Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS FOR PATHOGEN DETECTION AND DISEASE MANAGEMENT ON MEATS, PLANTS, OR PLANT PARTS
Document Type and Number:
WIPO Patent Application WO/2016/040595
Kind Code:
A1
Abstract:
Provided are methods for detecting pathogens affecting meats, plants, or plant parts. Also provided are methods for predicting disease and/or disease management for meats, plants, or plant parts. In some embodiments, methods provided comprise nucleic acid based amplification. Examples of such nucleic acid based amplification methods include quantitative polymerase chain reaction (qPCR) and recombinase polymerase amplification (RPA).

Inventors:
BEESON IV WILLIAM T (US)
MACLEAN DANIEL (US)
COEN CHRISTINA (US)
Application Number:
PCT/US2015/049377
Publication Date:
March 17, 2016
Filing Date:
September 10, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGROFRESH INC (US)
International Classes:
C12Q1/68; C12Q1/04; C12R1/645
Foreign References:
US20110177506A12011-07-21
US20110151458A12011-06-23
Other References:
DIGUTA ET AL.: "Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes.", FEMS MICROBIOL LETT., vol. 313, no. 1, December 2010 (2010-12-01), pages 81 - 87, XP055417298
MESSELHAUSSER ET AL.: "Emetic Bacillus cereus Are More Volatile Than Thought: Recent Foodborne Outbreaks and Prevalence Studies in Bavaria (2007-2013).", BIOMED RESEARCH INTERNATIONAL., vol. 2014, 8 May 2014 (2014-05-08), pages 1 - 9, XP055417307
BILLARD ET AL.: "The Allele-Specific Probe and Primer Amplification Assay, a New Real-Time PCR Method for Fine Quantification of Single-Nucleotide Polymorphisms in Pooled DNA.", APPL ENVIRON MICROBIOL., vol. 78, no. 4, February 2012 (2012-02-01), pages 1063 - 1068, XP055066678, DOI: doi:10.1128/AEM.06957-11
GOLINO ET AL.: "Guide to the Strawberry Clean Plant Program.", FOUNDATION PLANT SERVICES, October 2008 (2008-10-01), University of California, One Shields Avenue, XP009500930
RIGOTTI ET AL.: "Characterization of molecular markers for species and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria X ananassa Duch.) using PCR.", FEMS MICROBIOLOGY LETTERS., vol. 209, no. 2, April 2002 (2002-04-01), pages 169 - 174, XP055417324
DATABASE GenBank 24 May 2013 (2013-05-24), "Botryotinia fuckeliana T4 SuperContig_330_1 genomic supercontig", XP055417345, retrieved from ncbi Database accession no. FQ790281
DATABASE GenBank 24 May 2013 (2013-05-24), "Botryotinia fuckeliana T4 Supercontig_63_1 genomic supercontig", XP055417360, retrieved from ncbi Database accession no. FQ790263
DATABASE GenBank 30 July 2009 (2009-07-30), "Botrytis cinerea 28S rRNA gene , intergenic spacer and 18S rRNA gene , strain SAS56", XP055417361, retrieved from ncbi Database accession no. AM 233400
See also references of EP 3191609A4
Attorney, Agent or Firm:
ADDISON, Bradford G. et al. (11 South Meridian StreetIndianapolis, Indiana, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

A method of detecting at least one pathogen affecting meats, plants, or plant parts, comprising:

(a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence; and

(c) determining presence or absence of the at least one pathogen from the sample.

The method of claim 1, wherein the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase

amplification (RPA).

The method of claim 1, wherein the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

The method of claim 1, wherein the at least one pathogen is selected from the group consisting of Acremonium spp., Albugo spp., Alternaria spp., Ascochyta spp.,

Aspergillus spp., Botryodiplodia spp., Botryospheria spp., Botrytis spp., Byssochlamys spp., Candida spp., Cephalosporium spp., Ceratocystis spp., Cercospora spp., Chalara spp., Cladosporium spp., Colletotrichum spp., Cryptosporiopsis spp., Cylindrocarpon spp., Debaryomyces spp., Diaporthe spp., Didymella spp., Diplodia spp., Dothiorella spp., Elsinoe spp., Fusarium spp., Geotrichum spp., Gloeosporium spp., Glomerella spp., Helminthosporium spp., Khuskia spp., Lasiodiplodia spp., Macrophoma spp., Macrophomina spp., Microdochium spp., Monilinia spp., Monilochaethes spp., Mucor spp., Mycocentrospora spp., Mycosphaerella spp., Nectria spp., Neofabraea spp., Nigrospora spp., Penicillium spp., Peronophythora spp., Peronospora spp.,

Pestalotiopsis spp., Pezicula spp., Phacidiopycnis spp., Phoma spp., Phomopsis spp., Phyllosticta spp., Phytophthora spp., Polyscytalum spp., Pseudocercospora spp., Pyricularia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Sclerotium spp., Sclerotinia spp., Septoria spp., Sphaceloma spp., Sphaeropsis spp., Stemphyllium spp., Stilbella spp., Thielaviopsis spp., Thyronectria spp., Trachysphaera spp., Uromyces spp., Ustilago spp., Venturia spp., Verticillium spp. and combinations thereof.

5. The method of claim 1, wherein the at least one pathogen is selected from the group consisting of Erwinia spp., Pantoea spp., Pectobacterium spp., Pseudomonas spp., Ralstonia spp., Xanthomonas spp.; Salmonella spp., Escherichia spp., Lactobacillus spp., Leuconostoc spp., Listeria spp., Shigella spp., Staphylococcus spp., Candida spp., Debaryomyces spp., Bacillus spp., Campylobacter spp., Clavibacter spp., Clostridium spp., Cryptosporidium spp., Giardia spp., Vibrio spp., Yersinia spp. and combinations thereof.

6. The method of claim 1, wherein the at least one pathogen comprises Botrytis cinerea.

7. The method of claim 1, wherein the plants or plant parts are selected from the group consisting of banana, pineapple, citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, citrus, and berries.

8. The method of claim 1, wherein the plants or plant parts comprise berry or berries.

9. The method of claim 8, wherein the berries are selected from the group consisting of strawberry, blueberry, raspberry, blackberry, cranberry, and combinations thereof.

10. The method of claim 1, wherein the at least one target sequence is selected from SEQ ID NOs: 1-13.

11. The method of claim 1, wherein the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 14-29.

12. The method of claim 1, wherein the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45.

13. The method of claim 1, wherein the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61.

14. A method of detecting at least one pathogen affecting meats, plants, or plant parts, comprising: (a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence; and

(c) determining risk level of the at least one pathogen from the sample based on a multi- tier risk system.

15. The method of claim 14, wherein the multi-tier risk system comprises three tiers

including low risk, medium risk, and hidi risk.

16. A method of detecting at least one pathogen affecting meats, plants, or plant parts, comprising:

(a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence; and

(c) determining number of spores of the at least one pathogen in the sample.

17. A diagnostic kit for detecting at least one pathogen affecting plants or plant parts,

comprising a plurality of oligonucleotide primers comprises at least on sequence selected from SEQ ID NOs: 14-29,

18. A diagnostic kit for detecting at least one pathogen affecting plants or plant parts,

comprising a plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45,

19. A diagnostic kit for detecting at least one pathogen affecting meats, plants, or plant parts, comprising a plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61,

20. A combination of oligonucleotide primers for detecting at least one pathogen affecting meats, plants, or plant parts, wherein the primers have different sensitivity for detecting at least one target sequences.

