Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS, SYSTEMS, AND COMPUTER READABLE MEDIA FOR MONITORING INTERNET OF THINGS (IOT) DEVICE STATE THROUGH SERVICE CAPABILITY EXPOSURE FUNCTION (SCEF)
Document Type and Number:
WIPO Patent Application WO/2020/171899
Kind Code:
A1
Abstract:
A method for monitoring IoT device state includes, in an SCEF implemented using at least one processor. The method includes providing a common interface for receiving subscription requests from IoT ASs and SCSs for monitoring state of IoT devices of plural different generation networks. The method further includes maintaining, in the SCEF, a database of identifiers of IoT devices of a first-generation network, providing, in the SCEF, an interface to a subscriber data repository node of the first-generation network, and receiving, via the common interface, a subscription request for subscribing to receive updates in state information for an IoT device. The method further includes performing a lookup in the database and identifying the subscription request as being associated with an IoT device registered in the first-generation network and transmitting a message to the subscriber data repository node of the first-generation network for receiving state information regarding the IoT device.

Inventors:
NARAYANAN GOKUL (IN)
MAHALANK SHASHIKIRAN (IN)
KRISHAN RAJIV (IN)
Application Number:
PCT/US2020/013960
Publication Date:
August 27, 2020
Filing Date:
January 16, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ORACLE INT CORP (US)
International Classes:
H04W4/70
Foreign References:
US201916280672A2019-02-20
Other References:
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 13)", 3GPP STANDARD; 3GPP TS 23.682, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V13.6.0, 22 June 2016 (2016-06-22), pages 1 - 91, XP051123550
CHINA MOBILE: "Supporting legacy HLR in Architecture for MTC usage", 3GPP DRAFT; S2-121371_SUPPORTING LEGACY HLR IN ARCHITECTURE FOR MTC USAGE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Bratislava , Slovakia; 20120416 - 20120420, 10 April 2012 (2012-04-10), XP050631764
"Technical Specification Group Core Network and Terminals; T8 reference point for Northbound APIs; (Release 15", 3GPP TS 29.122, December 2018 (2018-12-01)
Attorney, Agent or Firm:
HUNT, Gregory, A. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method for monitoring Internet of things (loT) device state, the method comprising:

in a service capability exposure function (SCEF) implemented using at least one processor:

providing a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks;

maintaining, in the SCEF, a database of identifiers of loT devices of a first-generation network;

providing, in the SCEF, an interface to a subscriber data repository node of the first-generation network;

receiving, via the common interface, a subscription request for subscribing to receive state information regarding an loT device;

performing a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network; and

transmitting, via the interface to the first-generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

2. The method of claim 1 wherein the common interface comprises a T8 interface, the first generation network comprises a 2G or 3G network, the T8 interface is further configured to receive subscription requests for state information regarding a 4G or 5G loT device, and wherein the method further comprises, transmitting, via an interface to a second generation network, a message to a node in the second generation network for subscribing to receive state information regarding the 4G or 5G loT device.

3. The method of claim 1 or claim 2 wherein providing the database includes providing a database indexed by mobile subscriber integrated services digital network (MSISDN) numbers or domain parts of external identifiers.

4. The method of any of claims 1 to 3 wherein the subscriber data repository node comprises a home location register (HLR).

5. The method of any of the preceding claims wherein transmitting the message to the subscriber data repository node comprises transmitting an anytime interrogation (ATI) request message to the data repository node.

6. The method of claim 5 wherein the subscription request is a request for one-time monitoring and wherein the ATI request message includes an information element indicating one-time monitoring.

7. The method of claim 6 wherein the subscription request is a request for continuous monitoring and wherein the ATI request message includes an information element indicating continuous monitoring. 8. The method of claim 7 comprising maintaining a timer at the SCEF and periodically sending ATI request messages to the subscriber data repository node upon each expiration of the timer to effect the continuous monitoring.

9. The method of any of the preceding claims comprising, receiving, at the SCEF, state information regarding the loT device and providing the state information to the SCS or AS via the common interface.

10. The method of any of the preceding claims wherein the SCEF comprises a standalone node or a component of a Diameter signaling router (DSR) or a policy server.

11. A system for monitoring Internet of things (loT) device state, the system comprising:

a service capability exposure function (SCEF) including:

at least one processor;

a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks; a database of identifiers of loT devices of a first-generation network; an interface to a subscriber data repository node of the first- generation network;

wherein the SCEF receives, via the common interface, a subscription request for subscribing to receive state information regarding an loT device, performs a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network, and transmits, via the interface to the first-generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

12. The system of claim 11 wherein the common interface comprises a T8 interface, the first generation network comprises a 2G or 3G network, the T8 interface is further configured to receive subscription requests for state information regarding a 4G or 5G loT device, and wherein the SCEF further includes an interface to a second generation network and the SCEF transmits, via the interface to the second generation network, a message to a node in the second generation network for subscribing to receive state information regarding the 4G or 5G loT device.

