Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MICROALLOYED STEEL WITH GOOD RESISTANCE TO HYDROGEN FOR THE COLD-FORMING OF MACHINE PARTS HAVING HIGH PROPERTIES
Document Type and Number:
WIPO Patent Application WO/2008/142275
Kind Code:
A2
Abstract:
The steel according to the invention is characterized in that, in order to keep its molybdenum weight content below 0.45%, its chemical composition, besides iron and the inevitable residual impurities resulting from the smelting of the steel, corresponds to the following analysis, given in percentages by weight: 0.3 ≤ C% ≤ 0.5; 0.20 ≤ Mo% < 0.45; 0.4 ≤ Mn% ≤ 1.0; 0.4 ≤ Cr% ≤ 2.0; 0.04 ≤ Ni% ≤ 0.8; 0.02 ≤ Nb% ≤ 0.045; 0.03 ≤ V% ≤ 0.30; 0.02 ≤ Ti% ≤ 0.05; with Ti > 3.5 N; 0.003 ≤ B% ≤ 0.005; S% ≤ 0.015; P% ≤ 0.015, and optionally 0.05 ≤ Si% ≤ 0.20; A1% ≤ 0.05 and N% ≤ 0.015; by cold-forming of a hot-rolled wire rod resulting from continuous casting, it is possible to obtain, after heat treatment, “ready-to-use” coined parts, such as cap screws, for example for the automotive industry, that offer a tensile strength of 1200 to more than 1500 MPa while having a good resistance to hydrogen embrittlement, with a specially controlled “raw material” production cost.

Inventors:
RESIAK BERNARD (FR)
CONFENTE MARIO (FR)
CATHIARD RENE (FR)
STARCK BERNARD (FR)
Application Number:
PCT/FR2008/000496
Publication Date:
November 27, 2008
Filing Date:
April 09, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARCERLORMITTAL GANDRANGE (FR)
LISI AUTOMOTIVE (FR)
RESIAK BERNARD (FR)
CONFENTE MARIO (FR)
CATHIARD RENE (FR)
STARCK BERNARD (FR)
International Classes:
C22C38/22; B21K1/56; C21D8/06; C22C38/24; C22C38/44; C22C38/46; C22C38/48
Foreign References:
US20030150529A12003-08-14
EP1746177A12007-01-24
GB2169313A1986-07-09
JP2001032044A2001-02-06
US5073338A1991-12-17
Attorney, Agent or Firm:
VENTAVOLI, Roger (4 Cours de Lattre de Tassign, BP 50229 Thionville Cedex, FR)
Download PDF:
Claims:

REVENDICATIONS

1- Acier micro-allié à la fragilisation par l'hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques, caractérisé en ce que, afin de contenir sa teneur pondérale en molybdène en dessous de 0.50 %, sa composition chimique, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond à l'analyse suivante, donnée en pourcentages pondéraux:

0,3 < C % < 0,5 0,20 < Mo % < 0,45

0,4 < Mn % < l,0 0,4 < Cr % < 2,0 0,04 < Ni % ≤ 0.8 0,02 < Nb % < 0,045 0,03 < V % < 0,30

0,02 < Ti % < 0,05, avec Ti >3,5 N 0,003 < B % < 0,005 % S % < 0,015 P % < 0,015, et optionnellement: 0,05 < Si % < 0,20; Al % < 0,05 et N % < 0,015;

2- Acier selon la revendication 1 , caractérisé en ce qu'il se présente sous l'aspect d'une barre ou d'un fil-machine laminés à chaud et issus de la coulée continue sous forme de blooms ou de billettes

3- Fil-machine ou barre en acier, caractérisé en ce qu'il est en acier micro-allié selon la revendication 1 afin d'être apte à présenter, par transformation par formage à froid et traitement thermique de trempe et revenu, une résistance mécanique de 1200 à 1500 MPa et plus, alliée à une bonne tenue à l'hydrogène.

4. Pièce mécanique prête à l'emploi caractérisée en ce qu'elle est issue par formage à froid d'un fil-machine selon la revendication 3.