21. The combination of oligonucleotide primers of claim 20, wherein the at least one target sequence is selected from SEQ ID NOs: 1-13.

22. A method for sampling calyx from strawberry for detecting at least one pathogen affecting plants or plant parts, comprising:

(a) removing the calyx from the strawberry;

(b) homogenizing the removed calyx, and

(c) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence,

23. The method of claim 22, wherein the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase amplification (RPA).

24. The method of claim 22, wherein the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

Description:
METHODS FOR PATHOGEN DETECTION AND DISEASE MANAGEMENT

ON MEATS, PLANTS, OR PLANT PARTS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit under 35 USC § 119(e) of U.S. Provisional Application Serial No. 62/049,080, filed on September 11, 2014, the entire disclosure of which is incorporated herein by reference.

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002] The official copy of the sequence listing is submitted electronically via EFS Web as an ASCII formatted sequence listing with a file named "242181_ST25.txt", created on, September 10, 2015, and having a size of 17.5 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0003] Various fruits after harvest can be subject to pathogens and disease development as a consequence. For examples, berries including strawberry are typically hand-pick upon harvest and are subject to mold and later become rotten as a consequence.

[0004] Thus, there remains a need to develop methods for detecting pathogens on meats, plants, or plant parts. In addition, detection of pathogens can enable better disease management for meats, plants, or plant parts if interest.

SUMMARY OF THE INVENTION

[0005] Provided are methods for detecting pathogens affecting meats, plants, or plant parts. Also provided are methods for predicting disease and/or disease management for meats, plants, or plant parts. In some embodiments, methods provided comprise nucleic acid based amplification. Examples of such nucleic acid based amplification methods include quantitative polymerase chain reaction (qPCR) and recombinase polymerase amplification (RPA).

[0006] Specifically, provided are sequences of oligonucleotide primer sets for detection of Botrytis. In one embodiment, the primer sets provided can be used for RPA.

[0007] In addition, combinations of primers at varying sensitivities for Botrytis detection are provided for disease management for determining risk level of disease development related to Botrytis infection. For example, a three tier risk levels consisting of low risk, medium risk, and high risk can be provided.

[0008] Also provided are methods of sampling calyx of strawberries for Botrytis detection. BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows representative results of initial RPA primer screen for the Botrytis cinerea Ribosomal IGS target. Melt curve analysis shows a strong amplification primer pair (R1F1) and good amplification at 10 copies of Botrytis cinerea genomic DNA.

[0010] FIG. 2A and FIG. 2B show representative photos of BioAnalyzer analysis using R1F1 primers (FIG. 2A) or R1F6 primers (FIG. 2B). For FIG. 2A, the desired amplicon is -120 base pairs. The negative control shows no background desired amplicon product. Strong amplification is observed at 5 Botrytis genomic DNA copies. No significant artifact amplification is observed at 10 Botrytis genomic DNA copies, showing the higher sensitivity of the R1F1 primer pair when compared to the R1F6 primer pair. For FIG. 2B, the desired amplicon is -148 base pairs. The negative control shows no background desired amplicon product. Strong amplification is observed at 200-500 Botrytis genomic DNA copies. No amplification is observed at 50 Botrytis genomic DNA copies.

[0011] FIG. 3 shows representative photos of BioAnalyzer analysis of the products of RPA reactions with R1F1 and R1F6. The reactions are performed with forward primer Fl or F6.

[0012] FIG. 4 shows fluorescence as a function of amplification time. In the absence of target DNA, there can still be an increase in fluorescence.

[0013] FIG. 5 shows electropherograms for the RPA and PCR reaction products of the R2F3 primer pair. Broad (PCR) or multiple products (RPA) are identified.

[0014] FIG. 6 shows electropherograms of the R1F1 and R1F3 RPA reaction amplicons. With no template present, multiple artifact amplicons are present. With 250 copies of Botrytis cinerea gDNA the desired amplicon is specifically produced.

[0015] FIG. 7 shows analysis of RPA reaction products for proof-of-concept experiment. The negative sample only contained the RPA mastermix and primer pair. The calyx #1 and calyx #2 samples show the amplification products from two separately prepared calyxes. The calyx + BC samples are for calyx that is spiked with intact Botrytis spores. The BC only sample contained only Botrytis spores and no calyx material.

[0016] FIG. 8 shows primers ordered for development of RPA assay for Target 1. The primers listed in the lower panel were purchased as the reverse complement of the sequence shown.

[0017] FIG. 9 shows ribosomal IGS primers ordered for RPA reactions.

DETAILED DESCRIPTION OF THE INVENTION

[0018] Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.

[0019] Diagnostic kits for detecting pathogens (for example Botrytis cinerea) are provided. Such diagnostic kits can be used by users/participants in the berry value chain (for example strawberry) to predict risk of Botrytis rot. In one embodiment, the diagnostic kits provided comprise an isothermal nucleic acid based test, for example recombinase polymerase amplification (RPA).

[0020] A risk model that correlates the amount of Botrytis on the sample with the probability of spoilage is also provided. In one embodiment, the diagnostic kits provided can detect from 10 to 10,000 spores; from 25 to 5,000 spores; from 50 to 2,500 spores; or from 100 to 1,000 spores of pathogen per strawberry calyx.

[0021] In one embodiment, the diagnostic kits provided enable detection of presence or absence of pathogens. In another embodiment, the diagnostic kits provided also enable quantitative and/or semi-quantitative (for example a multi-tier risk level system) detection of pathogens. In a further embodiment, the capability of quantitative and/or semi-quantitative detection is enabled by use/combinations of multiple primer sets of differing sensitivities for an isothermal nucleic acid based test, for example RPA.

[0022] The recombinase polymerase amplification (RPA) has been previously disclosed in U.S. Patent Nos. 7,485,428, 7,666,598, and 7,763,427, the contents of which are thereby incorporated by reference in their entries.

[0023] In one aspect, provided are methods for detecting at least one pathogen affecting meats, plants, or plant parts. The methods comprise

(a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence; and

(c) determining presence or absence of the at least one pathogen from the sample.

[0024] In one embodiment of the methods provided, the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase amplification (RPA). In another embodiment, the nucleic acid based amplification comprises isothermal nucleic acid amplification. In a further embodiment, the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

[0025] In another embodiment, the at least one pathogen is selected from the group consisting of Acremonium spp., Albugo spp., Alternaria spp., Ascochyta spp., Aspergillus spp., Botryodiplodia spp., Botryospheria spp., Botrytis spp., Byssochlamys spp., Candida spp., Cephalosporium spp., Ceratocystis spp., Cercospora spp., Chalara spp., Cladosporium spp., Colletotrichum spp., Cryptosporiopsis spp., Cylindrocarpon spp., Debaryomyces spp.,

Diaporthe spp., Didymella spp., Diplodia spp., Dothiorella spp., Elsinoe spp., Fusarium spp., Geotrichum spp., Gloeosporium spp., Glomerella spp., Helminthosporium spp., Khuskia spp., Lasiodiplodia spp., Macrophoma spp., Macrophomina spp., Microdochium spp., Monilinia spp., Monilochaethes spp., Mucor spp., Mycocentrospora spp., Mycosphaerella spp., Nectria spp., Neofabraea spp., Nigrospora spp., Penicillium spp., Peronophythora spp., Peronospora spp., Pestalotiopsis spp., Pezicula spp., Phacidiopycnis spp., Phoma spp., Phomopsis spp., Phyllosticta spp., Phytophthora spp., Polyscytalum spp., Pseudocercospora spp., Pyricularia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Sclerotium spp., Sclerotinia spp., Septoria spp., Sphaceloma spp., Sphaeropsis spp., Stemphyllium spp., Stilbella spp., Thielaviopsis spp., Thyronectria spp., Trachysphaera spp., Uromyces spp., LJstilago spp., Venturia spp.,

Verticillium spp. and combinations thereof. In a further embodiment, the at least one pathogen comprises Botrytis cinerea.