13. The system of claim 11 or claim 12 wherein the database is indexed by mobile subscriber integrated services digital network (MS ISDN) numbers or domain parts of external identifiers.

14. The system of any of claims 11 to 13 wherein the subscriber data repository node comprises a home location register (FILR).

15. The system of any of claims 11 to 14 wherein the message transmitted to the subscriber data repository node comprises an anytime interrogation (ATI) request message.

16. The system of claim 15 wherein the subscription request is a request for one-time monitoring and wherein the ATI request message includes an information element indicating one-time monitoring.

17. The system of claim 16 wherein the subscription request is a request for continuous monitoring and wherein the ATI request message includes an information element indicating continuous monitoring.

18. The system of claim 17 wherein the SCEF maintains a timer and periodically transmits ATI request messages to the subscriber data repository node upon each expiration of the timer to effect the continuous monitoring.

19. The system of any of claims 11 to 18 wherein the SCEF receives state information regarding the loT device and provides the state information to the SCS or AS via the common interface.

20. A non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer controls the computer to perform steps comprising:

in a service capability exposure function (SCEF) implemented using at least one processor:

providing a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks;

maintaining, in the SCEF, a database of identifiers of loT devices of a first-generation network;

providing, in the SCEF, an interface to a subscriber data repository node of the first-generation network;

receiving, via the common interface, a subscription request for subscribing to receive state information regarding an loT device;

performing a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network; and

transmitting, via the interface to the first-generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

21. A non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer controls the computer to perform the steps of any of claims 1 to 10.

Description:
DESCRIPTION

METHODS, SYSTEMS, AND COMPUTER READABLE MEDIA FOR MONITORING INTERNET OF THINGS (loT) DEVICE STATE THROUGH

SERVICE CAPABILITY EXPOSURE FUNCTION (SCEF)

PRIORITY CLAIM

This application claims the priority benefit of U.S. Patent Application Serial No. 16/280,672, filed February 20, 2019, the disclosure of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The subject matter described herein relates to monitoring loT device state. More particularly, the subject matter described herein relates to monitoring loT device state by providing a common interface for monitoring loT devices of different generation networks.

BACKGROUND

The Third Generation Partnership Project (3GPP) defines machine type communication (MTC) monitoring procedures that allow loT application servers (ASs) and service capability servers (SCSs) to monitor the state of 4G loT devices. Examples of state that can be monitored include location information, roaming status, device reachability, etc. However, current 3GPP-defined procedures do not enable an loT application server or service capability server to monitor the device state of loT devices of or connected to 2G and 3G networks.

One possible solution to this problem would be to provide one interface for allowing loT application servers to subscribe to receive 4G loT device state and providing a separate interface for allowing loT application servers to subscribe to receive 2G or 3G loT device state. Such a solution would require loT application servers and service capability servers to comply with the requirements of different interfaces depending on the type of loT device being monitored and is therefore undesirable.

Accordingly, there exists a need for improved methods, systems, and computer readable media for monitoring loT device state. SUMMARY

The subject matter described herein includes methods, systems, and computer readable media for monitoring loT device state. One method includes, in a service capability exposure function (SCEF) implemented using at least one processor, providing a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks.

The phrases“loT devices of plural different generation networks” and “loT devices of different generation networks” refer to loT devices that are attached to and operate in different generations of networks, for the generations of networks defined by the 3GPP. For example, a 2G network may be a network of one generation. A 3G network may be another network of another generation. A 4G network may be a network of yet another generation. A 5G network may be a network of yet another generation. In general, the common interface provided by the SCEF allows monitoring event subscriptions for loT devices attached to n generation networks and loT devices attached to m generation networks, where n and m are integers and are not equal.

The method further includes maintaining, in the SCEF, a database of identifiers of loT devices of a first-generation network. The method further includes providing, in the SCEF, an interface to a subscriber data repository node of the first-generation network. The method further includes receiving, via the common interface, a subscription request for subscribing to receive state information regarding an loT device. The method further includes performing a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network. The method further includes transmitting, via the interface to the first-generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

In one example, the common interface comprises a T8 interface, the first generation network comprises a 2G or 3G network, the T8 interface is further configured to receive subscription requests for state information regarding a 4G or 5G loT device, and wherein the method further comprises, transmitting, via an interface to a second generation network, a message to a node in the second generation network for subscribing to receive state information regarding the 4G or 5G loT device.