5. Pièce mécanique prête à l'emploi, formée à froid et présentant de hautes caractéristiques mécaniques ainsi qu'une tenue à l'hydrogène, caractérisée en ce qu'elle est en acier micro-allié présentant, afin de contenir sa teneur pondérale en molybdène en dessous de 0.45 %, une composition chimique qui, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond à l'analyse suivante, donnée en pourcentages pondéraux: 0,3 < C % < 0,5 0,20 ≤ Mo % < 0,45 0,4 < Mn % < l,0

0,4 < Cr % < 2,0 0,04 < Ni % < 0.8 0,02 < Nb % < 0,045 0,03 < V % < 0,30 0,02 < Ti % < 0,05, avec Ti >3,5 N

0,003 < B % < 0,005 % S % < 0,015 P % < 0,015, et optionnellement 0,05 < Si % < 0,20; Al % < 0,05 et N % < 0,015;

6- Pièce mécanique selon la revendication 5, caractérisée en ce qu'elle est une vis d'assemblage.

7. Vis selon la revendication 6, caractérisée en ce qu'elle est constitutive des assemblages des éléments de moteurs ou de liaisons au sol des véhicules roulants produits par l'industrie automobile.

Description:

Acier micro-allié à bonne tenue à l'hydrogène pour Ie formage à froid de pièces mécaniques à hautes caractéristiques.

L'invention concerne les aciers micro-alliés pour le formage à froid, par frappe en particulier, de pièces d'assemblage, tels que vis, boulons, etc.. que l'industrie automobile utilise couramment pour l'assemblage des éléments de moteurs ou de liaisons au sol des véhicules roulants.

Comme on le sait, l'industrie automobile vise continûment à accroître la puissance des moteurs en même temps qu'elle cherche à en réduire le poids, donc à employer des pièces de taille de plus en plus réduite. Ces pièces, qui restent soumises aux mêmes contraintes mécaniques, doivent donc présenter des caractéristiques mécaniques, de résistance à la rupture notamment, de plus en plus élevées.

Jusqu'à présent, la très grande majorité des aciers micro-alliés, utilisés par exemple en visserie automobile, permet d'obtenir des vis relevant de la classe 10.9; donc dotées d'une résistance à la rupture de 1000 MPa et davantage. Cette résistance, déjà élevée, peut être encore artificiellement accrue de quelque 100 à 200 MPa environ par le serrage des vis au moment même de l'assemblage des pièces. On comprendra qu'une telle pratique ne peut toutefois être retenue comme solution en soi à l'accroissement recherché de la limite de rupture

Or, l'autre voie, à savoir celle "naturelle" qui s'adresse à la métallurgie de leur fabrication, se heurte rapidement à des problèmes de fragilité liée à la présence d'hydrogène dans l'acier. Comme on le sait, l'hydrogène dans l'acier est en effet à l'origine de mécanismes de rupture, différée voire immédiate parfois, qui se traduit par la casse de la pièce en service lors de l'application d'un certain niveau de contraintes.

Des nuances d'acier micro-allié pour vis à très hautes caractéristiques mécaniques (1 300 MPa et plus de résistance) ont déjà été proposées visant à améliorer leur tenue à l'hydrogène. C'est le cas, par exemple, de la nuance décrite dans le document USP 5 073 338 de décembre 1991 et dans laquelle du molybdène est ajouté en quantité, jusqu'à 1 % en poids avec un minimum de 0,5 %.

Cependant, on peut craindre que les traitements thermiques subis par l'acier lors de la frappe conduisent à une accumulation en certains endroits de la matrice métallique de carbures de molybdène volumineux qui vont fragiliser la structure de l'acier et ne permettront donc pas toujours d'obtenir les caractéristiques mécaniques désirées. Un autre inconvénient peut être ressenti dans une certaine diminution de l'aptitude à la déformation à froid suite à l'accroissement de la dureté de l'acier due à la présence de cet élément durcissant à teneur élevée. De plus, le molybdène est un

produit particulièrement onéreux sur le marché, de sorte que son introduction en quantité dans l'acier engendre un surcoût important de production.

