGGAGAGCCTCC

TAGAAACCCAAGAGAAATACCAATTTGGCTAGGACGAAATGCTCCTGCTATAGA

TGGAGTGTTCCCTGTTACAACACCGGATCTAAGATGCAGAATAATTAATGCTATA

CTAGGAGGAAATATTGGGCTATCATTAACCCCTGGAGACTGTTTAACATGGGAC

TCAGCAGTAGCCACCTTATTTATTAGAACCCATGGAACTTTTCCAATGCATCAGC

TTGGAAATGTAATAAAAGGCATAGTTGATCAAGAAGGAGTGGCAACAGCATATA

CTTTGGGAATGATGCTTTCTGGACAAAATTATCAATTAGTTTCTGGAATAATTAG

AGGATATTTGCCTGGACAAGCTGTAGTAACTGCATTACAACAGCGTTTAGACCA

AGAAATAGATGATCAAACAAGAGCAGAGACTTTTATTCAACATCTAAATGCTGT

ATATGAAATTTTAGGCCTTAATGCCAGAGGACAAAGTATACGTGCTTCAGTGAC

TCCTCAACCCCGACCATCCAGAGGTAGAGGTCGAGGTCAAAATACTTCTAGACC

CTCTCAAGGACCAGCTAATAGCGGGCGGGGACGACAGCGCCCTGCTTCTGGTCA

AAGCAACAGAGGATCTAGTACTCAGAATCAAAATCAAGATAATTTAAATCAAGG

AGGATATAATCTTCGACCCCGTACTTACCAACCTCAAAGGTACGGAGGAGGACG SEQ

ID Sequence

NO

TGGACGAAGATGGAACGATAATACTAACAATCAAGAGTCCAGACCATCAGATCA

AGGTTCTCAAACTCCTAGGCCAAATCAAGCAGGCTCTGGGGTGCGTGGCAATCA

GTCACAAACTCCCAGACCAGCTGCTGGTCGCGGAGGAAGAGGTAACCACAACCG

AAACCAACGATCATCCGGTGCTGGTGACTCACGCGCTGTCAATACCGTGACACA

GAGTGCCACGTCCTCCACAGATGAATCCTCTTCAGCTGTTACAGCCGCTTCCGGC

GGAGATCAAAGGGACTAAATTGTTAGCCCACTGGGATTCAGGGGCAACAATAAC

TTGTATTCCTGAAAGTTTTTTAGAAGATGAACAACCTATTAAAAAGACTTTAATA

AAAACAATTCATGGAGAAAAACAACAAAATGTTTATTATGTAACCTTTAAAGTT

AAAGGAAGAAAAGTGGAAGCAGAAGTGATAGCTTCTCCTTATGAGTATATTTTG

CTGTCGCCAACAGATGTTCCTTGGTTAACACAGCAACCACTTCAGTTAACAATTT

TAGTTCCTCTTCAAGAATATCAAGAGAAAATCTTAAGTAAGACTGCTCTTCCAGA

AGATCAAAAACAACAATTAAAAACCTTGTTTGTCAAGTATGACAATCTATGGCA

ACATTGGGAAAATCAAGTCGGGCATAGAAAAATTAGGCCACATAATATAGCAAC

TGGTGATTATCCTCCTCGCCCTCAAAAACAATATCCTATTAATCCTAAGGCAAAG

CCTAGTATACAAATTGTAATAGATGACTTATTGAAACAAGGGGTGTTAACGCCT

CAAAATAGTACAATGAATACACCAGTGTATCCTGTTCCTAAACCAGATGGAAGG

TGGAGAATGGTATTAGATTATAGAGAAGTAAATAAAACTATTCCATTAACAGCT

GCCCAAAACCAACACTCTGCTGGTATTTTAGCTACTATTGTTAGACAAAAATATA

AAACTACCTTAGATTTAGCTAATGGATTTTGGGCTCATCCTATTACACCAGAATC

TTATTGGTTAACAGCATTTACCTGGCAAGGTAAACAGTATTGTTGGACACGTCTT

CCTCAAGGATTTTTAAATAGTCCAGCATTGTTTACAGCTGATGTAGTAGATTTAC

TAAAAGAAATCCCTAATGTACAAGTGTATGTTGATGATATATATTTAAGCCATGA

TGATCCTAAAGAGCATGTTCAACAATTAGAAAAAGTGTTTCAAATTTTACTACAG

GCAGGATATGTAGTATCTTTGAAAAAATCAGAAATTGGTCAAAAAACTGTAGAA

CAAAACTGTTAAATATTACTCCTCCAAAAGACTTAAAGCAATTACAAAGCATAT

TAGGATTGTTAAATTTTGCTAGAAATTTTATACCTAATTTTGCTGAACTGGTACA

ACCATTATACAATTTAATAGCCTCAGCAAAAGGCAAATATATTGAGTGGTCTGA

AGAAAATACTAAACAATTAAATATGGTAATAGAAGCATTAAACACTGCCTCTAA

TTTAGAAGAAAGGTTACCAGAACAGAGACTGGTAATTAAAGTCAATACTTCTCC

ATCAGCAGGATATGTAAGATATTATAATGAGACTGGTAAAAAGCCTATTATGTA

CCTAAATTATGTGTTTTCCAAAGCAGAATTAAAATTTTCTATGTTAGAAAAACTA

TTAACTACAATGCACAAAGCCTTAATTAAGGCTATGGATTTGGCCATGGGACAA

GAAATATTAGTTTATAGTCCCATTGTATCTATGACTAAAATACAAAAAACTCCAC

TACCAGAAAGAAAAGCTTTACCCATTAGATGGATAACATGGATGACTTATTTAG

AAGATCCAAGAATCCAATTTCATTATGATAAAACCTTACCAGAACTTAAGCATA

TTCCAGATGTATATACATCTAGTCAGTCTCCTGTTAAACATCCTTCTCAATATGA

AGGAGTGTTTTATACTGATGGCTCGGCCATCAAAAGTCCTGATCCTACAAAAAG

CAATAATGCTGGCATGGGAATAGTACATGCCACATACAAACCTGAATATCAAGT

TTTGAATCAATGGTCAATACCACTAGGTAATCATACTGCTCAGATGGCTGAAATA

GCTGCAGTTGAATTTGCCTGTAAAAAAGCTTTAAAAATACCTGGTCCTGTATTAG

TTATAACTGATAGTTTCTATGTAGCAGAAAGTGCTAATAAAGAATTACCATACTG

GAAATCTAATGGGTTTGTTAATAATAAGAAAAAGCCTCTTAAACATATCTCCAA

ATGGAAGTCTATTGCTGAGTGTTTATCTATGAAACCAGACATTACTATTCAACAT

GAAAAAGGGCATCAGCCTACAAATACCAGTATTCATACTGAAGGCAATGCCCTA

GCAGATAAGCTTGCCACCCAAGGAAGTTATGTAGTTAATTGTAATACCAAAAAA

CCAAACCTGGATGCAGAGTTGGATCAATTATTACAGGGTCATTATATAAAAGGA

CCTGAAGGGGTTAAAATTATTCCCCCTCAGTCAGACAGACAAAAAATTGTGCTT

CAAGCCCACAATTTGGCTCACACCGGACGTGAAGCCACTCTTTTAAAAATTGCC

AACCTTTATTGGTGGCCAAATATGAGAAAGGATGTGGTTAAACAACTAGGACGC

TGTCAACAGTGTTTAATCACAAATGCTTCCAACAAAGCCTCTGGTCCTATTCTAA

GACCAGATAGGCCTCAAAAACCTTTTGATAAATTCTTTATTGACTATATTGGACC SEQ

ID Sequence

NO

TTTGCCACCTTCACAGGGATACCTATATGTATTAGTAGTTGTTGATGGAATGACA

GGATTCACTTGGTTATACCCCACTAAGGCTCCTTCTACTAGCGCAACTGTTAAAT

CTCTCAATGTACTCACTAGTATTGCAATTCCAAAGGTGATTCACTCTGATCAAGG

TGCAGCATTCACTTCTTCAACCTTTGCTGAATGGGCAAAGGAAAGAGGTATACA

TTTGGAATTCAGTACTCCTTATCACCCCCAAAGTAGTGGTAAGGTGGAAAGGAA

AAATAGTGATATAAAACGACTTTTAACTAAACTGCTAGTAGGAAGACCCACAAA

GTGGTATGACCTATTGCCTGTTGTACAACTTGCTTTAAACAACACCTATAGCCCT

GTATTAAAATATACTCCACATCAACTCTTATTTGGTATAGATTCAAATACTCCAT

TTGCAAATCAAGATACACTTGACTTGACCAGAGAAGAAGAACTTTCTCTTTTACA

GGAAATTCGTACTTCTTTATACCATCCATCCACCCCTCCAGCCTCCTCTCGTTCCT

GGTCTCCTGTTGTTGGCCAATTGGTCCAGGAGAGGGTGGCTAGGCCTGCTTCTTT

GAGACCTCGTTGGCATAAACCGTCTACTGTACTTAAGGTGTTGAATCCAAGGACT

GTTGTTATTTTGGACCATCTTGGCAACAACAGAACTGTAAGTATAGATAATTTAA

AACCTACTTCTCATCAGAATGGCACCACCAATGACACTGCAACAATGGATCATTT

GGAACAAAATGAATAAAGCGCATGAGGCACTTCAGAATACAACAACTGTGACT

GAACAGCAGAAGGAACAAATTATACTGGACATTCAAAATGAAGAAGTACAACC

AACTAGGAGAGATAAATTTAGATATCTGCTTTATACTTGTTGTGCTACTAGCTCA

AGAGTATTGGCCTGGATATTTTTAGTTTGTATATTGTTAATCATTGTTTTGGTTTC

ATGCTTTGTGACTATATCCAGAATACAATGGAATAAGGATATTCAGGTATTAGG

ACCTGTAATAGACTGGAATGTTACTCAAAGAGCTGTTTATCAACCCTTACAGACT

AGAAGGATTGCACGTTCCCTTAGAATGCAGCATCCTGTTCCAAAATATGTGGAG

GTAAATATGACTAGTATTCCACAAGGTGTATACTATGAACCCCATCCGGAACCC

ATAGTGGTGAAGGAGAGGGTCCTGGGTCTTTCTCAAATTCTGATGATTAATTCAG

AAAACATTGCTAATAATGCTAATTTGACACAAGAAGTAAAGAAGTTGTTAACTG

AAATGGTTAATGAAGAAATGCAAAGTTTGTCAGATGTAATGATTGACTTTGAAA

TTCCTTTAGGAGACCCTCGTGATCAAGAACAATATATACATAGAAAATGCTATC

AAGAATTTGCAAATTGTTATTTAGTAAAATATAAAGAACCCAAACCGTGGCCTA

AGGAGGGCCTTATAGCTGATCAATGCCCATTACCAGGTTACCATGCTGGATTAA

CCTATAATAGACAGTCTATTTGGGATTACTATATTAAAGTGGAGAGTATTAGACC

TGCAAATTGGACAACAAAGAGTAAATATGGACAAGCTAGACTAGGAAGTTTTTA

TATTCCTAGCAGTCTGAGACAAATCAATGTTAGTCATGTACTATTCTGTAGTGAT

CAATTATATTCTAAATGGTATAATATAGAAAATACCATAGAACAAAACGAGCGG

TTTCTGCTTAATAAACTAAATAACCTTACATCTGGAACCTCAGTATTGAAGAAAA

GAGCTCTTCCGAAGGATTGGAGTTCTCAAGGTAAAAATGCTCTGTTTAGAGAAA

TCAATGTGTTAGATATCTGCAGTAAACCTGAATCTGTAATACTATTGAATACTTC

ATACTATTCCTTCTCTTTATGGGAAGGAGATTGTAATTTTACTAAAGATATGATT

TCTCAGTTGGTTCCAGAATGTGATGGATTTTATAACAATTCTAAGTGGATGCATA

TGCATCCATATGCTTGTAGATTCTGGAGAAGTAAGAATGAAAAAGAAGAAACTA

AATGTAGAGATGGGGAAACTAAGAGATGTCTGTATTATCCTTTATGGGACAGTC

CCGAATCTACATATGATTTTGGTTATTTAGCATACCAAAAGAATTTTCCTTCCCCT

ATCTGTATAGAACAACAGAAAATTAGAGATCAAGATTATGAAGTTTATTCTTTGT

ATCAAGAATGCAAAATAGCTTCTAAAGCATATGGAATTGATACAGTTTTATTCTC

TCTAAAGAATTTTCTTAATTATACAGGAACTCCTGTAAATGAAATGCCTAATGCA

AGAGCTTTTGTAGGCCTAATAGATCCCAAGTTTCCTCCTTCCTATCCCAATGTTA

CTAGGGAACATTATACTTCCTGTAATAATAGGAAAAGAAGAAGTGTTGATAATA

ACTATGCTAAGTTAAGGTCTATGGGGTATGCACTTACAGGAGCAGTGCAAACCT

TATCTCAAATATCAGATATTAATGATGAAAACTTACAGCAAGGAATATATTTATT

AAGGGATCATGTAATAACCTTAATGGAAGCTACATTGCATGATATATCTGTTATG

GAAGGAATGTTTGCTGTACAACATTTGCATACACATTTGAATCATTTGAAGACAA

TGCTTCTAGAAAGAAGAATAGACTGGACCTATATGTCTAGTACTTGGCTACAAC

AACAATTACAGAAATCTGATGATGAGATGAAAGTAATAAAGAGAATTGCTAGA

AGTTTGGTATATTATGTTAAACAAACCCATAGTTCTCCCACAGCTACAGCCTGGG

AGATTGGATTATATTATGAATTGGTTATACCTAAACATATTTACTTGAATAATTG SEQ

ID Sequence

NO

GAATGTTGTCAATATAGGTCACTTAGTTAAATCAGCTGGACAATTGACTCATGTA

ACTATAGCTCATCCTTATGAAATAATCAATAAGGAATGTGTAGAGACTATATATC

TGCATCTTGAAGACTGCACAAGACAAGATTATGTCATATGTGATGTGGTAAAGA

TAGTGCAGCCTTGTGGCAATAGCTCAGACACGAGTGATTGTCCTGTCTGGGCTGA

AGCTGTAAAAGAACCATTTGTGCAAGTCAATCCTCTGAAAAACGGAAGTTATCT

GGTTTTGGCAAGTTCCACAGACTGTCAGATCCCACCATATGTTCCTAGCATCGTG

ACTGTTAATGAAACAACGTCATGCTTTGGACTGGACTTTAAAAGGCCACTGGTTG

CGGAAGAAAGATTGAGCTTTGAGCCACGACTGCCAAATCTACAACTAAGATTAC

CACATTTGGTTGGAATTATTGCAAAAATCAAAGGGATAAAAATAGAAGTCACAT

CCTCTGGAGAAAGTATAAAAGAGCAGATTGAAAGAGCAAAAGCTGAGCTCCTTC

GACTGGACATTCACGAGGGAGATACTCCTGCCTGGATACAACAGCTAGCTGCAG

CAACAAAGGACGTCTGGCCAGCAGCAGCTTCTGCTCTACAAGGAATTGGTAACT

TTTTATCTGGGACTGCCCAAGGAATATTTGGAACTGCCTTTAGTCTCTTGGGATA

CTTAAAGCCTATCCTAATAGGAGTAGGGGTCATTCTCTTGGTTATTCTTATATTTA

AGATTGTATCATGGATTCCTACGAAAAAGAAGAATCAGTAGCCTCCACCTCTGG

AATTCAGGACCTGCAGACTCTGAGTGAGCTTGTTGGCCCTGAAAATGCCGGAGA

GGGAGAGCTGACTATTGCTGAGGAACCTGAAGAAAATCCTCGACGCCCCAGACG

ATATACCAAAAGAGAAGTCAAATGTGTGTCTTATCATGCATATAAAGAAATTGA

GGACAAACATCCTCAACATATTAAACTGCAGGATTGGATCCCCACACCAGAGGA

AATGAGTAAGTCACTCTGTAAAAGACTTATTTTATGTGGATTGTATAGTGCAGAA

AAGGCCTCAGAGATTTTAAGGATGCCTTTTACAGTTTCTTGGGAACAATCAGATA

CTGACCCTGACTGTTTTATTGTAAGCTATACATGTATATTTTGTGATGCTGTAATA

CATGATCCCATGCCCATAAGATGGGATCCTGAAGTTGGAATTTGGGTAAAATAT

AAACCCCTCAGAGGAATTGTTGGATCTGCTGTGTTTATTATGCATAAACATCAAA

GAAACTGTTCTCTTGTTAAACCTTCTACCAGTTGCTCAGAAGGTCCAAAACCAAG

ACCTAGGCACGATCCTGTCCTTCGATGTGACATGTTTGAAAAGCATCACAAGCCT

CGGCAGAAACGACCCAGGAGACGATCCATCGATAATGAGTCATGTGCTTCCAGT

AGTGACACCATGGCCAATGAGCCAGGATCACTATGCACCAACCCTCTTTGGAAT

CCTGGACCGCTACTATCAGGGCTACTTGAAGAGTCCAGCAACCTACCAAACTTG

GAAGTTCACATGTCAGGTGGACCCTTCTGGGAAGAGGTTTATGGGGACTCAATT

TTGGGTCCCCCCTCTGGGTCAGGTGAACATTCAGTTTTATAAGAATTATCAGATT

CTAACTTGCTGTCAGGCTGTAGACCCATTTGCTAATATTTTTCATGGTACTGATG

AAGAAATGTTTGACATTGATTCAGGTCCTGATGTTTGGTGTTCTCCCTCTTTGTGT

TTCAAGGTAATTTATGAAGGGGCAATGGGCCAAAAGCAAGAACAAAAAACCTG

GCTGTGCAGACTAGGACATGGTCATCGTATGGGAGCATGCGATTACCGTAAAGT

AGATCTGTATGCAATGAGACAAGGAAAAGAAAACCCTTATGGAGATAGGGGTG

ATGCAGCTTTGCAATATGCTTATCAGGTTAAAAGGGGCTGTAAAGCAGGGTGCT

TGGCATCACCTGTACTTAACTACAAAGCTTTGCAGTTTCATAGAACCATTATGGC

AGACTTCACCAATCCTAGGATTGGAAAAGGACATCTTGCTCATGGATACCAAGC

AGCTATGGAAGCTTATGGACCTCAAAGAGGAAGAAACGAGGAGAGGGTGTGGT

GGAATGCCACTAGAAACCAGGGAAAACAAGGAGGAGAGTATTACAGGGAAGGA

GGTGAAGAACCTCATTACCCAAATACTCCTGCTCCTCATAGACGTACCTGGGATG

AGAGACACAAGGTTCTTAAATTGTCCTCATTCGCTACTCCCTCTGACATCCAACG

CTGGGCTACTAAAGCATTGCCTTATGGCTGGAAAGTGGTCACCGAAAGCGGAAA

TGATTATACTAGCCGCAGAAAGATCAGAACATTGACAGAGATGACTCAGGATGA

AATTAGAAAAAGGTGGGAAAGTGGATATTGTGACCCCTTCATTGACTCAGGAAG

TGACTCAGATGGACCCTTCTAAAAGCCACAGACAGTAAAAATGTGTTAGCACTT

TATACAATATTATATCTGCTTAAGCTATAGAAGCTTTCACATACTCAGTAGCTGT

TTCACAATCAACAAAACAATGATGATGTAATCATAAGGAAGTAGTTTAAAATAG

GTTAAGTAAGTTTATTAGTTATATAGAAAATAATATAGGATAAGGTATAAGGAT

TAAGGTATGAGGTGTGTGGCTCAACACGTAGGGTGACAAGAAAATCTACTGTAA

TAGGACACAACACCTCTAAAGTTGCCCGTGGGAAGGTGAAGTGAGATCGAATCT SEQ

ID Sequence

NO

TAGTAATAGATTGATAGTTTTAACAATGATGGAAATAGTATATAAGGATAGTTTC

TAGATTGTACGGGAGCTCTCTTCACTACTCGCTGCGTCGAGAGTGTACGAGACTC

TCCAGGTTTGGTAAGAAATATTTTATATTGTTATAATGTTACTATGATCCATTAA

CACTCTGCTTATAGATTGTAAGGGTGATTGCAATGCTTTCTGCATAAAACTTTGG

TTTTCTTGTTAATCAATAAACCGACTTGATTCGAGAACCTACTCATATATTATTGT

CTCTTTTATACTTTATTAAGTAAAAGGATTTGTATATTAGCCTTGCTAAGGGAGA

CATCTAGTGATATAAGTGTGAACTACACTTATCTTAAATGATGTAACTCCTTAGG

ATAATCAATATACAAAATTCCATGACA

SEQ TGTGGCAGGCAGCCACTAAATGTATTGGTCCTGGTGAGGGAGATTATTGGTGTG ID AGTATGATCACCGTGGGTATTTCCCTATTATACCTAACAAGCTATCTCCTACGTG NO: GGTGAGACATGCTGCCCCCTATGGTATACAAAGGCTCGCAACACCATATGATCT 1456 CCAGATGTTTGCAAATGAGTTATTGCCACCTGGTTACAGTATTAATACTCCCAGT

GGAACTTGCTATGTGAGCAATCGCAGGCTTCACTATGGAAATGAAGGAACTCTT

CAGGAGTATCAAGAGAACTGTGACAGAATTAAAAGAGGATATGAGGATATTTCC

TCTAGTGATTCTTCAGATGAGGATTAGGGGAAGTTTACCCAGCAACTGCTTATGC

TTGCTTATGATTCATGCCTTTGTTTAGGATAAGAATGTATTTAACCATAGTTAATC

CTTAGGAAGCATTTGGTAAATTCTACTAAGCAAACCTGTTCATTTACTACCGTGC

TTCCGATGGAGAACTTAGGGACGAGGCTGTGAGTTCGATATCATCCTCATCTCGA

GTGTCTCCCTTTTGCTTTTATAGTAATTAGAAATTATGCAATAGGTATAAGTATA

AAATAATAATAAGATAATCCTAAGGGAGGGAGTGGAACGTCCTGATAGAAAAC

AGGCATGACGCTCTCCCATCCCTCCTTTTCATATGTTCAAATCTAAGGTAATATT

ATTGATTCCTTGCCAGCTGTTAGCATAGAAATTAAATAAAACAGGAAACCACAA

GTAGGTGAAGGCTAGCTCACTGAATAAATTGACTAGTCTTTGCTCAAGAACCCA

GGGAGCAATGTTGTATGTTCAAATCTCAATAATGCATCCTGGTCGTTCTTTATGA

AGTTATGTCATTGTAAACAAAATATGAAAGTTAGAAATGACTGTCCAAAAAGCC

ACAAAGGGAAATAGCTAATGTGCAAAGTATTAGTCTTGTACTTGGCCGTTCTCCT

TTGGTATTCAAGTTCAAATCCTGTAAGCAGTATTACAGCTGATGTAATGTTAAGT

AATAACTTGTTTTCTATATGAGTGTAATATTAGCTCCTGATGACTCACGAGGTGA

ATGGCTCACAGTGAACGACGACTGAACATTCCTTACGCTGCGTTGCCACCACCTC

CAGGAATGCAGTAGGTATGGAGTAGTGAATTCCAGAATCTCTTCATACTAACTA

CATTCTTTTGTATCCACAGTTAGGAATTAGTAAAGGTAGTTTGGAATTCTGTATT

AGCTTTTAGAAGAAGTATAAAAGCACTATGATAGATTGTACGGGAGCTCTTCAC

TACTCGCTGTGCCGAGAGTGTTCGAGACTCTCCAGGCTTGGTAAGAAATATTATA

ACTTTGTTATTCTGATCCTTTCTGTGCTCTGCTATTTAGATTGTAATGGGTAAAGG

CAATGCTTAATCAGATTTAATACAATAAACCGACTTAATTCGAGAACCATACTTA

TTTTATTGTCTCTTTCAATACTTTATGTAAAGTGAAAGGAGTTGTGTATTAGCCTT

GCTTAGGGAACCATCTAGTGGAATAAGTGGGTACTACACTTATCATAAAAGGTG

TTAGTTCCTAAGGATAATCAATACACAATATTCCATGACAATTGGCGCCCAACGT

GGGGCTCGAATATAAGTCGAGGTATTATTTAAAGTGTTTAAAAATCTATTCCCTA

GGGACCTTCACGCACCGCGGAAGGTATTAATTGTTGCCTAAATAAAATGGCAGC

TGTTGAAGGTGATTTAGATGTCCAAGCATTAACTGATTTGTTTAATAATCTAGGG

ATCAATAGAGATCCTAGACATAGAGAGGTAATTGCCCTCCGAATGACCGGAGGA

TGGTGGGGACCAGCTACTAGATATAATCTGATAACTGTACTATTACAAGATGAC SEQ

ID Sequence

NO

CAAGGACAACCTCTTCAGCAACCTAGATGGAGAGCTGAAGGTAGAGCTGCTAAT

CCAGCAGTCATGCTCACTCTAGAAGCTCCTTGGCAAGACCTCCGGATGGCTTTTG

ATAATGTTGATTTAGCTGACGATACTTTAAGATTTGGACCTTTAGCTAATGGAAA

TTATATCCCAGGTGATGAATACTCTTTGGAATTCATACCCCCTGCTATGCAAGAA

ATAGCACAAATGCAAAGGGATGAACTTGAGAATGTATTGGATATTGTTGGACAA

ATAACAATGCAAATGAGCGACTTAATAGGTATGCAAGACGCTCAAATTAGAGGA

CTGGAAGGTCAAATTAGAGGACTAAGAGGCAATCTACCAGTTGCAGGAACTCCA

CCTCCACCACCTCCTAGTTTAGATTTACAACCTGCTGCTGCCTCTTCACCTTATGT

TGCACCAGCATCTTCAGCTCCTGCTGCTCCTGTAGCATCTGCTGATTTAGGATGG

TTTGCTGGAGGACCTAGTCCTGGATCAGTAGATCCAAGATTGGCCAGGGTAGCT

TATAACCCTTTTTTGCCTGGTCCAAGTGATGGTTCTGGGGTAGCCCCGGTTCAGC

CCAGTGCTCCTCCTGCGGCTTCACCTTTACTACCACTACCACCAGCTCAACCCGT

GCAGCCAGTTATTCAATATGTGCATCCACCTCCAATGAATCCGGCACAACAGATT

ATACCCATTCAACATATACGAGCAGTAACTGGGAATGCTCCAACTAATCCACGA

GAAATACCAATGTGGATAGGAAGAAATGCTTCGGCTATAGAAGGGGTGTTTCCT

ATGACAACTCCCGATTTAAGATGTAGAGTAATTAATGCTCTACTTGGAGGAAAT

CTCGGACTTAATTTAGAGCCTCAACATTGTGTTACCTGGGCTTCAGCTATAGCAA

CACTTTATGTGAGGACTCATGGTTCTTACCCTATTCATCAATTAGCTGAAGTCCTT

AGAGGAGTAGCCAATTCTGAAGGAGTAGCTGCTGCCTATCAGCTTGGCATGATG

TTAACTAATAGAGACTATAATTTAATTTGGGGAATAATTAGACCCCTGTTGCCTG

GACAAGCTGTAGTTACTGCTATGCAACATCGCCTTGATCAAGAAATCAATGATG

CTGCTAGAGTAGCTTCTTTTATTAATCATCTGAATGGTGTATATGAACTCCTAGG

CTTGAACGCCAGGGGACAAAGCCTTAGGATACCTGCTTCTGGGGGACAAACTAC

GGCTGGAACCTCTGCAGGAAGGGGTACTCGGGGCCGTAGGAGTCAGCAAGGAA

CCCCTGGAAGACAATCTTCAGGACAATCACAACAACAAGGAAGAAGAAGTTCCC

AGGGCCAGTCTAGGCAATCTGATAGTAGTGATCAGAATGTGCAAAGACAGTCAC

AAGGAGGAAATGGTAGAGGAGGATATAATCTAAGACCACGTACATACCAGCCG

CAAAGGTACGGAGGCGGACGAGGTCGCAGATGGAACGATCAACCTGCAAGATC

AGATAATCAACAGCGTTCCCAGTCTCAGCAACCGCAGTCAGAGGCTCGTGGCGA

GCAGTCACGAACATCTGGCGCGGGGCGTGGACAAGGAGGAAGAGGGAACCAAA

ACCGAAACCAGCGATCAGCTGGTGGAAACGCAGATAGAACTGTGAATACAGTG

ACAACTGCATCCGCCTCGACCTCTGCCTCAGGTCAAGATGGATCCTCTCCAGCTC

CTCCAGCCTCTGGAAGCGGAAATCAAGGGAACTAAATTAAAAGCCCACTGGGAC

AGTGGAGCTACAATCACTTGTATTCCAGAAGCCTTTCTTGAAGATGAACAACCA

ATACAGACTATGCTAATTAAGACTATTCATGGAGAAAAACAACAGAATGTTTAT

TATTTGACATTTAAGATACAAGGAAGAAAAGTGGAAGCAGAAGTACTTGCTTCC

CCATATGACTATATTTTATTAAATCCATCAGATGTCCCATGGCTTATGAAGAAGC

CTTTACAATTGACTGTGTTAGTTCCTCTTCAAGACTACCAAGAAAGACTTTTAAA

ACAGACTACTTTGCCTAAAGAACAAAAGGACCAATTAGAAAAATTATTTTTAAA

ATATGATGCACTTTGGCAGCATTGGGAAAATCAAGTAGGACATAGGAGAATAAA

ACCACATAACATTGCAACTGGTACATTAGCCCCTAGGCCTCAAAAACAATATCC

AATAAATCCTAAAGCAAAACCTAGTATACAAATTGTAATAGATGATCTGTTAAA

ACAAGGTGTCTTAATACAACAGAACAGCACTATGAATACTCCAGTGTATCCAGT

TCCAAAACCTGATGGCAAATGGAGAATGGTTTTAGATTATAGAGAAGTAAATAA

AACTATCCCTTTAATTGCTGCACAAAATCAACATTCAGCAGGGATACTCTCCTCA

ATTTACAGAGGAAAGTATAAAACTACTTTAGATCTTACAAATGGATTCTGGGCA

CATCCGATAACTCCTGAATCTTATTGGTTAACAGCTTTTACTTGGCAAGGAAAAC

AATATTGTTGGACTAGACTACCACAGGGATTTCTCAATAGTCCTGCTCTATTTAC

AGCAGATGTTGTTGATTTGTTAAAAGAAGTACCAAATGTGCAAGCATATGTGGA

TGATATTTATATGAGTCATGATGACCCTCAAGAGCATCTTGAACAACTTGAGAA

TTGCTCAGAGAGAAGTAGAATTCTTAGGGTTTAATATTACAAAAGAAGGCCGAG GCCTTACAGAGACTTTTAAACAAAAGTTATTGAATGTAATTCCACCTAAAGATTT SEQ

ID Sequence

NO

GAAACAGTTACAGAGCATATTAGGATTATTGAATTTTGCTAGAAATTTTATTCCT

AATTACTCTGAGTTGGTAAAACCTTTATATACTATTGTAGCTAATGCAAATGGTA

AATTTATATCTTGGACGGAAGAAAACAGTAACCAATTGCAATATATTATTTCAGT

GTTAAATCAGGCAGATAATTTGGAAGAAAGAAACCCAGAGACCAGGTTAATTCT

TAAAGTCAATTCCTCTCCTTCTGCTGGATATATTCGATATTATAATGAAGGATCT

AAAAGACCTATTATGTATGTTAATTATGTGTTTTCCAAAGCTGAAGTTAAATTTA

CTCAAACTGAAAAAATGTTAACAACTATGCATAAAGGCCTTATTAAAGCCATGG

ATTTAGCAATGGGACAAGAAATCTTAGTATACAGTCCAATTGTTTCTATGACCAA

AATTCAGAAAACCCCATTGCCTGAAAGAAAGGCATTACCTGTTAGATGGATTAC

TTGGATGACATATTTAGAGGACCCTAGAATTCAATTTCATTATGATAAAACTCTG

CCTGAGTTGCAGCAAACTCCTTCTGTTACAGAAGATGTTATTGCAAAAACTAAAC

ATCCAAGTGAGTTTGCAATGGTATTCTATACTGATGGGTCAGCAATTAAACATCC

TGATATTAATAAATCTCATAGTGCTGGTATGGGTATTGCTCAAGTTCAATTTCAA

CCTGAATATAAAGTTATCCACCAATGGTCTATACCTTTAGGAGATCATACTGCTC

AATTAGCTGAAATTGCAGCAGTGGAATTTGCTTGTAAAAAAGCCTTAAAAATCT

CTGGTCCTGTCCTTATAGTCACTGACAGCTTTTATGTCGCTGAAAGTGCTAATAA

GGAATTGTCATATTGGAAATCTAATGGTTTTCTTAATAACAAGAAAAAGCCTCTT

AAACATGTTTCAAAATGGAAGTCCATAGCTGAATGTTTACAGCTCAAACCTGAC

ATTACTATAATACATGAGAAAGGACATCAACAACCTATGACTACCTTACATACA

GAAGGAAATAATTTAGCTGATAAGCTTGCCACCCAAGGGAGTTATGTGGTTCAT

TGTAATACCACCCCAAGCCTGGATGCAGAGCTGGATCAGTTACTACAAGGACAT

AATCCTCCAGGGTATCCAAAACAATATAAATACACCCTTGAGGATAATAAAATT

ATAGTTGAAAGGCCTAACGGACAACGGATAGTGCCTCCAAAATCTGATAGAGAA

AAGATTATCTCTATGGCCCACAACATTGCTCATACAGGACGAGACGCTACTTTCT

TGAAAGTCTCTTCCAAGTATTGGTGGCCTAACCTAAGAAAGGATGTGGTTAAAG

TCATCAGACAATGTAAACAGTGTCTGGTAACAAATGCTGCAAATTTAACTTCGCC

TCCAATACTTAGGCCTGAAAAGCCTCTTAAGCCTTTTGACAAATTTTATATTGAT

TATATTGGACCATTACCACCTTCCAATGGCTATCTACATGTCCTTGTAGTAGTCG

ATGGTATGACAGGCTTTGTATGGTTATACCCCACAAAGGCTCCCTCGACTAGCGC

AACTGTTAAAGCTCTCAATATGCTCACTAGTATTGCAATTCCAAAGGTGCTGCAT

TCTGATCAAGGAGCAGCATTCACCTCTTCAACTTTTGCTGATTGGGCTAAAGAAA

AAGGTATACAATTGGAATTCAGTACTCCTTACCATCCCCAAAGTAGTGGCAAGG

TGGAAAGGAAAAATAGTGACATTAAACGACTTTTAACTAAACTGCTAATTGGGA

GACCTGCTAAGTGGTATGATCTATTGCCTGTTGTACAATTGGCATTAAATAATTC

TTATAGTCCATCTTCTAAATATACTCCTCATCAACTCTTGTTTGGTGTAGATTCCA

ACACACCGTTTGCCAATTCTGACACACTTGACTTATCCAGAGAAGAAGAGTTATC

TCTTTTGCAGGAAATCAGATCTTCTTTGCACCAACCAACCTCCCCTCCTGCCTCCT

CTCGTTCCTGGTCACCTTCGGTTGGCCAATTGGTCCAGGAGAGGGTAGCCCGCCC

TGCTTCACTTCGACCTCGTTGGCACAAACCAACTAGCATATTGGAAGTAGTAAAC

CCACGGACAGTGGTTATTTTGGACCATCTTGGCAACCGACGAACTGTAAGTGTG

GATAATCTTAAATTAACAGCTCACCAAAATAATGGCACCACCAATGACTCTGGA

ACAATGGCTCCTGTGGAAGAAGATGAATCAGGCTCACCAAGCTCTTGAAAATGT

AACTGTATTGACTGAAGAACAGAAACAGCAGGTTATTGTGGACATTCAGCAAGA

AGAAGTTATTCCTACTAGGATGGACAAATTGAAGTACCTAGCATATTCATGTTGT

GCCACTAGTACACGTGTATTATGCTGGATAGTATTAATTTGTATACTATTATTAG

TTGTGTTTATCTCTTGTTTTGTGACCATGTCCAGAATACAATGGAATAAGGATAT

TGCTGTTTTAGGCCCAGTCATAGACTGGAATGTTAGTCAACAAGCTGTGATTCAA

CAAATCAGAGCTAAAAGATTAGCAAGGTCACTTAGGGTGGAACATGCTACAGAG

GCGTATGTGGAAATTAATATGACCAGCATACCCCAAGGAGTGTTATATATCCCTC

ATCCAGAACCCATAATTCTCAAGGAGAGGGTTCTTGGTCTTTCACAGGTTATAAT

GATAAATTCTGAAAATATTGCTAATACTGCTAACCTTACACAAGAAACTAAGGT

ATTATTGGCAGACATGATTAATGAAGAAATGAATGATTTAGCCAATCAAATGAT

AGATTTTGAAATTCCTTTAGGAGATCCGAGAGACCAAAAGCAATATCAGCATCA SEQ

ID Sequence

NO

AAAATGCTATCAAGAATTTGCTCATTGTTATTTGATTAAATATAAGACCGCTAAG

GGATGGTCCAGTTCTACGGTGATTGCAGATCAATGTCCTTTGCCAGGAAATCATC

CCACAGTACAATATGCCCATCAAAGCATATGGGATTATTATATTCCATTTGAACA

AATTAAACCAGAAGGGTGGACTTCTAAAACATATTATGAAGATGCCAGAGTTGG

AGGATTTTATATCCCAAAGAGGCTTAGGAATAATTCATATACTCATGTGTTACTT

TGTTCAGATCAAATTTATGGAAAATGGTATAATATAGATCTTACTACCCAGGAG

AGGGAAAGATTATTGGTACAAAAGTTAATTAATTTAACTAAAGGAAATACTTCA

CAACTAAAAGATAGGGCCATGCCCACAGAATGGAATAAGCAAGGAAAAGCTAA

TTTATTCAGGCAAATTAATCCTTTAGACGTTTGTAATAGACCAGAAATGGTATTC

TTATTAAATTCTTCCTATTATGAGTTCTCCTTATGGGAAGGTGATTGTGGATTTAC

TAGACAAAATGCTACTCAAGCTAATCCATTATGTAAAGATTTTTACAATAATTCC

AAATGGAAAAACCTGCATCCGTATGCCTGTAGGTTTTGGAGGTATAAACAAGAA

AAAGAAGAAACAAAATGTAGTAATGGGGAAAAGAAAAGATGTCTTTATTATCCC

CAATGGGATAGTCCAGAGGCCCTATATGATTTTGGGTTTCTAGCTTATCTAAATG

CTTTTCCATCTCCCATATGTATTAAAAATCAAACTATTAGAGATCCAGAATACGA

GGTATACTCTTTATATATGGAATGTATGAATGCCTCTGATAGATATGGGATTGAC

AGTGCATTATTAGCTCTTAAAACATTTCTAAATTTCACTGGTCAGTCTGTGAATG

AGATGCCATTAGCCAGGGCCTTTGTAGGCCTCACTGATCCTAAATTTCCTCCTAC

ATATCCAAATGTTACAAGGGAAACTTCTGGTTGTAATAATAATAGAAGACAACG

CAGAAGTATTAATAACTATGAAAAGATTAGATCTATGGGATATGCATTAACAGG

AGCTGTTCAAACTTTATCCCAAATATCTGATATTAATGATGAGAGGCTGCAACAA

GGAGTATATTTACTCCGGGATCATGTGGTAACCCTGATGGAAGCCGCTCTTCATG

ATGTTTCAATTATGGAAGGAATGTTGGCAATTCAGCATGTACATACTCATCTTAA

TCATCTCAAGACTATGCTTTTAATGAGAAAAATAGATTGGACCTTCATCAGAAGT

GATTGGATTCAACAACAATTGCAAAAATCTGAAGATGAAATGAAACTCATAAGA

AGAACTGCAAAAAGTTTAGTTTATTATGTTACCCAAACTTCTAGTTCTCCTACTG

CTACTTCTTGGGAGATAGGAATATATTATGAAATAACCATTCCTAAACATATATA

TTTGAATAATTGGCAAGTGATCAATGTAGGTCATTTAGTAGAATCAGCTGGACAT

CTGACTCATGTCAAAGTTAAGCATCCTTATGAGATAATTAATAGAGAATGCAGC

AACACTCAATATTTACATCTTGAAGAATGCATCAGAGAGGATTATGTGATTTGTG

ATATAGTACAAATAGTACAACCATGTGGGAATGAAACAGAGTTAAGTGACTGTC

CAGTCACTGCTCTCAAGATAAAGTCTCCATATATTCAAGTCTCTCCCTTAAAGAA

TGGAAGCTACTTAATTTTGTCCAGTACAAAAGATTGCTCTATACCAGCATATGTA

CCTAGTGTGGTTACAGTCAATGAAACAGTTAAGTGCTTTGGAGTAGAGTTTCATA

AACCACTCTACGCTGAAACAAAAACCAGCTATGAACCACAGGTTCCACATTTGA

AGCTTCGTTTACCCCACTTGACTGGGATTATTGCCAGCCTGCAATCACTGGAAAT

AGAGATTACTTCAACTCAAGAGAATATAAAAGACCAAATTGAAAGAGCCAAAG

CACAGCTACTTCGGCTGGACATCCACGAAGGAGACTTTCCTGACTGGCTTAAGC

AAGTTGCCTCTGCAACCAAGGACGTGTGGCCTGCAGCTGCTTCATTCCTACAAGG

AGTAGGTAATTTTCTATCTAACACTGCCCAAGGGATATTTGGATCAGCGGTAAGC

CTCCTATCCTATGCCAAGCCTATCTTGGTGGGAATAGGAGTTATCCTGCTTATTG

CCCTTCTCTTTAAGATCATATCATGGCTTCCTGGGAAGATCAAGAAGAACTAAGG

GAACTTCTGCATCATCTCCCAGAAGATGATCCCCCGGCAGATCTTTCTCACTTAC

TGAATCTTGATGAAATGGAACCTAAGGTTCTTGGAGGACAAAATCCTGGAGATG

AGAAACTACGACAACAAGTAATCAAGCCTCCCAGTATACATCCATCTACAGTAA

CTTGGCATTTTGGATATAAAGATAAAGAAGATCAACAACCAGAAATAAAAATGA

GAGACTGGGTACCAGACCCTTCAAAAATGAGTAAGTCAACATGTATGAGATTAA

TATTGTTAGGATTATACCAAGCTTGTAAAGCACAGGAGATTATAAAAATGGACT

TTGATGTACATTGGGAACAATCTAGAGTTAATAAGCAATATTTTGAAGTAGAAT

ATAGTTGTAGAATGTGTAGAACAGTTCTACATGAACCTATGCCCATAATGTATGA

TCCAGAAACTGAACTTTGGGTAAAGCCAGGACGCCTTAGAGGACCCCTAGGATC

TGCTGTTTACACACTTAAAAAACATTATGAACGATGCTTATCTGCCCTTCCTAGC

TTCGAAGGAACTCGGCTCCCAAAGCGTCGCGCTAATCCTAGCAGAAGATATGAA SEQ

ID Sequence

NO

GCATTCAGAAAGCATACTCCAACTAGGAAACGGCGCTCCAAGGAAGGGATTTCC

ACTGACCAGCAGCCCTCTACTTCCAGTGGTGACCCCATGGCCCTTATCTCAGGAC

CATGTGGCCCCCACTCTATACAGCCTCCTGGTTGCATATTACAAGAGCTTCCAAA

ACCAGAAGTTGGAACCTCCGAAATGGCTGTGGCAATGTCTGGAGGACCCTTCTG

GGAGGAAGTGTATGGTGACTCAATTTTTGGTGCCCCCTTTGGGACAAGTGATGAT

CAGTTGCTATCGCAATTTGACTAGTATAATAATATGTCAAGCAGTAGATCCTTGG

GAAAATAATAATGAAACAGATTGGAAAAGGGATCCTATGGCTAGACCTAGGATC

AGATGTGATCATGCCCTTTGTTTTAAAGTAGTTTATGAAGGAACCCCTTGGCGTA

CTCATGATCAGAAGAGTTGGCTTATTCGCCTAACTGAGGGACATAAACATGGGA

TGGAAGAATTGTCCCCAGGTGACTGGAAAATACTCCAGGAATCCCGTCCTTATC

CTTATGGACCAGTTGGAGAAGATCCTAACTTGCAATATGCTGTCAGTGTTAAAAT

GAAGGTAACTGGGGGCCCTTTAACCTCAACAGTGTTAGCCTTAAAAGCTTTATGC

TTTCATAGAGTTAACATTTGTAATATGGATAATCCTGGTCTAGGAGAGGGACATC

CCCCTCTTGGATATTCTCATGCACTGAAGGCATATGGACCTCAGTATGGTAGTTG

CGAGGAGAGGGTGTGGCAGGCAGCCACTAAATGTATTGGTCCTGGTGAGGGAG

ATTATTGGTGTGAGTATGATCACCGTGGGTATTTCCCTATTATACCTAACAAGCT

ATCTCCTACGTGGGTGAGACATGCTGCCCCCTATGGTATACAAAGGCTCGCAAC

ACCATATGATCTCCAGATGTTTGCAAATGAGTTATTGCCACCTGGTTACAGTATT

AATACTCCCAGTGGAACTTGCTATGTGAGCAATCGCAGGCTTCACTATGGAAAT

GAAGGAACTCTTCAGGAGTATCAAGAGAACTGTGACAGAATTAAAAGAGGATA

TGAGGATATTTCCTCTAGTGATTCTTCAGATGAGGATTAGGGGAAGTTTACCCAG

CAACTGCTTATGCTTGCTTATGATTCATGCCTTTGTTTAGGATAAGAATGTATTTA

ACCATAGTTAATCCTTAGGAAGCATTTGGTAAATTCTACTAAGCAAACCTGTTCA

TTTACTACCGTGCTTCCGATGGAGAACTTAGGGACGAGGCTGTGAGTTCGATATC

ATCCTCATCTCGAGTGTCTCCCTTTTGCTTTTATAGTAATTAGAAATTATGCAATA

GGTATAAGTATAAAATAATAATAAGATAATCCTAAGGGAGGGAGTGGAACGTCC

TGATAGAAAACAGGCATGACGCTCTCCCATCCCTCCTTTTCATATGTTCAAATCT

AAGGTAATATTATTGATTCCTTGCCAGCTGTTAGCATAGAAATTAAATAAAACA

GGAAACCACAAGTAGGTGAAGGCTAGCTCACTGAATAAATTGACTAGTCTTTGC

TCAAGAACCCAGGGAGCAATGTTGTATGTTCAAATCTCAATAATGCATCCTGGTC

GTTCTTTATGAAGTTATGTCATTGTAAACAAAATATGAAAGTTAGAAATGACTGT

CCAAAAAGCCACAAAGGGAAATAGCTAATGTGCAAAGTATTAGTCTTGTACTTG

GCCGTTCTCCTTTGGTATTCAAGTTCAAATCCTGTAAGCAGTATTACAGCTGATG

TAATGTTAAGTAATAACTTGTTTTCTATATGAGTGTAATATTAGCTCCTGATGAC

TCACGAGGTGAATGGCTCACAGTGAACGACGACTGAACATTCCTTACGCTGCGT

TGCCACCACCTCCAGGAATGCAGTAGGTATGGAGTAGTGAATTCCAGAATCTCT

TCATACTAACTACATTCTTTTGTATCCACAGTTAGGAATTAGTAAAGGTAGTTTG

GAATTCTGTATTAGCTTTTAGAAGAAGTATAAAAGCACTATGATAGATTGTACG

GGAGCTCTTCACTACTCGCTGTGCCGAGAGTGTTCGAGACTCTCCAGGCTTGGTA

AGAAATATTATAACTTTGTTATTCTGATCCTTTCTGTGCTCTGCTATTTAGATTGT

AATGGGTAAAGGCAATGCTTAATCAGATTTAATACAATAAACCGACTTAATTCG

AGAACCATACTTATTTTATTGTCTCTTTCAATACTTTATGTAAAGTGAAAGGAGT

TGTGTATTAGCCTTGCTTAGGGAACCATCTAGTGGAATAAGTGGGTACTACACTT

ATCATAAAAGGTGTTAGTTCCTAAGGATAATCAATACACAATATTCCATGACA SEQ

ID Sequence

NO

SEQ TGTCATGGGCCAAAGAGAATTCTCACAGAGGAGAATACTCTCTGCTGCCATCTA ID GTGACGATGAGGAAGAAGAAATGTCAGAAAGAGAGGAATTATTGTGCCATATA NO: AATCAGTGTCAACAAAAGCTCTTTTATCCCGGAGGGACGACTGATGTCCTTGGA 1457 ATGGAAAGCAATGTTTGGCTCACTAAATTTGTTAATATTAAATTTCCTAAAGGAA