[0026] In another embodiment, the at least one pathogen is selected from the group consisting of Erwinia spp., Pantoea spp., Pectobacterium spp., Pseudomonas spp., Ralstonia spp., Xanthomonas spp.; Salmonella spp., Escherichia spp., Lactobacillus spp., Leuconostoc spp., Listeria spp., Shige a spp., Staphylococcus spp., Candida spp., Debaryomyces spp., Bacillus spp., Campylobacter spp., Clavibacter spp., Clostridium spp., Cryptosporidium spp., Giardia spp., Vibrio spp., Yersinia spp. and combinations thereof.

[0027] In another embodiment, the plants or plant parts comprise transgenic plants or transgenic plant parts. In another embodiment, the plants or plant parts are selected from the group consisting of corn, wheat, cotton, rice, soybean, and canola. In another embodiment, the plants or plant parts are selected from the group consisting of fruit, vegetables, nursery, turf and ornamental crops. In a further embodiment, the fruit is selected from the group consisting of banana, pineapple, citrus including oranges, lemon, lime, grapefruit, and other citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries including strawberry, blueberry, raspberry, blackberry, cranberry, currants and other types of berries. In a further embodiment, the vegetable is selected from the group consisting of tomato, potato, sweet potato, cassava, pepper, bell pepper, carrot, celery, squash, eggplant, cabbage, cauliflower, broccoli, asparagus, mushroom, onion, garlic, leek, and snap bean. A further embodiment, the flower or flower part is selected from the group consisting of roses, carnations, orchids, geraniums, lily or other ornamental flowers. A further embodiment, the meat is selected from the group of beef, bison, chicken, deer, goat, turkey, pork, sheep, fish, shellfish, mollusks, or dry-cured meat products.

[0028] In another embodiment, the plants or plant parts are selected from the group consisting of banana, pineapple, citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries. In a further embodiment, the plants or plant parts comprise berry or berries. In another further embodiment, the berries are selected from the group consisting of strawberry, blueberry, raspberry, blackberry, cranberry, and combinations thereof. In a further embodiment, citrus is selected from the group consisting of orange, lemon, lime, and grapefruit.

[0029] In one embodiment, the at least one target sequence is selected from SEQ ID NOs: 1-13. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 14-29. in another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61.

[0030] In another aspect, provided are methods for detecting at least one pathogen affecting meats, plants, or plant parts. The methods comprise

(a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of

oligonucleotide primers for at least one target sequence; and

(c) determining risk level of the at least one pathogen from the sample based on a multi-tier risk system.

[0031] In one embodiment of the methods provided, the multi-tier risk system comprises three tiers including low risk, medium risk, and high risk. In another embodiment, the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase amplification (RPA). In another embodiment, the nucleic acid based amplification comprises isothermal nucleic acid amplification. In a further embodiment, the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

[0032] In another embodiment, the at least one pathogen is selected from the group consisting of Acremonium spp., Albugo spp., Alternaria spp., Ascochyta spp., Aspergillus spp., Botryodiplodia spp., Botryospheria spp., Botrytis spp., Byssochlamys spp., Candida spp., Cephalosporium spp., Ceratocystis spp., Cercospora spp., Chalara spp., Cladosporium spp., Colletotrichum spp., Cryptosporiopsis spp., Cylindrocarpon spp., Debaryomyces spp.,

Diaporthe spp., Didymella spp., Diplodia spp., Dothiorella spp., Elsinoe spp., Fusarium spp., Geotrichum spp., Gloeosporium spp., Glomerella spp., Helminthosporium spp., Khuskia spp., Lasiodiplodia spp., Macrophoma spp., Macrophomina spp., Microdochium spp., Monilinia spp., Monilochaethes spp., Mucor spp., Mycocentrospora spp., Mycosphaerella spp., Nectria spp., Neofabraea spp., Nigrospora spp., Penicillium spp., Peronophythora spp., Peronospora spp., Pestalotiopsis spp., Pezicula spp., Phacidiopycnis spp., Phoma spp., Phomopsis spp., Phyllosticta spp., Phytophthora spp., Polyscytalum spp., Pseudocercospora spp., Pyricularia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Sclerotium spp., Sclerotinia spp., Septoria spp., Sphaceloma spp., Sphaeropsis spp., Stemphyllium spp., Stilbella spp., Thielaviopsis spp., Thyronectria spp., Trachysphaera spp., Uromyces spp., Ustilago spp., Venturia spp.,

Verticillium spp. and combinations thereof. In a further embodiment, the at least one pathogen comprises Botrytis cinerea.

[0033] In another embodiment, the at least one pathogen is selected from the group consisting of Erwinia spp., Pantoea spp., Pectobacterium spp., Pseudomonas spp., Ralstonia spp., Xanthomonas spp.; Salmonella spp., Escherichia spp., Lactobacillus spp., Leuconostoc spp., Listeria spp., Shigella spp., Staphylococcus spp., Candida spp., Debaryomyces spp., Bacillus spp., Campylobacter spp., Clavibacter spp., Clostridium spp., Cryptosporidium spp., Giardia spp., ¼ ' bn ' o spp., Yersinia spp. and combinations thereof.

[0034] In another embodiment, the plants or plant parts comprise transgenic plants or transgenic plant parts. In another embodiment, the plants or plant parts are selected from the group consisting of corn, wheat, cotton, rice, soybean, and canola. In another embodiment, the plants or plant parts are selected from the group consisting of fruit, vegetables, nursery, turf and ornamental crops. In a further embodiment, the fruit is selected from the group consisting of banana, pineapple, citrus including oranges, lemon, lime, grapefruit, and other citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries including strawberry, blueberry, raspberry, blackberry, cranberry, currants and other types of berries. In a further embodiment, the vegetable is selected from the group consisting of tomato, potato, sweet potato, cassava, pepper, bell pepper, carrot, celery, squash, eggplant, cabbage, cauliflower, broccoli, asparagus, mushroom, onion, garlic, leek, and snap bean. A further embodiment, the flower or flower part is selected from the group consisting of roses, carnations, orchids, geraniums, lily or other ornamental flowers. A further embodiment, the meat is selected from the group of beef, bison, chicken, deer, goat, turkey, pork, sheep, fish, shellfish, mollusks, or dry-cured meat products.

[0035] In another embodiment, the plants or plant parts are selected from the group consisting of banana, pineapple, citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries. In a further embodiment, the plants or plant parts comprise berry or berries. In another further embodiment, the berries are selected from the group consisting of strawberry, blueberry, raspberry, blackberry, cranberry, and combinations thereof. In a further embodiment, citrus is selected from the group consisting of orange, lemon, lime, and grapefruit.

[0036] In one embodiment, the at least one target sequence is selected from SEQ ID NOs: 1-13. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 14-29. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61.