Néanmoins, malgré ces inconvénients, les nuances proposées dans la littérature pour des aciers micro-alliés destinées à la visserie semblent persévérer dans le sens d'une présence forte de molybdène afin de pouvoir atteindre des niveaux en résistance mécanique supérieurs à 1300 MPa. Il en est ainsi, par exemple, de la nuance décrite dans le document JPA 2001032044 publié en février 2001, dans laquelle la teneur pondérale en molybdène se situe entre 1,5 et 3 %. C'est le cas encore de la nuance décrite dans le document EPA 1746177 publié en janvier 2007 dans laquelle la teneur en molybdène peut monter jusqu'à 6 %, sans pouvoir être inférieure à 0,5 %.

On voit donc, au travers de ce rapide panorama de l'état connu de la technique, qu'il apparaît relativement aisé en fait d'atteindre, via la métallurgie, des aciers micro alliés pour pièces à haute résistance mécanique, sans nuire pour autant nécessairement à la tenue à l'hydrogène, mais qu'il est bien moins aisé d'obtenir un tel résultat si l'on s'assigne une teneur en molybdène volontairement basse.

Allant à l'opposé de la voie tracée par l'art antérieur, l'invention a pour but de proposer un acier micro-allié économique, à teneur en molybdène délibérément fixée à cet effet à moins de 0.45 % en poids, et présentant une bonne tenue à l'hydrogène, tout en permettant d'atteindre de hautes caractéristiques mécaniques sur les pièces finales prêtes à l'usage réalisées à partir de cet acier.

A cet effet, l'invention a pour objet un acier micro-allié à bonne tenue à la fragilisation par l'hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques, caractérisé en ce que, afin de contenir sa teneur pondérale en molybdène en dessous de 0,45 %, sa composition chimique, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond à l'analyse suivante, donnée en pourcentages pondéraux: 0,3 < C % < 0,5 0,20 < Mo % < 0,45 0,4 < Mn % < l,0 0,4 < Cr % < 2,0

0,04 < Ni % < 0.8 0,02 < Nb % < 0,045 0,03 < V % < 0,30 0,02 < Ti % < 0,05; avec Ti >3,5 N 0,003 < B % < 0,005 %

S % < 0,015 P % < 0,015, et optionnellement 0,05 < Si % < 0,20; Al % < 0,05 et N % < 0,015.

L'invention a également pour objet un produit sidérurgique long laminé (fil- machine ou barre) en acier micro-allié issu de la coulée continue sous forme de billettes ou de blooms et ayant une composition chimique conforme à l'analyse donnée ci-avant afin d'être apte à présenter, après transformation par formage à froid et traitement thermique de trempe et revenu, une résistance mécanique de 1200 à 1500 MPa et plus, alliée à une bonne tenue à l'hydrogène.

L'invention a encore pour objet une pièce mécanique prête à l'emploi, formée à froid, par frappe en particulier, et présentant de hautes caractéristiques mécaniques ainsi qu'une bonne tenue à l'hydrogène, caractérisée en ce qu'elle est en acier micro- allié répondant à la composition chimique donnée ci-avant et, de préférence, produite à partir d'un produit sidérurgique long laminé (barre ou, plus couramment, fil-machine) issu de la coulée continue sous forme de billettes ou de blooms.

De préférence encore, ladite pièce mécanique est une vis d'assemblage pour le montage dans l'industrie automobile. On aura déjà compris qu'une fourchette de 0,20 à 0,45 % de Mo suffit en fait, dans le cas de l'invention, pour obtenir une synergie entre cet élément particulier et les autres éléments présents dans la composition chimique de l'acier que sont, d'un côté, le niobium, le vanadium et le titane (lesquels agissent tous à l'état précipité en faveur donc, d'un durcissement du grain de la structure de l'acier et de son affinement), et de l'autre, le bore présent pour augmenter la trempabilité de la nuance et qui va permettre d'obtenir in fine une microstructure à martensite dominante dans les conditions habituelles du traitement thermique propre au formage à froid, par frappe ou autre.

