Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND COMPOUNDS FOR IDENTIFYING GLYCOSYLTRANSFERASE INHIBITORS
Document Type and Number:
WIPO Patent Application WO/2013/151697
Kind Code:
A1
Abstract:
The present invention provides moenomycin-based probe compounds of Formula (I) for use in screening inhibitors of bacterial glycosyltransferases. The present invention also provides bacterial glycosyltransferase screening assays using compounds of Formula (I).

Inventors:
KAHNE DANIEL (US)
KAHNE SUZANNE WALKER (US)
GAMPE CHRISTIAN (US)
TSUKAMOTO HIROKAZU (JP)
Application Number:
PCT/US2013/030800
Publication Date:
October 10, 2013
Filing Date:
March 13, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HARVARD COLLEGE (US)
International Classes:
C07H13/12; G01N33/50
Domestic Patent References:
WO2009046314A22009-04-09
WO2008021367A22008-02-21
WO2003020962A22003-03-13
Other References:
RIEDEL S ET AL: "Synthesis and transglycosylase-inhibiting properties of a disaccharide analogue of moenomycin a lacking substitution at C-4 of unit F", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 55, no. 7, 12 February 1999 (1999-02-12), pages 1921 - 1936, XP004155336, ISSN: 0040-4020, DOI: 10.1016/S0040-4020(98)01225-3
JOACHIM LÜNING ET AL: "Moenomycin-type transglycosylase inhibitors: Inhibiting activity vs. topology around the phosphoric acid diester group", TETRAHEDRON LETTERS, vol. 35, no. 12, 1 March 1994 (1994-03-01), pages 1859 - 1862, XP055063922, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(00)73180-7
DAGHISH, MOHAMMED ET AL: "Tetrafunctional photoaffinity labels based on Nakanishi's m-nitroalkoxy-substituted phenyltrifluoromethyldiazirine", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION , 41(13), 2293-2297 CODEN: ACIEF5; ISSN: 1433-7851, 2002, XP002698373
RUHL T ET AL: "A trifunctional reagent for photoaffinity labeling", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 41, no. 23, 1 June 2000 (2000-06-01), pages 4555 - 4558, XP004205636, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(00)00699-7
SCHUERER H ET AL: "FLUORESCENCE CORRELATION SPECTROSCOPY AS A NEW METHOD FOR THE INVESTIGATION OF APTAMER/TARGET INTERACTIONS", BIOLOGICAL CHEMISTRY, WALTER DE GRUYTER GMBH & CO, BERLIN, DE, vol. 382, 1 March 2001 (2001-03-01), pages 479 - 481, XP009046411, ISSN: 1431-6730, DOI: 10.1515/BC.2001.058
DANIELA VOLKE ET AL: "On Penicillin-Binding Protein 1b Affinity-Labeling Reagents", HELVETICA CHIMICA ACTA, vol. 86, no. 12, 1 December 2003 (2003-12-01), pages 4214 - 4232, XP055065617, ISSN: 0018-019X, DOI: 10.1002/hlca.200390346
CHRISTIAN M. GAMPE ET AL: "Tuning the Moenomycin Pharmacophore To Enable Discovery of Bacterial Cell Wall Synthesis Inhibitors", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, no. 10, 13 March 2013 (2013-03-13), pages 3776 - 3779, XP055063915, ISSN: 0002-7863, DOI: 10.1021/ja4000933
Attorney, Agent or Firm:
BAKER, C., Hunter (Greenfield & Sacks P.C.,600 Atlantic Avenu, Boston MA, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A compound of Formula (I):

(I)

or a salt thereof,

wherein

R1 is hydrogen, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

R 2" and R 3J are independently hydrogen, optionally substituted aliphatic, -OR 9 , -N(R 8 )2, or -C(0)NHR8;

R4 is hydrogen or -WR4a;

W is -O- or -NH-;

R4a is hydrogen, a hydroxyl protecting group, optionally substituted aliphatic, - C(0)R10, -C(0)NHR8, -C(=NR8)NHR8,or -C(0)OR9;

R5 is hydrogen or -NHR8;

R6 is hydrogen, -CH3, -CH2OR9, or -CH2ORcx; wherein Rcx is a carbohydrate moiety;

R7 is hydrogen, -OR9, or -N(R8)2;

each R 8 is independently hydrogen, an amino protecting group, -C(0)R 10 , optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, or two R groups on the same nitrogen may be taken together to form an optionally substituted heterocyclyl; each R9 is independently hydrogen, a hydroxyl protecting group, -C(0)R10, optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl;

each R10 is independently optionally substituted aliphatic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl;

Ra and Rb are independently hydrogen or a hydroxyl protecting group;

G is an optionally substituted C1-3o aliphatic group, wherein 0 to 10 methylene units are optionally replaced with -0-, -NRX-, -S-, -C(O)-, -C(=NRX), -S(O)-, -S02-, -N=N-, -C=N- , -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene; wherein each instance of Rx is independently hydrogen, optionally substituted aliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl; or

G is a group of Formula (

wherein a is 3, 4, or 5;

wherein

X1; X2, X3, X4, X5, X6, and X7 are each independently hydrogen or halogen;

d is an integer between 1 and 25, inclusive; and

e is an integer of between 2 and 25, inclusive;

provided the sum of d and e is greater than 16; or

(c)

wherein

Y is -0-, -S-, -NR Y -, or an optionally substituted methylene group, wherein R Y is hydrogen, optionally substituted aliphatic, or an amino protecting group; each instance of Rc is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR6, - SRe, -NHR6, or -N(Re)2, wherein each instance of Re is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two Re groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of Rd is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR , -

SR f , -NHR f , or -N(R f )2, wherein each instance of R f is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

Rz is hydrogen, -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -ORg, -SRg, - NHRg, or -N(Rg)2, wherein each instance of Rg is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted

carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl or two Rg groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of n is, independently, 0, 1, 2, 3, or 4;

each instance of m is, independently, 0, 1, 2, 3, or 4; and

x is 1, 2, 3, 4, 5, or 6;

RYY is hydrogen or -OR**;

R XX is hydrogen, a hydroxyl protecting group, or a group of formula: wherein

R11 is hydrogen, optionally substituted aliphatic, -C(0)NHR8, -CH2OR9, or - C(0)OR9;

R 12 and R 113J are independently hydrogen, optionally substituted aliphatic, -OR 9 , - N(R8)2, or -C(0)NHR8;

R14 is hydrogen or -NHR8;

R15 is hydrogen, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

R16 is hydrogen or -OR9;

R 17 is hydrogen or -OR 9 ;

R 18 is hydrogen or -OR 9 ;

R19a is hydrogen or -OR9;

R19b is hydrogen or -OR9;

wherein a hydrogen radical on the compound of Formula (I) is replaced with -L-Rp;

L is a covalent bond, -NRy-, -N(Ry)C(0)-, -N(Ry)C(0)N(Ry)-, -N(Ry)C(S)N(Ry)-, - C(0)N(Ry)-, -N(Ry)S02-, -S02N(Ry)-, -0-, -C(O)-, -OC(O)-, -C(0)0-, -S-, -SO-, -S02-, optionally substituted cycloalkylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, or an optionally substituted aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NRy-, -N(Ry)C(0)-, -N(Ry)C(0)N(Ry)-, -N(Ry)C(S)N(Ry)-, -C(0)N(Ry)-, -N(Ry)S02-, - S02N(Ry)-, -0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S02-, cycloalkylene, heterocyclylene, arylene, or heteroarylene; wherein Ry is hydrogen, C1-6 alkyl, or -C(0)C1-6 alkyl; and

Rp is a detectable moiety.

2. The compound of claim 1, wherein: R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R6 is -CH3, -CH2OR9, or -CH2ORcx;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R12 and R13 is hydrogen, and the other is -OR9;

R14 is -NHR8;

R15 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

R16 is -OR9;

R17 is -OR9;

R18 is -OR9; and

one of R19a and R19b is hydrogen, and the other is -OR9.

The compound of claim 1 wherein the compound is of Formula

(la).

The compound of claim 3, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R6 is -CH , -CH2OR9, or -CH2ORcx; and R7 is -OR9 or -N(R8)2.

The com ound of claim 1, wherein the compound is of Formula (lb):

The compound of claim 5, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R6 is -CH3, -CH2OR9, or -CH ORcx;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R12 and R13 is hydrogen, and the other is -OR9;

R14 is -NHR8; and

one of R19a and R19b is hydrogen, and the other is -OR9.

. The com ound of claim 1, wherein the compound is of Formula (Ic):

8. The compound of claim 7, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R6 is -CH3, -CH2OR9, or -CH2ORcx;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R12 and R13 is hydrogen, and the other is -OR9;

R14 is -NHR8;

R15 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

R16 is -OR9;

R17 is -OR9; and

R18 is -OR9.

9. The com ound of claim 1, wherein the compound is of Formula (Id):

wherein R20, R21, R22, and R23 are each independently hydrogen or -OR9.

10. The compound of claim 9, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

R20 is -OR9;

R21 is -OR9;

R22 is -OR9; and

R23 is -OR9.

The compound of claim 11, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9; one of R12 and R13 is hydrogen, and the other is -OR9; R14 is -NHR8;

one of R19a and R19b is hydrogen, and the other is -OR9

R20 is -OR9;

R21 is -OR9;

R22 is -OR9; and

R23 is -OR9. The compound of claim 1, wherein the compound is of Formula (If):

The compound of claim 13, wherein:

R1 is -C(0)NHR8, -CH2OR9, or -C(0)OR9

one of R2 and R3 is hydrogen, and the other is -OR9;

R4 is -W-R4a;

R5 is -NHR8;

R7 is -OR9 or -N(R8)2;

R11 is -CH3, -C(0)NHR8, -CH2OR9, or -C(0)OR9;

one of R12 and R13 is hydrogen, and the other is -OR9;

R14 is -NHR8;

R15 is -C(0)NHR

R16 is -OR9;

R17 is -OR9;

R18 is -OR9;

R20 is -OR9;

R21 is -OR9;

R22 is -OR9; and

R23 is -OR9.

15. The compound of claim 1, wherein R is -OH.

The compound of claim 1, wherein R is -OR , and R is a group of formula:

17. The compound of claim 16, wherein R11 is -CH2OH.

18. The compound of claim 16, wherein R11 is -CH3.

19. The compound of any one of claims 16-18, wherein R 12 is hydrogen; and R 13 is -OH.

20. The compound of any one of claims 16-18, wherein R 12 is hydrogen; and R 13 is -OH.

21. The compound of any one of claims 16-20, wherein R19a is hydrogen, and R19b is - OH.

22. The compound of any one of claims 16-20, wherein R is hydrogen, and R a is - OH.

23. The compound of any one of claims 16-22, wherein R is -NHC(0)CH3.

24. The compound of any one of claims 16-22, wherein R14 is -C(0)CH2-L-Rp.

25. The compound of claim 1, wherein R XX is a group of formula:

26. The compound of claim 25, wherein R11 is -CH2OH.

27. The compound of claim 25, wherein R11 is -CH3.

28. The compound of any one of claims 25-2 ', wherein R 12 is hydrogen; and R 13 is -OH.

29. The compound of any one of claims 25-27, wherein R 12 is hydrogen; and R 13 is -OH.

30. The compound of any one of claims 25-29, wherein R14 is -C(0)CH3.

31. The compound of any one of claims 25-29, wherein R14 is -C(0)CH2-L-Rp.

32. The compound of any one of claims 25-31, wherein R 15 is -C(0)NHR 8.

33. The compound of claim 32, wherein R is

34. The compound of any one of claims 25-33, wherein R is -OH.

35. The compound of any one of claims 25-34, wherein R 17 is -OH.

36. The compound of any one of claims 25-35, wherein R 18 is -OH.

37. The compound of any one of the preceding claims, wherein R1 is -C(0)NH2.

38. The compound of any one of the preceding claims, wherein R 2 is hydrogen; and R 3 is -OH.

39. The compound of any one of the preceding claims, wherein R 3 is hydrogen; and R 2 is -OH.

40. The compound of any one of the preceding claims, wherein R4 is -OH.

41. The compound of any one of the preceding claims, wherein R5 is -NHC(0)CH3.

42. The compound of any one of the preceding claims, wherein R6 is -CH2OH.

43. The compound of any one of claims 1-41, wherein R6 is -CH2ORcx; wherein Rcx is a carbohydrate moiety.

44. The compound of any one of the preceding claims, wherein R7 is -OH

The compound of any one of the preceding claims, wherein G is of Formula (a).

The compound of any one of claims 1-44, wherein G is of Formula (b).

The compound of any one of claims 1-44, wherein G is of Formula (c).

The compound of any one of claims 1-44, wherein G

The compound of any one of claims 1-44, wherein G

The compound of any one of claims 1-44, wherein G

The compound of any one of claims 1-44, wherein G

The compound of any one of claims 1-44, wherein G

53. The compound of any one of claims 1-44, wherein G is

The compound of any one of claims 1-44, wherein G

55. The compound of any one of claims 1-44, wherein G is

The compound of any one of claims 1-44, wherein G -»

?=\ /=K

57. The compound of any one of claims 1-44, wherein G is

58. The compound of any one of claims 1-57, wherein R1 is -L-Rp, -C(0)NH-L-Rp, CH20-L-Rp, or -C(0)0-L-Rp.

59. The compound of any one of claims 1-57, wherein R2 is -L-Rp, -0-L-Rp, -N(R RP, or -C(0)NH-L-Rp.

60. The compound of any one of claims 1-57, wherein R3 is -L-Rp, -0-L-Rp, -N(R RP, or -C(0)NH-L-Rp.

61. The compound of any one of claims 1-57, wherein R4 is -L-Rp or -0-L-Rp.

62. The compound of any one of claims 1-57, wherein R5 is -L-Rp or -NH-L-RP.

63. The compound of any one of claims 1-57, wherein R6 is -0-L-Rp.

64. The compound of any one of claims 1-57, wherein R 6 is -O-R CX , wherein R CX is a carbohydrate moiety substituted with -L-Rp.

65. The compound of any one of claims 1-57, wherein R 7 is -L-R P , -O-L-R P , or -N(R 8 )-

L-Rp.

66. The compound of any one of claims 1-57, wherein R 8 is -L-R P .

67. The compound of any one of claims 1-57, wherein R9 is -L-Rp.

68. The compound of any one of claims 1-57, wherein R10 is -L-Rp.

69. The compound of any one of claims 1-57, wherein Ra is -L-Rp.

70. The compound of any one of claims 1-57, wherein Rb is -L-Rp.

71. The compound of any one of claims 1-57, wherein R11 is -L-Rp, -C(0)NH-L-Rp, - CH20-L-Rp, or -C(0)0-L-Rp.

72. The compound of any one of claims 1-57, wherein R12 is -L-Rp, -0-L-Rp, -N(R RP, or -C(0)NH-L-Rp.

73. The compound of any one of claims 1-57, wherein R13 is -L-Rp, -0-L-Rp, -N(R RP, or -C(0)NH-L-Rp.

74. The compound of any one of claims 1-57, wherein R14 is -L-Rp or -NH-L-RP.

The compound of any one of claims 1-57, wherein R is -NHC(0)CH2-L-RP

76. The compound of any one of claims 1-57, wherein R15 is -L-Rp, -C(0)NH-L-Rp, CH20-L-Rp, or -C(0)0-L-Rp.

77. The compound of any one of claims 1-57, wherein R16 is -L-Rp or -0-L-Rp.

78. The compound of any one of claims 1-57, wherein R17 is -L-Rp or -0-L-Rp.

79. The compound of any one of claims 1-57, wherein R18 is -L-Rp or -0-L-Rp.

80. The compound of any one of claims 1-57, wherein R19a is -L-Rp or -0-L-Rp.

81. The compound of any one of claims 1-57, wherein R19b is -L-Rp or -0-L-Rp.

82. The compound of any one of claims 1-57, wherein the G group is substituted with -L-

RP.

83. The compound of any one of claims 1-82, wherein L is -NHC(S)NH-.

84. The compound of any one of claims 1-82, wherein L is -C(0)CH2-NHC(S)NH-

85. The compound of any one of claims 1-82, wherein L is

86. The compound of any one of claims 1-82, wherein L is

87. The compound of any one of claims 1-82, wherein L is an optionally substituted aliphatic linker wherein one methylene unit is replaced by tetrazolyl and one or more additional methylene units are optionally replaced by -NRy-, -N(Ry)C(0)-, -N(Ry)C(0)N(Ry)- , -N(Ry)C(S)N(Ry)-, -C(0)N(Ry)-, -N(Ry)S02-, -S02N(Ry)-, -0-, -C(O)-, -OC(O)-, -C(0)0-, - S-, -SO-, or -S02-.

88. The compound of any one of claims 1-82, wherein L is an optionally substituted aliphatic linker wherein one methylene unit is replaced by -NHC(S)NH- and one or more additional methylene units are optionally replaced by -NRy-, -N(Ry)C(0)-, -N(Ry)C(0)N(Ry)-

, -N(Ry)C(S)N(Ry)-, -C(0)N(Ry)-, -N(Ry)S02-, -S02N(Ry)-, -0-, -C(0)-, -0C(0)-, -C(0)0-, -

S-, -SO-, -S02-, cycloalkylene, heterocyclylene, arylene, or heteroarylene.

89. The compound of any one of claims 1-88, wherein Rp is selected from the

consisting of ligands, radionuclides, fluorescent dyes, chemiluminescent agents,

microparticles, enzymes, calorimetric labels, magnetic labels, and haptens.

The compound of any one of claims 1-88, wherein Rp is selected from the group consisting of Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660 and Alexa Fluor 680, AMCA, AMCA-S, BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665, aminomethylcoumarin, carbocyanine, carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), Cascade Blue, Cascade Yellow, coumarin, coumarin 343, cyanine dyes, dansyl, dapoxyl, dialkylaminocoumarin, 4',5'- dichloro-2',7'-dimethoxyfluorescein, DM-NERF, eosin, erythrosin, fluorescein, FAM, hydroxycoumarin, IRD40, IRD 700, IRD 800, 6-carboxy-4',5'-dichloro-2',7'- dimethoxyfluorescein (6-JOE), lissamine rhodamine B, Marina Blue, merocyanine, methoxycoumarin, naphthofluorescein, Oregon Green 488, Oregon Green 500, Oregon Green 514, oxonol dyes, Pacific Blue, phycoerythrin, PyMPO, pyrene, rhodamine B, rhodamine 6G, rhodamine green, rhodamine red, rhodol green, styryl dyes, 2',4',5',7'-tetrabromosulfone- fluorescein, tetramethyl-rhodamine (TMR), carboxytetramethylrhodamine (TAMRA), Texas Red, Texas Red-X, 5(6)-carboxyfluorescein, 2,7-dichlorofluorescein, N,N-bis(2,4,6- trimethylphenyl)-3,4,9,10-perylenebis(dicarboximide), HPTS, ethyl eosin, DY-490XL MegaStokes, DY-485XL MegaStokes, Adirondack Green 520, ATTO 465, ATTO 488, ATTO 495, Y0Y0-1.5-FAM, BCECF, dichlorofluorescein, rhodamine 110, rhodamine 123, YO-PRO-I, SYTOX Green, Sodium Green, SYBR Green I, Alexa Fluor 500, FITC, Fluo-3, Fluo-4, fluoro-emerald, YoYo-I ssDNA, YoYo-I dsDNA, YoYo-I, SYTO RNASelect, Diversa Green-FP, Dragon Green, EvaGreen, Surf Green EX, Spectrum Green, Spectrum Red, NeuroTrace 500525, NBD-X, MitoTracker Green FM, LysoTracker Green DND-26, CBQCA, PA-GFP (post-activation), WEGFP (post-activation), FLASH-CCXXCC, Azami Green monomeric, Azami Green, green fluorescent protein (GFP), EGFP, Kaede Green, 7- benzylamino-4-nitrobenz-2-oxa-l,3-diazole, Bexl, doxorubicin, Lumio Green, and SuperGlo GFP.

91. The compound of any one of claims 1-88, wherein Rp is selected from the group consisting of fluorescein, naphthofluorescein, 4',5'-dichloro-2',7'-dimethoxy-fluorescein, 2',4',5',7'-tetrabromosulfone-fluorescein, 2,7-dichlorofluorescein, 6-carboxy-4',5'-dichloro- 2',7'-dimethoxyfluorescein, and 5(6)-carboxyfluorescein.

92. The compound of any one of claims 1-88, wherein Rp is fluorescein.

The compound of claim 1 of formula:

94. An assay for determining the inhibitory effect of a test compound on a

glycosyltransferase protein comprising:

incubating the glycosyltransferase protein with a probe compound of claim 1-93; measuring fluorescence polarization of the probe compound in the presence of the glycosyltransferase protein;

adding a test compound; and

measuring a change in fluorescence polarization of the probe compound after addition of the test compound.

95. The assay of claim 94, wherein the glycosyltransferase protein is a recombinant, full length glycosyltransferase protein.

96. The assay of claim 94, wherein the assay is carried out at a concentration of the probe compound greater than the probe compound ¾.

97. The assay of claim 94, wherein the assay is carried out at a concentration of the probe compound approximately equivalent to the probe compound ¾.

98. The assay of claim 94, wherein the glycosyltransferase protein is a peptidoglycan glycosyltransferase.

99. The assay of claim 94, wherein the glycosyltransferase protein is selected from the group consisting of PGT, PBPlb, PBP2a, and SgtB.

100. The assay of claim 94, wherein the glycosyltransferase protein is selected from the group consisting of Aquif ex aeolicus PGT, E. coli PBPlb, E. faecalis PBP2a, and S. aureus SgtB.

101. The assay of claim 94, wherein the glycosyltransferase protein is E. coli PBPlb.

102. The assay of claim 94, wherein the glycosyltransferase protein is E. faecalis PBP2a.

103. The assay of claim 94, wherein the glycosyltransferase protein is S. aureus SgtB.

104. The assay of claim 94, wherein the glycosyltransferase protein is B. pertussis PBP la, C. freudii PBPlb, E. coli PBPlb, H. influenzae PBPlb, H. pylori PBP la, K. pneumoniae PBPlb, P. aeruginosa PBPlb, S. enterica PBPlb, S. flexneri PBP2, B. subtilis PBPla/lb, C. difficile PBP, E. faecalis PBP2a, E. faecium PBPl, S. aureus PBP2, S. pneumoniae PBPlb, or S. aureus SgtB.

105. The assay of claim 94, wherein multiple assays are run in parallel.

106. The assay of claim 94, wherein at least 50 assays are run in parallel.

107. The assay of claim 94, wherein at least 100 assays are run in parallel.

108. The assay of claim 94, wherein at least 500 assays are run in parallel.

109. The assay of claim 94, wherein at least 1000 assays are run in parallel.

110. The assay of claim 94, wherein the probe compound is a compound of claim 76.

111. The assay of claim 94, wherein the assay is performed at approximately room temperature.

112. The assay of claim 94, wherein the assay is run in an assay buffer.

113. The assay of claim 112, wherein the assay buffer comprises TRIS and NaCl.

114. The assay of claim 113, wherein the assay buffer is 10 mM TRIS pH 8, 100 mM NaCl.

115. The assay of claim 94, wherein the concentration of the probe compound is 1-1000 nM.

116. The assay of claim 94, wherein the concentration of the probe compound is 1-100 nM.

117. The assay of claim 94, wherein the concentration of the probe compound is 50-200 nM.

118. The assay of claim 94, wherein the concentration of the probe compound is 50-100 nM.

119. The assay of claim 94, wherein the concentration of the glycosyltransferase protein is 0.1 μΜ.

120. The assay of claim 94, wherein the concentration of the glycosyltransferase protein is 0.4 μΜ.

121. The assay of claim 94, wherein the concentration of the glycosyltransferase protein is 0.2 μΜ.

122. The assay of claim 94, wherein the concentration of the glycosyltransferase protein is 0.15 μΜ.

123. The assay of claim 94, wherein the assay is performed at multiple concentrations per test compound.

124. The assay of any one of claims 94-123, wherein the change in fluorescence polarization is a decrease in fluorescence polarization.

125. A kit comprising a compound of any one of claims 1-93 and a glycosyltransferase.

126. The kit of claim 125, wherein the glycosyltransferase is a peptidoglycan

glycosyltransferse.

127. The kit of claim 126, wherein the peptidoglycan glycosyltransferase is B. pertussis PBP la, C. freudii PBPlb, E. coli PBPlb, H. influenzae PBPlb, H. pylori PBP la, K.

pneumoniae PBPlb, P. aeruginosa PBPlb, S. enterica PBPlb, S. flexneri PBP2, B. subtilis PBPla/lb, C. difficile PBP, E. faecalis PBP2a, E. faecium PBPl, S. aureus PBP2, S.

pneumoniae PBPlb, or S. aureus SgtB.

128. The kit of any one of claims 125-127 further comprising a buffer.

129. The kit of any one of claims 125-128 further comprising instructions for use.

Description:
METHODS AND COMPOUNDS FOR IDENTIFYING

GLYCOSYLTRANSFERASE INHIBITORS

RELATED APPLICATIONS

[0001] The present application claims priority under 35 U.S.C. § 119(e) to U.S.

provisional patent applications, USSN 61/621,229, filed August 6, 2012, which is incorporated herein by reference.

GOVERNMENT FUNDING

[0002] This invention was made with U.S. Government support under GM066174 and GM076710, awarded by National Institutes of Health. The U.S. Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] Bacteria have the ability to generate resistance to antibiotics through lateral gene transfer, mutation of enzymes, or the expression of enzymes which actively pump the antibiotic out of the cell or break it down. Over the past 10 years, resistance to existing antibiotics has become a significant problem. Vancomycin is currently the drug of last resort to combat multidrug-resistant Gram-positive bacteria. In many places vancomycin-resistant Staphylococcus aureus and Enterococci (VRE) have been discovered. There is thus a desperate need for new antibiotics to replace this drug of last resort.

[0004] A host of cytoplasmic targets have been used in the development of new antibiotics, such as gyrase inhibitors, protein synthesis inhibitors, muramyl cascade inhibitors, and many more. The major hurdle in designing such drugs is that in addition to enzyme based activity these drugs need to cross the bacterial cell wall to exert their antibacterial effect. On the other hand, enzymes involved in synthesis of the bacterial cell wall exist on the cell wall exterior, and therefore drugs inhibiting these enzymes can exert their bactericidal or bacteriostatic effect without having to cross the cell wall. For example, penicillins, cephalosporins, and moenomycin are antibiotics that interact with bacterial transpeptidase enzymes. Vancomycin does not interact with bacterial transpeptidase enzymes, but rather sequesters the substrate of the enzyme.

