Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MICROCOMPONENT
Document Type and Number:
WIPO Patent Application WO/2003/026788
Kind Code:
A1
Abstract:
The invention relates to a microcomponent (1) for carrying out chemical reactions. Said microcomponent has an electric heating element, which is located directly on the surface of the microcomponent (1). The electric heating element can have, for example, a printed conductor (3) that is applied to the surface of the microcomponent (1). A temperature sensor, which essentially consists of a resistance thermometer (4), is used to continuously measure the temperature rise of the microcomponent (1). The microcomponent (1) and the electric heating element can be produced by means of semiconductor production methods. Several microcomponents (1) can be arranged next to one another in order to carry out a complex reaction process.

Inventors:
PIEPER GUIDO (DE)
SCHMELZ MICHAEL (DE)
WURZIGER HANNS (DE)
SCHWESINGER NORBERT (DE)
Application Number:
PCT/EP2002/009718
Publication Date:
April 03, 2003
Filing Date:
August 30, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MERCK PATENT GMBH (DE)
PIEPER GUIDO (DE)
SCHMELZ MICHAEL (DE)
WURZIGER HANNS (DE)
SCHWESINGER NORBERT (DE)
International Classes:
B81B1/00; B01J19/00; B01L3/00; B01L7/00; H05K1/02; (IPC1-7): B01J19/00
Domestic Patent References:
WO2001041916A12001-06-14
Foreign References:
DE19917398A12000-10-19
EP1123739A12001-08-16
DE19841993A12000-03-09
Other References:
POSER S ET AL: "TEMPERATURE CONTROLLED CHIP REACTOR FOR RAPID PCR", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROREACTION TECHNOLOGY, XX, XX, 1997, pages 294 - 301, XP000861939
Attorney, Agent or Firm:
MERCK PATENT GMBH (Frankfurter Strasse 250 Darmstadt, DE)
Download PDF:
Claims:
Mikrokomponente Patentansprüche
1. Mikrokomponente für die Durchführung chemischer Reaktionen, dadurch gekennzeichnet, dass ein elektrisches Heizelement auf der Oberfläche der Mikrokomponente (1) angeordnet ist.
2. Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass das elektrische Heizelement im wesentlichen ein elektrischer Leiter ist.
3. Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass das elektrische Heizelement eine auf der Oberfläche der Mikrokomponente (1) angebrachte gedruckte Leiterbahn (3) aufweist.
4. Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass das Heizelement eine Heizfolie ist.
5. Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass auf der Oberfläche der Mikrokomponente (1) ein Temperatursensor angeordnet ist.
6. Mikrokomponente nach Anspruch 5, dadurch gekennzeichnet, dass der Temperatursensor im Wesentlichen aus einem Widerstandsthermometer (4) besteht.
7. Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass die Anschlüsse des elektrischen Heizelements im Bereich einer Seitenkante der Mikrokomponente angeordnet sind.
8. Mikrokomponente nach Anspruch 7, dadurch gekennzeichnet, dass die Anschlüsse des Heizelements an einer Seitenfläche angeordnete elektrische Kontaktflächen aufweisen.
9. Verfahren zur Herstellung einer Mikrokomponente nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrokomponente (1) und das elektrische Heizelement mittels Halbleiterfertigungsmethoden hergestellt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass auf die Oberfläche der Mikrokomponente (1) eine Metallschicht aufgebracht wird, die Metallschicht mit einem FotoresistLack beschichtet wird, der FotoresistLack im Bereich des Leiterbahnverlaufs belichtet wird und anschließend durch Ätzen die Metallschicht in nicht belichteten Bereichen abgetragen wird.
11. Anordnung mehrerer Mikrokomponenten nach Anspruch 1 auf einer gemeinsamen Grundplatte (10).
12. Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass jeder Mikrokomponente (1) eine separate, auf der gemeinsamen Grundplatte (10) angeordnete Haltevorrichtung (9) zugeordnet ist.
13. Anordnung nach Anspruch 12, dadurch gekennzeichnet, dass die zugeordneten Anschlüsse der benachbarten Haltevorrichtungen (9) dauerhaft befestigte Verbindungsleitungen (13) aufweisen.
14. Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass die Grundplatte (10) eine gemeinsame Haltevorrichtung (14) für mehrere Mikrokomponenten (1) aufweist.
15. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass die Haltevorrichtung (14) separate elektrische Anschlüsse (19) zur Steuerung der einzelnen Heizelemente jeder Mikrokomponente (1) aufweist.
Description:
Mikrokomponente Die Erfindung betrifft eine Mikrokomponente für die Durchführung chemischer Reaktionen.