[0037] In another aspect, provided are methods for detecting at least one pathogen affecting meats, plants, or plant parts. The methods comprise

(a) providing a sample of the meats, plants, or plant parts;

(b) performing a nucleic acid based amplification from the sample using a plurality of

oligonucleotide primers for at least one target sequence; and

(c) determining number of spores of the at least one pathogen in the sample.

[0038] In one embodiment of the methods provided, the number of spores in the sample is from 10 to 10,000 spores; from 25 to 5,000 spores; from 50 to 2,500 spores; or from 100 to 1,000 spores of the at least one pathogen. In another embodiment, the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase amplification (RPA). In another embodiment, the nucleic acid based amplification comprises isothermal nucleic acid amplification. In a further embodiment, the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

[0039] In another embodiment, the at least one pathogen is selected from the group consisting of Acremonium spp., Albugo spp., Alternaria spp., Ascochyta spp., Aspergillus spp., Botryodiplodia spp., Botryospheria spp., Botrytis spp., Byssochlamys spp., Candida spp.,

Cephalosporium spp., Ceratocystis spp., Cercospora spp., Chalara spp., Cladosporium spp., Colletotrichum spp., Cryptosporiopsis spp., Cylindrocarpon spp., Debaryomyces spp.,

Diaporthe spp., Didymella spp., Diplodia spp., Dothiorella spp., Elsinoe spp., Fusarium spp., Geotrichum spp., Gloeosporium spp., Glomerella spp., Helminthosporium spp., Khuskia spp., Lasiodiplodia spp., Macrophoma spp., Macrophomina spp., Microdochi m spp., Monilinia spp., Monilochaethes spp., Mucor spp., Mycocentrospora spp., Mycosphaerella spp., Nectria spp., Neofabraea spp., Nigrospora spp., Penicillium spp., Peronophythora spp., Peronospora spp., Pestalotiopsis spp., Pezicula spp., Phacidiopycnis spp., Phoma spp., Phomopsis spp., Phyllosticta spp., Phytophthora spp., Polyscytalum spp., Pseudocercospora spp., Pyricularia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Sclerotium spp., Sclerotinia spp., Septoria spp., Sphaceloma spp., Sphaeropsis spp., Stemphyllium spp., Stilbella spp., Thielaviopsis spp., Thyronectria spp., Trachysphaera spp., Uromyces spp., IJstilago spp., Venturia spp.,

Verticillium spp. and combinations thereof. In a further embodiment, the at least one pathogen comprises Botrytis cinerea.

[0040] In another embodiment, the at least one pathogen is selected from the group consisting of Erwinia spp., Pantoea spp., Pectobacterium spp., Pseudomonas spp., Ralstonia spp., Xanthomonas spp.; Salmonella spp., Escherichia spp., Lactobacillus spp., Leuconostoc spp., Listeria spp., Shige a spp., Staphylococcus spp., Candida spp., Debaryomyces spp., Bacillus spp., Campylobacter spp., Clavibacter spp., Clostridium spp., Cryptosporidium spp., Giardia spp., Vibrio spp., Yersinia spp. and combinations thereof.

[0041] In another embodiment, the plants or plant parts comprise transgenic plants or transgenic plant parts. In another embodiment, the plants or plant parts are selected from the group consisting of corn, wheat, cotton, rice, soybean, and canola. In another embodiment, the plants or plant parts are selected from the group consisting of fruit, vegetables, nursery, turf and ornamental crops. In a further embodiment, the fruit is selected from the group consisting of banana, pineapple, citrus including oranges, lemon, lime, grapefruit, and other citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries including strawberry, blueberry, raspberry, blackberry, cranberry, currants and other types of berries. In a further embodiment, the vegetable is selected from the group consisting of tomato, potato, sweet potato, cassava, pepper, bell pepper, carrot, celery, squash, eggplant, cabbage, cauliflower, broccoli, asparagus, mushroom, onion, garlic, leek, and snap bean. A further embodiment, the flower or flower part is selected from the group consisting of roses, carnations, orchids, geraniums, lily or other ornamental flowers. A further embodiment, the meat is selected from the group of beef, bison, chicken, deer, goat, turkey, pork, sheep, fish, shellfish, mollusks, or dry-cured meat products.

[0042] In another embodiment, the plants or plant parts are selected from the group consisting of banana, pineapple, citrus, grapes, watermelon, cantaloupe, muskmelon, and other melons, apple, peach, pear, cherry, kiwifruit, mango, nectarine, guava, papaya, persimmon, plum, pomegranate, avocado, fig, and berries. In a further embodiment, the plants or plant parts comprise berry or berries. In another further embodiment, the berries are selected from the group consisting of strawberry, blueberry, raspberry, blackberry, cranberry, and combinations thereof. In a further embodiment, citrus is selected from the group consisting of orange, lemon, lime, and grapefruit.

[0043] In one embodiment, the at least one target sequence is selected from SEQ ID NOs: 1-13. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 14-29. in another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61.

[0044] In another embodiment, provided are diagnostic kits for detecting at least one pathogen affecting meats, plants, or plant parts. The diagnostic kits comprise a plurality of oligonucleotide primers comprises at. least one sequence selected from SEQ ID NOs; 14-29.

[0045] In another embodiment, provided are diagnostic kits for detecting at least one pathogen affecting meats, plants, or plant parts. The diagnostic kits comprise a plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 30-45.

[0046] In another embodiment, provided are diagnostic kits for detecting at least one pathogen affecting meats, plants, or plant parts. The diagnostic kits comprise a plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 46-61. In another aspect, provided are combinations of oligonucleotide primers for detecting at least one pathogen affecting meats, plants, or plant parts, wherein the primers have different sensitivity for detecting at least one target sequences. In one embodiment, the at least one target sequence is selected from SEQ ID NOs: 1-13. In another embodiment, the oligonucleotide primers comprise at. least, one sequence selected from SEQ ID NOs: 14-29. In another embodiment, the oligonucleotide primers comprise at least one sequence selected from SEQ ID NOs: 30-45. In another embodiment, the oligonucleotide primers comprise at least one sequence selected from SEQ ID NOs: 46-61.

[0047] In another aspect, provided are methods for sampling calyx from strawberry for detecting at least one pathogen affecting meats, plants, or plant parts. The method comprise

(a) removing the calyx from the strawberry;

(b) homogenizing the removed calyx, and (c) performing a nucleic acid based amplification from the sample using a plurality of oligonucleotide primers for at least one target sequence.

[0048] In one embodiment of the methods provided, the nucleic acid based amplification comprises quantitative polymerase chain reaction (qPCR) or recombinase polymerase amplification (RPA). In another embodiment, the nucleic acid based amplification comprises isothermal nucleic acid amplification. In a further embodiment, the nucleic acid based amplification comprises recombinase polymerase amplification (RPA).

