Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS TO ISOLATE CYCLODEXTRINS
Document Type and Number:
WIPO Patent Application WO/2017/039885
Kind Code:
A1
Abstract:
This disclosure relates to methods of isolating CDs. The method includes contacting a CD production mixture containing αCD, βCD, γCD, and CD production byproducts with a metal salt; and forming CD-MOF complexes containing at least a metal cation and a plurality of CD components.

Inventors:
LIMKETKAI BENJIE N (US)
BOTROS YOUSSRY Y (US)
Application Number:
PCT/US2016/044184
Publication Date:
March 09, 2017
Filing Date:
July 27, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PANACEANANO INC (US)
International Classes:
C08B37/16; B01D9/02; C12P19/18
Foreign References:
US4808232A1989-02-28
US20120070904A12012-03-22
US20140311297A12014-10-23
US20080206823A12008-08-28
US4303787A1981-12-01
US4384898A1983-05-24
US4835105A1989-05-30
JPH0576756A1993-03-30
Other References:
LIU, Z ET AL.: "Extended metal-carbohydrate frameworks.", PURE AND APPLIED CHEMISTRY., vol. 86, no. 9, 2014, pages 1323 - 1334
Attorney, Agent or Firm:
CORBETT, Ronald J. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method, comprising:

contacting a cyclodextrin (CD) production mixture with a metal salt, the CD production mixture comprising aCD, CD, yCD, and CD production byproducts; and forming CD-metal organic framework (MOF) complexes, the CD-MOF complexes comprising aCD-MOF and yCD-MOF complexes and each CD-MOF complex comprising at least a metal cation and a plurality of CD components.

2. The method of claim 1, wherein the CD production mixture is derived from a polysaccharide.

3. The method of claim 2, wherein the polysaccharide is starch, glycogen, cellulose, amylose, or any combination thereof.

4. The method of claim 2, further comprising treating the polysaccharide with a CD glycosyltransferase (CGTase) to form the CD production mixture.

5. The method of claim 4, wherein the CGTase is an aCGTase or a yCGTase.

6. The method of claim 4, wherein, prior to treating the polysaccharide with a CGTase, the method further comprises treating a composition comprising a polysaccharide with an amylase.

7. The method of claim 6, wherein the amylase is an a-amylase, β- amylase, or γ-amylase.

8. The method of claim 1, wherein the metal salt comprises a metal cation selected from the group consisting of Group IA metal cations, Group IIA metal cations, and transition metal cations.

9. The method of claim 8, wherein the metal cation is K+, Rb+, Na+, Cs+, Li+, Mg2+, Cd2+, Sn2+, Ag+, Yb+, Ba2+, Sr2+, Ca2+, Pb2+, or La3+.

10. The method of claim 1, wherein the metal salt comprises an anion selected from the group consisting of OH", CI", Br, C7H5O2", CO32", F\ S2\ Cr042\ and CN-.

11. The method of claim 1, wherein the metal salt is potassium hydroxide, rubidium hydroxide, potassium chloride, potassium benzoate, cesium hydroxide, or sodium carbonate.

12. The method of claim 1, wherein forming CD-MOF complexes comprises contacting the CD production mixture with a first solvent comprising Ci-10 alcohol, Ci-10 alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, or a mixture thereof to form the aCD-MOF and yCD-MOF complexes.

13. The method of claim 12, wherein the first solvent is vapor diffused into the CD production mixture.

14. The method of claim 12, wherein, prior to or after contacting the CD production mixture with the first solvent, the method further comprises treating the CD production mixture with an amylase.

15. The method of claim 14, wherein the amylase is an a-amylase, β- amylase, or γ-amylase.

16. The method of claim 12, further comprising collecting the aCD-MOF and yCD-MOF complexes from the CD production mixture by filtration or centrifugation.

17. The method of claim 16, further comprising selectively dissolving the aCD-MOF complex in a second solvent with heating.

18. The method of claim 17, wherein the second solvent comprises Ci-io alcohol, Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, or a mixture thereof. 19. The method of claim 17, further comprising dissolving the yCD-MOF complex in water to produce a yCD aqueous solution.

20. The method of claim 19, further comprising passing the yCD aqueous solution through an ion exchange resin to isolate yCD.

21. The method of claim 1, wherein, prior to contacting the CD production mixture with the metal salt, the method further comprises crystallizing βθϋ from the CD production mixture. 22. The method of claim 21, further comprising collecting CD crystals from the CD production mixture by filtration or centrifugation.

23. A method, comprising:

treating a composition comprising a polysaccharide with a cyclodextrin glycosyltransferase (CGTase) to form a cyclodextrin (CD) production mixture; and forming CD-metal organic framework (MOF) complexes, the forming comprising contacting a CD production mixture with a metal salt,

wherein the CD production mixture comprises aCD, CD, yCD, and CD production byproducts, and each CD-MOF complex comprises at least a metal cation and a plurality of CD components.