CAAAAGTGATACTTCCTGATGGAAGAAAATTCATAGCCTGTGATCCTGAGCTAA

AACCATTATTGCAGGAATTGAAATTCTTGGATAGGGCAACATCTGAGTCATCTG

ACTCTGAATAGAAAGCCTGAATTTACCTGGATTATGCAACTTTGTCCGAGGTGGC

AGAGTGGTTATGTATCTGTCATACTCGGGGAAAGTTTTGTCTTTACATGTTCAAG

ACATATAAAGGGTGGAAAAATATATTCCTGACTAAACTTCCTGGGGACTAGAGG

AGGTACTTAGTTAAGATAAGTAGTGAATAAATTACTCTCGTTCATGTATTCATAT

CGAAACTATGTATCCTTTAAAACCATGTATTCTTTAGTCATCTAGATACTTAGAG

TATGAAAAAAGAAACTGCAATAGTAACTATCAATGTTAGTAAATAAAGTACAGC

TTAGTCATCTGATGATGTCACGAGAAAAGAACCTAGAAGAGAAGAACAACTTTC

GGCATGCAACAGAGCGGGAGCTTGGTGTAGGAGCTAAGTCACCGTCTTACATCT

AGAGCCTACTCTTCTTGAACTGTTCGAATCCTATTTTTGGAACTCTTACATCACCT

TTAAGAGACTGAAAAGCATGACTCGTGCACAGGAAGCTCCTTTAGGGTAGAGGA

AATGTTCTAATCTCCTATCTTAAAGGGTTGCTTCATTTAAGGTTCGAAACTGTGT

ACTGGAAGTAGATTTTGCATAACTTTAAACTTTTAGTTGCATGTTTCTGCTATTAG

CAGCATATAAAAGGGTTATGGTAGATTGTACGGGAGCTCTTCTCACAGACTTGG

CTGCGTCCAGGGTGAGATTGAGACTCTCCAGCTTGGGTAAGATTTTGATATGTAT

TTTGCTTGAATATTATTTGCCTTGCTCAAAATTAAATAAATTGGCTTTTCTTTCAC

TCAATTGAAGCTTCATATAATTATATTATTGTCTGAAGCCAGAACTCACATGAGT

GGTGTTTCTCTATTCTTGGGGAAAAGTGTTCTTCTATTTGAAAGTGTTAGAGCTA

CTAAGTGAAGAACTAATCTATCCCAGGTATAGGCCACGACAGTTGGCGCCCAAC

GTGGGGCTCGATTGAGTGAAATTTAAATTAAGCTGAGGAGAATAATCCCTAGGG

ACCTTACCTTACTGAGGAAGGATGGCTCGAGAATTAAATCCTCTCCAATTACAGC

AACTGTATATAAATAATGGCTTACAACCTAATCCAGGACATGGAGATATTATTG

CTGTCAGATTTACAGGAGGACCTTGGGGTCCAGGTGATAGATGGGCTAGAGTGA

CAATACGATTACAAGATAACACAGGACAACCTTTACAGGTTCCTGGATATGATT

TGGAACCTGGGATAATAAATTTGAGAGAGGATATCTTGATAGCAGGGCCATATA

ATGGTCCCTTTGGAGATGGCAGATTACAGCCTGGAGATGGTTTATCTGAAGGATT

TCAACCTATCACTGATGAAGAAATACAAGCAGAAGTAGGAACTATTGGTGCTGC

TAGAAATGAGATAAGATTATTACGAGAAGCTTTACAGAGATTACAAGCTGGAGG

TGTGGGTAGACCTATACCAGGAGCAGTTTTACAACCACAACCAGTAATAGGGCC

GGTAATACCAATTAATCATCTTAGGTCGGTTATTGGCAATACTCCACCAAATCCA

CGAGATGTCGCCCTATGGCTTGGAAGATCTACAGCCGCTATTGAAGGAGTATTTC

CCATAGTGGACCAAGTCACTCGTATGAGGGTAGTTAATGCCTTAGTAGCATCTCA

TCCCGGCCTAACGTTGACTGAGAATGAGGCCGGGAGCTGGAATGCTGCCATATC

AGCTTTATGGAGGAAAGCTCACGGTGCTGCAGCTCAGCATGAATTGGCAGGAGT

ATTAAGTGATATTAATAAAAAGGAAGGCATACAAACTGCATTCAACCTAGGAAT

GCAATTTACAGATGGAAACTGGTCCTTAGTATGGGGAATAATCAGGACTCTTTTA

CCAGGACAAGCCCTAGTAACCAATGCTCAGTCACAATTTGACCTAATGGGAGAT

GATATACAACGAGCAGAAAATTTCCCCAGGGTCATTAACAATCTATACACTATG

CTGGGTCTCAATATACATGGGCAAAGTATTAGACCTCGGGTCCAAACACAGCCA

CTACAAACTCGACCCCGGAACCCGGGACGATCTCAACAAGGTCAACTAAATCAG

CCGAGACCCCAAAATAGAGCTAACCAATCTTATAGACCCCCTAGACAACAACAG

CAACACTCTGATGTTCCCGAACAGAGAGATCAGAGAGGACCGTCGCAACCTCCT

CGTGGAAGTGGAGGAGGATATAATTTTAGAAGAAATCCGCAGCAGCCTCAGCGC

TACGGCCAAGGACCACCAGGACCAAACCCGTACCGACGATTCGGAGACGGCGG

TAATCCTCAACAGCAGGGACCACCACCAAACCGAGGGCCTGATCAAGGACCTCG

GCCAGGAGGCAATCCCAGAGGAGGAGGAAGAGGTCAAGGTCCAAGAAATGGAG SEQ

ID Sequence

NO

GAGGAAGCGCTGCCGCAGTACATACAGTAAAAGCGTCTGAAAACGAAACTAAA

AATGGATCTGCTGAAGCCGTTGACGGTGGAAAGAAAGGGGGTAAAGATTAAAG

GTTACTGGGACTCCCAAGCCGATATTACCTGTGTTCCAAAGGACTTGCTTCAAGG

AGAAGAACCTGTTAGGCAGCAAAATGTGACTACTATACATGGAACGCAGGAAG

GAGATGTATATTATGTAAATTTAAAAATAGACGGTAGAAGAATTAATACAGAAG

TAATAGGGACAACTTTGGACTATGCTATTATAACTCCTGGAGATGTACCTTGGAT

TTTGAAGAAACCTCTAGAATTGACTATTAAACTAGATTTAGAAGAGCAGCAAGG

GACTTTACTTAACAATTCCATTTTATCTAAAAAAGGGAAAGAAGAATTAAAACA

ATTATTTGAGAAATATAGTGCCTTATGGCAAAGTTGGGAGAATCAGGTGGGTCA

TAGAAGAATTAGGCCACATAAAATAGCAACTGGTACAGTAAAACCCACACCTCA

GAAACAGTATCATATTAATCCAAAGGCAAAACCTGATATTCAGATTGTGATAAA

TGATTTACTAAAACAAGGGGTACTAATTCAAAAGGAAAGTACTATGAACACTCC

TGTCTACCCAGTACCCAAGCCAAATGGTCGCTGGAGAATGGTACTGGACTACAG

AGCAGTAAATAAAGTCACACCTTTGATAGCTGTACAAAATCAACACTCGTATGG

AATTTTAGGAAGTCTTTTTAAAGGTAGATATAAAACTACAATTGATTTATCCAAT

GGTTTCTGGGCACACCCCATAGTCCCAGAGGATTATTGGATTACTGCATTCACTT

GGCAAGGAAAACAATATTGTTGGACTGTTTTACCACAAGGTTTTTTAAACAGCCC

TGGGTTGTTTACTGGAGATGTTGTAGATCTTCTACAGGGAATTCCCAACGTGGAA

GTCTATGTGGACGATGTATATATTAGTCATGATTCTGAAAAAGAACATTTGGAAT

ATCTGGATATTTTGTTTAATAGATTAAAAGAAGCAGGATATATAATATCTCTTAA

AAAATCCAATATTGCCAATTCTATTGTGGATTTTCTTGGTTTTCAGATTACTAATG

AAGGCCGGGGCCTGACAGATACTTTTAAAGAAAAATTGGAAAATATTACTGCCC

CTACCACTCTTAAACAATTGCAAAGCATACTAGGTCTTTTAAATTTTGCCAGAAA

TTTTATTCCTGACTTTACTGAATTAATTGCTCCTTTATATGCATTGATACCAAAGT

CTACCAAGAATTATGTTCCTTGGCAAATAGAACATTCAACCACTCTGGAAACTTT

AATTACTAAACTAAACGGGGCAGAATATTTACAAGGAAGAAAAGGAGATAAAA

CATTGATCATGAAAGTCAATGCTAGTTATACAACAGGATATATAAGGTATTATA

ATGAAGGGGAAAAGAAGCCAATATCCTATGTAAGTATAGTGTTCAGCAAAACTG

AATTGAAATTCACTGAACTAGAGAAATTGCTGACCACTGTGCACAAGGGTCTTTT

AAAGGCCTTGGACTTGTCAATGGGGCAAAACATTCATGTTTATTCCCCCATTGTA

TCCATGCAAAATATTCAAAAAACACCACAGACTGCTAAAAAGGCTTTGGCCTCT

CGATGGTTGAGTTGGCTTTCTTATTTGGAAGATCCGAGAATTAGGTTCTTTTATG

ATCCACAGATGCCTGCTCTAAAAGATTTGCCTGCTGTAGACACCGGAAAAGATA

ATAAAAAACATCCTAGCAATTTTCAACATATATTTTACACTGATGGTTCTGCTAT

CACGTCCCCTACTAAGGAGGGACATTTAAACGCTGGAATGGGAATAGTTTATTTT

ATAAACAAAGATGGAAATTTACAAAAGCAACAGGAATGGTCCATTAGTTTGGGG

AATCATACAGCACAATTTGCAGAAATAGCTGCTTTTGAGTTTGCCCTTAAAAAAT

GTTTGCCTTTGGGAGGAAACATTCTTGTGGTTACTGACAGCAATTATGTTGCAAA

AGCATATAATGAGGAACTTGATGTTTGGGCCTCTAATGGCTTTGTGAATAACAG

GAAGAAACCTTTGAAACATATTAGTAAATGGAAATCGGTTGCTGACCTTAAAAG

ATTAAGGCCAGATGTTGTTGTGACCCATGAGCCAGGTCACCAAAAACTTGACTC

ATCTCCTCATGCTTACGGGAATAATCTGGCTGATCAACTGGCCACGCAAGCCAGT

TTTAAAGTACATATGACTAAAAATCCCAAGCTGGACATTGAGCAAATAAAGGCA

ATTCAAGCATGTCAAAATAATGAAAGATTACCTGTTGGTTATCCAAAACAATAT

ACCTATGAGTTGCAAAATAATAAATGTATGGTTTTAAGAAAAGACGGTTGGAGG

GAAATTCCTCCTTCCCGAGAACGGTATAAACTTATTAAAGAAGCACATAACATT

AGTCATGCAGGCCGAGAAGCCGTGTTATTAAAAATACAAGAAAATTATTGGTGG

CCAAAAATGAAGAAAGATATATCATCTTTTCTTTCTACATGTAATGTATGTAAGA

TGGTAAATCCTTTGAATTTGAAACCTATTAGCCCTCAAGCTATTGTACACCCAAC

CAAACCTTTTGATAAATTTTATATGGATTACATTGGGCCATTGCCACCATCAGAA

GGTTATGTGCATGTTTTAGTTGTGGTAGATGCTGCCACTGGATTTACTTGGTTGT

ACCCCACTAAGGCTCAAACCTCCAAGGCCACAATTAAAGTTCTTAATCATCTCAC

TGGACTAGCAATTCCAAAGGTGCTGCATTCTGATCAAGGATCAGCATTTACTTCT SEQ

ID Sequence

NO

GAAGAATTTGCTCAGTGGGCAAAGGAAAGGAATATACAATTGGAATTCAGTACT

CCTTACCACCCTCAAAGTAGTGGGAAAGTGGAAAGGAAAAACAGTGAAATTAA

GAAACTTTTAACTAAGCTCTTGGTTGGGAGGCCTTTAAAGTGGTATAACCTTATA

TCCAGTGTGCAACTTGCTCTAAATAACACTCATGTTGTCAGCACCAAGTATACTC

CTCATCAACTAATGTTTGGAATTGATTGTAATTTACCATTTGCTAATAAGGATAC

CTTGGACTGGACAAGAGAAGAAGAACTTGCTCTCTTGCAGGAAATTCGTGAATC

TTTACAACACCCTGTACAACCCCCCACCTGCTCTGGTTGGTCACCATACGTTGGC

CAGCTGGTCCAGGAGAGGGTGTACAGGCCGTCACAATTAAGGCCTAAGTGGAGG

AAGCCTACAAAGGTCTTGGAAATATTGAATCCTAGAACTGTGATTATAGTGGAC

CATCTAGGCCAACGGAAATCTGTGAGTATTGACAATTTAAAACCTACAGCACAC

CAGCATAATGGAACAAGAACATGTGATGACCCTGAAGGAATGGATGGAATGGA

ATGCTCACAAACAACTACAGAAACTTCAGTCGACTCATCCTGAGTTGCATGTTGA

CATACCTGAGGATATTCCTTTAGTACCAGAGAAGGTACCTTTGAAAATGAGGAT

GCGATATAGATGTTATACTTTGTGTGCTACTTCTACTAGAATAATGTTTTGGATA

CTATTCTTTCTTCTATGTTTTTCAATAGTTACCTTGAGTACAATTATAAGTATTCT

TAGATATCAATGGAAAGAAGCAATAACACATCCTGGCCCAGTCTTAAGCTGGCA

GGTGACTAATTCACATGTAACCATGGGAGGAAATACTTCCTCTTCCTCCAGACGG

AGACGTGATATACAATACCACAAACTTCCCGTAGAGGTTAACATCTCAGGGATC

CCACAAGGTCTTTTCTTCGCACCTCAACCAAAACCTATATTTCACAAAGAAAGAA

CTTTAGGTCTTTCTCAAGTGATTCTTATTGACTCTGATACTATTACTCAAGGTCAT

ATTAAACAACAGAAAGCATATTTAGTCTCAACAATTAATGAAGAGATGGAGCAA

TTACAAAAGACAGTATTACCTTTTGACTTACCCATCAAGGACCCTCTAACTCAAA

AGGAATACATAGAAAAAAGGTGCTTTCAAAAATATGGACATTGTTATGTTATAG

CTTTTAATGGAAATAAAGTTTGGCCTTCACAAGATTTAATACAAGATCAATGTCC

ATTACCTCCTCGCTTTGGAAATAACTTAAAGTATAGGAACCACACTATATGGAA

GTATTATATACCATTGCCATTTAAAGTATCCTCCAATTGGACAAGAGTAGAATCC

TATGGTAATATTAGGATAGGCAGCTTTAAAGTTCCTGATGAATTTAGACAAAAT

GCCACACATGGAATATTTTGTTCTGATGCACTATATAGTAATTGGTATCCACGTG

ATCTACCTTCTTCGGTACAACAATCCTTTGCTCAAGCATATATAACAAAGGTACT

TATGAAAAGGAAAAAGCAACCTACTTTACGAGATATAGCTTTTCCAAAGGAATT

GAGCCCTGTAGGCTCTGGTATGCTATTCAGACCTATTAACCCATATGATATCTGT

AATATGCCAAGAGCAGTATTATTATTAAATAAAACATATTATACTTTCTCACTAT

GGGAAGGAGATTGTGGATATTACCAACACAATCTTACTCTTCATCCCGCATGTAA

GAACTTCAATAGAACTAGACAAGACCATCCATATGCTTGCAGATTTTGGAGAAA

CAAGTATGACTCTGAGTCAGTGCAATGCTATAATAATGATATGTGTTATTATAGA

CCTTTGTATGATGGAACTGAGAATACTGAGGATTGGGGATGGCTGGCATATACT

GACTCTTTTCCATCCCCCATCTGTATTGAAGAAAAGCGAATCTGGAAGAAAAATT

ATACTCTGTCATCTGTATTAGCAGAATGTGTAAATCAAGCCATGGAATATGGTAT

AGATGAAGTATTATCCAAACTAGATCTGATATTTGGGAATCTGACTCATCAATCA

GCAGATGAGGCCTTCATTCCGGTTAATAATTTCACTTGGCCTAGATATGAGAAAC

AAAATAAACAACAAAAAACCTCTTGTGAAAGAAAGAAAGGTAGAAGACAAAGA

AGGTCCGTAAGTACGGAAAACCTAAGAAGGATACAAGAGGCAGGCTTAGGCCT

GGCCAATGCAATTACTACTGTGGCTAAGATCTCTGACCTGAATGATCAAAAATT

AGCCAAGGGAGTACATTTGCTTAGAGATCATGTTGTCACTCTAATGGAAGCCAA

TTTGGATGATATTGTGTCCCTAGGAGAGGGAATACAAATAGAACATATACATAA

TCACTTAACCTCTTTGAAATTGCTTACTTTGGAAAATAGAATTGACTGGAGGTTT

ATAAACGATTCATGGATTCAAGAAGAATTAGGTGTTTCAGATAATATAATGAAA

GTAATAAGGAAAACTGCAAGGTGCATTCCTTACAATGTCAAACAAACTAGGAAT

CTAAATACTTCCACTGCATGGGAAATATATTTATATTATGAGATCATCATTCCTA

CCACTATATATACACAGAATTGGAATATAAAGAATCTAGGTCACCTTGTAAGGA

ATGCAGGATATTTATCTAAGGTGTGGATTCAACAACCATTTGAAGTACTAAACC

AGGAATGTGGAACAAATATATATTTACATATGGAAGAATGTGTTGACCAAGACT

ATATAATATGTGAAGAAGTAATGGAACTTCCTCCTTGTGGAAATGGAACTGGTT SEQ

ID Sequence

NO

CAGACTGCCCAGTGCTAACCAAACCACTTACAGATGAATACTTGGAAATTGAAC

CCCTAAAGAATGGGAGTTATTTGGTTTTATCAAGTACTACAGACTGTGGCATACC

AGCTTACGTGCCTGTGGTTATAACGGTGAATGACACAATCAGCTGTTTTGATAAA

GAGTTTAAAAGGCCACTTAAACAGGAACTAAAAGTAACAAAATATGCACCATCC

GTTCCTCAATTAGAACTAAGAGTTCCTCGGTTAACAAGCCTGATTGCAAAAATA

AAAGGAATTCAAATAGAAATTACCAGCAGCTGGGAAACTATAAAAGAGCAAGT

CGCAAGGGCCAAGGCAGAGCTTCTACGCTTGGACCTTCACGAAGGAGACTATCC

AGAGTGGCTGCAGCTCCTTGGAGAAGCAACTAAAGACGTTTGGCCTACAATCTC

CAACTTCGTTTCTGGAATAGGTAATTTCATAAAGGACACTGCTGGAGGTATTTTT

GGAACTGCCTTTAGTTTTCTGGGATATGTAAAACCTGTACTTTTGGGATTTGTGA

TAATATTTTGCATAATTTTAATTATAAAAATCATAGGATGGCTTCAAAATACCCG

GAAGAAGGACCAATAACTGAGGGGGTTGAAGAAGATTTTAACTCCCATTCCACT

TCTGGTTTGGACCTTACCTCAGGTAATAAAGAAGAACCTTTGATTTCTTTAGCCC

TATTGTCTATGCATACCAGTAAAATTGTTGTTTGGATAAGGGATCACTTTTTTGT

AAAAATATTATCCTTTGGAGGGAAGCAAAAGTTGTATTATATATGCAACCAATG

TCATAAAGGAATTCCTGAAAGTGGATACATAACTCTCAATACTAAATATTATCTA

TATGAGAAAGGACCTACTGAGACTGGCACCAAAGGTCTAACTCTTATGAGAAGG

CATGTGCAAAATTCCCCTTGTTTCCTGAACAGTCGGAAAGAATCCGGAACACCC

AAGACGGATCCTACTCGTCCTGCAACATCTTATAGCCTATGCCGAAGCGACTATC

AAGAAGCAGGATGTTCCCGGCCCACTCCTTCCAATTCTGAGTCCGTATGTAATGG

CTTGGGACAACCCTCAGAACGTGGTCACACGTCTGGTGAATCTGGGGGAATCAT

GGAAGAAGTATCTTTTATCTCCTGGTTGGAAGGATTGTGGGGAGAGGGATTTGA

CTATGCTAACTAGAGAATTGTTGGTACCAGGAATAGGCCTGGTACAAATCGCCG

CTACACTTACTAAAACCTATGTGTTAATGTGTAATGGGCGATGTATTACAGGTTC

TAGAACCGACCCAGATTGTGATCCTTTGTTCTGTAAGTTGTTATGCTGGAAACAA

AATATACAAGACCCTAGAGAGTGTAACCTAGAAGAATGGTGCCTGTATAGTCTT

GATCCTGAACATGATCCCCTTTGGGATCCAAAAATGATTGTGCGTAGACATAGG

AATCTTTTACCTTATTGTATGAGACCCTTTCTCATTTGGATGAATTATATTTCTCA

CAATCCTCTTACACAGCAATGTATTATGATGAAAACTTTGAATATGCTTTGGAGA

GCACAAGCTGATGATCCAAGTGATGTTGCTTCCCTGTATCCCAGAGTCAAAGTTT

TTAAGGCATCTCATTTTGACATATTTGGAAGTGCCTCTGGGAACAGTGAGGAGA

GGGTGTCATGGGCCAAAGAGAATTCTCACAGAGGAGAATACTCTCTGCTGCCAT

CTAGTGACGATGAGGAAGAAGAAATGTCAGAAAGAGAGGAATTATTGTGCCAT

ATAAATCAGTGTCAACAAAAGCTCTTTTATCCCGGAGGGACGACTGATGTCCTTG

GAATGGAAAGCAATGTTTGGCTCACTAAATTTGTTAATATTAAATTTCCTAAAGG

AACAAAAGTGATACTTCCTGATGGAAGAAAATTCATAGCCTGTGATCCTGAGCT

AAAACCATTATTGCAGGAATTGAAATTCTTGGATAGGGCAACATCTGAGTCATC

TGACTCTGAATAGAAAGCCTGAATTTACCTGGATTATGCAACTTTGTCCGAGGTG

GCAGAGTGGTTATGTATCTGTCATACTCGGGGAAAGTTTTGTCTTTACATGTTCA

AGACATATAAAGGGTGGAAAAATATATTCCTGACTAAACTTCCTGGGGACTAGA

GGTGTGGAAACTTTGCTGCCTCTGCTTCACGGGAAGTTTTTGGTTCGAATCCTTTT

TTAGGTACTTAGTTAAGATAAGTAGTGAATAAATTACTCTCGTTCATGTATTCAT

ATCGAAACTATGTATCCTTTAAAACCATGTATTCTTTAGTCATCTAGATACTTAG

AGTATGAAAAAAGAAACTGCAATAGTAACTATCAATGTTAGTAAATAAAGTACA

GCTTAGTCATCTGATGATGTCACGAGAAAAGAACCTAGAAGAGAAGAACAACTT

TCGGCATGCAACAGAGCGGGAGCTTGGTGTAGGAGCTAAGTCACCGTCTTACAT

CTTTAAGAGACTGAAAAGCATGACTCGTGCACAGGAAGCTCCTTTAGGGTAGAG

GAAATGTTCTAATCTCCTATCTTAAAGGGTTGCTTCATTTAAGGTTCGAAACTGT

GTACTGGAAGTAGATTTTGCATAACTTTAAACTTTTAGTTGCATGTTTCTGCTATT

AGCAGCATATAAAAGGGTTATGGTAGATTGTACGGGAGCTCTTCTCACAGACTT

GGCTGCGTCCAGGGTGAGATTGAGACTCTCCAGCTTGGGTAAGATTTTGATATGT

ATTTTGCTTGAATATTATTTGCCTTGCTCAAAATTAAATAAATTGGCTTTTCTTTC SEQ

ID Sequence

NO

ACTCAATTGAAGCTTCATATAATTATATTATTGTCTGAAGCCAGAACTCACATGA

GTGGTGTTTCTCTATTCTTGGGGAAAAGTGTTCTTCTATTTGAAAGTGTTAGAGC

TACTAAGTGAAGAACTAATCTATCCCAGGTATAGGCCACGACAGT

SEQ ATGGAGAATCCCTTTCCTAACGATTTGCGATCGTATTGTAATTATTTTGGTATTTG ID CTTGTTTGATTTAAGGTTGCAATGTATATTTTGTAAATCTATACTTGATATTGTAG NO: ATTTAGCCAAATTTCATAAGAAAGAATTGCGTTTGGTTTGGAGATGTAAAGTTGC 1458 TTATGCATGCTGTTCAAAATGTTTGTATGCTAGTGCTAGATATGAAAATGAGAAT

CATTTTCAATGTGCTGTAAAGGCGTCTACTTTGCATGATCTTTTGGGAACACCAT

TGCATCAAATTTACATGAGGTGTAACCATTGTTTAAGTGGGTTAGATTTGCAAGA

GAAATTTGATTTGGTAGCTAGAGATTGTTATGTTATTTTAGTGAGAGGGTATTGG

AGAGGCCCTTGTAGAGATTGTATTAACAGAGAATATTAAAATGAAAGGTGATAG

AGTAACAATTAAGGATGTTGAGTTGCATTTAGAGGAATTGGTGATACCAGCAAA

TTTATTAAGTGATGAAAGTTTGTCATTAGATGAAACACCGGAGGAGGAGCAATT

GTCACCTTACAGGGTGGATAGTTTATGCACTAGGTGTAACAAGTGTATCAGGATT

TCTGTAGTTTGCACAACTGGAGCCATTTACACATTGGAGCAACTTCTACTTTCGA

CCGAGCTGTCCTTTTTGTGCGCTGGGTGTTCCAGGACCACCGTGCGAAATGGCAG

ACGCTTCTAAAGGTATTGACTCGGTAGATGACAGTTCATGGTTTATTGTAAATGA

AGCAGATTGTATGGATGACATAGAGACTTTAGATACATTGTTTGATGAAAGTGA

TTGTGATTCTACAGTCTCGAATCTAATAGACGATGAGAATTTTCAAGAACAGGG

AAACTCCCTGGCGTTGTTCAACATACAGTGTGCAGAGGAGTGTGATAAAACTGT

TTCACTACTAAAACGAAAGTATGCTCAAAGTCCGCAGGGATCATCTGTGGCTGA

GCTTAGCCCGAGACTGGAAGCTGTTAAAATTTCACCTGAAAAAGAAAGACAAAG

TAAAAGGAGATTGTTTCAGGACAGTGGATTAGGCGAAGATGAAGCTGAACTTAT

TTCTGAACAGGTAGAAGTGCAAACAAATGAAAATGGCGGCGACACATTAAGTGC

CGCATGTAATAGTATTTTAAACAGCAAATGTAAGCGGTCGCTATTGTTTGTAAAA

TGTGAGACTTTATTTGGTGTATCTTACAATGAACTTACTAGACAATTTAAAAGTC

ACAAATCATGTTGTGAAAATTGGATTGTATTTGTGTATGCAGCGGGAACAGAAG

TTCTTGAAAGTTCAAAAGTATTGTTACAGCAGCATTGTGAAAATTTTCAGGTGAT

ATTATGTGATTTTTCTGGATTATATGTGTTGCAATTTAAGCATGGAAAAAATAGA

GAAACCGTTGAAAGACTATTTTGCAACATATTGCATGTTACAGATAGTCATCTTT

TATCAGATCCTCCTAGAAGTAGGAGCGTACCTGCAGCATTATTTTTTTTTAAAAG

AAGTGTATCTAAAACATCTTATGTGTACAATAATTTGCCAGCGTGGGTGACAAA

GCTGACACAATTTAATCATCAGGTGGCAACACAGCCAGAAGCATTTGAGTTGTC

AAAAATGATTCAATGGGCGTATGACAATAGAATGACTGAAGAAGCAGAAATTG

AAGCAATGTTCAATTAAAATATGTTAGAGACTGCTGTACTATGGTAAAATTGTAC

TTCAGACAAGAAATGAGAGAAATGAGTATTTCACAGTGGATATGGAAGTGTTGT

AATGATTGTGAAGGCGAGGCAGACTGGAAACTTATACTTAATTTTCTAAAATTCC

AAAATATTAATGTAATACAATTCCTCACATGTTTAAGAACATTGTGTAAAAGAAT

TCCTAAAAAAAATTGTATTTTATTCTATGGACCACCAGATACAGGAAAATCATTT

TTTGCCTACTCACTTGTTAAATTCTTACAAGGTAAAATATTGTCATTTGTAAATA

AAACAAGTAACTTCTGGTTACAGCCATTATTAGATTGTAAATTTGCACTGTTAGA

TGATGTGACTTATCCATGTTGGCAATACATTGATCAAAACATGAGAGGAGCCTT

AGATGGCAATACAATGTGTGTAGATGCAAAACATAGAGTGCCACAACAAATTAA SEQ

ID Sequence

NO

ACTACCACCTTTGATATTAACCAGTAATATTGATGTTGTAAAGGAAGAATCCTTA

CAATATTTACATAGTAGGTTAATGTGCTTTGAATTTGCAAATAAGTTACCGTTTG

ATACTCATGGCATTCCTGTTTATAATTTTACTAATCAGGTGTGGAAGTGTTTCTTC

CAAAAACTGTCAAGACAATTAGACCTGGAAGAAGAAAACATCCAACATGAATC

AATCAGATCTGACAGAACGTTTAGATGCATTGCAAACAGCCCTGATGAACATTT

ATGAAGAAGCACCAACTGATTTACCTTCGCAAATTAGACACTTTGATTTATTAAG

GAAACAAAGTGTACTTGAATATTATGTTAGAAAAGAAGGTTATACACAGTTGGG

CCTATATCATATTCCAACATTAAAGGTATCTGAATACCATGCCAAGGAAGCTATT

AAGATGGGAATTGTGCTTAGATCATTACAAAAATCACCCTATGCAGATGAAGAG

TAAAAAAGGAGGGTATGATGTAGAAGTTTGGTTTGATCATAATCCTTTAAATAC

ATTTCCATATACAAACTGGACATGGATATACTACCAGGATGATGAGGAAAATTG

GCATAAAGTTCAAGGAGAAACAGATTATAATGGGTTGTTTTATAGAGAAACGGA

TGGAACTGTAGTATACTTTTTATTATTTGAAAGTGATGCTGCCAGATATGGAACT

AAAAATGAGTGGACTGTGAATGTTAAAAATGAACAAATCTCCCTTCCTGCCAAC

AGCAACGGTCGGAGGTCTTCGTCTGGGACCCCAACTCACTCTACCACCAACTCTG

TCGCTGAGCCGGGGCCCTCCAGATCCACCGAGGAGGCCGACGGACGAAGAACG

CCACAAGCACAGACGCAGAGCGTTGGGGCTTCCAAAAAACCATCTTCGGTCGGA

CGACGAAGGCGACGAAAACAAGGAAAACAAACCCCCAGCAAACGAAGACGAA

CTGGAGGAGGAAGCGGAGACGAAGCAGACAGCGGTGGAATCTCTGCTGAGGAA

GTTGGAAGTAGCCATCGATCAGTTGCACGATCAGGTCTATCGAGACTTGAACGA

CTTCAAAAGGAGGCTCGGGATCCGTATATAATACTTGTCAGAGGGCCTCAGAAT

ACATTAAAGTGTTGGAGGTATAGAATCCAAACAAAAGCCAATTTTCCCTTTCTTT

ATATAAGTACAGTATGGAAATGGGTGACTAAGGATGCTGTTGGACATGAGGGTC

GGGTACTTATTGCATTTTTAAGTAAAGAGTCCAGGGATTTATTTGCAAATTCTGT

GCATTTTCCTAAAAATACTACACATTCATATGGTTCTCTAGATGCTTTGTAATAA

TGATGCGAATACGTAGGAAACGGGCATCTCCTACAGATTTACATAGGAGTTGTG

CTTTAGGTGGGGATTGCTTTCCTGATGTTGAAAATAAACTTTCAGGCAATACTCT

TGCAGATATTTTATTAAAGGCATTTGGAAGTATTCTTTATTTGGGTAACTTGGGC

ATTGGAACTGGTAAGGGTGGTGGAGGTCAATATGGATACACACCTTTTGGAGGC

ACAAGGCCTAGCATATCCAGGGCTCCAGTAAGGCCTGCAATTCCTGTAGATACA

GTAGTTCCAGGTGAAGTATTACCAGTAACACCTTTGGATCCTGCTATTGTGCCAT

TAACAGATGGATTACCAGAACCTGCTGTAATAGATGTTCCTGGAGCTGGTCCTG

GTTTGCCTACAGAAACCATAGATGTGACAACTGAGTTAGATCTTGTTTCTGAAGT

AACTGGTGTTGGTGAACATCCTTCCGTTACATATGATACAAACAATGTAGCTCAG

ATAGATGTTCAAGTACAACCTCCTCCTCCCAAGCGGATTCTTTTAGATACTTCAA

TTACTGACACAGAATTAGCTGTGCAGACTCATGCATCACATGTTGATGAACATTA

CAATGTATTTGTTGATGCACAATTTCATGGGGAACATATAGGAGCTTTTGAACCT

GAAAGTATAGAATTACAAGAAATTAATTTAAGACAAGAATTTGAAATTGATGAG

GGCCCTTTAAGAAGTACTCCCTTATCATCCCGCGCAATCAGTCGAGCTAGAGATT

TGTATAATAGATATGTGCAACAAGTTCCAACAACACAACTCGCTTCCGTCTCTAC

CCCGAGGGTTACATTTGAATTCGAAAATCCCGCCTTTGAAGCTGAAATAGCTGA

CGTGTTCAACAGGGAGGTTCAGGAGTTAGCAACACAGGGGCAGGATGAGGCAG

GGACAGACCTAATTCGCTTAAGTGACATCAGATATGGCGAATCACCAGCGGGTA

CAGTCAGGGTTAGTAGGTTAGGTCAAAGGGAGGGAATGATTATGAGGAGTGGCT

TACAAGTAGGCCAACGTGTACATTTTTACTATGACATATCTCCTATACCTAAGGA

AGCTATAGAACTAAGAACATTTGGAGAGTATAGCCATGAATATACTGTAGTAGA

TGACCTAGCCAGTTCATCTTTTATAAATCCCTTTGAACAACCGGTAGATGGCTCT

CTTGAATTTTCTGATGCAGCATTAATAGATTCAGTAGAAGAAGATTTTTCAGGCA

CACATTTAATTTTGACATCAGCAAATGCAGCTGATTCCATAGACATACCTGTAAT

CCCCCCGGGTATTGGTGTTAGGGTGTTTGTAGATGATTATGCCAAAGGACTATCA

GTATTACATCCTACTATAATAGATAACGGGGCTATATACCCCACAGACATAAGC

AGCAATATTTTACCTCTTACTCCATCATTTAGTATTGATGTTAATTACTCCGATTA SEQ

ID Sequence

NO

TAATATACATCCTGCTAATATAAGGCGCAAACGCAAACACTCCTCCTCTCTTTAC

TTTTAGATGGCTACTTGGACCCCTAACACTGGACGGCTTTATCTTCCTCCTGCTA

AACCTGTGGCGACTGTTCTATCGACTGATGATTATATTGTACCGACGAATCTTTA

TTTTCATGCCAATTCGGACAGACTGTTGACTGTTGGCCATCCTTACTTTGACGTTT

TGAATGACGCTACTAAAGCAATAGAGGTTCCAAAGGTGTCTGGAAATCAGTTTA

GAGTTTTAAGATTGAAGTTACCTGATCCTAATAAATTTGCTTTGATAGATAAGTC

TGTTTATAATCCAGAAAAGGAAAGGCTAGTATGGCGACTACGAGGTGTACAGAT

TGACAGAGGTGGTCCTCTAGGCATAGGAACGACTGGTCATCCGTTATTTGACAG

ATTGGCAGATACGGAAAATCCTAATGTTTATGCCCCTGCAGAGGTAGATGACAG

TTACCAGCAACAGGTCAGCATTGGGATATTGCTGAACCTTGCAAAGATCCAGCG

CCACCACCTAACTCCTGTCCACCTATAAAGTTGATGCATAGTATTATTCAAGACG

GGGACATGAGTGATATAGGTTTGGGTAATGTAAACTTCAATAATTTTTCAGCTTC

TAGATCTGATGCTCCTTTAGATGTTATAAACTCTGTTTGTAAATGGCCAGACTTT

GTTCAAATGACCAAAGATACTTATGGAGACAGAGTTTGGTTTTTTGGTAAAAGA

GAACAAGTTTACACTAGACATATGCTTGTCAAAGGTGGTGTAGACGGAGACAGC

TTACCCCATGAACCTACAAGAGCTTATTATATTACTCCAAATACTGGTACATTAC

CAGATGGTAATTTAGGTAAAATCAGTTACTTTCCAACTCCTAGTGGTTCCCTGGT

CTCCAGTGAAGCCACAATTTTCAACAGGCCTTATTGGTTACATCAGGCTCAAGGA

AAAAATAATGGTATTGCATGGGGTAATAATATTTTTATAACCTTATTAGACAATA

CCCACAATACTAACTTTATATTATCAGTGTATACTGGTGCACGACCTATGGAGGA

GGGTTATACTTACAAGAAGGCTGATTTTAAAAAGTTTTTGCGTCACACTGAAGA

GTTAGAGCTTGAAATAGTTATGCAGCTCTGTAAGGTACCTTTAGAGGCTAATGTG

TTGGCCCACATCAATGCTATGGATCCTACTATACTTGAAAATTGGCAGTTAGCAT

TTGTTCCAGCGCCACCTCAGAACTTGGAGGACACTTACAGATATATTCAATCTCT

AGCAACAATGTGTCCTGCGGATGTCCCTCCAGCAAACAAACCAGATCCTTTTGA

GAAATATTCATTTTGGGATGTTGATTTAACTGATAAATTTACCTCAGAGTTGGAT

CAAACACCTTTGGGACGCAAGTTCTTGTATACTATGGGTATGCTAAATGGTAGG

AAGCGTCCCAGGGTAGATTACACTACAGGTAATACTACTGTGAAGCGCGTGGGC

AAAACTGCTAAGAGAAGAAAAACTCGTATGTAATTCTTGTATTGTATTCATGTTA

TTAATTATGGTGTTTAACTGCATTCTGAGCCTGCACATATGTGTAATAATAAATT

ACATGTGAGTCATATGTTTGTGGGTATTTATTTACTGTGTGTGCGCTCGTACAGC

TAGTACTGACCCCTCTAGAAGCAACCACTGTTACTCTTCGCAGCCGACCGTTTTC

GGTAAGTCTAAAATTACCACTTTCGGTTGCCAAAGTTTACCGCCTTCGGTTGTTT

ACTGTCAAGACGACCGTTATCGGTTGGTGAGTCAGTAATCCCTTCAGCTGCATGT

TTCTGGCTGTTAGCCTTTGTACCGGGAGTGGTCACATACCTAGCTTTATTCAATA

AACCCTTCAGTGTCAGCAGATTCTTGCATTGCTG

[0295] In some embodiments, oligonucleotide probes disclosed herein hybridize to or are capable of hybridizing to any one of SEQ ID NO: 1406 - SEQ ID NO: SEQ ID NO: 1458 as described below in TABLE 8, identifying each target nucleic acid as an accession number from GenBank.