In vielen Bereichen der chemischen, pharmazeutischen und biologischen Industrie werden zu Forschungs-oder Produktionszwecken durchgeführte Reaktionsprozesse ständig und zunehmend miniaturisiert. Dadurch können beispielsweise die benötigten Mengen an Reagenzien und Substanzen sowie die zur Prozessführung benötigte Reaktionszeit reduziert werden. Verstärkt werden dabei einzelne Mikrokomponenten eingesetzt, die eine Prozessführung mit Dimensionen im Mikrobereich ermöglichen.

Reaktionskomponenten mit derart geringen Abmessungen können nicht einfach durch Verkleinerung bekannter und erprobter Konstruktionen hergestellt werden. Auf Grund der extrem geringen Mengen an beteiligter Substanzen ergeben sich unter anderem oft völlig andere Strömungs-und Reaktionseigenschaften. Neben neuartigen Herstellungsprozessen der einzelnen Mikrokomponenten muss deshalb auch deren konstruktive Gestaltung an die im Mikrobereich vorherrschenden Eigenschaften angepasst werden.

Vor allem bei Forschungs-und Entwicklungstätigkeiten sind Mikrokomponenten vorteilhaft einsetzbar, die einen

möglichst schnell ablaufenden Reaktionsprozess ermöglichen, für den nur geringe Substanzmengen benötigt werden. Dies ist insbesondere bei der Verwendung gefährlicher oder gesundheitsgefährdender Substanzen günstig und vereinfacht die Prozessführung bei stark endo-oder exothermen Reaktionen. In Verbindung mit einem deutlich reduzierten Platzbedarf können Testreaktionen zu Forschungszwecken in großer Anzahl gleichzeitig durchgeführt werden. Auf diese Weise ist es möglich, mit verhältnismäßig geringem finanziellen Aufwand die Entwicklungszeiten für neue Produkte oder chemische Verfahren deutlich zu senken.

Es sind bereits einzelne Mikrokomponenten bekannt, die zur Durchführung miniaturisierter Reaktionsverfahren verwendet werden. Aus separaten Mikrokomponenten wie Pumpen, Mischer, Verweilelementen, Reaktoren und Wärmeüberträgern können durch Hintereinanderschaltung vollständige Reaktionsprozesse miniaturisiert durchgeführt werden.

Während für einzelne Reaktionsschritte wie beispielsweise das Mischen mehrerer Substanzen mit großem Aufwand hoch effiziente Mikromischer entwickelt wurden, erfolgt die Kontrolle der einen Reaktionsprozess bestimmenden Temperatur auf konventionelle Weise durch Wärmebäder oder Wärmetauscher. Soll für einige oder mehrere Prozessschritte eine vorgegebene Temperatur möglichst konstant gehalten werden, so werden die zugehörigen Mikrokomponenten in ein Wärmebad gebracht. Die üblicherweise verwendeten Wärmebäder oder Kryostaten weisen dabei für Mikrokomponenten ein unnötig großes Nutzvolumen auf. Temperaturänderungen des Wärmebads, wie sie beispielsweise für eine Versuchsreihe identischer Reaktionen bei unterschiedlich vorgegebener Reaktionstemperatur Voraussetzung sind, benötigen einen

entsprechenden Zeitaufwand und können zum bestimmenden Zeitfaktor einer derartigen Versuchsreihe werden.

Viele Reaktionsprozesse laufen bei erhöhter Temperatur schneller und/oder effektiver ab. Üblicherweise verwendete Wärmebäder lassen sich nur bis etwa 80°C Wärmebadtemperatur mit einfachen Mitteln betreiben. Bei der Verwendung von Wasser als Wärmemedium lassen sich Temperaturen oberhalb 100°C kaum erreichen. Der maximal mögliche Temperaturbereich kann durch die Verwendung spezieller Zusätze oder eines Öls nicht wesentlich erweitert werden.