Il importe par ailleurs de noter que la voie suivie par l'invention pour l'élaboration d'une telle nuance à basse teneur en molybdène a été de créer un acier micro-allié permettant de supporter une quantité d'hydrogène plus élevée que dans l'art antérieur. Pour ce faire, la nuance a été optimisée pour répondre aux problèmes liés à l'hydrogène, non plus par l'approche classique unique, à savoir celle du piégeage de cet élément, mais par trois voies différentes conjointes. Les recherches effectuées ont pu montrer en effet que la tenue à l'hydrogène de l'acier pouvait résulter de différents facteurs indépendants, tels que la composition chimique ou la microstructure, mais aussi, et on le comprendra sans peine, la quantité d'hydrogène déjà présente dans l'acier avant la mise en service des pièces.

L'hydrogène, selon l'invention, est donc traité par les trois voies suivantes:

1 - Le piégeage. La nuance selon l'invention présente la particularité de multiplier et diversifier les pièges à hydrogène de sorte à éviter une agglomération en un seul endroit de carbures du même type qui fragiliserait la structure et nuirait à la résistance mécanique de l'acier. Le molybdène n'est en effet plus le piège privilégié de

l'hydrogène, puisque la nuance contient également à cet effet du niobium, du titane, du chrome et du vanadium.

2 - La répartition. Les éléments, tels que le bore, le niobium, le molybdène, le vanadium et le titane sont favorisés, car ils permettent d'affiner le grain, ce qui permet d'accroître la tenue à l'hydrogène. En effet, l'accroissement de la finesse des grains induisant une augmentation de la surface des joints, l'hydrogène est alors mieux réparti dans l'acier et devient de ce fait moins nocif.

3 - L'élimination. L'hydrogène, introduit dans l'acier lors des phases préparatoires de la matière en vue de la frappe, peut être en partie éliminé lors du traitement thermique final de trempe et revenu effectué sur les pièces frappées fabriquées avec de l'acier selon l'invention. L'augmentation de la température de revenu favorise ce dégazage. Cette augmentation est rendue possible par la présence d'éléments durcissants permettant d'aller en ce sens, tels que le vanadium, le titane, le molybdène, le niobium, mais également le bore par son effet synergique avec le niobium et le molybdène. La nuance selon l'invention permet d'atteindre des températures de revenu de l'ordre de 400°C ou plus.

Dès lors, dans le cas, par exemple, de la production de vis d'assemblage par frappe à froid, il a pu être recherché une plus grande résistance mécanique des vis avant serrage. Les pièces "prêtes à l'emploi" réalisées avec la nuance d'acier selon l'invention présentent en effet, sans difficultés particulières, une résistance à la rupture finale de 1200 MPa, voire 1500 MPa (et même davantage, selon le réglage de la température que l'on imposera pour le traitement thermique final), tout en affichant au préalable une résistance intermédiaire, de moitié au moins, voire du tiers seulement à l'issue d'un recuit de globulisation mené préférentiellement juste avant la frappe, pour faciliter le travail de celle-ci

L'invention sera bien comprise et d'autres aspects et avantages apparaîtront plus clairement au vu de la description qui suit, donnée uniquement à titre d'exemple de réalisation de vis pour l'industrie automobile.

On produit à l'aciérie, par coulée continue, des demi-produits longs (billettes ou blooms) en un acier micro-allié ayant, outre le fer, et moins de 0,45 % de molybdène que l'on s'assigne, la composition chimique suivante, en teneurs pondérales:

- de 0,3 à 0,5 % de carbone.

Pour des teneurs inférieures à 0,3 %, les très hautes résistances désirées ne peuvent être atteintes compte tenu de la teneur des autres éléments présents dans la nuance et des températures de revenu élevées visées. Pour des teneurs supérieures à 0,5 % le risque de fragilité augmente du fait de l'augmentation de la dureté.

- 0,20 % au moins de molybdène, mais sans jamais atteindre dépasser 0.45 % pour les raisons indiquées.

Le molybdène manifeste une forte interaction avec le phosphore dont il limite ainsi l'effet néfaste en limitant sa ségrégation aux joints de grains. De plus, il affiche un comportement carburigène marqué. Il autorise, pour des caractéristiques mécaniques données, des températures de revenu plus élevées, favorisant du coup le développement des carbures qui seront des pièges à hydrogène. C'est donc un élément qui renforce la résistance à la rupture différée.