In another example, providing the database includes providing a database indexed by mobile subscriber integrated services digital network (MSISDN) numbers or domain parts of external identifiers.

In yet another example, the subscriber data repository node comprises a home location register (HLR).

In yet another example, transmitting the message to the subscriber data repository node comprises transmitting an anytime interrogation (ATI) request message to the data repository node.

In yet another example, the subscription request is a request for one time monitoring and wherein the ATI request message includes an information element indicating one-time monitoring.

In yet another example, the subscription request is a request for continuous monitoring and wherein the ATI request message includes an information element indicating continuous monitoring.

In yet another example, a timer is maintained at the SCEF. The SCEF periodically sends ATI request messages to the subscriber data repository node upon each expiration of the timer to effect the continuous monitoring.

In yet another example, the SCEF receives state information regarding the loT device and providing the state information to the SCS or AS via the common interface.

In yet another example, the SCEF comprises a standalone node or a component of a Diameter signaling router (DSR) or a policy server.

A system for monitoring loT device state includes a service capability exposure function (SCEF). The SCEF includes at least one processor. The SCEF further includes a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks. The SCEF further includes a database of identifiers of loT devices of a first-generation network. The SCEF further includes an interface to a subscriber data repository node of the first-generation network. The SCEF receives, via the common interface, a subscription request for subscribing to receive state information regarding an loT device, performs a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network, and transmits, via the interface to the first-generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

According to another aspect of the subject matter described herein, a non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer controls the computer to perform steps. The steps include, in a service capability exposure function (SCEF) implemented using at least one processor. The steps further include providing a common interface for receiving subscription requests from loT application servers (ASs) or service capability servers (SCSs) for monitoring state of loT devices of plural different generation networks. The steps further include maintaining, in the SCEF, a database of identifiers of loT devices of a first-generation network. The steps further include providing, in the SCEF, an interface to a subscriber data repository node of the first-generation network;

receiving, via the common interface, a subscription request for subscribing to receive state information regarding an loT device. The steps further include performing a lookup in the database and identifying the subscription request as being associated with an loT device registered in the first-generation network. The steps further include transmitting, via the interface to the first- generation network, a message to the subscriber data repository node for receiving state information regarding the loT device.

The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained with reference to the accompanying drawings of which:

Figure 1 is a message flow diagram illustrating an exemplary message flow for using the T8 interface to subscribe to receive loT device state for 4G loT devices when the home subscriber server (HSS) includes the requested state information;

Figure 2 is a message flow diagram illustrating exemplary messaging exchanged for subscribing to receive loT device state for 4G loT devices when the HSS does not include the requested state information;

Figure 3 is a message flow diagram illustrating exemplary messaging for subscribing to receive 2G or 3G loT device state where the monitoring event subscription is for a single event monitoring;

Figure 4 is a message flow diagram illustrating exemplary messaging for subscribing to receive 2G or 3G loT device state where the monitoring event subscription is for continuous monitoring;

Figure 5 is a flow chart illustrating an exemplary process for monitoring loT device state for loT devices of plural different generation networks;

Figure 6 is a block diagram of a standalone SCEF that provides a common interface for subscribing to receive loT device state for loT devices of plural different generation networks;

Figure 7 is a block diagram of an SCEF that is a component of a Diameter signaling router, where the SCEF includes a common interface for allowing subscriptions to receive state information for loT devices of plural different generation networks; and

Figure 8 is a block diagram of a policy server including an SCEF with a common interface for allowing subscription to receive updates in state information for loT devices of plural different generation networks.

DETAILED DESCRIPTION

The subject matter described herein includes an SCEF that provides a common interface for loT application servers to subscribe to receive loT device state information for loT devices of different generation networks. In one example, the common interface may be the T8 interface specified in 3GPP standards documents where loT ASs and SCSs subscribe to receive updates in state information for 4G loT devices. However, the procedures specified for subscribing to receive updates is currently only valid for 4G loT devices. The subject matter described herein uses the same interface to allow subscriptions to receive updates for loT devices of different generation networks, including 2G and 3G network attached loT devices. The T8 interface may also be used for 3GPP ASs and SCSs to subscribe to and receive state information updates for 5G loT devices.