[0005] Moenomycin is a natural product that directly inhibits the synthesis of bacterial peptidoglycan (PG). The biological activity of moenomycin is remarkable compared with that of most other natural antibiotics: it is 10-1000 times more potent than vancomycin against Gram-positive organisms. See, e.g., Ostash and Walker, Curr. Opin. Chem. Biol. (2005) 9:459-466; Goldman et al., Curr. Med. Chem. (2000) 7:801-820. Structure-activity relationship studies of moenomycin analogs conducted on the saccharide portion of the molecule have revealed that moenomycin analogs with at least three carbohydrate units (C, E, and F) are active in vivo against Gram-positive bacteria. See, e.g., Garneau et al., Bioorganic & Medicinal Chemistry (2004) 12:6473-6494. Furthermore, while the phosporyl group and the carboxylate group of the phosphoglycerate linker are now considered important for bioactivity, the moenocinol chain is also considered to be an important structural component of the molecule and probably contributes to target binding both by direct interactions with the hydrophobic funnel that leads to the membrane and by membrane anchoring. See, e.g., Fuse et al., Chemical Biology (2010) 5:701-711. However, at the same time, the moenocinol chain is also credited with poor pharmacokinetic properties and high serum binding of

meonomycin, e.g., its absorption upon oral administration is relatively poor. See, e.g., van Heij -36R.

Moenomycin A SUMMARY OF THE INVENTION

[0006] Moenomycin A and related compounds are potent inhibitors of

glycosyltransferase enzymes in bacteria (Ostash et al. Curr. Opin. Chem. Biol. 9:459-466 (2005)). Previous work has established that, although C 10 analogues of the moenocinol chain are too short to retain biological activity, the C25 moenocinol chain of moenomycin A is longer than required for activity. See, e.g., Ostash et al., Biochemistry (2009) 48:8830-8841. The present invention provides assays for identification of other glycosyltransferase inhibitors. In certain embodiments, provided assays can be in high-throughput format, allowing for rapid identification of glycosyltransferase inhibitors. Moenomycin-based probe compounds are useful in such assays.

[0007] In one aspect, the present invention provides a moenomycin analog labeled with a detectable moiety. In certain embodiments, the detectable moiety is fluorescent. The detectable moiety can be attached to the moenomycin analog, optionally through a linker, anywhere on the compound (e.g., on one of the saccharides, on the phosphoglycerate linker, or on the moenocinol chain). The probe compound may be moenomycin A labeled with a detectable moiety, or it may be an analog of moenomycin.

[0008] In another aspect, the present invention provides moenomycin-based probes of Formula (I):

(I)

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R YY , R a , R b , G, L, and R p are as described herein.

[0009] It will be understood by one of ordinary skill in the art that when a formula is shown in brackets with -L-R p straddling the bracket, -L-R p can be attached anywhere on the molecule, i.e., a hydrogen radical on the compound is replaced with -L-R p . [0010] In some embodiments, a probe compound according to the present invention is of Formula (la):

(la)

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R a , R b , G, L, and R p are as described herein.

[0011] In some embodiments, a probe compound according to the present invention is of Formula (lb):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 11 , R 12 , R 13 , R 14 , R 19a , R 19b , R a , R b , G, L, and R are as described herein. [0012] In some embodiments, a probe compound according to the present invention is of Formula (Ic):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R a , R b , G, L, and R P are as described herein.

[0013] In some embodiments, a probe compound according to the present invention is of Formula (Id):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein. [0014] In some embodiments, a probe compound according to the present invention is of Formula Ie):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 11 , R 12 , R 13 , R 14 , R 19a , R 19b , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein.

[0015] In some embodiments, a probe compound according to the present invention is of Formula If):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R P are as described herein.

[0016] In some embodiments, a probe compound according to the present invention is of Formula (lb-xxiv):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4a , R 7 , R 8 , R 9 , R 11 , R 12 , R 13 , R 19a , R19 b , R a , R b , W, G, L, and R p are as described herein.

[0017] In certain embodiments, the present invention provides

[0018] In another aspect, the present invention provides methods of identifying glycosyltransferase inhibitors. Identification of inhibitors of bacterial glycosyltransferases is important in developing new antibiotic compounds. In certain embodiments, a method of the present invention comprises incubating a glycosyltransferase protein with a probe compound described herein; measuring fluorescence polarization of the probe compound in the presence of the glycosyltransferase protein; adding a test compound; and measuring a change in fluorescence polarization after addition of the test compound. A decrease in fluorescence polarization indicates that the test compound binds to the same binding site as the probe compound and liberates the probe compound from the glycosyltransferase. In certain embodiments, a probe compound used in the methods of the present invention is of intermediate activity against the glycosyltransferase of interest.

[0019] In another aspect, the invention provides a kit comprising a probe compound of the present invention and glycosyltransferase protein. In some embodiments, the kit further comprises a buffer. In some embodiments, the kit further comprises instructions for use.

[0020] These and other aspects of the invention will be described in further detail in connection with the detailed description of the invention.

DEFINITIONS

[0021] Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75 th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito, 1999; Smith and March, March's Advanced Organic Chemistry, 5 th Edition, John Wiley & Sons, Inc., New York, 2001; Larock, Comprehensive Organic Transformations, VCH Publishers, Inc., New York, 1989; Carruthers, Some Modern

Methods of Organic Synthesis, 3 rd Edition, Cambridge University Press, Cambridge, 1987; the entire contents of each of which are incorporated herein by reference.

[0022] The compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and iraws-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.

[0023] Where an isomer/enantiomer is preferred, it may, in some embodiments, be provided substantially free of the corresponding enantiomer and may also be referred to as "optically enriched." "Optically enriched," as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments, the compound of the present invention is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer. Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S.H., et al., Tetrahedron 33:2725 (1977); Eliel, E.L. Stereochemistry of Carbon Compounds (McGraw- Hill, NY, 1962); Wilen, S.H. Tables of Resolving Agents and Optical Resolutionsi, p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972).

[0024] When a range of values is listed, it is intended to encompass each value and subrange within the range. For example, an "alkyl group having from 1 to 6 carbons" (also referred to herein as "C^ alkyl") is intended to encompass 1 (C alkyl), 2 (C 2 alkyl), 3 (C 3 alkyl), 4 (C 4 alkyl), 5 (C 5 alkyl) and 6 (C 6 alkyl) carbons, and a range of 1 to 6 (Ci_6 alkyl), 1 to 5 (Ci_5 alkyl), 1 to 4 (C^ alkyl), 1 to 3 (Ci_ 3 alkyl), 1 to 2 (Ci_ 2 alkyl), 2 to 6 (C 2 _ 6 alkyl), 2 to 5 (C 2 _ 5 alkyl), 2 to 4 (C 2 _^ alkyl), 2 to 3 (C 2 _ 3 alkyl), 3 to 6 (C 3 _ 6 alkyl), 3 to 5 (C 3 _ 5 alkyl), 3 to 4 (C 3 ^ alkyl), 4 to 6 (C^ alkyl), 4 to 5 (C 4 _ 5 alkyl), and 5 to 6 (C 5 _ 6 alkyl) carbons.

[0025] The term "aliphatic," as used herein, refers to a monoradical of a non-aromatic, saturated or unsaturated, unbranched ("straight-chain") or branched, substituted or unsubstituted, acyclic hydrocarbon having 1-50 carbon atoms (i.e., Ciso aliphatic). Thus, as used herein, the term "aliphatic" encompasses the groups "alkyl", "alkynyl", and "alkenyl" as defined herein. In certain embodiments, aliphatic refers to a C 2 -C 3 o aliphatic group. In certain embodiments, aliphatic refers to a C 5 -C 2 5 aliphatic group. In certain embodiments, aliphatic refers to a Ci-Cw aliphatic group. In certain embodiments, aliphatic refers to a C 10 - C 2 o aliphatic group. In certain embodiments, aliphatic refers to a Cn-Qs aliphatic group. Unless otherwise specified, each instance of aliphatic is independently unsubstituted

("unsubstituted aliphatic") or substituted ("substituted aliphatic") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Aliphatic group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0026] The term "alkyl," as used herein, refers to a monoradical of a non-aromatic, saturated, unbranched ("straight-chain") or branched, substituted or unsubstituted, acyclic hydrocarbon having 1-50 carbon atoms (i.e., Q-so alkyl). In certain embodiments, alkyl refers to a C 2 -C 3 o alkyl group. In certain embodiments, alkyl refers to a C 5 -C 2 5 alkyl group. In certain embodiments, alkyl refers to a Cio-C 2 o alkyl group. In certain embodiments, alkyl refers to a Ci-Cw alkyl group. In certain embodiments, alkyl refers to a Cn-Ci 5 alkyl group. Exemplary alkyl groups include, without limitation, methyl, ethyl, n-propyl, isopropyl, n- butyl, iso-butyl, sec-butyl, sec-pentyl, iso-pentyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, sec-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, and the like, which may bear one or more sustitutents. Unless otherwise specified, each instance of alkyl is independently unsubstituted ("unsubstituted alkyl") or substituted ("substituted alkyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Alkyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0027] Generally, the suffix "-ene" is used to describe a bivalent group. Thus, any of the terms defined herein can be modified with the suffix "-ene" to describe a bivalent version of that moiety. For example, a bivalent carbocycle is "carbocyclylene," a bivalent aryl ring is "arylene," a bivalent benzene ring is "phenylene," a bivalent heterocycle is

"heterocyclylene," a bivalent heteroaryl ring is "heteroarylene," a bivalent alkyl chain is "alkylene," a bivalent cycloalkyl group is "cycloalkylene," a bivalent alkenyl chain is "alkenylene," a bivalent alkynyl chain is "alkynylene," a bivalent heteroalkyl chain is "heteroalkylene," a bivalent heteroalkenyl chain is "heteroalkenylene," a bivalent heteroalkynyl chain is "heteroalkynylene," and so forth.

[0028] The term "fluoroalkyl," as used herein, refers to an alkyl group having from 1 to 50 carbon atoms wherein at least one hydrogen is replaced with a fluorine atom ("Ci-so fluoroalkyl"). In certain embodiments, the fluoroalkyl group has 1 to 8 carbon atoms ("Q-e fluoroalkyl"). In certain embodiments, the fluoroalkyl group has 1 to 6 carbon atoms ("C^ fluoroalkyl"). In certain embodiments, the fluoroalkyl group has 1 to 4 carbon atoms ("C^ fluoroalkyl"). In certain embodiments, the fluoroalkyl group has 1 to 3 carbon atoms ("C^ fluoroalkyl"). In certain embodiments, the fluoroalkyl group has 1 to 2 carbon atoms ("Ci_ 2 fluoroalkyl"). In certain embodiments, one hydrogen atom is replaced with a fluorine atom. In certain embodiments, two hydrogen atoms are replaced with fluorine atoms. In certain embodiments, three hydrogen atoms are replaced with fluorine atoms. In certain

embodiments, four hydrogen atoms are replaced with fluorine atoms. In certain

embodiments, five hydrogen atoms are replaced with fluorine atoms. In certain

embodiments, all of the hydrogen atoms are replaced with fluorine atoms (also referred to as a "perfluoroalkyl" group). Exemplary fluoroalkyl groups include, but are not limited to, - CH 2 F, -CF 2 H, -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 CF 2 CF 3 , -CF 2 CF 2 CF 3 , and the like.

[0029] The term "alkenyl," as used herein, refers to a monoradical of a non-aromatic, unbranched ("straight-chain") or branched, substituted or unsubstituted, acyclic hydrocarbon having at least one carbon-carbon double bond, having zero carbon-carbon triple bonds, and having 2-50 carbon atoms (i.e., C 2 -50 alkenyl). In certain embodiments, alkenyl refers to a C 5 -C 25 alkenyl group. In certain embodiments, alkenyl refers to a Cio-C 2 o alkenyl group. In certain embodiments, alkenyl refers to a C 2 -C 10 alkenyl group. In certain embodiments, alkenyl refers to a Cn-Qs alkenyl group. Exemplary alkenyl groups include, without limitation, ethenyl, propenyl, butenyl, l-methyl-2-buten-l-yl, and the like, which may bear one or more substituents. Unless otherwise specified, each instance of alkenyl is

independently unsubstituted ("unsubstituted alkenyl") or substituted ("substituted alkenyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Alkenyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0030] The term "alkynyl," as used herein, refers to a monoradical of a non-aromatic, unbranched ("straight-chain") or branched, substituted or unsubstituted, acyclic hydrocarbon having at least one carbon-carbon triple bond, optionally containing one or more carbon- carbon double bonds, and having 2-50 carbon atoms (i.e., C 2 -50 alkynyl). In certain embodiments, alkynyl refers to a C 5 -C 25 alkynyl group. In certain embodiments, alkynyl refers to a C 2 -C 10 alkynyl group. In certain embodiments, alkynyl refers to a C 1 o-C 2 o alkynyl group. In certain embodiments, alkynyl refers to a Cn-Qs alkynyl group. Exemplary alkynyl groups include, without limitation, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like, which may bear one or more substituents. Unless otherwise specified, each instance of alkynyl is independently unsubstituted ("unsubstituted alkynyl") or substituted

("substituted alkynyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Alkynyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0031] The term "heteroaliphatic," as used herein, refers to a Ciso aliphatic group wherein one, two or three methylene units of the hydrocarbon chain are independently replaced with one or more oxygen, sulfur or nitrogen atoms. Thus, as used herein, the term "heteroaliphatic" encompasses the groups "heteroalkyl", "heteroalkynyl", and

"hetero alkenyl" as defined herein. Unless otherwise specified, each instance of

heteroaliphatic is independently unsubstituted ("unsubstituted heteroaliphatic") or substituted ("substituted heteroaliphatic") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heteroaliphatic group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety. [0032] The term "heteroalkyl," as used herein, refers to a Ciso alkyl group wherein one, two or three methylene units of the hydrocarbon chain are independently replaced with one or more oxygen, sulfur or nitrogen atoms. Unless otherwise specified, each instance of heteroalkyl is independently unsubstituted ("unsubstituted heteroalkyl") or substituted ("substituted heteroalkyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heteroalkyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0033] The term "heteroalkenyl," as used herein, refers to a C2-50 alkenyl group wherein one, two or three methylene units of the hydrocarbon chain are independently replaced with one or more oxygen, sulfur or nitrogen atoms. Unless otherwise specified, each instance of heteroalkenyl is independently unsubstituted ("unsubstituted heteroalkenyl") or substituted ("substituted heteroalkenyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heteroalkenyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0034] The term "heteroalkynyl," as used herein, refers to a C 2 _ 5 o alkynyl group wherein one, two or three methylene units of the hydrocarbon chain are independently replaced with one or more oxygen, sulfur or nitrogen atoms. Unless otherwise specified, each instance of heteroalkynyl is independently unsubstituted ("unsubstituted heteroalkynyl") or substituted ("substituted heteroalkynyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heteroalkynyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0035] The terms "carbocyclic" or "carbocyclyl," as used herein, refer to a monoradical of a non-aromatic cyclic hydrocarbon group having from 3 to 10 ring carbon atoms ('¾_ 10 carbocyclyl") and zero heteroatoms in the non-aromatic ring system. In some embodiments, a carbocyclyl group has 3 to 8 ring carbon atoms ("C 3 _8 carbocyclyl"). In some

embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms ("C 3 _6 carbocyclyl"). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms ("C 3 _6 carbocyclyl"). In some embodiments, a carbocyclyl group has 5 to 10 ring carbon atoms ("Cs-io carbocyclyl"). Exemplary C 3 _ 6 carbocyclyl groups include, without limitation, cyclopropyl (C 3 ),

cyclopropenyl (C 3 ), cyclobutyl (C 4 ), cyclobutenyl (C 4 ), cyclopentyl (C 5 ), cyclopentenyl (C 5 ), cyclohexyl (C 6 ), cyclohexenyl (C 6 ), cyclohexadienyl (C 6 ) and the like. Exemplary C 3 _8 carbocyclyl groups include, without limitation, the aforementioned C 3 _ 6 carbocyclyl groups as well as cycloheptyl (C 7 ), cycloheptenyl (C 7 ), cycloheptadienyl (C 7 ), cycloheptatrienyl (C 7 ), cyclooctyl (Cg), cyclooctenyl (Cg), bicyclo[2.2.1]heptanyl (C 7 ), bicyclo[2.2.2]octanyl (Cg), and the like. Exemplary C 3 _ 10 carbocyclyl groups include, without limitation, the

aforementioned C 3 _g carbocyclyl groups as well as cyclononyl (C 9 ), cyclononenyl (C 9 ), cyclodecyl (C 10 ), cyclodecenyl (C 10 ), octahydro-lH-indenyl (C 9 ), decahydronaphthalenyl (Cio), spiro[4.5]decanyl (C 10 ) and the like. As the foregoing examples illustrate, in certain embodiments, the carbocyclyl group is either monocyclic ("monocyclic carbocyclyl") or polycyclic (e.g., containing a fused, bridged or spiro ring system such as a bicyclic system ("bicyclic carbocyclyl") or tricyclic system ("tricyclic carbocyclyl")) and can be saturated or can contain one or more carbon-carbon double or triple bonds. "Carbocyclyl" also includes ring systems wherein the carbocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, as defined herein, wherein the point of attachment is on the carbocyclyl ring; in such instances, the number of carbons continues to designate the number of carbons in the carbocyclic ring system. Unless otherwise specified, each instance of a carbocyclyl group is independently unsubstituted ("unsubstituted carbocyclyl") or substituted

("substituted carbocyclyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Carbocyclyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0036] In certain embodiments, "carbocyclyl" is a monocyclic, saturated carbocyclyl group having from 3 to 10 ring carbon atoms ("C^o cycloalkyl"). In some embodiments, a cycloalkyl group has 3 to 8 ring carbon atoms ("C 3 _g cycloalkyl"). In some embodiments, a cycloalkyl group has 3 to 6 ring carbon atoms ("C 3 _6 cycloalkyl"). In some embodiments, a cycloalkyl group has 5 to 6 ring carbon atoms ("C 5 _6 cycloalkyl"). In some embodiments, a cycloalkyl group has 5 to 10 ring carbon atoms ("Cs-io cycloalkyl"). Exemplary C 5 _6 cycloalkyl groups include, without limitation, cyclopentyl (C 5 ) and cyclohexyl (C 5 ).

Exemplary C 3 _ 6 cycloalkyl groups include, without limitation, the aforementioned C 5 _6 cycloalkyl groups as well as cyclopropyl (C 3 ) and cyclobutyl (C 4 ). Exemplary C 3 _g cycloalkyl groups include, without limitation, the aforementioned C 3 _ 6 cycloalkyl groups as well as cycloheptyl (C 7 ) and cyclooctyl (Cg). Unless otherwise specified, each instance of a cycloalkyl group is independently unsubstituted ("unsubstituted cycloalkyl") or substituted ("substituted cycloalkyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Cycloalkyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety. [0037] The terms "heterocyclic" or "heterocyclyl," as used herein, refer to a radical of a 3- to 14-membered non-aromatic ring system having ring carbon atoms and 1 to 4 ring heteroatoms, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("3-14 membered heterocyclyl"). In heterocyclyl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. A heterocyclyl group can either be monocyclic ("monocyclic heterocyclyl") or polycyclic (e.g., a fused, bridged or spiro ring system such as a bicyclic system ("bicyclic heterocyclyl") or tricyclic system ("tricyclic heterocyclyl")), and can be saturated or can contain one or more carbon-carbon double or triple bonds. Heterocyclyl polycyclic ring systems can include one or more heteroatoms in one or both rings.

"Heterocyclyl" includes ring systems wherein the heterocycyl ring, as defined above, is fused with one or more carbocycyl groups wherein the point of attachment is either on the carbocycyl or heterocyclyl ring; in such instances, the number of ring members continues to designate the number of ring members in the heterocyclyl ring system. Heterocycyl also includes ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, wherein the point of attachment is on the heterocyclyl ring; in such instances, the number of ring members continues to designate the number of ring members in the heterocyclyl ring system. In some embodiments, a heterocyclyl group is a 5-10 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-10 membered heterocyclyl"). In some embodiments, a heterocyclyl group is a 5-8 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-8 membered heterocyclyl"). In some embodiments, a heterocyclyl group is a 5-6 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-6 membered heterocyclyl"). In some embodiments, the 5-6 membered heterocyclyl has 1-3 ring heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. In some embodiments, the 5-6 membered heterocyclyl has 1-2 ring heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. In some embodiments, the 5-6 membered heterocyclyl has 1 ring heteroatom selected from the group consisting of nitrogen, oxygen and sulfur.

Exemplary 3-membered heterocyclyls containing 1 heteroatom include, without limitation, azirdinyl, oxiranyl, thiorenyl. Exemplary 4-membered heterocyclyls containing 1 heteroatom include, without limitation, azetidinyl, oxetanyl and thietanyl. Exemplary 5- membered heterocyclyls containing 1 heteroatom include, without limitation,

tetrahydrofuranyl, dihydrofuranyl, tetrahydrothiophenyl, dihydrothiophenyl, pyrrolidinyl, dihydropyrrolyl and pyrrolyl-2,5-dione. Exemplary 5-membered heterocyclyls containing 2 heteroatoms include, without limitation, dioxolanyl, oxathiolanyl and dithiolanyl. Exemplary 5-membered heterocyclyls containing 3 heteroatoms include, without limitation, triazolinyl, oxadiazolinyl, and thiadiazolinyl. Exemplary 6-membered heterocyclyl groups containing 1 heteroatom include, without limitation, piperidinyl, tetrahydropyranyl, dihydropyridinyl, and thianyl. Exemplary 6-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, piperazinyl, morpholinyl, dithianyl, dioxanyl. Exemplary 6-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, triazinanyl.

Exemplary 7-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azepanyl, oxepanyl and thiepanyl. Exemplary 8-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azocanyl, oxecanyl and thiocanyl.

Exemplary bicyclic heterocyclyl groups include, without limitation, indolinyl, isoindolinyl, dihydrobenzofuranyl, dihydrobenzothienyl, tetrahydrobenzothienyl, tetrahydrobenzofuranyl, tetrahydroindolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, decahydroisoquinolinyl, octahydrochromenyl, octahydroisochromenyl,

decahydronaphthyridinyl, decahydro-l,8-naphthyridinyl, octahydropyrrolo[3,2-b]pyrrole, indolinyl, phthalimidyl, naphthalimidyl, chromanyl, chromenyl, lH-benzo[e] [l,4]diazepinyl, l,4,5,7-tetrahydropyrano[3,4-b]pyrrolyl, 5,6-dihydro-4H-furo[3,2-b]pyrrolyl, 6,7-dihydro- 5H-furo [3 ,2-b]pyranyl, 5 ,7-dihydro-4H-thieno [2,3-c] pyranyl, 2,3-dihydro- 1 H- pyrrolo[2,3-b]pyridinyl, 2,3-dihydrofuro[2,3-b]pyridinyl, 4,5,6,7-tetrahydro-lH-pyrrolo- [2,3-b]pyridinyl, 4,5,6,7-tetrahydrofuro[3,2-c]pyridinyl, 4,5,6,7-tetrahydrothieno[3,2- b]pyridinyl, l,2,3,4-tetrahydro-l,6-naphthyridinyl, and the like. Unless otherwise specified, each instance of heterocyclyl is independently unsubstituted ("unsubstituted heterocyclyl") or substituted ("substituted heterocyclyl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heterocyclyl group substituents include, but are not limited to, any of the monovalent or divalent substituents described herein, that result in the formation of a stable moiety.

[0038] The term "aryl," as used herein, refers to a radical of a monocyclic or polycyclic (e.g., bicyclic or tricyclic) aromatic ring system (e.g., having 6, 10 or 14 π electrons shared in a cyclic array) having 6-14 ring carbon atoms and zero heteroatoms provided in the aromatic ring system ("C6-14 aryl"). In some embodiments, an aryl group has 6 ring carbon atoms ("C 6 aryl"; e.g., phenyl). In some embodiments, an aryl group has 10 ring carbon atoms ("Qo aryl"; e.g., naphthyl such as 1-naphthyl and 2-naphthyl). In some embodiments, an aryl group has 14 ring carbon atoms ("C 14 aryl"; e.g., anthracyl). "Aryl" also includes ring systems wherein the aryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring; in such instances, the number of carbon atoms continues to designate the number of carbon atoms in the aryl ring system. Unless otherwise specified, each instance of an aryl group is

independently unsubstituted ("unsubstituted aryl") or substituted ("substituted aryl") with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Aryl group substituents include, but are not limited to, any of the monovalent substituents described herein, that result in the formation of a stable moiety.

[0039] The terms "aralkyl" or "arylalkyl" are a subset of "alkyl" and refer to an alkyl group, as defined herein, substituted by an aryl group, as defined herein, wherein the point of attachment is on the alkyl moiety.

[0040] The term "heteroaryl," as used herein, refers to a radical of a 5-14 membered monocyclic or polycyclic (e.g., bicyclic or tricyclic) aromatic ring system (e.g., having 6, 10 or 14 π electrons shared in a cyclic array) having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-14 membered heteroaryl"). In heteroaryl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. Heteroaryl polycyclic ring systems can include one or more heteroatoms in one or both rings. "Heteroaryl" includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more carbocycyl or heterocycyl groups wherein the point of attachment is on the heteroaryl ring; in such instances, the number of ring members continues to designate the number of ring members in the heteroaryl ring system. "Heteroaryl" also includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more aryl groups wherein the point of attachment is either on the aryl or on the heteroaryl ring; in such instances, the number of ring members designates the number of ring members in the fused polycyclic (aryl/heteroaryl) ring system. For example, polycyclic heteroaryl groups wherein one ring does not contain a heteroatom (e.g., indolyl, quinolinyl, carbazolyl and the like) the point of attachment can be on either ring, i.e., either the ring bearing a heteroatom (e.g., 2-indolyl) or the ring that does not contain a heteroatom (e.g., 5-indolyl). In some embodiments, a heteroaryl group is a 5-10 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-10 membered heteroaryl"). In some embodiments, a heteroaryl group is a 5-8 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen and sulfur ("5-8 membered heteroaryl"). In some embodiments, a heteroaryl group is a 5-6 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from the group consisting of nitrogen, oxygen, and sulfur ("5-6 membered heteroaryl"). In some

embodiments, the 5-6 membered heteroaryl has 1-3 ring heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. In some embodiments, the 5-6 membered heteroaryl has 1-2 ring heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. In some embodiments, the 5-6 membered heteroaryl has 1 ring heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. Exemplary 5-membered heteroaryls containing 1 heteroatom include, without limitation, pyrrolyl, furanyl, and thiophenyl. Exemplary 5-membered heteroaryls containing 2 heteroatoms include, without limitation, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, and isothiazolyl. Exemplary 5-membered heteroaryls containing 3 heteroatoms include, without limitation, triazolyl, oxadiazolyl, thiadiazolyl. Exemplary 5-membered heteroaryls containing 4 heteroatoms include, without limitation, tetrazolyl. Exemplary 6-membered heteroaryls containing 1 heteroatom include, without limitation, pyridinyl. Exemplary 6-membered heteroaryls containing 2 heteroatoms include, without limitation, pyridazinyl, pyrimidinyl and pyrazinyl. Exemplary 6-membered heteroaryls containing 3 or 4 heteroatoms include, without limitation, triazinyl and tetrazinyl, respectively. Exemplary 7 membered heteroaryls containing 1 heteroatom include, without limitation, azepinyl, oxepinyl and thiepinyl.