- de 0,4 à 1,0 % de manganèse.

L'accroissement de la teneur en manganèse tend , en règle générale, à diminuer la résistance à la rupture différée de l'acier. Ceci pourrait provenir de son interaction avec le soufre conduisant à la formation de sulfures de manganèse. Lorsqu'on dépasse des seuils voisins de 1 % de manganèse, cette interaction avec le soufre pourrait même conduire à augmenter la fragilité de l'acier à l'hydrogène, ce, bien entendu, en l'absence de dispositions adéquates prises pour l'éviter. Le manganèse a cependant un effet bénéfique sur la trempabilité de l'acier et donc sur l'obtention des caractéristiques mécaniques finales recherchées sur les pièces réalisées.

- moins de 0,015 % de phosphore.

L'effet du phosphore est particulièrement nocif dans les aciers selon l'invention et ce pour plusieurs raisons. Par un effet contrariant de la recombinaison de l'hydrogène, il contribue à une plus haute concentration d'hydrogène atomique susceptible de pouvoir pénétrer dans le matériau, donc à un risque accru de rupture différée de la pièce en usage. De surcroît, en ségrégant aux joints de grain, il diminue leur cohésion. Sa teneur doit donc impérativement être maintenue très basse. On veillera à cet effet à ce que l'acier soit déphosphoré lors de son élaboration à l'état liquide.

- de 0,05 à 0,2 % de silicium. Le silicium agit comme désoxydant de l'acier lors de son élaboration, à l'état liquide. Présent en solution solide dans le métal solidifié, il permet également d'augmenter la résistance de l'acier. Toutefois, à teneur trop élevée (plus de 0,2 %), il peut avoir un effet néfaste. Lors des traitements thermiques, tel un traitement de globulisation, le silicium a tendance en effet à former des oxydes intergranulaires et diminue ainsi la cohésion des joints de grains. Une trop forte teneur en silicium diminue également l'aptitude de l'acier à la déformation à froid en durcissant excessivement la matrice. C'est principalement pour cette raison que, dans le cas de la nuance d'acier selon l'invention, sa teneur maximale a été fixée à 0.2%.

- 0,05 % maximum d'aluminium. L'aluminium est un désoxydant de l'acier à l'état liquide. Il contribue ensuite, sous forme de nitrures, à contrôler le grossissement du grain austénitique lors du laminage à chaud. En revanche, présent en trop grande quantité, il peut conduire à un

grossissement des inclusions de type aluminates dans l'acier qui peuvent s'avérer néfastes aux propriétés du métal, notamment sa résilience.

- de 0,4 à 2,0 % de chrome.

Le chrome est recherché généralement pour son effet durcissant. Comme le molybdène, il retarde l'adoucissement au revenu, permettant des températures de revenu plus élevées ce qui favorise le dégazage mais aussi la formation de carbures piégeant l'hydrogène. A teneur trop élevée, en accroissant excessivement la dureté de l'acier, il rend délicat sa mise en forme par frappe.

- de 0.04 à 0.8% de nickel. Cet élément procure une augmentation de la résistance du métal et a des effets bénéfiques sur la résistance à la rupture fragile. Il améliore également, de manière bien connue, la résistance de l'acier à la corrosion.

- de 0,02 à 0,045 % de niobium, de 0,03 à 0,30 % de vanadium, et de 0,02 à 0,05 % de titane. Ces trois éléments sont souvent ajoutés à l'acier liquide pour accroître la dureté du matériau. Ici, dans les fourchettes indiquées, ils vont aussi accroître la résistance à la rupture différée de plusieurs façons. Ils vont aider à un affinement du grain austénitique et forment des précipités qui piègent l'hydrogène. En outre, le niobium piège le phosphore. Enfin, l'effet durcissant de chacun permet d'effectuer des revenus à plus haute température. Leur teneur maximale est fixée ici pour éviter l'obtention de précipités de taille trop importante qui serait alors néfaste vis-à-vis de la résistance de l'acier à la rupture différée.