24. The method of claim 23, wherein, prior to treating the composition comprising a polysaccharide with the CGTase, the method further comprises treating the composition with an amylase.

25. The method of claim 24, wherein the amylase is an a-amylase, β- amylase, or γ-amylase.

26. The method of claim 23, wherein forming the CD-MOF complexes further comprises contacting the CD production mixture and the metal salt with a solvent comprising Ci-io alcohol, Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, or a mixture thereof to form aCD-MOF and yCD-MOF complexes.

27. The method of claim 26, wherein, prior to or after contacting the CD production mixture and the metal salt with the solvent, the method further comprises treating the CD production mixture with an amylase.

28. The method of claim 27, wherein the amylase is an a-amylase, β- amylase, or γ-amylase.

29. A method, comprising:

contacting a cyclodextrin (CD) production mixture with a square planar metal complex to form an a-cyclodextrin (aCD)-metal organic framework (MOF) complex, wherein the CD production mixture comprises aCD, CD, yCD, and CD production byproducts, and the aCD-MOF complex comprises at least a metal cation and a plurality of aCD components; and

separating the aCD-MOF complex from the CD production mixture.

30. The method of claim 29, wherein the square planar metal complex comprises a noble metal. 31. The method of claim 30, wherein the noble metal is gold, platinum, or palladium.

32. The method of claim 29, wherein the square planar metal complex is potassium tetrabromoaurate or potassium tetrachloroaurate.

33. The method of claim 29, further comprising treating a composition comprising a polysaccharide with a CD glycosyltransferase (CGTase) to form the CD production mixture.

34. The method of claim 33, wherein, prior to or after contacting the CD production mixture with the square planar metal complex, the method further comprises treating the composition with an amylase.

35. The method of claim 34, wherein the amylase is an a-amylase, β- amylase, or γ-amylase.

36. The method of claim 29, wherein separating the aCD-MOF complex from the CD production mixture comprises filtration or centrifugation.

37. The method of claim 36, further comprising dissolving the aCD-MOF complex in water with heating to produce an aCD aqueous solution.

38. The method of claim 37, further comprising passing the aCD aqueous solution through an ion exchange resin to isolate aCD.

39. The method of claim 29, wherein, after separating the aCD-MOF complex from the CD production mixture, the method further comprises contacting the CD production mixture with a metal salt.

40. The method of claim 39, further comprising contacting the CD production mixture and the metal salt with a solvent comprising Ci-io alcohol, Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, or a mixture thereof to form a yCD-MOF complex.

41. The method of claim 40, further comprising dissolving the yCD-MOF complex in water to produce a yCD aqueous solution.

42. The method of claim 41, further comprising passing the yCD aqueous solution through an ion exchange resin to isolate yCD.

43. The method of claim 29, wherein, prior to contacting the CD production mixture with the square planar metal complex, the method further comprises crystallizing CD from the CD production mixture. 44. The method of claim 43, further comprising collecting CD crystals from the CD production mixture by filtration or centrifugation.

Description:
METHODS TO ISOLATE CYCLQDEXTRINS

CROSS REFERENCE TO RELATED APPLICATION

Pursuant to 35 U.S.C. § 119(e), this application claims priority to U.S.

Provisional Application Serial No. 62/212,026, filed August 31, 2015, the contents of which are hereby incorporated by reference.

TECHNICAL FIELD

This disclosure relates to methods to isolate cyclodextrins (CDs), e.g., aCDs, CDS, and/or yCDs, by forming CD-metal organic framework (CD-MOF) complexes.

BACKGROUND

Cyclodextrins (cyclic dextrins, cyclic oligosaccharides, CDs) are cyclic structures composed of D-glucopyranosyl residues linked in a ring by a-1,4 glycosidic bonds. Glucose molecules, bonded together in the ring, form a hollow, circular, truncated cone with a hydrophobic interior and a hydrophilic exterior. This structure gives CDs the ability to host guest molecules (complexant) within their cavity. Due to this ability to form inclusion compounds (complex) with a wide variety of chemicals, thereby acting as a carrier to encapsulate, stabilize, and/or alter the chemical and physical properties, e.g. , volatility and solubility, of the guest molecules, CDs have been widely used in the agricultural, food, pharmaceutical, cosmetic, and chemical industries. The common aCD, CD, and yCD consist of six, seven, and eight glucopyranose units in their ring, respectively.