Exemplary 5,6-bicyclic heteroaryls include, without limitation, indolyl, isoindolyl, indazolyl, benzotriazolyl, benzothiophenyl, isobenzothiophenyl, benzofuranyl, benzoisofuranyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzoxadiazolyl, benzthiazolyl,

benzisothiazolyl, benzthiadiazolyl, indolizinyl, and purinyl. Exemplary 6,6-bicyclic heteroaryls include, without limitation, naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, phthalazinyl and quinazolinyl. Exemplary tricyclic heteroaryls include, without limitation, phenanthridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenothiazinyl, phenoxazinyl and phenazinyl. Unless otherwise specified, each instance of a heteroaryl group is independently unsubstituted ("unsubstituted heteroaryl") or substituted ("substituted heteroaryl") 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents as described herein. Heteroaryl group substituents include, but are not limited to, any of the monovalent substituents described herein, that result in the formation of a stable moiety.

[0041] The terms "heteroarylalkyl" or "heteroaralkyl" are a subset of "alkyl" and refer to an alkyl group, as defined herein, substituted by a heteroaryl group, as defined herein, wherein the point of attachment is on the alkyl moiety.

[0042] As used herein, the term "partially unsaturated" refers to a ring moiety that includes at least one double or triple bond. The term "partially unsaturated" is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aromatic groups (e.g., aryl or heteroaryl moieties) as defined herein.

[0043] In some embodiments, aliphatic (e.g., alkyl, alkenyl, alkynyl), heteroaliphatic (e.g. , heteroalkyl, heteroalkenyl, heteroalkynyl), carbocyclyl, heterocyclyl, aryl and heteroaryl groups, as defined herein, are optionally substituted (e.g., "substituted" or

"unsubstituted" aliphatic, "substituted" or "unsubstituted" alkyl, "substituted" or

"unsubstituted" alkenyl, "substituted" or "unsubstituted" alkynyl, "substituted" or

"unsubstituted" heteroaliphatic, "substituted" or "unsubstituted" heteroalkyl, "substituted" or "unsubstituted" heteroalkenyl, "substituted" or "unsubstituted" heteroalkynyl, "substituted" or "unsubstituted" carbocyclyl, "substituted" or "unsubstituted" heterocyclyl, "substituted" or "unsubstituted" aryl, or "substituted" or "unsubstituted" heteroaryl group). In general, the term "substituted" means that at least one hydrogen present on a group (e.g., a carbon or nitrogen atom etc.) is replaced with a permissible substituent, e.g., a substituent which upon substitution results in a stable compound, e.g., a compound which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction. Unless otherwise indicated, a "substituted" group has a substituent at one or more

substitutable positions of the group, and when more than one position in any given structure is substituted, the substituent is either the same or different at each position.

[0044] Exemplary monovalent carbon atoms substituents include, but are not limited to, halo/halogen (i.e., -F, -Br, -CI, -I), -NC, -CN, -N0 2 , -N 3 , -C0 2 H, -CHO, -S0 2 H, -S0 3 H, -S(=0)OH, acyl (e.g. , -C(=0)R A , -C0 2 R A , -C(=0)-0-C(=0)R A , -C(=0)SR A , - C(=0)N(R B ) 2 , -C(=0)NR B S0 2 R A , -C(=NR B )R A , -C(=NR B )OR A , -C(=NR B )N(R B ) 2 , - C(=S)R A , -C(=S)N(R A ) 2 , -C(=S)SR A ), amino (e.g. , -NH 2 , -N(OR B )R B , -N(R B ) 2 , - NR B S0 2 R A , -NR B C(=0)R A , -NR B C0 2 R A , -NR B C(=0)N(R B ) 2 , -NR B C(=NR B )N(R B ) 2 ), thio (e.g. , -SH, -SR A , -SSR B ), oxy (e.g., -OH, -OR A , -ON(R B ) 2 , -OS0 2 R A , -OS(=0)R A , - OC(=0)R A , -OC0 2 R A , -OC(=0)N(R B ) 2 , -OC(=NR B )R A , -OC(=NR B )OR A , - OC(=NR B )N(R B ) 2 ), sulfonyl {e.g., -S0 2 R A , -S0 2 OR A , -S0 2 N(R B ) 2 ), sulfinyl {e.g., - S(=0)R A ), silyl {e.g. , -Si(R A ) 3 ), Cn 0 alkyl, Ci_i 0 fluoroalkyl, C 2 _i 0 alkenyl, C 2 _i 0 alkynyl, C 3 _io carbocyclyl, 3-14 membered heterocyclyl, C 6 -14 aryl, and 5-14 membered heteroaryl, wherein each aliphatic, heteroaliphatic, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups;

each instance of R A is, independently, selected from the group consisting of C^o alkyl, C^o fluoroalkyl, C 2 _io alkenyl, C 2 _io alkynyl, C 3 _io carbocyclyl, 3-14 membered heterocyclyl, C 6 -i4 aryl, and 5-14 membered heteroaryl, wherein each aliphatic,

heteroaliphatic, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups;

each instance of R is, independently, selected from the group consisting of hydrogen, -OH, -OR A , -N(R C ) 2 , -CN, -C(=0)R A , -C(=0)N(R c ) 2 , -C0 2 R A , -S0 2 R A , -C(=NR c )OR A , -C(=NR C )N(R C ) 2 , -S0 2 N(R c ) 2 , -S0 2 R c , -S0 2 OR c , -SOR A , -C(=S)N(R C ) 2 , -C(=0)SR c , - C(=S)SR C , Ci-io alkyl, Ci-io fluoroalkyl, C 2 _ 10 alkenyl, C 2 _ 10 alkynyl, C 3 _ 10 carbocyclyl, 3-14 membered heterocyclyl, C 6 -14 aryl, and 5-14 membered heteroaryl, or two R groups attached to an N atom are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each aliphatic, heteroaliphatic, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups;

each instance of R is, independently, selected from the group consisting of hydrogen, C^o alkyl, C^o fluoroalkyl, C 2 _ 10 alkenyl, C 2 _ 10 alkynyl, C 3 _ 10 carbocyclyl, 3-14 membered heterocyclyl, C 6 -i4 aryl, and 5-14 membered heteroaryl, or two R groups attached to an N atom are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each aliphatic, heteroaliphatic, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups; and

each instance of R D is, independently, halogen, -CN, -N0 2 , -N 3 , -S0 2 H, -S0 3 H, - OH, -OCi-6 alkyl, -ON(Ci_ 6 alkyl) 2 , -N(Ci_ 6 alkyl) 2 , -N(OCi_ 6 alkyl)(Ci_ 6 alkyl), - N(OH)(Ci_ 6 alkyl), -NH(OH), -SH, -SCi_6 alkyl, -SS(Ci_6 alkyl), -C(=0)(Ci_6 alkyl), - C0 2 H, -C0 2 (Ci_6 alkyl), -OC(=0)(Ci_ 6 alkyl), -OC0 2 (Ci_ 6 alkyl), -C(=0)NH 2 , - C(=0)N(Ci_6 alkyl) 2 , -OC(=0)NH(C^ alkyl), -NHC(=0)(d_ 6 alkyl), -N(Ci_e

alkyl), -NHC0 2 (Ci_ 6 alkyl), -NHC(=0)N(Ci_ 6 alkyl) 2 , -NHC(=0)NH(Ci_ 6 alkyl), -NHC(=0)NH 2 , -C(=NH)0(Ci_6 alkyl), -OC(=NH)(C 1 _ 6 alkyl), -OC(=NH)OCi_ 6 alkyl, -C(=NH)N(C 1 _ 6 alkyl) 2 , -C(=NH)NH(Ci_ 6 alkyl), -C(=NH)NH 2 , -OC(=NH)N(Ci_ 6 alkyl) 2 , -OC(NH)NH(Ci_ 6 alkyl), -OC(NH)NH 2 , -NHC(NH)N(Ci_ 6 alkyl) 2 , - NHC(=NH)NH 2 , -NHS0 2 (Ci_6 alkyl), -S0 2 N(Ci_ 6 alkyl) 2 , -S0 2 NH(Ci^, alkyl), -S0 2 NH 2 - S0 2 Ci^ alkyl, -S0 2 OCi 6 alkyl, -OS0 2 C^ alkyl, -S(=0)Ci_ 6 alkyl, Ci_e alkyl, Ci_e fluoroalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _io carbocyclyl, C 6 -io aryl, 3-10 membered heterocyclyl, 5-10 membered heteroaryl; or two geminal R D substituents are joined to form =0, =S or =NR B .

[0045] Exemplary divalent carbon atom substituents include, but are not limited to =0,

=S, and =NR B , wherein R B is as defined herein.

[0046] Nitrogen atoms can be substituted or unsubstituted as valency permits, and include primary, secondary, tertiary and quarternary nitrogen atoms. Exemplary nitrogen atom substitutents include, but are not limited to, =NR B , -CHO, -C(=0)R A , -C0 2 R A , -C(=0)SR A , -C(=0)N(R B ) 2 , -C(=0)NR B S0 2 R A , -C(=NR B )R A , -C(=NR B )OR A , -C(=NR B )N(R B ) 2 , - C(=S)R A , -C(=S)N(R A ) 2 , -C(=S)SR A , -NH 2 , -N(OR B )R B , -N(R B ) 2 , -NR B S0 2 R A , - NR B C(=0)R A , -NR B C0 2 R A , -NR B C(=0)N(R B ) 2 , -NR B C(=NR B )N(R B ) 2 ,-OH, -OR A , - S0 2 R A , -S0 2 OR A , -S0 2 N(R B ) 2 , -S(=0)R A ), -Si(R A ) 3 , Cn 0 alkyl, Cn 0 fluoroalkyl, C 2 _ 10 alkenyl, C 2 _ 10 alkynyl, C 3 _ 10 carbocyclyl, 3-14 membered heterocyclyl, C 6 -i4 aryl, and 5-14 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups.

[0047] In certain embodiments, nitrogen atom substituents, as described above, are also referred to as "amino protecting groups" or "nitrogen protecting groups". Amino protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, the entirety of which is incorporated herein by reference.

[0048] Exemplary amino protecting groups include, but are not limited to, methyl carbamate, ethyl carbamante, 9-fluorenylmethyl carbamate (Fmoc), 9-(2- sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-i- butyl-[9-( 10,10-dioxo-l 0, 10,10,10-tetrahydrothioxanthyl)] methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2- trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), l-(l-adamantyl)-l- methylethyl carbamate (Adpoc), l,l-dimethyl-2-haloethyl carbamate, l,l-dimethyl-2,2- dibromoethyl carbamate (DB-i-BOC), l,l-dimethyl-2,2,2-trichloroethyl carbamate

(TCBOC), l-methyl-l-(4-biphenylyl)ethyl carbamate (Bpoc), l-(3,5-di-i-butylphenyl)-l- methylethyl carbamate (i-Bumeoc), 2-(2'- and 4'-pyridyl)ethyl carbamate (Pyoc), 2-(N,N- dicyclohexylcarboxamido)ethyl carbamate, i-butyl carbamate (BOC), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8-quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carbamate (Cbz), /7-methoxybenzyl carbamate (Moz), p-nitobenzyl carbamate, p-bromobenzyl carbamate, p- chlorobenzyl carbamate, 2,4-dichlorobenzyl carbamate, 4-methylsulfinylbenzyl carbamate (Msz), 9-anthrylmethyl carbamate, diphenylmethyl carbamate, 2-methylthioethyl carbamate, 2-methylsulfonylethyl carbamate, 2-(p-toluenesulfonyl)ethyl carbamate, [2-(l,3- dithianyl)] methyl carbamate (Dmoc), 4-methylthiophenyl carbamate (Mtpc), 2,4- dimethylthiophenyl carbamate (Bmpc), 2-phosphonioethyl carbamate (Peoc), 2- triphenylphosphonioisopropyl carbamate (Ppoc), l,l-dimethyl-2-cyanoethyl carbamate, m- chloro-p-acyloxybenzyl carbamate, /?-(dihydroxyboryl)benzyl carbamate, 5- benzisoxazolylmethyl carbamate, 2-(trifluoromethyl)-6-chromonylmethyl carbamate (Tcroc), m-nitrophenyl carbamate, 3,5-dimethoxybenzyl carbamate, o-nitrobenzyl carbamate, 3,4-dimethoxy-6-nitrobenzyl carbamate, phenyl(o-nitrophenyl)methyl carbamate, phenothiazinyl-(10)-carbonyl derivative, N'-p-toluenesulfonylaminocarbonyl derivative, N'-phenylaminothiocarbonyl derivative, i-amyl carbamate, S-benzyl

thiocarbamate, p-cyanobenzyl carbamate, cyclobutyl carbamate, cyclohexyl carbamate, cyclopentyl carbamate, cyclopropylmethyl carbamate, p-decyloxybenzyl carbamate, 2,2- dimethoxycarbonylvinyl carbamate, o-(N,N-dimethylcarboxamido)benzyl carbamate, 1,1- dimethyl-3-(N,N-dimethylcarboxamido)propyl carbamate, 1, 1-dimethylpropynyl carbamate, di(2-pyridyl)methyl carbamate, 2-furanylmethyl carbamate, 2-iodoethyl carbamate, isoborynl carbamate, isobutyl carbamate, isonicotinyl carbamate, p-(p '- methoxyphenylazo)benzyl carbamate, 1-methylcyclobutyl carbamate, 1-methylcyclohexyl carbamate, 1-methyl-l-cyclopropylmethyl carbamate, l-methyl-l-(3,5- dimethoxyphenyl)ethyl carbamate, l-methyl-l-(p-phenylazophenyl)ethyl carbamate, 1- methyl-l-phenylethyl carbamate, l-methyl-l-(4-pyridyl)ethyl carbamate, phenyl carbamate, /?-(phenylazo)benzyl carbamate, 2,4,6-tri-i-butylphenyl carbamate, 4- (trimethylammonium)benzyl carbamate, 2,4,6-trimethylbenzyl carbamate, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3- phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o- nitrophenoxyacetamide, acetoacetamide, (N'-dithiobenzyloxycarbonylamino)acetamide, 3- (p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o- nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4- chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide, N-acetylmethionine derivative, o-nitrobenzamide, o-(benzoyloxymethyl)benzamide, 4,5-diphenyl-3-oxazolin- 2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N-2,5- dimethylpyrrole, N-l,l,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5- substituted l,3-dimethyl-l,3,5-triazacyclohexan-2-one, 5-substituted l,3-dibenzyl-l,3,5- triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4-pyridone, N-methylamine, N- allylamine, N-[2-(trimethylsilyl)ethoxy]methylamine (SEM), N-3-acetoxypropylamine, N- (l-isopropyl-4-nitro-2-oxo-3-pyroolin-3-yl)amine, quaternary ammonium salts, N- benzylamine, N-di(4-methoxyphenyl)methylamine, N-5-dibenzosuberylamine, N- triphenylmethylamine (Tr), N-[(4-methoxyphenyl)diphenylmethyl] amine (MMTr), N-9- phenylfluorenylamine (PhF), N-2,7-dichloro-9-fluorenylmethyleneamine, N- ferrocenylmethylamino (Fcm), N-2-picolylamino N'-oxide, N-1,1- dimethylthiomethyleneamine, N-benzylideneamine, N-p-methoxybenzylideneamine, N- diphenylmethyleneamine, N-[(2-pyridyl)mesityl]methyleneamine, N-(N',N'- dimethylaminomethylene)amine, N,N'-isopropylidenediamine, N-p-nitrobenzylideneamine, N-salicylideneamine, N-5-chlorosalicylideneamine, N-(5-chloro-2- hydroxyphenyl)phenylmethyleneamine, N-cyclohexylideneamine, N-(5 ,5-dimethyl-3-oxo- l-cyclohexenyl)amine, N-borane derivative, N-diphenylborinic acid derivative, N- [phenyl(pentacarbonylchromium- or tungsten)carbonyl] amine, N-copper chelate, N-zinc chelate, N-nitroamine, N-nitrosoamine, amine N-oxide, diphenylphosphinamide (Dpp), dimethylthiophosphinamide (Mpt), diphenylthiophosphinamide (Ppt), dialkyl

phosphoramidates, dibenzyl phosphoramidate, diphenyl phosphoramidate,

benzenesulfenamide, o-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide,

triphenylmethylsulfenamide, 3-nitropyridinesulfenamide (Npys), p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6,-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6- trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5, 6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4- methylbenzenesulfonamide (iMds), 2,2,5,7, 8-pentamethylchroman-6-sulfonamide (Pme), methanesulfonamide (Ms), β-trimethylsilylethanesulfonamide (SES), 9- anthracenesulfonamide, 4-(4' ,8'-dimethoxynaphthylmethyl)benzenesulfonamide (DNMBS), benzylsulfonamide, trifluoromethylsulfonamide, and phenacylsulfonamide.

[0049] Exemplary oxygen substituents include, but are not limited to, -C(=0)R A , - C0 2 R A , -C(=0)-0-C(=0)R A , -C(=0)SR A , -C(=0)N(R B ) 2 , -C(=0)NR B S0 2 R A , - C(=NR B )R A , -C(=NR B )OR A , -C(=NR B )N(R B ) 2 , -C(=S)R A , -C(=S)N(R A ) 2 , -C(=S)SR A , - S0 2 R A , -S0 2 OR A , -S0 2 N(R B ) 2 , -S(=0)R A , -Si(R A ) 3 , Cn 0 alkyl, d_ 10 fluoroalkyl, C 2 _ 10 alkenyl, C 2 _io alkynyl, C 3 _io carbocyclyl, 3-14 membered heterocyclyl, C 6 -i4 aryl, and 5-14 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R D groups.

[0050] In certain embodiments, oxygen atom substituents, as described above, are also referred to as "hydroxyl protecting groups" or "oxygen protecting groups". Hydroxyl protecting groups are well known in the art and include those described in detail in Protecting

Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, the entirety of which is incorporated herein by reference.

[0051] Exemplary hydroxyl protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), i-butylthiomethyl,

(phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), /?- methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), i-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2- methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2- (trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3- bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4- methoxytetrahydropyranyl (MTHP), 4-methoxytetrahydrothiopyranyl, 4- methoxytetrahydrothiopyranyl S,S-dioxide, l-[(2-chloro-4-methyl)phenyl]-4- methoxypiperidin-4-yl (CTMP), l,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzo furan-2-yl, 1-ethoxyethyl, l-(2-chloroethoxy)ethyl, 1-methyl-l-methoxyethyl, 1-methyl-l-benzyloxyethyl, 1- methyl-l-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2- (phenylselenyl)ethyl, i-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, p- halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4-picolyl, 3- methyl-2-picolyl N-oxido, diphenylmethyl, p,p '-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl, a-naphthyldiphenylmethyl, p-methoxyphenyldiphenylmethyl, di(p- methoxyphenyl)phenylmethyl, tri(p-methoxyphenyl)methyl, 4-(4'- bromophenacyloxyphenyl)diphenylmethyl, 4,4', 4' '-tris(4,5- dichlorophthalimidophenyl)methyl, 4,4', 4' '-tris(levulinoyloxyphenyl)methyl, 4,4', 4' '- tris(benzoyloxyphenyl)methyl, 3-(imidazol-l-yl)bis(4',4' '-dimethoxyphenyl)methyl, 1,1- bis(4-methoxyphenyl)-l '-pyrenylmethyl, 9-anthryl, 9-(9-phenyl)xanthenyl, 9-(9-phenyl- 10-oxo)anthryl, l,3-benzodithiolan-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylthexylsilyl, i-butyldimethylsilyl (TBDMS), t- butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl,

diphenylmethylsilyl (DPMS), i-butylmethoxyphenylsilyl (TBMPS), formate,

benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3- phenylpropionate, 4-oxopentanoate (levulinate), 4,4-(ethylenedithio)pentanoate

(levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p- phenylbenzoate, 2,4,6-trimethylbenzoate (mesitoate), methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), ethyl carbonate, 2,2,2-trichloroethyl carbonate (Troc), 2- (trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2- (triphenylphosphonio) ethyl carbonate (Peoc), isobutyl carbonate, vinyl carbonate, allyl carbonate, /7-nitrophenyl carbonate, benzyl carbonate, p-methoxybenzyl carbonate, 3,4- dimethoxybenzyl carbonate, o-nitrobenzyl carbonate, p-nitrobenzyl carbonate, S-benzyl thiocarbonate, 4-ethoxy-l-napththyl carbonate, methyl dithiocarbonate, 2-iodobenzoate, 4- azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2- formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2- (methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro- 4-( 1 , 1 ,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis( 1 , l-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o- (methoxycarbonyl)benzoate, a-naphthoate, N,N,N',N'-tetramethylphosphorodiamidate, N- phenylcarbamate, dimethylphosphinothioyl, 2,4-dinitrophenylsulfenate, sulfate,

methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts). For protecting 1,2- or 1,3- diols, the protecting groups include methylene acetal, ethylidene acetal, 1-i-butylethylidene ketal, 1-phenylethylidene ketal, (4-methoxyphenyl)ethylidene acetal, 2,2,2- trichloroethylidene acetal, acetonide, cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzylidene acetal, p-methoxybenzylidene acetal, 2,4- dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene acetal, 2-nitrobenzylidene acetal, methoxymethylene acetal, ethoxymethylene acetal, dimethoxymethylene ortho ester, 1- methoxyethylidene ortho ester, 1-ethoxyethylidine ortho ester, 1,2-dimethoxyethylidene ortho ester, a-methoxybenzylidene ortho ester, l-(N,N-dimethylamino)ethylidene derivative, a-(N,N'-dimethylamino)benzylidene derivative, 2-oxacyclopentylidene ortho ester, di— f— butylsilylene group (DTBS), l,3-(l,l,3,3-tetraisopropyldisiloxanylidene) derivative (TIPDS), tetra-i-butoxydisiloxane-l,3-diylidene derivative (TBDS), cyclic carbonates, cyclic boronates, ethyl boronate, and phenyl boronate.

[0052] In certain embodiments, a compound of the present invention is provided as a salt. Salts are well known in the art. For example, Berge et ah, describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples include salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1 ^alkyl) 4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further salts include, when appropriate, ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.

[0053] As used herein "inhibition," "inhibiting," and "inhibit", refer to the ability of a compound to reduce, slow, halt or prevent activity of a particular biological process in a cell relative to vehicle. In certain embodiments, the biological process is in vitro (e.g., cellular assay). In certain embodiments, the biological process is in vivo. In certain embodiments, a probe compound of the present invention inhibits a glycosyltransferase protein.

[0054] As used herein, the term "effective amount" refers to the amount of a substance, compound, molecule, agent or composition that elicits the relevant response in vitro or in vivo. For example, in the case of a probe compound of the present invention used in an assay of the present invention, an effective amount of probe compound is an amount of probe compound that elicits the desired response, e.g., binding to a desired protein. [0055] The term "independently" is used herein to indicate that the groups can be identical or different.

[0056] The terms "labeled", "labeled with a detectable agent", and "labeled with a detectable moiety" are used herein interchangeably. "Label" and "detectable moiety" are also used interchangeably herein. When used in reference to a probe compound, these terms specify that the probe compound can be detected or visualized. In certain embodiments, a label is selected such that it generates a signal which can be measured and whose intensity is related to the amount of probe compound bound to a protein (e.g., in a sample). A label may be directly detectable (i.e., it does not require any further reaction or manipulation to be detectable, e.g., a fluorophore is directly detectable) or it may be indirectly detectable (i.e., it is made detectable through reaction or binding with another entity that is detectable, e.g., a hapten is detectable by immunostaining after reaction with an appropriate antibody comprising a reporter such as a fluorophore). Labels suitable for use in the present invention may be detectable by any of a variety of means including, but not limited to, spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.

Suitable labels include, but are not limited to, various ligands, radionuclides, fluorescent dyes, chemiluminescent agents, microparticles, enzymes, calorimetric labels, magnetic labels, and haptens.

[0057] The terms "fluorophore", "fluorescent moiety" and "fluorescent dye" are used herein interchangeably. They refer to a molecule which, in solution and upon excitation with light of appropriate wavelength, emits light back, generally at a longer wavelength.

Numerous fluorescent dyes of a wide variety of structures and characteristics are suitable for use in the practice of the present invention. In choosing a fluorophore, it is often desirable that the molecule absorbs light and emits fluorescence with high efficiency (i.e., the fluorescent molecule has a high molar extinction coefficient at the excitation wavelength and a high fluorescence quantum yield, respectively) and is photostable (i.e., the fluorescent molecule does not undergo significant degradation upon light excitation within the time necessary to perform the detection). Examples of fluorescent labels include, but are not limited to: Alexa Fluor dyes (e.g., Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660 and Alexa Fluor 680), AMCA, AMCA-S, BODIPY dyes (e.g. , BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665), aminomethylcoumarin, carbocyanine, carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), Cascade Blue, Cascade Yellow, coumarin, coumarin 343, cyanine dyes (e.g., Cy3, Cy5, Cy3.5, Cy5.5), dansyl, dapoxyl, dialkylaminocoumarin, 4',5'-dichloro-2',7'- dimethoxyfluorescein, DM-NERF, eosin, erythrosin, fluorescein, FAM, hydroxycoumarin, IRDyes (e.g., IRD40, IRD 700, IRD 800), JOE, lissamine rhodamine B, Marina Blue, merocyanine, methoxycoumarin, naphthofluorescein, Oregon Green 488, Oregon Green 500, Oregon Green 514, oxonol dyes, Pacific Blue, phycoerythrin, PyMPO, pyrene, rhodamine B, rhodamine 6G, rhodamine green, rhodamine red, rhodol green, styryl dyes, 2',4',5',7'- tetrabromosulfone-fluorescein, tetramethyl-rhodamine (TMR), carboxytetramethylrhodamine (TAMRA), Texas Red, Texas Red-X, 5(6)-carboxyfluorescein, 2,7-dichlorofluorescein, N,N- bis(2,4,6-trimethylphenyl)-3,4,9,10-perylenebis(dicarboximid e), HPTS, ethyl eosin, DY- 490XL MegaStokes, DY-485XL MegaStokes, Adirondack Green 520, ATTO 465, ATTO 488, ATTO 495, Y0Y0-1,5-FAM, BCECF, dichlorofluorescein, rhodamine 110, rhodamine 123, YO-PRO-I, SYTOX Green, Sodium Green, SYBR Green I, Alexa Fluor 500, FITC, Fluo-3, Fluo-4, fluoro-emerald, YoYo-I ssDNA, YoYo-I dsDNA, YoYo-I, SYTO

RNASelect, Diversa Green-FP, Dragon Green, EvaGreen, Surf Green EX, Spectrum Green, Spectrum Red, NeuroTrace 500525, NBD-X, MitoTracker Green FM, LysoTracker Green DND-26, CBQCA, PA-GFP (post-activation), WEGFP (post-activation), FLASH-CCXXCC, Azami Green monomelic, Azami Green, green fluorescent protein (GFP), EGFP, Kaede Green, 7-benzylamino-4-nitrobenz-2-oxa-l,3-diazole, Bexl, doxorubicin, Lumio Green, and SuperGlo GFP. For more examples of suitable fluorescent dyes and methods for coupling fluorescent dyes to other chemical entities see, for example, "The Handbook of Fluorescent Probes and Research Products", 9th Ed., Molecular Probes, Inc., Eugene, Oregon.