Aufgabe der Erfindung ist es daher, mit möglichst einfachen Mitteln eine effektive Heizung einzelner Mikrokomponenten zu gewährleisten. Die für einen Reaktionsschritt vorgegebene Temperatur sollte einfach und schnell zu ändern sein, um eine schnelle Durchführung umfangreicher Versuchsreihen zu ermöglichen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein elektrisches Heizelement auf der Oberfläche der Mikrokomponente angeordnet ist. Die Abmessungen der einzelnen Mikrokomponenten sind ausreichend klein, so dass ein an die Mikrokomponente angepasstes elektrisches Heizelement eine schnelle und ausreichend gleichförmige Beheizung der Mikrokomponente gewährleistet. Das elektrische Heizelement lässt sich mit einfachsten Mitteln an der Oberfläche der Mikrokomponente befestigen. Auf diese Weise sind keine konstruktiven Änderungen im Inneren der Mikrokomponente erforderlich.

Da die Mikrokomponente durch das elektrische Heizelement beheizbar ist, wird die Verwendung eines Wärmebads zum Beheizen überflüssig. Der Aufbau und Ablauf eines aus derartigen Mikrokomponenten zusammengesetzten Reaktionsprozesses ist nicht mehr an die räumlichen Vorgaben des Wärmebads gebunden. Die Mikrokomponente kann mittels des elektrischen Heizelementes in kürzester Zeit erwärmt werden, so dass die für eine kontrollierte Aufheizung des Wärmebads notwendigen Wartezeiten entfallen.

Häufig werden Reaktionen mit flüssigen Substanzen ausgeführt, die im Verlauf der Reaktion durch einen oder mehrere Mikrokomponenten fließen. Dabei müssen sowohl die Mikrokomponenten als auch die notwendigen Zu-und Ableitungen sowie insbesondere die Verbindungselemente völlig dicht sein, um einen ungestörten Prozessablauf zu gewährleisten. Während an einer undichten Stelle austretende Flüssigkeiten in einem Wärmebad kaum wahrgenommen werden können, ermöglicht eine im Trockenen verwendete Mikrokomponente mit elektrischer Heizung ein schnelles Wahrnehmen und Lokalisieren von undichten Stellen. Dadurch werden die Risiken bei der Verwendung von gefährlichen oder gesundheitsgefährdenden Substanzen erheblich verringert und gleichzeitig die Zuverlässigkeit der durchgeführten Reaktionen erhöht.

Die maximal mögliche Heiztemperatur eines elektrischen Heizelements ist nicht auf einen Bereich bis etwa 100°C beschränkt, so dass auch Reaktionen bei wesentlich höheren Temperaturen durchgeführt werden können. Auf diese Weise wird der für Experimente zugängliche Temperaturbereich für verschiedene Reaktionsschritte deutlich erweitert, wodurch

sich verbesserte Forschungsbedingungen und völlig neuartige Anwendungen ergeben.

Vorzugsweise ist vorgesehen, dass das elektrische Heizelement eine auf der Oberfläche der Mikrokomponente angebrachte gedruckte Leiterbahn aufweist. Die zu beheizende Oberfläche einer Mikrokomponente kann ohne Schwierigkeiten als ebene Fläche gestaltet werden. Es sind einfach durchführbare und kostengünstige Verfahren zum Herstellen gedruckter Schaltungen von nahezu beliebiger Formgebung bekannt. Auf der ebenen Oberfläche der Mikrokomponente können aufgedruckte Leiterbahnen beispielsweise in Form einer Heizschlange fest angebracht werden. Durch den direkten Kontakt der elektrischen Leiterbahn mit der Oberfläche der Mikrokomponente ist ein bestmöglicher Wärmetransport in die Mikrokomponente gewährleistet. Durch den Verlauf und die beispielsweise abschnittsweise veränderbare Abmessung der aufgedruckten Leiterbahn kann eine möglichst gleichmäßige oder bereichsweise unterschiedliche Beheizung der Mikrokomponente erreicht werden.

Die aufgedruckte'Leiterbahn beansprucht kaum zusätzlichen Platz, auch können die erforderlichen elektrischen Anschlüsse nahezu beliebig klein dimensioniert werden. Mit bereits bekannten Fertigungstechniken lassen sich Leiterbahnen mit charakteristischen Abmessungen im Mikrometerbereich herstellen, so dass ein derartiges elektrisches Heizelement keine Einschränkung einer weiteren Miniaturisierung der Mikrokomponenten darstellt.