SUMMARY

This disclosure is based on the unexpected discovery that CDs can be isolated from a CD production mixture by forming CD-MOF complexes. The present methods can be used to efficiently isolate CDs (such as yCD) with significantly reduced time and cost. Further, the present methods can be used to isolate CDs on a large scale, e.g., commercial production scale. In some embodiments, one advantage of the methods described herein is the use of non-toxic solvents to isolate CDs, e.g., aCD and/or yCD, that can be safely and efficiently used for human consumption, e.g., in pharmaceutical or food applications. For example, ethanol can be used to form and isolate CD-MOF complexes, and any trace amounts of ethanol can be readily removed by evaporation. In addition, the solvent used in the methods described herein can be removed from the CD isolated by such a method relatively easily (e.g., by evaporation). In contrast, conventional methods of producing CDs typically requires insertion of an organic agent into the CD cavity to form a "complex" with the CD. Subsequent removal of this organic agent from within the CD cavity is difficult and time-consuming, often requiring steam distillation or liquid-liquid extraction with a solvent. For production of yCD in particular, large cyclic complexing agents (e.g. , cyclododecanone and cyclohexadec-8-en-l-one) are required to fit and complex within the large yCD cavity, and removal of such agents is difficult, and there is no economical solvent recovery process available to recycle the complexing agents for reuse.

In one aspect, this disclosure provides methods that include contacting a CD production mixture with a metal salt; and forming CD-MOF complexes. The CD production mixture contains aCD, CD, yCD, and CD production byproducts. The CD-MOF complexes include aCD-MOF and yCD-MOF complexes and each CD-MOF complex contains at least a metal cation and a plurality of CD components.

In another aspect, this disclosure features methods that include treating a composition containing a polysaccharide with a cyclodextrin glycosyltransferase (CGTase) to form a CD production mixture; and forming CD-MOF complexes. The forming includes contacting a CD production mixture with a metal salt. The CD production mixture contains aCD, CD, yCD, and CD production byproducts, and each CD-MOF complex contains at least a metal cation and a plurality of CD components.

In still another aspect, this disclosure provides methods that include contacting a CD production mixture with a square planar metal complex to form an aCD-MOF complex; and separating the aCD-MOF complex from the CD production mixture. The CD production mixture contains aCD, CD, yCD, and CD production byproducts, and the aCD MOF complex contains at least a metal cation and a plurality of aCD components.

Embodiments can include one or more of the following features.

In some embodiments, the CD production mixture is derived from a polysaccharide. In some embodiments, the polysaccharide is starch, glycogen, cellulose, amylose, or any combination thereof. In some embodiments, the methods include treating the polysaccharide with a CGTase to form the CD production mixture. For example, the CGTase is an aCGTase or a yCGTase.

In some embodiments, the methods include treating a composition comprising a polysaccharide with an amylase prior to treating the polysaccharide with a CGTase. In some instances, the amylase is an a-amylase, β-amylase, or γ-amylase.

In some embodiments, the metal salt contains a metal cation, e.g., Group IA metal cation, Group IIA metal cation, or transition metal cation. In some

embodiments, the metal cation is K + , Rb + , Na + , Cs + , Li + , Mg 2+ , Cd 2+ , Sn 2+ , Ag + , Yb + , Ba 2+ , Sr 2+ , Ca 2+ , Pb 2+ , or La 3+ .

In some embodiments, the metal salt contains an anion such as OH " , CI " , Br " , C7H5O2-, F " , S 2" , Cr04 2" , and CN " .

In some embodiments, the metal salt is potassium hydroxide, rubidium hydroxide, potassium chloride, potassium benzoate, cesium hydroxide, or sodium carbonate.

In some embodiments, forming CD-MOF complexes includes contacting the CD production mixture with a first solvent containing Ci-10 alcohol, Ci-10 alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene,

dimethylformamide, or a mixture thereof to form the aCD-MOF and yCD-MOF complexes.

In some embodiments, the first solvent is vapor diffused into the CD production mixture.

In some embodiments, the method includes treating the CD production mixture with an amylase prior to or after contacting the CD production mixture with the first solvent. In some embodiments, the amylase is an a-amylase, β-amylase, or γ-amylase.

In some embodiments, the methods include collecting the aCD-MOF and yCD-MOF complexes from the CD production mixture by filtration and/or centrifugation.

In some embodiments, the methods include selectively dissolving the aCD-MOF complex in a second solvent with heating. In some embodiments, the second solvent contains Ci-io alcohol, Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene,

dimethylformamide, or a mixture thereof.

In some embodiments, the methods include dissolving the yCD-MOF complex in water to produce a yCD aqueous solution.

In some embodiments, the methods include passing the yCD aqueous solution through an ion exchange resin to isolate yCD.

In some embodiments, the methods include crystallizing βθϋ from the CD production mixture prior to contacting the CD production mixture with the metal salt.

In some embodiments, the methods include collecting CD crystals from the

CD production mixture by filtration and/or centrifugation.

In some embodiments, the square planar metal complex contains a noble metal. For example, the noble metal can be gold, platinum, or palladium. In some embodiments, the square planar metal complex is potassium tetrabromoaurate or potassium tetrachloroaurate.

In some embodiments, the methods include treating a composition containing a polysaccharide with a CGTase to form the CD production mixture.