[0049] In another embodiment, the at least one pathogen is selected from the group consisting oiAcremonium spp., Albugo spp., Alternaria spp., Ascochyta spp., Aspergillus spp., Botryodiplodia spp., Botryospheria spp., Botrytis spp., Byssochlamys spp., Candida spp., Cephalosporium spp., Ceratocystis spp., Cercospora spp., Chalara spp., Cladosporium spp., Colletotrichum spp., Cryptosporiopsis spp., Cylindrocarpon spp., Debaryomyces spp.,

Diaporthe spp., Didymella spp., Diplodia spp., Dothiorella spp., Elsinoe spp., Fusarium spp., Geotrichum spp., Gloeosporium spp., Glomerella spp., Helminthosporium spp., Khuskia spp., Lasiodiplodia spp., Macrophoma spp., Macrophomina spp., Microdochium spp., Monilinia spp., Monilochaethes spp., Mucor spp., Mycocentrospora spp., Mycosphaerella spp., Nectria spp., Neofabraea spp., Nigrospora spp., Penicillium spp., Peronophythora spp., Peronospora spp., Pestalotiopsis spp., Pezicula spp., Phacidiopycnis spp., Phoma spp., Phomopsis spp., Phyllosticta spp., Phytophthora spp., Polyscytalum spp., Pseudocercospora spp., Pyricularia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Sclerotium spp., Sclerotinia spp., Septoria spp., Sphaceloma spp., Sphaeropsis spp., Stemphyllium spp., Stilbella spp., Thielaviopsis spp., Thyronectria spp., Trachysphaera spp., Uromyces spp., Ustilago spp., Venturia spp.,

Verticillium spp. and combinations thereof. In a further embodiment, the at least one pathogen comprises Botrytis cinerea.

[0050] In another embodiment, the at least one pathogen is selected from the group consisting of Erwinia spp., Pantoea spp., Pectobacterium spp., Pseudomonas spp., Ralstonia spp., Xanthomonas spp.; Salmonella spp., Escherichia spp., Lactobacillus spp., Leuconostoc spp., Listeria spp., Shige a spp., Staphylococcus spp., Candida spp., Debaryomyces spp., Bacillus spp., Campylobacter spp., Clavibacter spp., Clostridium spp., Cryptosporidium spp., Giardia spp., V brco spp., Yersinia spp. and combinations thereof.

[0051] In one embodiment, the at least one target sequence is selected from SEQ ID NOs: 1-13. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID NOs: 14-29. In another embodiment, the plurality of oligonucleotide primers comprises at. least, one sequence selected from SEQ ID NOs; 30-45. In another embodiment, the plurality of oligonucleotide primers comprises at least one sequence selected from SEQ ID Os: 46-61.

[0052] Those skilled in the art would understand certain variation can exist based on the disclosure provided. Thus, the following examples are given for the purpose of illustrating the invention and shall not be construed as being a limitation on the scope of the invention or claims.

EXAMPLES

Example 1 - Identification of advantaged gene targets for

detection of Botrytis cinerea

[0053] The published Botrytis cinerea (BC) genomes (T.4 and B05.10) are computationally analyzed to determine the highest copy number regions to facilitate the development of a sensitive DNA based diagnostic (see Table 1), where the ribosomal IGS, tubulin, and cutinase genes have been analyzed in multiple academic publications. The highest copy number targets contained -40 copies per genome. One of the targets, BC Target 3 is identified as encoding a 5S ribosomal RNA. The sequences of each gene target are listed as SEQ ID NOs: 1-13.

Quantitative real-time PCR (qPCR) assays are developed to validate the computational predictions.

[0054] Primers for qPCR are listed in Table 2, where a dsDNA binding fluorescent probe, EvaGreen dye, is used for qPCR. EvaGreen dye is a superior version of the SYBR green dye and can be used in SYBR green assays. Botrytis gDNA is isolated using a Qiagen Plant DNeasy kit.

[0055] For each qPCR reaction the following reagents are mixed together:

1.8 μΐ.. Forward Primer (50 μΜ)

1.8 μΐ.. Reverse Primer (50 μΜ)

5.0 μΐ. 20x EvaGreen dye

50 μί, TaqMan Fast Master-mix no amperase (2x)

31.4 μΙ_ H 2 0

[0056] The Botrytis gDNA (10 ng^L) s sequentially 10 fold serially diluted to a concentration of 1 pg/μΐ- (24 copies/μΐ-). For each reaction, 2 μΐ. of appropriately diluted template gDNA is added to the well followed by 18 μΕ of the reaction mix prepared above. The plate is then spun down for 5 minutes at 2200 RCF. The amplification reaction is performed on an Applied Biosystems StepOne Plus real time PCR system (Foster City, CA). Cycling conditions are 95°C for 20 seconds for denaturation, 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds.

Table 2. qPCR primers for selected Botrytis gene targets

SEQ ID NO. Sequence Name Sequence nmoles

14 BC_targetl_Fl CCT AAG CGA ATG CGA AAG AG 34.3

15 BC_targetl_Rl CGA GAA GGA TAC GGA AGA CG 32.2

16 BC_target7_Fl CAG GCT GTA GAA TCA CCA ACG 25

17 BC_target7_Rl CTA AGG CTT TCC TTG GAT GC 39.2

18 BC_target3_Fl CTG AAG AGA ATT GGG CAT CC 24.3

19 BC_target3_Rl CAT ACA ACA GTG GGG ATT CG 30.3

20 BC_target4_Fl CAC CAT GGG GAT GGT GAA T 30.7

21 BC_target4_Rl TTC GGC ACT ACA GCA ATA CG 31.8

22 BC_target5_Fl CCC TCT TTT GGA CCA CCT AA 37.4

23 BC_target5_Rl CTG GTG ATC GGG AAA TTG AG 39

24 BC_target6_Fl AAG CAC TAC CTC CCA ACT TCA 25

25 BC_target6_Rl GCA ATT GCA AAA AGT GCT G 32

26 BC_target8_Fl CTA CTA GCG TGC CCT GCT TC 38.7

27 BC_target8_Rl AAG GCA CGG GTA AAG ACG TA 27.8

28 BC_target9_Fl CAT AGA GCA AGT GGC TAC ACG 22

29 BC_target9_Rl TTG AGT GCC CAG CTC TTA CC 41.1

[0057] The CT values can be converted to copies per genome assuming the tubulin gene is present as a single copy. This assumption is strongly supported by bioinformatic knowledge of the genome of Botrytis and other related fungi. The copies per genome are calculated using the following equation:

(1 + ct Target )

[0058] Based on the experimental results shown in Table 3, the targets are ranked in the following order: Ribosomal IGS > (BC Target 1 and BC Target 3) > (BC Target 7 and BC Target 8) > (BC Target 5, BC Target 6, and BC Target 9) > Tubulin > BC Target 4.

[0059] The ribosomal IGS, BC Target 1 and BC Target 3 appear to be genes of high copy numbers. BC Target 7 and BC Target 8 appear at 2-3 folds lower copies per genomes. BC Target 5, BC Target 6, and BC Target 9 performed worse in these experiments than other selected targets in the initial qPCR experiment. BC Target 1 is therefore selected for further analysis. Table 3. The calculated copies per genome for each target tested

Target Experimental Copy Number Length (bp)

BC Target 1 26.1 + 2.3 245

BC Target 3 31.9 + 3.7 133

BC Target 4 0.5 + 0 194

BC Target 5 2.1 + 0.1 478

BC Target 6 3.9 + 0.8 312

BC Target 7 10.0 + 1.2 139

BC Target 8 12.8 + 1.4 161

BC Target 9 3.1 + 0.3 240

BC Tubulin 1.0 928

BC IGS pi 51.3 + 2.3 300

BC IGS p2 56.6 + 6.9 300

Example 2 - Design and evaluation of RPA primer sets for

amplification of Botrytis cinerea Target 1

[0060] BC Target 1 from Example 1 is selected for development of a primer set for use in recombinase polymerase amplification (RPA). There are -25 copies of BC Target 1 per Botrytis genome and the sequence has favorable GC content (%40) for RPA. The BC Target 1 genetic element is 245 bases, which gives some room to screen a larger number of primers relative to BC Target 3.