Einer Ausgestaltung des Erfindungsgedankens zufolge ist vorgesehen, dass das elektrische Heizelement eine Heizfolie ist. Bereits verwendete Mikrokomponenten können mittels einer auf die Mikrokomponente geklebten Heizfolie elektrisch beheizbar gemacht werden. Auf diese Weise können nahezu beliebige Mikrokomponenten mit einem elektrischen Heizelement versehen werden. Eine elektrische Heizfolie ist kostengünstig und kann auch auf unebenen Oberflächen einer Mikrokomponente befestigt werden. Es existieren bereits fertige Komponenten zur Temperatursteuerung einer Heizfolie, die mit einfachen Mitteln an die jeweiligen Anforderungen eines Labor-oder Produktionsbetriebs angepasst werden können.

Vorzugsweise ist vorgesehen, dass auf der Oberfläche der Mikrokomponente ein Temperatursensor angeordnet ist. Mit einem Temperatursensor kann kontinuierlich die Oberflächentemperatur der Mikrokomponente gemessen werden.

Auf diese Weise ist eine geregelte Heizung realisierbar.

Insbesondere können durch stark endo-oder exotherme Reaktionen hervorgerufene Temperaturänderungen bereits während des Reaktionsprozesses berücksichtigt und die Steuerung des elektrischen Heizelements daran angepasst werden.

Besonders vorteilhaft ist dabei vorgesehen, dass der Temperatursensor im wesentlichen aus einem Widerstandsthermometer besteht. Widerstandsthermometer weisen über einen großen Temperaturbereich eine relativ hohe Genauigkeit der Temperaturmessung auf. Auf Grund ihrer geringen Wärmekapazität beeinflussen sie die Beheizung

einer Mikrokomponente kaum merklich, reagieren aber schnell und präzise auf Temperaturänderungen.

Einer Ausführung des Erfindungsgedankens zufolge ist vorgesehen, dass die Anschlüsse des elektrischen Heizelements im Bereich einer Seitenkante der Mikrokomponente angeordnet sind. Die Mikrokomponente kann beispielsweise in einem bekannten Anschlussträger für plattenförmige Mikrokomponenten (DE 198 54 096 A1) eingesteckt werden. Wegen der im Bereich einer Seitenkante angeordneten Anschlüsse kann eine für den Betrieb notwendige Kontaktierung des elektrischen Heizelements an der in den Anschlussträger eingesteckten Seitenkante über Kontaktflächen erfolgen.

Besonders vorteilhaft ist vorgesehen, dass die Anschlüsse des Heizelements an einer Seitenfläche angeordnete elektrische Kontaktflächen aufweisen. Die Kontaktierung des Heizelements erfolgt dann platzsparend über die Kontaktflächen an einer Stirnfläche der Mikrokomponente.

Dadurch vereinfacht sich der Konstruktionsaufwand für Anschlussträger, da mehrere Mikrokomponenten direkt nebeneinander angeordnet werden können und die Kontaktierung der jeweiligen Heizelemente auf der den Mikrokomponenten zugewandten Oberseite des Anschlussträgers über daran angepasst nebeneinander angeordnete Kontaktflächen erfolgt.

Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Mikrokomponente für die Durchführung chemischer Reaktionen, wobei die Mikrokomponente und das elektrische Heizelement mittels Halbleiterfertigungsmethoden

hergestellt werden. Die Mikrokomponente wird dabei aus mikrostrukturierbarem Material, beispielsweise Silizium oder Glas, gefertigt. Eine aus Silizium gefertigte Mikrokomponente weist sehr günstige Wärmeleitungseigenschaften auf.

Für die Herstellung und Bearbeitung der Mikrokomponente kann auf die Verfahren und Erfahrungen aus der Halbleiterfertigung, beispielsweise der Chipherstellung, zurückgegriffen werden. Mit den gleichen Methoden kann das elektrische Heizelement, beispielsweise in Form einer gedruckten Leiterbahn, auf der Oberfläche der Mikrokomponente angeordnet werden. Der für das elektrische Heizelement zusätzlich erforderliche Arbeits-und Materialaufwand ist äußerst gering, so dass das elektrische Heizelement die Herstellkosten der Mikrokomponente kaum erhöht.

Die Erfindung betrifft ebenfalls eine Anordnung mehrerer Mikrokomponenten auf einer gemeinsamen Grundplatte. Auf diese Weise kann sehr einfach ein komplexer Reaktionsablauf mit beispielsweise mehreren Mischern und unterschiedlichen Verweilkomponenten realisiert werden.

Vorteilhafter Weise ist vorgesehen, dass jeder Mikrokomponente eine separate, auf der gemeinsamen Grundplatte angeordnete Haltevorrichtung zugeordnet ist.