Providing a common interface for ASs and SCSs to subscribe to and receive updates in state information for loT devices of different generation networks is advantageous over an approach that requires separate interfaces for subscribing to receive updates in loT state information for loT devices of different generation networks. For example, if one interface is provided for subscribing to receive updates in state information for 2G and 3G loT devices, and another interface is provided for subscribing to receive updates in state information for 4G loT devices, then each SCS or AS is required to implement both interfaces and to know the type of network (e.g., 2G, 3G, or 4G) to which an loT device is attached. Requiring SCSs and ASs to implement different interfaces for subscribing to and receiving state information for loT devices pf different generation networks is inefficient in light of the expected numbers of SCS and AS devices relative to the number of SCEF devices. An SCEF that receives, via a common interface, subscription requests for state information for plural generation loT devices is a technological improvement over requiring every SCS and AS to implement separate interfaces for obtaining state information for loT devices of different generation networks, because the common interface is only required to be implemented at a single location, i.e. , at the SCEF versus implementing separate subscription interfaces at each SCS and AS. The SCEF is also in a better position than the SCS or the AS from a security and efficiency standpoint to know the type of network to which each loT device is attached. For example, a network operator can provision a database in the SCEF that indicates the type of network to which each loT device is attached so that requests for state information can be sent to the proper network. The network operator may also wish to control access to loT device state by limiting access to SCSs and ASs from authorized networks. Using an interface at the SCEF to access loT device state allows the SCEF to be used as a security checkpoint to allow or deny incoming subscription requests for loT device state information.

Figure 1 is a message flow diagram illustrating the 4G machine type communication monitoring event configuration message flow that can be implemented by an SCEF as described herein for monitoring the state of 4G devices. The message flow illustrated in Figure 1 is for FISS only monitoring, either continuous or one time, where the HSS is contacted by the SCEF on behalf of the SCS or AS to provide loT device state information.

The interface used by between the SCEF and the SCS/AS for setting up a subscription and providing state information regarding an loT device is referred to as the T8 interface. The T8 interface is defined in 3GPP TS 29.122, Technical Specification Group Core Network and Terminals; T8 reference point for Northbound APIs; (Release 15) (December 2018), the disclosure of which is incorporated herein by reference in its entirety. According to 3GPP TS 29.122, the T8 interface or reference point is an interface between the SCS/AS and the SCEF. The term“SCS/AS” refers to the SCS and/or the AS, because in some cases, the AS interacts directly with the SCEF and in other cases, the AS interacts with the SCEF through the SCS.

One purpose of the T8 interface specific in 3GPP TS 29.122 is “monitoring procedures.” The monitoring procedure through with the SCS/AS can subscribe to receive information regarding 4G loT devices is called the monitoring event configuration procedure. Rather than implementing a new interface and a new procedure on the SCS/AS side, the same interface and the same procedure may be used by the SCS and AS to configure the SCEF and downstream elements to monitor and report the state of 2G and 3G loT devices. The 4G message flow will first be described, followed by a description of the 2G/3G call flow.

Referring to the 4G message flow illustrated in Figure 1 , the message flow is divided into a configuration or subscription phase and a reporting phase. In line 1 of the configuration phase, an SCS/AS 100 sends a monitoring event subscription message to an SCEF 102. The monitoring event subscription message may be sent to SCEF 102 via the T8 interface or reference point of SCEF 102. The monitoring event subscription request contains the type of event requested and an identifier for the UE. Examples of events that might be requested include request for location information, UE reachability, or changes in international mobile station identity (IMSI) to international mobile equipment identity (IMEI) mappings. The monitoring event subscription request may also include the SCS/AS identifier and the monitoring event type. Examples of monitoring event types include one-time reporting and continuous monitoring for a specified duration. The monitoring event subscription request message may be sent to SCEF 102 in a hypertext transfer protocol (FITTP) post message.

In line 2 of the configuration phase, SCEF 102 validates the monitoring event subscription request and sends a Diameter connection information request (CIR) message to home subscriber server (HSS) 104 over the S6t interface. The CIR message includes a unique SCEF reference ID generated for the user. Validating the monitoring event subscription request may include determining whether the sending SCS/AS is authorized to monitor state information for a particular loT device. If the SCS/AS is not authorized to monitor state information for the loT device, SCEF 102 may reject the monitoring event subscription request. In the example illustrated in Figure 1 , it is assumed that the monitoring event request is from an SCS/AS that is authorized to monitor state information for the loT device identified in the monitoring event request message.

In line 3 of the configuration phase, FISS 104 validates the request and sends a response including loT device state information, if the information is available. The response is a Diameter connection information answer (CIA) message and is transmitted to SCEF 102 via the S6t interface. In line 4 of the message flow diagram, SCEF 102 sends an HTTP response 201 to SCS/AS 100. The response indicates that the subscription to receive state information has been accepted. Once the subscription to receive state information has been accepted, the subscription or configuration phase of the monitoring event procedure ends.