[0058] As used herein, the term "glycosyltransferase" refers to an enzyme that catalyzes transfer of a monosaccharide unit from an activated sugar (glycosyl donor) to a glycosyl acceptor molecule. In certain embodiments, a glycosyltransferase described herein is a peptidoglyc an glyco s yltransf erase .

BRIEF DESCRIPTION OF THE DRAWINGS

[0059] Figure 1 shows titration of a probe compound of Formula (I) with the enzymes E. coli PBPlb, E. faecalis PBP2a, and S. aureus SgtB. Binding of the probe to the enzyme results in an increase in fluorescence polarization.

[0060] Figure 2 depicts a decrease in fluorescence polarization of the probe compound when moenomycin A is added. This result indicates a displacement of the probe by moenomycin and suggests competition of both compounds for the same binding site on the enzyme.

[0061] Figure 3 depicts a decrease in fluorescence polarization of the probe compound when nC 2 o-moenomycin A is added and likewise indicates competitive displacement of the probe by nC 2 o-moenomycin A.

[0062] Figure 4 depicts a decrease in fluorescence polarization of the probe compound when nCn-moenomycin A is added.

[0063] Figure 5 depicts a decrease in fluorescence polarization of the probe compound when ZE-farnesyl-moenomycin A is added.

[0064] Figure 6 depicts a decrease in fluorescence polarization of the probe compound when neryl-moenomycin A is added.

[0065] Figure 7 depicts a decrease in fluorescence polarization of the probe compound when a disaccharide moenomcyin analog 5 (also disaccharide S15) is added. The

disaccharide moenomycin analog exhibited a drastically reduced bioactivity compared with moenomycin A (IC 50 disaccharide E. coli PBPlb = 1.5 μΜ; IC 5 o moenomycin A E. coli PBPlb = 12 nM) but was still able to displace the probe from the enzyme. This result suggests that compounds with low μΜ binding affinity can be successfully identify by the assays described herein.

[0066] Figure 8 depicts partial displacement of the probe compound with tetramystryl cardiolipin. Cardiolipin possesses structural similarity to both moenomycin A and probe compounds of Formula I in the phosphoglycerate portion of the molecules. This result confirms the importance of the phosphoglycerate unit in the binding of moenomycin to the target enzymes and shows that the assays described herein can identify non-saccharide compounds that are potential glycosyltransferase inhibitors.

[0067] Figure 9 shows that Tween-20 detergent does not displace the probe compound. This results shows that the assays described herein are selective for compounds that can compete with a probe compound described herein for binding to the active site of the enzyme, and that detergents do not generate false positives.

[0068] Figure 10 shows that dodecyl-P-D-maltoside does not displace the probe compound. This result shows that the assays described herein are selective for compounds that can compete with a probe compound described herein for binding to the active site of the enzyme, and that detergents do not generate false positives.

[0069] Figure 11 shows treatment of the probe-PGT complex with 593K11 (75 nM S16, 10 mM TRIS pH=8, 100 mM NaCl, S. aureus ΔΤΜ SgtB: 1.5 μΜ; E. coli PBPlb: 0.05 μΜ; E. faecalis PBP2a: 0.5 μΜ). K ; (593K11 S. aureus SgtB) = 2.6 μΜ, K ; (593K11 E. coli PBPlb) = 94 μΜ, K ; (593K11 E. faecalis PBP2a) = 0.90 μΜ.

[0070] Figure 12 shows dose-response curve for inhibition of PG formation by E. coli PBPlb (50 nM) from lipid II (4 μΜ). ICso were determined as follows: Moenomycin: 12.0 nM (left); disaccharide S15: 1.54 μΜ (middle); probe compound CMG12: 650 nM (right).

[0071] Figure 13 shows dose-response curve for inhibition of PG formation by S. aureus SgtB (50 nM) from lipid II (4 μΜ). ICso were determined as follows: Moenomycin: 6.0 nM (blue); disaccharide S15: 48 nM (black); probe compound CMG121: 14 nM (red).

[0072] Figure 14 shows dose-response curve for inhibition of PG formation by S. aureus SgtB (50 nM) from lipid II (4 μΜ). ICso for compound 593K11 were determined in independent experiments as 11.3 μΜ (left) and 14.4 μΜ (right).

[0073] Figure 15 shows dose-response curves for in vitro inhibition of PGTs (1.2 μΜ S. aureus PBP2, 50 nM E. faecalis PBP2a, 50 nM E. coli PBPlb, 4 μΜ lipid II). IC 50 (593K11 S. aureus PBP2) = 12.0 μΜ; IC 50 (593K11 E. faecalis PBP2a) = 70 μΜ; IC 50 (593K11 E. coli PBPlb) = 79 μΜ.

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

[0074] The present invention provides methods and compositions for identifying inhibitors of glycosyltransferases, e.g., peptidoglycan glycosyltransferases. In one aspect, the present invention provides assays for glycosyltransferase inhibitors. In another aspect, the present invention provides moenomycin-based probe compounds for use in such assays. In another aspect, the present invention provides kits comprising one or more moenomycin- based probe compounds as described herein.

Probe Compounds

[0075] Moenomycin A is a natural product that inhibits peptidoglycan biosynthesis by binding to bacterial transglycosylases. Moenomycin A is a thousand times more potent than the antibiotic vancomycin, but poor pharmacokinetic properties related to the lipid side chain have prevented its use in humans. Removal of the natural lipid side chain completely abolishes biological activities. A comprehensive study of the effect of different side chains, optionally in combination with different sugar portions, on the anti-bacterial activity compared to natural moenomycin A, has been limited as most synthetic tranformations employed in the removal of the natural lipid side chain and in the addition of other different side chains have also altered other structural features of the molecule. Recently, biosynthetic and semi-synthetic methodologies were disclosed which enabled SAR study of new moenomycins; e.g., see PCT Application Publication Nos. WO 2008/021367 and WO 2009/046314, incorporated herein by reference. In the '314 publication, the inventors explored groups of intermediate length and hydrophobicity, e.g., C15-farnesyl, in an effort to explore the optimal length for activity and bioavailability. The inventors have also found that groups with lengths greater than C 15 , chains substituted with halogen atoms, and chains comprising multiple aryl moieties, provide potent anti-bacterial compounds; see U.S.

Provisional Patent Application entitled "Moenomycin A Analogs, Methods of Synthesis, and Uses Thereof," filed on the same day as the present application and incorporated herein by reference. The inventors have also discovered new enzymatic methods for synthesizing moenomycin analogs; see U.S. Provisional Patent Application entitled "Chemoenzymatic Methods for Synthesizing Moenomycin Analogs," filed on the same day as the present application and incorporated herein by reference. The present invention provides probe compounds based on moenomycin for use in screening compounds that bind to bacterial glycosyltransferases.

[0076] In certain embodiments, the present invention provides a moenomcyin analog labeled with a detectable moiety. Such compounds are described herein as "probe compounds." In certain embodiments, the detectable moiety is fluorescent. The detectable moiety can be attached to the moenomycin analog, optionally through a linker, anywhere on the compound (e.g. , on one of the saccharides, on the phosphoglycerate linker, or on the lipid tail). The probe compound may be moenomycin A labeled with a detectable moiety, or it may be an analog of moenomycin.

[0077] In certain embodiments, a probe compound of the present invention is a compound of Formula (I):

(I)

or a salt thereof,

wherein

R 1 is hydrogen, -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ;

R 2" and R 3 J are independently hydrogen, optionally substituted aliphatic, -OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8 ;

R 4 is hydrogen or -WR 4a ;

W is -O- or -NH-;

R 4a is hydrogen, a hydroxyl protecting group, optionally substituted aliphatic, - C(0)R 10 , -C(0)NHR 8 , -C(=NR 8 )NHR 8 ,or -C(0)OR 9 ;

R 5 is hydrogen or -NHR 8 ;

R 6 is hydrogen, -CH 3 , -CH 2 OR 9 , or -CH 2 OR cx ; wherein R cx is a carbohydrate moiety;

R 7 is hydrogen, -OR 9 , or -N(R 8 ) 2 ;

each R 8 is independently hydrogen, an amino protecting group, -C(0)R 10 , optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, or two R groups on the same nitrogen may be taken together to form optionally substituted heterocyclyl;

each R 9 is independently hydrogen, a hydroxyl protecting group, -C(0)R 10 , optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl;

each R 10 is independently optionally substituted aliphatic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl;

R a and R b are independently hydrogen or a hydroxyl protecting group; G is an optionally substituted C 1-3 o aliphatic group, wherein 0 to 10 methylene units are optionally replaced with -0-, -NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N- , -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene; wherein each instance of R x is independently hydrogen, optionally substituted aliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl; or

G is a group of Formula (

wherein a is 3, 4, or 5;

wherein

X 1; X 2 , X 3 , X4, X5, X 6 , and X 7 are each independently hydrogen or halogen;

d is an integer between 1 and 25, inclusive; and

e is an integer of between 2 and 25, inclusive;

provided the sum of d and e is greater than 16; or

wherein

Y is -0-, -S-, -NR Y -, or an optionally substituted methylene group, wherein R Y is hydrogen, optionally substituted aliphatic, or an amino protecting group;

each instance of R c is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR 6 , - SR e , -NHR 6 , or -N(R e ) 2 , wherein each instance of R e is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R e groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of R d is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR , -

SR f , -NHR f , or -N(R f ) 2 , wherein each instance of R f is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

R z is hydrogen, -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR g , -SR g , - NHR g , or -N(R g ) 2 , wherein each instance of R g is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted

carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl or two R g groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of n is, independently, 0, 1, 2, 3, or 4;

each instance of m is, independently, 0, 1, 2, 3, or 4; and

x is 1, 2, 3, 4, 5, or 6;

R YY is hydrogen or -OR xx ;

R XX is h drogen, a hydroxyl protecting group, or a group of formula:

wherein

R 11 is hydrogen, optionally substituted aliphatic, -C(0)NHR 8 , -CH 2 OR 9 , or - C(0)OR 9 ;

R 12 and R 1 1 3 J are independently hydrogen, optionally substituted aliphatic, -OR 9 , -

N(R 8 ) 2 , or -C(0)NHR 8 ;

R 14 is hydrogen or -NHR 8 ; R 15 is hydrogen, -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ;

R 16 is hydrogen or -OR 9 ;

R 17 is hydrogen or -OR 9 ;

R 18 is hydrogen or -OR 9 ;

R 19a is hydrogen or -OR 9 ;

R 19b is hydrogen or -OR 9 ;

wherein a hydrogen radical on the compound of Formula (I) is replaced with -L-R p ;

L is a covalent bond, -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, - C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(O)-, -OC(O)-, -C(0)0-, -S-, -SO-, -S0 2 -, optionally substituted cycloalkylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, or an optionally substituted aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, - S0 2 N(R y )-, -0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene; wherein R y is hydrogen, C 1-6 alkyl, or -C(0)C 1-6 alkyl; and

R p is a detectable moiety.

[0078] In some embodiments, for Formula (I), R 1 is -C(0)NHR 8 , -CH 2 OR 9 , or - C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 6 is -CH 3 , -CH 2 OR 9 , or -CH 2 OR cx ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , -C(0)NHR 8 , - CH 2 OR 9 , or -C(0)OR 9 ; one of R 12 and R 13 is hydrogen, and the other is -OR 9 ; R 14 is -NHR 8 ; R 15 is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; R 16 is -OR 9 ; R 17 is -OR 9 ; R 18 is -OR 9 ; and one of R 19a and R 19b is hydrogen, and the other is -OR 9 .

[0079] In some embodiments, when R YY is -OH, a probe compound according to the present invention is of Formula (la):

(la)

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R a , R b , G, L, and R p are as described herein. In some embodiments, for Formula (la), R 1 is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 6 is -CH 3 ,

-CH 2 OR 9 , or -CH 2 OR cx ; and R 7 is -OR 9 or -N(R 8 ) 2 .

[0080] In some embodiments, when R is , a probe compound according to the present invention is of Formula (lb):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 11 , R 12 , R 13 , R 14 , R 19a , R 19b , R a , R b , G, L, and R P are as described herein. In some embodiments, for Formula (lb), R 1 is -C(0)NHR8 , - CH 2 OR 9 , or -C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 6 is -CH 3 , -CH 2 OR 9 , or -CH 2 OR cx ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , - C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 12 and R 13 is hydrogen, and the other is -OR 9 ; R 14 is -NHR 8 ; and one of R 19a and R 19b is hydrogen, and the other is -OR 9 .

[0081] In some embodiments, when R** is

, a probe compound according to the present invention is of Formula Ic):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R a , R b , G, L, and R p are as described herein. In some embodiments, for Formula (Ic), R is - C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 6 is -CH 3 , -CH 2 OR 9 , or -CH 2 OR cx ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 12 and R 13 is hydrogen, and the other is -OR 9 ; R 14 is -NHR 8 ; R 15 is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; R 16 is -OR 9 ; R 17 is -OR 9 ; and R 18 is -OR 9 . 0082] In some embodiments, when R 6 is -CH 2 OR cx ; wherein R cx is of formula:

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein. In some embodiments, for Formula (Id), R 1 is -C(0)NHR 8 , -CH 2 OR 9 , or - C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; R 20 is -OR 9 ; R 21 is -OR 9 ; R 22 is -OR 9 ; and R 23 is -OR 9 .

[0083] In some embodiments, a probe compound according to the present invention is of Formula Ie):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 11 , R 12 , R 13 , R 14 , R 19a , R 19b , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein. In some embodiments, for Formula (Ie), R is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is - OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , -C(0)NHR 8 , - CH 2 OR 9 , or -C(0)OR 9 ; one of R 12 and R 13 is hydrogen, and the other is -OR 9 ; R 14 is -NHR 8 ; one of R 19a and R 19b is hydrogen, and the other is -OR 9 ; R 20 is -OR 9 ; R 21 is -OR 9 ; R 22 is - OR 9 ; and R 23 is -OR 9 .

[0084] In some embodiments, a probe compound according to the present invention is of Formula (If):

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein. In some embodiments, for Formula (If), R 1 is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; one of R 2 and R 3 is hydrogen, and the other is -OR 9 ; R 4 is -W-R 4a ; R 5 is -NHR 8 ; R 7 is -OR 9 or -N(R 8 ) 2 ; R 11 is -CH 3 , -C(0)NHR 8 , - CH 2 OR 9 , or -C(0)OR 9 ; one of R 12 and R 13 is hydrogen, and the other is -OR 9 ; R 14 is -NHR 8 ; R 15 is -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ; R 16 is -OR 9 ; R 17 is -OR 9 ; R 18 is -OR 9 ; R 20 is - OR 9 ; R 21 is -OR 9 ; R 22 is -OR 9 ; and R 23 is -OR 9 .

[0085] In some embodiments, a compound of Formula (I) is not of Formula (If). [0086] In some embodiments, a compound of Formula (I) is not of formula:

[0088] As defined generally above, R 1 is hydrogen, -C(0)NHR 8 , -CH 2 OR 9 , or - C(0)OR 9 ; wherein R 8 is hydrogen, an amino protecting group, -C(0)R 10 , optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, or two R groups on the same nitrogen may be taken together to form an optionally substituted heterocyclyl; and R 9 is hydrogen, a hydroxyl protecting group, -C(0)R 10 , optionally substituted aliphatic, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl. In some embodiments, R 1 is -C(0)NHR8. In certain embodiments, R 1 is -C(0)NH 2 . In certain embodiments, R 1 is -C(0)NH(alkyl). In some embodiments, R 1 is -CH 2 OR 9 . In certain embodiments, R 1 is -CH 2 OH. In certain embodiments, R 1 is -CH 2 0(protecting group) or - CH 2 0(alkyl). In some embodiments, R 1 is -C(0)OR 9 . In certain embodiments, R 1 is - C0 2 H.

[0089] As defined generally above, R 2 is hydrogen, optionally substituted aliphatic, -OR 9 ,

-N(R 8 ) 2 , or -C(0)NHR 8. In some embodiments, R 2 is hydrogen. In some embodiments, R 2 is optionally substituted aliphatic. In certain embodiments, R is Ci_ 6 alkyl. In certain embodiments, R 2 is methyl. In some embodiments, R 2 is -OR 9. In certain embodiments, R 2 is -OH. In certain embodiments, R is -O(alkyl) or -0(protecting group). In some embodiments, R 2 is -N(R 8 ) 2 . In certain embodiments, R 2 is -NH 2 . In certain embodiments,

R 2 is -NH(alkyl) or -NH (protecting group). In some embodiments, R 2" is -C(0)NHR 8°. In certain embodiments, R 2 is -C(0)NH 2 . In certain embodiments, R 2 is -C(0)NH(alkyl).

[0090] As defined generally above, R 3 is hydrogen, optionally substituted aliphatic, -OR 9 ,

-N(R 8 ) 2 , or -C(0)NHR 8. In some embodiments, R 3 is hydrogen. In some embodiments, R 3 is optionally substituted aliphatic. In certain embodiments, R is C 1-6 alkyl. In certain embodiments, R 3 is methyl. In some embodiments, R 3 is -OR 9. In certain embodiments, R 3 is -OH. In certain embodiments, R is -O(alkyl) or -0(protecting group). In some embodiments, R 3 is -N(R 8 ) 2 . In certain embodiments, R 3 is -NH 2 . In certain embodiments,

R 3 is -NH(alkyl) or -NH (protecting group). In some embodiments, R 3 J is -C(0)NHR 8°. In certain embodiments, R 3 is -C(0)NH 2 . In certain embodiments, R 3 is -C(0)NH(alkyl).

[0091] In some embodiments, R 2 is hydrogen and R 3 is optionally substituted aliphatic, -

OR 9 , -N(R 8°) 2 , or -C(0)NHR 8°. In some embodiments, R 3 is hydrogen and R 2 is optionally substituted aliphatic, -OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8. In certain embodiments, R 2 is hydrogen and R 3 is -OH. In other embodiments, R 3 is hydrogen and R 2 is -OH.

[0092] As defined generally above, R 4 is hydrogen or -WR 4a , wherein W is -O- or -NH-, and R 4a is hydrogen, a hydroxyl protecting group, optionally substituted aliphatic, -C(0)R 10 , -C(0)NHR 8 , -C(=NR 8 )NHR 8 , or -C(0)OR 9 . In some embodiments, R 4 is -WR 4a . In certain embodiments, W is -0-. In certain embodiments, W is -NH-. In some embodiments, R 4a is hydrogen. In some embodiments, R 4a is a hydroxyl protecting group. In some embodiments, R 4a is -C(0)R 10 ; wherein R 10 is optionally substituted aliphatic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, R 4a is -C(0)R 10 ; wherein R 10 is optionally substituted alkyl. In certain embodiments, R 4a is -C(0)C 1 _ 6 alkyl. In certain embodiments, R 4a is acetyl. In some embodiments, R 4a is -C(0)OR 9 . In some embodiments, R 4a is -C(0)OR 9 ; wherein R 9 is aryl. In certain embodiments, R 4a is -C(0)OPh. In some embodiments, R 4a is -C(0)NHR 8 . In certain embodiments, R 4a is -C(0)NH 2 . In some embodiments, R 4a is -C(=NR )NHR . In certain embodiments, R 4a is -C(=NH)NH 2 . In certain embodiments, -R 4 is -OH, - OC(0)NH 2 , -NHC(0)NH 2 , or -NHC(=NH)NH 2 .

[0093] In certain embodiments, R 1 is -C(0)NH 2 , R 2 is methyl, R 3 is -OH, and R 4 is - OC(0)NH 2 . In certain embodiments, R 1 is -C(0)NH 2 , R 2 is hydrogen, R 3 is -OH, and R 4 is -OC(0)NH 2 . In certain embodiments, R 1 is -C(0)NH 2 , R 2 is -OH, R 3 is hydrogen, and R 4 is -OH.

[0094] As defined generally above, R 5 is hydrogen or -NHR 8. In some embodiments, R 5 is -NH 2 . In some embodiments, R 5 is -NH(protecting group). In some embodiments, R 5 is - NH(optionally substituted aliphatic). In certain embodiments, R 5 is -NH(optionally substituted alkyl). In certain embodiments, R 5 is -NH(C 1-6 alkyl). In some embodiments, R 5 is -NHC(0)R 10 . In certain embodiments, R 5 is -NHC(0)R 10 ; wherein R 10 is optionally substituted alkyl. In certain embodiments, R 5 is -NHC(0)C 1 _ 6 alkyl. In certain embodiments, R 5 is -NHC(0)CH 3 .

[0095] As defined generally above, R 6 is hydrogen, -CH 3 , -CH 2 OR 9 , or -CH 2 OR cx ; wherein R CX is a carbohydrate moiety. In some embodiments, R 6 is -CH 3 . In some embodiments, R 6 is -CH 2 OR 9 . In certain embodiments, R 6 is -CH 2 OH. In certain embodimetns, R 6 is -CH 2 0(protecting group). In certain embodiments, R 6 is -CH 2 OAc. In some embodiments, R 6 is -CH 2 OR CX . In certain embodiments, R 6 is -OR CX ; wherein R CX is of formula:

wherein R 20 , R 21 , R 22 , and 23 are independently hydrogen or -OR 9.

[0096] As defined generally above, R 7 is hydrogen, -OR 9 or -N(R 8 ) 2 . In some embodiments, R 7 is -OR 9. In certain embodiments, R 7 is -OH. In certain embodiments, R 7 is -0(protecting group) or -O(alkyl). In some embodiments, R 7 is -N(R 8 ) 2 . In certain embodiments, R 7 is -NH 2 . In certain embodiments, R 7 is -NH(protecting group), - NH(alkyl), or -N(alkyl) 2 .

[0097] In certain embodiments, R 5 is -NHC(0)CH 3 , R 6 is -OCH 2 R cx , wherein R cx is

, and R 7 is -OH. In certain embodiments, R 5 is -NHC(0)CH 3 , R 6 is -CH 2 OH, and R 7 is -OH.

[0098] As defined generally above, R YY is hydrogen or -OR**, wherein R is hydrogen, a hydroxyl protecting group, or a group of formula:

wherein

R is hydrogen, optionally substituted aliphatic, -C(0)NHR , -CH 2 OR , or - C(0)OR 9 ;

R 12 and R 13 are independently hydrogen, optionally substituted aliphatic, -OR 9 , N(R 8 ) 2 , or -C(0)NHR 8 ;

R 14 is hydrogen or -NHR 8 ;

R 15 is hydrogen, -C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 ;

R 16 is hydrogen or -OR'

hydrogen or -OR

R is hydrogen or -OR

R 19a is hydrogen or -OR 9 ; and

R 19b is hydrogen or -OR 9 ;

wherein R and R are as described herein.

[0099] In some embodiments, R YY is -OR**.

[00100] XX XX

In some embodiments, R is hydrogen. In some embodiments, R is

. In some embodiments, R is

[00101] As defined generally above, R 11 is hydrogen, optionally substituted aliphatic, C(0)NHR 8 , -CH 2 OR 9 , or -C(0)OR 9 . In some embodiments, R 11 is optionally substituted aliphatic. In certain embodiments, R 11 is optionally substituted alkyl. In certain

embodiments, R 11 is C 1-6 alkyl. In certain embodiments, R 11 is methyl. In some

embodiments, R 11 is -C(0)NHR 8 . In certain embodiments, R 11 is -C(0)NH 2 . In certain embodiments, R 11 is -C(0)NH(alkyl). In some embodiments, R 11 is -CH 2 OR 9 . In certain embodiments, R 11 is -CH 2 OH. In certain embodiments, R 11 is -CH 2 0(protecting group) or - CH 2 0(alkyl). In some embodiments, R 11 is -C(0)OR 9 . In certain embodiments, R 11 is - C0 2 H.

12

[00102] As defined generally above, R is hydrogen, optionally substituted aliphatic, - OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8 . In some embodiments, R 12 is hydrogen. In some

12 12

embodiments, R is optionally substituted aliphatic. In certain embodiments, R is C 1-6

12 12 9

alkyl. In certain embodiments, R is methyl. In some embodiments, R is -OR . In certain

12 12

embodiments, R is -OH. In certain embodiments, R is -O(alkyl) or -0(protecting group).

12 8 12

In some embodiments, R is -N(R ) 2 . In certain embodiments, R is -NH 2 . In certain

12 12 embodiments, R is -NH(alkyl) or -NH(protecting group). In some embodiments, R is - C(0)NHR 8 . In certain embodiments, R 12 is -C(0)NH 2 . In certain embodiments, R 12 is - C(0)NH(alkyl).

13

[00103] As defined generally above, R is hydrogen, optionally substituted aliphatic, - OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8 . In some embodiments, R 13 is hydrogen. In some

13 13

embodiments, R is optionally substituted aliphatic. In certain embodiments, R is C 1-6

13 13 9

alkyl. In certain embodiments, R is methyl. In some embodiments, R is -OR . In certain

13 13

embodiments, R is -OH. In certain embodiments, R is -O(alkyl) or -0(protecting group).

13 8 13

In some embodiments, R is -N(R ) 2 . In certain embodiments, R is -NH 2 . In certain

13 13 embodiments, R is -NH(alkyl) or -NH(protecting group). In some embodiments, R is - C(0)NHR 8 . In certain embodiments, R 13 is -C(0)NH 2 . In certain embodiments, R 13 is - C(0)NH(alkyl).

12 13

[00104] In some embodiments, R is hydrogen and R is optionally substituted aliphatic, -OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8 . In some embodiments, R 12 is hydrogen and R 13 is optionally substituted aliphatic, -OR 9 , -N(R 8 ) 2 , or -C(0)NHR 8 . In certain embodiments, R 12 is

13 13 12

hydrogen and R is -OH. In other embodiments, R is hydrogen and R is -OH.

[00105] As defined generally above, R 14 is hydrogen or -NHR 8 . In some embodiments, R 14 is -NH 2 . In some embodiments, R 14 is -NH(amino protecting group). In some embodiments, R 14 is -NH(optionally substituted aliphatic). In certain embodiments, R 14 is - NH(optionally substituted alkyl). In certain embodiments, R 14 is -NH(Ci_6 alkyl). In some embodiments, R is -NHC(0)R 1U . In certain embodiments, R is -NHC(0)R 1U ; wherein R is optionally substituted alkyl. In certain embodiments, R 14 is -NHC(0)C 1 _ 6 alkyl. In certain embodiments, R 14 is -NHC(0)CH 3 .

[00106] As defined generally above, R 15 is hydrogen, -C(0)NHR 8 , -CH 2 OR 9 , or - C(0)OR 9 . In some embodiments, R 15 is -C(0)NHR 8 . In certain embodiments, R 15 is - C(0)NH 2 . In certain embodiments, R 15 is -C(0)NH(alkyl). In some embodiments, R is - CH 2 OR 9 . In certain embodiments, R 15 is -CH 2 OH. In certain embodiments, R 15 is - CH 2 0(protecting group) or -CH 2 0(alkyl). In some embodiments, R 15 is -C(0)OR 9 . In

s, R 15 is -C0 2 H. In certain embodiments, R 15 is -C(0)NHR 8 , wherein R'

[00107] As defined generally above, R 16 is hydrogen or -OR 9 . In certain embodiments, R 16 is -OR 9 . In some embodiments, R 16 is -OH. In some embodiments, R 16 is a - 0(protecting group). In some embodiments, R 16 is -0(optionally substituted aliphatic). In certain embodiments, R 16 is -0(C 1-6 alkyl). In certain embodiments, R 16 is -OCH 3 .