[0061] No known computer software or models exist for development of primer sets for RPA. To develop a primer set, a relatively large screening effort must be performed for each target. A multiple sequence alignment of the BC Target 1 sequences in the Botrytis genome is performed to determine the best region for RPA amplification. The BC Target 1 genetic element is present in many similar, but non-identical copies in the genome. It is provided to design primers for the most conserved regions of BC Target 1. Accordingly, eight forward (Fl- F8) and eight reverse primers (R1-R8) (SEQ ID NOs: 30-45) are selected for the most conserved regions of the BC Target 1 genetic element.

[0062] Primers are then screened using RPA, with the exception of the addition of lx EvaGreen dye. The amplification reaction is performed on an Applied Biosystems StepOne Plus real time PCR system. Amplification is monitored by an increase in fluorescence due to binding of the EvaGreen dye to double stranded DNA produced by the RPA reaction.

[0063] The increase in fluorescence in the absence of target DNA, prompted the analysis of melting curves to determine if a desired amplicon is produced. Melt curve analysis is performed on each primer pair in the presence and absence of target DNA to determine a target DNA dependent effect on the melt curve. It is provided that if specific amplification is taking place, then in the presence of target DNA there would be a sharp single peak in the melt curve.

[0064] The majority of screened primer pairs showed no difference in melt curve in the presence or absence of target DNA. The R2F3 primer pair for BC Target 1 shows the best overall performance in the initial screen. The reaction products are then analyzed on the BioAnalyzer. Multiple reaction products can be identified in the BioAnalyzer under certain circumstances.

Example 3 - Design and evaluation of RPA primer sets for amplification of

Botrytis cinerea Ribosomal Intergenic Spacer

[0065] The selected BC Target 1 can produce multiple amplification products under certain circumstance. Because the ribosomal IGS target performed best in the qPCR assays and there is precedent in the literature that this is a sensitive target for the detection of Botrytis, the Ribosomal Intergenic Spacer (IGS) is also selected for further development. Primers are designed and set forth in SEQ ID NOs: 46-61. The primers are screened initially with the EvaGreen dye and melt curve analysis strategy. The initial screen results are shown in FIG. 1. For this particular screen, about 250 copies of Botrytis cinerea genomic DNA is used per reaction.

[0066] The R1F1 and R1F3 primer pairs show strong amplification and good sensitivity. The products of the R1F1 and R1F3 primer pairs are analyzed on the BioAnalyzer. The RPA reactions using these primer pairs show the production of a single amplicon at the expected size in the electropherogram. The specificity and sensitivity of the R1F1 primer pair is further characterized by serial dilutions and analysis of reaction products on the BioAnalyzer. A lower sensitivity primer pair, R1F6, is also further characterized similarly (see FIGs. 2A and 2B)

[0067] The R1F1 primer pair shows significantly better sensitivity than the R1F6 primer pair. The R1F1 primer pair shows significant amplification of the desired amplicon at 5 genomic copies. The R1F6 primer pair shows comparable amplification only at 100 genomic copies or higher.

[0068] These experiment results demonstrate that primer pairs with differing sensitivities for the same target can be produced. An shown in FIG. 3, the primer pair R1F1 can be useful for detection of Botrytis genomic DNA at a concentrations as low as 5-10 copies, while the R1F6 primer pair can be useful for detection of greater than 100 copies. Example 4 - in vivo experiment for detection of

Botrytis cinerea on strawberry calyx

[0069] Calyx of strawberry is selected for in vivo experiment for detection of Botrytis cinerea. Accordingly, calyx is manually removed and then homogenized inside of a plastic bag by grinding or scraping. Prior to homogenization the calyx sample can be spiked with Botrytis spores, Botrytis genomic DNA, or water. For some samples, approximately 5-10 milligrams of Botrytis spores are added to the calyx before homogenization. After homogenization in the plastic bag, one microliter of the calyx homogenate is transferred to fifty microliters of RPA master-mix [containing at least one primer pair (for example R1F1) and RPA basic buffer]. The reaction is incubated at thirty-nine degrees Celsius for twenty minutes and then the products are analyzed on the BioAnalyzer. The calyx homogenate appears a green and very viscous material.

[0070] The BioAnalyzer results show a positive signal for samples spiked with Botrytis spores or Botrytis genomic DNA. The negative control reaction (which contained only RPA mix without any calyx added) shows no sign of amplification. Some of the calyx samples that are not spiked with Botrytis show the desired amplicon, suggesting these samples are already infected with Botrytis. Calyx #2 closely matched the negative control, suggesting the strawberry was not infected. The positive control containing only Botrytis spores and no calyx show the strong amplification of the desired amplicon.

Sequence Listing SEQ ID NO: lBC_targetl_41-45_hits_per_genome

AGGAAAGGATAGTGTGTGAACGGAGTGAATAACTTCAATTCAATTACCACTGTAAT ATAGCAACTATAATAAAGCCCTAAGCGAATGCGAAAGAGAGTAGCTCTTTCTGTAA GCCTTTATAAGGCTTACTACTTTCGATACGTAGCTAGCTCTTTAGACAGAATACAAT TAGACATACAGGACCTACGATATTCGTGGGTGCTACGTCTTCCGTATCCTTCTCGTA CCAACAGATAGTGAGGTTG

SEQ ID NO: 2BC_target7_20-25_hits_per_genome

TGTTACGACGGATTAGTAACAGGCTGTAGAATCACCAACGTATAGGCTATAATGGT ATTATAGGCCTCAGTGATTCAGCTGCAGTATACCGGGGGATACTAGGCATCCAAGG AAAGCCTTAGGTATATATATAGTATTAATTATAGAATATTCTAAAAGTATAGGATA CAGTTTTTAGA

SEQ ID NO: 3BC_target3_38-40_hits_per_genome_5S_ribosomal_RNA

TCTGACACATACGACCATAGACTGAAGAGAATTGGGCATCCCGTCCGCTCTGCCAT ACACAAGCTTCAGATCGGTGGATTAGTAGTTGGGTGGGTGACCACCAGCGAATCCC CACTGTTGTATGTTTCTTTTC

SEQ ID NO: 4BC_target4_20-21_hits_per_genome

AATTTAGAACTGTTGGTTTCACCATGGGGATGGTGAATTCAATATAGTACTATGGTT CACACTGTTGTAATATTGCTTAAGGTTCTAAAAGCTAAGACTACGAAACGTATTGC TGTAGTGCCGAAAGGCGCTAGCACAAGCGCTAGCACGGTCACATGATCACTATCCC GACAAGAACCATCACTGTCCTCACA

SEQ ID NO: 5BC_target5_4-20_hits_per_genome

TAAGTTGAGTACCCCACTTTCGGACCACCCCTCTTTTGGACCACCTAAAAATATATA TATATATGAATTTTAAACTTCAATAACTCAACCACTATTCAACTTCAATACAATCCC CTGTAGTGTCAGTTTCATAAATACTATCAGAGTCTTTTATCTCAATTTCCCGATCAC CAGCTTCAATTTGAGCTTGATATATAGCTTCTATCCCTGCAAACCTCGAATTTGGAC