TABLE 8 - Nucleic Acid Sequences of Vectors, Accession Numbers, and Description

SEQ ID NO Accession Number Date Last Description

Modified

SEQ ID NO 1407 NC_0014O1.2 28-Jun-10 Adeno-associated virus 2

SEQ ID NO 1408 NC_001729.1 28-Jun-10 Adeno-associated virus 3

SEQ ID NO 1409 NC_001829.1 28-Jan-10 Adeno-associated virus 4

SEQ ID NO 1410 AF085716 9-Feb-99 Adeno-associated virus 5

SEQ ID NO 1411 AF028704 12-Jan-98 Adeno-associated virus 6

SEQ ID NO 1412 NC_006260.1 11 -Mar- 10 Adeno-associated virus 7

SEQ ID NO 1413 NC_006261.1 11 -Mar- 10 Adeno-associated virus 8

SEQ ID NO 1414 AY530579 24-Jun-04 Adeno-associated virus 9

SEQ ID NO 1415 AY631965 30-Nov-04 Adeno-associated virus 10

SEQ ID NO 1416 AY631966 30-Nov-04 Adeno-associated virus 11

SEQ ID NO 1417 DQ813647 20-Feb-08 Adeno-associated virus 12

SEQ ID NO 1418 EU285562 23-Sep-08 Adeno-associated virus 13

SEQ ID NO 1419 pAAV-DJ (VPK- 420-DJ (PN- VPK-420-DJ (PN-340001) 340001))

SEQ ID NO 1420 LC314153 25-Apr-18 Human mastadenovirus D

SEQ ID NO 1421 MF416150 1 -Oct- 17 Human mastadenovirus D

SEQ ID NO 1422 KX827426.1 28-Apr-17 Human mastadenovirus D

SEQ ID NO 1423 LC066535.1 21-Jun-17 Human mastadenovirus D

SEQ ID NO 1424 AB765926.1 30-Mar-17 Human adenovirus 81

SEQ ID NO 1425 LC177352 20-Oct-17 Human mastadenovirus B

SEQ ID NO 1426 KT970440 30-Sep-16 Human mastadenovirus B

SEQ ID NO 1427 KF268328 16-Dec-13 Human mastadenovirus B

SEQ ID NO 1428 KF633445 16-Sep-13 Human mastadenovirus B

SEQ ID NO 1429 KY618678 14-Nov-17 Human mastadenovirus D

SEQ ID NO 1430 KY618677 14-Nov-17 Human mastadenovirus D

SEQ ID NO 1431 KY618676 14-Nov-17 Human mastadenovirus D

SEQ ID NO 1432 KF268335 8-Jun-15 Human mastadenovirus D

SEQ ID NO 1433 KF268207 21 -Apr- 15 Human adenovirus 71

SEQ ID NO 1434 KP641339 8-Jun-15 Human mastadenovirus D

SEQ ID NO 1435 JN226748 23-Jan-15 Human adenovirus 69

SEQ ID NO 1436 JN860678 15-NOV-12 Human adenovirus 68

SEQ ID NO 1437 AP012302 15-Mar-13 Human adenovirus 67

SEQ ID NO 1438 JN860676 31 -May- 13 Human adenovirus 66

SEQ ID NO 1439 AP012285 25-Apr-12 Human adenovirus 65

SEQ ID NO 1440 EF121005 10-Feb-12 Human adenovirus 64

SEQ ID NO 1441 JN935766 29-Mar-12 Human adenovirus 63

SEQ ID NO 1442 JN 162671 28-Feb-14 Human adenovirus 62

SEQ ID NO 1443 JF964962 6-Feb-12 Human adenovirus 61

SEQ ID NO 1444 HQ007053 19-Apr-13 Human mastadenovirus D

SEQ ID NO 1445 JF799911 17-Apr-12 Human mastadenovirus D

SEQ ID NO 1446 HQ883276 24-Aug-12 Human adenovirus 58 SEQ ID NO Accession Number Date Last Description

Modified

SEQ ID NO 1447 HQ003817 20-Dec-17 Human mastadenovirus C

SEQ ID NO 1448 HM770721 30-Oct-14 Human adenovirus 56

SEQ ID NO 1449 FJ643676 2-Feb-10 Human adenovirus 55

SEQ ID NO 1450 AB333801 6-Aug-09 Human adenovirus 54

SEQ ID NO 1451 FJ 169625 17-Apr-12 Human mastadenovirus D

SEQ ID NO 1452 NC_001362 26-Jul-16 Friend murine leukemia virus

SEQ ID NO 1453 NC_001501 20-NOV-17 Moloney murine leukemia virus

SEQ ID NO 1454 NC_001702 5-Feb-l l Murine type C retrovirus

SEQ ID NO 1455 KX087159.1 25-Jun-18 Eastern chimpanzee simian foamy virus

SEQ ID NO 1456 MF280817.1 2-Jul-17 Macaque simian foamy virus

SEQ ID NO 1457 Y08851.1 19-Jun-06 Feline foamy virus

SEQ ID NO 1458 NC_013035 23-Dec-lO Human papillomavirus 116

B. Detectable Moieties

[0296] A detecting agent may comprise a detectable moiety. A detectable moiety may be a small molecule (such as a dye) or a macromolecule. A macromolecule may include polypeptides (such as proteins and/or protein fragments), nucleic acids, carbohydrates, lipids, macrocycles, polyphenols, and/or endogenous macromolecule complexes. A detectable moiety may be a small molecule. A detectable moiety may be a macromolecule.

[0297] A detectable moiety may include a moiety that is detectable by a colorimetric method or a fluorescent method. For example, a colorimetric method may be an assay which utilizes reagents that undergo a measurable color change in the presence of an analyte (such as an enzyme, an antibody, a compound, a hormone). Exemplary colorimetric method may include enzyme- mediated detection method such as tyramide signal amplification (TSA) which utilizes horseradish peroxidase (HRP) to generate a signal when digested by tyramide substrate and 3,3',5,5'-Tetramethylbenzidine (TMB) which generates a blue color upon oxidation to 3,3'5,5'-tetramethylbenzidine diamine in the presence of a peroxidase enzyme such as HRP. A detectable moiety described herein may include a moiety that is detectable by a colorimetric method.

[0298] A detectable moiety may also include a moiety that is detectable by a fluorescent method. Sometimes, the detectable moiety may be a fluorescent moiety. A fluorescent moiety may be a small molecule (such as a dye) or a fluorescently labeled macromolecule. A f uorescently labeled macromolecule may include a fluorescently labeled polypeptide (such as a labeled protein and/or a protein fragment), a fluorescently labeled nucleic acid molecule, a fluorescently labeled carbohydrate, a fluorescently labeled lipid, a fluorescently labeled macrocycle, a fluorescently labeled polyphenol, and/or a fluorescently labeled endogenous macromolecule complex (such as a primary antibody- secondary antibody complex).

[0299] A fluorescent small molecule may comprise rhodamine, rhodol, fluorescein, thiofluorescein, aminofluorescein, carboxyfluorescein, chlorofluorescein, methylfluorescein, sulfofluorescein, aminorhodol, carboxyrhodol, chlororhodol, methylrhodol, sulforhodol; aminorhodamine, carboxyrhodamine, chlororhodamine, methylrhodamine, sulforhodamine, thiorhodamine, cyanine, indocarbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine, cyanine 2, cyanine 3, cyanine 3.5, cyanine 5, cyanine 5.5, cyanine 7, oxadiazole derivatives, pyridyloxazole, nitrobenzoxadiazole, benzoxadiazole, pyren derivatives, cascade blue, oxazine derivatives, Nile red, Nile blue, cresyl violet, oxazine 170, acridine derivatives, proflavin, acridine orange, acridine yellow, arylmethine derivatives, auramine, crystal violet, malachite green, tetrapyrrole derivatives, porphin, phtalocyanine, bilirubin 1- dimethylaminonaphthyl-5-sulfonate, l-anilino-8-naphthalene sulfonate, 2-p-touidinyl-6- naphthalene sulfonate, 3-phenyl-7-isocyanatocoumarin, N-(p-(2- benzoxazolyl)phenyl)maleimide, stilbenes, pyrenes, 6-FAM (Fluorescein), 6-FAM (NHS Ester), 5(6)-FAM, 5-FAM, Fluorescein dT, 5-TAMRA-cadavarine, 2-aminoacridone, HEX, JOE (NHS Ester), MAX, TET, ROX, TAMRA, TARMA™ (NHS Ester), TEX 615, ATTO™ 488, ATTO™ 532, ATTO™ 550, ATTO™ 565, ATTO™ RholOl, ATTO™ 590, ATTO™ 633, ATTO™ 647N, TYE™ 563, TYE™ 665, or TYE™ 705.

[0300] A fluorescent moiety may comprise Cy3, Cy5, Cy5.5, Cy7, Q570, Alexa488,

Alexa555, Alexa594, Alexa647, Alexa680, Alexa 750, Alexa 790, Atto488, Atto532, Atto647N, TexasRed, CF610, Propidium iodide, Quasar 570 (Q570), Quasar 670 (Q670), IRDye700, IRDye800, Indocyanine green, Pacific Blue dye, Pacific Green dye, or Pacific Orange dye.

[0301] A fluorescent moiety may comprise a quantum dot (QD). Quantum dots may be a nanoscale semiconducting photoluminescent material, for example, as described in Alivisatos A.P., "Semiconductor clusters, nanocrystals, and quantum dots," Science 271(5251): 933-937 (1996).

[0302] Exemplary QDs may include, but are not limited to, CdS quantum dots, CdSe quantum dots, CdSe/CdS core/shell quantum dots, CdSe/ZnS core/shell quantum dots, CdTe quantum dots, PbS quantum dots, and/or PbSe quantum dots. As used herein, CdSe/ZnS may mean that a ZnS shell is coated on a CdSe core surface (a "core-shell" quantum dot). The shell materials of core-shell QDs may have a higher bandgap and passivate the core QDs surfaces, resulting in higher quantum yield and higher stability and wider applications than core QDs.

[0303] QDs may absorb a wide spectrum of light, and may be physically tuned with emission bandwidths in various wavelengths. See, e.g., Badolato, et al., Science 208: 1158-61 (2005). For example, the emission bandwidth may be in the visible spectrum (from about 350 to about 750 nm), the ultraviolet-visible spectrum (from about 100 nm to about 750 nm), or in the near- infrared spectrum (from about 750 nm to about 2500 nm). QDs that emit energy in the visible range may include, but are not limited to, CdS, CdSe, CdTe, ZnSe, ZnTe, GaP, and GaAs. QDs that emit energy in the blue to near-ultraviolet range include, but are not limited to, ZnS and GaN. QDs that emit energy in the near-infrared range include, but are not limited to, InP, InAs, InSb, PbS, and PbSe.

[0304] The radius of a QD may be modulated to manipulate the emission bandwidth. For example, a radius of between about 5 and about 6 nm QD may emit wavelengths resulting in emission colors such as orange or red. A radius of between about 2 and about 3 nm may emit wavelengths resulting in emission colors such as blue or green.

[0305] A QD may further form a QD micro structure, which encompasses one or more layers of QD. For example, each quantum dot containing layer may comprise a single type of quantum dot of a specific emission color. For example, each layer may be made of any material suitable for use that (a) allows excitation light to reach the quantum dot and allows fluorescence generated from the quantum dot to pass through the layer(s) for detection and (b) may be combined with a quantum dot to form a layer. Examples of materials that may be used to form layers containing quantum dots include, but are not limited to, inorganic, organic, or polymeric material, each with or without biodegradable properties, and combinations thereof. The layers may comprise silica-based compounds or polymers.

Exemplary silica-based layers may include, but are not limited to, those comprising tetramethoxy silane or tetraethylorthosilicate. Exemplary polymer layers may include, but are not limited to, those comprising polystyrene, poly (methyl methacrylate),

polyhydroxyalkanoate, polylactide, or co-polymers thereof.

[0306] The quantum dot further may comprise a spacer layer which serves as a barrier to prevent interactions between different QD layers, and may be made of any material suitable for use that (a) allows excitation light to reach the quantum dots in the quantum dot containing layer(s) below it and allows fluorescence generated from those quantum dots to pass through it and (b) may segregate the quantum dots in one layer from those in other layers. Examples of materials that may be used to form spacer layers are the same as for the quantum dot containing layers.

[0307] The materials used for the quantum dot containing and spacer layers may be the same or different. The same material may be used in the quantum dot containing layers and the spacer layers.

[0308] The quantum dot containing layers and the spacer layers within a given QD molecule may be any thickness and may be varied. For example, thicker QD-containing layers may allow for the loading of increased QDs in the shell, resulting in greater fluorescence intensity for that layer than for a thinner layer containing the same concentration of QDs. Thus, varying layer thickness may facilitate preparing QD-containing layer of various intensities, thereby generating spectrally distinct QD bar codes. In various instances, the QD-containing layers may be between 5 nm and 500 nm; 10 nm and 500 nm; 5 nm and 100 nm, and 10 nm and 100 nm. Those of skill in the art will understand that other methods for varying intensity also exist, for example, modifying concentrations of the same QD in one micro structure with a first unique barcode compared to a second QD micro structure with a different fluorescent barcode. The ability to vary the intensities for the same QD color allows for an increased number of distinct and distinguishable micro structures (e.g., spectrally distinct barcodes). The spacer layers may be greater than 10 nm, up to approximately 5 μιη thick; the spacer layers may be greater than 10 nm, up to approximately 500 nm thick; the space layers may be greater than 10 nm, up to approximately 100 nm thick.

[0309] The quantum dot-containing and spacer layers may be arranged in any order.

Examples include, but are not limited to, alternating QD-containing layers and spacer layers, or quantum dot containing layers separated by more than one spacer layer. Thus, a "spacer layer" may comprise a single layer, or may comprise two or more such spacer layers.

[0310] The QD micro structure may comprise any number of quantum dot containing layers suitable for use with the micro structure. For example, a micro structure described herein may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, or more quantum dot-containing layers and an appropriate number of spacer layers based on the number of quantum dot-containing layers. Further, the number of quantum dot containing layers in a given micro structure may range from 1 to "m," where "m" is the number of quantum dots that may be used.

[0311] A defined intensity level may refer to a known amount of quantum dots in each quantum dot containing layer, resulting in a known amount of fluorescent intensity generated from the QD containing layer upon appropriate stimulation. Since each QD containing layer has a defined intensity level, each micro structure may possess a defined ratio of fluorescence intensities generated from the various QD-containing layers upon stimulation. This defined ratio is referred to herein as a barcode. Thus, each type of micro structure with the same QD layers possesses a similar barcode that may be distinguished from micro structures with different QD layers.

[0312] Thus, each quantum dot containing layer may comprise a single type of quantum dot of a specific emission color and the layer is produced to possess a defined intensity level, based on the concentration of the QD in the layer. By varying the intensity levels of QDs ("n") in different micro structures and using a variety of different quantum dots ("m"), the number of different unique barcodes (and thus the number of different unique micro structure populations that may be produced) is approximated by the equation, (n m -l) unique codes. This may provide the ability to generate a large number of different populations of micro structures each with its own unique barcode.

[0313] A set of QD-labeled probes may further generate a spectrally distinct barcode. For example, each probe with the set of QD-labeled probes may comprise a QD with a distinct excitation wavelength and the combination of the set may generate a distinct barcode. A set of spectrally distinct QD-labeled probes may be utilized to detect a regulatory element. As such, when detecting two or more regulatory elements, each regulatory element may be spectrally barcoded.

[0314] A quantum dot provided herein may include QDot525, QDot 545, QDot 565, QDot 585, QDot 605, or QDot 655. A probe described herein may comprise a quantum dot. A probe described herein may comprise QDot525, QDot 545, QDot 565, QDot 585, QDot 605, or QDot 655. A probe described herein may comprise QDot525. A probe described herein may comprise QDot 545. A probe described herein may comprise QDot 565. A probe described herein may comprise QDot 585. A probe described herein may comprise QDot 605. A probe described herein may comprise QDot 655.

[0315] A quantum dot may comprise a quantum dot as described in Han et al., "Quantum- dot-tagged microbeads for multiplexed optical coding of biomolecules," Nat. Biotechnol. 19:631-635 (2001); Gao X., "QD barcodes for biosensing and detection," ConfProc IEEE Eng Med Biol Soc 2009: 6372-6373 (2009); and Zrazhevskiy, et al, "Multicolor multicycle molecular profiling with quantum dots for single-cell analysis," Nat Protoc 8: 1852-1869 (2013).

[0316] A QD may further comprise a functional group or attachment moiety. One example of such a QD that has a functional group or attachment moiety is a QD with a carboxylic acid terminated surface, such as those commercially available though, for example, Quantum Dot, Inc., Hayward, CA.

C. Conjugating Moiety

[0317] The probe may include a conjugating moiety. The conjugation moiety may be attached at the 5' terminus, the 3' terminus, or at an internal site. The conjugating moiety may be a nucleotide analog (such as bromodeoxyuridine). The conjugating moiety may be a conjugating functional group. The conjugating functional group may be an azido group or an alkyne group. The probe may further be derivatized through a chemical reaction such as click chemistry. The click chemistry may be a copper(I)-catalyzed [3+2]-Huisgen 1,3-dipolar cyclo-addition of alkynes and azides leading to 1,2,3-triazoles. The click chemistry may be a copper free variant of the above reaction. The click chemistry may be an inverse electron- demand Diels- Alder reaction between a irans-cyclooctadiene and a tetrazine.

[0318] The conjugating moiety may comprise a hapten group. A hapten group may include digoxigenin, 2,4-dinitrophenyl, biotin, avidin, or are selected from azoles, nitroaryl compounds, benzofurazans, triterpenes, ureas, thioureas, rotenones, oxazoles, thiazoles, coumarins, cyclolignans, heterobiaryl compounds, azoaryl compounds or benzodiazepines. A hapten group may include biotin.

[0319] The probe comprising the conjugating moiety may further be linked to a second probe (such as a nucleic acid probe or a polypeptide probe), a fluorescent moiety (such as a dye such as a quantum dot), a target nucleic acid, or a conjugating partner such as a polymer (such as PEG), a macromolecule (such as a carbohydrate, a lipid, a polypeptide), and the like.

Samples

[0320] A sample described herein may be a fresh sample or a fixed sample. The sample may be a fresh sample. The sample may be a fixed sample. The sample may be a live sample. The sample may be subjected to a denaturing condition. The sample may be cryopreserved.

[0321] The sample may be a cell sample. The cell sample may be obtained from the cells or tissue of an animal. The animal cell may comprise a cell from an invertebrate, fish, amphibian, reptile, or mammal. The mammalian cell may be obtained from a primate, ape, equine, bovine, porcine, canine, feline, or rodent. The mammal may be a primate, ape, dog, cat, rabbit, ferret, or the like. The rodent may be a mouse, rat, hamster, gerbil, hamster, chinchilla, or guinea pig. The bird cell may be from a canary, parakeet, or parrot. The reptile cell may be from a turtle, lizard, or snake. The fish cell may be from a tropical fish. For example, the fish cell may be from a zebrafish (such as Danio rerio). The amphibian cell may be from a frog. An invertebrate cell may be from an insect, arthropod, marine invertebrate, or worm. The worm cell may be from a nematode (such as Caenorhabditis elegans). The arthropod cell may be from a tarantula or hermit crab.

[0322] The cell sample may be obtained from a mammalian cell. For example, the mammalian cell may be an epithelial cell, connective tissue cell, hormone secreting cell, a nerve cell, a skeletal muscle cell, a blood cell, an immune system cell, or a stem cell. A cell may be a fresh cell, live cell, fixed cell, intact cell, or cell lysate.

[0323] Cell samples may be cells derived from a cell line. Exemplary cell lines include, but are not limited to, 293A cell line, 293FT cell line, 293F cell line, 293 H cell line, HEK 293 cell line, CHO DG44 cell line, CHO-S cell line, CHO-K1 cell line, Expi293F™ cell line, Flp- In™ T-REx™ 293 cell line, Flp-In™-293 cell line, Flp-In™-3T3 cell line, Flp-In™-BHK cell line, Flp-In™-CHO cell line, Flp-In™-CV-l cell line, Flp-In™-Jurkat cell line,

FreeStyle™ 293-F cell line, FreeStyle™ CHO-S cell line, GripTite™ 293 MSR cell line, GS- CHO cell line, HepaRG™ cell line, T-REx™ Jurkat cell line, Per.C6 cell line, T-REx™-293 cell line, T-REx™-CHO cell line, T-REx™-HeLa cell line, NC-HIMT cell line, and PC 12 cell line.

[0324] The cell sample may be obtained from cells of a primate. The primate may be a human, or a non-human primate. The cell sample may be obtained from a human. For example, the cell sample may comprise cells obtained from blood, urine, stool, saliva, lymph fluid, cerebrospinal fluid, synovial fluid, cystic fluid, ascites, pleural effusion, amniotic fluid, chorionic villus sample, vaginal fluid, interstitial fluid, buccal swab sample, sputum, bronchial lavage, Pap smear sample, or ocular fluid. The cell sample may comprise cells obtained from a blood sample, an aspirate sample, or a smear sample.

[0325] The cell sample may be a circulating tumor cell sample. A circulating tumor cell sample may comprise lymphoma cells, fetal cells, apoptotic cells, epithelia cells, endothelial cells, stem cells, progenitor cells, mesenchymal cells, osteoblast cells, osteocytes, hematopoietic stem cells (HSC) (e.g., a CD34+ HSC), foam cells, adipose cells, transcervical cells, circulating cardiocytes, circulating fibrocytes, circulating cancer stem cells, circulating myocytes, circulating cells from a kidney, circulating cells from a gastrointestinal tract, circulating cells from a lung, circulating cells from reproductive organs, circulating cells from a central nervous system, circulating hepatic cells, circulating cells from a spleen, circulating cells from a thymus, circulating cells from a thyroid, circulating cells from an endocrine gland, circulating cells from a parathyroid, circulating cells from a pituitary, circulating cells from an adrenal gland, circulating cells from islets of Langerhans, circulating cells from a pancreas, circulating cells from a hypothalamus, circulating cells from prostate tissues, circulating cells from breast tissues, circulating cells from circulating retinal cells, circulating ophthalmic cells, circulating auditory cells, circulating epidermal cells, circulating cells from the urinary tract, or combinations thereof.

[0326] The cell can be a T cell. For example, in some embodiments, the T cell can be an engineered T cell transduced to express a chimeric antigen receptor (CAR). The CAR T cell can be engineered to bind to BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY.

[0327] A cell sample may be a peripheral blood mononuclear cell sample.

[0328] A cell sample may comprise cancerous cells. The cancerous cells may form a cancer which may be a solid tumor or a hematologic malignancy. The cancerous cell sample may comprise cells obtained from a solid tumor. The solid tumor may include a sarcoma or a carcinoma. Exemplary sarcoma cell sample may include, but are not limited to, cell sample obtained from alveolar rhabdomyosarcoma, alveolar soft part sarcoma, ameloblastoma, angiosarcoma, chondrosarcoma, chordoma, clear cell sarcoma of soft tissue, dedifferentiated liposarcoma, desmoid, desmoplastic small round cell tumor, embryonal rhabdomyosarcoma, epithelioid fibrosarcoma, epithelioid hemangioendothelioma, epithelioid sarcoma, esthesioneuroblastoma, Ewing sarcoma, extrarenal rhabdoid tumor, extraskeletal myxoid chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, giant cell tumor,

hemangiopericytoma, infantile fibrosarcoma, inflammatory myofibroblastic tumor, Kaposi sarcoma, leiomyosarcoma of bone, liposarcoma, liposarcoma of bone, malignant fibrous histiocytoma (MFH), malignant fibrous histiocytoma (MFH) of bone, malignant

mesenchymoma, malignant peripheral nerve sheath tumor, mesenchymal chondrosarcoma, myxofibrosarcoma, myxoid liposarcoma, myxo inflammatory fibroblastic sarcoma, neoplasms with perivascular epitheioid cell differentiation, osteosarcoma, parosteal osteosarcoma, neoplasm with perivascular epitheioid cell differentiation, periosteal osteosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, PNET/extraskeletal Ewing tumor, rhabdomyosarcoma, round cell liposarcoma, small cell osteosarcoma, solitary fibrous tumor, synovial sarcoma, or telangiectatic osteosarcoma.

[0329] Exemplary carcinoma cell samples may include, but are not limited to, cell samples obtained from an anal cancer, appendix cancer, bile duct cancer (i.e., cholangiocarcinoma), bladder cancer, brain tumor, breast cancer, cervical cancer, colon cancer, cancer of Unknown Primary (CUP), esophageal cancer, eye cancer, fallopian tube cancer, gastroenterological cancer, kidney cancer, liver cancer, lung cancer, medulloblastoma, melanoma, oral cancer, ovarian cancer, pancreatic cancer, parathyroid disease, penile cancer, pituitary tumor, prostate cancer, rectal cancer, skin cancer, stomach cancer, testicular cancer, throat cancer, thyroid cancer, uterine cancer, vaginal cancer, or vulvar cancer.

[0330] The cancerous cell sample may comprise cells obtained from a hematologic malignancy. Hematologic malignancy may comprise a leukemia, a lymphoma, a myeloma, a non-Hodgkin' s lymphoma, or a Hodgkin's lymphoma. The hematologic malignancy may be a T cell based hematologic malignancy. The hematologic malignancy may be a B-cell based hematologic malignancy. Exemplary B-cell based hematologic malignancy may include, but are not limited to, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), high risk CLL, a non-CLL/SLL lymphoma, prolymphocytic leukemia (PLL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Waldenstrom's macroglobulinemia, multiple myeloma, extranodal marginal zone B cell lymphoma, nodal marginal zone B cell lymphoma, Burkitt' s lymphoma, non-Burkitt high grade B cell lymphoma, primary mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor B -lymphoblastic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, or lymphomatoid granulomatosis. Exemplary T cell based hematologic malignancy may include, but are not limited to, peripheral T cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large cell lymphoma, angioimmunoblastic lymphoma, cutaneous T cell lymphoma, adult T cell

leukemia/lymphoma (ATLL), blastic NK-cell lymphoma, enteropathy-type T cell lymphoma, hematosplenic gamma-delta T cell lymphoma, lymphoblastic lymphoma, nasal NK/T cell lymphomas, or treatment-related T cell lymphomas.

[0331] A cell sample described herein may comprise a tumor cell line sample. Exemplary tumor cell line sample may include, but are not limited to, cell samples from tumor cell lines such as 600MPE, AU565, BT-20, BT-474, BT-483, BT-549, Evsa-T, Hs578T, MCF-7, MDA-MB-231, SkBr3, T-47D, HeLa, DU145, PC3, LNCaP, A549, H1299, NCI-H460, A2780, SKOV-3/Luc, Neuro2a, RKO, RKO-AS45-1, HT-29, SW1417, SW948, DLD-1, SW480, Capan-1, MC/9, B72.3, B25.2, B6.2, B38.1, DMS 153, SU.86.86, SNU-182, SNU- 423, SNU-449, SNU-475, SNU-387, Hs 817.T, LMH, LMH/2A, SNU-398, PLHC-1, HepG2/SF, OCI-Lyl, OCI-Ly2, OCI-Ly3, OCI-Ly4, OCI-Ly6, OCI-Ly7, OCI-LylO, OCI- Lyl8, OCI-Lyl9, U2932, DB, HBL-1, RIVA, SUDHL2, TMD8, MECl, MEC2, 8E5, CCRF- CEM, MOLT-3, TALL- 104, AML-193, THP-1, BDCM, HL-60, Jurkat, RPMI 8226, MOLT- 4, RS4, K-562, KASUMI-1, Daudi, GA-10, Raji, JeKo-1, NK-92, and Mino. [0332] A cell sample may comprise cells obtained from a biopsy sample, necropsy sample, or autopsy sample.

[0333] The cell samples (such as a biopsy sample) may be obtained from an individual by any suitable means of obtaining the sample using well-known and routine clinical methods. Procedures for obtaining tissue samples from an individual are well known. For example, procedures for drawing and processing tissue sample such as from a needle aspiration biopsy are well-known and may be employed to obtain a sample for use in the methods provided. Typically, for collection of such a tissue sample, a thin hollow needle is inserted into a mass such as a tumor mass for sampling of cells that, after being stained, will be examined under a microscope.

[0334] A cell may be a live cell. A cell may be a eukaryotic cell. A cell may be a yeast cell. A cell may be a plant cell. A cell may be obtained from an agricultural plant.

[0335] A cell may be a transduced cell. A cell may be a transduced immune cell. A cell may be a transduced T cell. In some embodiments, the transduced cells can be sampled for Nano- FISH several days after transduction. In some embodiments, Nano-FISH can be performed at least 1-3 days after transduction. In some embodiments, Nano-FISH can be performed at least 3-5 days after transduction. In some embodiments, Nano-FISH can be performed at least 5-7 days after transduction. In some embodiments, Nano-FISH can be performed at least 7-10 days after transduction. In some embodiments, Nano-FISH can be performed 3 days after transduction. In some embodiments, Nano-FISH can be performed 4 days after transduction. In some embodiments, Nano-FISH can be performed 5 days after transduction. In some embodiments, Nano-FISH can be performed 6 days after transduction. In some embodiments, the transduced cells of the present disclosure can be stored prior to Nano-FISH experiments while showing the same results as cells that were not stored prior to Nano-FISH. In some embodiments, the transduced cells of the present disclosure can be stored at temperatures of - 196 °C (cryopreserved) for several weeks before conducting Nano-FISH while showing the same results compared to cells that were not frozen and thawed before the Nano-FISH experiment. In some embodiments, the transduced cells of the present disclosure can be stored at temperatures of from -200-190 °C (cryopreserved) for several weeks before conducting Nano-FISH while showing the same results compared to cells that were not frozen and thawed before the Nano-FISH experiment. In some embodiments, the transduced cells can be cryopreserved for at least 1 week. In some embodiments, the transduced cells can be cryopreserved for at least 3 weeks. In some embodiments, the transduced cells can be cryopreserved for at least 5 weeks. In some embodiments, the transduced cells can be cryopreserved for at least 7 week.

[0336] For transduction of a cell, a cell, such as an immune cell (e.g., T cell) of the present disclosure, can require 10-300 units (U) of IL-2 per mL medium for stimulation. In some embodiments, an immune cell can require IL-2 in concentrations of at least 10 U/mL. In some embodiments, an immune cell can require IL-2 in concentrations of at least 20 U/mL. In some embodiments, an immune cell can require IL-2 in concentrations of at least 50 U/mL. In some embodiments, an immune cell can require IL-2 in concentrations of at least 100 U/mL. In some embodiments, an immune cell can require IL-2 in concentrations of at least 200 U/mL. In some embodiments, an immune cell can require IL-2 in concentrations of 20-200 U/mL.

[0337] In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction can alter the number of viral integrants per cell. In some embodiments, the number of viral integrants per cell can be increased when the time of exposure to cytokines (e.g., IL-2) prior to transduction is increased. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction can range from about 2 hrs to about 100 hrs. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction is about 12 hours. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction is about 24 hours. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction is about 48 hours. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction is about 72 hours. In some embodiments, the time of exposure to cytokines (e.g., IL-2) prior to transduction is about 96 hours.

[0338] In some embodiments of the present disclosure, cationic molecules can be used in combination with the compositions and methods of the present disclosure for cell

transduction. In some embodiments, cationic compounds such as protamine, poly-L-lysine, or cationic liposomes and various salts thereof such as hydrogensulfates, hydrochlorides, hydrobromides, can be used to initiate or improve the transduction efficacy of a viral vector. In some embodiments, various concentrations of protamine sulfate can be used to initiate or improve the transfection efficacy of a viral vector as described herein. In some embodiments, the concentrations of protamine sulfate can range from 0-50 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 0-5 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 5-10 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 10-12 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 10-20 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 20-30 μg/mL. In some embodiments, the concentration of protamine sulfate can be from 30-50 μg/mL. In some embodiments, the concentration of protamine sulfate can be 5 μg/mL. In some embodiments, the concentration of protamine sulfate can be 6 μg/mL. In some embodiments, the concentration of protamine sulfate can be 7 μg/mL. In some embodiments, the concentration of protamine sulfate can be 8 μg/mL. In some embodiments, the concentration of protamine sulfate can be 9 μg/mL. In some embodiments, the concentration of protamine sulfate can be 10 μg/mL.

[0339] In some embodiments of the present disclosure, other compounds can be used to enhance the transduction efficacy of a viral vector. For example, compounds that can facilitate colocalization of target cells and virus particles can be used to enhance the transduction efficacy of a viral vector. In some embodiments, the target cells can be suspension cells or adherent cells. In some embodiments, the target cells can be suspension cells such as hematopoietic cells (e.g., CD34+ cells). Compounds that can be used to improve transduction efficiency by facilitating colocalization of target cells and virus particles may include the recombinant human fibronectin fragment retronectin. In some embodiments of the present disclosure, the concentrations of retronectin can range from 0-100 μg/mL. In some embodiments, the concentration of retronectin is from 0-5 μg/mL. In some embodiments, the concentration of retronectin is from 5-15 μg/mL. In some embodiments, the concentration of retronectin is from 10-30 μg/mL. In some embodiments, the concentration of retronectin is from 25-45 μg/mL. In some embodiments, the concentration of retronectin is from 40-50 μg/mL. In some embodiments, the concentration of retronectin is from 50-75 μg/mL. In some embodiments, the concentration of retronectin is from 75-100 μg/mL. In some embodiments, the concentration of retronectin is from 50 μg/mL.

[0340] In some embodiments of the present disclosure, the ratio of added viral vectors to the amount of target cells can range from 0-1000 for cell transduction. In other words, the multiplicity of infection (MOI) that can be used in combination with for cell transduction can range from 0-1000. In some embodiments, the MOI can be 0, thus no viral vector is added. In some embodiments, the MOI can be from 1-5. In some embodiments, the MOI can be 5. In some embodiments, the MOI can be from 5-10. In some embodiments, the MOI can be 10. In some embodiments, the MOI can be from 10-20. In some embodiments, the MOI can be from 20-50. In some embodiments, the MOI can be from 25. In some embodiments, the MOI can be from 35. In some embodiments, the MOI can be from 50-100. In some embodiments, the MOI can be 50. In some embodiments, the MOI can be from 100. In some embodiments, the MOI can be at least 100. In some embodiments, the MOI can be at least 500. In some embodiments, the MOI can be at least 1000.

Detection of a Target Nucleic Acid Sequence

[0341] FIG. 26 shows a flowchart for a method 200 of detecting a target nucleic acid sequence. The method may comprise an operation 210 of providing one or more probes capable of binding to a target nucleic acid sequence, as described herein. The method may comprise an operation 220 of binding the one or more probes to the target nucleic acid sequence, as described herein. The method may comprise an operation 230 of detecting a signal associated with binding of the one or more probes to the target nucleic acid sequence, as described herein.

[0342] The target nucleic acid sequence may be detected in an intact cell. The target nucleic acid sequence may be detected in a fixed cell. The target nucleic sequence may be detected in a lysate or chromatin spread.

[0343] A probe may be used to detect a nucleic acid sequence in a sample. For example, a probe comprising a probe sequence capable of binding a nucleic acid sequence (such as a target nucleic acid sequence) and a detectable label (such as a detectable agent) may be used to detect the nucleic acid sequence. A method for detecting a nucleic acid sequence may comprise contacting a nucleic acid sequence with a probe comprising a probe sequence configured to bind at least a portion of the nucleic acid sequence and detecting the probe (such as detecting the detectable label of the probe). The detection of a nucleic acid sequence may comprise binding the probe to the nucleic acid sequence. For example, the detection of a nucleic acid sequence may comprise binding the probe sequence, such as the sequence of an oligonucleotide probe, to a target nucleic acid sequence. In some cases, the detection of a nucleic acid sequence may comprise hybridizing the probe sequence (such as the nucleic acid binding region) of a nucleic acid probe to a target nucleic acid sequence. The nucleic acid sequence may be a virus nucleic acid sequence. The nucleic acid sequence may be an agricultural viral nucleic acid sequence. The nucleic acid sequence may be a lentivirus nucleic acid sequence, an adenovirus nucleic acid sequence, an adeno-associated virus nucleic acid sequence, or a retrovirus nucleic acid sequence.

[0344] A nucleic acid sequence may be contacted with a plurality of probes. A nucleic acid sequence may be contacted with a number of probes ranging from about 1 to about 108 probes, from about 2 to about 107 probes, from about 10 to about 106 probes, from about 100 to about 105 probes, from about 1,000 to about 104 probes, from about 1,000 to about 5,000 probes, from about 1,000 probes to about 50,000 probes, from about 1,000 to about 105 probes, from about 1,000 to about 500,000 probes, from about 1,000 probes to about 106 probes, from about 1,000 probes to about 50 million probes, or from about 1,000 probes to about 108 probes. The probes of the plurality of probes may be the same. A plurality of probes may have sequences such that the probes are tiled across the nucleic acid sequence. Each probe can bind to a target nucleic acid sequence along the nucleic acid sequence. The probes of a plurality may be different. A first probe of the plurality of probes may be different than a second probe of the plurality of probes. The plurality of probes may bind to the nucleic acid sequence with from 0 to 10 nucleotides separating each probe.

[0345] A nucleic acid sequence may be washed after it has been contacted with a probe. Washing a nucleic acid sequence after it has been contacted with a probe may reduce background signal for detection of the detectable label of the probe.

[0346] A nucleic acid sequence (such as a target nucleic acid sequence) can be contacted by a plurality of probes. A nucleic acid sequence can be contacted with a plurality of types of probes. That is, a method of detection of a nucleic acid sequence (such as a target nucleic acid sequence) may comprise contacting the target nucleic acid sequence with a plurality of sets of probes (such as a plurality of types of probes). A first probe set (such as a first type of probe) may be different from a second probe set (such a second type of probe) in that the first probe type comprises a first probe sequence which is different than the probe sequence of the second probe type. The probe sequence of a first type of probe may be the same as the probe sequence of a second type of probe. A first probe set may comprise a first detectable label and a first probe sequence and a second probe set may comprise a second detectable label and a second probe sequence, wherein the first and second probe sequences are the same and the first and second detectable labels are different. The first and second probe sequences may be different and the first and second detectable labels of a first and second probe set may be the same. The first and second probe sequences of a first and second probe set may be different and the first and second detectable labels of a first and second probe set may be different. A method of detecting a nucleic acid sequence may comprise contacting a nucleic acid sequence with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 types of probes.

[0347] A first probe sequence may be configured to specifically recognize (such as to bind to or to hybridize with) a first nucleic acid sequence (such as a first target nucleic acid sequence). A second probe sequence may be configured to specifically recognize (such as to bind to or to hybridize with) a second nucleic acid sequence (such as a second target nucleic acid sequence). [0348] A detectable label may be detected with a detector. A detector may detect the signal intensity of the detectable label. A detector may spatially distinguish between two detectable labels. A detector may also distinguish between a first and second detectable label based on the spectral pattern produced by the first and second detectable labels, wherein the first and second detectable label do not produce an identical spectral intensity pattern. For example, a detector may distinguish between a first and second detectable signal, wherein the

wavelength of the signal produced by the first detectable label is not the same as the wavelength of the signal produced by the second detectable label. A detector may resolve (such as by spatially distinguishing or spectrally distinguishing) a first and second detectable label that are less than 1 kb apart, less than kb apart, less than kb apart, less than 2 kb apart, less than 2.5 kb apart, less than 3 kb apart, less than 3.5 kb apart, less than 4 kb apart, less than 4.5 kb apart, less than 5 kb apart, less than 5.5 kb apart, less than 6 kb apart, less than 6.5 kb apart, less than 7 kb apart, less than 7.5 kb apart, less than 8 kb apart, less than 8.5 kb apart, less than 9 kb apart, less than 9.5 kb apart, less than 10 kb apart, less than 10.5 kb apart, less than 11 kb apart, less than 11.5 kb apart, less than 12 kb apart, less than 20 kb apart, less than 50 kb apart, or less than 100 kb apart. The detectable label of the probe may be detected optically. For example, a detectable label of a probe may be detected by light microscopy, fluorescence microscopy, or chromatography. Detection of the detectable label of a probe may comprise stimulating the probe or a portion thereof (such as the detectable label) with a source of radiation (such as a light source, such as a laser). Detection of the detectable label of a probe may also comprise an enzymatic reaction.

[0349] Detection of the target nucleic acid sequence may be within a period of not more than 48 hours, not more than 36 hours, not more than 24 hours, not more than 23 hours, not more than 22 hours, not more than 21 hours, not more than 20 hours, not more than 19 hours, not more than 18 hours, not more than 17 hours, 1 not more than 6 hours, not more than 15 hours, not more than 14 hours, not more than 13 hours, or not more than 12 hours.