In some embodiments, the methods include treating the composition with an amylase prior to or after contacting the CD production mixture with the square planar metal complex. For example, the amylase can be an a-amylase, β-amylase, or γ-amylase.

In some embodiments, separating the aCD-MOF complex from the CD production mixture includes filtration and/or centrifugation.

In some embodiments, the methods include dissolving the aCD-MOF complex in water with heating to produce an aCD aqueous solution.

In some embodiments, the methods include passing the aCD aqueous solution through an ion exchange resin to isolate aCD.

In some embodiments, the methods include contacting the CD production mixture with a metal salt after separating the aCD-MOF complex from the CD production mixture.

In some embodiments, the methods include contacting the CD production mixture and the metal salt with a solvent containing Ci-io alcohol, Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene,

dimethylformamide, or a mixture thereof to form a yCD-MOF complex. As used herein, the term "polysaccharide" refers to a saccharide polymer containing two or more simple sugar units bound together by glycosidic linkages and upon hydrolysis, gives the constituent monosaccharides. The polysaccharide can be an oligosaccharide or a disaccharide. Examples of polysaccharides include starch, glycogen, cellulose, amylose, and any combination thereof.

Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.

Other features, objects, and advantages of the invention will be apparent from the description, drawings, and claims.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates the structure of a-l,4-linked D-glucopyranosyl residue. FIG. 2 illustrates the structure of a yCD ring.

FIG. 3 illustrates the eight monosaccharide residues in yCD form a truncated cone with the C6 hydroxy (OH) groups constituting the primary (1°) face and the C2 and C3 OH groups constituting the secondary (2°) face.

DETAILED DESCRIPTION

This disclosure relates generally to methods to isolate CDs, e.g. , aCDs, CDs, and/or yCDs, by forming CD-MOF complexes. In general, the CD isolation methods include contacting a CD production mixture with a metal salt and forming CD-MOF complexes.

Isolation of CDs can start by producing a CD production mixture from at least one polysaccharide, e.g. , starch, glycogen, cellulose, amylose, or any combination thereof. The polysaccharide can be obtained from a natural source, e.g., potato, rice, wheat, and maize. Alternatively or in addition, the polysaccharide can be chemically synthesized. Regardless of the source, the polysaccharide can be provided in a composition (e.g., an aqueous solution) at a concentration ranging from at least about 10% by weight (e.g., at least about 15%, at least about 20% by weight, at least about 25% by weight, or at least about 30% by weight) to at most about 50% by weight (e.g. , at most about 40% by weight, at most about 35% by weight, at most about 30% by weight, or at most about 25% by weight). For example, the composition can include from at least about 10% by weight to at most about 30% by weight of the polysaccharide. The polysaccharide can be disposed in a solvent, e.g., water, at a suitable temperature (e.g., from at least about 20°C to at most about 90°C) to produce a composition (e.g., a solution, suspension, or dispersion).

To produce a CD production mixture containing aCD, CD, and yCD, a composition containing a polysaccharide can be treated with at least one CD glycosyltransferase (CGTase). CGTase (EC 2.4.1.19) is a bacterial enzyme capable of catalyzing the synthesis of CDs by cyclizing part of a (l->4)-alpha-D-glucan chain by formation of a (l->4)-alpha-D-glucosidic bond. CGTase is an enzyme common in many bacterial species, in particular the Bacillus genus (e.g. , B. macerans, B.

coagulans, B. alkalophilic, B. circulans, B. macerans, andB. stear other mophilus), as well as in some archaea. CGTase can be isolated from bacterial fermentation cultures of Bacillus. See, e.g. , Jozsef Szejtli, Cyclodextrin Technology, Springer, 1988; Karl- Heinz Fromming and Jozsef Szejtli, Cyclodextrin in Pharmacy, Kluwer Academic Publishers, 1994; James N. BeMiller and Roy L. Whistler, Starch: Chemistry and Technology, Academic Press, 2009; and Zheng- Yu Jin, Cyclodextrin Chemistry:

Preparation and Application, World Scientific Publishing, 2013, the contents of which are hereby incorporated by reference in their entirety. Alternatively, CGTase can be purchased from commercial sources, e.g. , SBH Sciences, Natick, MA. The CGTase can be an aCGTase, a PCGTase, or a yCGTase, which preferentially form aCD, CD, and yCD, respectively upon contacting a polysaccharide. In some embodiments, the composition containing the polysaccharide can be treated with a mixture of CGTases to form a CD production mixture.

In some embodiments, a CGTase is added to the composition containing a polysaccharide (e.g., a polysaccharide aqueous solution) to produce a CD production mixture. The CD production mixture can include different CDs, e.g. , aCDs, CDs, and yCDs, and CD production byproducts. The CD production byproducts can include, e.g. , unconverted polysaccharides, oligosaccharides, disaccharides (e.g., maltose), monosaccharides (e.g., glucose). The relative ratios and yields of the different CDs will depend on the starting polysaccharide substrate and reaction conditions, such as the selected CGTase enzyme, polysaccharide concentration, reaction time, temperature, pH, additives, and precipitants. To improve yield and reduce purification cost, production ratios can be biased to a particular type of CD by using selective α, β, and yCGTase enzymes that predominantly produce α, β, and yCDs, respectively, depending on the CD of interest.