HSS 104, after receiving the CIR containing the subscription information, will wait until monitoring data is available for the UE. Once monitoring data is available, HSS 104 will send the requested information to the SCEF 102. In line 1 of the reporting phase of the message flow diagram, HSS 104 sends a Diameter routing information request (RIR) message to SCEF 102 that includes the requested state information and the SCEF reference ID. If SCEF 102 determines that the monitoring request has expired either due to the generation of a one-time report (in the case of one time reporting) or the expiration of a report duration or receipt of a specified number of reports (in the case of continuous reporting), SCEF 102 will delete the monitoring configuration for the UE.

In line 2 of the reporting phase of the message flow diagram, SCEF 102 communicates the loT device state to SCS/AS 100. The device state information is communicated to SCS/AS 100 via the T8 interface or reference point.

In line 3 of the reporting phase of the message flow diagram, SCS/AS 100 sends a response over the T8 interface to SCEF 102 with a cause code indicating success. In line 4 of the reporting phase of the message flow diagram, SCEF 102 sends a Diameter routing information answer (RIA) message to the HSS indicating success.

In Figure 1 , it is assumed that the FISS has the requested loT device state information. In another example, the HSS may not have the requested loT device state information and may contact a mobility management entity (MME) or a serving general packet radio service support node (SGSN) to obtain the requested loT device state information. Figure 2 is a message flow diagram illustrating the monitoring event configuration procedure and reporting procedure for obtaining 4G loT device state information from an MME or an SGSN.

Referring to Figure 2, like Figure 1 , the message flow is divided into a configuration phase and a subscription or reporting phase. In line 1 of the configuration phase, SCS/AS 100 sends a monitoring event subscription message to SCEF 102. The monitoring event subscription message may be sent to SCEF 102 via the T8 interface or reference point of SCEF 102. The monitoring event subscription request contains the type of event requested and an identifier for the UE. Examples of events that might be requested include request for location information, UE reachability, or changes in IMSI to IMEI mappings. The monitoring event subscription request may also include the SCS/AS identifier and the monitoring event type. Examples of monitoring event types include one-time reporting and continuous monitoring for a specified duration. The monitoring event request message may be sent to SCEF 102 in an HTTP post message.

In line 2 of the configuration phase, SCEF 102 validates monitoring event request and sends a Diameter CIR message to HSS 104 over the S6t interface. The CIR message includes a unique SCEF reference ID generated for the user. Validating the monitoring event request may include determining whether the sending SCS/AS is authorized to monitor state information for a particular loT device. If the SCS/AS is not authorized to monitor state information for the loT device, SCEF 102 may reject the monitoring event request. In the example illustrated in Figure 2, it is assumed that the monitoring event request is from an SCS/AS that is authorized to monitor state information for the loT device identified in the monitoring event request message.

In line 3 of the configuration phase, HSS 104 validates the request, forwards the request to loT device service nodes, such as MME/SGSN 106, and reports any loT device state information available to SCEF 102. The request from HSS 104 to MME/SGSN 106 is carried in a Diameter insert subscriber data request (IDR) message. MME/SGSN 106 responds with a Diameter insert subscriber data answer (IDA) message indicating that the request for a monitoring subscription has been accepted and includes, in the IDA message, any available loT device state information. In line 5 of the configuration phase, HSS 104 receives the IDA message and sends a CIA message to SCEF 102 indicating successful configuration of the monitoring of the loT device. In line 6 of the configuration phase, SCEF 102 sends an HTTP response 201 to SCSI AS 100. The response indicates that the subscription to receive state information has been accepted. Once the subscription requested to receive state information has been accepted, the subscription or configuration phase of the monitoring event procedure ends.

During the reporting phase, when MME/SGSN 106 has state information to report for an loT device, MME/SGSN 106 notifies SCEF 102. In Figure 2, the notification is transmitted in line 1 of the reporting phase from MME/SGSN 106 to SCEF 102 in a Diameter RIR message. The Diameter RIR message includes the requested state information and the SCEF reference ID. If the SCEF determines that the monitoring request has expired either due to receipt a one-time report (in the case of one-time reporting) or expiration of a subscription duration or receipt of a specified number of reports (in the case of continuous reporting), SCEF 102 will delete the monitoring configuration for the loT device.