[0350] Determining the presence of a genetic modification in a cell using the Nano-FISH method described herein may be useful is assessing the phenotype of the cell resulting from the genetic modification. A method for assessing a phenotype of an intact genetically modified cell may comprise: a) providing the intact genetically modified cell comprising a target nucleic acid sequence less than 2.5 kilobases in length; b) contacting the intact genetically modified cell with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the target nucleic acid sequence; c) detecting a presence of the first detectable label in the intact cell, wherein the presence of the first detectable label indicates the presence of the target nucleic acid sequence; d) determining a phenotype of the intact genetically modified cell; and e) correlating the phenotype of the intact genetically modified cell with the presence of the target nucleic acid sequence. The method may further comprise determining a number or location of genetic modifications in the intact genetically modified cell. The method may further comprise f) selecting a first intact genetically modified cell comprising a phenotype of interest; g) determining a set of conditions used for a genetic modification of the first intact genetically modified cell; and h) preparing a second genetically modified cell using the set of conditions for genetic modification. The intact genetically modified cell may be a eukaryotic cell that was genetically modified. The intact genetically modified cell may be a bacteria cell that was genetically modified. The intact genetically modified cell may be a mammalian cell that was genetically modified. The intact genetically modified cell may be any cell as described herein that was genetically modified. The phenotype may be a product expressed as a result of the genetic modification of the cell. The phenotype may be an increased level or decreased level of the product expressed as a result of the genetic modification of the cell. The phenotype may be an increased quality of the product expressed as a result of the genetic modification of the cell. The expressed product may be protein, such as an enzyme. The expressed product may be a transgene protein, RNA, or a secondary product of the genetic modification. For example, if an enzyme is produced as a result of the genetic modification of the cell, a secondary product of the genetic modification is a product of the enzyme.

[0351] Determining the number of target nucleic acid sequences in a cell may be useful in determining the phenotype of the cell. Cells with a specific number of target nucleic acid sequences may be tested for increased cellular activity, decreased cellular activity, or toxicity. Increased cellular activity may be increased expression of a protein or a cellular product. Decreased cellular activity may be decreased expression of a protein or a cellular product. Toxicity may be a result of cellular activity that may be too high or too low, resulting in cell death. For example, the contacting a sample of virally transduced cells with a probe configured to bind to a particular target viral nucleic acid sequence and then determining the number of viral integrants may be an expedient means of determining whether virus has successfully integrated in the cells of the sample in way in which a desired therapeutic effect may result if given to a patient as a therapy.

[0352] Determining the presence, absence, identity, spatial position or sequence position of a target nucleic acid sequence in a sample may be useful in determining a condition of a patient. For example, the contacting a sample of cells with a probe configured to bind to a particular target nucleic acid sequence and then determining the number of target nucleic acid sequences in the cell may be an expedient means of determining the number of target nucleic acid sequences may be affecting the cell phenotype or function. For example, contacting a patient sample with a probe configured to bind to a particular nucleic acid sequence may be an expedient means of determining whether the patient has the nucleic acid sequence. As another example, contacting a sample of virally transduced cells with a probe configured to bind to a particular target viral nucleic acid sequence may be an expedient means of determining whether virus has successfully integrated in the cells of the sample. Similarly, contacting a patient sample with a plurality of types of probes, each configured to bind to a different nucleic acid sequence, may be an expedient means of screening patients for various genetic or acquired conditions, such as inherited mutations.

High-throughput Assay

[0353] In some embodiments, the present disclosure provides methods of high-throughput assaying of target nucleic acid cells in multi-well format. For example, the present disclosure provides methods for depositing cells in at least 24 wells, hybridizing oligonucleotide Nano- FISH probes with cells after denaturation, covering cells in each well with a glass coverslip, and imaging the cells with the microscopy techniques disclosed herein. As an example, PLL- coated 24-well glass-bottom plates can be used to hold 24 samples, wherein each sample contains a cell population. The cell population in each well can be the same or the cell population in each well can be different. Thus, at least 24 unique samples can be processed at the same time. Cells can be deposited into the 24-well plate, treated with fixative solution (e.g., 3 parts methanol and 1 part glacial acetic acid), washed, and hybridized to

oligonucleotide Nano-FISH probes. The 24-well plate can then be washed and cells can be mounted with glass coverslips containing an anti-fade solution (e.g., Prolong Gold) prior to imaging. In some embodiments, up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates can be simultaneously processed.

A. Quantification of a Target Nucleic Acid Sequence in a Cell

[0354] A method of detecting or determining the presence of a nucleic acid sequence may comprise determining the number of probes associated with the nucleic acid sequence. A method of detecting or determining the presence of a nucleic acid sequence may comprise determining the number of probes hybridized to the nucleic acid sequence.

[0355] It may also be possible to determine the quantity of target nucleic acid sequences in this manner. If a viral nucleic acid sequence comprises the target nucleic acid sequence, the number of viral nucleic acid sequences may be quantified using the methods described herein. Quantification of the number of viral nucleic acid sequences in a sample (such as a cell comprising viral integrations) may be useful in determining the multiplicity of infection. This quantification may also be useful for methods of enriching heterogeneous populations of transduced cells to a more homogenous cell population or to a cell population comprising a greater percentage of cells comprising a specific number or a specific range of viral integrations. Quantification of target nucleic acid sequences in a sample using the methods, compositions, and systems described herein may be useful in determining the number of repeated sequences in a nucleic acid of a sample.

[0356] In some embodiments, this method can be used for quantifying populations of cells transduced to express chimeric antigen receptors (CARs) in order to determine the average number of viral insertions per cell or the distribution of viral insertions per cell within the cell populations.

[0357] For example, a Nano-FISH probe or a Nano-FISH probe set of this disclosure, such as any one or more than one of SEQ ID NO: 1212 - SEQ ID NO: 1281, can be used to verify the number of viral insertions in T cells that have been engineered to express CARs, such as BCMA, CD19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY. Thus, the Nano-FISH probe or Nano-FISH probe sets of the present disclosure can be used as a quality control step to verify that engineered CAR T cells have truly been transduced with a vector encoding for a given CAR, prior to administering the CAR T cells to a subject in need thereof. For example, in some embodiments a T cell from a human donor is transduced with the lentivirus vector encoding for a CAR against BCMA. A subset of the engineered CAR T cells can be subject to viral Nano-FISH validation wherein, the CAR T cells are hybridized to a Nano-FISH probe or Nano-FISH probe set of the present disclosure and imaged to detect and quantify spots in the cell nuclei corresponding to viral insertions. The engineered CAR T cells can, thus, be verified for successful transduction of the CAR against BCMA. Furthermore, the engineered CAR T cells can, thus, be characterized for the average number of insertions per cell and/or the distribution of viral insertions per cell. Viral Nano-FISH can provide these valuable metrics characterizing the heterogeneity and quality of the engineered T cells prior to administration to a subject in need thereof. The above described methods can be used to validate CAR T cells engineered to target any of the following: BCMA for therapeutic use in a subject with relapsed/refractor multiple myeloma, CD19 for therapeutic use in a subject with non-Hodgkin lymphoma, CD22 for therapeutic use in a subject with pediatric acute lymphoblastic leukemia (ALL) or non-Hodgkin lymphoma, WT1 for therapeutic use in a subject with acute myeloid leukemia, non-small cell lung cancer (NSCLC) or mesothelioma, L1CAM for therapeutic use in a subject with pediatric neuroblastoma, MUC16 for therapeutic use in a subject with ovarian cancer, ROR1 for therapeutic use in a subject with NSCLC or triple-negative breast cancer, or LeY for therapeutic use in a subject with lung cancer.

[0358] In some embodiments, this method can be used for quantifying populations of CD34+ hematopoietic stem cells (HSCs) transduced to express a gene of interest for the purpose of gene therapy, in order to determine the average number of viral insertions per cell or the distribution of viral insertions per cell within the cell populations.

[0359] For example, a Nano-FISH probe or a Nano-FISH probe set of this disclosure, such as any one or more than one of SEQ ID NO: 930 - SEQ ID NO: 1211, can be used to verify the number of viral insertions in CD34+ cells that have been engineered with any vector, such as a lentivirus vector or an adeno-associated virus vector to express any gene of interest. Thus, the Nano-FISH probe or Nano-FISH probe sets of the present disclosure can be used as a quality control step to verify that engineered CD34+ cells have truly been transduced with a vector encoding for a given gene, prior to administering the engineered CD34+ cells to a subject in need thereof. For example, in some embodiments a CD34+ cell from a human donor is transduced with the lentivirus vector encoding for any gene. A subset of the engineered CD34+ cells can be subject to viral Nano-FISH validation wherein, the CD34+ cells are hybridized to a Nano-FISH probe or Nano-FISH probe set of the present disclosure and imaged to detect and quantify spots in the cell nuclei corresponding to viral insertions. The engineered CD34+ cells can, thus, be verified for successful transduction of any gene. Furthermore, the engineered CD34+ cells can, thus, be characterized for the average number of insertions per cell and/or the distribution of viral insertions per cell. Viral Nano-FISH can provide these valuable metrics characterizing the heterogeneity and quality of the engineered CD34+ cells prior to administration to a subject in need thereof. The above described methods can be used to validate CD34+ cells engineered to in any of the following gene therapies: thalassemia, sickle cell disease, muscular dystrophy, or an immune disorder.

B. Enrichment and Optimization for the Number of Target Nucleic Acid Sequences in a Cell

[0360] The quantification of a target nucleic acid sequence, such as a viral nucleic acid sequence, may allow for the precise tuning of per-cell viral integrant number among a pool of cells transduced with a virus, such as a retrovirus. [0361] Viral transduction of cells may be heterogeneous, producing cells with no viral integrant, a single copy of a viral integrant, or two or more copies of a viral integrant. Using Nano-FISH, a pool of cells with a consistent number of viral integrants may be produced, wherein cells comprising an undesirable number of viral integrants (e.g., too many or no viral integrants) may be reduced or eliminated. Viral integrants may be detected using the methods as described herein for Nano-FISH, also referred to herein as "viral Nano-FISH." This may use microscopic imaging of fixed cells, and thus the imaged cells may not themselves be collected for subsequent use. However, pairing the Nano-FISH with a statistical approach may allow for (i) inferring the distribution of viral integrants in subpools of cells expanding in culture, and (ii) combining subpools to create a refined pool of cells with uniform viral integrants number. The pool of cells with the uniform number of viral integrants may be a therapeutic used to treat a disease.

[0362] In some embodiments, this method may be used for enriching populations of cells transduced to express chimeric antigen receptors (CARs) in order to deliver a cell population with a uniform number of CAR integrations to a patient as a cancer therapy.

[0363] The enrichment process may comprise the following steps: a) quantify the number of viral integrants in a sample from a source pool of cells; b) subdivide the remaining cells of the source pool into K subpools, each with approximately N cells (the value of N may be chosen to ensure a high likelihood of subpools having zero or a greatly reduced fraction of cells with more than one viral integrant; c) allow each subpool to undergo multiple cell divisions to create cell clones with identical numbers of viral integrants per cell; d) perform Nano-FISH on a representative sample from each subpool to assess the number of viral integrants in each cell; e) based on the assessment of step d) estimate the distribution of viral integrants for each subpool and eliminate the subpools with the unfavorable distribution of viral integrants; and f) combine the remaining subpools to create a single enriched pool comprising cells with a more homogenous number of viral integrants.

[0364] In some instances, the number of cell divisions and fraction of cells drawn for Nano- FISH analysis may be selected to ensure a high likelihood of detecting the presence of a multiple integration event given the random set of cells drawn. In some instances, any subpool may be eliminated if the proportion of cells with more than one viral integrants exceeds a specified threshold (which may be 0). Subpools may also be eliminated if the proportion of cells with no viral integrant is above a specified threshold. This secondary selection criterion may increase the relative abundance of the single viral integrant phenotype. [0365] The above method for enrichment may allow numerous parameters to be specified in order to achieve a given goal. These parameters may include the number of cells per subpool, the number of subpools, the number of cell divisions (i.e., time in culture), and fraction of cells withdrawn for Nano-FISH. In addition, the optimal protocol may depend on the underlying rate of multiple viral insertions and the probability of detecting a spot with Nano- FISH. Finally, the approach may depend on the tolerance for allowing cells with multiple or no viral integrants into the enriched pool.

[0366] In some cases, subpools may be enriched so that no cells comprise multiple integrants. To achieve this, for example, a stastical model may be used. For example, the probability of a given pool of N cells containing zero cells with multiple insertions is given by (1 -p . If there are K subpools, then the total number of cells contained in subpools without any multiple insertions may be M = KN( l - p) N . Therefore, K = M/[N( l - p) N ] subpools may be needed to achieve a total of M progenitor cells without multiple

integrations. The optimal value of N may be l/p.

[0367] In addition to the parameters N and K, the target number of cell division cycles D and fraction of cells F to be withdrawn for Nano-FISH may need to be determined. For this determination, all cells may undergo the same number of cell divisions, resulting in 2 D copies of each. Thus, the probability of withdrawing k of the cells with 2 integrants in a fraction F of all cells in the subpool may be given by P(klN,D,F) a hypergeo metric probability distribution with 2 D positive items in N2 D total items with FN2 D drawn from the total. In some cases, the likelihood of a Nano-FISH spot being detected may be S, then the overall probability of detection may be given by

[0368] Determining the presence, absence, identity, spatial position or sequence position of a target nucleic acid sequence in a sample may be useful in determining a condition of a patient. For example, contacting a patient sample with a probe configured to bind to a particular nucleic acid sequence may be an expedient means of determining whether the patient has the nucleic acid sequence. Similarly, contacting a patient sample with a plurality of types of probes, each configured to bind to a different nucleic acid sequence, may be an expedient means of screening patients for various genetic or acquired conditions, such as inherited mutations. C. Determination of the Spatial Position of a Target Nucleic Acid Sequence

[0369] FIG. 27 shows a flowchart for a method 300 of determining the spatial position of a nucleic acid sequence. The method may comprise an operation 310 of providing one or more probes capable of binding to a target nucleic acid sequence, as described herein. The method may comprise an operation 320 of binding the one or more probes to the target nucleic acid sequence, as described herein. The method may comprise an operation 330 of imaging a signal associated with binding of the one or more probes to the target nucleic acid sequence, as described herein.

[0370] A method of detecting or determining the presence of a nucleic acid sequence may comprise determining the spatial position of a nucleic acid sequence (such as a target nucleic acid sequence). Determining the spatial position of a nucleic acid sequence may comprise contacting a nucleic acid sequence with a probe, which may comprise a detectable label and a probe sequence configured to bind to the nucleic acid sequence, and detecting the detectable label of the probe.

[0371] The spatial position of the nucleic acid sequence may be determined relative to features of the sample (such as features of a cell), structures of the sample (such structures or organelles of the cell), or other nucleic acids by using the same or a different imaging modality to detect the reference features, structures, or nucleic acids. For instance, the spatial position of a nucleic acid sequence in a cell relative to the nucleus of a cell by using a plurality of antibodies with a detectable label to counter-label structures of the cell, such as the cell membrane. A cell line expressing a detectable label (such as a fusion protein with a structural protein expressed by the cell) may be used to determine spatial position of a nucleic acid sequence in a cell. If the target nucleic acid sequence comprises a viral nucleic acid sequence, the spatial location of the viral nucleic acid sequence may be determined by the methods as described herein.

[0372] Data collected from detection of all or a portion of the detectable labels in a sample may be used to form one or more two-dimensional images or a three-dimensional rendering or to make calculations determining or estimating the spatial position of the target nucleic acid sequence.

[0373] A first probe comprising a first detectable label and a first probe sequence configured to bind to a nucleic acid sequence (such as a target nucleic acid sequence) may be used as a reference position for a second probe comprising a second detectable label and a second probe sequence configured to bind to a second nucleic acid sequence (such as a second target nucleic acid sequence). For example, a first probe specific to a first target nucleic acid sequence of a nucleic acid with a known or anchored position on the nucleic acid may be used as a reference to determine the spatial position of a second target nucleic acid sequence bound by a second probe prior to or during imaging.

D. Detection of the Sequence Position of a Target Nucleic Acid Sequence

[0374] FIG. 28 shows a flowchart for a method 400 of detecting the sequence position of a nucleic acid sequence. The method may comprise an operation 410 of providing a first set of one or more probes capable of binding to one or more reference nucleic acid sequences with known positions in the genome, as described herein. The method may comprise an operation 420 of binding the first set of one or more probes to the one or more reference nucleic acid sequences, as described herein. The method may comprise an operation 430 of providing a second set of one or more probes capable of binding to a target nucleic acid sequence, as described herein. The method may comprise an operation 440 of binding the second set of one or more probes to the target nucleic acid sequence, as described herein. The method may comprise an operation 450 of detecting a signal associated with binding of the first set of one or more probes to the one or more reference nucleic acid sequences and of the second set of one or more probes to the target nucleic acid sequence, as described herein. The method may comprise an operation 460 of comparing the signals associated with binding of the first set of one or more probes to the reference nucleic acid sequences to the signal associated with binding of the second set of one or more probes to the target nucleic acid sequence.

[0375] A method of detecting or determining the presence of a nucleic acid sequence may comprise determining the sequence position of a nucleic acid sequence (such as a target nucleic acid sequence). For example, a probe with a probe sequence configured to recognize a first target sequence with a known position in the sequence of a nucleic acid may be used as reference for calculations or estimations of the sequence position of a second target nucleic acid sequence on the nucleic acid. For example, a first probe having a probe sequence configured to recognize a first target sequence with a first known position in the sequence of a nucleic acid and a second probe having a probe sequence configured to recognize a second target nucleic acid sequence with a second known position in the sequence of the nucleic acid may be used as reference points for a third probe configured to recognize a third target nucleic acid sequence with an unknown position in the nucleic acid. The relative sequence position of the third target nucleic acid sequence may be determined or estimated by comparing it to the positions of the first and second target nucleic acid sequences, as indicated by the signals from the first and second probes. E. Detection of Target Nucleic Acid Sequences in a Sample Relative to a Control

[0376] FIG. 29 shows a flowchart for a method 500 of detecting a nucleic acid in a sample relative to a control. The method may comprise an operation 510 of providing a one or more probes capable of binding to a target nucleic acid sequence in a reference sample and a target nucleic acid sequence in a sample under test, as described herein. The method may comprise an operation 520 of binding the one or more probes to the target nucleic acid sequence in the reference sample and the target nucleic acid sequence in the sample under test, as described herein. The method may comprise an operation 530 of detecting a signal associated with binding of the set of one or more probes to the target nucleic acid sequence in the reference sample and the target nucleic acid sequence in the sample being tested, as described herein. The method may comprise an operation 540 of comparing the signal associated with binding of the one or more probes to the target nucleic acid sequence in the reference sample to the signal associated with binding of the one or more probes to the target nucleic acid sequence in the sample under test, as described herein.

F. Correlation of the Detection of a Target Nucleic Acid Sequence in a Sample with a Target Protein Expression

[0377] The detection of a target nucleic acid sequence in a cell may be correlated with a target protein expression in the same cell. The method may comprise providing a one or more probes capable of binding to a target nucleic acid sequence in a sample and a target nucleic acid sequence in a sample being tested, as described herein, and further comprise providing one or more detectable labels to detect the target protein expression. The presence, absence, or quantity of the detected target nucleic acid sequence may be correlated to the presence, absence, or quantity of the target protein expression. This information may be used to further investigate the relationship between the target nucleic acid sequence and the target protein, and/or how different treatments may perturb this correlation.

[0378] A viral nucleic acid sequence may be introduced into a cell by a viral vector, such as a virus particle, which may be called a virus or a virion. A virus particle may also be introduced to a cell by a bacteriophage. A virus particle may introduce a viral nucleic acid sequence into a cell through a series of steps that may include attachment (such as binding) of the virus particle to the cell membrane of the cell, internalization (such as penetration) of the viral particle into the cell (such as via formation of a vesicle around the virus particle), breakdown of the vesicle containing the virus particle (such as through uncoating, which may comprise breakdown of the portions of the virus such as a the viral coat), expression of the viral nucleic acid sequence or a portion thereof, processing and/or maturation of the viral nucleic acid sequence's expression product, incorporation of the viral nucleic acid sequence or its expression product into a DNA sequence of the host cell, and/or or replication of the viral nucleic acid sequence or a portion thereof. A viral nucleic acid sequence may be targeted to the nucleus of the cell after internalization.

[0379] Introduction of a viral nucleic acid sequence into a cell by a virus particle may lead to permanent integration of the viral nucleic acid sequence into a DNA sequence of the cell. For example, a viral nucleic acid sequence introduced into a cell by a retrovirus, such as a lentivirus or adeno-associated virus, may be integrated directly into the DNA sequence of a cell. Introduction of a viral nucleic acid sequence into a cell by a virus particle may not lead to integration into a DNA sequence of the cell.

[0380] A viral particle may be a double- stranded DNA (dsDNA) virus, a single- stranded DNA (ssDNA) virus, a double- stranded RNA (dsRNA) virus, a sense single- stranded RNA (+ssRNA) virus, an antisense single- stranded RNA (-ssRNA). Some viral particles may introduce a reverse transcriptase, integrase, and/or protease (such as a reverse transcriptase encoded by a pol gene sequence, which may be a portion of the viral nucleic acid sequence) into the infected cell. Examples of virus particles that introduce reverse transcriptase into an infected cell include single- stranded reverse transcriptase RNA (ssRNA-RT) viruses and double- stranded DNA reverse transcriptase (dsDNA-RT) viruses. Examples of ssRNA-RT viruses include metaviridae, pseudoviridae, and retroviridae. Examples of dsDNA-RT viruses include hepadnaviridae (e.g., Hepatitis B virus) and caulimoviridae. Additional examples of viruses include lentiviruses, adenoviruses, adeno-associated viruses, and retroviruses.

[0381] A viral nucleic acid sequence may be introduced into a cell by a non- viral vector, such as a plasmid. A plasmid may be a DNA polynucleotide encoding one or more genes. A plasmid may comprise a viral nucleic acid sequence. A viral nucleic acid sequence of a plasmid may encode a non-coding RNA (such as a transfer RNA, a ribosomal RNA, a microRNA, an siRNA, a snRNA, a shRNA, an exRNA, a piwi RNA, a snoRNA, a scaRNA, or a long non-coding RNA) or a coding RNA (such as a messenger RNA). A coding RNA may be modified (such as by splicing, poly-adenylation, or addition of a 5' cap) or translated into a polypeptide sequence (such as a protein) after being transcribed from a DNA nucleic acid sequence of a plasmid.

G. Detection of Infection/Transduction Efficacy of a Virus/Viral Vector

[0382] The Nano-FISH compositions and methods of the present disclosure can be used to determine the infection/transduction efficacy of a virus/viral vector for a population of cells and can reveal different patterns of insertion at the same MOI for a population of cells. A population of cells can be variably susceptible to viral infection (e.g., natural viral infection or transduction with a viral vector). Differences in susceptibility of infection/transduction may be driven by biological differences among cells, including their rate of division, and distribution of receptors capable of binding viral envelope proteins such as the lentivirus envelope proteins. For example, a cell population after infection/transduction can be heterogeneous with some cells of the population not being susceptible to

infection/transduction as shown by no or a low number of viral integrants, and a small highly- susceptible population of the cell population with a higher number of viral integrants. As another example, this heterogeneity can lead to non-random and unexpectedly high numbers of insertions that can be detected in a small population of cells five days post-transduction or after infection.

[0383] Furthermore, Nano-FISH detection of viral integrants can be used to select an optimal viral envelope protein to pseudotype lentivirus for use in cell types for which the most popular lentivirus envelope, Vescicular Stomatitis Virus Gylcoprotein (VSVG), does not result in high transduction efficacy, such as cells which lack the LDLR receptor to which VSVG binds and thus are not highly susceptible to infection. Therefore, Nano-FISH compositions and methods of the present disclosure can be used to test new envelope proteins that have been rationally designed from existing virus envelopes for their transduction efficacy in hard-to-transduce cell types. Current methods for evaluating transduction efficacy for new envelope proteins in hard to transduce cell types use methods, such as qPCR and/or florescent cell sorting of a reporter gene. However, these methods do not reveal the single- cell distribution of insertions and therefore will not reveal unexpected accumulation of viral integrants in some cells or a lack of insertions in other cells. In contrast, Nano-FISH can be used to determine the optimal choice of envelope for different cell types to reveal the true biodistribution (also referred to as population distribution or cellular distribution) and transduction efficacy of each cell type.

[0384] Additionally, Nano-FISH detection of viral integrants can be used to tune the growth conditions of cells prior to transduction. For example, by altering growth conditions and length of time exposed to cytokines in the media for human primary CD34+ cells, the viral integrant profile of transduced cells can be altered. In some embodiments, a longer exposure of human primary CD34+ cells to cytokines can correspond with an increase in the number of cells with a number of viral integrants for a specific MOI. Therefore, determining the number of viral integrants in a cell of a cell population can be used as a quality control tool to assess transfection efficacy within a clinically relevant cell population. For example, the clinical management of chimeric antigen receptor (CAR) T cell treatments currently lacks reliable, cost-effective, and easy-to-use quality control tools to assess the number of CAR insertions per cell within the CAR T cell population. Thus, the Nano-FISH compositions and methods of the present disclosure can be used to increase the therapeutic efficacy and safety of cell (e.g., CAR T cell) therapies by providing more accurate and efficient methods for determining the presence of a target nucleic acid sequence in a cell or in a cell population.

[0385] Lastly, Nano-FISH detection of viral integrants can be used to detect HIV insertions in patient cells where the virus is latent, integrated in to genome but not currently active, for the evaluation and development of a better understanding of HIV latency. HIV latency poses a barrier for curing the disease because inactive virus can be difficult to target by drug or immunotherapy. Furthermore, the identity and number of T cells (or other cell types) latently infected with HIV is not well characterized and likely varies between patients. However, Nano-FISH using probes to target the HIV genome or universal lentivirus backbone probes in patient cells can be used detect HIV integrations in otherwise healthy cells. Other features of the cell can be used to determine cell type, and frequency of integrations using the Nano- FISH methods described herein can be used to evaluate the size of the viral reservoir, which can further guide patient care and inform antiretroviral treatment outcomes.

Optical Detection of Nucleic Acid Sequences

[0386] Described herein is a method of detecting a nucleic acid sequence, such as a viral nucleic acid sequence integrated into the DNA of a cell. The detection may encompass identification of the nucleic acid sequence, determining the presence or absence of the nucleic acid sequence, and/or determining the activity of the nucleic acid sequence. A method of detecting a nucleic acid sequence may include contacting a cell sample with a detection agent, binding the detection agent to the nucleic acid sequence, and analyzing a detection profile from the detection agent to determine the presence, absence, or activity of the nucleic acid sequence.

[0387] The method may involve utilizing one or more intrinsic properties associated with a detection agent to aid in detection of the nucleic acid sequence. The intrinsic properties may encompass the size of the detection agent, the intensity of the signal, and the location of the detection agent. The size of the detection agent may include the length of the probe and/or the size of the detectable moiety (such as the size of a fluorescent dye molecule) may modulate the specificity of interaction with a regulatory element. The intensity of the signal from the detection agent may correlate to the sensitivity of detection. For example, a detection agent with a molar extinction coefficient of about 0.5-5 x 10 6 M^cm "1 may have a higher intensity signal relative to a detection agent with a molar extinction coefficient outside of the 0.5-5 x 10 6 M "1 cm "1 range and may have lower attenuation due to scattering and absorption. Further, a detection agent with a longer excited state lifetime and a large Stoke shift (measured by the distance between the excitation and emission peaks) may further improve the sensitivity of detection. The location of the detection agent may, for example, provide the activity state of a nucleic acid sequence. A combination of intrinsic properties of the detection agent may be used to detect a regulatory element of interest.

[0388] A detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a nucleic acid sequence. As described herein, a detection agent may include a DNA probe portion, an RNA probe portion, a polypeptide probe portion, or a combination thereof. A DNA or RNA probe portion may be between about 10 and about 100 nucleotides in length, between about 15 and about 100 nucleotides in length, between about 20 and about 100 nucleotides in length, between about 20 and about 80 nucleotides in length, between about 20 and about 60 nucleotides in length, between about 25 and about 55 nucleotides in length, between about 30 and about 50 nucleotides in length, between about 15 and about 80 nucleotides in length, between about 15 and about 60 nucleotides in length, between about 20 and about 40 nucleotides in length, or between about 20 and about 30 nucleotides in length. A DNA or RNA probe portion may be about 10, about 15, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 80, about 90, or about 100 nucleotides in length. A DNA or RNA probe portion may be a TALEN probe, ZFN probe, or a CRISPR probe. A DNA or RNA probe portion may be a padlock probe. A polypeptide probe may comprise a DNA-binding protein, a RNA-binding protein, a protein involved in the transcription/translation process or detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element (such as an antibody or binding fragment thereof).

[0389] In some instances, a detection agent may comprise a DNA or RNA probe portion which may be between about 10 and about 100 nucleotides in length, between about 15 and about 100 nucleotides in length, between about 20 and about 100 nucleotides in length, between about 20 and about 80 nucleotides in length, between about 20 and about 60 nucleotides in length, between about 25 and about 55 nucleotides in length, between about 30 and about 50 nucleotides in length, between about 15 and about 80 nucleotides in length, between about 15 and about 60 nucleotides in length, between about 20 and about 40 nucleotides in length, or between about 20 and about 30 nucleotides in length. A detection agent may comprise a DNA or RNA probe portion which may be about 10, about 15, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 80, about 90, or about 100 nucleotides in length.

[0390] A detection agent may comprise a DNA or RNA probe selected from a TALEN probe, a ZFN probe, or a CRISPR probe.

[0391] A set of detection agents may be used to detect a nucleic acid sequence. The set of detection agents may comprise about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 25, about 30, about 35, about 40, about 45, about 50, or more detection agents. Each of the detection agents within the set of detection agents may recognize and interact with a distinct region of a nucleic acid sequence. About 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, or more detection agents may be used for detection of a nucleic acid sequence. About 1 or more detection agents may be used for detection of a nucleic acid sequence. About 2 or more detection agents may be used for detection of a nucleic acid sequence. About 3 or more detection agents may be used for detection of a nucleic acid sequence. About 4 or more detection agents may be used for detection of a nucleic acid sequence. About 5 or more detection agents may be used for detection of a nucleic acid sequence. About 6 or more detection agents may be used for detection of a nucleic acid sequence. About 7 or more detection agents may be used for detection of a nucleic acid sequence. About 8 or more detection agents may be used for detection of a nucleic acid sequence. About 9 or more detection agents may be used for detection of a nucleic acid sequence. About 10 or more detection agents may be used for detection of a nucleic acid sequence. About 11 or more detection agents may be used for detection of a nucleic acid sequence. About 12 or more detection agents may be used for detection of a nucleic acid sequence. About 13 or more detection agents may be used for detection of a nucleic acid sequence. About 14 or more detection agents may be used for detection of a nucleic acid sequence. About 15 or more detection agents may be used for detection of a nucleic acid sequence. About 20 or more detection agents may be used for detection of a nucleic acid sequence. [0392] A detection agent may comprise a polypeptide probe selected from a DNA-binding protein, a RNA-binding protein, a protein involved in the transcription/translation process or detects the transcription/translation process, a protein that may detect an open or relaxed portion of a chromatin, or a protein interacting partner of a product of a regulatory element (such as an antibody or binding fragment thereof).

[0393] A detectable moiety that is capable of generating a light may be directly conjugated or bound to a probe portion. A detectable moiety may indirectly conjugated or bound to a probe portion by a conjugating moiety. As described herein, a detectable moiety may be a small molecule (such as a dye) which may be directly conjugated or bound to a probe portion. A detectable moiety may be a fluorescently labeled protein or molecule which may be attached to a conjugating moiety (such as a hapten group, an azido group, an alkyne group) of a probe.

[0394] A profile or a detection profile or signature may include the signal intensity, signal location, and/or size of the signal of the detection agent. The profile or the detection profile may comprise about 100 image frames, about 500 frames, about 1000 frames, about 2000 frames, about 5000 frames, about 10,000 frames, about 20,000 frames, about 30,000 frames, about 40,000 frames, about 50,000 frames, or more image frames. Analysis of the profile or the detection profile may determine the activity of the regulatory element. The degree of activation may also be determined from the analysis of the profile or detection profile.

Analysis of the profile or the detection profile may further determine the optical isolation and localization of the detection agents, which may correlate to the localization of the nucleic acid sequence.

[0395] FIG. 30 shows a flowchart for a method 600 of fluorescently detecting a target nucleic acid sequence. The method may comprise an operation 610 of providing a one or more probes capable of binding to a target nucleic acid sequence, as described herein. The method may comprise an operation 620 of binding the one or more probes to the target nucleic acid sequence, as described herein. The method may comprise an operation 630 of photobleaching the one or more probes at one or more wavelengths, as described herein. The method may comprise an operation 640 of detecting a profile of optical emissions associated with the photobleaching, as described herein. The method may comprise an operation 650 of analyzing the detection profile to determine the localization of the target nucleic acid sequence, as described herein.

[0396] The localization of a nucleic acid sequence may include contacting a nucleic acid sequence with a first set of detection agents, photobleaching the first set of detection agents for a first time point at a first wavelength to generate a second set of detection agents capable of generating a light at a second wavelength, detecting at least one burst generated by the second set of detection agents to generate a detection profile of the second set of detection agents, and analyzing the detection profile to determine the localization of the nucleic acid sequence.

[0397] A detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a nucleic acid sequence. Each detection agent within the first set of detection agents may have the same or a different detectable moiety. Each detection agent within the first set of detection agents may have the same detectable moiety. A detectable moiety may comprise a small molecule (such as a fluorescent dye). A detectable moiety may comprise a fluorescently labeled polypeptide, a fluorescently labeled nucleic acid probe, and/or a fluorescently labeled polypeptide complex.

[0398] Upon photobleaching, a second set of detection agents may be generated from the first set of detection agents, in which the second set may include detection agents that are capable of generating a burst of light detectable at a second wavelength. For example, bleaching of the set of detection agents may lead to about 50%, about 60%, about 70%, about 80%, about 90%, or more detection agents within the set to enter into an "OFF-state". An "OFF-state" may be a dark state in which the detectable moiety crosses from the singlet excited electronic or ON state to the triplet electronic state or OFF-state in which detection of light (such as fluorescence) may be low (for instance, less than 10%, less than 5%, less than 1%, or less than 0.5% of light may be detected). The remainder of the detection agents that have not entered into the OFF-state may generate bursts of lights, or to cycle between a singlet excited electronic state (or ON-state) and a singlet ground electronic state. As such, bleaching of the set of detection agents may generate about 40%, about 30%, about 20%, about 10%, about 5%, or less detection agents within the set that may generate bursts of lights. The bursts of lights may be detected stochastically, at a single burst level in which each burst of light correlates to a single detection agent.

[0399] A single wavelength may be used for photobleaching a set of detection agents. At least two wavelengths may be used for photobleaching a set of detection agents. A

wavelength at 491nm may be used. A wavelength at 405nm may be used in combination with the wavelength at 491nm. The two wavelengths may be applied simultaneously to

photobleach a set of detection agents. The two wavelengths may be applied sequentially to photobleach a set of detection agents. [0400] The time for photobleaching a set of detection agents may be from about 10 seconds to about 4 hours. The time may be from about 30 seconds to about 3.5 hours, from about one minute to about 3 hours, from about 5 minutes to about 2 hours, from about 10 minutes to about 1 hours, from about one minutes to about 1 hour, from about 5 minutes to about 1 hour, or from about 30 minutes to about 2 hours. The time may be at least 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes, 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, or more.

[0401] The concentration of the detection agents may be from about 5 nM to about 1 μΜ. The concentration of the detection agent may be from about 5 nM to about 900 nM, from about 10 nM to about 800 nM, from about 15 nM to about 700 nM, from about 20 nM to about 50 OnM, from about 10 nM to about 500 nM, from about 10 nM to about 400 nM, from about 10 nM to about 300 nM, from about 10 nM to about 200 nM, from about 10 nM to about 100 nM, from about 50 nM to about 500 nM, from about 50 nM to about 400 nM, from about 50 nM to about 300 nM, from about 50 nM to about 200 nM, from about 100 nM to about 500 nM, from about 100 nM to about 300 nM, or from about 100 nM to about 200 nM. The concentration of the detection agents may be about 10 nM, 15 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 70 nM, 80 nM, 90 nM, 100 nM, 150 nM, 200 nM, 250 nM, 300 nM, 400 nM, 500 nM, 600 nM, 700 nM, 800 nM, 900 nM, or more.

[0402] The burst of lights from the set of detection agents may generate a detection profile. The detection profile may comprise about 100 image frames, about 500 frames, about 1000 frames, about 2000 frames, about 5000 frames, about 10,000 frames, about 20,000 frames, about 30,000 frames, about 40,000 frames, about 50,000 frames, or more image frames. The detection profile may also include the signal intensity, signal location, or size of the signal. Analysis of the detection profile may determine the optical isolation and localization of the detection agents, which may correlate to the localization of the nucleic acid sequence.

[0403] The detection profile may comprise a chromatic aberration correction. The detection profile may comprise less than 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0% chromatic aberration. The detection profile may comprise less than 5% chromatic aberration. The detection profile may comprise less than 4% chromatic aberration. The detection profile may comprise less than 3% chromatic aberration. The detection profile may comprise less than 2% chromatic aberration. The detection profile may comprise less than 1% chromatic aberration. The detection profile may comprise less than 0.5% chromatic aberration. The detection profile may comprise less than 0.1% chromatic aberration. The detection profile may comprise 0% chromatic aberration.

[0404] More than one nucleic acid sequence may be detected at the same time. Sometimes, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more nucleic acid sequence may be detected at the same time. Each of the nucleic acid sequences may be detected by a set of detection agents. The detectable moiety between the different set of detection agents may be the same. For example, two different sets of detection agents may be used to detect two different nucleic acid sequences and the detectable moieties from the two sets of detection agents may be the same. As such, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more nucleic acid sequences may be detected at the same time at the same wavelength. The detectable moiety between the different set of detection agents may also be different. For example, two different sets of detection agents may be used to detect two different nucleic acid sequences and the detectable moiety from one set of detection agents may be detected at a different wavelength from the detectable moiety of the second set of detection agents. As such, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20, or more nucleic acid sequences may be detected at the same time in which each of the nucleic acid sequences may be detected at a different wavelength. The nucleic acid sequence may comprise DNA, RNA, polypeptides, or a combination thereof.

[0405] The activity of a target nucleic acid sequence may be measuring utilizing the methods described herein. The methods may include detection of a nucleic acid sequence and one or more products of the nucleic acid sequence. One or more products of the nucleic acid sequence may also include intermediate products or elements. The method may comprise contacting a cell sample with a first set and a second set of detection agents, in which the first set of detection agents interact with a target nucleic acid sequence within the cell and the second set of detection agents interact with at least one product of the target nucleic acid sequence, and analyze a detection profile from the first set and the second set of detection agents, in which the presence or the absence of the at least one product indicates the activity of the target nucleic acid sequence.

[0406] As described herein, a detection agent may comprise a detectable moiety that is capable of generating a light, and a probe portion that is capable of hybridizing to a target site on a nucleic acid sequence. Each detection agent within the first set of detection agents may have the same or a different detectable moiety. Each detection agent within the first set of detection agents may have the same detectable moiety. A detectable moiety may comprise a small molecule (such as a fluorescent dye). A detectable moiety may comprise a fluorescently labeled polypeptide, a fluorescently labeled nucleic acid probe, and/or a fluorescently labeled polypeptide complex.

[0407] The method may also allow photobleaching of the first set and the second set of detection agents, whereby generating a subset of detection agents capable of generating a burst of light. A detection profile may be generated from the detection of a set of light bursts, in which the presence or the absence of the at least one product may indicate the activity of the target nucleic acid sequence.

[0408] The nucleic acid sequence may comprise DNA, RNA, polypeptides, or a combination thereof. The nucleic acid sequence may be DNA. The nucleic acid sequence may be RNA. The nucleic acid sequence may be an enhancer RNA (eRNA). The presence of an eRNA may correlate with target gene transcription that is downstream of eRNA. The nucleic acid sequence may be a DNasel hypersensitive site (DHS). The DHS may be an activated DHS. The pattern of the DHS on a chromatin may correlate to the activity of the chromatin. The nucleic acid sequence may be a polypeptide, such as a transcription factor, a DNA or RNA- binding protein or binding fragment thereof, or a polypeptide that is involved in chemical modification. The nucleic acid sequence may be chromatin.

A. Epifluorescence Imaging

[0409] One or more far-field or near-field fluorescence techniques may be utilized for the detection, localization, activity determination, and mapping of one or more nucleic acid sequences described herein. A microscopy method may be an air or an oil immersion microscopy method used in a conventional microscope or an imaging flow cytometer instrument. In such a method, imaging flow cytometers such as the ImageStream (EMD Millipore), conventional microscopes or commercial high-content imagers (such as the Operetta (Perkin Elmer), IN Cell (GE), etc.) deploying wide-field and/or confocal imaging modes microscopes may achieve sub-cellular resolution to detect signals of interest. For example, DAPI (4',6-diamidino-2-phenylindole) stain may be used to identify cell nuclei and another stain may be used to identify cells containing a nuclease protein.

B. Super-resolution Imaging

[0410] A variety of microscopy and imaging modalities can be used in combination with the compositions and methods of the present disclosure. In some embodiments, a microscopy method may utilize super-resolution microscopy, which allows images to be taken with a higher resolution than the diffraction limit. A super-resolution microscopy method may utilize a deterministic super-resolution microscopy method, which utilizes a fluorophore's nonlinear response to excitation to enhance resolution. Exemplary deterministic super- resolution methods may include stimulated emission depletion (STED), ground state depletion (GSD), reversible saturable optical linear fluorescence transitions (RESOLFT), and/or saturated structured illumination microscopy (SSIM). A super-resolution microscopy method may also include a stochastic super-resolution microscopy method, which utilizes a complex temporal behavior of a fluorophore, to enhance resolution. Exemplary stochastic super-resolution method may include super-resolution optical fluctuation imaging (SOFI), all single-molecular localization method (SMLM) such as spectral precision determination microscopy (SPDM), SPDMphymod, photo-activated localization microscopy (PALM), fluorescence photo-activated localization microscopy (FPALM), stochastic optical reconstruction microscopy (STORM), and dSTROM.

[0411] A microscopy method may be a single-molecular localization method (SMLM). A microscopy method may be a spectral precision determination microscopy (SPDM) method. A SPDM method may rely on stochastic burst or blinking of fluorophores and subsequent temporal integration of signals to achieve lateral resolution at, for example, between about 10 nm and about 100 nm.

[0412] A microscopy method may be a spatially modulated illumination (SMI) method. A SMI method may utilize phased lasers and interference patterns to illuminate specimens and increase resolution by measuring the signal in fringes of the resulting Moire patterns.