In some embodiments, the CD isolation methods described herein can optionally include a step of treating the composition containing a polysaccharide with an amylase prior to contacting the composition with a CGTase. The amylase can be an a-amylase, β-amylase, and/or γ-amylase. The a-amylases (EC 3.2.1.1) break down long-chain polysaccharides. For example, α-amylase can digest amylose to yield maltotriose and maltose. Because a-amylase can act anywhere on the polysaccharide substrate, α-amylase tends to be faster-acting than β-amylase. In animals, a-amylase is a major digestive enzyme, and its optimum pH is 6.7-7.0. β-amylase (EC 3.2.1.2) works from the non-reducing end of the polysaccharide substrate and catalyzes the hydrolysis of the second a- 1,4 glycosidic bond, cleaving off two glucose units

(maltose) at a time. The optimum pH for β-amylase is 4.0-5.0. In contrast, γ-amylase (EC 3.2.1.3) can cleave a(l-6) glycosidic linkages, as well as the last a(l- 4)glycosidic linkages at the nonreducing end of polysaccharide substrates, to yield glucose. The γ-amylase has optimal activity at around pH 3.0. These three amylases can be readily obtained from commercial sources, e.g. , Sigma- Aldrich Co. As known in the art, amylase activity can be stopped by acidification to a pH lower than optimal activity for the amylase, e.g., about pH 1.0 to pH 2.0 and/or by raising the temperature to at least about 55°C (e.g. , at least about 60°C, at least about 70°C, at least about 80°C, or at least about 90°C) and/or at most about 100°C (e.g. , at most about 60°C, at most about 70°C, at most about 80°C, or at most about 90°C) to denature the amylase. Optimal digestion of the polysaccharide can be readily determined by a skilled practitioner. In some embodiments, the composition containing a polysaccharide can be treated with a mixture of amylases prior to contacting the composition with a CGTase. Without wishing to be bound by theory, it is believed that an advantage of this additional amylase-treating step is that the amylase can break down the polysaccharide to make it easier for the CGTase to convert the polysaccharide to form CDs, thereby increasing the yield of the CDs.

In an exemplary method, after contacting the composition containing a polysaccharide with a CGTase, a CD production mixture containing aCD, βCD, yCD, and CD production byproducts thus formed can be contacted with a metal salt in order to form CD-MOF complexes. For example, the metal salt can have a Group IA metal cation, Group IIA metal cation, or transition metal cation. In some instances, the metal cation is K + , Rb + , Na + , Cs + , Li + , Mg 2+ , Cd 2+ , Sn 2+ , Ag + , Yb + , Ba 2+ , Sr 2+ , Ca 2+ , Pb 2+ , or La + . In some embodiments, the metal salt has an OH " , CI " , Br " , C7H5O2 " , CO3 2" , F " , S 2" , Cr04 2" , or CN " anion. As an example, the metal salt can be potassium hydroxide, rubidium hydroxide, potassium chloride, potassium benzoate, cesium hydroxide, or sodium carbonate.

In some embodiments, CD-MOF complexes can be formed by the following method. At ambient temperatures and pressures, the CD production mixture containing a metal salt obtained above can be contacted with a first solvent. The first solvent can contain Ci-10 alcohol (e.g., ethanol), Ci-10 alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, or a mixture thereof. In the some embodiments, the first solvent can include a mixture of water and at least one of the solvents described above. In some embodiments, the first solvent can be vapor diffused into the CD production mixture to form CD-MOF complexes (e.g., aCD-MOF and yCD-MOF complexes) in crystalline form with a relative large crystal size.

Other methods of forming CD-MOF complexes include those described in U. S. Patent No. 9,085,460, WO 2014/172667, and Liu et al. (Pure Appl Chem

86: 1323-1334, 2014), the contents of which are hereby incorporated by reference in their entireties.

The CD-MOF complexes generally include at least one metal cation (e.g. , a plurality of metal cations) and a plurality of CD components (such as those of Formula (I) below). The at least one metal cation is generally coordinated with the plurality of CD molecules or CD derivatives. In general, the CD-MOF complexes are porous.

In general, the main building block for CD-MOF complexes is CD, a cyclic oligosaccharide that includes monosaccharide residues linked in a circular ring.