Jede Haltevorrichtung weist separate Anschlüsse für die Zuleitung und Ableitung der beteiligten chemischen Substanzen sowie elektrische Anschlüsse für das Heizelement der Mikrokomponente auf. Dadurch ist eine sehr flexible und auch über den gesamten Prozessverlauf, der auf der

gemeinsamen Grundplatte realisiert ist, variable und für einzelne Reaktionsschritte unterschiedliche Vorgabe der Reaktionsbedingungen möglich.

Einer Ausgestaltung des Erfindungsgedankens zufolge ist vorgesehen, dass die zugeordneten Anschlüsse der benachbarten Haltevorrichtungen dauerhaft befestigte Verbindungsleitungen aufweisen. Werden einzelne Mikrokomponenten ausgetauscht, so müssen nicht die zugeordneten Verbindungsleitungen abgetrennt und erneut verbunden werden. Deshalb können Änderungen im Reaktionsverlauf schnell und sicher vorgenommen werden und so mit den einzelnen Komponenten ständig unterschiedliche Reaktionen in kurzer Zeit realisiert und durchgeführt werden.

Vorzugsweise ist vorgesehen, dass die Grundplatte eine gemeinsame Haltevorrichtung für mehrere Mikrokomponenten aufweist. Durch die sehr kompakte Anordnung kann schnell eine gemeinsame Reaktionstemperatur für alle Mikrokomponenten vorgegeben werden.

Weitere vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand weiterer Unteransprüche.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung näher erläutert, das in der Zeichnung dargestellt ist.

Es zeigt :

Fig. 1 eine Ansicht einer Mikrokomponente mit einem elektrischen Heizelement und einem Temperatursensor, Fig. 2 eine weitere Ansicht der in Fig. 1 dargestellten Mikrokomponente, Fig. 3 die Ansicht der Rückseite der in den Fig. 1 und 2 dargestellten Mikrokomponente, Fig. 4 eine schematische Darstellung mehrerer in separaten Haltevorrichtungen hintereinander angeordneter Mikrokomponenten auf einer gemeinsamen Grundplatte, Fig. 5 einen Schnitt entlang der Schnittlinie VI-VI der in Fig. 4 dargestellten Anordnung, Fig. 6 eine Ansicht mehrerer in einer gemeinsamen Haltevorrichtung aufgenommenen Mikrokomponenten und Fig. 7 die in Fig. 6 gezeigte Anordnung in auseinandergezogener Darstellung.

In den Fig. 1-3 ist eine in Form einer dünnen, rechteckigen Scheibe gestaltete Mikrokomponente 1 dargestellt. Auf der Vorderseite 2 der Mikrokomponente 1 ist eine Leiterbahn 3 als elektrisches Heizelement angeordnet. Die Leiterbahn 3 weist einen im wesentlichen mäanderförmigen Verlauf über einen großen Bereich der Vorderseite 2 der Mikrokomponente 1 auf. Auf diese Weise wird eine hohe, gleichmäßige Heizwirkung durch die Leiterbahn 3 erreicht.

Im Bereich des mäanderförmigen Verlaufs der Leiterbahn ist ein Widerstandsthermometer 4 angeordnet, das als Temperatursensor betrieben wird. Sowohl die Leiterbahn 3 als auch das Widerstandsthermometer 4 weisen elektrische Anschlüsse 5 im Bereich der Unterseite 6 der Mikrokomponente 1 auf. Über diese elektrischen Anschlüsse 5 kann die Leiterbahn 3 als elektrisches Heizelement gesteuert werden. In gleicher Weise kann mit geringem Aufwand das Widerstandsthermometer 4 als Temperatursensor betrieben werden, wobei die gemessenen Signale des Widerstandsthermometers 4 zur Regelung der Heizwirkung der Leiterbahn 3 verwendet werden.

Sowohl die Leiterbahn 3 als auch das Widerstandsthermometer 4 können im wesentlichen als gedruckte Leiterbahnen mittels bekannter Halbleiterfertigungsmethoden hergestellt werden.

Dazu wird beispielsweise auf der Oberfläche der Mikrokomponente 1 eine Metallschicht aufgebracht, die Metallschicht mit einem Fotoresist-Lack beschicht, der Fotoresist-Lack wird dann im Bereich des Leiterbahnverlaufs entsprechend des gewünschten Designs belichtet und durch anschließendes Ätzen wird die Metallschicht in nicht belichteten Bereichen wieder abgetragen.