[0413] A microscopy method may be a synthetic aperture optics (SAO) method. A SAO method may utilize a low magnification, low numerical aperture (NA) lens to achieve large field of view (FOV) and depth of field, without sacrificing spatial resolution. For example, an SAO method may comprise illuminating the detection agent-labeled target (such as a target nucleic acid sequence) with a predetermined number (N) of selective excitation patterns, where the number (N) of selective excitation patterns is determined based upon the detection agent's physical characteristics corresponding to spatial frequency content (such as the size, shape, and/or spacing of the detection agents on the imaging target) from the illuminated target, optically imaging the illuminated target at a resolution insufficient to resolve the objects on the target, and processing optical images of the illuminated target using information on the selective excitation patterns to obtain a final image of the illuminated target at a resolution sufficient to resolve the objects on the target. The number (N) of selective excitation patterns may correspond to the number of k-space sampling points in a k- space sampling space in a frequency domain, with the extent of the k-space sampling space being substantially proportional to an inverse of a minimum distance (Δχ) between the objects that is to be resolved by SAO, and with the inverse of the k-space sampling interval between the k-space sampling points being less than a width (w) of a detected area captured by a pixel of a system for said optical imaging. The number (N) may include a function of various parameters of the imaging system (such as a magnification of the objective lens, numerical aperture of the objective lens, wavelength of the light emitted from the imaging target, and/or effective pixel size of the pixel sensitive area of the image detector, etc.).

[0414] A SAO method may analyze a set of detection agent profiles from at least 100, at least 200, at least 250, at least 500, at least 1000, or more cells imaged simultaneously within one field of view utilizing an imaging instrument. The one field of view may be a single wide field of view (FOV) allowing image capture of at least 10, at least 50, at least 100, at least 200, at least 250, at least 500, at least 1000, or more cells. The single wide field of view may be about 0.70 mm by about 0.70 mm field of view. The SAO imaging instrument may enable a resolution of about 0.25 μιη with a 20X/0.45NA lens. The SAO imaging instrument may enable a depth of field of about 2.72 μιη with a 20X/0.45NA lens. The imaging instrument may enable a working distance of about 7 mm with a 20X/0.45NA lens. The imaging instrument may enable a z-stack of 1 with a 20X/0.45NA lens. The SAO method may further integrate and interpolate 3-dimensional images from 2-dimensional images. The SAO method may enable the image acquisition of cell images at high spatial resolution and FOV. For example, for a given cell type, the SAO method may provide a FOV that is at least about 1.5x, at least about 2x, at least about 3x, at least about 4x, at least about 5x, at least about 6x, at least about 7x, at least about 8x, at least about 9x, at least about lOx, at least about 15x, at least about 20x, or more as compared to a FOV provided by a method of microscope imaging using a 40x or 60x objective. For example, the SAO method may provide a FOV

corresponding to a 20x microscope lens with a spatial resolution corresponding to a lOOx microscope lens.

[0415] The SAO imaging instrument may be, for example, an SAO instrument as described in U.S. Patent Publication No. 2011/0228073 (Lee et al.). The SAO imaging instrument may be, for example, a StellarVision™ imaging platform supplied by Optical Biosystems, Inc. (Santa Clara, CA).

Analysis of Fluorescence Images

[0416] Fluorescence images may be processed by a method of analysis of, e.g., cell nuclei, and/or target nucleic acid sequences. The method may comprise obtaining a fluorescence image of one or more probes bound to one or more target nucleic acid sequences, as described herein. The method may comprise deconvolving the image one or more times, as described herein. The method may comprise generating a region of interest (ROI) from the deconvolved image, as described herein. The method may comprise analyzing the ROI to determine the locations of all target nucleic acid sequences, as described herein.

[0417] FIG. 31 shows a flowchart for a method 700 of analyzing a fluorescence image of one or more target nucleic acid sequences. The method may comprise an operation 710 of obtaining a fluorescence image of one or more probes bound to one or more target nucleic acid sequences, as described herein. The method may comprise an operation 720 of deconvolving the image one or more times, as described herein. The method may comprise an operation 730 of generating a two-dimensional region of interest (ROI) mask from the deconvolved image, as described herein. The method may comprise an operation 740 of generating a three-dimensional ROI mask from the two-dimensional ROI mask, as described herein. The method may comprise an operation 750 of refining the three-dimensional ROI mask, as described herein. The method may comprise an operation 760 of analyzing the three-dimensional ROI mask to determine the locations of all target nucleic acid sequences, as described herein.

[0418] Images obtained using the systems and methods described herein may be subjected to an image analysis method. The images may be obtained using the epifluorescence imaging systems and methods described herein. The image may be obtained using the super-resolution imaging systems and methods described herein. The image analysis method may allow a quantitative morphometric analysis to be conducted on regions of interest (ROIs) within the images. The image analysis method may be implemented using Matlab, Octave, Python, Java, Perl, Visual Studio, C, or ImageJ. The image analysis method may be adapted from methods for processing fluorescence microscopy images of cells for segmentation of cell nuclei and/or nucleic acid sequence localization. The image analysis method may be fully automated and/or tunable by the user. The image analysis method may be configurable to identify nucleic acid sequence foci regardless of the shapes of the foci. The image analysis method may be configurable to process two-dimensional and/or three-dimensional images. The image analysis method may allow high throughput of estimation of cell count and boundaries in cell populations, which may be obtained with a speed-up of at least about 2 times, at least about 5 times, at least about 10 times, at least about 15 times, at least about 20 times, at least about 25 times, at least about 30 times, at least about 35 times, at least about 40 times, at least about 45 times, at least about 50 times, at least about 100 times, or more, as compared to manual identification and counting of cell populations.

[0419] The image analysis method may comprise a deconvolution of the image. The deconvolution process may improve the contrast and resolution of cell images for further analysis. The image analysis method may comprise an iterative deconvolution of the image. The image analysis method may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 iterations of deconvolving the image. The image analysis method may comprise more than 1, more than 2, more than 3, more than 4, more than 5, more than 6, more than 7, more than 8, more than 9, or more than 10 iterations of deconvolving the image. The deconvolution procedure may remove or reduce out-of- focus blur or other sources of noise in the epifluorescence images or super-resolution images, enhancing the signal-to-noise ratio (SNR) within ROIs.

[0420] The image analysis method may further comprise an identification of the ROIs (e.g., candidate cells). The ROIs may be identified using an automated detection method.

[0421] The ROIs may be identified by processing the raw images by applying a segmentation algorithm. This may allow the rapid delineation of ROIs within the epifluorescence or super- resolution images, thereby allowing scalability of processing images. The segmentation of ROIs may comprise planarization of three-dimensional images (e.g., generated by z-stacking to obtain three-dimensional cell volumes) by utilizing a maximum intensity projection image to generate a two-dimensional ROI mask. For rapid segmentation, the two-dimensional ROI mask may act as a template for an initial three-dimensional mask. For instance, the initial three-dimensional mask may be generated by projecting the two-dimensional ROI mask into a third spatial dimension. The projection may be a weighted projection. The initial three- dimensional mask may be further refined to obtain a refined three-dimensional ROI mask. Refinement of the initial three-dimensional mask may be achieved utilizing adaptive thresholding and/or region growing methods. Refinement of the initial three-dimensional mask may be achieved by iteratively applying adaptive thresholding and/or region growing methods. The iterative procedure may result in a final three-dimensional ROI mask. The final three-dimensional ROI mask may comprise information regarding the locations of all FISH- labeled nucleic acid sequences within each cell in a sample.

[0422] The segmentation may detect ROIs using two-dimensional or three-dimensional computer vision methods such as edge detection and morphology. The ROIs may include cell nuclei, sites of nucleic acid sequence or vector sequence localization, or a combination thereof within each cell in a cell population within a field of view (FOV). [0423] The image analysis method may further comprise feature extraction/computation from the segmented ROIs (e.g., detected candidate cells). Such sets of features may be selected to enable high performance (e.g., accuracy, throughput, sensitivity, specificity, etc.) of identifying/counting cells of interest or ROIs. Morphological features/parameters may be extracted from the segmented ROIs, such as count, spatial location, size (area/volume), shape (circularity/sphericity, eccentricity, irregularity (concavity/convexity)), diameter, perimeter/surface area, etc. In addition, other image parameters may also be extracted from the segmented ROIs, such as quantitative measures of image texture that may be pixel-based or region based over a tunable length scale (e.g., nuclear diameter, nuclear area, nuclear volume, perimeter, surface area, DNA content, DNA texture measures), or

contrast, correlation, entropy, energy, and homogeneity/uniformity. Sets of extracted features may include nuclear size (diameter, area, or volume), perimeter or surface area, shape (e.g., circularity, irregularity, eccentricity, etc.), DNA content, DNA texture measures,

characteristics of a nucleic acid sequence of interest (e.g., number, size, shape, etc.), amount of nucleic acid sequence of interest per cell, or spatial location and localization pattern of a nucleic acid sequence of interest.

[0424] After the image analysis method has analyzed the cell nuclei, further informatics and analysis may be performed based on the image analysis results. For example, specificity analysis may be performed by analyzing locations and number of nucleic acid sequences of interest.

[0425] The image analysis method may analyze acquired image data comprising a cell population to generate an output of estimating a count and/or boundaries (e.g., segmented ROIs) of the cell population. For example, the image analysis method may apply a prediction algorithm (e.g., a predictive analytics algorithm) to the acquired data to generate output of estimating a count and/or boundaries (e.g., segmented ROIs) of the cell population. The prediction algorithm may comprise an artificial intelligence based predictor, such as a machine learning based predictor, configured to process the acquired image data comprising a cell population to generate the output of estimating a count and/or boundaries (e.g., segmented ROIs) of the cell population. The machine learning predictor may be trained using datasets from one or more sets of images of known cell populations as inputs and known counts and/or boundaries (e.g., segmented ROIs) of the cell populations as outputs to the machine learning predictor.

[0426] The machine learning predictor may comprise one or more machine learning algorithms. Examples of machine learning algorithms may include a support vector machine (SVM), a naive Bayes classification, a random forest, a neural network, deep learning, or other supervised learning algorithm or unsupervised learning algorithm for classification and regression. The machine learning predictor may be trained using one or more training datasets corresponding to image data comprising cell populations.

[0427] Training datasets may be generated from, for example, one or more sets of image data having common characteristics (features) and outcomes (labels). Training datasets may comprise a set of features and labels corresponding to the features. Features may comprise characteristics such as, for example, certain ranges or categories of cell measurements, such as morphological features/parameters (count, size, diameter, area, volume, perimeter length, circularity, irregularity, eccentricity, etc.), other image parameters

(contrast, correlation, entropy, energy, and homogeneity/uniformity, etc.), nuclear size (diameter, area, or volume), perimeter or surface area, shape (e.g., circularity, irregularity, eccentricity, etc.), DNA content, DNA texture measures, characteristics of a nucleic acid sequence of interest (e.g., number, size, shape, etc.), amount of nucleic acid sequence of interest per cell, or spatial location and localization pattern of nucleic acid sequences of interest. Labels may comprise outcomes such as, for example, estimated or actual counts and boundaries of cells in a cell population.

[0428] Training sets (e.g., training datasets) may be selected by random sampling of a set of data corresponding to one or more sets of image data. Alternatively, training sets (e.g., training datasets) may be selected by proportionate sampling of a set of data corresponding to one or more sets of image data. The machine learning predictor may be trained until certain predetermined conditions for accuracy or performance are satisfied, such as having minimum desired values corresponding to cell identification accuracy measures. For example, the cell identification accuracy measure may correspond to estimated or actual counts and boundaries (e.g., segmented ROIs) of cells in a cell population. Examples of cell identification accuracy measures may include sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve corresponding to the accuracy of generating estimated or actual counts and boundaries (e.g., segmented ROIs) of cells in a cell population.

[0429] For example, such a predetermined condition may be that the sensitivity of identifying a cell of interest comprises a value of, for example, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%. [0430] As another example, such a predetermined condition may be that the specificity of identifying a cell of interest comprises a value of, for example, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.

[0431] As another example, such a predetermined condition may be that the positive predictive value (PPV) of identifying a cell of interest comprises a value of, for example, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.

[0432] As another example, such a predetermined condition may be that the negative predictive value (NPV) of identifying a cell of interest comprises a value of, for example, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.

[0433] As another example, such a predetermined condition may be that the area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve of identifying a cell of interest comprises a value of at least about 0.50, at least about 0.55, at least about 0.60, at least about 0.65, at least about 0.70, at least about 0.75, at least about 0.80, at least about 0.85, at least about 0.90, at least about 0.95, at least about 0.96, at least about 0.97, at least about 0.98, or at least about 0.99.

[0434] In some embodiments, image analysis can also be carried out as shown in FIG. 49, which illustrates a flow chart depicting the image analysis steps of the present disclosure including data/image capture, autonomous pre-processing, and interactive data selection, quality control, and visualization. Images of 100-500 cells can be captured on a digital microscope. FIG. 50 shows an example quality control browser panel that can be generated by the image analysis software of the present disclosure where images can be analyzed for spots indicating viral insertions as detected using viral Nano-FISH probes or viral Nano-FISH probe sets. FIG. 51 illustrates an example experiment summary report with performance metrics that can be generated by the image analysis software of the present disclosure. The performance metrics displayed by the image analysis software of the present disclosure can give a user useful metrics to describe the viral insertion data and can further give a user a measure of the quality of the data. As shown in FIG. 49 autonomous pre-processing of the images can be carried out by the accompanying software including any of the following: image enhancement (e.g., deconvolution), nucleus segmentation, Nano-FISH spot detection, and protein expression measurements. Data can then be visualized on an interactive software platform, as shown in FIG. 50 and FIG. 51, that allows for thresholding, sorting, data compilation, data plotting, and calculation of performance metrics including any of the following: total cells (number of nuclei analyzed), mitotic index (fraction of cells undergoing cell division), insertion rate (expected number of insertion events per nucleus, based on fitting a Poisson distribution to the histogram of insertions per cell), insertion rate R

(Pearson correlation of actual versus Poisson prediction of histogram of insertions per cell), and expression enhancement (average change in protein expression (mean nuclear intensity) per insertion).

[0435] The image analysis method may be implemented in an automated manner, such as using the digital processing devices described herein.

A. Digital Processing Device

[0436] The systems, apparatus, and methods described herein may include a digital processing device, or use of the same. The digital processing device may include one or more hardware central processing units (CPU) that carry out the device's functions. The digital processing device may further comprise an operating system configured to perform executable instructions. In some instances, the digital processing device is optionally connected to a computer network, is optionally connected to the Internet such that it accesses the World Wide Web, or is optionally connected to a cloud computing infrastructure. In other instances, the digital processing device is optionally connected to an intranet. In other instances, the digital processing device is optionally connected to a data storage device.

[0437] In accordance with the description herein, suitable digital processing devices may include, by way of non-limiting examples, server computers, desktop computers, laptop computers, notebook computers, sub-notebook computers, netbook computers, netpad computers, set-top computers, media streaming devices, handheld computers, Internet appliances, mobile smartphones, tablet computers, personal digital assistants, video game consoles, and vehicles. Those of skill in the art will recognize that many smartphones are suitable for use in the system described herein. Those of skill in the art will also recognize that select televisions, video players, and digital music players with optional computer network connectivity are suitable for use in the system described herein. Suitable tablet computers may include those with booklet, slate, and convertible configurations, known to those of skill in the art. [0438] The digital processing device may include an operating system configured to perform executable instructions. The operating system may be, for example, software, including programs and data, which may manage the device's hardware and provides services for execution of applications. Those of skill in the art will recognize that suitable server operating systems may include, by way of non-limiting examples, FreeBSD, OpenBSD, NetBSD ® , Linux, Apple ® Mac OS X Server ® , Oracle ® Solaris ® , Windows Server ® , and Novell ® NetWare ® . Those of skill in the art will recognize that suitable personal computer operating systems include, by way of non-limiting examples, Microsoft ® Windows ® , Apple ® Mac OS X ® , UNIX ® , and UNIX-like operating systems such as GNU/Linux ® . In some cases, the operating system is provided by cloud computing. Those of skill in the art will also recognize that suitable mobile smart phone operating systems include, by way of non-limiting examples, Nokia ® Symbian ® OS, Apple ® iOS ® , Research In Motion ® BlackBerry OS ® , Google ® Android ® , Microsoft ® Windows Phone ® OS, Microsoft ® Windows Mobile ® OS, Linux ® , and Palm ® WebOS ® . Those of skill in the art will also recognize that suitable media streaming device operating systems include, by way of non-limiting examples, Apple TV ® , Roku ® , Boxee ® , Google TV ® , Google Chromecast ® , Amazon Fire ® , and Samsung ®

HomeSync ® . Those of skill in the art will also recognize that suitable video game console operating systems include, by way of non- limiting examples, Sony ® PS3 ® , Sony ® PS4 ® , Microsoft ® Xbox 360 ® , Microsoft Xbox One, Nintendo ® Wii ® , Nintendo ® Wii U ® , and Ouya .

[0439] In some instances, the device may include a storage and/or memory device. The storage and/or memory device may be one or more physical apparatuses used to store data or programs on a temporary or permanent basis. In some instances, the device is volatile memory and requires power to maintain stored information. In other instances, the device is non- volatile memory and retains stored information when the digital processing device is not powered. In still other instances, the non-volatile memory comprises flash memory. The nonvolatile memory may comprise dynamic random- access memory (DRAM). The non- volatile memory may comprise ferroelectric random access memory (FRAM). The non- volatile memory may comprise phase-change random access memory (PRAM). The device may be a storage device including, by way of non-limiting examples, CD-ROMs, DVDs, flash memory devices, magnetic disk drives, magnetic tapes drives, optical disk drives, and cloud computing based storage. The storage and/or memory device may also be a combination of devices such as those disclosed herein. [0440] The digital processing device may include a display to send visual information to a user. The display may be a cathode ray tube (CRT). The display may be a liquid crystal display (LCD). Alternatively, the display may be a thin film transistor liquid crystal display (TFT-LCD). The display may further be an organic light emitting diode (OLED) display. In various cases, on OLED display is a passive-matrix OLED (PMOLED) or active-matrix OLED (AMOLED) display. The display may be a plasma display. The display may be a video projector. The display may be a combination of devices such as those disclosed herein.

[0441] The digital processing device may also include an input device to receive information from a user. For example, the input device may be a keyboard. The input device may be a pointing device including, by way of non- limiting examples, a mouse, trackball, track pad, joystick, game controller, or stylus. The input device may be a touch screen or a multi-touch screen. The input device may be a microphone to capture voice or other sound input. The input device may be a video camera or other sensor to capture motion or visual input.

Alternatively, the input device may be a Kinect™, Leap Motion™, or the like. In further aspects, the input device may be a combination of devices such as those disclosed herein.

B. Non-transitory computer readable storage medium

[0442] In some instances, the systems, apparatus, and methods disclosed herein may include one or more non-transitory computer readable storage media encoded with a program including instructions executable by the operating system of an optionally networked digital processing device. In further instances, a computer readable storage medium is a tangible component of a digital processing device. In still further instances, a computer readable storage medium is optionally removable from a digital processing device. A computer readable storage medium may include, by way of non- limiting examples, CD-ROMs, DVDs, flash memory devices, solid state memory, magnetic disk drives, magnetic tape drives, optical disk drives, cloud computing systems and services, and the like. In some cases, the program and instructions are permanently, substantially permanently, semi-permanently, or non-transitorily encoded on the media.

C. Computer program

[0443] The systems, apparatus, and methods disclosed herein may include at least one computer program, or use of the same. A computer program includes a sequence of instructions, executable in the digital processing device's CPU, written to perform a specified task. In some embodiments, computer readable instructions are implemented as program modules, such as functions, objects, Application Programming Interfaces (APIs), data structures, and the like, that perform particular tasks or implement particular abstract data types. In light of the disclosure provided herein, those of skill in the art will recognize that a computer program, in certain embodiments, is written in various versions of various languages.

[0444] The functionality of the computer readable instructions may be combined or distributed as desired in various environments. A computer program may comprise one sequence of instructions. A computer program may comprise a plurality of sequences of instructions. In some instances, a computer program is provided from one location. In other instances, a computer program is provided from a plurality of locations. In additional cases, a computer program includes one or more software modules. Sometimes, a computer program may include, in part or in whole, one or more web applications, one or more mobile applications, one or more standalone applications, one or more web browser plug-ins, extensions, add-ins, or add-ons, or combinations thereof.

D. Web application

[0445] A computer program may include a web application. In light of the disclosure provided herein, those of skill in the art will recognize that a web application, in various aspects, utilizes one or more software frameworks and one or more database systems. In some cases, a web application is created upon a software framework such as Microsoft ® .NET or Ruby on Rails (RoR). In some cases, a web application utilizes one or more database systems including, by way of non-limiting examples, relational, non-relational, object oriented, associative, and XML database systems. Sometimes, suitable relational database systems may include, by way of non-limiting examples, Microsoft ® SQL Server, mySQL™, and Oracle ® . Those of skill in the art will also recognize that a web application, in various instances, is written in one or more versions of one or more languages. A web application may be written in one or more markup languages, presentation definition languages, client- side scripting languages, server-side coding languages, database query languages, or combinations thereof. A web application may be written to some extent in a markup language such as Hypertext Markup Language (HTML), Extensible Hypertext Markup Language (XHTML), or extensible Markup Language (XML). In some embodiments, a web application is written to some extent in a presentation definition language such as Cascading Style Sheets (CSS). Aweb application may be written to some extent in a client-side scripting language such as Asynchronous Javascript and XML (AJAX), Flash ® Actionscript,

Javascript, or Silverlight ® . A web application may be written to some extent in a server-side coding language such as Active Server Pages (ASP), ColdFusion ® , Perl, Java™, JavaServer Pages (JSP), Hypertext Preprocessor (PHP), Python™, Ruby, Tel, Smalltalk, WebDNA ® , or Groovy. Sometimes, a web application may be written to some extent in a database query language such as Structured Query Language (SQL). Other times, a web application may integrate enterprise server products such as IBM ® Lotus Domino ® . In some instances, a web application includes a media player element. In various further instances, a media player element utilizes one or more of many suitable multimedia technologies including, by way of non-limiting examples, Adobe ® Flash ® , HTML 5, Apple ® QuickTime ® , Microsoft ®

Silverlight ® , Java™, and Unity ® .

E. Mobile application

[0446] A computer program may include a mobile application provided to a mobile digital processing device. In some cases, the mobile application is provided to a mobile digital processing device at the time it is manufactured. In other cases, the mobile application is provided to a mobile digital processing device via the computer network described herein.

[0447] In view of the disclosure provided herein, a mobile application is created by techniques known to those of skill in the art using hardware, languages, and development environments known to the art. Those of skill in the art will recognize that mobile

applications are written in several languages. Suitable programming languages include, by way of non-limiting examples, C, C++, C#, Objective-C, Java™, Javascript, Pascal, Object Pascal, Python™, Ruby, VB.NET, WML, and XHTML/HTML with or without CSS, or combinations thereof.

[0448] Suitable mobile application development environments are available from several sources. Commercially available development environments include, by way of non-limiting examples, AirplaySDK, alcheMo, Appcelerator®, Celsius, Bedrock, Flash Lite, .NET

Compact Framework, Rhomobile, and WorkLight Mobile Platform. Other development environments are available without cost including, by way of non-limiting examples, Lazarus, MobiFlex, MoSync, and Phonegap. Also, mobile device manufacturers distribute software developer kits including, by way of non-limiting examples, iPhone and iPad (iOS) SDK, Android™ SDK, BlackBerry® SDK, BREW SDK, Palm® OS SDK, Symbian SDK, webOS SDK, and Windows® Mobile SDK.

[0449] Those of skill in the art will recognize that several commercial forums are available for distribution of mobile applications including, by way of non-limiting examples, Apple ® App Store, Android™ Market, BlackBerry ® App World, App Store for Palm devices, App Catalog for webOS, Windows ® Marketplace for Mobile, Ovi Store for Nokia ® devices, Samsung ® Apps, and Nintendo ® DSi Shop. F. Standalone application

[0450] A computer program may include a standalone application, which is a program that is run as an independent computer process, not an add-on to an existing process, e.g., not a plug-in. Those of skill in the art will recognize that standalone applications are often compiled. A compiler is a computer program(s) that transforms source code written in a programming language into binary object code such as assembly language or machine code. Suitable compiled programming languages include, by way of non-limiting examples, C, C++, Objective-C, COBOL, Delphi, Eiffel, Java™, Lisp, Python™, Visual Basic, and VB .NET, or combinations thereof. Compilation is often performed, at least in part, to create an executable program. A computer program may include one or more executable complied applications.

Web browser plug-in

[0451] The computer program may include a web browser plug-in. In computing, a plug-in is one or more software components that add specific functionality to a larger software application. Makers of software applications support plug-ins to enable third-party developers to create abilities which extend an application, to support easily adding new features, and to reduce the size of an application. When supported, plug-ins enable customizing the functionality of a software application. For example, plug-ins are commonly used in web browsers to play video, generate interactivity, scan for viruses, and display particular file types. Those of skill in the art will be familiar with several web browser plug-ins including, Adobe® Flash® Player, Microsoft® Silverlight®, and Apple® QuickTime®. In some embodiments, the toolbar comprises one or more web browser extensions, add-ins, or addons. In some embodiments, the toolbar comprises one or more explorer bars, tool bands, or desk bands.

[0452] In view of the disclosure provided herein, those of skill in the art will recognize that several plug-in frameworks are available that enable development of plug-ins in various programming languages, including, by way of non-limiting examples, C++, Delphi, Java™, PHP, Python™, and VB .NET, or combinations thereof.

[0453] Web browsers (also called Internet browsers) may be software applications, designed for use with network-connected digital processing devices, for retrieving, presenting, and traversing information resources on the World Wide Web. Suitable web browsers include, by way of non-limiting examples, Microsoft ® Internet Explorer ® , Mozilla ® Firefox ® , Google ® Chrome, Apple ® Safari ® , Opera Software ® Opera ® , and KDE Konqueror. In some

embodiments, the web browser is a mobile web browser. Mobile web browsers (also called mircrobrowsers, mini-browsers, and wireless browsers) are designed for use on mobile digital processing devices including, by way of non-limiting examples, handheld computers, tablet computers, netbook computers, subnotebook computers, smartphones, music players, personal digital assistants (PDAs), and handheld video game systems. Suitable mobile web browsers include, by way of non-limiting examples, Google ® Android ® browser, RIM

BlackBerry ® Browser, Apple ® Safari ® , Palm ® Blazer, Palm ® WebOS ® Browser, Mozilla ® Firefox ® for mobile, Microsoft ® Internet Explorer ® Mobile, Amazon ® Kindle ® Basic Web, Nokia ® Browser, Opera Software ® Opera ® Mobile, and Sony ® PSP™ browser.

A. Software modules

[0454] The systems and methods disclosed herein may include software, server, and/or database modules, or use of the same. In view of the disclosure provided herein, software modules may be created by techniques known to those of skill in the art using machines, software, and languages known to the art. The software modules disclosed herein may be implemented in a multitude of ways. A software module may comprise a file, a section of code, a programming object, a programming structure, or combinations thereof. A software module may comprise a plurality of files, a plurality of sections of code, a plurality of programming objects, a plurality of programming structures, or combinations thereof. In various aspects, the one or more software modules comprise, by way of non- limiting examples, a web application, a mobile application, and a standalone application. In some instances, software modules are in one computer program or application. In other instances, software modules are in more than one computer program or application. In some cases, software modules are hosted on one machine. In other cases, software modules are hosted on more than one machine. Sometimes, software modules may be hosted on cloud computing platforms. Other times, software modules may be hosted on one or more machines in one location. In additional cases, software modules are hosted on one or more machines in more than one location.

B. Databases

[0455] The methods, apparatus, and systems disclosed herein may include one or more databases, or use of the same. In view of the disclosure provided herein, those of skill in the art will recognize that many databases are suitable for storage and retrieval of analytical information described elsewhere herein. In various aspects described herein, suitable databases may include, by way of non-limiting examples, relational databases, non-relational databases, object oriented databases, object databases, entity-relationship model databases, associative databases, and XML databases. A database may be internet-based. A database may be web-based. A database may be cloud computing-based. Alternatively, a database may be based on one or more local computer storage devices.

C. Services

[0456] Methods and systems described herein may further be performed as a service. For example, a service provider may obtain a sample that a customer wishes to analyze. The service provider may then encode the sample to be analyzed by any of the methods described herein, performs the analysis and provides a report to the customer. The customer may also perform the analysis and provides the results to the service provider for decoding. In some instances, the service provider then provides the decoded results to the customer. In other instances, the customer may receive encoded analysis of the samples from the provider and decodes the results by interacting with softwares installed locally (at the customer's location) or remotely (e.g. on a server reachable through a network). Sometimes, the softwares may generate a report and transmit the report to the costumer. Exemplary customers include clinical laboratories, hospitals, industrial manufacturers and the like. Sometimes, a customer or party may be any suitable customer or party with a need or desire to use the methods provided herein.

D. Server

[0457] The methods provided herein may be processed on a server or a computer server, as shown in FIG. 32). The server 801 may include a central processing unit (CPU, also

"processor") 805 which may be a single core processor, a multi core processor, or plurality of processors for parallel processing. A processor used as part of a control assembly may be a microprocessor. The server 801 may also include memory 810 (e.g. random access memory, read-only memory, flash memory); electronic storage unit 815 (e.g. hard disk);

communications interface 820 (e.g. network adaptor) for communicating with one or more other systems; and peripheral devices 825 which includes cache, other memory, data storage, and/or electronic display adaptors. The memory 810, storage unit 815, interface 820, and peripheral devices 825 may be in communication with the processor 805 through a communications bus (solid lines), such as a motherboard. The storage unit 815 may be a data storage unit for storing data. The server 801 may be operatively coupled to a computer network ("network") 830 with the aid of the communications interface 820. A processor with the aid of additional hardware may also be operatively coupled to a network. The network 830 may be the Internet, an intranet and/or an extranet, an intranet and/or extranet that is in communication with the Internet, a telecommunication or data network. The network 830 with the aid of the server 801, may implement a peer-to-peer network, which may enable devices coupled to the server 801 to behave as a client or a server. The server may be capable of transmitting and receiving computer-readable instructions (e.g., device/system operation protocols or parameters) or data (e.g., sensor measurements, raw data obtained from detecting metabolites, analysis of raw data obtained from detecting metabolites, interpretation of raw data obtained from detecting metabolites, etc.) via electronic signals transported through the network 830. Moreover, a network may be used, for example, to transmit or receive data across an international border.

[0458] The server 801 may be in communication with one or more output devices 835 such as a display or printer, and/or with one or more input devices 840 such as, for example, a keyboard, mouse, or joystick. The display may be a touch screen display, in which case it functions as both a display device and an input device. Different and/or additional input devices may be present such an enunciator, a speaker, or a microphone. The server may use any one of a variety of operating systems, such as for example, any one of several versions of Windows®, or of MacOS®, or of Unix®, or of Linux®.

[0459] The storage unit 815 may store files or data associated with the operation of a device, systems or methods described herein.

[0460] The server may communicate with one or more remote computer systems through the network 830. The one or more remote computer systems may include, for example, personal computers, laptops, tablets, telephones, Smart phones, or personal digital assistants.

[0461] A control assembly may include a single server 801. In other situations, the system may include multiple servers in communication with one another through an intranet, extranet and/or the Internet.

[0462] The server 801 may be adapted to store device operation parameters, protocols, methods described herein, and other information of potential relevance. Such information may be stored on the storage unit 815 or the server 801 and such data is transmitted through a network.

Kits

[0463] A composition described herein may be supplied in the form of a kit. A composition may be a probe set designed for a target nucleic acid sequence. The kits of the present disclosure may further comprise instructions regarding the method of using the probe set to detect the target nucleic acid sequence. [0464] In some embodiments, a kit comprises the compositions and methods for detecting a target nucleic acid sequence (to perform a Nano-FISH assay). The compositions and methods may be for fast detection of the target nucleic acid sequence, e.g., in about 24 hours or less, or in about 48 hours or less. The compositions and methods may be for detection of the target nucleic acid sequence, wherein the target nucleic acid sequence is a short nucleic acid sequence, e.g., less than 2 kb, less than 1.5 kb, or less than 0.5 kb. The compositions and methods may be for detecting and quantifying the target nucleic acid sequence in a cell or in a population of cells. In some embodiments, a kit may further comprise components useful in using the kit components and instructions on how to prepare the components for detection of a target nucleic acid sequence. In some embodiments, the kit may further comprise software needed for detection of the target nucleic acid sequence.

[0465] The components of the kit may be in dry or liquid form. If they are in dry form, the kit may include a solution to solubilize the dried material. The kit may also include transfer factor in liquid or dry form. In some embodiments, if the transfer factor is in dry form, the kit includes a solution to solubilize the transfer factor. The kit may also include containers for mixing and preparing the components. The kits as described herein also may include a means for containing compositions of the present disclosure in close confinement for commercial sale and distribution.

[0466] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the claimed subject matter belongs. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. In this application, the use of "or" means "and/or" unless stated otherwise. Furthermore, use of the term "including" as well as other forms, such as "include", "includes," and "included," is not limiting.

[0467] As used herein, ranges and amounts may be expressed as "about" a particular value or range. About also includes the exact amount. Hence "about 5 μί" means "about 5 μί" and also "5 μί." Generally, the term "about" includes an amount that would be expected to be within experimental error.

[0468] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. [0469] In various aspects, the present disclosure provide a method of detecting an exogenous nucleic acid sequence, the method comprising: a) providing a plurality of probes, wherein a first probe of the plurality of probes has at least one or more of the following characteristics: (i) less than 300 matches to a 16-mer database of human genomic sequences; (ii) less than 3 hits of the first probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence; (iii) the first probe is capable of binding to the plus strand of the exogenous nucleic acid sequence and a second probe is capable of binding to the minus strand of the exogenous nucleic acid sequence; (iv) 5 nucleotides at a 3' end of the first probe, which are complementary to 5 nucleotides at a 5' end of a second probe of the plurality of probes; (v) 5 nucleotides at a 5' end of the first probe, which are complementary to 5 nucleotides at a 3' end of a second probe of the plurality of probes; and (vi) a linear structure comprising 30-60 nucleotides and a single detectable agent coupled to a first nucleotide at a 3' end of the probe; and wherein the first probe comprises a detectable label and a probe sequence that binds to a portion of the exogenous nucleic acid sequence; b) contacting the plurality of probes with a cell; and c) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the exogenous nucleic acid sequence.

[0470] In some aspects, the first probe of the plurality of probes has two or more of the characteristics (i) through (vi). In other aspects, the first probe of the plurality of probes has three or more of the characteristics (i) through (vi). In some aspects, the first probe of the plurality of probes has four or more of the characteristics (i) through (vi). In other aspects, the first probe of the plurality of probes has five or more of the characteristics (i) through (vi). In some aspects, the first probe of the plurality of probes has all of the characteristics (i) through (vi).

[0471] In some aspects, the first probe is an oligonucleotide probe. In further aspects, the first probe comprises 40 nucleotides.

[0472] In various aspects, the present disclosure provides a method of detecting an exogenous nucleic acid sequence, the method comprising: a) contacting a plurality of probes with a cell, wherein a first probe of the plurality of probes comprises an oligonucleotide probe comprising 30 to 60 nucleotides that bind to a portion of the exogenous nucleic acid sequence and a detectable label directly incorporated at a first nucleotide at a 3' end of the oligonucleotide probe; b) detecting a presence of the detectable label in the cell, wherein the presence of the detectable label indicates the presence of the exogenous nucleic acid sequence. [0473] In some aspects, the oligonucleotide probe comprises 40 nucleotides. In some aspects, the first probe has less than 300 matches to a 16-mer database of human genomic sequences, exhibits less than 3 hits of the oligonucleotide probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence, is capable of binding to the plus strand of the exogenous nucleic acid sequence and a second probe is capable of binding to the minus strand of the exogenous nucleic acid sequence, 5 nucleotides at a 3' end of the first probe, which are complementary to 5 nucleotides at a 5' end of a second probe of the plurality of probes, 5 nucleotides at a 5' end of the first probe, which are complementary to 5 nucleotides at a 3' end of a second probe of the plurality of probes, and a linear structure comprising 30-60 nucleotides and a single detectable agent coupled to a first nucleotide at a 3' end of the probe.

[0474] In some aspects, the exogenous nucleic acid sequence comprises a viral nucleic acid sequence. In some aspects, the detectable label is a fluorescent dye molecule. In some aspects, the plurality of probes is not blocked with a blocking agent prior to the contacting the plurality of probes with the cell.

[0475] In further aspects, the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof. In some aspects, the cell is an intact cell. In some aspects, the detecting of the exogenous nucleic acid sequence comprises less than 48 hours or less than 24 hours. In some aspects, the exogenous nucleic acid sequence is a non-amplified nucleic acid sequence. In some aspects, the exogenous nucleic acid sequence is not more than 12 kilobases in length, 10 kilobases in length, not more than 8 kilobases in length, not more than 6 kilobases in length, not more than 4 kilobases in length, not more than 3 kilobases, not more than 2 kilobases, not more than 1.5 kilobases in length, or not more than 1 kilobases in length.

[0476] In some aspects, the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes. In further aspects, the method further comprises denaturing a DNA of the cell prior to contacting the plurality of probes with the cell. In some aspects, the denaturing the DNA of the cell comprises incubating the cell for 4.5 minutes in 70% formamide at a temperature of 78°C.

[0477] In further aspects, the method further comprises binding at least a portion of the first plurality of probes to the exogenous nucleic acid sequence. In some aspects, the method further comprises washing the cell after contacting the exogenous nucleic acid sequence with the first plurality of probes. In some aspects, the exogenous nucleic acid sequence is introduced into the cell. In further aspects, introducing comprises electroporation, lipofection, transfection, microinjection, viral transduction, or use of a gene gun.

[0478] In some aspects, the exogenous nucleic acid sequence is integrated into the genome of the cell. In some aspects, the method further comprises contacting the cell with a second detectable label that binds to a portion of a cellular structure; and detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine a spatial position of the exogenous nucleic acid sequence.

[0479] In further aspects, the method further comprises providing the cell further comprising a secondary nucleic acid sequence; contacting the cell with a second plurality of probes comprising a secondary probe comprising a second detectable label and a probe sequence that binds to a portion of the second nucleic acid sequence; and detecting a position of the detectable label in the cell relative to the second detectable label, wherein the position is used to determine the spatial position of the exogenous nucleic acid sequence.

[0480] In some aspects, the method further comprises determining a number of the exogenous nucleic acid sequences present in the cell. In some aspects, the method further comprises enriching for a cell population with a certain number of exogenous nucleic acid sequences in each cell based on the number of exogenous nucleic acid sequences as determined above. In some aspects, the method further comprises correlating an expression level of a cell surface protein with the number of exogenous nucleic acid sequences present in the cell, wherein the exogenous nucleic acid sequence encodes for the cell surface protein.

[0481] In some aspects, the method further comprises optically detecting the detectable label. In further aspects, the method comprises optically detecting the second detectable label. In some aspects, the exogenous nucleic acid sequence comprises: a viral nucleic acid sequence from a vector or fragment thereof; and a transgene nucleic acid sequence of an insert from the vector or fragment thereof. In some aspects, the exogenous nucleic acid sequence is from a lentivirus, adenovirus, adeno-associated virus, retrovirus, or any combination thereof.

[0482] In further aspects, the exogenous nucleic acid sequence is integrated into the genome of the cell. In some aspects, the cell is obtained from a tissue. In further aspects, the cell is a live cell. In some aspects, the cell is a mammalian cell or eukaryotic cell.

[0483] In further aspects, the cell is a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T-cell. In some aspects, the cell is an engineered cell or a progenitor cell thereof. In further aspects, the engineered cell is a CD34+ cell or a T cell. In some aspects, the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene. In some aspects, the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR). In further aspects, the gene comprises any therapeutic gene. In still further aspects, the CAR comprises BCMA, CD 19, CD22, WT1, L1CAM, MUC16, ROR1, or LeY.

[0484] In some aspects, the second plurality of probes bound to the exogenous nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes. In some aspects, the method further comprises binding at least a portion of the second plurality of probes to the exogenous nucleic acid sequence.

[0485] In further aspects, the method further comprises washing the cell after contacting the exogenous nucleic acid sequence with the second plurality of probes. In some aspects, the probe sequence of at least one probe of the second plurality of probes comprises an oligonucleotide sequence. In some aspects, the plurality of probes comprises at least one of SEQ ID NO: 930 -SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403. In some aspects, the exogenous nucleic acid sequence has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 97%, or at least 99% sequence identity with SEQ ID NO: 1282 - SEQ ID NO: 1285.

[0486] In some aspects, the first probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

[0487] In some aspects, the exogenous nucleic acid sequence comprises DNA. In other aspects, the exogenous nucleic acid sequence comprises RNA. In some aspects, the first probe comprises a GC content of from 25-70%. In further aspects, the GC content of each probe within the plurality of probes varies by less than 5 to 10%. In some aspects, the single detectable agent is located at the 5' end of the first probe or at any nucleotide of the first probe. In some aspects, a signal to noise ratio of about 1.2-1.5 to 1, 1.5: 1, 4-8 to 1, or 5-10: 1 is observed. In some aspects, the plurality of probes binds endogenous and exogenous genes. In some aspects, the exogenous nucleic acid sequence is double stranded.

[0488] In further aspects, the cell is fixed with a fixation buffer prior to the contacting the plurality of probes with the cell. In some aspects, the fixation buffer comprises a 3 to 1 ratio of methanol to acetic acid. In some aspects, the first probe has less than 1 hit to a genomic sequence, wherein the hit comprises at least 75% of contiguous homology to a genomic sequence.

[0489] In some aspects, the contacting the plurality of probes with the cell comprises simultaneously contacting a plurality of cell populations with the plurality of probes. In some aspects, each of the plurality of cell populations is deposited in an individual well in a well plate. In further aspects, the well plate comprises at least 24 wells. In some aspects, each of the plurality of cell populations is from a unique sample. In other aspects, each of the plurality of cell populations is from an identical sample. In further aspects, each of the plurality of cell populations is deposited in an individual well in up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates. In some aspects, a probe set comprises the plurality of probes. In further aspects, the method further comprises providing a plurality of probe sets. In still further aspects, each probe set of the plurality of probe sets comprises a unique fluorophore and detects a unique exogenous nucleic acid sequence.

[0490] In various aspects, the present disclosure provides a composition comprising a plurality of probes, wherein a first probe of the plurality of probes comprises an

oligonucleotide probe comprising a detectable label and a probe sequence that binds to an exogenous nucleic acid sequence in a cell and wherein the oligonucleotide probe has at least one or more of the following characteristics: (i) less than 300 matches to a 16-mer database of human genomic sequences; (ii) less than 3 hits of the first probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence; (iii) the first probe is capable of binding to the plus strand of the exogenous nucleic acid sequence and a second probe is capable of binding to the minus strand of the exogenous nucleic acid sequence; (iv) 5 nucleotides at a 3' end of the first probe, which are

complementary to 5 nucleotides at a 5' end of a second probe of the plurality of probes; (v) 5 nucleotides at a 5' end of the first probe, which are complementary to 5 nucleotides at a 3' end of a second probe of the plurality of probes; and (vi) a linear structure comprising 30-60 nucleotides and a single detectable agent coupled to a first nucleotide at a 3' end of the probe.