Suitable CDs that can be used in the CD-MOF complexes include, for example, α, β, and yCOs. FIG. 1 illustrates the structure of a-l,4-linked D-glucopyranosyl residue. FIG. 2 illustrates the structure of a yCD ring. FIG. 3 illustrates the eight

monosaccharide residues in yCD form a truncated cone with the C6 hydroxy (OH) groups constituting the primary (1°) face and the C2 and C3 OH groups constituting the secondary (2°) face. CDs can be mass-produced through enzymatic degradation of a renewable source (e.g. , starch). In some embodiments, a CD-MOF complex can be made from one or more CD derivatives (such as those shown in Formula (I) below). Without wishing to be bound by theory, it is believed that the CD rings in a yCD-MOF complex adopt the faces of a cube, with their primary (1°) faces pointing towards the interior of the cube and their secondary (2°) faces pointing outward. Further, without wishing to be bound by theory, it is believed that the CD rings in a yCD-MOF complex are linked together by coordination of the metal cations to the primary C6 OH groups and the glycosidic ring oxygen atoms. The individual cubes pack to form the body-centered cubic crystal through coordination of more alkali metal cations to the C2 and C3 OH groups of the secondary faces of the CD rings.

In some embodiments, the CD-MOF complexes described herein include a CD component and a metal-containing component. The metal-containing component can have the formula MN. M can be a Group IA metal cation, Group IIA metal cation, or a transition metal cation, and N can be an organic or inorganic, monovalent or multivalent anion. Suitable inorganic anions include, for example, hydroxide, chloride, bromide, sulfinate, carbonate, fluoride, sulfide, chromate, and cyanide. Suitable organic anions include, for example, benzoate, azobenzene-4,4'- dicarboxylate, acetate, and oxalate. The CD component of the CD-MOF complexes can be a compound of the Formula I):

in which «=0-10; R is selected from the group consisting of -OH; -NR'R"; Ci-Cie alkyl optionally substituted with one, two, three, four or five Ri groups; C2-C18 alkenyl optionally substituted with one, two, three, four or five Ri groups; C2-C18 alkynyl optionally substituted with one, two, three, four or five Ri groups; C1-C 18 alkoxy optionally substituted with one, two, three, four or five Ri groups; -S(=0)2R' ; -S(=0)OR'; -S(=0)R' ; -C(=0)OR' ; -CN; -C(=0)R' ; -SR', -N=N+=N " ; -NO2, - OSO2R'; -C(=0)OR' ; -0(=S)SR' ; -P(=0)(OR')2; -OP(=0)(OR')2; -P(=0)(OR')R"; - N=R'R"; -NR'P(OR")(OR"'); -OC(=0)NR'R"; aryl optionally substituted with one, two, three, four or five R2 groups; heteroaryl optionally substituted with one, two, three, four or five groups independently selected from R2 groups; and cycloalkyl optionally substituted with one, two, three, four or five groups independently selected from R2 groups; each Ri group is independently selected from the group consisting of hydroxyl, halo, Ci-C 6 alkoxy, -NR'R"; -

S(=0) 2 R' ; -S(=0)OR'; -S(=0)R' ; -C(=0)OR' ; -CN; -C(=0)R' ; -SR',

-N=N+=N " ; -NO2, -OSO2R' ; -C(=0)OR' ; -0(=S)SR'; -P(=0)(OR') 2 ; -OP(=0)(OR') 2 ; -P(=0)(OR')R"; -N=R'R"; -NR'P(OR")(OR"'); -OC(=0)NR'R"; aryl optionally substituted with one, two, three, four or five R' groups; heteroaryl optionally substituted with one, two, three, four or five groups independently selected from R' groups; and cycloalkyl optionally substituted with one, two, three, four or five groups independently selected from R' groups; each R2 group is independently selected from the group consisting of C1-C6 alkyl, C2-C6 alkyenyl, C2-C6 alkynyl, hydroxyl, halo, Ci-Ce alkoxy, -NR'R"; -S(=0) 2 R' ; -S(=0)OR'; -S(=0)R' ; -C(=0)OR' ; -CN;

-C(=0)R' ; -SR', -N=N+=N " ; -NO2, -OSO2R'; -C(=0)OR' ; -0(=S)SR' ;

-P(=0)(OR') 2 ; -OP(=0)(OR') 2 ; -P(=0)(OR')R"; -N=R'R"; - NR'P(OR")(OR"'); -OC(=0)NR'R"; aryl optionally substituted with one, two, three, four or five R' groups; heteroaryl optionally substituted with one, two, three, four or five groups independently selected from R' groups; and cycloalkyl optionally substituted with one, two, three, four or five groups independently selected from R' groups; and wherein each R', R", and R'" are independently selected from the group consisting of H, C1-C6 alkyl, and aryl. Examples of compounds of Formula (I) include α, β, and yCOs.

As used herein, the term "alkyl" refers to a straight or branched chain alkyl radical. Examples include, but are not limited, to methyl, ethyl, propyl, isopropyl, n- butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3- hexyl, and 3-methylpentyl. Each alkyl group may be optionally substituted with one, two, or three substituents such as a halo, cycloalkyl, aryl, alkenyl, or alkoxy group.