Le niobium, en particulier, lorsqu'il est rajouté en trop forte quantité conduit à un risque accru de défauts de type "fissures" à la surface des billettes et des blooms brutes de coulée continue. Ces défauts, s'ils ne peuvent être totalement éliminés, peuvent s'avérer très néfastes au respect de l'intégrité des caractéristiques de la pièce finale, notamment pour ce qui concerne la tenue à la fatigue et la tenue à l'hydrogène. C'est la raison pour laquelle, dans le cas de la nuance selon l'invention, sa teneur a dû être contenue en dessous de 0.045 %. - de 0,003 à 0,005 % de bore.

En ségrégant aux anciens joints de grains austénitiques, le bore, même à très faibles teneurs, permet d'accroître la résistance à la rupture différée induite par l'hydrogène. Il augmente fortement la trempabilité de l'acier et permet ainsi de limiter la teneur en carbone nécessaire pour l'obtention de la microstructure martensitique désirée. Il augmente la cohésion du joint de grain par son effet intrinsèque, mais également en rendant plus difficile la ségrégation du phosphore à ces joints de grain. Enfin, le bore agit en synergie avec le molybdène et le niobium, augmentant ainsi l'efficacité de ces éléments et leurs influences propres que permettent leurs teneurs respectives. Un excès

de bore (au delà de 0.005%) conduirait toutefois à la formation de boro-carbures de fer fragiles.

- moins de 0,015 % de soufre.

Le soufre est, pour l'acier, un poison qui exprime toute sa nocivité en présence d'hydrogène, car il a un effet additif, c'est-à-dire coopératif avec lui en formant notamment du H 2 S, qui en milieu humide en particulier conduit imparablement à une dégradation physique rapide des pièces. Son effet est d'ailleurs à cet égard bien plus marqué que celui du phosphore. Sa teneur doit donc être limitée tant que faire se peut, le plus proche de zéro si possible, en tous cas ne pas excéder la limite des 0,015 % édictée ici. L'acier doit donc être soigneusement désulfuré lors de son élaboration à l'état liquide à l'aciérie.

- moins de 150 ppm d'azote.

L'azote est considéré comme néfaste. Il piège le bore par formation de nitrures de bore, ce qui rend inefficace le rôle de cet élément sur la trempabilité de l'acier. Néanmoins, ajouté en faibles quantités, il permet, par formation notamment de nitrures de titane (TiN) et de nitrures d'aluminium (AlN), d'éviter un trop fort grossissement du grain austénitique lors des traitements thermiques subis par l'acier. De même, il permet aussi dans ce cas la formation de précipités de carbonitrures qui vont aider au piégeage de l'hydrogène. Cette composition optimisée permet d'avoir une très bonne tenue à l'hydrogène en même temps qu'une résistance mécanique finale de l'acier, une fois transformé en pièce frappée prête à l'usage après traitement thermique final, supérieure à 1200 MPa et pouvant même dépasser les 1 500 MPa, et ce en conservant à l'identique la manière habituelle de procéder à cette transformation. Après réchauffage au dessus de 1 100 0 C si besoin est, le demi-produit sidérurgique (bloom, ou plus généralement, billette) est alors laminé à chaud dans le domaine austénitique, selon la pratique habituelle, jusqu'à l'obtention d'un produit long laminé, prêt à l'expédition en clientèle après refroidissement à l'ambiante. Ce produit sidérurgique long se présente alors sous forme de barres, ou plus généralement sous forme de fil-machine bobiné pour les applications retenues.

Le fil-machine est ensuite transformé en vis par frappe à froid, schématiquement de la manière classique suivante:

Le transformateur réceptionne le fil et après décalaminage mécanique (ou décapage chimique éventuellement suivi d'une neutralisation), il effectue sur le fil un recuit sous atmosphère neutre (sous azote par exemple). Le fil est alors dégraissé avant de subir un premier tréfilage, dit tréfilage-ébauche, pour lequel une enduction de surface préalable est prévue, classiquement une phosphatation et un savonnage. Lors de ce tréfilage, le diamètre du fil est réduit de 30 % environ.