[0491] In some aspects, the first probe has at least two or more of characteristics (i) through (vi). In other aspects, the first probe has three or more of the characteristics (i) through (vi). In some aspects, the first probe has four or more of the characteristics (i) through (vi). In other aspects, the first probe has four or more of the characteristics (i) through (vi). In some aspects, the first probe has five or more of the characteristics (i) through (vi). In other aspects, the first probe has all of the characteristics (i) through (vi). [0492] In some aspects, the detectable label is directly incorporated on a first nucleotide at a 3' end of the first probe. In some aspects, the first probe comprises 30-60 nucleotides.

[0493] In various aspects, the present disclosure provides a composition comprising a plurality of probes, wherein a first probe of the plurality of probes comprises an

oligonucleotide probe comprising a detectable label directly incorporated on a first nucleotide at a 3' end of the oligonucleotide probe and a probe sequence comprising 30 to 60

nucleotides that binds to a portion of an exogenous nucleic acid in a cell sequence.

[0494] In some aspects, the first probe has less than 300 matches to a 16-mer database of human genomic sequences, exhibits less than 3 hits of the oligonucleotide probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence, is capable of binding to the plus strand of the exogenous nucleic acid sequence and a second probe is capable of binding to the minus strand of the exogenous nucleic acid sequence, 5 nucleotides at a 3' end of the first probe, which are complementary to 5 nucleotides at a 5' end of a second probe of the plurality of probes, 5 nucleotides at a 5' end of the first probe, which are complementary to 5 nucleotides at a 3' end of a second probe of the plurality of probes, and a linear structure comprising 30-60 nucleotides and a single detectable agent coupled to a first nucleotide at a 3' end of the probe.

[0495] In some aspects, the oligonucleotide probe comprises 40 nucleotides. In some aspects, the exogenous nucleic acid sequence comprises a viral nucleic acid sequence. In some aspects, the oligonucleotide probe is capable of binding to a plus strand or a minus strand of the exogenous nucleic acid sequence.

[0496] In further aspects, the detectable label is a fluorescent dye molecule. In some aspects, the cell is an intact cell. In some aspects, the exogenous nucleic acid sequence is a non- amplified nucleic acid sequence. In some aspects, the exogenous nucleic acid sequence is not more than 12 kilobases in length, 10 kilobases in length, not more than 8 kilobases in length, not more than 6 kilobases in length, not more than 4 kilobases in length, not more than 3 kilobases, not more than 2 kilobases, not more than 1.5 kilobases in length, or not more than 1 kilobases in length. In some aspects, the plurality of probes is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes.

[0497] In some aspects, the exogenous nucleic acid sequence comprises: a viral nucleic acid sequence from a vector or fragment thereof; and a transgene nucleic acid sequence of an insert from the vector or fragment thereof. In some aspects, the exogenous nucleic acid sequence is from a lentivirus, adenovirus, adeno-associated virus, retrovirus, or a fragment thereof. In some aspects, the exogenous nucleic acid sequence is integrated into the genome of the cell.

[0498] In further aspects, the cell is obtained from a tissue. In some aspects, the cell is a live cell. In some aspects, the cell is a mammalian cell or eukaryotic cell. In some aspects, the cell is a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T- cell. In some aspects, the cell is an engineered cell or a progenitor cell thereof. In further aspects, the engineered cell is a CD34+ cell or a T cell. In some aspects, the CD34+ cell is transduced with the exogenous nucleic acid sequence to introduce a gene. In further aspects, the T cell is transduced with the exogenous nucleic acid sequence to introduce a chimeric antigen receptor (CAR).

[0499] In further aspects, the CAR comprises BCMA, CD19, CD22, WT1, L1CAM,

MUC16, ROR1, or LeY. In some aspects, the plurality of probes comprises at least one of SEQ ID NO: 930 -SEQ ID NO: 1281 or SEQ ID NO: 1388 - SEQ ID NO: 1403. In some aspects, probe comprises less than 1 repetitive element, wherein the repetitive element comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC.

[0500] In some aspects, the exogenous nucleic acid sequence comprises DNA. In other aspects, the exogenous nucleic acid sequence comprises RNA. In some aspects, the first probe comprises a GC content of from 25-70%. In some aspects, the GC content of each probe within the plurality of probes varies by less than 5 to 10%. In some aspects, the single detectable agent is located at the 5' end of the first probe or at any nucleotide of the first probe. In some aspects, a signal to noise ratio of about 1.2-1.5 to 1, 1.5: 1, 4-8 to 1, or 5-10: 1 is observed. In some aspects, the plurality of probes binds endogenous and exogenous genes. In some aspects, the exogenous nucleic acid sequence is double stranded. In some aspects, the first probe has less than 1 hit to a genomic sequence, wherein the hit comprises at least 75% of contiguous homology to a genomic sequence.

[0501] In various aspects, the present disclosure provides a method of detecting a viral nucleic acid sequence in an intact cell within a period of not more than 48 hours. In some aspects, the method further comprises contacting the intact cell with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the viral nucleic acid sequence. In some aspects, the method further comprises detecting a presence of the first detectable label in the intact cell, wherein the presence of the first detectable label indicates the presence of the viral nucleic acid sequence.

[0502] In various aspects, the present disclosure provides a method of detecting a viral nucleic acid sequence within a period of not more than 48 hours, wherein the viral nucleic acid sequence is a non-amplified viral nucleic acid sequence. In some aspects, the method further comprises contacting the viral nucleic acid sequence with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the viral nucleic acid sequence. In some aspects, the method further comprises detecting a presence of the first detectable label on the viral nucleic acid sequence, wherein the presence of the first detectable label indicates the presence of the viral nucleic acid sequence. In some aspects, the viral nucleic acid sequence is not more than 12 kilobases in length, 10 kilobases in length, not more than 8 kilobases in length, not more than 6 kilobases in length, not more than 4 kilobases in length, not more than 3 kilobases, not more than 2 kilobases, not more than 1.5 kilobases in length, or not more than 1 kilobases in length. In some aspects, the plurality of probes bound to the viral nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes. In some aspects, the method further comprises binding at least a portion of the plurality of probes to the viral nucleic acid sequence. In some aspects, the method further comprises washing the intact cell after contacting the viral nucleic acid sequence with the first plurality of probes. In some aspects, the method further comprises introducing the viral nucleic acid sequence into the intact cell. In some aspects, the viral nucleic acid sequence is integrated into the genome of the intact cell. In some aspects, the method further comprises introducing the viral nucleic acid sequence into an intact cell. In some aspects, the viral nucleic acid sequence is integrated into the genome of an intact cell. In some aspects, introducing comprises electroporation, lipofection, transfection, microinjection, viral transduction, or use of a gene gun.

[0503] In some aspects, the contacting the viral nucleic acid sequences with the first plurality of probes comprises simultaneously contacting a plurality of cell populations with the first plurality of probes. In some aspects, each of the plurality of cell populations is deposited in an individual well in a well plate. In further aspects, the well plate comprises at least 24 wells. In some aspects, each of the plurality of cell populations is from a unique sample. In other aspects, each of the plurality of cell populations is from an identical sample. In further aspects, each of the plurality of cell populations is deposited in an individual well in up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates.

[0504] In some aspects, a probe set comprises the plurality of probes. In further aspects, the method further comprises providing a plurality of probe sets. In still further aspects, each probe set of the plurality of probe sets comprises a unique fluorophore and detects a unique exogenous nucleic acid sequence.

[0505] In various aspects, the present disclosure provides a method for detecting a presence of an exogenous nucleic acid sequence in an intact cell, the method comprising: providing the intact cell comprising the exogenous nucleic acid sequence, wherein the exogenous nucleic acid sequence is not more than 12 kilobases in length; contacting the intact cell with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the exogenous nucleic acid sequence; and detecting a presence of the first detectable label in the intact cell, wherein the presence of the first detectable label indicates the presence of the exogenous nucleic acid sequence. In some aspects, the method further comprises: contacting the intact cell with a second detectable label that binds to a portion of a cellular structure, and detecting a position of the first detectable label in the intact cell relative to the second detectable label, wherein the position is used to determine a spatial position of the exogenous nucleic acid sequence. In some aspects, the method further comprises: providing the intact cell further comprising a second nucleic acid sequence; contacting the intact cell with a second plurality of probes, wherein each probe comprises a second detectable label and a probe sequence that binds to a portion of the second nucleic acid sequence, and detecting a position of the first detectable label in the intact cell relative to the second detectable label, wherein the position is used to determine the spatial position of the exogenous nucleic acid sequence. In some aspects, contacting the intact cell with the first plurality of probes comprises simultaneously contacting a plurality of cell populations with the first plurality of probes. In some aspects, each of the plurality of cell populations is deposited in an individual well in a well plate. In further aspects, the well plate comprises at least 24 wells. In some aspects, each of the plurality of cell populations is from a unique sample. In other aspects, each of the plurality of cell populations is from an identical sample. In further aspects, each of the plurality of cell populations is deposited in an individual well in up to 1 to 2 well plates, 2 to 3 well plates, 3 to 4 well plates, 4 to 5 plates, or 5 to 10 plates. In some aspects, a probe set comprises the plurality of probes. In further aspects, the method further comprises providing a plurality of probe sets. In still further aspects, each probe set of the plurality of probe sets comprises a unique fluorophore and detects a unique exogenous nucleic acid sequence.

[0506] In various aspects, the present disclosure provides a method for quantifying an exogenous nucleic acid sequence in an intact cell, the method comprising: providing the intact cell comprising the exogenous nucleic acid sequence, wherein the exogenous nucleic acid sequence is not more than 12 kilobases in length; contacting the intact cell with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the exogenous nucleic acid sequence; and determining a number of the exogenous nucleic acid sequences present in the intact cell within a period of not more than 48 hours. In some aspects, the method further comprises enriching for a cell population with a certain number of exogenous nucleic acid sequences in each cell based on the number of exogenous nucleic acid sequences as determined above. In some aspects, the method further comprises correlating an expression level of a cell surface reporter gene with the number of exogenous nucleic acid sequences present in the intact cell, wherein the exogenous nucleic acid sequence comprises the cell surface reporter gene. In some aspects, the detecting is within a period of not more than 48 hours. In some aspects, the period is of not more than 24 hours. In some aspects, the intact cell comprises an exogenous nucleic acid sequence of not more than 10 kilobases in length, not more than 8 kilobases in length, not more than 6 kilobases in length, not more than 4 kilobases in length, not more than 3 kilobases, not more than 2 kilobases, not more than 1.5 kilobases in length, or not more than 1 kilobases in length. In some aspects, the exogenous nucleic acid sequence comprises a viral nucleic acid sequence. In some aspects, the exogenous nucleic acid sequence comprises: a viral nucleic acid sequence from a vector or fragment thereof; and a transgene nucleic acid sequence of an insert from the vector or fragment thereof. In some aspects, the viral nucleic acid sequence is from a lentivirus, adenovirus, adeno-associated virus, or retrovirus. In some aspects, the exogenous nucleic acid sequence of the transgene nucleic acid sequence comprises a chimeric antigen receptor T cell nucleic acid sequence or fragment thereof. In some aspects, the first plurality of probes bound to the exogenous nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes. In some aspects, the method further comprises binding at least a portion of the first plurality of probes to the exogenous nucleic acid sequence. In some aspects, the method further comprises washing the intact cell after contacting the exogenous nucleic acid sequence with the first plurality of probes. In some aspects, the method further comprises optically detecting the first detectable label. In some aspects, the method further comprises optically detecting the second detectable label. In some aspects, the intact cell is obtained from a tissue. In some aspects, the intact cell is a live cell. In some aspects, the intact cell is a mammalian cell or eukaryotic cell. In some aspects, the intact cell is a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T-cell. In some aspects, the method further comprises introducing the exogenous nucleic acid sequence into the intact cell. In some aspects, the exogenous nucleic acid sequence is integrated into the genome of the intact cell. In some aspects, the probe sequence of at least one probe of the first plurality of probes comprises an oligonucleotide sequence. In some aspects, the probe sequence of at least one probe of the first plurality of probes comprises an amino acid sequence. In some aspects, the second plurality of probes bound to the exogenous nucleic acid sequence is less than 250 probes, less than 200 probes, less than 150 probes, less than 100 probes, less than 80 probes, less than 60 probes, less than 50 probes, less than 40 probes, less than 30 probes, less than 20 probes, less than 15 probes, less than 10 probes, or less than 8 probes. In some aspects, the method further comprises binding at least a portion of the second plurality of probes to the nucleic acid sequence In some aspects, the method further comprises washing the intact cell after contacting the nucleic acid sequence with the second plurality of probes. In some aspects, the probe sequence of at least one probe of the second plurality of probes comprises an oligonucleotide sequence. In some aspects, the probe sequence of at least one probe of the second plurality of probes comprises an amino acid sequence.

[0507] In some aspects, the probe comprises 30 to 60 nucleotides. In further aspects, the probe comprises 40 nucleotides. In some aspects, the probe comprises a GC content of from 25-70%, exhibits less than 3 hits of the probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence, and less than 300 matches to a 16-mer database of human genomic sequences. In some aspects, the probe can bind to a top strand or a bottom strand of the viral nucleic acid sequence. In some aspects, the probe can bind to a plus strand or a minus strand of the exogenous nucleic acid sequence. In some aspects, the first detectable label is a fluorescent dye molecule. In further aspects, the second detectable label is a fluorescent dye molecule.

[0508] In some aspects, the plurality of probes is not blocked with a blocking agent prior to contacting the plurality of probes with the intact cell. In further aspects, the blocking agent is Cot-1 DNA, salmon sperm DNA, yeast tRNA, or any combination thereof. In some aspects, the probe comprises less than 1 repetitive element, wherein the repetitive comprises a short interspersed nuclear elements (SINE), an ALUs, a long interspersed nuclear elements (LINE), a long terminal repeat elements (LTR) including retroposons, a DNA repeat elements, a simple repeats (micro-satellites), a low complexity repeats, a satellite repeats, a RNA repeat, or a class RC. In some aspects, the viral nucleic acid sequence comprises DNA.

[0509] In other aspects, the viral nucleic acid sequence comprises RNA. In some aspects, the probe comprises a GC content of from 25-70%. In some aspects, the GC content of each probe within the plurality of probes varies by less than 5 to 10%. In other aspects, the single detectable agent is located at the 5' end of the first probe or at any nucleotide of the first probe. In some aspects, a signal to noise ratio of about 1.2-1.5 to 1, 1.5: 1, 4-8 to 1, or 5-10: 1 is observed. In some aspects, the plurality of probes binds endogenous and exogenous genes. In some aspects, the viral nucleic acid sequence is double stranded. In some aspects, the probe has less than 300 matches to a 16-mer database of human genomic sequences, exhibits less than 3 hits of the oligonucleotide probe to a genomic sequence, wherein the hit comprises at least 50% of contiguous homology to a genomic sequence, is capable of binding to the plus strand of the exogenous nucleic acid sequence and a second probe is capable of binding to the minus strand of the exogenous nucleic acid sequence, 5 nucleotides at a 3' end of the first probe, which are complementary to 5 nucleotides at a 5' end of a second probe of the plurality of probes, 5 nucleotides at a 5' end of the first probe, which are complementary to 5 nucleotides at a 3' end of a second probe of the plurality of probes, and a linear structure comprising 30-60 nucleotides and a single detectable agent coupled to a first nucleotide at a 3' end of the probe. In some aspects, the method further comprises denaturing a DNA of the cell prior to contacting the plurality of probes with the cell. In some aspects, the denaturing the DNA of the cell comprises incubating the cell for 4.5 minutes in 70% formamide at a temperature of 78°C. In some aspects, the probe has less than 1 hit to a genomic sequence, wherein the hit comprises at least 75% of contiguous homology to a genomic sequence.

[0510] In various aspects, the present disclosure provides a probe set comprising a plurality of unique probes, wherein: each probe comprises a detectable label and a probe sequence that binds to a portion of a target viral nucleic acid sequence in an intact cell; and the target viral nucleic acid sequence comprises at least 90%, at least 95%, at least 98%, at least 99%, or at least 100% sequence identity to SEQ ID NO: 1282, SEQ ID NO: 1283, SEQ ID NO: 1284, SEQ ID NO: 1285, or a fragment thereof. In some aspects, the target viral nucleic acid sequence is at least 200 nucleotides in length, 250 nucleotides in length, 300 nucleotides in length, 350 nucleotides in length, 400 nucleotides in length, 450 nucleotides in length, 500 nucleotides in length, 550 nucleotides in length, or 600 nucleotides in length. In some aspects, the target comprises a length of not more than 10 kilobases, not more than 8 kilobases, not more than 6 kilobases, not more than 4 kilobases, or not more than 3 kilobases, not more than 2 kilobases, not more than 1.5 kilobases, or not more than 1 kilobases. In some aspects, the detectable label is optically detected when the probe is bound to a portion of the target viral nucleic acid sequence in the intact cell.

[0511] In some aspects, each probe sequence comprises between 20 and 80 nucleotides. In some aspects, the probe set comprises at least 8 and not more than 145 unique probes.

[0512] In some aspects, the intact cell is a hematopoietic progenitor cell, a monocyte, a macrophage, a microglia, a neuron, or a T-cell. In some aspects, the target viral nucleic acid sequence is integrated into the genome of the intact cell. In various aspects, the present disclosure provides a kit comprising a probe set and a set of instructions for the method of any one the methods disclosed herein. In some aspects, the probe set comprises the probe set of any one the probes sets disclosed herein.

[0513] In various aspects, the present disclosure provides a method for assessing a phenotype of an intact genetically modified cell, the method comprising: a) providing the intact genetically modified cell comprising a target nucleic acid sequence less than 2.5 kilobases in length; b) contacting the intact genetically modified cell with a first plurality of probes, wherein each probe comprises a first detectable label and a probe sequence that binds to a portion of the target nucleic acid sequence; c) detecting a presence of the first detectable label in the intact cell, wherein the presence of the first detectable label indicates the presence of the target nucleic acid sequence; d) determining a phenotype of the intact genetically modified cell; and e) correlating the phenotype of the intact genetically modified cell with the presence of the target nucleic acid sequence. In some aspects, the intact genetically modified cell is a eukaryotic intact genetically modified cell. In some aspects, the phenotype is a product expressed due to a genetic modification in the intact genetically modified cell, a quality of the product expressed due to the genetic modification in the intact genetically modified cell, or a combination thereof. In some aspects, the phenotype is an increased or decreased expression of the product, an increase or a decrease in the quality of the product, or a combination thereof. In some aspects, the method further comprises determining a number or location of genetic modifications in the intact genetically modified cell. In some aspects, the product expressed is a transgene protein, RNA, or a secondary product of the genetic modification. In some aspects, the method further comprises: f) selecting a first intact genetically modified cell comprising a phenotype of interest; g) determining a set of conditions used for a genetic modification of the first intact genetically modified cell; and h) preparing a second genetically modified cell using the set of conditions for genetic

modification.

[0514] In some aspects, the methods disclosed herein further comprise determining a transduction efficacy of a vector by calculating the number of exogenous nucleic acid sequences in the cell.

[0515] In various aspects, the present disclosure provides for a method for determining transduction efficacy of a vector in a cell, the method comprising: a) contacting the cell with any composition disclosed herein; b) detecting a presence of a first detectable label in the cell population, wherein the presence of the first detectable label indicates the presence of the exogenous nucleic acid sequence; and c) determining the transduction efficacy of the vector by calculating the number of exogenous nucleic acid sequences in the cell.

[0516] In some aspects, the method further comprises determining the transduction efficacy of the vector by calculating the number of exogenous nucleic acid sequences in the intact cell.

EXAMPLES

[0517] These examples are provided for illustrative purposes only and not to limit the scope of the claims provided herein.

EXAMPLE 1

DNase Treatment and TUNEL Assay

[0518] A TUNEL assay as described below may be used to label DNasel cut sites on a global cell. For example, all of the DNasel cut sites within a cell's nucleus may be labeled.

[0519] Cells were prepared for a 2-color SPDM for DNA density and DNase I sensitivity (TUNEL) assay.

[0520] An adherent cell line, A549 (lung adenocarcinoma), was used for these experiments. They were plated overnight on uncoated 18mm (#1 thickness) coverslips. Cells were deliberately plated sparsely to be -20% confluent on the day of the assay.

[0521] For all coverslips, cells were fixed with 4% formaldehyde in PBS for 10 minutes at room temperature, and then equilibrated in buffer A at room temperature for 15 minutes. The cells were permeabilized with 0.1% NP-40 in buffer A for 10 minutes at room temperature.

[0522] The DNasel assay was performed with 80 U/ml DNasel for 3 minutes at 37°C. Cells were then post fixed in 4% formaldehyde in buffer A for 10 minutes at room temperature. The coverslips were permeabilized for 20 minutes with buffer A with 0.25% TX-100, and washed twice with distilled water and were equilibrated with 100 μΐ of TdT reaction buffer for 10 minutes at room temperature. The terminal deoxynucleotide transferase (TdT) reaction with EdUTP-alkyne (100 μΐ per coverslip) was performed for 1 hour at 37°C. At the end of the TdT reaction, the coverslips were washed twice with 3% BSA/PBS. The ClickIT reaction was then performed for 2 coverslips to add Alexafluor647 to incorporated EdUTP-alkyne. This reaction was performed for 30 minutes at room temperature, in the dark. The other coverslips were kept in 3% BSA/PBS at room temperature. The coverslips were washed once with 3% BSA/PBS before being stained with Vybrant Violet staining and imaged by a SMLM method.

[0523] FIG. 3A shows a two color SPDM image (experimental) of chromatin (blue) with a DNA sensitive element (red), showing anti-colocalization of the DNA sensitive element with chromatin. Scale bars: 1000 nm, inserts: 100 nm. FIG. 3B is the inset of FIG. 3A.

[0524] FIG. 4A and FIG. 4B illustrate the localization precision and nearest neighbor distances for DNA and DNase sensitive elements.

EXAMPLE 2

DNA Encoding of Molecular Targets on a Multi-Omics Imaging Platform

[0525] Integration of imaging data across different molecular target types may provide in- depth insights into cell physiology and pathology. A multi-omics imaging platform is utilized which enables simultaneous visualization of multiple molecular targets irrespective of target type and imaging probes used. The multi-omics imaging platform comprises (i) decoupling of target binding and labeling steps, (ii) translation of heterogeneous molecular information into an intermediate standardized molecular code amenable to read-out via imaging probes, and (iii) employing encoding capacity and self-assembly capabilities of DNA bonding.

Specifically, molecular targets of interest are first encoded with unique ssDNA tags via binding by ssDNA-conjugated target-recognition moieties under optimized conditions favoring specific target binding. Individual ssDNA tags are then converted into detectable signals via sequence- specific hybridization with complementary ssDNA' -conjugated imaging probes under probe-optimized conditions. As such, molecular target uniqueness, localization, abundance, and specimen morphology information are preserved through all steps of labeling procedure, producing comprehensive molecular signatures of a physiological or pathological process.

Methods

[0526] Oligonucleotide probe design. Sequences for 6 ssDNA/ssDNA' encoding pairs were selected from a random pool. Selection criteria were: continuous 16bp complementarity, balanced nucleotide composition, lack of stable secondary structures at room temperature, lack of substantial cross-hybridization between mismatch pairs. See TABLE 9 for a complete list of ssDNA/ssDNA' encoding pairs.

[0527] Sequences for human GAPDH mRNA (NM_002046.5) and HSP90-alpha mRNA (NM_001271969.1) were obtained from NCBI. Sets of mRNA in situ hybridization (ISH) probes were designed using Stellaris RNA FISH Probe Designer (Biosearch Technologies). Probe sets contained 36 unique probes for GAPDH mRNA and 48 probes for HSP90-alpha mRNA. Each probe featured 5' terminal 20nt-long region complementary to mRNA, a spacer (either AAAAA for smaller 41nt probes or AAAA-dsSpacer-AAAA for longer 60nt probes), and a 16nt-long QDot binding tag. The ISH probe strand of the dsSpacer was 5'- TTCCCAAGCGTCATCT-3' (SEQ ID NO: 1286), pre-hybridized with a complementary 5'- AGATGACGCTTGGGAA-3' ssDNA (SEQ ID NO: 1287) at a 1: 1 molar ratio to form a 16bp dsDNA spacer prior to specimen labeling. See TABLE 10 and TABLE 11 for a complete list of ISH probes. All oligonucleotides were purchased from IDT DNA.

[0528] Antibody-ssDNA conjugation. Purified primary and secondary antibodies in PBS were purchased from Sigma- Aldrich. Amine-terminated HPLC purified ssDNA tags were purchased from IDT DNA (see TABLE 9, Tag IDs 1B-6B). Covalent antibody-ssDNA bioconjugation was achieved either a) via maleimide- mediated amine- sulfhydryl crosslinking or b) using Thunder-Link oligo conjugation system (Innova Biosciences).

[0529] For maleimide- mediated crosslinking, IgG was partially reduced by TCEP to expose free sulfhydryl groups, while 5' amine-terminated ssDNA oligonucleotides were activated by sulfo-SMCC (Thermo Scientific). IgG was diluted to 1 mg/mL in 100 PBS with 10 mM EDTA, mixed with 0.5 mM TCEP, and incubated for 30 min at 37°C. At the same time, ssDNA was diluted to 40 μΜ in 100 PBS, mixed with 10 mM sulfo-SMCC, and incubated for 30 min at RT. Reduced IgG and activated ssDNA were then purified by 3 rounds of desalting in Zeba desalting spin columns (Thermo Scientific) pre-washed with PBS/ 10 mM EDTA, mixed, and reacted for 4 hrs at room temperature (RT). Finally, unreacted sulfhydryl groups were capped by addition of 1 mM sulfo-SMCC pre-quenched by excess glycine. Antibody-ssDNA bioconjugates were purified by ultrafiltration for at least 6 times with Amicon Ultra 50KDa MWCO centrifugal filter (Millipore) and stored in PBS solution at 4°C.

[0530] For antibody-ssDNA conjugation with Thunder-Link oligo conjugation system, IgG was diluted to 1 mg/mL in 100 μΐ ^ PBS, activated by the Antibody Activation Reagent for 1 hr at RT, and purified using desalting column. At the same time, 5' amine-terminated ssDNA oligonucleotides were diluted to 80 μΜ in 100 μΐ ^ PBS, activated by the Oligo Activation Reagent for 1 Hr at RT, and desalted. Activated IgG and ssDNA were mixed at a volume ratio of 2: 1 (200 μΐ. IgG + 100 μΐ. ssDNA + 100 μΐ. wash buffer), reacted overnight at RT, and stored at 4°C. For optimization studies, following IgG:ssDNA volume ratios were tested: 50+50, 50+30, 50+20, and 50+10.

[0531] QDot-ssDNA conjugation. Amine-functionalized PEG-coated QDots (Qdot ITK amino (PEG) quantum dots, Invitrogen) with emission peaks centered at 525, 545, 565, 585, 605, and 655 nm were used for the preparation of QDot-ssDNA probes. Amine-terminated HPLC purified 16nt-long ssDNA tags were purchased from IDT DNA (see TABLE 10, Tag IDs 1A-6A). Oligonucleotides were activated with bifunctional cross-linker BS3

(Bis[sulfosuccinimidyl] suberate, Thermo Scientific), followed by covalent conjugation with QDots. 100 μΐ, 40 μΜ ssDNA solution in PBS was mixed with 500 molar excess of BS3 and incubated for 30 minutes at room temperature. Excess crosslinker was removed by 3 rounds of desalting in Zeba desalting spin columns (Thermo Scientific) pre-washed with PBS.

Activated ssDNA was then mixed with 25 μΐ ^ 8 μΜ stock QDot solution. The reaction was incubated overnight at room temperature and purified by ultrafiltration for at least 6 times with Amicon Ultra lOOKDa MWCO centrifugal filter (Millipore). Purified QDot-ssDNA probes were stored in PBS solution at 4°C.

[0532] Agarose gel electrophoresis was used for characterization of QDot-ssDNA probes. Procedure was performed on a 2% agarose gel in lx TBE at 90V for 2 hrs.

[0533] Cell culture and processing. Human cervical cancer cell line HeLa (ATCC) was used as a model specimen for evaluation of the multi-omics imaging via DNA encoding. Cells were grown in glass-bottom 24-well plates (Greiner Bio-One) in a humidified atmosphere at 37°C with 5% C0 2 to a density of 80-90% using MEM culture medium with L-glutamine (Gibco) supplemented with 10% fetal bovine serum (Gibco). Prior to labeling, cells were rinsed with PBS, fixed with 4% formaldehyde in PBS for 5 min at room

temperature followed by 15 min at 4°C, permeabilized with ice-cold 0.5% TritonX-100 (Thermo Scientific) in PBS for 15 min at 4°C, and washed with PBS. For mRNA imaging, cells were immediately processed for in situ hybridization to minimize degradation of mRNA prior to labeling. For protein imaging only, fixed cells could be stored in PBS with 0.03% sodium azide at 4°C for several days.

[0534] Encoding via immunorecognition. Encoding of protein targets in formalin- fixed cells was performed via incubation with antibody- ssDNA bioconjugates. Prior to labeling, cells were blocked by 2% BSA (from 10% BSA/PBS solution, Thermo Scientific), 0.5% Western blot blocking reagent (from 10% solution, Roche), 0.1% low MW dextran sulfate (9- 20 kDa MW, Sigma-Aldrich), 0.1 mg/mL shredded salmon sperm DNA (Invitrogen), and lx PBS for 30 min at RT. Antibodies were used at a final concentration of 5 μg/mL diluted in 2% BSA, 0.1% dextran sulfate, 0.1 mg/mL shredded salmon sperm DNA, and lx PBS and incubated with cells for 1-2 hrs at RT. Following labeling, cells were washed with PBS.

[0535] For reference studies, cell labeling with unmodified antibodies was performed in a similar fashion.

[0536] Encoding via in situ hybridization (ISH). Encoding of mRNA targets was performed via hybridization with ssDNA-tagged mRNA ISH probes. Cells were equilibrated with 10% formamide (Thermo Scientific), 2mM RVC (New England BioLabs), 2x SSC (Invitrogen) buffer for 30 min at RT and then incubated with 400 μΕΛνεΙΙ 250 nM mix of mRNA ISH probes in 1% dextran sulfate (>500 kDa MW, Sigma-Aldrich), 1 mg/mL tRNA (from E. coli, Roche), 10% formamide, 2mM RVC, 2x SSC hybridization buffer for 4 hrs (or overnight) at 37°C. Following hybridization, cells were washed with warm 10% formamide, 2x SSC buffer for 30 min at 37°C, two changes of lx PBS for 10 min at RT, and blocked by 2% BSA, 0.5% Western blot blocking reagent, 0.1% low MW dextran sulfate, 0.1 mg/mL shredded salmon sperm DNA, lx PBS for 30 min at RT.

[0537] Encoding for multi-omics studies. Encoding of protein and mRNA targets on the same specimen was performed by combining immunorecognition and in situ hybridization procedures. First, cells were hybridized with ssDNA-tagged mRNA ISH probes as described above. Following hybridization and washing, cells were blocked, incubated with antibody- ssDNA bioconjugates for 1-2 hrs at RT, and washed with PBS.

[0538] Specimen labeling with QDot probes. Following encoding of targets with ssDNA tags, cells were simultaneously labeled with complementary QDot-ssDNA' probes. QDots were used at a final concentration of 5 nM in 2% BSA, 0.1% low MW dextran sulfate, 0.1 mg/mL shredded salmon sperm DNA, lx PBS and incubated with cells for 2-4 hrs at RT. Following staining cells were washed with PBS. Optionally, nuclei could be counter- stained by a 5-min incubation with DAPI.

[0539] For reference immunofluorescence studies, cell staining with QDots functionalized with secondary Ab fragments (Qdot goat F(ab')2 anti-mouse or anti-rabbit IgG conjugates (H+L), Invitrogen) was performed in a similar fashion.

[0540] RNAi. Knock-down of GAPDH expression was done via cell transfection with GAPDH siRNA (Ambion). For forward transfection, cells were grown in a glass-bottom 24- well plate overnight and then treated with 500 μΐ/well culture medium containing 25 nM GAPDH siRNA and 0.5 μΐ/well DharmaFECT-2 transfection reagent (Dharmacon) for 24 hrs. For reverse transfection, cells were grown in a 10 cm TC-treated dish, trypsinized, mixed in suspension with culture medium containing 25 nM GAPDH siRNA and 0.5 μΐ/well DharmaFECT-2 transfection reagent, seeded into a glass-bottom 24-well plate at 500 μΐ/well cell suspension, and incubated for 24 hrs or 48 hrs. Following transfection, cells were processed for staining. Triplicate samples were also prepared for RT-PCR analysis.

[0541] RT-PCR analysis. Total RNA was isolated from cell pellets using TRIzol reagent (Invitrogen) according to the manufacturer's protocol. Two hundred nanograms of RNA was converted to cDNA using random hexamer primer and MultiScribe Reverse Transcriptase Reagent (Applied Bio systems). One hundred nanograms of cDNA was amplified by the Real- Time PCR using SensiFAST™ Real-Time PCR Kits (Bioline, UK) on Chromo4 Real-Time PCR detection system (Bio-Rad). The primers used for GAPDH amplification were 5'- TCGCTCTCTGCTCCTCCTGTTC-3' (forward primer; SEQ ID NO: 1288) and 5'- CGCCCAATACGACCAAATCC-3' (reverse primer; SEQ ID NO: 1289). Cyclophilin A (PPIA) was used as an internal control, and the primers were 5'- GTCAACCCC ACCGTGTTCTTC-3 ' (forward primer; SEQ ID NO: 1290) and 5'- TTTCTGCTGTCTTTGGGACCTTG-3 ' (reverse primer SEQ ID NO: 1291). To confirm the PCR specificity, PCR products were subjected to a melting-curve analysis. The comparative threshold (C t ) method was used to calculate the relative mRNA amount of the treated sample in comparison to control samples. Mean value from triplicate samples was reported.

[0542] Imaging and signal analysis. IX-71 inverted fluorescence microscope (Olympus) equipped with a true-color CCD (QColor5, Olympus) and a hyperspectral imaging camera (Nuance, 420-720 nm spectral range, CRI, now PerkinElmer) was used for cell imaging. Low-magnification images were obtained with x20 dry objective (NA 0.75, Olympus) and high- magnification with x40 (NA 1.30, Olympus) and xlOO (NA 1.40, Olympus) oil- immersion objectives. Wide UV filter cube (330-385 nm band-pass excitation, 420 nm long- pass emission, Olympus) was used for imaging of all QDot probes, while Rhodamine LP cube (530-560 nm band-pass excitation, 572 nm long-pass emission, Chroma) was used for Alexa Fluor 555 detection. All images were acquired with cells attached to the coverslip bottom of the well and immersed in PBS without use of anti-fading reagents.

[0543] Nuance image analysis software was used to unmix the obtained multispectral images based on the reference spectra of each QDot component along with an extra channel for background fluorescence. In a false-color composite image, brightness and contrast of each channel was automatically adjusted for best visual representation and clear depiction of relative target distribution, unless noted otherwise. For direct comparison of QDot staining intensity individual QDot channels were normalized.

[0544] DNA Encoding for Multi-Omic Imaging Studies. To demonstrate the DNA encoding for multi-omics imaging studies concurrent analysis of single-cell molecular expression profiles at mRNA and protein levels were performed. Fluorescent quantum dot probes (QDots) in combination with fluorescence microscopy and hyperspectral imaging (HSI) were employed for simultaneous visualization of all ssDNA tags following separate encoding of mRNA and protein targets (FIG. 5A). For example, GAPDH and HSP90-alpha mRNA molecules and their respective product proteins can be readily labeled by 4-color QDots to highlight relative intracellular distribution and abundance of the two target types at a single-cell level (FIG. 5B). Unlike direct labeling procedures performed at a single incubation condition fixed for all targets and probes, DNA encoding enables tuning of conditions to favor recognition of individual target types and hybridization with detection probes in separate steps, offering great flexibility in choice of specimens, targets, and imaging systems (FIG. 6).

[0545] QDot-based Multi-Omics Imaging Platform. To implement and systematically characterize the model QDot-based multi-omics imaging platform, a set of 6 unique 16bp ssDNA/ssDNA' linkers was developed for encoding of up to 6 different molecular targets (TABLE 9) along with a library of complementary 6-color QDot-ssDNA probes (FIG. 7 A and FIG. 7B) and a control set of 6 secondary antibody- ssDN A (2'Ab-ssDNA) bioconjugates (FIG. 8A and FIG. 8B). Indirect labeling of β-tubulin in HeLa cells via a 3-step procedure involving incubation with unmodified primary antibodies, 2'Ab-ssDNA bioconjugates, and complementary QDot-ssDNA' probes demonstrated preserved antigen-recognition functionality of ssDNA-modified antibodies and high specificity of QDot staining via DNA hybridization (FIG. 9).

[0546] Mutiplex Protein Immuno- labeling. Multiplexed protein immuno-labeling was realized through preparation of a library of primary antibody- ssDNA (l'Ab-ssDNA) bioconjugates (FIG. 10A, FIG. 10B, and FIG. IOC; and FIG. HA, FIG. 11B, FIG. 11C, FIG. 11D, and FIG. HE). Characterization of such bioconjugates with PAGE and cell staining confirmed preserved stability and antigen-binding functionality of antibodies, specificity of target staining with QDots in a 2- step procedure, and consistent target identification with different QDot colors in a multiplexed imaging format (FIG. HA, FIG. 11B, FIG. llC, FIG. 11D, and FIG. HE). Nuclear envelope protein Lamin A, microtubule β-tubulin, and cytoplasmic proteins HSP90-alpha and GAPDH were labeled as model target molecules with distinct characteristic intracellular localization.

[0547] Labeling of model GAPDH and HSP90-alpha mRNA molecules via an indirect in situ hybridization (ISH) procedure was done with modified mRNA ISH oligonucleotide probes featuring 5' 20nt mRNA-recognition portion and a 3' 16nt QDot-binding tag separated by a single- stranded AAAAA spacer (TABLE 10 and TABLE 11). Hybridization of

oligonucleotide probes under optimized ISH conditions yielded labeling of each mRNA molecule with multiple ssDNA tags (up to 36 for GAPDH and 48 for HSP90-alpha), producing distinct spots upon staining with complementary QDot-ssDNA probes consistent with results achieved with conventional mRNA ISH protocols (FIG. 12). In some instances, non-complementary QDot-ssDNA probes failed to hybridize to exposed ssDNA tags, producing minimal non-specific staining background. To explore effects of potential secondary structure formation in 41nt ssDNA oligonucleotides as well as steric hindrance experienced by QDots approaching tightly spaced ssDNA tags, an alternative mRNA ISH probe set was designed with each probe containing a 16bp dsDNA spacer between 5' mRNA- recognition and 3' QDot-binding portions. Indeed, physical separation of functional ssDNA portions improved mRNA staining intensity in comparison to linear 41nt ssDNA

oligonucleotides (FIG. 13A, FIG. 13B, FIG. 13C, and FIG. 13D), offering one strategy for enhancing per-spot signal intensity and improving signal-to-noise ratio.

[0548] Separation of target-recognition and QDot-labeling events via an intermediate DNA encoding enabled straightforward implementation of a model multi-omics imaging protocol, with both mRNA and protein targets being robustly labeled by respective QDot probes and accurately identified through hyperspectral imaging and analysis (FIG. 14), corroborating broad applicability of the DNA encoding strategy for simultaneous detection and imaging of various types of targets within the same specimen.

[0549] Multi-omics imaging platform was then applied to study gene knock-down via RNAi at a single-cell level. HeLa cells were transfected with GAPDH-targeting siRNA (as well as non-targeting siRNA for control) for 24 hrs, and GAPDH mRNA abundance was assessed with RT-PCR and QDot-based imaging. In some cases, bulk GAPDH mRNA measurement by RT-PCR indicated silencing efficiency of 78% with forward transfection and 95% with reverse transfection. At the same time, imaging revealed heterogeneity in RNAi, likely resulting from heterogeneous cell transfection with siRNA throughout different regions of cell culture. For example, forward transfection failed to achieve efficient GAPDH mRNA degradation in dense cell populations, yielding areas of completely silenced cells along with patches of cells with normal GAPDH mRNA expression levels (FIG. 15). In contrast, reverse transfection achieved a more uniform cell transfection in suspension, producing a greater proportion of silenced cells with only a few wild-type clones (FIG. 16). Direct comparison of mRNA imaging results obtained from forward vs. reverse transfection further corroborated complete mRNA degradation upon successful transfection with either method along with unperturbed GAPDH mRNA levels in non-transfected cells (FIG. 17), suggesting an all- on/all-off mode of GAPDH RNAi and attributing incomplete silencing observed with bulk RT-PCR analysis to heterogeneity in siRNA transfection.

[0550] Selectivity of GAPDH RNAi was confirmed by performing dual-target imaging of GAPDH mRNA and HSP90-alpha mRNA. Target-selective siRNA should trigger

degradation of only its complementary target mRNA, having no immediate effect on non- targeted mRNA molecules. This was indeed observed with GAPDH RNAi studies (FIG. 18). Indirect dual-target ISH produced robust staining of both mRNA species in reference HeLa cells grown in culture medium. Similarly, cell transfection with non-targeting control siRNA failed to produce any effect on mRNA expression. Transfection with GAPDH-targeting siRNA, however, triggered rapid degradation of GAPDH mRNA within 24 hrs posttransfusion, while leaving non-targeted HSP90-alpha mRNA intact. A single non-transfected cell within the field of view features intact expression of both GAPDH and HSP90 mRNA, consistent with discussion above.

[0551] Imaging of mRNA unambiguously demonstrated heterogeneity in RNAi stemming from incomplete cell transfection with siRNA. However, such heterogeneity could not be detected at the protein level, as GAPDH protein remained unperturbed 24 Hrs posttransfusion in both transfected and non-transfected cells, as was evident from dual labeling of GAPDH mRNA and protein (FIG. 19). To further investigate the disparity between RNAi effect at mRNA and protein levels, HeLa cells were reverse transfected with GAPDH- targeting siRNA for 24 and 48 Hrs and processed for multiplexed imaging of GAPDH and HSP90-alpha mRNA and their respective protein products. Consistent with studies discussed earlier, 24 hrs post-transfection a complete degradation of GAPDH mRNA was observed, whereas GAPDH protein level remained unperturbed (FIG. 20A). In contrast, 48 hrs post- transfection a substantial reduction of GAPDH protein level could be observed, with GAPDH mRNA remaining below the detection limit (FIG. 20B). HSP90 mRNA and protein levels remained unperturbed through 48 hours, confirming selectivity of GAPDH silencing. Further, all molecular targets exhibited consistent unperturbed levels in reference non-transfected cells (FIG. 21A and FIG. 21B) and cells transfected with non-targeting siRNA (FIG. 22A and FIG. 22B) throughout the study, corroborating that the observed GAPDH knock-down indeed resulted from RNAi mechanism. Multiplexed analysis was fully confirmed by a series of single-plex studies to mitigate any artifacts that could potentially be introduced from the multi-omics labeling methodology, HSI, and image analysis (FIG. 23A and FIG. 23B).