As used herein, the term "lower alkenyl" refers to a straight or branched hydrocarbon radical having one or two double bonds and includes, for example, ethenyl, propenyl, l-but-3-enyl, l-pent-3-enyl, and l-hex-5-enyl. The alkenyl group can also be optionally mono-, di-, or trisubstituted with, for example, halo, aryl, cycloalkyl, or alkoxy.

As used herein, the term "alkynyl" refers to a straight or branched

hydrocarbon radical having one or two triple bonds and includes, for example, propynyl and l-but-3-ynyl. The alkynyl group can also be optionally mono-, di-, or trisubstituted with, for example, halo, aryl, cycloalkyl, or alkoxy.

As used herein, the term "alkoxy" refers to an -O-alkyl group in which the alkyl is as defined above.

As used herein, the term "halo" or "halogen" refers to a halogen radical of fluorine, chlorine, bromine, or iodine.

As used herein, the term "aryl" refers to an aromatic carbocylic radical having a single ring (e.g. , phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g. , 1,2,3,4-tetrahydronaphthyl).

As used herein, the term "heteroaryl" refers to one aromatic ring or multiple fused aromatic ring systems of 5-, 6-, or 7-membered rings containing at least one and up to four heteroatoms (e.g., nitrogen, oxygen, or sulfur). Examples include, but are not limited to, furanyl, thienyl, pyridinyl, pyrimidinyl, benzimidazolyl, and benzoxazolyl.

As used herein, the term "cycloalkyl" refers to a carbocylic radical having a single ring (e.g. , cyclohexyl), multiple rings (e.g. , bicyclohexyl) or multiple fused rings (e.g., decahydronaphthalenyl). In addition, the cycloalkyl group may have one or more double bonds.

In some embodiments, the CD isolation methods described herein can optionally include a step of treating the CD production mixture with an amylase (1) after the CD production mixture is formed but prior to contacting the CD production mixture and the metal salt with a first solvent or (2) after contacting the CD production mixture and the metal salt with a first solvent. Without wishing to be bound by theory, it is believed that this amylase-treating step can break down unconverted polysaccharides (e.g., unconverted oligosaccharides or disaccharides) in the CD production mixture to form CD production byproducts that have a higher solubility in the CD production mixture, thereby allowing the CD-MOF complexes to be separated from the CD production mixture more easily.

In some embodiments, after contacting the CD production mixture with the first solvent, a mixture of solid CD-MOF complexes (which can include

predominantly aCD-MOF and yCD-MOF complexes) can be collected from the CD production mixture by filtration and/or centrifugation. The CD-MOF complexes thus formed can be nano-crystalline or crystalline. The collected aCD-MOF complex can then be separated from the mixture by selective dissolution in a second solvent to produce an aCD solution. Examples of suitable second solvents include Ci-io alcohol (e.g., ethanol), Ci-io alkane, methylene chloride, acetone, acetic acid, acetonitrile, benzene, toluene, dimethylformamide, and a mixture thereof. In some embodiments, the second solvent can include a mixture of water and one or more of the solvents described above to produce an aCD aqueous solution. In some embodiments, the dissolution of the aCD-MOF complex can be performed at an elevated temperature. For example, the aCD-MOF complex can be selectively dissolved in the second solvent at a temperature from at least about 25°C (e.g. , at least about 30°C, at least about 50°C, at least about 60°C, at least about 80°C, at least about 90°C, at least about 100°C, at least about 130°C, at least about 150°C, or at least about 180°C) to at most about 200°C (e.g. , at most about 180°C, at most about 150°C, at most about 130°C, at most about 100°C, at most about 90°C, at most about 80°C, at most about 60°C, at most about 50°C, or at most about 30°C). In some embodiments, the aCD solution thus formed can be separated from the solid yCD-MOF complex by filtration and/or centrifugation. In some embodiments, aCD can be isolated from the aCD solution by passing the aCD solution through an ion exchange resin. aCD can also be separated from the metal salt by crystallization since aCD is typically not as soluble as the metal salt. Alternatively, aCD can be separated from the metal salt through use of molecular sieves since aCD is generally much larger than the metal salt. The solid yCD-MOF complex can be dissolved in a suitable solvent (e.g., water) to produce a yCD solution (e.g., a yCD aqueous solution). The yCD can then be isolated from the yCD solution by passing the yCD solution through an ion exchange resin. In some embodiments, yCD can also be separated from the metal salt by crystallization since yCD typically is not as soluble as the metal salt. Alternatively, yCD can be separated from the metal salt through use of molecular sieves since yCD is generally much larger than the metal salt.

In some embodiments, prior to contacting the CD production mixture with the first solvent to form CD-MOF complexes, insoluble impurities in the mixture (if present) can be removed from the CD production mixture by filtration and/or centrifugation to improve the purity of the CD-MOF complexes thus formed.