In line 2 of the reporting phase of the message flow diagram, SCEF 102 communicates the loT device state to SCS/AS 100. The device state information is communicated to SCS/AS 100 via the T8 interface or reference point.

In line 3 of the reporting phase of the message flow diagram, SCS/AS 100 sends a response over the T8 interface to SCEF 102 with a cause code indicating success. In line 4 of reporting phase of the message flow diagram, SCEF 102 sends a Diameter RIA message to the HSS indicating success.

In the example illustrated in Figures 1 and 2, the T8 interface and monitoring event configuration procedure is used to configure downstream devices (i.e. , the SCEF, the HSS, and the MME/SGSN) to monitor loT device state for 4G loT devices. As stated above, the T8 interface and the monitoring event configuration procedure may also be used to configure downstream devices to monitor and report device state information for non- 4G loT devices, including 2G and 3G loT devices. Figure 3 is a message flow diagram illustrating the use of the T8 interface and the monitoring event configuration procedure to configure downstream devices to monitor and report status of 2G and 3G loT devices. The message flow in Figure 3 is for one-time monitoring. Referring to Figure 3, in line 1 of the message flow diagram, SCS/AS 100 sends a monitoring subscription request to SCEF 102 over the T8 interface. In this example, the request is for one time monitoring. Accordingly, the monitoring duration parameter in the monitoring subscription request may be set to zero or the number of reports parameter may be set to 1.

In line 2 of the message flow diagram, SCEF 100 validates the monitoring subscription request and determines, based on the device identifier present in the monitoring subscription request message, that the device is a 2G/3G loT device, and sends a mobile application part (MAP) anytime interrogation (ATI) request message to home location register (FILR) 300. As will be described in more detail below, SCEF 102 may maintain a database of device identifiers for 2G/3G loT devices. The device identifiers may be ranges of MSISDNs or domain identifiers of external IDs mapped to FILRs or FILR/FISSs that maintain state information for 2G and 3G loT devices. SCEF 102 may insert in the MAP ATI request message one or more information elements (lEs) that identify the message as an loT device state information subscription request and the type of subscription requested. SCEF 102 may determine the monitoring event type based on the monitoring event type received in the monitoring subscription request. The following table contains mappings between monitoring event subscription types and information elements that may be included in the MAP ATI request message.

Table 1 : loT Monitoring Subscription Type to MAP ATI Information Element

Mappings

From Table 1 , if the monitoring event type is location reporting, SCEF 102 may include the location information element in the ATI request message for one time reporting and the current location information element for continuous reporting. If the SCS/AS requests notifications regarding UE reachability, SCEF 102 may include the subscriber state IE in the MAP ATI request message. If the SCS/AS requests to be notified of changes in IMSI- IMEI association, SCEF 102 may include the IMEI information element in the ATI request message. Any other monitoring type coming from SCS/AS for 2G/3G devices may be rejected by SCEF 102 with proper error cause.

In line 3 of the message flow diagram, FILR 300 responds to the ATI request by sending a MAP ATI acknowledgement (Ack) message to SCEF 102 indicating a successful subscription to the 2G or 3G loT device state information. In line 4, SCEF 102 sends a monitoring event subscription response to SCS/AS 100 with http cause 201 created. After line 4, the configuration or subscription phase for receiving the 2G or 3G loT device state is complete.

During the reporting phase, in line 5 of the message flow diagram,

SCEF 102 sends a monitoring event status notification to SCS/AS 100 with the requested monitoring information over T8 interface. In line 6 of the message flow diagram, SCS/AS 100 sends a monitoring event status notification response to SCEF 102.

In the example in Figure 3, the monitoring subscription request is for one-time monitoring. SCEF 102 may also provide for continuous monitoring of state information regarding 2G and 3G loT devices. Figure 4 is a message flow diagram illustrating exemplary steps performed by SCEF 102 for continuous monitoring of state information regarding 2G and 3G loT devices. Referring to Figure 4, in line 1 , SCS/AS 100 sends a monitoring subscription request to SCEF 102 over the T8 interface. The monitoring subscription request may contain a non-zero monitoring duration parameter or a number of reports parameter that is greater than one, either of which indicates continuous monitoring of an loT device.

In line 2 of the message flow diagram, SCEF 102 validates the monitoring subscription request message and, based on the target loT device identifier present in the T8 message, SCEF 102 determines the device is a 2G or 3G loT device and sends a MAP ATI request to FILR 300. As stated above, SCEF 102 may include a database of device identifiers for 2G/3G loT devices and corresponding FILR addresses. Table 2 shown below is an example of an loT device identifier database that may be present in SCEF 102.