[00108] As defined generally above, R 17 is hydrogen or -OR 9 . In certain embodiments,

R 17 is -OR 9. In some embodiments, R 17 is -OH. In some embodiments, R 17 is a -

0(protecting group). In some embodiments, R 17 is -0(optionally substituted aliphatic). In certain embodiments, R 17 is -0(C 1-6 alkyl). In certain embodiments, R 17 is -OCH .

[00109] As defined generally above, R 18 is hydrogen or -OR 9 . In certain embodiments,

R 1 ^ 8 is -OR 9 7 . In some embodiments, R 18 is -OH. In some embodiments, R 18 is a -

0(protecting group). In some embodiments, R 18 is -0(optionally substituted aliphatic). In certain embodiments, R 18 is -0(C 1-6 alkyl). In certain embodiments, R 18 is -OCH 3 .

[00110] As defined generally above, R 19a is hydrogen or -OR 9 . In some embodiments, R 19a is hydrogen. In some embodiments, R 19a is -OR 9 . In certain embodiments, R 19a is -OH. In certain embodiments, R 19a is -O(alkyl) or -0(protecting group).

[00111] As defined generally above, R 19b is hydrogen or -OR 9 . In some embodiments, R 19b is hydrogen. In some embodiments, R 19b is -OR 9 . In certain embodiments, R 19b is -OH. In certain embodiments, R 19b is -O(alkyl) or -0(protecting group).

[00112] In certain embodiments, R 19a is hydrogen, and R 19b is -OH. In other

embodiments, R 19b is hydrogen, and R 19a is -OH.

[00113] As defined generally above, R 20 is hydrogen or -OR 9 . In certain embodiments,

R 2 ^ 0 is -OR 9 * . In some embodiments, R 20 is -OH. In some embodiments, R 20 is a - 0(protecting group). In some embodiments, R is -0(optionally substituted aliphatic). In certain embodiments, R 20 is -0(C 1-6 alkyl). In certain embodiments, R 20 is -OCH 3 .

[00114] As defined generally above, R 21 is hydrogen or -OR 9 . In certain embodiments,

R 2 ^ 1 is -OR 9 7 . In some embodiments, R 21 is -OH. In some embodiments, R 21 is a -

0(protecting group). In some embodiments, R 21 is -0(optionally substituted aliphatic). In certain embodiments, R 21 is -0(C 1-6 alkyl). In certain embodiments, R 21 is -OCH .

[00115] As defined generally above, R 22 is hydrogen or -OR 9 . In certain embodiments,

R 2 ^ 2 is -OR 9 7 . In some embodiments, R 22 is -OH. In some embodiments, R 22 is a -

0(protecting group). In some embodiments, R 22 is -0(optionally substituted aliphatic). In certain embodiments, R 22 is -0(C 1-6 alkyl). In certain embodiments, R 22 is -OCH 3 .

[00116] As defined generally above, R 23 is hydrogen or -OR 9 . In certain embodiments,

R 2 ^ 3 is -OR 9 7 . In some embodiments, R 23 is -OH. In some embodiments, R 23 is a -

0(protecting group). In some embodiments, R 23 is -0(optionally substituted aliphatic). In certain embodiments, R 23 is -0(C 1-6 alkyl). In certain embodiments, R 23 is -OCH 3 .

[00117] In certain embodiments, R 11 is -CH 2 OH, R 12 is -OH, R 13 is hydrogen, R 19a is - OH, and R 19b is hydrogen.

[00118] In certain embodiments, R 20 , R 21 , R 22 , and R 23 are all -OH.

[00119] As defined generally above, R a is hydrogen or a hydroxyl protecting group. In certain embodiments, R a is hydrogen. In certain embodiments, R a is a hydroxyl protecting group.

[00120] As defined generally above, R b is hydrogen or a hydroxyl protecting group. In certain embodiments, R b is hydrogen. In certain embodiments, R b is a hydroxyl protecting group.

[00121] As defined generally above, G is an optionally substituted C 1-3 o aliphatic group, wherein 0 to 10 methylene units are optionally replaced with -0-, -NR X -, -S-, -C(O)-, - C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted hetero arylene; wherein each instance of R x is independently hydrogen, optionally substituted aliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl; or G is a group of Formula (a), (b), or (c):

wherein a, X 1 ; X 2 , X 3 , X 4 , X5, X 6 , X 7 , d, e, Y, R c , R d , R z , x, m, and n are as described herein.

[00122] In certain embodiments, G is an optionally substituted C 1-3 o aliphatic group, wherein 0 to 10 methylene units are optionally replaced with -0-, -NR X -, -S-, -C(O)-, - C(=NR X ), -S(O)-, -SO2-, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted hetero arylene. In certain embodiments, G is an optionally substituted C O, C5-20, Qo-20, C 12 -i8, or Cis^o aliphatic group, wherein 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 methylene units are optionally replaced with - 0-, -NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene. In some embodiments, R x is hydrogen, optionally substituted aliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl. In some embodiments, R x is hydrogen. In some embodiments, R x is optionally substituted aliphatic. In some embodiments, R x is Ci_6 alkyl. In some embodiments, R x is methyl.

[00123] Exemplary aliphatic moieties include, but are not limited to, methyl (CO, ethyl (C 2 ), propyl (C 3 ), butyl (C 4 ), pentyl (C 5 ), hexyl (C 6 ), heptyl (C 7 ), octyl (C 8 ), nonyl (C 9 ), decyl (Cio), undecyl (Cn), dodecyl (C 12 ), tridecyl (C 13 ), tetradecyl (C 14 ), pentadecyl (C 15 ), hexadecyl (C 16 ), heptadecyl (C 17 ), octadecyl (C 18 ), nonadecyl (Q9), eicosyl (C 2 o), and so on, up to (C 3 o). In certain embodiments, the aliphatic moiety is a straight chain alkyl moiety, including, but not limited to, methyl (CO, ethyl (C 2 ), n-propyl (C 3 ), n-butyl (C 4 ), n-pentyl (C 5 ), n-hexyl (C 6 ), n-heptyl (C 7 ), n-octyl (C 8 ), n-nonyl (C9), n-decyl (C 10 ), n-undecyl (Cn), n-dodecyl (C 12 ), n-tridecyl (C 13 ), n-tetradecyl (C 14 ), n-pentadecyl (C 15 ), n-hexadecyl (C 16 ), n-heptadecyl (C 17 ), n-octadecyl (C 18 ), n-nonadecyl (C^), n-eicosyl (C 2 o), and so on, up to (C 30 ).

[00124] Exemplary substituents include are described throughout, and include optionally substituted aliphatic (e.g., alkyl, alkenyl, alkynyl), optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, halogen, -OR v , -N(R V ) 2 , -SR V , - N0 2 , -NC, -CN, -N 3 , -N(R V )=NR V , -CHO, -C(=0)R v , -C(=S)R V , -C(=NR V )R V , - C(=0)OR q , -C(=NR q )OR q , -C(=NR V )N(R V ) 2 , -C(=0)N(R v ) 2 , -C(=S)OR v , -C(=0)SR v , - C(=S)SR V , -P(=0)(OR v ) 2 , -P(=0) 2 (OR v ), -S(=0)(OR v ), -S(=0) 2 (OR v ), -P(=0)N(R v ) 2 , - P(=0) 2 N(R v ) 2 , -S(=0)N(R v ) 2 , or -S(=0) 2 N(R v ) 2 ; wherein each instance of R v is H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or a protecting group. In certain embodiments, the G hydrocarbon chain is substituted with one or more optionally substituted aliphatic moieties, optionally substituted heteroaliphatic moieties, optionally substituted aryl moieties, optionally substituted heteroaryl moieties, halogen moieties, -OR v moieties, -N(R V ) 2 moieties, or -SR V moieties. In certain embodiments, the G hydrocarbon chain is substituted with one or more optionally substituted aliphatic moieties or -OR v moieties. In certain embodiments, the G hydrocarbon chain is substituted with one or more optionally substituted aliphatic moieties. In certain embodiments, the G hydrocarbon chain is substituted with one or more optionally substituted C 1-6 alkyl moieties. In certain embodiments, the G hydrocarbon chain is substituted with one or more -CH 3 moieties.

[00125] In certain embodiments, G is an optionally substituted, optionally unsaturated, C 5 20 hydrocarbon chain, wherein 0 to 10 methylene units are optionally replaced with -0-, - NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene.

[00126] In certain embodiments, G is an optionally substituted, optionally unsaturated, C 10 - 2 o hydrocarbon chain, wherein 0 to 8 methylene units are optionally replaced with -0-, - NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene.

[00127] In certain embodiments, G is an optionally substituted, optionally unsaturated, ClO-18 hydrocarbon chain, wherein 0 to 6 methylene units are optionally replaced with -0-, -NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -S0 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene.

[00128] In certain embodiments, G is an unsubstituted, optionally unsaturated hydrocarbon chain.

[00129] In certain embodiments, G is an unsubstituted and saturated hydrocarbon chain. In certain embodiments, G is an unsubstituted hydrocarbon and saturated hydrocarbon chain wherein 0 to 10 methylene units are replaced with -0-,-NR x - -S-, -C(=0)-, -C(=NR X )-, - S(=0)-, -S(=0) 2 - or -N-0-. [00130] In certain embodiments, G is an unsubstituted and unsaturated hydrocarbon chain. In certain embodiments, G is an unsubstituted hydrocarbon and unsaturated hydrocarbon chain, wherein 1 to 10 methylene units are replaced with -0-, -NR X -, -S-, -C(O)-, -C(=NR X ), - S(O)-, -SO 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene.

[00131] In certain embodiments, G is a substituted and saturated hydrocarbon chain. In certain embodiments, G is a substituted and saturated hydrocarbon chain, wherein 0 to 10 methylene units are replaced with -0-,-NR x - -S-, -C(=0)-, -C(=NR X )-, -S(=0)-, - S(=0) 2 - or -N-0-.

[00132] In certain embodiments, G is a substituted, optionally unsaturated hydrocarbon chain. In certain embodiments, G is a substituted and unsaturated hydrocarbon chain. In certain embodiments, G is a substituted hydrocarbon and unsaturated hydrocarbon chain wherein 1 to 10 methylene units are replaced with -0-, -NR X -, -S-, -C(O)-, -C(=NR X ), -S(O)-, -SO 2 -, -N=N-, -C=N-, -N-0-, an optionally substituted arylene, an optionally substituted heterocyclylene, or an optionally substituted heteroarylene.

[00133] In certain embodiments, G is an optionally substituted, optionally unsaturated, Cio-Cie aliphatic moiety. In certain embodiments, G is an optionally substituted, alkyl moiety. In certain embodiments, G is an optionally substituted, C^-C^ alkyl moiety.

[00134] In c

[00135] In c

[00136] In certain embodiments, G is fhiorinated. G may be perfhiorinated or partially fluorinated. In certain embodiments, all the hydrogen atoms of G are replaced with fluorine atoms. In certain embodiments, only a portion of the hydrogen atoms of G are replaced with fluorine atoms. In certain embodiments, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 80% of the hydrogen atoms are replaced with fluorine atoms. In certain embodiments, G comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more fluorine atoms. In certain embodiments, G may include substituents that are or are not fluorinated. In certain embodiments, G is a fluorinated, optionally unsaturated, C 10 -C 16 aliphatic moiety. In certain embodiments, G is a

perfhiorinated, optionally unsaturated, C 10 -C 16 aliphatic moiety. In certain embodiments, G is a partially fluorinated, optionally unsaturated, C 10 -C 16 aliphatic moiety. In certain embodiments, G is a fluorinated, Cg-C 16 alkyl moiety. In certain embodiments, G is a perfhiorinated, Cg-C 16 alkyl moiety. In certain embodiments, G is a partially fluorinated, Cg- C 16 alkyl moiety. In certain embodiments, G is a fluorinated, C 10 -C 14 alkyl moiety. In certain embodiments, G is a perfhiorinated, C 10 -C 14 alkyl moiety. In certain embodiments, G is a partially fluorinated, C 10 -C 14 alkyl moiety.

[00137] In certain embodiments, G is a perfluoiinated, optionally unsaturated C 10 -C 16 alkyl moiety. In certain embodiments, G is:

,CF 3 [00138] In certain embodiments, G is:

[00139] In certain embodiments, G is:

[00140] In certain embodiments, G is a substituted or unsubsituted optionally unsaturated C2-30 hydrocarbon chain of the formulae:

wherein is a single or double bond, and each instance of R e is, independently, H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, halogen, -OR v , -N(R V ) 2 , -SR V , -N0 2 , -NC, -CN, -N 3 , -N(R V )=NR V , -CHO, -C(=0)R v , -C(=S)R V , -C(=NR V )R V , -C(=0)OR q , -C(=NR q )OR q , - C(=NR V )N(R V ) 2 , -C(=0)N(R v ) 2 , -C(=S)OR v , -C(=0)SR v , -C(=S)SR V , -P(=0)(OR v ) 2 , - P(=0) 2 (OR v ), -S(=0)(OR v ) -S(=0) 2 (OR v ), -P(=0)N(R v ) 2 , -P(=0) 2 N(R v ) 2 , -S(=0)N(R v ) 2, or -S(=0) 2 N(R v ) 2 ; wherein each instance of R v is H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or a protecting group; and each instance of u, s and t is, independently, 0, 1, 2, 3, 4, or 5.

[00141] In certain embodiments, R e is, independently, H or optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, halogen, -OR v or -N(R V ) 2 . In certain embodiments, R e is,

independently, H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl or optionally substituted heteroaryl. In certain embodiments, R e is, independently, optionally substituted aliphatic or optionally substituted heteroaliphatic. In certain embodiments, R e is, independently, H or optionally substituted aliphatic. In certain embodiments, R e is, independently, H or -CH . [00142] In certain embodiments, G is a fully saturated hydrocarbon group of the formula:

wherein s and t are as defined above and herein.

[00144] In certain embodiments G is an unsaturated group of the formulae:

wherein R e , s, and t are as defined herein.

[00145] In certain embodiments, G is a group of the formula:

wherein Ring X, Ring Y and Ring Z are, independently, an optionally substituted arylene or an optionally substituted heteroarylene moiety;

z is 0 to 3;

each instance of j is, independently, 1 or 2; and

each instance of L 1 and L 2 are, independently, -(C(R°) 2 - -0-,-NR xl - -S-, -C(=0)-, -C(=0)0- -C(=0)NR xl - -C(=0)S- -C(=NR x1 )-, -C(=NR xl )0- -C(=NR xl )NR xl -, - C(=NR xl )S-, -S(=0)-, -S(=0) 2 - -N=N- -C=N- -C(R yl )=C(R y1 )-, or -N-0-, wherein R° is H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, each instance of R xl is, independently, H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or an amino protecting group, and each instance of R yl is, independently, H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, or optionally substituted heteroaryl.

[00146] Exemplary optionally substituted arylene groups include, but are not limited to:

wherein each instance of R s is, independently, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, halogen, -OR v , -N(R V ) 2 , -SR V , -N0 2 , -NC, -CN, -N 3 , -N(R V )=NR V , -CHO, - C(=0)R v , -C(=S)R V , -C(=NR V )R V , -C(=0)OR q , -C(=NR q )OR q , -C(=NR V )N(R V ) 2 , - C(=0)N(R v ) 2 , -C(=S)OR v , -C(=0)SR v , -C(=S)SR V , -P(=0)(OR v ) 2 , -P(=0) 2 (OR v ), - S(=0)(OR v ), -S(=0) 2 (OR v ), -P(=0)N(R v ) 2 , -P(=0) 2 N(R v ) 2 , -S(=0)N(R v ) 2 , or - S(=0) 2 N(R v ) 2 ; wherein each instance of R v is H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or a protecting group; and w is an integer between 0 to 10, inclusive.

[00147] Exemplary optionally substituted heteroarylene groups include, but are not limited to:

</wvr>

wherein each instance of R s is, independently, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, halogen, -OR v , -N(R V ) 2 , -SR V , -N0 2 , -NC, -CN, -N 3 , -N(R V )=NR V , -CHO, -C(=0)R v , - C(=S)R V , -C(=NR V )R V , -C(=0)OR q , -C(=NR q )OR q , -C(=NR V )N(R V ) 2 , -C(=0)N(R v ) 2 , - C(=S)OR v , -C(=0)SR v , -C(=S)SR V , -P(=0)(OR v ) 2 , -P(=0) 2 (OR v ), -S(=0)(OR v ), - S(=0) 2 (OR v ), -P(=0)N(R v ) 2 , -P(=0) 2 N(R v ) 2 , -S(=0)N(R v ) 2, or -S(=0) 2 N(R v ) 2 ; wherein each instance of R v is H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or a protecting group; and w is an integer between 0 to 10, inclusive, and each instance of R g is, independently, H, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl or an amino protecting group.

[00148] In certain embodiments, Ring X, Ring Y and Ring Z are, independently, an optionally substituted arylene moiety. In certain embodiments, Ring X, Ring Y and Ring Z are, independently, an optionally substituted phenylene moiety. For example, in certain embodiments G is an group of the formulae:

wherein z, w, j, L 1 , L 2 , and R s are as defined above and herein.

[00149] In certain

60

[00152] In certain embodiments, G is the farnesyl group:

[00153] In certain embodiments, G is C 12 alkyl of the formula:

[00154] In certain embodiments, G is the nerolyl group:

[00155] In certain embodiments G is of the formula:

wherein each occurrence of R e is independently hydrogen or an optionally substituted aliphatic moiety. In certain embodiments, R e is hydrogen or C -C aliphatic. In certain embodiments, R e is hydrogen, C -C alkyl, or C -C alkenyl. In certain embodiments, R e is vinyl. In certain embodiments, R e is allyl. In certain embodiments, R e is isopropyl. In certain embodiments, R e is n-propyl. In certain embodiments, R e is isobutyl. In certain embodiments, R e is n-butyl. In certain embodiments, R e is t-butyl. In certain embodiments, R e is n-pentyl. In certain embodiments, R e is isopentyl. In certain embodiments, R e is neopentyl. In certain embodiments, R e is 3-methyl-but-2-enyl. Exemplary G groups include:

64

[00157] In some embodiments, G is of Formula (a):

(a),

wherein a is 3, 4, or 5.

[00158] For example, in certain embodiments, G is:

a is 4;

or

wherein a is 5.

[00159] In some embodiments, G is of Formula (b): wherein:

X 1; X 2 , X 3 , X4, X5, X 6 , and X 7 are each independently hydrogen or halogen;

d is an integer between 1 and 25, inclusive; and

e is an integer of between 2 and 25, inclusive;

provided the sum of d and e is greater than 16. [00160] In certain embodiments, e is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 24, or 25. In certain embodiments, d is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 24, or 25. Any particular combination of e or d is contemplated, provided the sum of d and e is greater than 16.

[00161] For example, in certain embodiments, e is 16 or an integer greater than 16, and d is 1 or an integer greater than 1. In certain embodiments, e is 15, and d is 2 or an integer greater than 2. In certain embodiments, e is 14, and d is 3 or an integer greater than 3. In certain embodiments, e is 13, and d is 4 or an integer greater than 4. In certain embodiments, e is 12, and d is 5 or an integer greater than 5. In certain embodiments, e is 11, and d is 6 or an integer greater than 6. In certain embodiments, e is 10, and d is 7 or an integer greater than 7. In certain embodiments, e is 9, and d is 8 or an integer greater than 8. In certain embodiments, e is 8, and d is 9 or an integer greater than 9. In certain embodiments, e is 7, and d is 10 or an integer greater than 10. In certain embodiments, e is 6, and d is 11 or an integer greater than 11. In certain embodiments, e is 5, and d is 12 or an integer greater than

12. In certain embodiments, e is 4, and d is 13 or an integer greater than 13. In certain embodiments, e is 3, and d is 14 or an integer greater than 14. In certain embodiments, e is 2, and d is 15 or an integer greater than 15.

[00162] In certain embodiments, e is 10, and d is 7 or an integer greater than 7, e.g., d is 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 24, or 25. In certain embodiments, e is 10 and d is 7. In certain embodiments, e is 10 and d is 8. In certain embodiments, e is 10 and d is 9. In certain embodiments, e is 10 and d is 10. In certain embodiments, e is 10 and d is 11. In certain embodiments, e is 10 and d is 12. In certain embodiments, e is 10 and d is

13. In certain embodiments, e is 10 and d is 14. In certain embodiments, e is 10 and d is 15.

[00163] In certain embodiments, each instance of i and X 2 is hydrogen. In certain embodiments, each instance of Xi and X 2 is halogen, e.g., fluoro.

[00164] In certain embodiments, each instance of X 3 and X 4 is hydrogen. In certain embodiments, each instance of X 3 and X 4 is halogen, e.g., fluoro.

[00165] In certain embodiments, each instance of X 5 , X 6 , and X 7 is hydrogen. In certain embodiments, each instance of X5, X 6 , and X 7 is halogen, e.g., fluoro.

[00166] In certain embodiments, each instance of X 1 ; X 2 , X 3 , X 4 , X5, X 6 , and X 7 is hydrogen, i.e. , to provide an n-alkyl group. Exemplary n-alkyl groups of Formula (b) include, but are not limited to: -n-alkyl; -n-alkyl; -n-alkyl;

-n-alkyl; or

C 2 5-n-alkyl.

[00167] In certain embodiments, each instance of and X 2 is fluoro, optionally wherein each instance of X 3 and X 4 is fluoro and/or each instance of X 5 , X 6 , and X 7 is fluoro.

Alternatively, each instance of X 3 and X 4 is fluoro, optionally wherein each instance of i and X 2 is fluoro and/or each instance of X5, X 6 , and X 7 is fluoro. In certain embodiments, Xi and X 2 are each hydrogen, X 3 and X 4 are each fluoro, and X5, X 6 , and X 7 are each fluoro. In certain embodiments, X 1; X 2 are each fluoro, X 3 and X 4 are each hydrogen, and X5, X 6 , and X 7 are each hydrogen.

[00168] Exemplary fluoroalkyl groups of Formula (b), wherein Xi and X 2 are hydrogen and X 3 , X 4 , X5, X 6 , and X 7 are each fluoro include, but are not limited to:

wherein e is 10, and d is 7;

wherein e is 10, and d is 8;

wherein e is 10, and d is 9;

wherein e is 10, and d is 10;

wherein e is 10, and d is 11;

wherein e is 10, and d is 12;

wherein e is 10, and d is 13; wherein e is 10, and d is 14; and wherein e is 10, and d is 15.

[00169] Exemplary fhioroalkyl groups of formula (b), wherein each instance of X 1; X 2 , X 3 , X 4 , X 5 , X 6 , and X 7 is fluoro, include but are not limited to:

wherein e is 10, and d is 7;

wherein e is 10, and d is 8;

herein e is 10, and d is 10;

wherein e is 10, and d is 12;

wherein e is 10, and d is 13;

wherein e is 10, and d is 14; and

wherein e is 10, and d is 15. [00170] In some embodiments, G is of Formula (c):

wherein:

Y is -0-, -S-, -NR Y -, or an optionally substituted methylene group, wherein R Y is hydrogen, optionally substituted aliphatic, or an amino protecting group;

each instance of R c is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR 6 , - SR e , -NHR 6 , and -N(R e ) 2 , wherein each instance of R e is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R e groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of R d is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR , -

SR f , -NHR f , or -N(R f ) 2 , wherein each instance of R f is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

R z is hydrogen, -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR g , -SR g , - NHR g , or -N(R g ) 2 , wherein each instance of R g is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted

carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl or two R g groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring;

each instance of n is, independently, 0, 1, 2, 3, or 4;

each instance of m is, independently, 0, 1, 2, 3, or 4; and x is 1, 2, 3, 4, 5, or 6.

[00171] As generally defined above, Y is -0-, -S-, -NR Y -, or an optionally substituted methylene group, wherein R is hydrogen, optionally substituted aliphatic, or an amino protecting group. In certain embodiments, Y is -0-. In certain embodiments, Y is -S-. In certain embodiments, Y is -NR -. In certain embodiments, Y is an optionally substituted methylene group, e.g., -CH 2 -.

[00172] As generally defined above, each instance of R c is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR 6 , -SR e , -NHR 6 , or -N(R e ) 2 , wherein each instance of R e is independently hydrogen, optionally substituted aliphatic, optionally substituted

heteroaliphatic, optionally substituted carbocycyl, heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R e groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring; and n is 0, 1, 2, 3, or 4.

[00173] In certain embodiments, each instance of R c is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR 6 , -SR e , -NHR 6 , or -N(R e ) 2 , wherein each instance of R e is independently hydrogen, optionally substituted aliphatic, optionally substituted

heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R e groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring; wherein each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents , as defined herein. In certain embodiments, each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with Ci- 6 alkyl, Ci-efluoroalkyl or halogen.

[00174] In certain embodiments, each instance of R c is independently -F, aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl, or heteroaryl, wherein each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with Ci- 6 alkyl, Ci-efluoroalkyl or halogen.

[00175] In certain embodiments, each instance of R c is independently -F or alkyl, wherein each instance of alkyl is independently unsubstituted or substituted with Ci-ealkyl, C . 6 fluoroalkyl or halogen.

[00176] In certain embodiments, n is 0 or 1. In certain embodiments, n is 0. In certain embodiments, n is 1. In certain embodiments, n is 2.

[00177] As generally defined above, each instance of R d is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally

f f f f f

substituted heteroaryl, -OR , -SR , -NHR , or -N(R ) 2 , wherein each instance of R is independently hydrogen, optionally substituted aliphatic, optionally substituted

heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring; and m is 0, 1, 2, 3, or 4.

[00178] In certain embodiments, each instance of R d is independently -F, -Br, -I, -CI, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally

f f f f f

substituted heteroaryl, -OR , -SR , -NHR , or -N(R ) 2 , wherein each instance of R is independently hydrogen, optionally substituted aliphatic, optionally substituted

heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl, or two R groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring; wherein each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents , as defined herein. In certain embodiments, each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with Ci-ealkyl, Ci-efluoroalkyl or halogen.

[00179] In certain embodiments, each instance of R d is independently -F, aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl, or heteroaryl, wherein each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl, and heteroaryl is independently unsubstituted or substituted with Ci-ealkyl, Ci-efluoroalkyl or halogen.

[00180] In certain embodiments, each instance of R d is independently -F or alkyl, wherein each instance of alkyl is independently unsubstituted or substituted with Ci- 6 alkyl, Ci- 6 fluoroalkyl, or halogen.

[00181] In certain embodiments, m is 0 or 1. In certain embodiments, m is 0. In certain embodiments, m is 1. In certain embodiments, m is 2. [00182] In certain embodiments, R z is an ortho, meta, or para substituent to the -OCH 2 - linking group. In certain embodiments, R z is a meta substituent.

[00183] As generally defined above, R z is hydrogen, -F, -Br, -I, -CI, optionally substituted aliphatic, heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR g , -SR g , - NHR g , or -N(R g ) 2 , wherein each instance of R g is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl or two R g groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring.