In some embodiments, CD can be removed from the CD production mixture before contacting the CD production mixture with the first solvent to form solid aCD- MOF and yCD-MOF complexes. In such embodiments, to remove CD, the CD production mixture can be concentrated by vacuum distillation and/or can have its temperature lowered to a suitable temperature (e.g., from about 25°C to about 4°C) to crystallize CD. Crystalline CDs can then be separated from the CD production mixture by filtration and/or centrifugation, and washed and recrystallized in appropriate solvents for higher purity, as described in Jozsef Szejtli, Cyclodextrin Technology, Springer, 1988; Karl-Heinz Fromming and Jozsef Szejtli, Cyclodextrin in Pharmacy, Kluwer Academic Publishers, 1994; James N. BeMiller and Roy L.

Whistler, Starch: Chemistry and Technology, Academic Press, 2009; and Zheng-Yu Jin, Cyclodextrin Chemistry: Preparation and Application, World Scientific

Publishing, 2013, the contents of which are hereby incorporated by reference in their entirety. In some embodiments, CD can be removed from the CD production mixture (e.g., by crystallization) after aCD-MOF and yCD-MOF complexes are formed and removed from the CD production mixture.

Alternatively, in some embodiments of the CD isolation methods described herein, rather than using a metal salt to form a mixture of CD-MOF complexes (which can include both aCD-MOF and yCD-MOF complexes) from the CD production mixture, the aCD-MOF complex can be selectively formed from the CD production mixture using a square planar metal complex without substantially forming a yCO- MOF complex. For example, a composition containing a polysaccharide (e.g., a polysaccharide aqueous solution) can first be treated with a CGTase to form a CD production mixture, as described above. The CD production mixture can be contacted with a square planar metal complex to selectively form an aCD-MOF complex that has at least a metal cation and a plurality of aCD components without substantially forming a yCD-MOF complex. The aCD-MOF complex can then be separated from the CD production mixture.

In some embodiments, upon contacting the CD production mixture with a square planar metal complex, an aCD-MOF complex forms and quickly precipitates out of the CD production mixture. As a non-limiting example, the metal in the square planar metal complex is a noble metal, e.g. , gold, platinum, or palladium. For example, the square planar metal complex can be potassium tetrabromoaurate or potassium tetrachloroaurate.

Once the aCD-MOF complex is formed, it can be separated from the CD production mixture by filtration and/or centrifugation. aCD can then be isolated from the aCD-MOF complex thus formed by using the same methods described above (e.g., dissolving the aCD-MOF complex in a suitable solvent to form an aCD solution and then passing the aCD solution through an ion exchange resin to isolate aCD, crystallization, or use of a molecular sieve). The square planar metal complex can be recovered from the ion exchange resin and recycled.

After separating the aCD-MOF complex from the CD production mixture, yCD can be isolated from the CD production mixture by using the same method described above. For example, the CD production mixture can be treated with a metal salt (such as those described herein) and a suitable solvent (such as those described herein) to form a yCD-MOF complex. The metal salt and the solvent can be added simultaneously or sequentially. The yCD-MOF complex thus formed can then be separated from the CD production mixture (e.g., by filtration or centrifugation). The isolated yCD-MOF complex can subsequently be dissolved in a suitable solvent (e.g., water) to form a yCD solution (e.g., a yCD aqueous solution). The yCD solution can then be passed through an ion exchange resin to separate the yCD from the metal salt. Alternatively, as described herein, yCD can be separated from the metal salt by crystallization or use of molecular sieves.

In embodiments where a square planar metal complex is used to isolate aCD, the CD isolation methods described herein can optionally include (1) a step of treating a composition containing a polysaccharide with amylase prior to contacting the composition with a CGTase, (2) a step of treating the CD production mixture with an amylase after the CD production mixture is formed but prior to contacting the CD production mixture and the square planar metal complex with a solvent to form a aCD-MOF complex, (3) a step of treating the CD production mixture with an amylase after the aCD-MOF complex is formed but before the formation of a yCD-MOF complex, or (4) a step of treating the CD production mixture with an amylase after the yCD-MOF complex is formed.

In embodiments where a square planar metal complex is used to isolate aCD, the CD isolation methods described herein can optionally remove CD from the CD production mixture (1) before forming an aCD-MOF complex, (2) after forming an aCD-MOF complex, but before forming a yCD-MOF complex, or (3) after forming a yCD-MOF complex. For example, to remove CD before forming an aCD-MOF complex, the CD production mixture can be concentrated by vacuum distillation and/or can have its temperature lowered to a suitable temperature (e.g., from about 25°C to about 4°C) to crystallize the CD. Crystalline CD can then be separated from the CD production solution by filtration and/or centrifugation. Optionally, the CD can be washed and recrystallized in suitable solvents for higher purity.

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.