Table 2: loT Device Identifier Database Table 2 includes a list of loT device IDs and corresponding 2G/3G HLR addresses. In the illustrated example, loT devices are identified by ranges of MSISDN numbers and by the domain part of the external identifier in loT device monitoring event subscription request messages. When SCEF 102 receives a monitoring event subscription request message, SCEF 102 will extract the loT device identifier from the message and perform a lookup in the loT device identifier database. If the loT device identifier database contains the identifier of the loT device, the loT device is determined to be a 2G or 3G loT device, and SCEF 102 sends a subscription request message to the FILR corresponding to the loT device identified in the database lookup. If the loT device identifier is not present in the in the loT device identifier database, the loT device is determined to be a 4G or 5G loT device and the query is sent to the corresponding 4G or 5G network. It is understood that SCEF 102 may also maintain mappings between 4G and 5G loT device identifiers and addresses for corresponding HSS, MME, or SGSN nodes in 4G or 5G networks.

It should also be noted that the loT device identifiers in Table 2 may also include 4G or 5G loT devices that are attached to a 2G or 3G network. The procedure illustrated in Figures 3 and 4 for subscribing to and receiving state information updates for loT devices can be used for any loT device whose information is stored in an FILR that responds to ATI messages. It should also be noted that the ATI procedure illustrated in Figures 3 and 4 can be used to subscribe to and obtain loT device state information from an HSS or a combination HLR/HSS that will respond to ATI messages.

Returning to Figure 4, based on the monitoring event type received in the monitoring subscription request, SCEF 102 inserts the requested info IE into MAP ATI request according to the mappings illustrated in Table 1. For example, for continuous location monitoring, the MAP ATI lEs may include the current location IE. If SCEF 102 does not recognize the monitoring event type received from SCS/AS 100, SCEF 102 may reject the monitoring event subscription with an error message indicating an error cause.

In line 3 of the message flow diagram, HLR 300 sends a MAP ATI Ack to SCEF 102 with the requested loT device state information (if currently available). In line 4 of the message flow diagram, SCEF 102 sends a monitoring event subscription response to SCS/AS 100 with response code 201. In line 5 of the message flow diagram, SCEF 102 sends a monitoring event status notification over the T8 interface to SCS/AS 100 indicating that the monitoring subscription was successful. In line 6 of the message flow diagram, SCS/AS 100 sends monitoring event status notification response to SCEF 102.

In this example, a static timer is configured on SCEF 102 to indicate the interval on which the continuous monitoring needs to be performed. At each expiration of the timer, SCEF 102 sends a MAP ATI request to FILR 300, one of which is indicated by line 7 of the message flow diagram. SCEF 102 may send the ATI request messages to FILR 300 on regular interval based on the statically configured value of the timer until the requested subscription duration or number of reports is reached. Once the requested subscription duration or number of reports is reached, SCEF 102 may cease sending the ATI request messages concerning the loT device.

In line 8 of the message flow diagram, HLR 300 sends a MAP ATI Ack to SCEF 102 with the requested monitoring information. In line 9 of the message flow diagram, SCEF 102 sends the monitoring event status notification to SCS/AS 100 with the requested monitoring information over T8 interface. In line 10, SCS/AS 100 sends a monitoring event status notification response to SCEF 102.

Figure 5 is a flow chart illustrating an exemplary process for monitoring loT device state information for loT devices of plural different generation networks. Referring to Figure 5, in step 500, a common interface is provided in an SCEF for receiving subscription requests from loT application servers for monitoring state of loT devices of different generation networks. For example, referring to Figure 6, SCEF 102 may be implemented as a standalone computing platform. SCEF 102 includes a first interface 600, which in the Illustrated example is a T8 interface, for receiving subscription request from loT SCSs and ASs. The subscription requests may request loT device state information for loT devices of different generation networks. For example, the subscription requests may request 4G or 5G loT device state information using the monitoring event procedure Illustrated in Figures 1 and 2. Other subscription requests may request loT device state information regarding 2G or 3G loT devices using the procedures Illustrated in Figures 3 and 4. Providing a single common interface for loT application servers and service capability servers to subscribe to and receive loT device state information for loT devices of different generation networks eliminates the need for application servers and service capability servers to comply with multiple different interface types for requesting loT device state information.

In step 502, the process includes maintaining, in the SCEF, a database of loT device identifiers for loT devices of a first-generation network. In one example, the first-generation network may be a 2G or 3G network that contains state information for loT devices. Table 2 above illustrates an example of loT device identifier database that may be maintained.