[00184] In certain embodiments, R z is hydrogen, -F, -Br, -I, -CI, optionally substituted aliphatic, heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, optionally substituted heteroaryl, -OR g , -SR g , - NHR g , or -N(R g ) 2 , wherein each instance of R g is independently hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted carbocycyl, optionally substituted heterocycyl, optionally substituted aryl, or optionally substituted heteroaryl or two R g groups are joined to form a 5- to 6-membered optionally substituted heterocycyl or optionally substituted heteroaryl ring, wherein each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more substituents , as defined herein. In certain embodiments, each instance of aliphatic, heteroaliphatic, carbocycyl, heterocycyl, aryl and heteroaryl is independently unsubstituted or substituted with Ci- 6 alkyl, Ci-efluoroalkyl or halogen.

[00185] In certain embodiments, R z is hydrogen, alkyl, alkenyl, alkynyl, carbocycyl, heterocycyl, aryl, heteroaryl, -OR g , -SR g , -NHR g , or -N(R g ) 2 , wherein each instance of R g is independently hydrogen, alkyl, alkenyl, alkynyl, carbocycyl, heterocycyl, aryl, heteroaryl, or two R g groups are joined to form a 5- to 6-membered heterocycyl or heteroaryl ring, and wherein each instance of alkyl, alkenyl, alkynyl, carbocycyl, heterocycyl, aryl, and heteroaryl, is independently unsubstituted or substituted with C 1-6 alkyl, Ci-efluoroalkyl or halogen.

[00186] In certain embodiments, R z is hydrogen or aryl, wherein aryl is unsubstituted or substituted with Ci- 6 alkyl, Ci-efluoroalkyl or halogen.

[00187] As generally depicted above, x is 1, 2, 3, 4, 5, or 6. In certain embodiments, x is 1 or 2. In certain embodiments, x is 1. In certain embodiments, x is 2. [00188] It will be understood by one skilled in the art that each repeat unit of formula (c), when x is greater than 1, can optionally differ from one another, arising from differences in the independent variables Y, R c , R d , n and m, as well as different substitution patterns on and between each repeating unit. Thus, in further defining the compounds of the present invention, it is also generally helpful to further designate Y, R c , R d , n and m, with a sequential number corresponding to the first, second, third, fourth, fifth or sixth sequential group from which it is formally a member, e.g., Y, R c , R d , n, m and x can also be referred to as Y 1 , R c 1 , R d 1 , nl and ml for the first group in the sequence; Y 2 , R c 2 , R d2 , n2 and m2 for the second optional repeating unit in the sequence; Y 3 , R c3 , R d3 , n3 and m3 for the third optional repeating unit in the sequence; Y 4 , R c4 , R d4 , n4 and m4 for the fourth optional repeating unit in the sequence; Y 5 , R c5 , R d5 , n5 and m5 for the fifth optional repeating unit in the sequence; and Y 6 , R c6 , R d6 , n6 and m6 for the sixth optional repeating unit in the sequence.

[00189] For example, in certain embodiments, the group of Formula (c) is of the formula:

x is 1 ;

wherein x is 2;

wherein x is 3;

wherein x is 5; or

wherein x is 6; wherein:

R cl , R c2 , R c3 , R c4 , R c5 , and R c6 each independently correspond to the definition and various embodiments of R c ;

R dl , R d2 , R d3 , R d4 , R d5 , and R d6 each independently correspond to the definition and various embodiments of R d ;

nl, n2, n3, n4, n5, and n6 each independently correspond to the definition and various embodiments of n;

ml, m2, m3, m4, m5, and m6 each independently correspond to the definition and various embodiments of m;

Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 , each independently correspond to the definition and various embodiments of Y; and

R z is as defined herein.

[00190] In certain embodiments, the group of Formula (c) is of the formula:

wherein Y, R z , R c , R d , m, n, and x are as defined herein.

[00191] In certain embodiments, the group of Formula (c) is:

wherein x is 3;

wherein x is 4;

wherein x is 6; wherein:

R cl , R c2 , R c3 , R c4 , R c5 , and R c6 each independently correspond to the definition and various embodiments of R c ;

R dl , R d2 , R d3 , R d4 , R d5 , and R d6 each independently correspond to the definition and various embodiments of R d ;

nl, n2, n3, n4, n5, and n6 each independently correspond to the definition and various embodiments of n;

ml, m2, m3, m4, m5, and m6 each independently correspond to the definition and various embodiments of m;

Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 , each independently correspond to the definition and various embodiments of Y; and R z is as defined herein.

[00192] In certain embodiments, each of n, nl, n2, n3, n4, n5, and n6 is 0.

[00193] In certain embodiments, each of m, ml, m2, m3, m4, m5, and m6 is 0.

[00194] In certain embodiments, each of Y, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , and Y 6 is -0-.

[00195] As described generally above, a hydrogen radical on a compound of Formula (I) is replaced with -L-R p . The -L-R p group can reside at any position on a compound of Formula (I). In certain embodiments, R 1 is -L-R p , -C(0)NH-L-R p , -CH 2 0-L-R p , or -C(0)0-L-R p In certain embodiments, R 2 is -L-R p , -0-L-R p , -N(R 8 )-L-R P , or -C(0)NH-L-R p . In certain embodiments, R 3 is -L-R p , -0-L-R p , -N(R 8 )-L-R P , or -C(0)NH-L-R p . In certain

embodiments, R 4 is -L-R p or -0-L-R p . In certain embodiments, R 5 is -L-R p or -NH-L-R P . In certain embodiments, R 6 is -0-L-R p . In certain embodiments, R 6 is -0-R cx , wherein R cx is a carbohydrate moiety substituted with -L-R p . In certain embodiments, R 7 is -L-R p , -O-L- R P , or -N(R 8 )-L-R P . In certain embodiments, R 8 is -L-R p . In certain embodiments, R 9 is -L- R p . In certain embodiments, R 10 is -L-R p . In certain embodiments, R a is -L-R p . In certain embodiments, R b is -L-R p In certain embodiments, R 11 is -L-R p , -C(0)NH-L-R p , -CH 2 0-L- R P , or -C(0)0-L-R p In certain embodiments, R 12 is -L-R p , -0-L-R p , -N(R 8 )-L-R P , or - C(0)NH-L-R p In certain embodiments, R 13 is -L-R p , -0-L-R p , -N(R 8 )-L-R P , or -C(0)NH- L-R p . In certain embodiments, R 14 is -L-R p or -NH-L-R P . In certain embodiments, R 14 is - NHC(0)CH 2 -L-R P . In certain embodiments, R 15 is -L-R p , -C(0)NH-L-R p , -CH 2 0-L-R p , or -C(0)0-L-R p . In certain embodiments, R 16 is -L-R p or -0-L-R p . In certain embodiments, R 17 is -L-R p or -0-L-R p . In certain embodiments, R 18 is -L-R p or -0-L-R p . In certain embodiments, R 19a is -L-R p or -0-L-R p In certain embodiments, R 19b is -L-R p or -0-L-R p . In certain embodiments, the G group is substituted with -L-R p .

[00196] For example, in certain embodiments, a compound of Formula (I) can be any one of the followin formulae:

(la-/) (Ia-«)

83

(Ib-ΜΪ)

85

(lb-xiii)

(lb-xiv) (Ib- v)

(Ib-JCVM)



(lc-xiii)

(lc-xvi)

100

(Id-)

(Id-//)

(Id-v)

(Id-νκϊ)

(ld-xi)

(ld-xiii)

(ld-xiv)

(Id-JCVii)

(Id- jc)

-χχί)

-xxii)

(Id-xxiii)

(Ie-M * )

(le-iii)

(Ie-v)

(Ie-VMi)

(le-ix)

(Ie-jci)

(le-xiv)

(le-xvii)

(Ie-jcjc)

(le-xxiii)

(le-xxvi)

(le-xxix)

(le-xxxii)

(If-)

(If-iv)

(If-vii) P

WO 2013/151697

P

WO 2013/151697

(Ιΐ-xvi)

(Ιΐ-xix)

(li-xxii)

(If-JCJCV)

i-xxviii) P

WO 2013/151697

(Ιΐ-xxxi)

(Ιΐ-xxxiv) P

WO 2013/151697

(\ΐ-χχχνϋ)

(lf-xxxviii)

or a salt thereof, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19a , R 19b , R 20 , R 21 , R 22 , R 23 , R a , R b , G, L, and R p are as described herein.

[00197] As defined generally above, L is a covalent bond, -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(O)-, - OC(O)-, -C(0)0-, -S-, -SO-, -S0 2 -, optionally substituted cycloalkylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted

heteroarylene, or an optionally substituted aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(O)-, - OC(O)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or

heteroarylene; wherein R y is hydrogen, Ci_6 alkyl, or -C(0)C 1-6 alkyl. In some embodiments, L is a covalent bond. In some embodiments, L is -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, - N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(O)-, -OC(O)-, -C(0)0-, - S-, -SO-, or -S0 2 -. In certain embodiments, L is -NHC(S)NH-. In certain embodiments, L is -NHC(0)NH-, -NHC(O)-, or -C(0)NH-. In some embodiments, L is optionally substituted cycloalkylene, optionally substituted heterocyclylene, optionally substituted arylene, or optionally substituted heteroarylene. In certain embodiments, L is heteroarylene. In certain embodiments, L is triazolylene. In certain embodiments, L is 1,2,3-triazolylene. In some embodiments, L is an optionally substituted aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, - 0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or

heteroarylene; wherein R y is hydrogen, Ci_6 alkyl, or -C(0)C 1-6 alkyl. In some embodiments, L is an optionally substituted C 1-2 o aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, - N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(O)-, -OC(O)-, -C(0)0-, - S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In some embodiments, L is an optionally substituted Ci-w aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, - 0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In some embodiments, L is an optionally substituted Ci_6 aliphatic linker, wherein one or more methylene units of the aliphatic linker are optionally replaced by -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, - 0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In some embodiments, L is an optionally substituted C 1-6 alkylene linker, wherein one or more methylene units of the alkylene linker are optionally replaced by -NR y -, -N(R y )C(0)-, - N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, - 0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In certain embodiments, 1, 2, 3, 4, or 5 methylene units of L are replaced by -NR y -, - N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, - 0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In certain embodiments, one methylene unit of L is replaced by -NR y -, - N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, - 0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In certain embodiments, two methylene units of L are replaced by -NR y -, - N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, - 0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In certain embodiments, one methylene unit of L is replaced by heteroarylene and one methylene unit of L is replaced by -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, - N(R y )C(S)N(R y )-, -C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, -0C(0)-, -C(0)0-, - S-, -SO-, or -S0 2 -. In certain embodiments, L is an optionally substituted aliphatic linker wherein one methylene unit is replaced by tetrazolyl and one or more additional methylene units are optionally replaced by -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, - C(0)N(R y )-, -N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, or -S0 2 -. In certain embodiments, L is an optionally substituted aliphatic linker wherein one methylene unit is replaced by -NHC(S)NH- and one or more additional methylene units are optionally replaced by -NR y -, -N(R y )C(0)-, -N(R y )C(0)N(R y )-, -N(R y )C(S)N(R y )-, -C(0)N(R y )-, - N(R y )S0 2 -, -S0 2 N(R y )-, -0-, -C(0)-, -0C(0)-, -C(0)0-, -S-, -SO-, -S0 2 -, cycloalkylene, heterocyclylene, arylene, or heteroarylene. In certain embodiments, one methylene unit of L is replaced by heteroarylene and one methylene unit of L is replaced by -NHC(O)- or - C(0)NH-. In certain embodiments, L is -C(0)CH 2 -NHC(S)NH-. In certain embodiments, L

is . In certain embodiments, L is . In certain embodiments, L is C 1-10 alkylene. In certain embodiments, L is C 1-6 alkylene. In certain embodiments, L is -CH 2 - or -CH 2 CH 2 -. In certain embodiments, L is a PEG linker. In certain embodiments, L is a peptide linker. In certain embodiments, L is an amino acid linker.

[00198] As defined generally above, R p is a detectable moiety. In some embodiments, R p is a ligand, radionuclide, fluorescent dye, chemiluminescent agent, microparticle, enzyme, calorimetric label, magnetic label, or hapten.

[00199] In some embodiments, R p is a fluorophore. In some embodiments, R p is Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660 and Alexa Fluor 680, AMCA, AMCA-S, BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665, aminomethylcoumarin, carbocyanine, carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), Cascade Blue, Cascade Yellow, coumarin, coumarin 343, cyanine dyes, dansyl, dapoxyl, dialkylaminocoumarin, 4',5'- dichloro-2',7'-dimethoxyfluorescein, DM-NERF, eosin, erythrosin, fluorescein, FAM, hydroxycoumarin, IRD40, IRD 700, IRD 800, 6-carboxy-4',5'-dichloro-2',7'- dimethoxyfluorescein (6-JOE), lissamine rhodamine B, Marina Blue, merocyanine, methoxycoumarin, naphthofluorescein, Oregon Green 488, Oregon Green 500, Oregon Green 514, oxonol dyes, Pacific Blue, phycoerythrin, PyMPO, pyrene, rhodamine B, rhodamine 6G, rhodamine green, rhodamine red, rhodol green, styryl dyes, 2',4',5',7'-tetrabromosulfone- fluorescein, tetramethyl-rhodamine (TMR), carboxytetramethylrhodamine (TAMRA), Texas Red, Texas Red-X, 5(6)-carboxyfluorescein, 2,7-dichlorofluorescein, N,N-bis(2,4,6- trimethylphenyl)-3,4,9, 10-perylenebis(dicarboximide), HPTS, ethyl eosin, DY-490XL MegaStokes, DY-485XL MegaStokes, Adirondack Green 520, ATTO 465, ATTO 488, ATTO 495, Y0Y0-1.5-FAM, BCECF, dichlorofluorescein, rhodamine 110, rhodamine 123, YO-PRO-I, SYTOX Green, Sodium Green, SYBR Green I, Alexa Fluor 500, FITC, Fluo-3, Fluo-4, fluoro-emerald, YoYo-I ssDNA, YoYo-I dsDNA, YoYo-I, SYTO RNASelect, Diversa Green-FP, Dragon Green, EvaGreen, Surf Green EX, Spectrum Green, Spectrum Red, NeuroTrace 500525, NBD-X, MitoTracker Green FM, LysoTracker Green DND-26, CBQCA, PA-GFP (post-activation), WEGFP (post-activation), FLASH-CCXXCC, Azami Green monomeric, Azami Green, green fluorescent protein (GFP), EGFP, Kaede Green, 7- benzylamino-4-nitrobenz-2-oxa-l,3-diazole, Bexl, doxorubicin, Lumio Green, or SuperGlo GFP. In certain embodiments, R p is Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, or Alexa Fluor 680. In certain embodiments, R p is AMCA or AMCA-S. In certain embodiments, R p is BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, or BODIPY 650/665. In certain

embodiments, R p is aminomethylcoumarin, coumarin, coumarin 343, dialkylaminocoumarin, or hydroxycoumarin. In certain embodiments, R p is carbocyanine, carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), Cascade Blue, Cascade Yellow, cyanine dyes, dansyl, dapoxyl, DM-NERF, eosin, or erythrosine. In certain embodiments, R p is IRD40, IRD 700, or IRD 800. In certain embodiments, R p is Oregon Green 488, Oregon Green 500, or Oregon Green 514. In certain embodiments, R p is Marina Blue, merocyanine, oxonol dyes, Pacific Blue, phycoerythrin, PyMPO, pyrene, or styryl dyes. In certain embodiments, R p is lissamine rhodamine B, rhodamine B, rhodamine 6G, rhodamine green, rhodamine red, rhodol green, tetramethyl-rhodamine (TMR), carboxytetramethylrhodamine (TAMRA), rhodamine 110, or rhodamine 123. In certain embodiments, R p is fluorescein, naphthofluorescein, 4',5'- dichloro-2',7'-dimethoxy- fluorescein, 2',4',5',7'-tetrabromosulfone-fluorescein, 2,7- dichlorofluorescein, 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein, or 5(6)- carboxyfluorescein. In certain embodiments, R p is fluorescein.

[00200] In certain embodiments, the stereochemistry of the phosphoglycerate linker of a compound of Form , (Ie), (If), or any embodiment or subformula

described herein is . In certain embodiments, the stereochemistry of the phosphoglycerate linker of a compound of Formula (I), (la), (lb), (Ic), (Id), (Ie), (If), or any embodiment or subformula described herein is

[00201] In certain embodiments, a compound of Formula (I) is

Glycosyltransferase Assay

[00202] In another aspect, the present invention provides an assay to determine the inhibitory effect of a test compound on a glycosyltransferase protein. Efforts have been made by others to provide such as an assay (see Cheng et ah, Proc. Natl. Acad. Sci. USA 105:431 (2008)), but the present inventors have found that the fluorescent probe compound used in that assay binds too tightly to the glycosyltransferase protein, resulting in false negatives when screening test compounds. To overcome high false negative rates, compounds of formula (I) were prepared. The dissociation constant of the probe compound of formula (I) can be tuned by varying lengths of the G group, number of sugars, etc., allowing the operator of the assay to regulate the activity threshold for hit screening.

[00203] In some embodiments, an assay of the present invention comprises the steps of incubating a glycosyltransferase protein with a probe compound of formula (I) or a salt thereof; measuring fluorescence polarization of the compound of formula (I) in the presence of the glycosyltransferase protein; adding a test compound; and measuring a change in fluorescence polarization of the probe compound after addition of the test compound. In certain embodiments, a decrease in fluorescence polarization indicates that the probe compound has been liberated from the glycosyltransferase.

[00204] In certain embodiments, a probe compound for use in a provided assay is of formula (I), (la), (lb), (Ic), (Id), (Ie), (If), or any subformula or embodiment described herein.

[00205] In certain embodiments, a probe compound for use in a provided assay is of formula:

[00206] In certain embodiments, the glycosyltransferase protein is a recombinant, full length glycosyltransferase protein. In certain embodiments, the glycosyltransferase protein is a bacterial glycosyltransferase. In other embodiments, the glycosyltransferase protein is a purified glycosyltransferase protein. In still other embodiments, the glycosyltransferase protein is a crude glycosyltransferase protein. In further embodiments, the glycosyltransferase protein is purified from natural sources. In other embodiments, the glycosyltransferase protein is a modified form of a glycosyltransferase protein. In other embodiments, the glycosyltransferase protein is a mutant form of a glycosyltransferase protein. In other embodiments, the glycosyltransferase protein is a truncated form of a glycosyltransferase protein. In still other embodiments, the glycosyltransferase protein is a truncated form of a glycosyltransferase protein which includes at least an active site.

[00207] In certain embodiments, the assay is carried out at a concentration of the substrate greater than the substrate ¾. In other embodiments, the assay is carried out at a concentration of the substrate approximately equivalent to the substrate ¾.

[00208] In certain embodiments, the glycosyltransferase protein is a peptidoglycan glycosyltransferase. In certain embodiments, the glycosyltransferase protein is B. pertussis PBPla, C. freudii PBPlb, E. coli PBPlb, H. influenzae PBPlb, H. pylori PBPla, K.

pneumoniae PBPlb, P. aeruginosa PBPlb, S. enterica PBPlb, S. flexneri PBP2, B. subtilis PBPla/lb, C. difficile PBP, E. faecalis PBP2a, E. faecium PBP1, S. aureus PBP2, S.

pneumoniae PBPlb, or S. aureus SgtB. In certain embodiments, the glycosyltransferase protein is PGT, PBPlb, PBP2a, or SgtB. In certain embodiments, the glycosyltransferase protein is Aquifex aeolicus PGT, E. coli PBPlb, E. faecalis PBP2a, and S. aureus SgtB. In certain embodiments, the glycosyltransferase protein is E. coli PBPlb. In certain

embodiments, the glycosyltransferase protein is E. faecalis PBP2a. In certain embodiments, the glycosyltransferase protein is S. aureus SgtB.

[00209] The inventive assay is suitable for high-throughput screening, and multiple assays may be run in parallel. This aspect of the assay allows for the screening of many test compounds at multiple concentrations at once optionally using more than one

glycosyltransferase protein. In certain embodiments, multiple assays are run in parallel. In other embodiments, at least 10 assays are run in parallel. In still other embodiments, at least 50 assays are run in parallel. In further embodiments, at least 100 assays are run in parallel. In certain embodiments, at least 500 assays are run in parallel. In other embodiments, at least 1000 assays are run in parallel.

[00210] In certain embodiments, the assay is performed at approximately room

temperature. In other embodiments, the assay is performed at approximately 25 °C. In still other embodiments, the assay is performed at approximately 37 °C. In further embodiments, the assay is performed at approximately 20-40 °C. In certain embodiments, the assay is performed below 25 °C. In other embodiments, the assay is performed above 25 °C. In still other embodiments, the assay is performed at approximately 10-15 °C. In further other embodiments, the assay is performed at approximately 15-20 °C. In certain embodiments, the assay is performed at approximately 20-25 °C. In other embodiments, the assay is performed at approximately 25-30 °C. In still other embodiments, the assay is performed at approximately 30-35 °C. In further embodiments, the assay is performed at approximately 35-40 °C. In certain embodiments, the assay is performed at approximately 40-45 °C. In other embodiments, the assay is performed at approximately 45-50 °C. In still other embodiments, the assay is performed at approximately 50-60 °C. In further embodiments, the assay is performed above 60 °C. In ceratin embodiments, the assay is performed at any temperature at which a glycosyltransferase enzyme functions. In other embodiments, the assay is performed at a temperature optimum for a glycosyltransferase enzyme to function.

[00211] In certain embodiments, the assay is performed for approximately 30 seconds to 12 hours. In other embodiments, the assay is performed for approximately 30 seconds to 5 minutes. In still other embodiments, the assay is performed for approximately 5 minutes to 15 minutes. In further embodiments, the assay is performed for approximately 15 minutes to 30 minutes. In certain embodiments, the assay is performed for approximately 30 minutes to 1 hour. In other embodiments, the assay is performed for approximately 1 hour to 3 hours. In still other embodiments, the assay is performed for approximately 3 hours to 6 hours. In further embodiments, the assay is performed for approximately 6 hours to 9 hours. In certain embodiments, the assay is performed for approximately 9 hours to 12 hours. In certain embodiments, the assay is performed for less than 3 hours. In certain embodiments, the assay is performed for approximately 3 hours. In certain embodiments, the assay is performed for less than 12 hours. In other embodiments, the assay is performed for greater than 12 hours.

[00212] In certain embodiments, the assay is performed in water. In other embodiments, the assay is performed in an organic solvent. In still other embodiments, the assay in performed in a buffer. In certain embodiments, the buffer is an assay buffer. In other embodiments, the assay buffer comprises comprises TRIS and NaCl. In further

embodiments, the assay buffer is 10 mM TRIS pH 8, 100 mM NaCl. In certain embodiments, the assay is performed at approximately pH 5.0-6.0. In other embodiments, the assay is performed at approximately pH 6.0-6.5. In still other embodiments, the assay is performed at approximately pH 6.5-7.0. In further embodiments, the assay is performed at approximately pH 7.0-7.5. In certain embodiments, the assay is performed at approximately pH 7.4. In other embodiments, the assay is performed at approximately pH 7.5-8.0. In certain embodiments, the assay is performed at approximately pH 8.0. In still other embodiments, the assay is performed at approximately pH 8.0-9.0. In certain embodiments, the assay is performed at a pH optimum for a glycosyltransferase enzyme to function.

[00213] In certain embodiments, the concentration of the probe compound of formula (I) is 1-1000 nM. In certain embodiments, the concentration of the probe compound is 0.01-100 μΜ. In futher embodiments, the concentration of the probe compound is 1-500 nM. In other embodiments, the concentration of the probe compound is 1-100 nM. In still other embodiments, the concentration of the probe compound is 5-10 nM. In yet other

embodiments, the concentration of the probe compound is 10-15 nM. In further

embodiments, the concentration of the probe compound is 15-20 nM. In other embodiments, the concentration of the probe compound is 10-20 nM. In further embodiments, the concentration of the probe compound is 20-30 nM. In certain embodiments, the

concentration of the probe compound is 30-40 nM. In other embodiments, the concentration of the probe compound is 40-50 nM. In still other embodiments, the concentration of the probe compound is 50-60 nM. In further embodiments, the concentration of the probe compound is 60-70 nM. In certain embodiments, the concentration of the probe compound is 70-80 nM. In other embodiments, the concentration of the probe compound is 80-90 nM. In still other embodiments, the concentration of the probe compound is 90-100 nM. In certain embodiments, the concentration of the probe compound is less than 100 nM. In other embodiments, the concentration of the probe compound is greater than 100 nM.

[00214] In certain embodiments, the concentration of the glycosyltransferase protein is less than 1 μΜ. In other embodiments, the concentration of the glycosyltransferase protein is greater than 1 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is less than 5 μΜ. In other embodiments, the concentration of the glycosyltransferase protein is greater than 5 μΜ. I n certain embodiments, the concentration of the

glycosyltransferase protein is 0.01-5 μΜ. In other embodiments, the concentration of the glycosyltransferase protein is 0.01-0.05 μΜ. In still other embodiments, the concentration of the glycosyltransferase protein is 0.05-0.1 μΜ. In further embodiments, the concentration of the glycosyltransferase protein is 0.1-0.5 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is 0.5-5 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is 0.1 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is 0.2 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is 0.4 μΜ. In certain embodiments, the concentration of the glycosyltransferase protein is 0.15 μΜ.

[00215] In some embodiments, the probe compound employed in a provided assay is of intermediate activity with respect to binding to a glycosyltransferase of interest. If the probe compound associates with a glycosyltransferase of interest with very high affinity, then the assay may not identify test compounds of lower affinity. On the other hand, if the probe compound only associates with a glycosyltransferase of interest with very low affinity, then the assay may not discriminate among various test compounds of varying affinities to the glycosyltransferase. Assays provided by the present invention in conjunction with the probe compounds of formula (I) provide the opportunity to tune the assay to the desired activity threshold.

[00216] In some embodiments, a probe compound used in a provided assay has a ¾ in the range of 0.1-10 μΜ with respect to a glycosyltransferase of interest. In certain embodiments, a probe compound used in a provided assay has a K d in the range of 0.1-1 μΜ. In certain embodiments, a probe compound used in a provided assay has a K d in the range of 1-10 μΜ. In certain embodiments, a probe compound used in a provided assay has a K d in the range of 0.1-0.5 μΜ. In certain embodiments, a probe compound used in a provided assay has a K d in the range of 0.5-1 μΜ. In certain embodiments, a probe compound used in a provided assay has a K d of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1 μΜ.

[00217] In some embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.01-10 μΜ with respect to a glycosyltransferase of interest. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.1-10 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.1-1 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 1-10 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.5-5 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.1-0.5 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.5-1 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.2-0.8 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 in the range of 0.4-0.8 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 of about 0.6 μΜ. In certain embodiments, a probe compound used in a provided assay has an IC 50 of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1 μΜ.

[00218] In certain embodiments, the assay is performed at the same concentration per test compound. In other embodiments, the assay is performed at multiple concentrations per test compound.