Le fil-ébauche obtenu est soumis alors à un traitement de globulisation qui, en procurant une chute temporaire de sa dureté (Rm intermédiaire à 500 MPa environ), permettra de faciliter son formage ultérieur, lors de la frappe, en préservant l'outil. Ce premier traitement thermique est suivi par un décapage, phosphatation et savonnage en vue d'un second tréfilage. Celui-ci est un tréfilage de finition, appelé également "de mise à la côte finale". La réduction de diamètre est plus modeste qu'auparavant, généralement inférieure à 10 %.

Le fil, doté d'une résistance temporairement affaiblie autour de 500 MPa, est alors aisément frappé à froid. Les vis obtenues brutes de frappe sont d'abord déphosphatées, puis soumises à un traitement thermique final de trempe et revenu, ainsi qu'à une opération de roulage finale pour donner au filetage son aspect définitif. Le roulage peut se faire soit avant le traitement thermique, soit après. Le revenu peut avantageusement s'opérer à des températures plus élevées que la pratique habituelle, à savoir de l'ordre de 400°C et plus, sans obérer pour autant l'obtention de la résistance à la rupture finale attendue pour les vis produites prêtes à l'usage, soit avec un Rm de 1200 à 1500 MPa et plus.. Bien entendu, plus le revenu se fera à température forte, moins le Rm final sera élevé.

La surface des vis est ensuite nettoyée et revêtue par une couche de phosphates ou, le cas échéant, par tout autre revêtement chimique ou électrochimique adéquat.

On notera que si la nuance de l'acier a été spécialement élaborée pour offrir une bonne résistance à l'hydrogène, il est bien entendu également souhaitable d'introduire le moins d'hydrogène possible durant le procédé de transformation du fil- machine. Or, ces procédés de transformation en pièces frappées et revêtues sont habituellement, par nature, générateurs de prise d'hydrogène. Par exemple, lors du décapage, les paramètres de bain (température, nature et concentration en acide, pollution en fer, teneur en inhibiteur...) ont un effet sur l'introduction d'hydrogène dans l'acier. De même, le traitement de phosphatation étant générateur d'hydrogène, il conviendra d'optimiser les paramètres du traitement pour limiter au mieux la prise d'hydrogène par le métal à ce stade de la transformation. Le savoir-faire de l'homme du métier jouera également un rôle important lors de l'étape d'austénisation avant trempe. Il a en effet été montré que cette étape du procédé de formage peut conduire, lorsque les précautions adéquates ne sont pas prises, à une pénétration non négligeable d'hydrogène dans l'acier. On donne à présent quelques indications chiffrées, à l'aide des tableaux de valeurs ci-après, relatives à la nuance d'acier micro-alliée conforme à l'invention en positionnant celle-ci par rapport à des nuances connues.

Des essais en laboratoire ont été effectués sur des coulées de composition chimique suivante (en pourcentages pondéraux):

C Mn P S Si Cr Mo Nb V Ti B

A 0,36 0,48 0,006 0,008 0,07 1,17 0,55 0,035 0,13 0,02 0,0025

B 0,37 0,79 0,014 0,01 0,08 1,20 0,31 0,033 0,11 0,02 0,0026

C 0,36 0,64 0,013 0,01 0,08 1,11 0,45 0,037 0,11 0,02 0,0025

D 0,38 0,79 0,006 0,007 0,07 1,16 0,20 0,035 0,14 0,02 0,0024

42CD4 0,41 0,87 0,011 0,005 0,22 1,04 0,15 — — — —

Avec à chaque fois Al < 0,05 % et N < 0,015 %.

On notera également que, selon son procédé de fabrication, et notamment lorsqu'il est élaboré à partir de ferrailles, l'acier peut contenir jusqu'à 0,15 % de cuivre.

Les coulées A et 42CD4 sont des nuances d'acier connues de l'art antérieur.

Les coulées B, C et D sont des exemples de la nuance d'acier selon l'invention.

La nuance connue A comprend notamment une teneur en molybdène supérieure à 0,5 % et la nuance connue 42CD4 ne contient pas de niobium, ni de vanadium, ni de titane, ni de bore.