In step 504, the process includes providing, in the SCEF, first and second loT device state information collection interfaces for respectively collecting loT device state information from first- and second-generation networks in response to subscription requests received via the common interface. Referring to Figure 6, SCEF 102 includes a 2G/3G loT device state information collection interface 604 for collecting loT device state information for 2G/3G loT devices from an FILR and a 4G/5G loT device state information collection interface 606 for collecting state information regarding 4G and 5G loT devices. 2G/3G loT device state information collection interface 604 may implement the above-described procedures for sending ATI messages for subscribing to receive loT device state. ATI messages are MAP messages sent over SS7 networks. Thus, 2G/3G loT device state information collection interface 604 may be an SS7 interface that implements a MAP layer, a transaction capabilities application part (TCAP) layer, a signaling connection control part (SCCP) layer, a message transfer part level 3 (MTP3) layer, and an IP or SS7 transport layer (either Sigtran over IP or SS7 layers 1 and 2). 4G/5G loT device state information collection interface 606 may implement one or more Diameter layers for subscribing to and receiving loT device state information from Diameter nodes, such as an HSS, an SGSN, or an MME. SCEF 102 also includes at least one processor 607 and a memory 608. In the example Illustrated in Figure 6, SCEF 102 is a standalone component. A standalone SCEF may include SCEF functionality in addition to SCS and AS functionality as well as MTC device interworking functionality. In an alternate implementation, SCEF 102 may be implemented as a component of a Diameter signaling router (DSR). Figure 7 illustrates such an implementation. In Figure 7, DSR 700 includes a plurality of message processors 702, 704, 706, and 708. Each message processor 702, 704, 706, and 708 includes a printed circuit board and at least one processor 710 and memory 712 mounted on the printed circuit board. Message processors 702, 704, 706, and 708 may exchange messages via a communications medium 714, such as an Ethernet backplane.

In the illustrated example, message processor 702 implements a Diameter connection layer 716 and a Diameter routing layer 718. Diameter connection layer 716 establishes and maintains Diameter connections with peer Diameter nodes. Diameter routing layer 718 routes Diameter messages based on Diameter layer information, such as destination host and destination realm parameters, in the messages.

Message processor 704 implements SS7 communications. As such, message processor 704 includes a Sigtran layer 720 and an SS7 layer 722. Sigtran layer 720 implements Sigtran protocols for carrying SS7 messages over IP networks. SS7 layer 722 implements SS7 MTP level 3 for routing SS7 signaling messages based on SS7 point codes.

Message processor 706 implements SCEF 102 and may include the components illustrated in Figure 6. As such, for retrieving loT device state information from a 2G or 3G network, SCEF 102 may send outbound subscription requests via SS7 message processor 704 and receive subscription information from SS7 message processor 704. For 4G and 5G loT device state information, SCEF 102 may send subscription requests via a non-Diameter interface, such as a direct API-based interface to SCEF 102.

Message processor 708 implements a Diameter application 724. Diameter application 724 may be any suitable Diameter application, such as a Diameter firewall application, performance monitoring application, or other suitable Diameter application. In the example illustrated in Figure 7, SCEF 102 is component of DSR 700. In yet another alternate implementation, SCEF 102 may be a component of a policy manager. Figure 8 illustrates such an implementation. In Figure 8, policy manager 800 includes message processors 702, 704, 706, and 708 as illustrated in Figure 7. Each message processor 702, 704, 706, and 708 includes a processor 710 and memory 712. Message processors 702, 704, 706, and 708 may communicate via communications medium 714. Flowever, rather than implementing Diameter routing or only Diameter routing, message processor 702 illustrated in Figure 8 includes a policy and charging rules function (PCRF) 802 that implements PCRF functionality. PCRF functionality includes responding to policy and charging requests from Diameter nodes. Message processor 702 also implements a Diameter connection layer 716 for establishing and maintaining connections with external Diameter nodes.

Message processor 704 implements the SCEF functionality Illustrated in Figure 6. Briefly, such functionality includes receiving subscription requests for loT device state information via a common interface, such as a T8 interface, and sending corresponding subscription requests to FILRs and FISSs. Message processors 706 and 708 may implement other Diameter applications such as policy related applications or non-policy related Diameter applications.

Thus, the SCEF that provides a common interface for multi generation loT device state monitoring can be implemented either as a standalone node or as a component of another node, such as a DSR or a PCRF. Such an SCEF obviates the need to provide dedicated interfaces to monitor loT device state information for loT devices of different generation networks. Such a device improves the technological field of loT device state monitoring because SCS and AS vendors are not required to comply with requirements of different interfaces for monitoring loT devices of different generation networks.

It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.