In Fig. 3 ist die Rückseite 7 der Mikrokomponente 1 gezeigt, die in der Nähe der Unterseite 6 drei Öffnungen 8 aufweist. Diese Öffnungen 8 dienen zum Verbinden der Mikrokomponente 1 mit Zu-und Ableitungen, so dass die für einen Reaktionsschritt benötigten Substanzen der Mikrokomponente 1 zugeführt und von dieser abgeführt werden können.

In den Fig. 4 und 5 sind mehrere separate Haltevorrichtungen 9 dargestellt, in denen jeweils eine der drei gezeigten Mikrokomponenten 1 auf einer gemeinsamen Grundplatte 10 nebeneinander angeordnet aufgenommen ist.

Jeweils die außenliegenden Haltevorrichtungen 9 weisen Anschlüsse 11 für den Zufluss und Abfluss der beteiligten Substanzen auf. Diese Leitungsanschlüsse 11 können als genormte und ausreichend stabile Anschlussvorrichtungen ausgeführt sein, so dass eine einfache Handhabung sowie ein häufiges Wechseln der angeschlossenen Leitungen möglich sind. Jede Haltevorrichtung 9 besitzt elektrische Anschlüsse 12 für das Heizelement der darin aufgenommenen Mikrokomponente 1. Diese sind als leicht federnd angebrachte Kontaktflächen ausgeführt.

Die Verbindungsleitungen 13 sind fest zwischen den benachbarten Haltevorrichtungen montiert, so dass deren Dichtheit über eine lange Betriebsdauer gewährleistet ist.

Bei entsprechender Gestaltung der Verbindungsleitungen 13 zwischen den einzelnen Mikrokomponenten 1 kann auf diese Weise ein aus mehreren Einzelschritten zusammengesetzter, komplexer Reaktionsprozess realisiert werden. Dies führt zu einer weiteren Miniaturisierung, da die einzelnen Mikrokomponenten 1 platzsparend, kompakt angeordnet sind und aufwendige Verbindungselemente zwischen einzelnen Mikrokomponenten 1 nicht notwendig sind. Dennoch können die einzelnen Mikrokomponenten 1 mittels der jeweiligen . Heizelemente separat auf eine bestimmte vorgegebene Temperatur gebracht werden. Die in jeder Mikrokomponente 1 herrschende Temperatur kann über Temperaturfühler gemessen werden und auf diese Weise eine geregelte Temperatursteuerung ermöglicht werden.

In den Fig. 6 und 7 ist eine auf einer Grundplatte 10 angebrachte gemeinsame Haltevorrichtung 14 für mehrere Mikrokomponenten 1 gezeigt. Die Haltevorrichtung 14 besteht aus einer U-förmigen Aufnahmevorrichtung 15, in welcher mittels eines mit Schrauben 16 befestigbaren Seitenteils 17 mehrere Mikrokomponenten 1 angeordnet sind. Die benachbarten Mikrokomponenten 1 sind dabei durch zwischenliegende dünne Schichten 18 aus chemisch beständigem Kunststoff, beispielsweise einer PTFE-Folie, voneinander getrennt und abgedichtet. Die Haltevorrichtung weist mehrere Anschlüsse 11 für die Zuleitung und Ableitung der verwendeten chemischen Substanzen auf.

Bei einer gemeinsamen Haltevorrichtung für mehrere Mikrokomponenten ist es möglich, dass die Haltevorrichtung separate elektrische Anschlüsse zur Steuerung der einzelnen Heizelemente jeder Mikrokomponente aufweist. Auf der den Mikrokomponenten 1 zugewandten Seite der Grundplatte 10 sind für jede Mikrokomponente 1 als separate Kontaktflächen ausgeführte elektrische Anschlüsse 19 für eine Verbindung mit dem Heizelement der zugeordneten Mikrokomponente 1 angeordnet. Wegen der sehr kompakten Anordnung können die Mikrokomponenten 1 können schnell und zuverlässig auf eine gewünschte gemeinsame Reaktionstemperatur geheizt werden.

Da nicht jeweils einzelne Mikrokomponenten 1 oder die gesamte, mit mehreren Mikrokomponenten 1 bestückte Haltevorrichtung 14 in ein Wärmebad gebracht werden muss, können auf diese Weise mit einfachsten Mitteln vollständige Reaktionsprozesse auch mit jeweils wechselnd vorgegebener, für den gesamten Reaktionsprozess gleicher Temperatur schnell durchgeführt werden.