[0552] In some cases, delay in RNAi effect at the protein level is present, as proteins are typically degraded and cleared slower in comparison to siRN A- mediated mRNA degradation. In other cases, heterogeneity in cell transfection can modulate assessing RNAi efficiency with bulk RT-PCR measurement and downstream phenotypic and molecular signaling analysis. Non-transfected cells might gain growth advantage and achieve substantial clonal expansion during the time it takes for higher- level manifestations of RNAi to occur, thus distorting observed RNAi effect at a population level. Imaging-based analysis at a single-cell level can by-pass this ambiguity and can offer a more accurate insight into molecular processes.

TABLE 9 - List of ssDNA/ssDNA' tag pairs for encoding of molecular targets

*all ssDNA tags have 5' terminal amine group (/5AmMC6/) for bioconjugation separated from the pairing sequence by either a hexa-ethyleneglycol spacer (/iSpl8/) for QDot-coupled tags or 10A oligonucleotide spacer (AAAAAAAAAA; SEQ ID NO: 1404) for IgG-coupled tags.

TABLE 10 - Sequences of GAPDH mRNA ISH probes (with 2B encoding tag)

# mRNA-recognition region encoding tag 2B SEQ ID NO:

9 CGTCAAAGGTGGAGGAGTGGAAAAAACGTATGGCAAGTCTA-3' 1332

3 5' -AGTGGTCGTTGAGGGCAATGAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 0 3' 1333

3 5' -TCATACCAGGAAATGAGCTTAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 1 3' 1334

3 5 -CCTGTTGCTGTAGCCAAATTAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 2 3' 1335

3 5'- TGAGGAGGGGAGATTCAGTGAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 3 3' 1336

3 5 -CTCTTCAAGGGGTCTACATGAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 4 3' 1337

3 5' -TACATGACAAGGTGCGGCTCAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 5 3' 1338

3 5 -TGAGCACAGGGTACTTTATTAAAAAACGTATGGCAAGTCTA- SEQ ID NO: 6 3' 1339

Note: mRNA-recognition region and encoding tag are separated by a spacer (bolded and italicized). Shorter 41nt mRNA ISH probes contain - AAAAA- single-stranded spacer. Longer 60nt mRNA ISH probes contain pre-hybridized 16bp double-stranded spacer flanked by - AAAA- single-stranded linkers.

TABLE 11 - Sequences of HSP90-alpha mRNA ISH probes (with 4B encoding tag)

mRNA-recognition region encoding tag 4B SEQ ID NO:

SEQ ID NO: '-CCACCAAGTAGGCAGAATAAAAAAATGGAGTTTGGGCAGAT-3' 1353

SEQ ID NO:

5'-TGCTTTGTGATCACAACCACAAAAATGGAGTTTGGGCAGAT-3' 1354

SEQ ID NO: '-CAGAAGACTCCCAAGCATACAAAAATGGAGTTTGGGCAGAT-3' 1355

SEQ ID NO: '-AGCACGCACAGTGAAGGAACAAAAATGGAGTTTGGGCAGAT-3' 1356

SEQ ID NO:

5'-TCTAGGTACTCTGTCTGATCAAAAATGGAGTTTGGGCAGAT-3' 1357

SEQ ID NO: '-TAAAGGGTGATGGGATAGCCAAAAATGGAGTTTGGGCAGAT-3' 1358

SEQ ID NO:

5'-TGTTTAGTTCTTCCTGATCAAAAAATGGAGTTTGGGCAGAT-3' 1359

SEQ ID NO:

5'-AGGGTTTCTGGTCCAAATAGAAAAATGGAGTTTGGGCAGAT-3' 1360

SEQ ID NO:

5'-TCATTAGTGAGGCTCTTGTAAAAAATGGAGTTTGGGCAGAT-3' 1361

SEQ ID NO: '-AAAGTGCTTGACTGCCAAGTAAAAATGGAGTTTGGGCAGAT-3' 1362

SEQ ID NO:

5'-TGAATTCCAACTGACCTTCTAAAAATGGAGTTTGGGCAGAT-3' 1363

SEQ ID NO: '-GAGCCCGACGAGGAATAAATAAAAATGGAGTTTGGGCAGAT-3' 1364

SEQ ID NO: '-TGAACACACGGCGGACATAGAAAAATGGAGTTTGGGCAGAT-3' 1365

SEQ ID NO:

5'-ATCAACTCATCACAGCTGTCAAAAATGGAGTTTGGGCAGAT-3' 1366

SEQ ID NO:

5'-AAGATTTTGCTCTGCTGGAGAAAAATGGAGTTTGGGCAGAT-3' 1367

SEQ ID NO: '-AGAGAAGAGCTCAAGGCACTAAAAATGGAGTTTGGGCAGAT-3' 1368

SEQ ID NO:

5'-GTGGATTCCAAGCTTGAGATAAAAATGGAGTTTGGGCAGAT-3' 1369

SEQ ID NO: '-AGACTGGGAGGTATGATAGCAAAAATGGAGTTTGGGCAGAT-3' 1370

SEQ ID NO:

5'-CTCTGACAGAGATGTCATCTAAAAATGGAGTTTGGGCAGAT-3' 1371

SEQ ID NO:

5'-TAGATGGACTTCTGTGTCTCAAAAATGGAGTTTGGGCAGAT-3' 1372

SEQ ID NO: '-GCTCCACAAAAGCTGAGTTGAAAAATGGAGTTTGGGCAGAT-3' 1373

SEQ ID NO:

5'-CATATATACCACCTCGAAGCAAAAATGGAGTTTGGGCAGAT-3' 1374

SEQ ID NO: '-ACACAGTACTCGTCAATGGGAAAAATGGAGTTTGGGCAGAT-3' 1375

SEQ ID NO:

5'-TTCCCATCAAATTCCTTGAGAAAAATGGAGTTTGGGCAGAT-3' 1376

5'-GAGATTGTCACCTTCTCAACAAAAATGGAGTTTGGGCAGAT-3' SEQ ID NO: mRNA-recognition region encoding tag 4B SEQ ID NO:

1377

SEQ ID NO:

5'-TGCAGCAAGGTGAAGACACAAAAAATGGAGTTTGGGCAGAT-3' 1378

SEQ ID NO:

5'-GCTTTTTGGCCATCATATAGAAAAATGGAGTTTGGGCAGAT-3' 1379

SEQ ID NO:

5'-AACTGCCTTATCATTCTTGTAAAAATGGAGTTTGGGCAGAT-3' 1380

SEQ ID NO:

5'-ATCCTCAAGGGAAAAGCCAGAAAAATGGAGTTTGGGCAGAT-3' 1381

SEQ ID NO:

5'-TGATCATGCGATAGATGCGGAAAAATGGAGTTTGGGCAGAT-3' 1382

SEQ ID NO:

5'-CATCAGGAACTGCAGCATTGAAAAATGGAGTTTGGGCAGAT-3' 1383

SEQ ID NO:

5'-CAAGGGCACAAGTTTTCCAAAAAAATGGAGTTTGGGCAGAT-3' 1384

SEQ ID NO:

5'-TACTGCCTTCAACACAAGGAAAAAATGGAGTTTGGGCAGAT-3' 1385

SEQ ID NO:

5'-AGAGTAGAGAGGGAATGGGGAAAAATGGAGTTTGGGCAGAT-3' 1386

SEQ ID NO:

5'-TACACAACATCCAATCCTGCAAAAATGGAGTTTGGGCAGAT-3' 1387

Note: mRNA-recognition portion and encoding tag are separated by a spacer (bolded and italicized). Shorter 41nt mRNA ISH probes contain -AAAAA- single-stranded spacer. Longer 60nt mRNA ISH probes contain pre-hybridized 16bp double-stranded spacer flanked by -AAAA- single-stranded linkers.

EXAMPLE 3

Global In Situ Visualization of the DNasel Hypersensitivity Site (DHS) Compartment of a Cell

[0553] This example shows the global in situ visualization of the DNasel Hypersensitivity Site (DHS) compartment of a cell, which allows for identification of nuclear compartments where regulatory DNA activation occurs. As shown in the graphic on the left side of FIG. 24, K562 cells were fixed with Paxgene reagent, treated with DNasel, DNasel-induced nicks were labeled using terminal transferase (TdT) and ethynyl-dUTP (EdUTP) (TUNEL assay),

Alexafluor-488 (AF488) was conjugated to the EdUTP via copper click chemistry, and then SPDM imaging was performed. FIG. 24 shows multiple images of this. The top left image is of the raw signal data. The local density map image (top middle) shows a ring of

condensation at the nuclear lamina, which is similar to findings reported by the Weintraub lab 30 years ago (Weintraub, Cell (1985) 43:471-482); see FIG. 24 top right reproduced image). Approximately 18.4% of the localized points are within the ring density at the nuclear lamina, as shown the calculations in the lower right box, in which the image data calculation was based off the image on the lower left of FIG. 24. The image data calculation is similar to the proportion of K562 DHS within lamina-associated domains (LADS). These findings indicate labeling of DNasel cut sites in a cell's nucleus using a TUNEL assay may be used for better understanding of the nuclear localization of regulatory DNA activation.

EXAMPLE 4

Nano-FISH Methods

[0554] This example shows how Nano-FISH was used to detect the presence or absence of the locus control region in human erythroleukemia K562 cells.

Cells and Tissue Culture

[0555] Human erythroleukemia K562 cells and their derivative lacking the locus control region (ALCR) were maintained in RPMI 1640 media supplemented with 2mM L-glutamine (0.3 g/L), 10% Fetal Bovine Serum, penicillin, and streptomycin at 37°C in 5% C0 2 .

In Silico Design of Nano-FISH Probe Pools

[0556] Tiled 40 bp probe pools with a minimum of 2 bp spacing between consecutive probes were designed using Primer3 with default parameters. The resulting tiled probe sets were compared to a 16-mer database of genomic sequences in each register to model partial matches of probes to genomic sequences that could result in inappropriate background staining. A uniquely mapping oligonucleotide would therefore have a total of 24 matches to the 16-mer database. Individual probe sets with >100 16-mer database matches were empirically discarded from consideration. For the genomic target regions examined in this study, a pool of at least 30 oligonucleotides that satisfied these design criteria was used. Nano-FISH Protocol

[0557] Cells were harvested, washed once in phosphate buffered saline (PBS), re-suspended in a small volume of PBS and subsequently seeded on 18 mm xl8 mm coverslips in a 6-well plate that had been coated with poly-L-lysine (Sigma P1399). After allowing cells to adhere for 5 to 10 minutes at room temperature they were fixed by the addition of 4% formaldehyde (Polysciences 18814-10) in PBS for 10 minutes, washed with PBS, and then permeabilized for 15 minutes with 0.5% Triton X-100 in PBS. Following two washes in PBS, the cells were subjected to a 5 minute treatment of 0.1 M HC1 and subsequently washed twice in saline sodium citrate (2x SSC) before incubation with RNase A (25 μg/mL in 2x SSC) at 37°C for 30 minutes. The cover slips were washed in 2x SSC again and then pre-equilibrated for at least one hour in 50% formamide (Amresco 0606), 2x SSC (pH 7.0) at room temperature. To denature the cellular DNA the cover slips were incubated for 4.5 minutes in 70% formamide, 2x SSC (pH 7.0) preheated to 78°C in a 6-well plate on a heat block equipped with an aluminum block designed for tissue culture plates. For consistency, only the center two wells were used for denaturations and the temperature allowed to re-equilibrate before the next batch. Cover slips were then inverted onto 80 μΐ of hybridization solution (50% formamide, 10% dextran sulfate, 2x SSC, 250 pM oligonucleotide pool) on parafilm in a humid chamber and incubated overnight at 37°C. Post-hybridization washes included two 15 minute incubations in 2x SSC followed by two 7 minute washes in 0.2x SSC/0.2% Tween-20 at 56°C on a heat block and one wash in 4x SSC/0.2% Tween-20 at room temperature. Cellular DNA was counterstained with DAPI (100 ng/mL in 2x SSC), followed by two more washes in 2x SSC. Cover slips were then mounted on slides for imaging with Prolong Gold

(Molecular Probes P36930).

Imaging

[0558] For standard widefield microscopy, slides were imaged on an inverted Nikon Eclipse Ti widefield microscope with a 60x Nikon Plan Apo lambda NA 1.40 oil objective and an Andor Zyla 4.2CL10 CMOS camera.

EXAMPLE 5

Nano-FISH Detection of a 1.8 kb Nucleic Acid Sequence

[0559] This example and FIG. 33 shows the use of Nano-FISH to detect a 1.8 kb nucleic acid sequence. FIG. 33A shows a schematic of a Nano-FISH experiment. FIG. 33B shows the application of the Nano-FISH strategy to detect a 1.8kb region encompassing the HS2 hypersensitive site of the β-globin locus control region (LCR) in triploid K562

erythroleukemia cells. FIG. 33C shows co-localization of the Nano-FISH signals (-1.8 kb target region) with those from standard BAC-derived probes (conventional DNA- FISH; -170 kb target region), confirming the specificity of the detected Nano-FISH signal. Compared to the large size of BAC probes used to detect the β-globin LCR, Nano-FISH probes targeting HS2 covered a target region that was approximately 2 orders of magnitude smaller in size. Although most, but not all, spots corresponding to the alleles in the triploid cell were consistently detected using 30 tiled 40 base pair oligonucleotide probes targeting the HS2 hypersensitive site, increasing the number of probes and expanding the corresponding labeled genomic DNA target region illustrated that Nano-FISH was tunable. A modest increase in the number of Nano-FISH probes (-90) resulted in Nano-FISH detection of allele frequency that matched the performance of standard BAC probes. Conversely, decreasing the number of Nano-FISH probes below 30 probes drastically reduced allele detection sensitivity.

Therefore, as shown in FIG. 33D, the sensitivity of efficiency and resolution of detection using Nano-FISH may be tuned according to the number of probes being used. [0560] Using an efficient and robust automated image processing pipeline, results from hundreds of cells across multiple replicates were quantified. These studies showed that the diffraction-limited signals produced by Nano-FISH were smaller and dimmer than those generated by BAC-based probes (FIG. 33E and FIG. 33E). Despite this, Nano-FISH still showed robust detection of genomic regions with varying size, such as genomic region size ranging from about 800 bp to 2.1 kb, as shown in FIG. 33G. Thus, Nano-FISH is able to successfully label endogenous non-repetitive DNA loci that are much smaller than the current limit of resolution of BAC- and fosmid-based DNA- FISH approaches.

EXAMPLE 6

Fine Structural Analysis Using Nano-FISH

[0561] This example and FIG. 34 show the use of Nano-FISH to perform fine structural analysis of specific genomic loci within the nucleus. Probe pools were designed to target a 1.6kb region of chromosome 19 and a 1.4kb region of chromosome 18. These chromosomes were chosen since chromosome 19 is known to occupy a central position within the nucleus while chromosome 18 is more marginally located. FIG. 34A shows the distinct spots produced by Nano-FISH probes targeting specific loci on these chromosomes. To measure the relative localization of the detected loci, the relative radial distance (RRD), a normalized measure of the position of the detected spot with respect to the nuclear centroid, was calculated. FIG. 34B shows a schematic of the relative radial distance. FIG. 34C shows that the chromosome 18 Nano-FISH signals are closer to the nuclear periphery. The distributions were obtained across 2,396 chromosome 18 signals and 3,388 chromosome 19 signals. FIG. 34D shows radial histograms of the two target loci. The differences in the distribution of signals with respect to the nuclear centroid are readily apparent in the histograms.

EXAMPLE 7

Examination of Enhancer- Promoter Interactions Using Nano-FISH

[0562] This example and FIG. 35 show the use of Nano-FISH for examining the interaction of a gene enhancer with its target gene promoter. The positioning of a known enhancer of the CCND1 gene in 786-0 and MCF-7 cells was examined. Based on DNasel hypersensitivity mapping, this enhancer is active in 786-0 cells, but is inactive in MCF-7 cells. Using large (~225kb) probes, others have demonstrated that this enhancer is located in proximity to the CCND1 gene promoter in 786-0 cells, but not in MCF-7 cells. Nano-FISH probes targeting the enhancer and promoter were designed and synthesized. FIG. 35A shows two-color Nano- FISH in 786-0 and MCF-7 cells. The normalized inter-spot distance (NID) between these two genomic loci were compared. FIG. 35B shows a schematic of the normalized inter-spot distance. FIG. 35C shows that, on average, the spots are situated closer together in 786-0 cells compared to MCF-7 cells. FIG. 35D shows that, in spite of this, absolute colocalization (NID=0) was actually a rare event in both cell types. Thus, the small size of genomic regions targeted by Nano-FISH permits fine scale localization of regulatory DNA regions and provides a granular view of their spatial localizations within nuclei.

EXAMPLE 8

Detection of Small Genomic Structural Variations Using Nano-FISH

[0563] This example and FIG. 36 show the use of Nano-FISH to detect small genomic structural variations such as small losses or gains of DNA. ZFN-mediated genome editing was used to generate a triploid homozygous deletion of the β-globin locus control region (LCR, ~18kb) in K562 cells, as shown in FIG. 36A. Cells imbued with this deletion are referred to as ALCR. Probes targeting either the HS2 or HS3 hypersensitive sites within the deleted region were utilized to detect loss of LCR in the genome edited cells, as shown in FIG. 36B and FIG. 36C. For the converse scenario, using TALEN- mediated homology directed repair, a sequence encoding for eGFP was inserted into the AAVS 1 safe harbor locus on chromosome 19, as shown in FIG. 36D. This exogenously-derived sequenced was readily identified by Nano-FISH, as shown in FIG. 36E and FIG. 36F.

EXAMPLE 9

Fine Scale Genome Localization Using Nano-FISH and Super- Resolution Microscopy

[0564] This example and FIG. 37 show the combination of Nano-FISH and super-resolution microscopy to obtain very fine-scale genome localization. A custom automated stimulated emission and depletion (STED) microscope was utilized to efficiently acquire multiple measurements of the physical distance between the HS2 and HS3 genomic loci, which are separated by 4.1kb of linear genomic distance. FIG. 37A shows that these closely apposed loci are readily discernible as distinct spots by STED microscopy. Pair-wise measurements of other closely situated genomic segments such as HS 1-HS4 (~12kb) and HS2-HGB2 (~25kb) were also readily obtained and revealed non-linear compaction of the β-globin locus control region and the surrounding genome which contains its target genes, as shown in FIG. 37B. Importantly, the high-throughput STED microscopy approach enables calculation of the distribution of actual distances between these various loci, as shown in FIG. 37C. These results demonstrated the suitability of Nano-FISH for super-resolution STED microscopy experiments. EXAMPLE 10

Optimal Nano-FISH Parameters

[0565] This example and FIG. 38 show a series of experiments to determine the optimal operating parameters for a Nano-FISH experiment. FIG. 38A shows how the labeling efficiency of the Nano-FISH procedure depends on denaturation temperature. With increasing temperature, the efficiency of Nano-FISH labeling increases, until a plateau is reached at a temperature of 78°C. FIG. 38B shows that the Nano-FISH labeling procedure is repeatable across experiments. FIG. 38C shows Nano-FISH detected for genomic regions with varying size, such as genomic region size ranging from about 800 bp to 2.1 kb. FIG. 38D shows how the labeling efficiency of the Nano-FISH experiment depends on the number of oligo probes used. The labeling efficiency increases with the number of oligo probes used, attaining a maximum efficiency when 30 oligo probes are utilized. FIG. 38E shows how the detected fluorescence spot size depends on the number of oligo probes. FIG. 38F shows how the intensity of the fluorescence spot size depends on the number of oligo probes.

EXAMPLE 11

Optimal Conditions for Viral Transduction

[0566] This example describes methods and conditions optimized for effective viral transduction of CD34+ cells and subsequent Nano-FISH experiments.

[0567] CD34+ cells were grown in the StemSpan H3000 growth medium containing a combination of early-acting recombinant human cytokines (e.g., Flt3L, SCF and TPO) formulated to support the proliferation of human hematopoietic cells (e.g., CD34+ human stem cells).

[0568] On the next days (day 2), non-treated tissue culture 24-well plates were coated with RetroNectin ® solution (50 μg/mL) for about 2 hrs at room temperature. After removal of the RetroNectin ® solution, the well plates were treated with a BSA solution (2% BSA in PBS) for about 30 minutes. Upon completion, the well plates were washed with PBS either used immediately or stored at +4 °C until use. In parallel, CD34+ cells were counted and divided into the RetroNectin ® -coated well plates. If 24-well plates were used, a total amount of lxlO 5 to 3xl0 5 cell was used per well to ensure formation of a cell monolayer in the well plates. In parallel, protamine sulfate was added to the solution containing the vector to achieve a final concentration of 8 μg/mL. Subsequently, calculate the required volume of vector solution based on the vector titer and according to the number of CD34+ cells per well plate. Various MOIs can be used. Some commonly used MOIs are 0, 5, 10, 35, and 100. Once the values and required volumes were calculated, the vector solution was added to the cells and the cells were incubated for 24 hrs.

[0569] On the next days (day 3), the cells were collected and centrifuged slowly at about 250 rpm for 10 minutes to form cell pellets. Upon removal of the supernatant medium, CD34+ cells were resuspended in O. lmg/ml DNase I solution in media (StemCell Technologies #07900), and incubated at room temperature for 15 minutes. Subsequently, cells were centrifuged, resuspended in fresh medium, and placed into new, non-RetroNectin ® -coated well plates.

[0570] At this time, a number of different steps can be performed. First, the transduced cell can be used for Nano-FISH experiments right away (short transduction protocol). Second, the transduced cells can be kept in culture for 1,2,3, or more days before Nano-FISH experiments are carried out (short transduction protocol). Third, the transduction steps from "day 2" and the wash and DNase I treatment steps from "day 3" can be repeated before Nano-FISH experiments are performed (long transduction protocol).

EXAMPLE 12

Comparison of Nano-FISH and Conventional FISH

[0571] This example and FIG. 39 show a comparison of Nano-FISH and conventional FISH. FIG. 39A shows fluorescence images of β-globin lacking the LCR using conventional BAC probes (left panel), a pool of HS 1-5 probes (middle panel), and the HS2 Nano-FISH technique (right panel). FIG. 39B shows the size of the probe sets used for the BAC, HS 1-5, and HS2 experiments. As can be seen, the HS2 Nano-FISH experiment utilizes a significantly smaller nucleic acid sequence than conventional FISH techniques. FIG. 39C shows the labeling efficiency of the BAC, HS 1-5, and HS2 experiments. FIG. 39D shows the size of the FISH spots for the BAC, HS 1-5, and HS2 experiments. FIG. 39E shows the intensity of the FISH signals for the BAC, HS 1-5, and HS2 experiments. As can be seen, the Nano-FISH experiment produces a lower signal-to-noise ratio (SNR) than conventional methods, with the Nano-FISH experiment producing a SNR smaller than the BAC method by a factor of approximately 2. The loss in SNR comes with a reduction in the size of the nucleic acid sequence by a factor of approximately 100. Thus, the tradeoff in SNR is well worth the significant reduction in size of nucleic acid sequence. EXAMPLE 13

Comparison of Nano-FISH probes and conventional nick translated probes

[0572] This example illustrates the comparison of Nano-FISH oligonucleotide probes of the present disclosure to conventional nick translated probes regarding ease of operation (e.g., no need for blocking agent), transduction efficacy and accuracy, image resolution, and homogeneity of transductions between different samples.

[0573] A Nano-FISH experiment for the detection of CD 19 CAR lentivirus integration was conducted using four different probe sets targeting the vector backbone. The three Nano- FISH oligonucleotide probe sets used were a lentivirus backbone probe set, a CD 19 CAR + Hu probe set, and a CD 19 CAR - Hu, and the conventional nick translated probe set was a nick translated CD 19 CAR targeting probe set. The three Nano-FISH probe sets were composed of direct- labeled (Quasar-670) 40-mer oligonucleotide probes (Biosearch). The conventional nick translated probe set was composed of DIG-labeled probes derived from nick- translated CD 19 CAR plasmid DNA and were created by digesting 2ug of CD 19 CAR plasmid with DNase I in the presence of Pol I and DIG-labeled dUTPs. The resulting probes were run on a gel to confirm their average size of lOObp.

[0574] Each probe set was tested on wild type K562 and a clonal line of K562 cells containing a single integration of the CD 19 CAR. To do this, the cells were processed with the 24-well plate format according to the Nano-FISH protocol of the present disclosure using methanol acetic acid fixation. Cells were imaged on a Nikon wide field fluorescent microscope, with a 60X oil objective. Oligonucleotide probe sets were hybridized at a concentration of 0.25uM (i.e., 3.3 ng/μΐ). The nick-translated probe set was used at a final concentration of 0.64 ng/μΐ, and used with and without Cot-1 blocking DNA. The nick- translated probe set with the DIG-labeled nick-translated probes were then indirectly labeled using a Cy3-labeled, anti-nick probe antibody. Briefly, the cells were blocked in blocking buffer (2% BSA, 0.1% Tween20 in IX PBS) for 30 minutes. The cells were then incubated with a 1:250 dilution of Cy3-anti-DIG antibody in blocking buffer for 1 hr, washed three times with PBS containing 0.1% triton, wherein one of the washing steps included DAPI stain. All samples were also probed with Quasar 570-, or Quasar 670-labeled HS2 and HS3 probes as endogenous controls for FISH. Resulting images were processed and fluorescent spots called and tabulated in each nucleus. TABLE 12. Probe Set Descriptions

[0575] FIG. 63 shows a representative set of four nuclei for each probe set tested in the K562 with a single CAR insertion (K562 single-insert clone), and a wild type negative control (K562 wild-type). The nuclei were DAPI stained and are shown in blue, and the nano-FISH signal is shown in yellow. The three oligonucleotide probe sets (FIG. 63A - FIG. 63F, top three rows) showed clear, mostly singular spots and low background signal, whereas the nick-translated probes (FIG. 63G - FIG. 63J, bottom two rows) showed relatively high background signal, even in the negative control cells (FIG. 63G, FIG. 63 J). In addition, FIG. 65 shows diagrams indicating the number of FISH spots per cell. FISH spots were automatically detected, and then thresholded based on visual inspection (magnitude 8 for Cy5 and magnitude 18 for Cy3 channels). The oligonucleotide probes (specific to CD 19 CAR + Hu, CD 19 CAR - Hu, and the vector backbone only) clearly distinguished single-insert cells from the negative, wild type control, whereas the positive and negative cells were

indistinguishable with nick-translated probes. These results demonstrates the significantly higher signal accuracy for Nano-FISH probe sets compared to conventional nick translated probe sets.

[0576] This comparison was additionally performed using the Nano-FISH protocol described herein on coverslips with PFA fixation. As described above, cells were imaged on a Nikon wide field fluorescent microscope, with a 60X oil objective. Oligonucleotide probes were hybridized at a concentration of 0.25uM (i.e., 3.3 ng/μΐ). The nick-translated probe was used at a final concentration of 0.64 ng/μΐ, and used with and without Cot-1 blocking DNA. DIG- labeled nick-translated probes were indirectly labeled using a Cy3-labeled, anti-nick probe antibody. Briefly, the cells were blocked in blocking buffer (2% BSA, 0.1% Tween20 in IX PBS) for 30 minutes. The cells were then incubated with a 1:250 dilution of Cy3-anti-DIG antibody in blocking buffer for 1 hr, washed three times with PBS containing 0.1% triton, wherein one of the washing steps included DAPI stain. Resulting images were processed and fluorescent spots called and tabulated in each nucleus. [0577] FIG. 64 shows a representative set of nine nuclei for each probe set tested in the K562 with a single CAR insertion (K562 single-insert clone), and a wild type negative control (K562 wild-type). The nuclei are DAPI stained and shown in blue, and the nano-FISH signal is shown in yellow. The oligonucleotide probe sets (FIG. 64A - FIG. 64B, top row) showed clearly delineated, mostly singular spots and low background signal, whereas the nick-translated probes (FIG. 64C - FIG. 64F, middle and bottom row) showed relatively high background signal, even in the negative control cells.

EXAMPLE 14

Discovery of Novel Biomarkers Using Nano-FISH

[0578] This example shows the discovery of the expression of novel biomarkers that correlate the number of the target nucleic acid sequence in a cell. A sample with a population of cells that is heterogeneous for the number of target nucleic acid sequences in a cell is obtained. Individual cells from the sample are distributed into a single well of a plate and are allowed to clonally expand. Samples of cells from each clone is then characterized for the number of target nucleic acid sequences in a cell using Nano-FISH and is characterized by RNA-Seq to determine novel biomarkers that correlate with the number of target nucleic acid sequences. If a novel biomarker is found to be a surface protein, then the surface protein is used as a selectable marker/sortable marker to isolate cells with the desired number of target nucleic acid sequences from the sample.

EXAMPLE 15

Probing Multiplicity of Infection Following Lentiviral Transduction

[0579] This example and FIG. 40 shows the use of Nano-FISH to probe lentiviral transduction across a cell population with a broad range of multiplicity of infection (MOI). FIG. 40A shows lentiviral transduction across a population of cells with a broad range of MOI. FIG. 40B shows infection by the lentivirus, including reverse transcription and random integration into cells. FIG. 40C shows the use of Nano-FISH to assess the number of integrations in each cell in pools of cells. FIG. 40D shows the accumulation of statistics for integration of lentiviral nucleic acids as a function of MOI.

EXAMPLE 16

Probing Viral Insertion Using Super- Resolution Nano-FISH

[0580] This example and FIG. 41 shows the use of Nano-FISH combined with super- resolution imaging to probe the statistics of viral insertion. FIG. 41A shows the average number of viral insertions per cell as a function of viral concentration, probed using quantitative PCR (qPCR), a Nikon wide-field fluorescence microscope, and a Stellar Vision synthetic aperture optics (SAO) super-resolution microscope. As shown, the wide-field microscope and the SAO super-resolution microscope produced nearly identical results at all concentration. However, the SAO super-resolution microscope was able to image a field of view containing 13,288 cells, whereas the wide-field microscope was only able to image a field of view containing 2,440 cells. FIG. 41B shows a histogram of the number of viral integrations in each cell imaged by the SAO super-resolution microscope.

EXAMPLE 17

Viral Integrant Copy Number Population Enrichment Using Nano-FISH

[0581] This example shows how Nano-FISH characterization of sorted subpools is enriched for a population with the desired distribution of viral integrations after viral transduction of a cell population. As illustrated in FIG. 42, an initial pool of sample cells is transduced with a lentivirus. A subset of cells from the initial pool is characterized for the number of viral integrants using viral Nano-FISH. Next, the intial pool is divided into K subpools, each comprising N cells, in which K and N are based on statistical modeling for obtaining a population of cells each comprising the desired number of viral integrants. The subpools are expanded and a subset of cells from each subpool are characterized by Nano-FISH. The subpools with a large population of cells comprising an unfavorable number of viral integrants, such as zero, are discarded. However, the remaining populations of the expanded subpools are shown to have a more desired distribution of the number of viral integrants in each cell, and are therefore combined into an enriched population. The enriched population is used for further testing or in a therapy.

EXAMPLE 18

Discovery of Novel Biomarkers Using Nano-FISH

[0582] This example shows the discovery of the expression of novel biomarkers that correlate the number of viral integrants in a cell. As shown in FIG. 43, a pool of initial cells are transduced with a lentivirus. Each cell from the transduced pool is distributed into a single well of a plate and is allowed to clonally expand. Samples of cells from each clone is then characterized for the number of viral integrants in a cell using Nano-FISH and is

characterized by RNA-Seq to determine novel biomarkers that correlate with the number of viral integrants. If a novel biomarker is found to be a surface protein, then the surface protein is used as a selectable marker/sortable marker to isolate cells with the viral integrant number correlated with the surface protein expression from a population of transduced cells.

EXAMPLE 19

Improved Clinical Vector Manufacture, Production, and Delivery Using Nano-FISH

[0583] This example shows a method for improving the clinical vector manufacture and production of therapies involving viral transduction of cells. As shown in FIG. 44, improved clinical vector manufacture and production by using viral Nano-FISH is used to determine the optimal manufacturing process. Several different transduction methods for a cell population are used to produce separate transduced cell populations. Each transduced cell population is screened for the number of viral integrants in the cells using Nano-FISH. The transduction method, and thus manufacturing process, leading to the largest population of transduced cells with the optimal distribution of viral integrants per cell is chosen for further use in Good Manufacturing Process of the therapy.

[0584] This is also used to optimize for which transduction method is used for a patient's cells when the cells are transduced to produce a therapeutic. As an example, T cells from a patient with cancer are removed, expanded, and transduced to with a lentivirus comprising a CAR. Small samples are taken from the expanded T cell pool and several different techniques of transduction are used to introduce the lentivirus comprising a CAR into these T cells. Nano-FISH is used to determine the distribution of viral integrants in cells for each small sample, and the best method of transduction for that specific patient's T cells is determined based on the transduction method that produced the most optimal distribution of viral integrants in the cell. The expanded T cell pool is then transduction by this method, and the cells are delivered back into the patient as a cancer therapeutic. Additionally, precise titration of virus or adjustment of similar parameters correlated with the number of viral integrants in each cell can be achieved due to the clear enumeration of viral integrant distribution in the cell population being used as the therapeutic. The delivered transduced cell population is therefore a more controlled population of cells which is titered appropriately for the patient receiving the treatment.

[0585] Furthermore, when more routine testing and quality control are used for transduced populations of cells, such as CAR T cell therapies, each batch is analyzed and batches are compared. As shown in FIG. 45, Nano-FISH is used for the improved quality control during the cell passage/expansion, cloning, and manufacture of cells after viral transduction for use as a therapy. "Jackpot" cells are identified as a result of batch to batch comparisons, in which "jackpot" cells are transduced cells with a "hit" (e.g., oncogenic hit) that allows them to outcompete and/or out-proliferate other transduced cells. Additionally, cells with toxic integrants are identified as a result of batch to batch comparisons, which cells with toxic integrants fail to proliferate or die as compared to other transduced cells.

EXAMPLE 20

Correlation of Protein Expression with Number of Viral Integrants after Cell

Transduction

[0586] This example illustrates that the number of viral integrants in a cell correlates with protein expression. A population of cell is transduced with a lentivirus vector comprising a nucleic acid sequence encoding a reporter protein. For example, a surface marker protein is used as a reporter protein and is expressed on the cell surface. Both Nano-FISH and immunofluorescence is performed on the transduced cells. The number of viral integrants is detected by Nano-FISH, and the level of reporter protein expression is detected by immunofluorescence. The number of viral integrants is correlated with the expression of the reporter protein, and therefore the level of expression of the reporter protein can be used as a surrogate marker of the number viral integrants in a cell. This information is used for various sorting and/or enrichment strategies.

EXAMPLE 21

Simultaneous Detection of Virally Integrated DNA and Its Protein Product in Single

Cells

[0587] This example illustrates using Nano-FISH to detect the relationship between transgene integration count and transgene expression level in single cells after infection with a lentivirus comprising a transgene.

K562 Cells.

[0588] Briefly, K562 cells were transduced with lentivirus carrying the Ienti-Cas9blast plasmid construct (Addgene plasmid #52962). Two weeks post-transduction (expansion, +2 passages after initial exposure to the lentivirus), cells were harvested for processing using Nano-FISH to quantify lentiviral and transgene integrations (viral backbone and Cas9 gene), followed by conventional immunofluorescence for the quantification of the Cas9 protein. This resulted in the simultaneous detection of small virally integrated DNA and its protein product with single cell resolution.

Methods.

[0589] Transduced K562 cells were washed with PBS, dropped onto poly-l-lysine coated cover slips, and allowed to settle for 10 minutes. Cells were fixed with 3: 1 methanol: acetic acid for 10 minutes, washed, treated with RNase to remove RNA, and equilibrated in buffered 50% formamide for at least 30 minutes. Following equilibration, DNA denaturation was carried out in buffered 70% formamide for 4.5 minutes on a heat block set to 78°C. Denatured slides were hybridized with a Quasar-670-labeled 40-mer probe pool (140 probes; SEQ ID NO: 930 - SEQ ID NO: 954, SEQ ID NO: 965 - SEQ ID NO: 990, and SEQ ID NO: SEQ ID NO: 1123 - SEQ ID NO: 1211) targeting the Cas9 gene and lentiviral backbone sequences. Following hybridization, cells were washed and blocked in 2%BSA in PBST before being incubated with a 1: 100 dilution of mouse anti-Cas9 antibody (Abeam

#abl91468) for 60 minutes. Cells were washed and incubated with 1:200 dilution of Alexa- 488-labeled donkey-anti-mouse secondary antibody for 60 minutes. Cells were then washed, stained with DAPI, and mounted in Prolong Gold on slides. Imaging was carried out on a conventional wide-field fluorescent microscope as well as the Stellar Vision 2 microscope. Data from >17,000 cells was collected and viral integration and Cas9 expression information integrated on a per-cell basis.

Results.

[0590] Some cells comprised few integrations but showed high expression of the transgene, while other cells comprised many integrations but showed low or no expression of the transgene above background as shown in FIG. 47A. Overall, there was a trend of increased Cas9 expression with increased transgene integration number as shown in FIG. 47B.

T cells.

[0591] Briefly, CD4+ T cells ("Peripheral Blood, Cryopreserved, CD4+ Helper T cells, negatively selected" from ALLCELLS) from a human donor were transduced with a hPGK- eGFP-Cl vector using retronectin and protamine sulfate as transduction enhancers.

Transduction was carried out at a multiplicity of infection (MOI) of 10. Five days post transduction, cells were harvested for processing using Nano-FISH to quantify lentiviral and transgene integrations (viral backbone and eGFP), followed by conventional

immunofluorescence for the eGFP protein. This resulted in the simultaneous detection of small virally integrated DNA and its protein product with single T cell resolution.

Methods.

[0592] Transduced T cells were washed with PBS, dropped onto poly-l-lysine coated cover slips, and allowed to settle for 10 minutes. Cells were fixed with 4% PFA for 10 minutes, permiabilized, treated with RNase to remove RNA, and equilibrated in buffered 50% formamide for at least 30 minutes. Alternatively, cells are fixed with 3: 1 methanol: acetic acid for 10 minutes, washed, treated with RNase to remove RNA, and equilibrated in buffered 50% formamide for at least 30 minutes. Following equilibration, cells were co-denatured and hybridized in sealed slides for 3 minutes on a heatblock set to 78°C. Alternatively, DNA denaturation is carried out in buffered 70% formamide for 4.5 minutes on a heat block set to 78°C. Denatured slides were hybridized with a Quasar-670-labeled 40-mer probe pool (SEQ ID NO: 1212 -SEQ ID NO: 1267 targeted the vector backbone, and SEQ ID NO: 1388 - SEQ ID NO: 1403 targeted to eGFP) targeting the eGFP gene and lentiviral backbone sequences. Alternatively, cells are probed with just the vector backbone probe set. Following hybridization, cells were washed and blocked in 2% BSA in PBST before being incubated with a 1:500 dilution of rabbit anti-GFP antibody for 60 minutes. Cells were washed and incubated with 1:200 dilution of Alexa-488-labeled anti-rabbit secondary antibody for 60 minutes. Cells were then washed, stained with DAPI, and mounted in Prolong Gold on slides. Imaging was carried out on a conventional wide-field fluorescent microscope as well as the Stellar Vision 2 microscope.

TABLE 13 - Sequences of eGFP probes

Sequence % GC

SEQ ID NO Sequences (5' to 3')

Description Content

GGACTGGGTGCTCA

CCGGCGGCGGTCACGAACTCCAGCA

SEQ ID NO: 1402

GGACCATGTGATCGC CMV_GFP_29 67.5

TCCTCGGTACCCTTGTACAGCTCGTC

SEQ ID NO: 1403

CATGCCGAGAGTGA CMV_GFP_30 57.5

Results.

[0593] Overall, there was a trend of increased eGFP expression with increased transgene integration number, though eGFP was not strongly predictive of insertion number. FIG. 61A shows fluorescent images of T cell nuclei after hPGK-eGFP-Cl vector transduction of T cells at a multiplicity of infection (MOI) of 10. A pink punctum indicates a viral insertion as detected by Nano-FISH. FIG. 61B illustrates the simultaneous detection of viral insertions and eGFP expression in T cell nuclei after hPGK-eGFP-Cl vector transduction of T cells at a MOI of 10 using retronectin and protamine sulfate. The viral insertions were detected using Nano-FISH and are shown as pink puncta. The eGFP expression was detected using a rabbit anti-GFP primary antibody and a secondary anti-rabbit antibody labeled with Alexa-488 dye.

EXAMPLE 22

Detection of Lentiviral Genes in Chimeric Antigen Receptor (CAR) T Cells by Nano- FISH

[0594] This example illustrates the detection of lentiviral genes in chimeric antigen receptor (CAR) T cells using Nano-FISH. CD4+ T cells ("Peripheral Blood, Cryopreserved, CD4+ Helper T cells, negatively selected" from ALLCELLS) from a human donor were transduced with a CD19 CAR vector at a titer of 1.2x10 infectious units (IU)/mL and transduction was carried out at 4 different multiplicities of infection (MOI): 0, 1.2, 2.4, and 4.8. Alternatively, transduction was carried out at an MOI of 0.5, 1, 5, and 10. Transduction was carried out by spinoculation and involved centrifuging virus and cells at 2,100 RPM for 1 hour with 10 ug/mL of protamine sulfate. 50,000 cells were transduced per condition. Alternatively, 100,000 cells were transduced using retronectin and protamine sulfate as transduction enhancers. Each of the above MOIs was assessed for viral insertions with viral Nano-FISH probe sets 5 days post transduction, as described below, to evaluate dose-dependent detection of viral insertions (increased multiplicity of infection (MOI) with increased virus). A no virus sample was imaged using an HS2 probe set (60 Q670-labeled probes targeting the HS2 regulatory element in the B-globin LCR, and thirty Q570-labeled probes targeting HS3 regulatory element in the B-globin LCR) as a positive control for imaging. [0595] Viral Nano-FISH probes were designed against the lentiviral backbone. TABLE 14 shows CAR T cell probe sequences. A single fluorophore was incorporated on the first nucleotide at the 3' end. Transduced T cells were prepared for hybridization with a viral Nano-FISH probe set, shown in TABLE 14 designed against the chimeric antigen receptor (CAR) transfer plasmid. Probes of SEQ ID NO: 1212 -SEQ ID NO: 1267 targeted the vector backbone and SEQ ID NO: 1268 - SEQ ID NO: 1281 were designed against human endogenous elements that are also components of the CD 19 CAR pay load. Cells were also incubated with Q570-labeled probes targeting HS2, which served as an internal positive control for each FISH sample. Cells were incubated with SEQ ID NO: 1212 -SEQ ID NO: 1267 (-hu) or SEQ ID NO: 1268 - SEQ ID NO: 1281 (+hu). FIG. 51 illustrates where each of the oligonucleotide Nano-FISH probes of TABLE 14 (identified on FIG 51 with the sequence description) bind on the CAR transfer plasmid.