[00219] In certain embodiments, an assay of the present invention measures a change in fluorescence polarization after addition of a test compound. In certain embodiments, the change in fluorescence polarization is a decrease in polarization. Such a decrease in fluorescence polarization indicates that a test compound competes with the probe compound for binding to the glycosyltransferase protein.

[00220] In certain embodiments, the present invention provides a kit comprising a probe compound as described herein and glycosyltransferase protein. In some embodiments, a provided kit comprises a probe compound as described herein and a peptidoglycan glycosyltransferase, such as for example B. pertussis PBPla, C. freudii PBPlb, E. coli PBPlb, H. influenzae PBPlb, H. pylori PBPla, K. pneumoniae PBPlb, P. aeruginosa PBPlb, S. enterica PBPlb, S. flexneri PBP2, B. subtilis PBPla/lb, C. difficile PBP, E.

jaecalis PBP2a, E. jaecium PBPl, S. aureus PBP2, S. pneumoniae PBPlb, or S. aureus SgtB. In some embodiments, the kit further comprises a buffer. In some embodiments, the kit further comprises instructions for use.

[00221] These and other aspects of the present invention will be further appreciated upon consideration of the following Examples, which are intended to illustrate certain particular embodiments of the invention but are not intended to limit its scope, as defined by the claims.

EXAMPLES

Chemical Syntheses

[00222] All reactions in non-aqueous reaction medium were carried out under an

atmosphere of argon, unless otherwise noted. Commercial chemicals were used without prior purification. Solvents were dried by passage over columns filled with activated aluminum oxide (Glass Contour Solvent Systems, SG Water USA, Nashua, NH, USA).

[00223] In addition to the exemplary syntheses described below, also see the following patent applications incorporated herein by reference for methods of synthesizing

moenomycin analogs: WO 2008/021367; WO 2009/046314; U.S. Provisional Patent

Application entitled "Moenomycin A Analogs, Methods of Synthesis, and Uses Thereof," filed on the same day as the present application; and U.S. Provisional Patent Application entitled "Chemoenzymatic Methods for Synthesizing Moenomycin Analogs."

(a) R-Br, D F, NaH then: AcOH; (b) Nal0 4 , THF, H 2 0; (c) NaCI0 2 , NaH 2 P0 4 , H 2 0, 2-methyl-2-butene; (d) TMSCHN 2 , eOH, THF; (e) 2 ; (f) propargyl amine, NEt 3 , DMF.

Synthesis of S2 and S3

General procedure for preparation of 2,5-Di-O-alkyl-D-Mannitol

[00224] To a stirred suspension of 60% NaH (3 equiv.), washed twice with petroleum ether, in anhydrous DMF (8 mL/mmol-starting material (SM)) was added l,3:4,6-di-O,0-(4- methoxybenzylidene)-D-mannitol (1 equiv., SM) at room temperature. After being stirred for 30 min, the mixture was treated with a 1.2 M solution of alkylating reagents (2.4 equiv., Br, and methane- or /?-toluene-sulfonate for R = allyl, and w-alkyl groups, respectively) in anhydrous DMF and a catalytic amount of tetrabutylammonium iodide for allyl-Br, or 15- Crown-5 for w-alkyl sulfonates. The resulting mixture was stirred for 18 h at rt for allyl-Br and 70 °C for w-alkyl sulfonates, and then poured into sat. aq. NH 4 C1 (8 mL/mmol-SM). The immiscible mixture was extracted twice with Et 2 0 and the combined organic phases were washed with water, brine, dried over MgS0 4 , and then concentrated in vacuo. The crude ether was used for the next reaction without further purification.

[00225] For allyl derivatives, a stirred solution of the residue in THF-H 2 0 (4: 1, 8 mL/mmol-SM) was treated with AcOH (170 equiv.) at room temperature. After being stirred at 55 °C for 2 d, the mixture was cooled to 0 °C and basified with 4 M aq. K 2 C0 3 (90 equiv.). The immiscible mixture was extracted twice with CHC1 3 and the combined organic phases were washed with brine, dried over MgS0 4 , and then concentrated in vacuo. The residue was purified by silica gel chromatography (petroleum ether : EtOAc = 1 : 3 to 0 : 1) to give 2,5- di-O-allyl-D-mannitol.

[00226] For w-alkyl derivatives, a stirred solution of the residue in EtOH (12 mL/mmol- SM) was treated with 3 M aq. HC1 (12 equiv.) at room temperature. After being stirred at 70 °C for 3 h, the mixture was cooled to room temperature and basified with 4 M aq. K 2 C0 3 (16 equiv.). The immiscible mixture was extracted twice with CHC1 3 and the combined organic phases were washed with brine, dried over MgS0 4 , and then concentrated in vacuo. The residue was purified by recrystallization from Et 2 0/EtOAc to give 2,5-di-O-n-alkyl-D- mannitol.

Preparation of Methyl 2-0-Alkyl-D-Glycerate

[00227] To a 5.5 M solution of 2,5-di-O-alkyl-D-mannitol (1 equiv., SM) in THF-H 2 0 (9: 1) was added NaI0 4 (1.2 equiv.) at room temperature, and the mixture was stirred at 50 °C for 1 h. The resulting inorganic salt was removed by filtration through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo and the crude aldehyde was used for the next reaction.

[00228] To a stirred solution of the residue in i-BuOH (20 mL/mmol-SM) were added 2- methyl-2-butene (100 equiv.) and a solution of 80% NaC10 2 (12 equiv.) and NaH 2 P0 4 - H 2 0 (10 equiv.) in H 2 0 (8 mL/mmol -SM) at 0 °C successively. The resulting yellow mixture was allowed to warm to room temperature for 6 h, during which it turned into clear. Then, the mixture was cooled to 0 °C again and treated with 2.5 M aq. Na 2 S0 3 (25 equiv.) to reduce an excess of NaC10 2 . The mixture was acidified with 10% aq. citric acid (10 mL/mmol-SM) and extracted twice with CHCI 3 and the combined organic phases were washed with brine, dried over MgS0 4 , and then concentrated in vacuo. The crude acid was used for the next reaction without further purification.

[00229] To a stirred solution of the residue in anhydrous THF-MeOH (1: 1, 10 mL/mmol- SM) was treated with 2 M TMSCHN 2 solution in hexanes (3.2 equiv.) at 0 °C. After being stirred for 10 min, the resulting yellow mixture was decolorized by an addition of AcOH (3.2 equiv.) to consume an excess of TMSCHN 2 . The mixture was concentrated in vacuo and the residue was purified by silica gel chromatography (petroleum ether : EtOAc = 4 : 1 to 3 : 2) to give methyl 2-O-alkyl-D-glycerate.

[00230] Analytical data for S2: 1H-NMR (500 MHz; CDC1 3 ): δ 3.99 (dd, J = 6.1, 3.8 Hz, 1H), 3.99 (dd, J = 6.1, 3.8 Hz, 1H), 3.79 (d, J = 14.1 Hz, 4H), 3.73 (q, J = 7.9 Hz, 1H), 3.43 (t, J = 11.3 Hz, 1H), 1.65-1.62 (m, 2H), 1.35-1.26 (m, 28H), 0.89 (t, J = 7.0 Hz, 3H); 13 C NMR (125 MHz, CDC1 3 ): δ 171.6, 79.8, 71.7, 63.7, 52.3, 32.2, 29.9 (multiple peaks), 29.8, 29.7, 29.6, 26.2, 22.9, 14.4; HRMS (ESI) calcd for C 20 H 40 O 4 Na + [M+Na] + 367.2819, found 367.2823.

[00231] Analytical data for S3: 1H NMR (500 MHz; CDC13): δ 5.66 (dd, J = 6.0, 2.1, 1H), 5.12-5.07 (m, 2H), 4.26-4.22 (m, 1H), 4.10 (d, J = 6.5, 1H), 4.05 (m, 1H), 3.96 (m, 1H), 3.86 (m, 1H), 3.77 (s, 3H), 2.08-1.77 (m, 8H), 1.77 (s, 3H), 1.68 (s, 3H), 1.60 (s, 6H); 13 C NMR (125 MHz, CDCI3): δ 171.6, 142.5, 136.0, 131.6, 124.5, 123.7, 120.8, 67.2, 63.7, 52.3, 39.9, 32.7, 29.8, 29.7, 26.9, 25.7, 24.1, 23.6, 16.2; HRMS (ESI) calcd for C 19 H 32 0 4 Na + [M+Na] + 347.2193, found 347.2206.

Preparation of 0.2 M Phosphoramidite Solution (S4 and S5)

[00232] To a 0.2 M solution of methyl 2-O-alkyl-D-glycerate (1 equiv.) in anhydrous CH 3 CN were added N,N-diisopropylethylamine (1.5 equiv.) and ClP(OCE)Ni-Pr 2 (1.2 equiv.) at room temperature successively. The reaction mixture was stirred for 1 h and directly used for the next coupling reaction.

Preparation of S7

[00233] To as solution of /V-hydroxysuccinimide fluorescein (S6, 15 mg, 21 μιηοΐ) in DMF (300 μΐ,) was added NEt 3 (20 μί) and propargyl amine (3.0 mg, 48 μιηοΐ). After stirring the solution for 24 h the solvent was removed in vacuo and the residue was purified by column chromatography (Si0 2 , hexane/EtOAc = 2/8) to obtain S7 (11 mg, 27 μιηοΐ, 84 %) as bright orange solid. [00234] 1H NMR (500 MHz, CD 3 OD) δ 8.43 (s, 1H), 8.20 (d, J = 9.50 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H ), 6.69 (s, 1H), 6.61 (d, J = 8.5 Hz, 2H), 6.54 (d, J = 9.0 Hz, 2H), 4.59 (s, 1H), 4.21 (d, J = 2.0 Hz, 1H), 2.65 (d, J = 2.5 Hz, 1H); 13 C NMR (500 MHz, CD 3 OD) δ 169.4, 166.8, 152.9, 136.2, 134.4, 129.1, 129.0, 124.7, 123.9, 112.6, 112.2, 109.7, 102.5, 79.3, 78.1, 77.8, 71.2, 29.1.

(a) CIC0 2 Ph, Py. (b) Tf 2 0, DTBMP, ADMB, S-4A, DCM; (c) Et 3 SiH, TfOH, MS-4A, DCM; (d) Tf 2 0, Py., DCM; (e) CsOAc, 18-Crown-6, PhMe; (f) H 2 , 10% Pd-C, 1wt% CI 3 CC0 2 H/MeOH; (g) TEMPO, Phl(OAc) 2 , DCM-H 2 0 (2:1); (h) CIC0 2 /Bu, NMM, THF then NH 3 , /-PrOH; (i) CAN, ACN-H 2 0 (4:1); (j) S2, tetrazole, MS-3A, ACN, then f- Bu0 2 H; (k) Zn, Ac 2 0, AcOH, THF; (I) LiOH, THF-H 2 0 2 (8:1 ); (m) UDP-GalNAz, β1 ,4-GalT; (n) DMF, H 2 0, C_S0 4 , Na-ascorbate.

Synthesis of S9

[00235] Saccharide S8 (18.7 g, 49.9 mmol, CAS: 176299-96-0) was dissolved in pyridine (160 mL) and cooled to -40 °C. Phenylchlorocarbonate (11 mL) was added drop wise to the stirred solution. After 2 h, methanol (11 mL) and toluene (100 mL) were added and the solvent was removed in vacuum. The residue was taken up in EtOAc and washed with HCl (1 M) and NaCl (sat.). The organic layer was dried over MgS0 4 and the solvent was removed in vacuum. Recrystallization from Et 2 0 yielded the title compound as colorless solid (18.5 g, 75 %).

[00236] 1H NMR (500 MHz; CDC1 3 ): δ 7.54 (d, J = 1.6 Hz, 2H), 7.37-3.35 (d, J = 1.9 Hz, 5H), 7.22-7.21 (m, 3H), 7.07 (d, J = 9.1 Hz, 2H), 6.83 (d, J = 9.1 Hz, 2H), 5.55 (s, 1H), 4.91 (dd, J = 10.2 Hz, 3.7 Hz, 1H), 4.85 (d, J = 7.8 Hz, 1H), 4.53 (d, J = 3.3 Hz, 1H), 4.34-4.31 (m, 2H), 4.05 (d, J=11.5 Hz, 1H), 3.76 (s, 3H), 3.51 (s, 1H), 2.89 (d, J = 2.8 Hz, 1H); 13 C

NMR (125 MHz, CDC1 3 ): δ 155.9, 153.6, 151.3, 137.8, 129.7, 129.4, 128.4, 126.6, 126.4, 122.0, 121.3, 119.5, 114.8, 102.8, 101.1, 73.2, 69.1, 68.6, 66.5, 55.9; HRMS (ESI) calcd for C 27 H260 9 Na + [M+Na] + 517.1469, found 517.1506.

Synthesis of S10

[00237] Sulfoxide S10 was obtained by oxidation of peracyl-N-Troc-phenyl-^O)- glucosamine (CAS: 187022-49-7; 9.00 g, 15.1 mmol) with Selectfluor (6.00 g, 16.8 mmol) in MeCN (105 mL) and water (10.5 mL) at room temperature. The reaction was carried out in an open flask. After 1 h the solvent was removed in vacuum, and the residue was taken up in chloroform, washed with NaCl (sat.) and dried over NaS0 4 . After concentration in vacuo the residue was recrystallized from EtOAc/hexane to yield sulfoxide S10 as an off-white solid (9.10 g, 15.5 mmol, 98 ; 1/1 mixture of diastereomers).

Synthesis of Sll

[00238] In a 100 mL round bottom flask, gylcosyl donor S10 (1.50 g, 2.55 mmol), gylcosyl acceptor S9 (840 mg, 1.70 mmol), 2,6-di-iert-butylpyridine (478 mg, 2.50 mmol), and a 4-allyl-l,2-dimethoxybenzene (2.73 g, 15.3 mmol) were combined and dried by azeotropic distillation with benzene. The residue was further dried in vaccum for 30 min before dichloromethane (17 mL) and molecular sieves 3 A (ca. 500 mg) were added. The suspension was stirred at room temperature for 30 min and then cooled to -78 °C. Triflic anhydride (285 μί, 479 mg, 1.70 mmol) was slowly added and the resulting green solution was stirred for 1.5 h at -78 °C. NaHC0 3 (sat., 1 volume) was added, and the mixture was allowed to reach room temperature. The phases were separated, and the organic phase was washed with NaCl (sat.) and dried over Na 2 S0 4 . Removal of the solvent in vacuum was followed by column chromatography (Si0 2 , toluene/EtOAc 8/2 7/3) to yield the title compound as colorless solid (910 mg, 0.951 mmol, 56 %).

[00239] 1H NMR (500 MHz; CDC1 3 ): δ 7.54 (d, J = 1.6 Hz, 2H), 7.39-3.37 (d, J = 1.9 Hz, 5H), 7.29-7.26 (m, 3H), 7.02 (d, J = 9.1 Hz, 2H), 6.80 (d, J = 9.1 Hz, 2H), 5.57 (s, IH), 5.20- 5.00 (m, 4H), 5.85-5.78 (m, 3H), 4.59 (br s, IH), 4.40-4.22 (m, 3H), 4.21-4.19 (m, IH), 4.16- 4.12 (m, IH), 3.86-3.75 (m, 2H), 3.77 (s, 3H), 3.59 (br s, IH), 2.01 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H); 13 C NMR (125 MHz, CDC1 3 ): δ 170.99, 170.88, 169.6, 155.63, 154.34, 152.75, 151.5, 151.2, 137.6, 128.9, 129.5, 128.5, 126.6, 121.3, 121.2, 118.8, 118. 7, 114.7, 101.9, 101.3, 100.9, 76.2, 74.6, 72.9, 72.4, 72.0, 69.1, 68.4, 66.1, 61.8, 55.9, 20.91, 20.86; HRMS (ESI) calcd for C 42 H 44 Cl 3 N0 18 Na + [M+Na] + 978.1516, found 978.1472.

Synthesis of S12

[00240] Disaccharide Sll (1.06 g, 1.11 mmol) was dissolved in dichloromethane (22.2 mL) and HSiEt3 (530 μί, 387 mg, 3.33) and molecular sieves 3 A (ca. 500 mg) were added. The suspension was stirred for 30 min at room temperature and then cooled to -78 °C before triflic acid (333 566 mg, 3.77 mmol) was added dropwise. After 2.5 h at -78 °C, NaHC0 3 (sat.) was added and the mixture was allowed to reach room temperature. The phases were parted and the aqueous layer was extracted once with dichloromethane. The combined organic layers were washed with brine and dried over Na 2 S0 4 . Removal of the solvent in vacuum provided the corresponding C6-benzyl ether of Sll in high purity, which was used in the next step without further purification.

[00241] The C6-benzyl ether previously obatained (1.15 g, 1.20 mmol) was dissolved in dichloromethane (12 mL) and pyiridine (290 μί, 284 mg, 3.59 mmol), and the solution was cooled to -40 °C. Triflic anhydride (242 μί, 406 mg, 1.44 mmol) was slowly added and the mixture was allowed to reach room temperature over 2 h. The reaction mixture was washed with 2 volumes of 0.5 M HC1, water, NaHC0 3 (sat.), and NaCl (sat), and then dried over Na 2 S0 4 . The solvent was removed in vacuum and the residue was dissolved in toluene (30 mL), and CsOAc (830 mg, 5.48 mmol) and 18-crown-6 (1.21 g, 4.58 mmol) were added. The resulting mixture was vigorously stirred for 14 h and then washed with NaHC0 3 (sat.) and NaCl (sat.). The residue obtained after drying of the solution over Na 2 S0 4 and removal of the solvent in vacuum was purified by column chromatography (Si0 2 , toluene/EtOAc 85/15) to obtain S12 as colorless solid (668 mg, 667 μιηοΐ, 55 % over 3 steps).

[00242] 1H NMR (500 MHz; CDC1 3 ): δ 7.41-7.38 (m, 2H), 7.27 (s, 8H), 7.00 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 8.50 Hz, 2H), 5.31 (t, J = 9.6, 1H), 5.20-5.18 (m, 2H), 5.14-5.05 (m, 4H), 5.01 (d, J = 8.1, 1H), 4.68 (d, J = 12.0, 1H), 4.56 (d, J = 11.8, 1H), 4.47 (d, J = 11.9, 1H), 4.27 (d, J = 12.2, 1H), 4.18 (dd, J = 11.9, 3.4, 1H), 4.07 (td, J = 8.2, 1.4, 1H), 3.77 (s, 3H), 3.67-3.60 (m, 3H), 3.59-3.57 (m, 1H), 2.01 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.95 (s, 3H); 13 C NMR (125 MHz, CDC1 3 ): δ 170.93, 170.86, 170.11, 169.7, 155.69, 154.21, 153.32, 151.23, 151.12, 138.10, 137.91, 129.84, 129.27, 128.61, 128.46, 128.03, 127.98, 126.55, 125.52, 121.27, 118.12, 114.82, 114.79, 101.14, 100.44, 95.67, 79.60, 78.88, 74.53, 73.81, 73.22, 72.13, 72.00, 69.56, 68.81, 68.46, 61.72, 56.72, 55.91, 21.70, 20.91, 20.85, 20.81; HRMS (ESI) calcd for C 44 H 48 Cl 3 N0 19 Na + [M+Na] + 1022.1779, found 1022.1766.

Synthesis of S13

[00243] In a 100 ml round bottom flask, disaccharide S12 (283 mg, 283 μιηοΐ) was dissolved in methanol (20 mL), and 10% Pd/C (100 mg) was added. The atmosphere above the solution was exchanged to H 2 , and the solution was stirred vigorously. After 45 min the suspension was filtered through celite and the filtrate was concentrated in vacuo. The residue was dissolved in dichloromethane (3.4 mL) and water (1.7 mL), and PhI(OAc) 2 (237 mg, 756 μιηοΐ) and TEMPO (9.0 mg, 57 μιηοΐ) were added. After stirring the mixture for 2 h, the reaction was quenched by addition of Na 2 S203 (sat.) and the solution was partitioned between dichloromethane and water. The organic layer was washed with NaCl (sat.) and dried over Na 2 S0 4 . The solvent was removed in vacuo, and the residue was taken up in THF (5.7 mL). This solution was cooled to -40 °C, N-methylmorpholine (78 μί, 72 mg, 0.71 mmol) was added and the mixture was treated with isobutyl chloroformate (93 μί, 97 mg, 0.71 mmol). After 5 min, NH 3 (2.0 M in 'PrOH) was added and the mixture was stirred at room

temperature for 24 h. Removal of the solvent in vacuum and column chromatography (Si0 2 , CHCl 3 /EtOH 99/1 -» 95/5 -» 9/1) yielded the title compound as colorless flakes (111 mg, 131 μιηοΐ, 46 % over 3 steps).

[00244] 1H NMR (500 MHz; CDC1 3 /CD 3 0D 9/1): δ 6.92 (d, J = 8.9, 2H), 6.76 (d, J = 9.0, 2H), 5.22 (t, J = 9.9, 1H), 5.16-5.12 (m, 2H), 4.98 (dd, J = 10.0, 2H), 4.90 (d, J = 8.4, 1H), 4.87 (d, J = 12.1, 1H), 4.49 (d, J = 12.1, 1H), 4.09 (dd, J = 12.3, 3.7, 1H), 3.99 (d, J = 8.9, 1H), 3.88 (t, J = 7.1, 1H), 3.78 (d, J = 11.6, 1H), 3.71 (s, 3H), 3.62 (d, J = 9.9, 1H), 3.55-3.48 (m, 5H), 2.00 (s, 3H), 1.94 (s, 3H), 1.93 (s, 3H), 1.92 (s, 3H); 13 C NMR (125 MHz,

CDC1 3 /CD 3 0D 9/1): δ 171.20, 170.92, 170.6, 170.3, 170.0, 156.4, 155.8, 154.8, 150.7, 118.3, 114.9, 101.1, 100.1, 95.8, 79.4, 74.5, 73.9, 72.4, 71.8, 69.6, 68.7, 61.9, 56.5, 55.8, 49.7, 49.5, 49.4, 49.2, 48.9, 48.7, 20.7, 20.7; HRMS (ESI) calcd for C 31 H 38 Cl 3 N 3 0 18 Na + [M+Na] + 868.1109, found 868.1067.

Synthesis of S14

[00245] Disaccharide S13 (167 mg, 187 μιηοΐ) was dissolved in MeCN (8 mL) and water (2 mL), and cerium(IV) ammonium nitrate (542 mg, 989 μιηοΐ) was added. The mixture was stirred at room temperature for 1.5 h and then concentrated in vacuo. Purification of the residue by column chromatography (Si0 2 , CHCl 3 /EtOH 9/1 -> 4/1) gave the lactol of S13 as colorless solid (115 mg, 79 %). This lactol (42.9 mg, 57.9 μιηοΐ) was further dried by azeotropic distillation with toluene (2 x), dissolved in tetrazole solution (0.34 M in MeCN,

1.0 mL), and stirred with molecular sieves 3 A for 30 min at room temperature and 30 min at 0 °C. A solution of S4 (0.2 M in MeCN, 0.58 mL) was added and the mixture was stirred at 0 °C for 2 h before T3uOOH (5.5 M in decane, 127 μΐ,, 699 μπιοΐ) was added. After 1 h at 0 °C P(OMe) 3 (82 μί, 86 mg, 695 μιηοΐ) was added and the suspension was filtered through a pad of celite. Evaporation of the solvent in vacuo and column chromatographic purification (C18, gradient 30-100% MeCN/H 2 0) of the residue gave phosphoglycerate S14 (32.5 mg, 27.1 μιηοΐ, 47 %) as colorless solid as a 1/1 mixture of phosphate diastereomers.

[00246] analytical data for one diastereomer: 1H NMR (500 MHz; CD 3 OD): δ 6.03 (dd, J = 6.3, 3.2, 1H), 5.27-5.20 (m, 3H), 5.07 (t, J = 9.7, 1H), 5.02 (d, J = 12.3, 1H), 4.78 (d, J = 8.5, 1H), 4.61 (d, J = 12.3, 1H), 4.46-4.42 (m, 4H), 4.45-4.41 (m, 4H), 4.22 (dd, J = 12.3, 2.2, 1H), 4.00 (dd, J = 6.9, 3.3, 1H), 3.87-3.83 (m, 2H), 3.82 (s, 3H), 3.72-3.65 (m, 2H), 3.59-3.55 (m, 1H), 3.01 (t, J = 6.0, 2H), 2.10 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.96 (s, 3H), 1.66 (t, J = 7.2, 2H), 1.30 (s, 28H), 0.91 (t, J = 7.0, 3H); HSQC ( 13 C signals, 125 MHz, CD 3 OD): δ 102.7, 97.2; 77.9, 77.6, 74.2, 74.1, 72.2, 72.0, 71.5, 71.4, 70.4, 70.3, 69.5, 68.8, 68.2, 68.1, 63.6, 61.9, 61.8, 55.6, 51.8, 48.1, 31.6, 29.6 (multiple peaks), 25.8, 22. 5, 19.6, 19.3, 19.3, 19.3, 18.9, 13.2; 31 P (162 MHz; CD 3 OD): δ -3.16; HRMS (ESI) calcd for

C 47 H 74 Cl 3 N 4 0 23 PNa + [M+Na] + 1223.3410, found 1223.3337.

Synthesis of S15

[00247] To a solution of phosphoglycerate S14 (113 mg, 94.2 μιηοΐ) in THF (3 mL), Ac 2 0 (1 mL), and AcOH (2 mL) was added activated Zn (653 mg, 9.99 mmol), and the solution was stirred at room temperature for 10 h. The slurry was filtered through a pad of Si0 2 and the residue was thoroughly washed with CHCl 3 /EtOH 2/1 (100 mL). The filtrate was concentrated, and the residue was dissolved in THF (19 mL), H 2 0 2 (30 %, 4.8 mL) LiOH solution (1 M, 1.9 mL). After stirring the solution at 0 °C for 2 h, DOWEX50WX2-100 resin (HPy-i- form, 0.8 g) was added, and the mixture was stirred for 2 h. The resin was filtered off by passing the reaction mixture through a cotton plug. Chromatographic purification (C18, gradient 20-50% MeCN in 0.2% NH 4 HC0 3 ) of the residue obtained after concentration of the filtrate yielded disaccharide S15 (50.7 mg, 61.0 μιηοΐ, 63 %).