TTTATTCGTTTCTTGGACTGTACAAGTTCATAGTCCTTAGCATCAAATCCTTTTTGA A TCTTTCGAAAAAGCAGCCGGCGAGTTGGAATATCGGTCTCATCAACTTTCTCCATTA TATCAGCATATTTTCGAATATCACTTCCTTTTTGAGGGGTTTTCCATGCAATAAAAG ATGAATGTATTTCCTCCAT

SEQ ID NO: 6BC_target6_5-24_hits_per_genome

TAAGTTGAGTACCCCACTTTCGGACCACCCCTCTTTTGGACCACCTAAAATCTTACC CCATTTTAAGCACTACCTCCCAACTTCATCTTTAATAAATCAACAACCACATATTCA ATTGATATAAGATTTTAATATATTATCAATTAAGCTATAACAAAGCCTTATACTGAA TTACTCAGAATATGATATTCCCCACACCACTTTATACAACTATATAAATAGCCACCT TTCACATAAAAAAGATACACAAAACCTATAGAAGATAGCTCCTATATAGGAGAGA GCTTTAGCAAATTGGATTTTAATACAGAAAGCCCTAAAAACTAGCCCTATCTATTA TCAAATACAAAAATTAGGAAAGTCCATTCTCAACCTCGAAAGAGATGATTTATTTT

AGGCAATATAAAATCAATAATGCCTATATCAATAATACAATTACCAAAATTATAAG CAAGTTCTTTGAAAAATTAGATTTACTAAC

SEQ ID NO: 7BC_target8_8-18_hits_per_genome

AGGGTTGGCTTGTGTCACGGCGCCAACTACATGTTCTGTAGTTGCCTTCGTGCCTTA GGCACGGACTACTAGCGTGCCCTGCTTCCTATAAGTAGGGCCTCACTCTTCCATAG CTCTTCCACCCTTATGGTACAATATACGTCTTTACCCGTGCCTTGACAGTTTGTACC ATCTT

SEQ ID NO: 8BC_target9_13-18_hits_per_genome

TAATAATTTAATCTTCTTATTGTAAAAGAGTAGAAGGTGGTAATGGTCACACAAGA

AAAGCCTTCGCATATATCAAGCATAGAGCAAGTGGCTACACGTAGTAAAATGGGG

TGAATCACTATATTGCGATAGCGAGGTGAGGGAGGCGGTAAGAGCTGGGCACTCA

ATTCTTCAGGAGACAACTTTAGAAGGTAGAAAATTCGATGATATTTTTAGGTCTAC

AGAAGTGAAGCTATAAATACTAAATGTTGATAACACGTGATCCCAGAGTCACGTGT

TTTCACTCTCACATTATCGATTGGAA

SEQ ID NO: 9BC_targetlO_26-27_hits_per_genome

ATCACTCACTTACTTCACTTTCAATTTATTCTTCAATCAGAAGCTTTACCACTATACC ATGCCATACAGATTGTACTATTTATATACATTATCTACCTAGCTTTGATTTATATATT CATATTCAATTCAATTACTAATCGAATTCAATATAAATAAAGTATTCATCATCTTAA ACTAGAATTCAAGAATTTCACTAAGTCCCTTTGGAATAAAAATTTCTAATCATTTAC

AAATATTGAATATTTTCTGGGGCTGATAAAGCGGCCACTTCGTCAATCGCGGATTC TGCCACCACAGGGGGTATATATACTAC

SEQ ID NO: 10 BC_targetl l_8-14_hits_per_genome

GGTTTATCAGATCAGTGAGTGGGTCATATCAGTGAATGGGTCATTTGAAAATACAT CAAAATTAGGCCTTTTTCAATATTCATATTTTAATAGCTAATCATTATTTTGAAAAA

AT

SEQ ID NO: 11 BC_IGS_1

TGGTTCGACTGTAGTCCCTAGGAACGCCCTCTGAGTGTCCTAGGAATGCCCCCGGT GAGCCCTTGGTCTAAAGCCGTATAGGTGACTAGTTAACCCCATATAGTTTGTGCGA GTACACACACTACTACCGGTGAGCAGGCTGTAATTTCAATGTGCAGAATCTGTCCC CGGTGAGCGCAGGTCACCTTGCAATGAGTGGACAGCATGTTTGAAATGCGATTAAT TGTTGCTCCCGGTGAGCCCACTAAATAATTCTGGGAGTTGGCCATCTCATATTTCAT CCCCGGTGAGCCCAAGATA