TABLE 14 - CAR T Cell Probe Sequences

Sequence % GC

SEQ ID NO Sequences (5' to 3')

Description Content

CTCGGGGTTGGGAGGTGGGTCTGAA Lenti- 53

SEQ ID NO: 1226

ACGATAATGGTGAAT 5'p.dna_18

TCTTTCCCCTGCACTGTACCCCCCAA Lenti- 55

SEQ ID NO: 1227

TCCCCCCTTTTCTT 5'p.dna_20

GTAATCCAGAGGTTGATTGTTCCAG Lenti-3'p.dna_0 45

SEQ ID NO: 1228

ACGCGGTCTAGATTA

AAGCAGCGTATCCACATAGCGTAAA Lenti-3'p.dna_l 43

SEQ ID NO: 1229

AGGAGCAACATAGTT

AACCAGGATTTATACAAGGAGGAGA Lenti-3'p.dna_2 38

SEQ ID NO: 1230

AAATGAAAGCCATAC

GTCAGCAAACACAGTGCACACCACG Lenti-3'p.dna_3 58

SEQ ID NO: 1231

CCACGTTGCCTGACA

GGAGGGGGAAAGCGAAAGTCCCGG Lenti-3'p.dna_4 60

SEQ ID NO: 1232

AAAGGAGCTGACAGGT

GTGCCCAACAGCCGAGCCCCTGTCC Lenti-3'p.dna_5 73

SEQ ID NO: 1233

AGCAGCGGGCAAGGC

CCAGGTGGCAACACAGGCGAGCAG Lenti-3'p.dna_6 63

SEQ ID NO: 1234

CCATGGAAAGGACGTC

GGCCGCGGGAAGGAAGGTCCGCTG Lenti-3'p.dna_7 70

SEQ ID NO: 1235

GATTGAGGGCCGAAGG

GCCCAAAGGGAGATCCGACTCGTCT Lenti-3'p.dna_8 63

SEQ ID NO: 1236

GAGGGCGAAGGCGAA

TATTGCTACTTGTGATTGCTCCATGT Lenti-3'p.dna_9 40

SEQ ID NO: 1237

TTTTCTAGGTCTCG

GAAACCAGAGGAGCTCTCTCGACGC Lenti- 60

SEQ ID NO: 1238

AGGACTCGGCTTGCT 5'm35.dna_0

CGACTGGTGAGTACGCCAAAAATTT Lenti- 50

SEQ ID NO: 1239

TGACTAGCGGAGGCT 5'm35.dna_l

GTATTAAGCGGGGGAGAATTAGATC Lenti- 43

SEQ ID NO: 1240

GCGATGGGAAAAAAT 5'm35.dna_2

TAAATTAAAACATATAGTATGGGCA Lenti- 35

SEQ ID NO: 1241

AGCAGGGAGCTAGAA 5'm35.dna_3

ACATCAGAAGGCTGTAGACAAATAC Lenti- 45

SEQ ID NO: 1242

TGGGACAGCTACAAC 5'm35.dna_4

GATCATTATATAATACAGTAGCAAC Lenti- 35

SEQ ID NO: 1243

CCTCTATTGTGTGCA 5'm35.dna_5

TCTTCAGACCTGGAGGAGGAGATAT Lenti- 50

SEQ ID NO: 1244

GAGGGACAATTGGAG 5'm35.dna_7

AATTGAACCATTAGGAGTAGCACCC Lenti- 45

SEQ ID NO: 1245

ACCAAGGCAAAGAGA 5'm35.dna_8

GGAATAGGAGCTTTGTTCCTTGGGT Lenti- 53

SEQ ID NO: 1246

TCTTGGGAGCAGCAG 5'm35.dna_9

TGACGGTACAGGCCAGACAATTATT Lenti- 45

SEQ ID NO: 1247

GTCTGGTATAGTGCA 5'm35.dna_10

GGCGCAACAGCATCTGTTGCAACTC Lenti- 58

SEQ ID NO: 1248

ACAGTCTGGGGCATC 5'm35.dna_l l

GAAAGATACCTAAAGGATCAACAGC Lenti- 48

SEQ ID NO: 1249

TCCTGGGGATTTGGG 5'm35.dna_12 Sequence % GC

SEQ ID NO Sequences (5' to 3')

Description Content

CTGTGCCTTGGAATGCTAGTTGGAG Lenti- 43

SEQ ID NO: 1250

TAATAAATCTCTGGA 5'm35.dna_13

GTGGGACAGAGAAATTAACAATTAC Lenti- 35

SEQ ID NO: 1251

ACAAGCTTAATACAC 5'm35.dna_14

TGTACTTTCTATAGTGAATAGAGTTA Lenti- 35

SEQ ID NO: 1252

GGCAGGGATATTCA 5'm35.dna_17

CCGAGGGGACCCGACAGGCCCGAA Lenti- 60

SEQ ID NO: 1253

GGAATAGAAGAAGAAG 5'm35.dna_18

GATTAGTGAACGGATCTCGACGGTA Lenti- 43

SEQ ID NO: 1254

TCGCCTTTAAAAGAA 5'm35.dna_19

AAAGAATAGTAGACATAATAGCAAC Lenti- 28

SEQ ID NO: 1255

AGACATACAAACTAA 5'm35.dna_20

AAATTTTCGGGTTTATTACAGGGAC Lenti- 40

SEQ ID NO: 1256

AGCAGAGATCCAGTT 5'm35.dna_21

ATTACAAAATTTGTGAAAGATTGAC Lenti- 25

SEQ ID NO: 1257

TGGTATTCTTAACTA 3'm35.dna_0

TGCTTTAATGCCTTTGTATCATGCTA Lenti- 40

SEQ ID NO: 1258

TTGCTTCCCGTATG 3'm35.dna_l

TGGTTGCTGTCTCTTTATGAGGAGTT Lenti- 50

SEQ ID NO: 1259

GTGGCCCGTTGTCA 3'm35.dna_2

CTGACGCAACCCCCACTGGTTGGGG Lenti- 65

SEQ ID NO: 1260

CATTGCCACCACCTG 3'm35.dna_3

CCTCCCTATTGCCACGGCGGAACTC Lenti- 65

SEQ ID NO: 1261

ATCGCCGCCTGCCTT 3'm35.dna_4

GGCACTGACAATTCCGTGGTGTTGT Lenti- 58

SEQ ID NO: 1262

CGGGGAAGCTGACGT 3'm35.dna_5

CCTGGATTCTGCGCGGGACGTCCTT Lenti- 63

SEQ ID NO: 1263

CTGCTACGTCCCTTC 3'm35.dna_6

CGGCCTGCTGCCGGCTCTGCGGCCT Lenti- 75

SEQ ID NO: 1264

CTTCCGCGTCTTCGC 3'm35.dna_7

TGGGCCGCCTCCCCGCCTGGAATTA Lenti- 60

SEQ ID NO: 1265

ATTCTGCAGTCGAGA 3'm35.dna_8

CAATACAGCAGCTACCAATGCTGAT Lenti- 48

SEQ ID NO: 1266

TGTGCCTGGCTAGAA 3'm35.dna_9

GTCACACCTCAGGTACCTTTAAGAC Lenti- 45

SEQ ID NO: 1267

CAATGACTTACAAGG 3'm35.dna_10

CAGTTTACCCCGCGCCACCTTCTCTA Lenti-hu-frag- 58

SEQ ID NO: 1268

GGCACCGGTTCAAT payload.dna_6

TGTGGGGAAACTCCATCGCATAAAA Lenti-hu-frag- 58

SEQ ID NO: 1269

CCCCTCCCCCCAACC payload.dna_28

CCATGGTGGCGGCGAATTCGAATCA Lenti-hu-frag- 55

SEQ ID NO: 1270

CGACACCTGAAATGG payload.dna_32

GCAGCAAGGCCAGCGGCAGGAGCA Lenti-hu-frag- 65

SEQ ID NO: 1271

AGGCGGTCACTGGTAA payload.dna_33

Lenti-hu-frag- 60

GGGCTGGACTTCGCCTGTGATTTCTG

SEQ ID NO: 1272 payload.dna_54

GGTGCTGGTCGTTG

B

SEQ ID NO: 1273 GGGTCATGTTCATGTAGTCGCTGTG Lenti-hu-frag- 58 Sequence % GC

SEQ ID NO Sequences (5' to 3')

Description Content

CAGCAGTCTGCTCCG payload.dna_57

TGCCCCGTTTGCTCCGGTAGGCGGC Lenti-hu-frag- 68

SEQ ID NO: 1274

GAAATCCCTGGGAGG payload.dna_59

ATCGGCAGCTACAGCCATCTTCCTCT Lenti-hu-frag- 48

SEQ ID NO: 1275

TGAGTAGTTTGTAC payload.dna_61

Lenti-hu-frag- 53

GAAGGAGGATGTGAACTGAGAGTG

SEQ ID NO: 1276 payload.dna_61

AAGTTCAGCAGGAGCG

B

CCATCTCAGGGTCCCGGCCACGTCT Lenti-hu-frag- 58

SEQ ID NO: 1277

CTTGTCCAAAACATC payload.dna_65

CTCTGCCCTCGCGAGGGGGCAGGGC Lenti-hu-frag- 73

SEQ ID NO: 1278

CTGCATGTGAAGGGC payload.dna_70

GGCCAGGGTTCTCTTCCACGTCGCC Lenti-hu-frag- 63

SEQ ID NO: 1279

ACATGTCAGCAGGCT payload.dna_71

TGCACTTGTCCACGCATTCCCTGCCT Lenti-hu-frag- 60

SEQ ID NO: 1280

CGGCTGACATTCCG payload.dna_87

GGCAGGTCTTGACGCAGTGGGGGCC Lenti-hu-frag- 65

SEQ ID NO: 1281

GTCAATGTAGTGGGC payload.dna_91

[0596] Briefly, T cells were seeded onto a poly- 1- lysine coated cover slip in a 6-well tissue culture plate at a concentration of approximately 2 million cells/mL in a 100 μΐ volume. T cells are fixed in 2.5 mL of 4% paraformaldehyde (PFA) in IX PBS for 10 min at room temperature. Cells were washed twice with IX PBS, subsequently permeabilized once with 2 mL of PBS/0.5% Triton X-100, and allowed to sit for 15 min at room temperature. Cells were washed twice with PBS and incubated for 5 min in -1.5 mL of 0.1M HC1. Cells were washed twice with 2X SSC, incubated in 2X SSC with 25 μg/ml RNase A for 30 min at 37°C, and washed twice with 2X SSC. Cover slips were pre-equilibrated in 2.5 mL of 50% formamide, 2x SSC (pH 7) for at least 30 min prior to denaturation.

[0597] Denaturation solution (70% formamide in 2x SSC at a pH of 7) was prepared and added at a volume of 3 mL to the center of two wells in a 6-well plate. Well plates were placed on a digital hot plate at 78°C and are pre-heated for at least 30 minutes. Cover slips were transferred into the well plate with the denaturation solution (cells are on the side facing up) and incubated for 4.5 min at 78°C. Alternatively, cells were co-denatured and hybridized in sealed slides for 3 minutes on a heat block set to 78°C.

[0598] A humidified chamber was prepared for hybridization of viral Nano-FISH probes to the cells. First, a single sheet of Parafilm was overlaid on a wet flat napkin in a 150 mm tissue culture plate. 70 μΐ of hybridization buffer (50% formamide, 10% dextran sulfate in 2x SSC with 2.5 μΐ of the Nano-FISH probe set at a 10 μΜ working concentration) was added on the Parafilm sheet in the humidified chamber. The cover slip was removed from the denaturation solution, dabbed on a Kimwipe to remove excess liquid, and placed onto the hybridization solution (cells are on the side facing down). The humidified chamber was covered with a lid and incubated overnight at 37°C.

[0599] 2.5 mL of 2x SSC was added to a fresh well-plate and cover-slips in hybridization solution are transferred to the fresh well-plate. Cells were washed 3 times with 2x SSC over 30 min at room temperature. Cells were washed twice for 7 min with 2 mL of 0.2x SSC/0.2% Tween-20 and placed onto a digital hot plate set to 56°C. Cells were washed once with 2 mL of 4x SSC/0.2% Tween-20. Cells were incubated in 2 mL of 2x SSC with 100 ng/mL DAPI for 10 min at room temperature. Cells were washed twice with 2x SSC. Cells were mounted and imaged.

[0600] Images of cells were collected for visualization of DAPI fluorescence, indicating the nucleus and visualization of fluorescence in the Cy5 channel, indicating the viral Nano-FISH probe.

[0601] Imaging was carried out and analyzed as shown in FIG. 48 - FIG. 50. FIG. 48 illustrates a flow chart depicting the image analysis steps of the present disclosure including data/image capture, autonomous pre-processing, and interactive data selection, quality control, and visualization. Images of 100-500 cells are captured on a digital microscope. FIG. 49 shows an example quality control browser panel where images can be analyzed for spots indicating viral insertions. FIG. 50 illustrates an example experiment summary report with performance metrics. Autonomous pre-processing of the images is carried out by the accompanying software including any of the following: image enhancement (e.g.,

deconvolution), nucleus segmentation, Nano-FISH spot detection, and protein expression measurements. Data is then visualized on an interactive software platform that allows for thresholding, sorting, data compilation, data plotting, and calculation of performance metrics including any of the following: total cells (number of nuclei analyzed), mitotic index (fraction of cells undergoing cell division), insertion rate (expected number of insertion events per nucleus, based on fitting a Poisson distribution to the histogram of insertions per cell), insertion rate R (Pearson correlation of actual versus Poisson prediction of histogram of insertions per cell), and expression enhancement (average change in protein expression (mean nuclear intensity) per insertion).

[0602] Cy5 fluorescence appeared as spots within the nuclei of transduced T cells and each spot was indicative of a viral insertion. FIG. 57 illustrates the Nano-FISH detection of viral insertions after transduction at an MOI of 0, 1.2, 2.4, and 4.8. FIG. 57A illustrates a schematic of T cells stimulated with the CD 19 CAR transfer plasmid at the specified MOI. FIG. 57B illustrates fluorescence images of cell nuclei wherein the viral insertions are indicated by arrows and appear as punctate spots. FIG. 57C illustrates the experiment summary report indicating the insertion rate, insertion rate R , and the sample size. Results showed that as the MOI was increased, an increasing number of viral insertions were observed per cell with (+hu) and without (-hu) the probes directed against the CD 19 CAR payload.

[0603] FIG. 60 illustrates Nano-FISH detection of viral insertions in T cells after

transduction using at an MOI of 10. FIG. 60A illustrates a sample of T cells taken from a well of a 24-well plate after CD 19 CAR lentivirus vector transduction. FIG. 60B illustrates the number of viral insertions per nucleus of cells from the sample in FIG. 60A as detected by probes to the lentivirus vector backbone and to select regions of the CD 19 CAR using Nano-FISH. FIG. 60C shows fluorescent images of cell nuclei with 0-5+ viral insertions per cell from the sample in FIG. 60A. Each circle/punctum indicates a viral insertion.

EXAMPLE 23

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Relapsed/Refractory Multiple

Myeloma

[0604] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for relapsed/refractor multiple myeloma. T cells are transduced with a CAR transfer plasmid to introduce a B-cell mature antigen (BCMA) CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in

EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's relapsed/refractor multiple myeloma is alleviated by the CAR T cell therapy. EXAMPLE 24

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Non-Hodgkin Lymphoma

[0605] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for non-Hodgkin lymphoma. T cells are transduced with a CAR transfer plasmid to introduce a CD 19 CAR or a CD22 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in

EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's non-Hodgkin lymphoma is alleviated by the CAR T cell therapy.

EXAMPLE 25

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Pediatric Acute Lymphoblastic

Leukemia

[0606] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for pediatric acute lymphoblastic leukemia. T cells are transduced with a CAR transfer plasmid to introduce a CD22 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in

EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's pediatric acute lymphoblastic leukemia is alleviated by the CAR T cell therapy.

EXAMPLE 26

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Acute Myeloid Leukemia

[0607] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for acute myeloid leukemia. T cells are transduced with a CAR transfer plasmid to introduce a WT1 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's acute myeloid leukemia is alleviated by the CAR T cell therapy.

EXAMPLE 27

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Non-Small Cell Lung Cancer

[0608] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for no n- small cell lung cancer. T cells are transduced with a CAR transfer plasmid to introduce a WT1 CAR or a ROR1 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in

EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's non-small cell lung cancer is alleviated by the CAR T cell therapy.

EXAMPLE 28

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Mesothelioma

[0609] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for mesothelioma. T cells are transduced with a CAR transfer plasmid to introduce a WT1 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's mesothelioma is alleviated by the CAR T cell therapy.

EXAMPLE 29

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Pediatric Neuroblastoma

[0610] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for pediatric neuroblastoma. T cells are transduced with a CAR transfer plasmid to introduce a LICAM CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's pediatric neuroblastoma is alleviated by the CAR T cell therapy.

EXAMPLE 30

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Ovarian Cancer

[0611] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for ovarian cancer. T cells are transduced with a CAR transfer plasmid to introduce a MUC16 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's ovarian cancer is alleviated by the CAR T cell therapy.

EXAMPLE 31

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Triple-Negative Breast Cancer

[0612] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for triple-negative breast cancer. T cells are transduced with a CAR transfer plasmid to introduce a ROR1 CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non- human animal. The subject's triple-negative breast cancer is alleviated by the CAR T cell therapy.

EXAMPLE 32

Detection of Viral Insertions in Engineered Chimeric Antigen Receptor (CAR) T Cells by Nano-FISH for Use in CAR T Cell Therapy For Lung Cancer

[0613] This example describes detection of viral insertions in engineered chimeric antigen receptor (CAR) T cell therapy for lung cancer. T cells are transduced with a CAR transfer plasmid to introduce a LeY CAR. Transduced CAR T cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 22 and/or in a high throughput format as described below in EXAMPLE 39. A viral Nano-FISH probe set against the CAR transfer plasmid (including any one or more of the probes shown in TABLE 14, e.g., any one or more of SEQ ID NO: 1212 - SEQ ID NO: 1281) is hybridized to the CAR T cells. CAR T cells are imaged to resolve spots within the nucleus, indicative of viral insertions.

Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. CAR T cells are verified to have viral insertions, indicating successful transduction of the CAR. CAR T cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's lung cancer is alleviated by the CAR T cell therapy.

EXAMPLE 33

Detection of Lentiviral Genes in CD34+ Hematopoietic Stem Cells (HSCs) by Nano- FISH

[0614] This example illustrates the detection of lentiviral genes in CD34+ hematopoietic stem cells (HSCs) using Nano-FISH. CD34+ HSCs from a human donor were transduced with a lentivirus vector with enhanced green fluorescent protein (eGFP), specifically the hPGK-eGFP-Cl vector or the gammaGlobin380-eGFP-Cl vector. The gammaGlobin380- eGFP-Cl vector comprised a fragment of the gamma globin promoter -380 base pairs in length in order to drive expression of the payload in a cell-type specific manner. Insulator elements were used to prevent adjacent regulatory elements from interfering with payload expression after lentivirus integration into the genome. Lentiviral-eGFP transduction was carried out at 4 different concentrations (0 virus, 20 μΐ virus, 60 μΐ virus, 180 μΐ virus) and in 20 μΐ virus with UM171 (a small molecule to stimulate replication of HSCs). Alternatively, cells were treated with virus at an MOI of 10, 25, or 35 with the addition of the small molecule UM171, and MOI 100. Each of the above concentrations was assessed for viral insertions with viral Nano-FISH probe sets, as described below, to evaluate dose-dependent detection of viral insertions (increased MOI with increased volumes of virus). A no virus sample was separately imaged using an HS2 probe set as a positive control for imaging. The HS2 probe set detected a 1.8kb region encompassing the HS2 hypersensitive site of the β- globin locus control region (LCR) in triploid K562 erythro leukemia cells.

[0615] Viral Nano-FISH probes were designed against the lentiviral backbone. Viral Nano- FISH probe sequences are shown in TABLE 5. Probes of SEQ ID NO: 930 - SEQ ID NO: 954 and SEQ ID NO: 965 - SEQ ID NO: 990 targeting the vector backbone were used to detect lentiviral gene insertions in CD34+ HSCs. CD34+ HSCs are prepared for hybridization with one or more viral Nano-FISH probes, for example, one or more of the Nano-FISH probes shown in TABLE 5. FIG. 46 shows a vector map of where each of the probes described in TABLE 5 are designed to bind.

[0616] Briefly, CD34+ HSCs were seeded onto a poly-1- lysine coated cover slip in a 6-well tissue culture plate at a concentration of approximately 2 million cells/mL in a 100 μΐ volume. Alternatively, cells were fixed in a 24-well plate. Cells were fixed in 2.5 niL of a 3: 1 methanol: acetic acid solution for 10 min at room temperature. Cells were washed twice with a 2x saline sodium citrate (SSC) buffer. Cells are incubated in 2x SSC and 25 μg/mL of RNAse A for 30 min at 37°C. Cells were washed twice with 2x SSC. Cover slips were pre- equilibrated in 2.5 niL of 50% formamide, 2x SSC (pH 7) for at least 30 min prior to denaturation.

[0617] Denaturation solution (70% formamide in 2x SSC at a pH of 7) was prepared and added at a volume of 3 mL to the center of two wells in a 6-well plate. Well plates were placed on a digital hot plate at 78°C and are pre-heated for at least 30 minutes. Cover slips were transferred into the well plate with the denaturation solution (cells are on the side facing up) and incubated for 4.5 min at 78°C. Alternatively, cells were co-denatured and hybridized in a 24-well plate for 10 minutes on a heat block set to 78°C.

[0618] A humidified chamber was prepared for hybridization of viral Nano-FISH probes to the cells. First, a single sheet of Parafilm was overlaid on a wet flat napkin in a 150 mm tissue culture plate. 70 μΐ of hybridization buffer (50% formamide, 10% dextran sulfate in 2x SSC with 2.5 μΐ of the Nano-FISH probe set) is added on the Parafilm sheet in the humidified chamber. The cover slip was removed from the denaturation solution, dabbed on a Kimwipe to remove excess liquid, and placed onto the hybridization solution (cells are on the side facing down). The humidified chamber was covered with a lid and incubated overnight at 37°C. [0619] 2.5 niL of 2x SSC was added to a fresh well-plate and cover-slips in hybridization solution are transferred to the fresh well-plate. Alternatively, washes were carried out in a 24- well plate. Cells were washed 3 times with 2x SSC over 30 min at room temperature. Cells were washed twice for 7 min with 2 mL of 0.2x SSC/0.2% Tween-20 and placed onto a digital hot plate set to 56°C. Cells were washed once with 2 mL of 4x SSC/0.2% Tween-20. Cells were incubated in 2 mL of 2x SSC with 100 ng/mL DAPI for 10 min at room temperature. Cells were washed twice with 2x SSC. Cells are mounted and imaged.

[0620] Images of cells were collected for visualization of DAPI fluorescence, indicating the nucleus and visualization of fluorescence in the Cy5 channel, indicating the viral Nano-FISH probe.

[0621] Imaging was carried out and analyzed as shown in FIG. 48 - FIG. 50. FIG. 48 illustrates a flow chart depicting the image analysis steps of the present disclosure including data/image capture, autonomous pre-processing, and interactive data selection, quality control, and visualization. Images of 100-500 cells were captured on a digital microscope. FIG. 50 shows an example quality control browser panel where images can be analyzed for spots indicating viral insertions. FIG. 50 illustrates an example experiment summary report with performance metrics. Images of 100-500 cells are captured on a digital microscope. Autonomous pre-processing of the images is carried out by the accompanying software including any of the following: image enhancement (e.g., deconvolution), nucleus segmentation, Nano-FISH spot detection, and protein expression measurements. Data was then visualized on an interactive software platform that allows for thresholding, sorting, data compilation, data plotting, and calculation of performance metrics including any of the following: total cells (number of nuclei analyzed), mitotic index (fraction of cells undergoing cell division), insertion rate (expected number of insertion events per nucleus, based on fitting a Poisson distribution to the histogram of insertions per cell), insertion rate R

(Pearson correlation of actual versus Poisson prediction of histogram of insertions per cell), and expression enhancement (average change in protein expression (mean nuclear intensity) per insertion).

[0622] FIG. 58 illustrates Nano-FISH detection of viral insertions from a hPGK-EGFP-Cl vector and a gammaGlobin380-eGFP-Cl vector. FIG. 58A illustrates a schematic of CD34+ cells transduced with the hPGK-EGFP-Cl vector and a gammaGlobin380-eGFP-Cl vector with 0 μΐ. 20 μΐ, 60 μΐ, or 180 μΐ of virus. Samples also included cells transduced with 20 μΐ of virus with 35 nM of UM171 (a small molecule to stimulate replication of HSCs). FIG. 58B illustrates fluorescence images of cell nuclei wherein the viral insertions are indicated by arrows and appear as punctate spots. FIG. 58C illustrates the experiment summary report indicating the insertion rate. Cy5 fluorescence appeared as spots within the nuclei of CD34+ HSCs and each spot is indicative of a viral insertion.

[0623] Using the same methodology as described above, FIG. 59 illustrates Nano-FISH detection of viral insertions in CD34+ cells. FIG. 59A illustrates a sample of CD34+ cells taken from a well of a 24-well plate after transduction with gammaGlobin380-eGFP-Cl vector at an MOI of 35. FIG. 59B illustrates the number of viral insertions per nucleus of cells from the sample in FIG. 59A as detected by probes of SEQ ID NO: 930 - SEQ ID NO: 954 and SEQ ID NO: 965 - SEQ ID NO: 990 targeting the vector backbone and probes of SEQ ID NO: 1388 - SEQ ID NO: 1403 targeting to eGFP using Nano-FISH. FIG. 59C shows fluorescent images of cell nuclei with 5-10 viral insertions per cell from the sample in FIG. 59A. Each circle/punctum indicates a viral insertion.

EXAMPLE 34

Detection of Viral Insertions in Engineered CD34+ Hematopoietic Stem Cells (HSCs) by

Nano-FISH for Use in Gene Therapy For Thalassemia

[0624] This example describes detection of viral insertions in engineered CD34+

Hematopoietic Stem Cells (HSCs) for use in gene therapy for thalassemia. CD34+ HSCs are transduced with a lentivirus vector or adeno-associated virus vector to introduce a gene. CD34+ transduced cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 33. A viral Nano-FISH probe set against the lentivirus vector or the adeno-associated virus vector is hybridized to the CD34+ transduced cells. Cells are imaged to resolve spots within the nucleus of the CD34+ transduced cells, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement.

Transduced CD34+ cells are verified to have viral insertions, indicating successful transduction of the gene of interest for gene therapy. Transduced CD34+ cells are

administered to a subject in need thereof. The subject is a human or non-human animal. The subject's thalassemia is alleviated by the gene therapy.

EXAMPLE 35

Detection of Viral Insertions in Engineered CD34+ Hematopoietic Stem Cells (HSCs) by

Nano-FISH for Use in Gene Therapy For Sickle Cell Disease

[0625] This example describes detection of viral insertions in engineered CD34+

Hematopoietic Stem Cells (HSCs) for use in gene therapy for sickle cell disease. CD34+ HSCs are transduced with a lentivirus vector or adeno-associated virus vector to introduce a gene. CD34+ transduced cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 33. A viral Nano-FISH probe set against the lentivirus vector or the adeno-associated virus vector is hybridized to the CD34+ transduced cells. Cells are imaged to resolve spots within the nucleus of the CD34+ transduced cells, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. Transduced CD34+ cells are verified to have viral insertions, indicating successful transduction of the gene of interest for gene therapy. Transduced CD34+ cells are administered to a subject in need thereof. The subject's sickle cell disease is alleviated by the gene therapy.

EXAMPLE 36

Detection of Viral Insertions in Engineered Stem Cells (SCs) by Nano-FISH for Use in

Gene Therapy For Muscular Atrophy Disease

[0626] This example describes detection of viral insertions in engineered stem cells (SCs) for use in gene therapy for muscular atrophy disease. SCs are transduced with a lentivirus vector or adeno-associated virus vector to introduce a gene. Transduced cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 33. A viral Nano-FISH probe set against the lentivirus vector or the adeno-associated virus vector is hybridized to the transduced cells. Cells are imaged to resolve spots within the nucleus of the transduced cells, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. Transduced cells are verified to have viral insertions, indicating successful transduction of the gene of interest for gene therapy. Transduced cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's muscular atrophy disease is alleviated by the gene therapy.

EXAMPLE 37

Detection of Viral Insertions in Engineered CD34+ Hematopoietic Stem Cells (HSCs) by

Nano-FISH for Use in Gene Therapy For an Immune Disorder

[0627] This example describes detection of viral insertions in engineered CD34+

Hematopoietic Stem Cells (HSCs) for use in gene therapy for an immune disorder. CD34+ HSCs are transduced with a lentivirus vector or adeno-associated virus vector to introduce a gene. CD34+ transduced cells are prepared for hybridization to a viral Nano-FISH probe set, as described above in EXAMPLE 33. A viral Nano-FISH probe set against the lentivirus vector or the adeno-associated virus vector is hybridized to the CD34+ transduced cells. Cells are imaged to resolve spots within the nucleus of the CD34+ transduced cells, indicative of viral insertions. Performance metrics are calculated and displayed indicating any of the following: total cells, mitotic index, insertion rate, insertion rate R , and expression enhancement. Transduced CD34+ cells are verified to have viral insertions, indicating successful transduction of the gene of interest for gene therapy. Transduced CD34+ cells are administered to a subject in need thereof. The subject is a human or non-human animal. The subject's immune disorder is alleviated by the gene therapy.

EXAMPLE 38

Viral Integrant Copy Number Population Enrichment Using Nano-FISH

[0628] This example illustrates using the Nano-FISH methods of the present disclosure to sort and enrich subpools for a population with the desired distribution of viral integrations after viral transduction of a cell population. FIG. 53 illustrates sub- sampling a cell population to enrich for a desirable viral copy number. Progenitor cells from cells transduced with a lentivirus were separated into 24 subpools in a 24 well plate. Each subpool containing 10 progenitor cells and were expanded until 500-800 cells/well, as shown in FIG. 54. Cells from each subpool were imaged by the Nano-FISH methods of the present disclosure to characterize the number of viral sequence insertions. FIG. 54 additionally shows images of "Jackpot" cells, which contain 5+ viral insertions. FIG. 55 illustrates stratification of cells from each subpool by "good" or "bad" viral insertion profiles. "Good" viral insertion profiles are indicated by the red circle and the yellow dotted circle and largely comprised 1-2 viral insertions. FIG. 56 illustrates selection of subpools deemed to have a good viral insertion profile (mainly 1-2 viral insertions).

EXAMPLE 39

Determining Multiplicity of Infection (MOI) of a Viral Vector Using Nano-FISH

[0629] This example illustrates using the Nano-FISH methods of the present disclosure to determine the multiplicity of infection (MOI) of a viral vector. A viral vector is manufactured under GMP or non-GMP conditions. The viral vector is lentivirus, adenovirus, adeno- associated virus, or a retrovirus. Crude vector is purified through a series of filtration steps. Purified vectors are transduced into a cell. The cell can be a cell line, such as a Jurkat cell, or a cell from a human donor. The transduced cells are imaged using the Nano-FISH methods of the present disclosure to visualize the actual number of viral insertions per cell, thereby obtaining a multiplicity of infection on a single cell basis.

EXAMPLE 40

High Throughput Assays using Viral Nano-FISH

[0630] This example illustrates high throughput assays using viral Nano-FISH. A total of 0.5 mL/well of poly-L- lysine (PLL) solution is added to a 24-well glass-bottom plate. Plates are incubated for 1-2 hours at room temperature and PLL is aspirated. Plates are rinsed with ddH20 3 times, water is aspirated, and plates are left to dry overnight at room temperature. Cells are seeded onto the PLL coated 24-well glass-bottom plate. Cells are pre-washed with PBS, resuspended to -2,000,000 cells/mL in PBS and 20-50 of cells are spotted onto the center of each well. Cells are allowed to settle for 10-15 minutes at room temperature. Cells are fixed in 0.5 mL/well of fresh fixative solution (3 parts methanol and 1 part acetic acid). 500 μΐ ^ of fixative solution is added to the wall of each well. The plate is shaken to dislodge poorly attached cells and incubated for 10 minutes at room temperature. Cells are washed with 0.5 mL/well with 2x saline sodium citrate (SSC) buffer twice over 10 minutes. Cells are incubated in 0.3 mL/well of 2X SSC buffer with 25 μg/mL RNase A for 30 minutes at 37°C. Cells are washed twice with 0.5 mL/well with 2X SSC buffer for 10 minutes. Cells are pre- equilibrated with 0.5 mL/well of 50% formamide, 2X SSC buffer (pH 7) for at least 30 minutes at room temperature prior to denaturation.

[0631] A hybridization solution with oligonucleotide Nano-FISH probes is prepared. 10 uM of oligonucleotide Nano-FISH probes is diluted in the hybridization solution containing 50% formamide, 10% dextran sulfate, 0.05% Tween-20, and 2x SSC buffer at a ratio of 1:40. The final concentration of oligonucleotide Nano-FISH probes is 250 nM. After removal of the equilibration buffer, 250 μΐ ^ of hybridization buffer containing the probes is added to each well. The plate is gently rocked to spread the solution over the surface of the well and the plate is incubated for 10-15 minutes at room temperature. The well plate is heated to 78°C on a hotplate for 10 minutes and then equilibrated to 37°C. Hybridization is carried out in a dark humidified chamber overnight at 37°C.

[0632] Cells are washed by first removing the hybridization buffer, and adding 200 μίΛνεΙΙ of 2X SSC buffer. SSC buffer is aspirated and cells are washed with 0.5 mL/well of 2X SSC buffer 3 times for 10 minutes each at room temperature. Cells are next washed twice with 0.2x SSC, 0.2% Tween-20. 0.5 mL/well of said wash buffer is added at room temperature and incubated for 7 minutes at 56°C. Cells are further washed with 0.5 mL/well 4x SSC, 0.2% Tween-20 for 5 minutes at room temperature, incubated in 0.3 mL/well of 2x SSC + 100 ng/mL DAPI forlO minutes at room temperature, and washed twice with 2X SSC buffer for 5 minutes each. Cells are mounted for imaging by pre-washing 12 mm round glass coverslips, placing a 10 μΐ ^ drop of Prolong Gold onto the coverslip, aspirating SSC buffer from each well containing cells, and inverting a coverslip onto the cells in each well. Prolong Gold is cured for 24 hours at room temperature.

EXAMPLE 41

Detection of Lentiviral Insertions by Nano-FISH for the Detection of Non-random Viral

Transduction Efficacy and Accumulation on a Per Cell Basis in Primary Cells

[0633] This example illustrates the detection of lentiviral insertions in primary CD34+ cells, where the distribution of cells susceptible to viral infection at the time of transduction is heterogeneous. This heterogeneity led to a non-random biodistribution of viral insertions in the cellular population, where an unexpectedly high number of insertions were detected in a small population of cells five days post-transduction.

[0634] Primary stimulated CD4+ T cells and CD34+ cells were transduced with Vesicular Stomatitis Virus Glycoprotein (VSVG)-enveloped lentiviral vectors at an MOI of 10. Post- transduction cells were harvested and profiled for lentiviral insertion with a vector only probe set of 60 backbone probes, more than 30 of those probes bind to the target vector backbone sequences used in the transductions. FIG. 66A shows the resulting distribution of viral integrations observed in T cells. The distribution of viral insertions in cells followed a Poisson distribution with very few cells occurring with more than 5 integrations (0.3%). FIG. 66B shows randomly selected T cell nuclei with 5 or more clearly delineated spots per cell (0.3%), and T cell nuclei from the MOI 0 negative control experiment showing no spots per cell and low background signal. FIG. 66C shows the resulting distribution of viral integrations in CD34+ where a large number of cell with greater than five viral integrations were observed, and an unexpectedly large fraction of cells had zero integrations. FIG. 66D shows randomly selected CD34+ cell nuclei with 5 spots or more per cell (12%), and CD34+ cell nuclei from the MOI 0 negative control experiment showing no spots per cell and low background signal.

[0635] Differences in susceptibility of infection can be driven by biological differences among cells, including their rate of division, and distribution of receptors capable of binding lentivirus envelope proteins. Nano-FISH detection of the lentiviral insertions revealed different patterns of insertion when using the same MOI for T cells and CD34+ cells. The pattern observed in CD34+ cells indicates that the time of transduction, the populations of cells susceptible to lentiviral infection were heterogeneous. Some cells were not susceptible to infection in contrast to a small highly- susceptible population of cells that showed high numbers of insertions. This resulted in a suboptimal distribution of lentiviral insertions in CD34+ cells.

[0636] The Nano-FISH compositions and methods of the present disclosure can thus be used to evaluate different cell types or cells at different cell cycles for their susceptibility of transfection. This could be useful for quality control purposes in adoptive cell transfer (e.g., CAR T cell) therapies.

EXAMPLE 42

Detection of Lentiviral Insertions by Nano-FISH for the Detection of Nonrandom Viral Transduction Efficacy on a Per Cell Basis driven by Growth Conditions prior to

Transduction

[0637] This example describes the detection of lentiviral insertions in primary CD34+ cells, where the distribution of cells susceptible to lentiviral infection is altered depending on the growth conditions of cells prior to transduction.

Background.

[0638] CD34+ cells are heterogeneously susceptible to lentiviral infection. Differences in susceptibility of infection are driven by biological differences among cells, including their rate of division, and distribution of receptors capable of binding lentivirus envelope proteins. Methods.

[0639] The growth conditions for CD34+ cells were altered by varying the exposure time (i.e., 24 or 48 hrs) to cytokines in the media. As cytokines promote cell division and differentiation of CD34+ cells, the integration profile of transduced cells was altered.

[0640] Human primary CD34+ cells were thawed and cultured in StemSpan H3000 media (Stemcell technologies) with antibiotics (penicillin/streptomycin) and CO 10 cytokine cocktail (Stemcell technologies) for either 24 hrs or 48 hrs prior to transduction with lentivirus carrying the GFP gene driven by a fragment of the gammaGlobin promoter. Cells were transduced at an MOI of 0, 10, and 50 on 50ug/ml retronectin-coated plates using a concentration of 8μg/ml protamine sulfate for both short and long cytokine treatment. Cells were collected on day 5 post-thaw and profiled with Nano-FISH in 24-well format with methanol/acetic acid fixation using 60 probes designed to generic lentivirus backbone sequences, and 16 probes designed to the GFP gene. The Nano-FISH probes were labeled with Quasar 670 dye. Samples were imaged on a Nikon wide field fluorescent microscope, using a 60X oil objective. The resulting images were processed and fluorescent spots called and tabulated in each nucleus.

[0641] The results obtained in this study demonstrated that a longer exposure time to cytokines led to an increase in the number of CD34+ cells with five or more viral insertions at an MOI of 50, as illustrated in FIG. 62. FIG. 62 shows the result of different exposure times to cytokines prior to transduction. FIG. 62A shows the insertion rates for MOIs of 0, 50 (short exposure (24 hrs)), and 50 (long exposure (48 hrs)). FIG. 62B shows 25 randomly- selected nuclei from MOI 50 short-exposure (24 hrs, left) to cytokines, long exposure (48 hrs, middle) to cytokines, and MOI 0 (right).

EXAMPLE 43

Detection of Lentiviral Insertions by Nano-FISH for the Development of Optimal Viral

Envelope- Target Cell Interactions

[0642] This example describes the use of Nano-FISH for the detection of lentiviral insertions to select an optimal viral envelope protein for enhanced lentiviral insertions in target cells. Background.

[0643] Differences in susceptibility of infection are driven by biological differences among cells such as their rate of division and the distribution of receptors capable of binding lentivirus envelope proteins. The most popular lentivirus envelope is the Vesicular Stomatitis Virus Glycoprotein (VSVG) that generally offers a wide tropism among cells. However, cells which lack the LDLR receptor to which VSVG binds are not highly susceptible to infection. Primary quiescent HSCs are an example of a cell type with low levels of LDLR, making VSVG a poor envelope match for this clinically relevant stem cell type. New envelope proteins are often rationally designed from existing virus envelopes and then tested for their efficacy of transduction in hard-to-transduce cell types. The resulting transductions are evaluated using gold-standard methods, such as qPCR and/or florescent cell sorting of a reporter gene. However, these methods do not reveal the single-cell distribution of insertions and therefore will not reveal unexpected accumulation of insertions in some cells and/or a lack of insertions in other cells of the same cell population.

Methods.

[0644] To reveal the true distribution of infection- susceptible cells within a cell population, Nano-FISH using lentiviral backbone probes as described herein could be used on cells in which lentivirus with new envelope proteins are tested, offering the possibility to screen for optimal envelope proteins for any cell type of interest. [0645] Primary stimulated CD4+ T cells and CD34+ cells are transduced according to the methods as described herein using different envelope proteins that are engineered to target LDLR with high affinity at different binding sites or other cell surface receptors.

Transduction conditions are varied and MOIs in this study ranged from 5-50. Post- transduction cells are harvested and profiled for lentiviral insertion with a vector only Nano- FISH probe set of 60 backbone probes, more than 30 of those probes bind to the target vector backbone sequences used in the transductions. The Nano-FISH probe distribution pattern among cells within a given cell population reveal information about the ability of engineered envelope proteins to facilitate transduction of the target cells. Thus, the compositions and methods of the present disclosure can be useful for the evaluation and high-throughput screening of the transduction efficacy of newly developed envelope proteins.

EXAMPLE 44

Detection of latent HIV insertions by Nano-FISH

[0646] This example describes the detection of HIV insertions in the genome of cells of human patient in which the virus is latent, i.e. integrated in to genome but not currently active.

Background.

[0647] HIV latency poses a barrier for curing the disease because inactive virus is difficult to target by drug or immunotherapy. Furthermore, the identity and number of T cells (or other cell types) latently infected with HIV is not well characterized and likely varies between patients.

Methods.

[0648] HIV integrations are detected by nano-FISH using probes to target the HIV genome or universal lentivirus backbone probes in patient cells that are otherwise healthy cells that cannot or only with high difficulty are detected using conventional methodologies.

[0649] Cells derived from human patient samples are incubated with a Nano-FISH vector only probe set of 60 backbone probes as described herein. More than 30 of those probes bind to universal lentivirus backbone sequences of HIV. The resulting distribution of viral integrations observed in these cells provides information about the present of HIV-derived insertions into the host genome. In addition, the Nano-FISH compositions and methods of the present disclosure may reveal additional features of a latent HIV-infected cell such as cell type and frequency of integrations that can be useful to evaluate the size of the viral reservoir, these two pieces of information will further guide patient care and inform antiretroviral treatment outcomes. [0650] The examples and embodiments described herein are for illustrative purposes only and various modifications or changes suggested to persons skilled in the art are to be included within the spirit and purview of this application and scope of the appended claims.