[00248] HPLC/MS retention time: 11.9 min (Phenomenex Luna, 3u-C 18 50 x 2 mm 2 3 micron, 0.3 mL/min, gradient 30-75% MeCN+0.1% HC0 2 H in H 2 O+0.1% HC0 2 H over 6 min, then to 99% MeCN+0.1% HC0 2 H over 5 min) LRMS (ESI) calcd for C 34 H 6 iN 3 0 18 P [Μ-ΗΓ 830.4, found 830.3; 1H NMR (500 MHz; CD 3 OD): δ 5.98 (dd, J = 7.1, 3.1, 1H), 5.05 (t, J = 9.7, 1H), 4.58 (d, J = 8.4, 1H), 4.36 (d, J = 10.0, 1H), 4.26-4.22 (m, 1H), 4.18-4.08 (m, 1H), 4.00-3.96 (m, 1H), 3.87-3.84 (m, 1H), 3.76-3.71 (m, 3H), 3.71 (s, 3H), 3.68-3.64 (m, 3H), 3.53-3.47 (m, 3H), 3.36-3.29 (m, 4H), 2.04 (s, 3H), 1.66-1.64 (m, 2H), 1.30 (s, 28H), 0.91 (t, J = 7.0, 3H); 13 C NMR (125 MHz, CD 3 OD): δ; 175.6, 173.0, 158.2, 103.0, 95.5, 79.6, 76.9, 74.5, 73.2, 71.4, 70.8, 70.6, 70.5, 70.2, 66.9, 66.8, 61.6, 61.1, 59.9, 56.1, 31.9, 29.6, 29.6, 29.5, 29.3, 26.0, 22.6, 22.2, 13.3; 31 P (162 MHz; D 6 -DMSO): δ -2.31 ; HRMS (ESI) calcd for C 34 H 63 N 3 0 18 P + [M+H] + 832.3839, found 832.7735.

Synthesis of S16 (CMG121) [00249] To a solution of TRIS (50 niM in H 2 0, pH = 8.0, 2.5 niL) were sequentially added MnCl 2 (50 niM in H 2 0, 2.5 niL), H 2 0 (5 niL), GalT Y289L (Ramakrishanan et al. J. Biol Chem. 2002, 277, 20833; 1 mg/mL in 50 niM TRIS buffer, pH = 8.0, 1.88 mL,), UDP-N- azidoacetylgalactosamine (UDP-GaWAz, prepared according to Hang et al. J. Am. Chem. Soc. 2003, 126, 6; 20 niM in H 2 0, 500 μί), disaccharide S15 (10 mM in H 2 0, 125 μί), and calf intestinal alkaline phosphatase (CIP, 1000 U, 25 μί, Roche Diagnostics GmbH,

Mannheim, Germany). The mixture was gently mixed and kept at 37 °C for 60 h. MeOH (7.5 mL) was added, and the mixture was vortexed and centrifuged (15 min at 5000 x g) to pellet precipitated proteins. The supernatant was concentrated in vacuo, and the residue obtained was loaded onto a Phenomenex Strata C-18 column preequilibrated with H 2 0. The column was eluted with H 2 0 to obtain unreacted UDP-GaWAz. Elusion with H 2 0/MeOH 1/9 provided the desired trisaccharide in near quantitative yield.

[00250] HPLC retention time: 11.0 min (Phenomenex Luna, 3u-C18 50 x 2 mm 2 3 micron, 0.3 mL/min, gradient 30-75% MeCN+0.1% HC0 2 H in H 2 O+0.1% HC0 2 H over 6 min, then to 99% MeCN+0.1% HC0 2 H over 5 min) LRMS (ESI) calcd for C 42 H 73 N 7 0 23 P [M-H] 1074.5, found 1074.3.

[00251] The GaLVAz-trisaccharide previously obtained (4.0 mg, 3.8 μιηοΐ) was dissolved in DMF (400 μΐ.) and CuS0 4 (0.9 M in H 2 0, 4.0 μΐ,, 3.6 μπιοΐ) and Na-ascorbate (1.8 M in H 2 0, 4.0 μί, 7.2 μιηοΐ) were added. The mixture was stirred at room temperature, and after 24 h another portion of CuS0 4 (0.9 M in H 2 0, 4.0 μΐ,, 3.6 μτηοΐ) and Na-ascorbate (1.8 M in H 2 0, 4.0 μί, 7.2 μιηοΐ) was added. After 48 the solution was concentrated in vacuo and the residue was purified by colum chromatography (C-18, gradient 30-90% MeOH in H 2 0; then 10 % 2M NH 3 in MeOH to elute the product) to obtain the title compound (4.9 mg, 3.3 μτηοΐ, 87 %).

[00252] HPLC/MS retention time: 10.8 min (Phenomenex Luna, 3u-C18 50 x 2 mm 2 3 micron, 0.3 mL/min, gradient 30-75% MeCN+0.1% HC0 2 H in H 2 O+0.1% HC0 2 H over 6 min, then to 99% MeCN+0.1% HC0 2 H over 5 min); LRMS (ESI) calcd for C 6 6H 88 N 8 0 2 9P ~ [M-H] " 1487.5, found 1487.3; 1H NMR (600 MHz; CD 3 OD): δ 8.51 (s, 1H), 8.28-8.27 (m, 1H), 8.11 (s, 1H), 7.35 (d, J = 7.5, 1H), 6.72 (m, 2H), 6.65 (d, J = 8.5, 2H), 6.60-6.59 (m, 2H), 6.01 (br s, 1H), 5.29 (br s, 1H), 5.05 (t, J = 6.8, 1H), 4.77 (m, 2H), 4.61-4.56 (m, 2H), 4.38 (d, J = 7.5, 1H), 4.29-4.25 (m, 2H), 4.15-4.05 (m, 2H), 4.05-3.99 (m, 2H), 3.86-3.76 (m, 4H), 3.76-3.60 (m, 13H), 3.48 (br s, 1H), 2.02 (s, 3H), 1.65-1.64 (m, 6H), 1.48-1.42 (m, 12H), 1.31 (m, 38H), 0.92 (t, J = 5.4, 3H); HSQC ( 13 C signals, 125 MHz, CD 3 OD): δ 129.1, 124.1, 112.9, 102.4, 102.3, 79.5, 75.8, 75.0, 73.3, 73.0, 71.5, 71.2, 70.5, 70.0, 68.3, 67.0, 61.2, 53.4, 52.0, 35.1, 31.8, 29.5, 26.0, 23.5, 22.6, 21.9, 13.1; HRMS (ESI) calcd for C 66 H 9 oN 8 0 29 P + [M+H] + 1489.5546, found 1489.5420.

(g) Et 3 SiH, triflic acid, then: Ac 2 0, Py., cat. DMAP, DCM; (h) H 2 , 10% Pd-C, 1wt% CI 3 CC0 2 H/MeOH; (i) TEMPO, Phl(OAc) 2 , DCM-H 2 0 (2:1); (j) CIC0 2 /Bu, NMM, THF then NH 3 , -PrOH; (k) CAN, ACN-H 2 0 (4:1); (I) SS, tetrazole, S-3A, ACN, then f-Bu0 2 H; (m) Zn, Ac 2 0, AcOH, THF; (n) LiOH, THF-MeOH-H 2 0 (3:3:1); (o) UDP-GalNAz, i,4-GalT; (p) Pd(OH) 2 /C, MeOH, H 2 ; (q) fluoresceinisothiocyanate

Synthesis of S17

[00253] Disaccharide Sll (650 mg, 679 μιηοΐ) was dissolved in dichloromethane (13.6 mL) and HSiEt 3 (325 μί, 237 mg, 2.04 mmol) and molecular sieves 3 A (ca. 250 mg) were added. The suspension was stirred for 30 min at room temperature and then cooled to -78 °C before triflic acid (204 μί, 347 mg, 2.31 mmol) was added dropwise. After 2.5 h at -78 °C, NaHC0 3 (sat.) was added and the mixture was allowed to reach room temperature. The phases were parted and the aqueous layer was extracted once with dichloromethane. The combined organic layers were washed with brine and dried over Na 2 S0 4 . Removal of the solvent in vacuo provided the corresponding C6-benzyl ether of Sll in high purity, which was dissolved in dichloromethane (3.4 mL), and pyridine (164 μί, 161 mg, 2.04 mmol),

DMAP (8.3 mg, 0.07 mmol), and Ac 2 0 (94 μΐ,, 104 mg, 1.02 mmol) were added. After 3 h at room temperature the reaction was diluted with dichloromethane and washed with HCl (1 M), H 2 0, NaHC0 3 (sat.), and NaCl (sat.). The organic layers were dried over Na 2 S0 4 and then concentrated in vacuo. Purification of the residue yielded acetate S17 (539 mg, 538 μιηοΐ, 79 % over 2 steps) as colorless solid.

[00254] 1H NMR (500 MHz; CDC1 3 ): δ 7.39 (t, J = 7.8, 2H), 7.34-7.25 (m, 8H), 7.01 (d, J = 9.0, 2H), 6.79 (d, J = 9.0, 2H), 5.64 (d, J = 2.5, 1H), 5.26 (t, J = 10.1, 1H), 5.14-5.10 (m, 2H), 5.01 (d, J = 7.2, 1H), 4.90-4.88 (m, 2H), 4.81 (d, J = 12.2, 1H), 4.56 (d, J = 12.0, 1H), 4.44 (d, J = 12.0, 1H), 4.29 (d, J = 12.2, 1H), 4.23 (dd, J = 12.2, 3.3, 1H), 4.11 (dd, J = 9.8, 7.7, 1H), 3.94 (t, J = 6.4, 1H), 3.90-3.86 (m, 2H), 3.77 (s, 3H), 3.70-3.66 (m, 2H), 3.59-3.55 (m, 2H), 2.11 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H); 13 C NMR (125 MHz, CDC1 3 ): δ 171.1, 170.9, 170.5, 169.6, 155.7, 154.2, 152.7, 151.5, 151.2, 138.1, 137.7, 129.8, 129.3, 128.7, 128.5, 128.2, 128.1, 126.6, 125.6, 121.5, 118.3, 114.8, 101.9, 100.8, 95.7, 74.5, 73.8, 72.1, 72.0, 68.4, 67.7, 67.2, 61.8, 56.9, 55.9, 21.0, 20.9, 20.8, 20.8; HRMS (ESI) calcd for C 44 H 48 Cl 3 N0 19 Na + [M+Na] + 1022.1779, found 1022.1707.

Synthesis of S18

[00255] In a 10 mL roundbottom flask S17 (56.4 mg, 56.3 μιηοΐ) was dissolved in a solution of 1% trichloroacetic acid in methanol (2.8 mL, 2.4 equiv. of TCA), 10% Pd/C (11.9 mg) was added and the atmosphere above the solution was exchanged to H 2 . After stirring for 15 min the solution was filtered through a pad of Celite and poured into NaHC0 3 (sat.). The mixture was extracted with EtOAc (2 x), washed with NaCl (sat.), and dried over MgS0 4 . Evaporation of the solvent in vacuum yielded the free C6-alcohol in quantitative yield.

[00256] The alcohol previously obtained (51.3 mg, 56.3 μιηοΐ) was dissolved in dichloromethane (0.2 mL) and water (0.1 mL). After addition of TEMPO (1.8 mg, 1.2 μιηοΐ) and diacetoxy iodobenzene (45.0 mg, 140 μιηοΐ) the mixture was stirred at room temperature for 1.5 h. Na 2 S 2 0 3 (sat.) solution was added, and the reaction mixture was extracted with EtOAc (2 x). The combined organic layers were washed with NaCl (sat.) and dried over MgS0 4 . The residue obtained after concentration of the solution in vacuum was purified by column chromatography (Si0 2 , petrol ether/EtOAc/1% AcOH 2/1 1/4) to obtain pure C6- carboxylic acid (36.8 mg, 39.8 μιηοΐ, 71% over 2 steps).

[00257] The C6-carboxylic acid (22.0 mg, 23.8 μιηοΐ) was dissolved in THF (0.6 mL) and N-methyl-morpholine (5.2 μί, 47 μιηοΐ), and the solution was cooled to -30 °C before isobutylchloroformate (6.2 μί, 47 μιηοΐ) was added. After 30 min the turbid mixture was treated with 7M NH 3 solution in MeOH (14 iL) and stirred at 0 °C for another 30 min. The mixture was poured into NH 4 C1 and extracted with EtOAc (2x). The organic layers were washed with NaCl (sat.) and dried over MgS0 4 before they were concentrated in vacuo. Column chromatographic purification of the residue (Si0 2 , petroleum ether/EtOAc 2/1 1/4) gave S18 as colorless solid (21.8 mg, 23.6 μιηοΐ, 99%).

Synthesis of S19

[00258] Deprotection of the PMP group was achieved by treatment of a solution of S18 (21.8 mg, 23.8 μιηοΐ) in MeCN (1.2 mL) and water (0.3 mL) with cerium (IV) ammonium nitrate (40.2 mg, 73.3 μιηοΐ). After stirring at room temperature for 1 h the mixture was concentrated in vacuo, and the residue was purified by column chromatography (Si0 2 , CHCl 3 /MeOH 98/2 -» 95/5) to give the free lactol as colorless solid (12.8 mg, 15.6 μπιοΐ, 66%). This material was dried by azeotropic distillation with toluene (2 x), dissolved in a solution of tetrazole in MeCN (0.34 M, 0.28 mL), and molecular sieves 3 A (43 mg) were added. The mixture was stirred at room temperature for 15 min and then cooled to 0 °C before a solution of S5 was added (0.2 M in MeCN, 0.15 mL). After 1 h at 0 °C, T3uOOH (5.5 M in decane, 23 μί) was added, and the suspension was stirred for another hour before P(OMe) 3 (22 μί, 186 μιηοΐ) was added. The mixture was filtered over Celite, and the residue was concentrated in vacuo. Purification of the residue by column chromatography (Si0 2 , CHCl 3 /MeOH 97/3 96/4) gave S19 as colorless solid as a mixture of phosphate diastereomers (16.0 mg, 12.7 μτηοΐ, 81%).

Synthesis of S20

[00259] Phosphoglycerate S19 (7.6 mg, 6.0 μτηοΐ) was dissolved in a mixture of THF (0.3 mL), Ac 2 0 (0.1 mL), and AcOH (0.2 mL) and activated zinc (70.1 mg) was added in portions over the course of 1.5 d. The suspension was filtered through a pad of Celite, concentrated in vacuo, and subjected to column chromatography (Si0 2 , CHCl 3 /MeOH 96/4). The product obtained was dissolved in a mixture of THF (0.66 mL), MeOH (0.22 mL), and H 2 0 (0.22 mL) and LiOH (1 M in H 2 0, 66 μί, 66 μτηοΐ) was added. After stirring at room temperature for 1.5 h, AcOH (4 μί, 7 μτηοΐ) was added, and the solution was concentrated in vacuo. Purification of the residue by column chromatography (CI 8, gradient 25-75% MeOH in H 2 0 + 0.1 % AcOH) gave S20 (3.3 mg, 4.3 μτηοΐ, 71 % over 2 steps) as colorless solid.

Synthesis of S21

[00260] To a solution (2 mL) containing HEPES (50 mM, pH = 7.5), NaCl (100 mM), MnCl 2 (1 mM), S20 (1 mM), UDP-N-azidoacetylgalactosamine (UDP-GaWAz, prepared according to Hang et al. J. Am. Chem. Soc. 2003, 126, 6; 2 mM) were added calf intestinal alkaline phosphatase (1000 U, 5 μί, Roche Diagnostics GmbH, Mannheim, Germany) and GalT Y289L (Ramakrishanan et al. J. Biol Chem. 2002, 277, 20833, 150 μg), and the mixture was incubated at 37 °C for 2 h. The reaction was quenched by precipitation of the proteins by addition of MeOH (4 mL), was centrifuged, and the supernatant was passed over a 30 mg Strata-X C18 column (Phenomenex). The column was eluted with water (2 mL) to rinse off salts, UMP, and UDP-GaWAz, and the desired trisaccharide S21 was eluted with MeOH/H 2 0 8/2. The material obtained was directly used in the next reaction.

Synthesis of S22 [00261] Azide S21 (3.8 mg, 3.8 μηιοΐ) was dissolved in a mixture of MeOH (210 μΙ_), water (10 μΙ_), and HOAc (2 M, 2 μΙ_) and Pd(OH) 2 /C (1 mg) was added. The atmosphere above the solution was exchanged for H 2 , and the mixture was stirred vigorously for 48 h. The mixture was filtered over a plug of celite, the residue was thoroughly washed with MeOH/H 2 0 4/1, and the filtrate was concentrated in vacuo. The residue obtained was suspended in DMF (76 |jL) and treated with diisopropylethylamine (5.3 |jL) and fluorescein isothiocyanate (1.7 mg, 4.6 μιηοΐ). After 16 h at room temperature, the solution was concentrated in vacuum, and the residue was purified by column chromatography (Si0 2 , CHCl 3 /MeOH + 0.1% AcOH 9/1 -> 8/2; then CHCl 3 /MeOH/H 2 0 60/40/8) to obtain the title compound (2.0 mg, 1.5 μιηοΐ, 40% over 2 steps) as orange solid.

[00262] HPLC/MS retention time: 11.6 min (Phenomenex Luna, 3u-C 18 50 x 2 mm 2 3 micron, 0.3 mL/min, gradient 25-45% MeCN+0.1% HC0 2 H in H 2 O+0.1% HC0 2 H over 6 min, then to 99% MeCN+0.1% HC0 2 H over 6.5 min); LRMS (ESI) calcd for

C 6 iH77N 5 0 2 7PS ~ [Μ-ΗΓ 1374.4, found 1374.3; HRMS (ESI) calcd for C 6 iH79N 5 0 2 7PS + [M+H] + 1376.4416, found 1376.4224.

Assay Development

Enzyme titration with probe S16 (CMG121)

[00263] Solution containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 0.3% DMSO, 75 nM S16, and bacterial glycosyltransferase (E. coli PBPlb c=2.2 uM; E. faecalis PBP2a c=5.1 uM; S. aureus SgtB c=2.1 uM) were allowed to equilibrate for 30 min at 0 °C and then serially diluted (1/1 dilutions) into buffer containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 0.3% DMSO, and 75 nM S16. After equilibration at 0 °C for 30 min the 20 of the solutions were transferred to a black 384 well plate (Corning NBS Low Volume) and fluorescence polarization (FP, ex: 480 nm; em: 535 nm) was measured using a Perkin Elmer Envision microplate reader. Each series was performed in duplicate and the data was plotted FP vs. concentration of enzyme. For determination of the KD, the average FP values were converted to fluorescence anisotropy and fitted to the standard equation describing an equilibrium L + E <-> LE (L = ligand; E = enzyme; LE = ligand enzyme complex) using GraphPad Prism 5.0 (GraphPad Software, Inc.; La Jolla, CA, USA). The K D values for probe S16 are: E. coli PBPlb: 0.15; E. faecalis PBP2a: 0.38;

S. aureus SgtB: 0.18. Probe CMG121 (75 nM) is displaced from S. aureus SgtB (0.2 μΜ) by addition of either moenomycin or the weaker PGT inhibitor disaccharide S15, as evidenced by reduction of FP. Ki (1) = 0.64 μΜ; Ki (3) = 3.17 μΜ. As used herein, mP: millipolarization; KD: dissociation constant; Ki: inhibitor constant. The IC 50 values for probe S16 are E. coli PBPlb: 600 nM; S. aureus SgtB: 31 nM.

[00264] Solution containing 10 niM TRIS (pH = 8.0), 100 niM NaCl, 0.3% DMSO, 75 nM Probe CMG121, and bacterial glycosyltransferase (E. coli PBPlb c=2.2 uM; E. faecalis PBP2a c=5.1 uM; S. aureus SgtB c=2.1 uM) were allowed to equilibrate for 30 min at 0 °C and then serially diluted (1/1 dilutions) into buffer containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 0.3% DMSO, and 75 nM Probe CMG121. After equilibration at 0 °C for 30 min the 20 of the solutions were transferred to a black 384 well plate (Corning NBS Low Volume) and fluorescence polarization (FP, ex: 480 nm; em: 535 nm) was measured using a Perkin Elmer Envision microplate reader. Each series was performed in duplicate and the data was plotted FP vs. concentration of enzyme. For determination of the KD, the average FP values were converted to fluorescence anisotropy and fitted to the standard equation describing an equilibrium L + E <-> LE (L = ligand; E = enzyme; LE = ligand enzyme complex) using GraphPad Prism 5.0 (GraphPad Software, Inc.; La Jolla, CA, USA). The K D values for probe S16 are

Validation of the essay

[00265] To equilibrated solutions containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 75 nM S16, and bacterial glycosyltransferase (E. coli PBPlb c = 0.1-0.15 uM; E. faecalis PBP2a c = 0.38-0.46 uM; S. aureus SgtB c = 0.2-0.25 uM) was added the test compound in DMSO or DMSO/H20 solutions (stock solutions were typically 2 mM) to obtain a final

concentration of test compound of ca. 200 uM. These solutions were serially diluted (1/1 dilutions) into buffer containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 75 nM Probe CMG121, and bacterial glycosyl transferase (E. coli PBPlb c = 0.1-0.15 uM; E. faecalis PBP2a c = 0.38-0.46 uM; S. aureus SgtB c = 0.2-0.25 uM). After equilibration at 0 °C for 30 min the 20 μΐ ^ of the solutions were transferred to a black 384 well plate (Corning NBS Low Volume) and fluorescence polarization (FP, ex: 480 nm; em: 535 nm) was measured using a Perkin Elmer Envision microplate reader. Each series was performed in duplicate and the data was plotted FP vs. concentration of test compound.

Determination of Z'-value (Zhang et al. J. Biomol. Screen 1999, 4, 67-73.)

[00266] Using a Matrix WellMate, a black 384 well plate (Corning NBS Low Volume) was filled (10 μΐ ^ per well) with equilibrated solutions containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 75 nM S16, and bacterial glycosyltransferase (E. coli PBPlb c = 0.2 uM; E. faecalis PBP2a c = 0.46 uM; S. aureus SgtB c = 0.25 uM). From a second 384 well plate, filled half with DMSO and half with 10 mM disaccharide S15, 100 nL were transferred to the test plate by pin transfer. After 10 min at room temperature fluorescence polarization (FP, ex: 480 nm; em: 535 nm) was measured using a Perkin Elmer Envision microplate reader. The following Z' -values were obtained and were stable over a period of at least 30 min:

E. coli PBPlb: 0.70

E. faecalis PBP2a: 0.58

S. aureus SgtB: 0.64

Protocol for high-throughput screening

[00267] Assay solutions consisted of: 1.0-1.5 μΜ S. aureus ΔΤΜ SgtB (depending on protein batch), 75 nM probe CMG121, 10 mM Tris pH 8.0, 100 mM NaCl. The assay was carried out in 384- well plates (Corning 3820) dispensing 10 μΐ ^ of assay solution per well, followed by pin transfer of 100 nL of each experimental compound from library plates by a stainless steel pin array. The assay was subsequently adapted to 1536-well plates (Greiner 782076), which were filled with 3 μΐ ^ assay solution per well, followed by a 33 nL pin transfer of experimental compounds. The final concentration of pertubator was ca. 100 μΜ. A solution containing 1.0-1.5 μΜ S. aureus ΔΤΜ SgtB (depending on protein batch), 75 nM probe CMG121, 10 mM Tris pH 8.0, 100 mM NaCl and 20 μΜ moenomycin A was used as positive control. All wells in row 24 (384-well plate) or rows 47 and 48 (1536-well plate) were filled with 10 μΐ ^ (384-well plate) or 3 μΐ ^ (384-well plate) of this solution, respectively. Assay plates were incubated for 30 minutes at 4 °C after the addition of experimental compounds and then read on a PerkinElmer En Vision microplate reader (Excitation: 480 nm, Emission: 535 nm). Library plates were screened in duplicate, with both assay plates in a given set prepared on the same day.

[00268] For each plate, an adjusted FP threshold value was calculated using the formula: [plate average negative control FP - 0.9 * (average negative control FP - average positive control FP)]. Wells were considered positive if FP for both replicates was < threshold value (10% of the adjusted plate average negative control FP) and fluorescence intensity was below detector saturation.

Protocol for secondary assay

[00269] A black 384 well plate (Corning NBS Low Volume No. 3820) was filled (10 μΐ, per well) with an equilibrated solution containing 10 mM TRIS (pH = 8.0), 100 mM NaCl, 75 nM disaccharide S15, and 1.0-1.5 μΜ S. aureus SgtB (depending on protein batch). Using an HP D300 Digital Dispenser, for each compound a 1/1 dilution series (12 wells) of the primary hit compound in DMSO (normalized to 1 μϊ ^ with DMSO) was prepared and added to the aforementioned assay solution. The plate was incubated at 4 °C for 30 min and read with an Perkin Elmer En Vision microplate reader as described above. The dilution series was performed in duplicate.

For determination of the K ; , the average FP values were first converted to fluorescence anisotropy. Using GraphPad Prism 5.0 (GraphPad Software, Inc.; La Jolla, CA, USA), this data was fitted to the equation describing the competition for two ligands for a common binding site:

[RL]: cone, of receptor- ligand complex; [A]: cone, of test compound; [L]: cone, of probe = 75 nM; K D : dissociation constant for the probe compound (determined above)

In vitro PGT Inhibition Assays (Chen et al., Proc. Natl. Acad. Sci. USA 2003, 100, 5658- 5663; Wang et al., J. Am. Chem. Soc. 2011, 133, 8528-8530)

In vitro inhibition of S. aureus SgtB:

[00270] A solutions of S. aureus SgtB (50 nM) in 12.5 mM HEPES (pH = 7.5), 2 mM MnCl 2 , and 250 μΜ tween-80 (8 μί) were incubated with DMSO solutions containing the inhibitor of interest in different concentrations (1 μί) for 20 min. Then 14 C-labelled lipid II (1 μΐ,, 40 μΜ, 14 C/ 12 C 1/3) was added and the polymerization reaction was allowed to proceed for 25 min at room temperature. The reaction was quenched with 10 μί of a solution of moenomycin (1 μΜ) in 10% triton-X reduced and the remaining lipid II was separated from peptidoglycan (PG) using paper strip chromatography (isobutyric acid / 1M NH 4 OH 5/3). Using a scintillation counter the ratio of radioactivity in PG to total radioactivity was determined and plotted vs. inhibitor concentration. IC 50 S were determined using the curve fitting program GraphPad Prism 5.0 (GraphPad Software, Inc.; La Jolla, CA, USA).

In vitro inhibition of S. aureus PBP2:

[00271] Solutions of S. aureus PBP2 (1.2 μΜ) in 50 mM HEPES (pH = 5.0), 50 mM CHES, 50 niM AcOH, 10 niM CaCl 2 , 50 niM MES, and 1000 U/min PenG (8 μί) were incubated with DMSO solutions containing the inhibitor of interest in different

concentrations (1 μί) for 20 min. Then 14 C-labelled lipid II (1 μί, 40 μΜ, 14 C/ 12 C 1/3) was added and the polymerization reaction was allowed to proceed for 25 min at room

temperature. The reaction was quenched and processed as described above.

In vitro inhibition of E. coli PBPlb and E. faecalis PBP2a

[00272] Solutions of the PGT (50 nM) in 50 mM HEPES (pH = 7.5), 10 mM CaCl 2 , and 1000 U/min PenG (8 \L) were incubated with DMSO solutions containing the inhibitor of interest in different concentrations (1 iL) for 20 min. Then 14 C-labelled lipid II (1 μΐ,, 40 μΜ, 14 C/ 12 C 1/3) was added and the polymerization reaction was allowed to proceed for 25 min at room temperature. The reaction was quenched and processed as described above.

[00273]

OTHER EMBODIMENTS

[00274] This application refers to various issued patents, published patent applications, journal articles, books, manuals, and other publications, all of which are incorporated herein by reference.

[00275] The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.