SEQ ID NO: 12 BC_tubulin_gene

ACATCAGATATCTATTCCTCGCCCTCAATTGGGACCTCCTCTTCGTACTCCTCCTCTC

CCTCAGAGATCGAGGCATCCTGGTATTGTTGATACTCGGAAACCAAATCGTTCATG

TTGGACTCAGCCTCAGTGAACTCCATCTCGTCCATACCTTCACCAGTGTACCAATGC

AAGAAAGCCTTTCTTCTGAACATAGCAGTGAATTGATCACCGACACGCTTGAAAAG

TTCTTGGATGGATGTCGAGTTACCAACGAAGGTGGAGGACATCTTGAGACCACGGG

GAGGAATGGAGCAAAGGGCGGTTTGGACGTTGTTAGGGATCCACTCAACGAAGTA

GGATGAGTTCTTGTTTTGGACGTTGCGCATTTGGTCCTCAACCTCCTTCATGGAAAC

CTTACCACGGCTACAGAAAGTTAGTTTCTACAAGATTTTGGCAGATTGATTACAGG

GCAAACTTACAAAATGGCAGAGCATGTCAAGTAACGACCGTTACGGAAATCGGAA

GCGGCCATCATGTTCTTAGGGTCGTACATTTGTTGAGTCAACTCTGGAACGGTGAC

AGCACGGAAAGAGTGTGCGCCACGACTGGTCAAAGGAGCAAATCCAACCATGAAG

AAATGGAGACGGGGGAATGGAACCATGTTAACAGCCAACTTTCGGAGATCTGAGT

TAAGTTGACCAGGGAAACGGAGACAGGTGGTAACACCGGACATGACGGCGGAAAC

CAAGTGGTTAAGATCTCCGTAAGATGGGTTGCTGAGCTTCAAGGTTCTCATGCAAA

TATCGTAAAGAGCCTCGTTATCGATACAGAAGGTCGCGTCAGAGTTCTCAACCAAT

TGATGGACAGAGAGAGTTGCGTTATATGGCTCGACAACGGTATCGGAAACCTTTGG

CGATGGGACGACGGAGAAGGTAGCCATCATACG

SEQ ID NO: 13 BC_Cutinase

AAAAGAATCTCAACTTAAATGGAAATTCATTCTGAGCTGATACTCGTTGCCGTCAC

ATAAAATATAAAGTGATTGACATCGAGAAAGTTTCTCAATCTACCTAGTTTGCATC

GCTTTGAGCAACTCATCACTCCGGCTCGGCAGATGTTAGCTCGAATGAAAGATTTG

ATGGTAGGCTTTCCTGTCGAATTTGCCAGTTGAATTTGCCAGTATGGTGTGAATGCG

CTGTATGTTCTAGCGACGCCTAATACTAGATGTCTAAGATGTCTAGTAGTAGCTCG

ACGCCGTGACATGCCGTCACCATGAAATTTGCTGAGTTTGGTTGTATAAAGAAGAG

GGAAAGGAATGAAAACCAATACACGGAGAGAAATAGTATAAAGATTGGATTGAAT

GGAAAGTGTTTACTTCCTCTGCGTTAACTCTAGTTTCCGGATAGTACCGCGGGATCT

TGCTGGGCAGGCATGAGCTATGTGGAGCTTCAAGCTTTCTCAATATGGGGTAGCCT

TATGTCCCTTCCCTTGTCCTTGCTGTCGATCTCACCATTTTCCATTTCTCTTCACCT CT

TTCTCCTCCGTGATTCAACCACACCTCTTAGAATCTTTAATGCCTCGGCAGTTGAAG

ACATACACGGGCCTCGTCAATTATCGCACATTGTACTACTCACCAACTTAATGAAA

TACTGGCATCTAAACACGGTATTCAAAAGATGCGAGATGTACAGACAGACACTCGC

AGGTCATGACAAATTCCCCGTCGGACTTCCACATTGGAATTTTGAGAGTCCAAGCA

AAAAAGTTACAATGGTGTTATGTTGCATCACAATCAAATCTTCCTTACTTTTTCTCC

ACACAGCCACCACCATCCTCCTTATGCTTCTTTCATCCTTAACGTTTCAAAAAGTCG

GATTCATCTGAAAAAGTT

SEQ ID NO: 14 BC_targetl_Fl

CCTAAGCGAATGCGAAAGAG SEQ ID NO: 15 BC_targetl_Rl CGAGAAGGATACGGAAGACG SEQ ID NO: 16 BC_target7_Fl CAGGCTGTAGAATCACCAACG SEQ ID NO: 17 BC_target7_Rl CTAAGGCTTTCCTTGGATGC SEQ ID NO: 18 BC_target3_Fl CTGAAGAGAATTGGGCATCC SEQ ID NO: 19 BC_target3_Rl CATACAACAGTGGGGATTCG SEQ ID NO: 20 BC_target4_Fl CACCATGGGGATGGTGAAT SEQ ID NO: 21 BC_target4_Rl TTCGGCACTACAGCAATACG SEQ ID NO: 22 BC_target5_Fl CCCTCTTTTGGACCACCTAA SEQ ID NO: 23 BC_target5_Rl CTGGTGATCGGGAAATTGAG SEQ ID NO: 24 BC_target6_Fl AAGCACTACCTCCCAACTTCA SEQ ID NO: 25 BC_target6_Rl GCAATTGCAAAAAGTGCTG SEQ ID NO: 26 BC_target8_Fl CTACTAGCGTGCCCTGCTTC SEQ ID NO: 27 BC_target8_Rl AAGGCACGGGTAAAGACGTA SEQ ID NO: 28 BC_target9_Fl CATAGAGCAAGTGGCTACACG

SEQ ID NO: 29 BC_target9_Rl

TTGAGTGCCCAGCTCTTACC

SEQ ID NO: 30 TARGET 1_TDX_ IF

AAGCCCTAAGCGAATGCGAAAGAGACTAGCTCTTT

SEQ ID NO: 31 TARGET 1_TDX_2F

TARTAAAGCCCTAAGCGAATGCGAAAGAGACTAGC

SEQ ID NO: 32 TARGET1_TDX_3F

WACTGTARTAAAGCCCTAAGCGAATGCGAAAGAGA

SEQ ID NO: 33 TARGET 1_TDX_4F

ATAGCWACTGTARTAAAGCCCTAAGCGAATGCGAA

SEQ ID NO: 34 TARGET1_TDX_5F

GTAATATAGCWACTGTARTAAAGCCCTAAGCGAAT

SEQ ID NO: 35 TARGET 1_TDX_6F

CCACTGTAATATAGCWACTGTARTAAAGCCCTAAG

SEQ ID NO: 36 TARGET 1_TDX_7F

AATTACCACTGTAATATAGCWACTGTARTAAAGCC

SEQ ID NO: 37 TARGET1_TDX_8F

AATTCAATTACCACTGTAATATAGCWACTGTARTAA

SEQ ID NO: 38 TARGET 1_TDX_1R

GTTGGTACGAGAAGGATACGGAAGACGTAGCACCC

SEQ ID NO: 39 TARGET 1_TDX_2R

TACGAGAAGGATACGGAAGACGTAGCACCCACGAA

SEQ ID NO: 40 TARGET 1_TDX_3R

GAAGGATACGGAAGACGTAGCACCCACGAATWKCG

SEQ ID NO: 41 TARGET 1_TDX_4R

ATACGGAAGACGTAGCACCCACGAATWKCGTAGGT SEQ ID NO: 42 TARGET 1_TDX_5R GAAGACGTAGCACCCACGAATWKCGTAGGTCCTGT SEQ ID NO: 43 TARGET 1_TDX_6R

CGTAGCACCCACGAATWKCGTAGGTCCTGTATGTC SEQ ID NO: 44 TARGET 1_TDX_7R

CACCCACGAATWKCGTAGGTCCTGTATGTCTAATT SEQ ID NO: 45 TARGET 1_TDX_8R

ACGAATWKCGTAGGTCCTGTATGTCTAATTGTATT SEQ ID NO: 46 Ribosomal_IGS_TDx_lF

CGGTGAGCAGGCTGTAATTTCAATGTGCAGAATCT SEQ ID NO: 47 Ribosomal_IGS_TDx_2F

ACTACCGGTGAGCAGGCTGTAATTTCAATGTGCAG SEQ ID NO: 48 Ribosomal_IGS_TDx_3F

ACACTACTACCGGTGAGCAGGCTGTAATTTCAATG SEQ ID NO: 49 Ribosomal_IGS_TDx_4F

TACACACACTACTACCGGTGAGCAGGCTGTAATTT SEQ ID NO: 50 Ribosomal_IGS_TDx_5F

GCGAGTACACACACTACTACCGGTGAGCAGGCTGT SEQ ID NO: 51 Ribosomal_IGS_TDx_6F

TTTGTGCGAGTACACACACTACTACCGGTGAGCAG SEQ ID NO: 52 Ribosomal_IGS_TDx_7F

TATAGTTTGTGCGAGTACACACACTACTACCGGTG SEQ ID NO: 53 Ribosomal_IGS_TDx_8F

CCCCATATAGTTTGTGCGAGTACACACACTACTAC SEQ ID NO: 54 Ribosomal_IGS_TDx_lR

GTGGGCTCACCGGGAGCAACAATTAATCGCATTTC SEQ ID NO: 55 Ribosomal_IGS_TDx_2R ATTTAGTGGGCTCACCGGGAGCAACAATTAATCGC SEQ ID NO: 56 Ribosomal_IGS_TDx_3R

GAATTATTTAGTGGGCTCACCGGGAGCAACAATTA SEQ ID NO: 57 Ribosomal_IGS_TDx_4R

TCCCAGAATTATTTAGTGGGCTCACCGGGAGCAAC SEQ ID NO: 58 Ribosomal_IGS_TDx_5R

CCAACTCCCAGAATTATTTAGTGGGCTCACCGGGA SEQ ID NO: 59 Ribosomal_IGS_TDx_6R

GATGGCCAACTCCCAGAATTATTTAGTGGGCTCAC SEQ ID NO: 60 Ribosomal_IGS_TDx_7R

TATGAGATGGCCAACTCCCAGAATTATTTAGTGGG SEQ ID NO: 61 Ribosomal_IGS_TDx_8R

TGAAATATGAGATGGCCAACTCCCAGAATTATTTA