Les caractéristiques mécaniques des pièces finales obtenues sont les suivantes, où δ (Z) exprime la striction:

La seconde colonne, Tr, indique la température de revenu après trempe des pièces finales. La troisième colonne, Rm, donne la résistance à la rupture déterminée par traction sur éprouvettes normalisées.

Pour ce qui concerne la résistance à la rupture différée (dernière colonne), ces résultats ont été obtenus par des essais de traction lente (0,005 à 0,01 mm/min contre 5 mm/min habituellement) sur des éprouvettes normalisées chargées et non chargées en hydrogène. Les conditions de chargement en hydrogène sont identiques pour l'ensemble des cinq nuances testées. La quantité d'hydrogène introduite dans les éprouvettes est supérieure à celle introduite par l'opération de frappe. La tenue à la rupture différée est

exprimée par le δ (Z), à savoir le Z moyen des éprouvettes non chargées diminué du Z moyen des éprouvettes chargées, Z étant la mesure de la striction de l'éprouvette lors de sa rupture au cours de son allongement. Autrement dit, plus la diminution de la striction est importante quand l'acier est chargé en hydrogène (et donc plus le δ (Z) est élevé), moins l'acier est résistant à la rupture différée.

Comme on peut le constater, les nuances de l'invention B, C et D permettent d'obtenir des résultats de tenue à l'hydrogène et de résistance mécanique équivalentes à la nuance connue A contenant plus de 0,5 % de molybdène. La nuance 42CD4 connue, contenant également peu de molybdène, mais ne contenant ni niobium, ni vanadium, ni bore, ni titane, donne de bons résultats d'un point de vue de la résistance mécanique, mais n'offre pas une tenue satisfaisante à l'hydrogène.

La présence des éléments tels que le titane, le bore, le vanadium et le niobium dans les conditions définies par l'invention est donc indispensable pour l'obtention de nuances à hautes caractéristiques mécaniques et présentant une résistance à la rupture différée améliorée pour des nuances d'acier à basse teneur en molybdène.

L'acier micro-allié selon l'invention est donc remarquable en ce qu'il présente à la fois une bonne aptitude à la déformation mécanique à froid (frappe ou forge), et une bonne tenue à l'hydrogène (résistance à la rupture différée) et en ce qu'il permet d'obtenir, après traitement thermique de trempe et revenu, des pièces mécaniques prêtes à l'usage présentant une résistance à la rupture très élevée.

Il permet, en effet de maintenir temporairement une résistance faible (disons inférieure à 550 Mpa) et une ductilité élevée sur le fil-machine qui se présente à la frappe à froid, et ensuite, après sa transformation en pièces prêtes à l'emploi, de porter, par un traitement thermique classique de trempe revenu, cette même résistance mécanique à des niveaux trois fois supérieurs (1500 MPa et plus) et de conserver une bonne ductilité .

Aussi, la nuance d'acier de l'invention constitue t'elle une matière première de choix pour la production industrielle de pièces d'assemblage à hautes caractéristiques mécaniques requises, comme les vis pour l'industrie automobile, lorsqu'il est conditionné en fil-machine ou, plus généralement, en produit sidérurgique long laminé à chaud issu de la coulée continue sous forme de billettes ou de blooms.

Il va de soi que l'invention ne saurait se limiter aux exemples qui viennent d'être décrits, mais qu'elle s'étend à de multiples variantes et équivalents dans la mesure où est respectée sa définition donnée dans les revendications jointes. Ainsi, si elle a été conçue initialement pour répondre à un besoin spécifique exprimé par l'industrie automobile confrontée à des questions de tenue dans le temps des organes vitaux des véhicules roulants, elle n'en reste pas moins d'application plus générale à la production de toutes pièces mécaniques de petite et moyenne taille,

comme des rivets, clips, agrafes, attaches diverses, etc.. dès lors qu'il est recherché une limite de rupture normalisée élevée (Rm de 1200 MPa et d'avantage) alliée à une bonne résistance à la fragilisation par l'hydrogène.