Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MICROPHONE ARRAY
Document Type and Number:
WIPO Patent Application WO/2019/211487
Kind Code:
A1
Abstract:
For specific applications, such as e.g. in a sports stadium, a microphone array having particularly high directivity in the vertical direction and a high, but broadly adjustable, directivity in the horizontal direction is provided. The microphone array (100) has a plurality of microphones (110), the output signals of which are combined to produce at least one joint output signal (360). The microphones are directional microphones having a preferred direction of high sensitivity (115) and arranged substantially in one plane on a circle (120) or circle segment, so that each microphone has a different preferred direction of high sensitivity. In this case, the preferred direction of high sensitivity (115) for each of the microphones lies substantially orthogonally in relation to the circle or circle segment. A joint output signal (360) of the microphone array is obtained by beamforming (310,..., 350). The microphone array (100) has an adjustable preferred direction of high sensitivity, wherein the joint output signal (360) contains the sound picked up from this adjustable direction.

Inventors:
KRÜGER, Alexander (General-Wever-Straße 142B, Hannover, 30657, DE)
Application Number:
EP2019/061529
Publication Date:
November 07, 2019
Filing Date:
May 06, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SENNHEISER ELECTRONIC GMBH & CO. KG (Am Labor 1, Wedemark, 30900, DE)
International Classes:
H04R1/40; H04R3/00
Domestic Patent References:
WO2015013058A12015-01-29
WO2009009568A22009-01-15
Foreign References:
US20170076720A12017-03-16
Other References:
RENATO S. PELLEGRINI ET AL: "OBJECT-AUDIO CAPTURE SYSTEM FOR SPORTS BROADCAST", 27 September 2018 (2018-09-27), XP055601525, Retrieved from the Internet [retrieved on 20190702]
Attorney, Agent or Firm:
EISENFÜHR SPEISER PATENTANWÄLTE RECHTSANWÄLTE PARTGMBB et al. (Postfach 10 60 78, Bremen, 28060, DE)
Download PDF:
Claims:
Patentansprüche

1. Mikrofonarray (100) mit einer Mehrzahl von Mikrofonen (110), deren Ausgangssignale zu mindestens einem gemeinsamen Ausgangssignal (360) kombiniert werden, wobei

- die Mikrofone Richtrohrmikrofone mit je einem Interferenzrohr und je einer Mikrofonkapsel sind, die eine bevorzugte Richtung hoher Empfindlichkeit (115) in

Richtung des Interferenzrohrs aufweisen;

- die Mikrofone im Wesentlichen in einer Ebene angeordnet sind;

- die Mikrofone so angeordnet ist, dass jedes Mikrofon eine andere bevorzugte Richtung hoher Empfindlichkeit aufweist;

- die Mikrofone so angeordnet sind, dass ihre Mikrofonkapseln auf einem Kreis

(120,920) oder Kreisabschnitt liegen und für jedes der Mikrofone die bevorzugte Richtung hoher Empfindlichkeit (115) im Wesentlichen orthogonal zu dem Kreis oder Kreisabschnitt zeigt;

- das gemeinsame Ausgangssignal (360) durch Strahlformung (beamforming) (310,...,350) gewonnen wird; und

- das Mikrofonarray (100) mindestens eine einstellbare bevorzugte Richtung hoher Empfindlichkeit aufweist, wobei das gemeinsame Ausgangssignal (360) den aus dieser mindestens einen einstellbaren Richtung aufgenommenen Schall enthält.

2. Mikrofonarray nach Anspruch 1 , wobei die Strahlformung (310,..., 350) eine Richtcharakteristik des Mikrofonarrays erzeugt, die durch einen Grad M definiert wird, wobei ein höherer Grad eine stärker fokussierte Richtcharakteristik bedeutet, und wobei die Mehrzahl von Mikrofonen mindestens (2M+1) Mikrofone umfasst.

3. Mikrofonarray nach Anspruch 1 oder 2, weiterhin mit einer elektronischen

Schaltungsanordnung zur Verarbeitung der Ausgangssignale der Mikrofone, um die Strahlformung (beamforming) (310, ...,350) durchzuführen.

4. Mikrofonarray nach Anspruch 3, wobei die elektronische Schaltungsanordnung mindestens folgende Elemente umfasst:

- eine Mischmatrix (310) zum Mischen der Mikrofonsignale auf (2M+1) Mischsignale, wobei M die Ordnung des gemeinsamen Ausgangssignals ist; - eine Mehrzahl von (2M+1 ) Filtern (320,321 ,321 ,322,322‘) zum Filtern der

Mischsignale, wobei gefilterte Mischsignale (QF-M,QF-M+I , ...,GFO, ... ,GFM-I , QF ) entstehen;

- eine Mehrzahl von (2M+1) Gewichtungseinheiten (330), um jedes der gefilterten Mischsignale mit einer Gewichtung (g-M<®T),...,goi<I>T),..., giv^i ) ZU gewichten, wobei die Gewichtung jeder Gewichtungseinheit der einstellbaren bevorzugten Richtung hoher Empfindlichkeit (Ft) des Mikrofonarrays entspricht; und

- einer Summationseinheit (350) zum Aufsummieren der (2M+1 ) gewichteten, gefilterten Mischsignale, wobei ein Ausgangssignal (360) entsteht, das Schall aus der einstellbaren bevorzugten Richtung hoher Empfindlichkeit des Mikrofonarrays enthält.

5. Mikrofonarray nach Anspruch 4, wobei das Mikrofonarray mindestens zwei bevorzugte Richtungen hoher Empfindlichkeit (FP,FTS) hat und wobei die Schaltungsanordnung weitere Gewichtungseinheiten (3302) und mindestens eine weitere Summationseinheit (3502) enthält, wobei die zweiten Gewichtungseinheiten

(3302) dieselben gefilterten Mischsignale wie die ersten Gewichtungseinheiten (330i) verarbeiten, aber eine andere Richtungsinformation für die bevorzugte Richtung hoher Empfindlichkeit (Ft2) des Mikrofonarrays erhält.

6. Mikrofonarray nach einem der Ansprüche 1-5, wobei die Mikrofonkapseln auf einem Kreis oder Kreisabschnitt mit einem Radius zwischen rmm = 5 cm und rmax = 100 cm liegen.

7. Mikrofonarray nach Anspruch 6, wobei der Radius zwischen 30 cm und 60 cm liegt.

8. Mikrofonarray nach einem der Ansprüche 1-7, ferner mit einer Steuereinheit zum Einstellen der bevorzugten Richtung hoher Empfindlichkeit des Mikrofonarrays, oder mit einem Eingang zum Anschluss einer solchen Steuereinheit.

9. Mikrofonarray nach einem der Ansprüche 1-8, wobei für jedes der Mikrofone die bevorzugte Richtung hoher Empfindlichkeit (115) relativ zu dem Kreis oder Kreisabschnitt nach außen zeigt.

10. Mikrofonarray nach einem der Ansprüche 1-9, wobei für jedes der Mikrofone die bevorzugte Richtung hoher Empfindlichkeit (115) relativ zu dem Kreis oder

Kreisabschnitt nach innen zeigt.

11. Mikrofonarray nach einem der Ansprüche 1-10, wobei jedes der Mikrofone eine Mehrzahl von linear angeordneten Mikrofonkapseln enthält, die jeweils eine feste Richtcharakteristik aufweisen. 12. Verfahren zur Audioaufnahme mittels eines Mikrofonarrays aus Richtmikrofonen, wobei mindestens ein gemeinsames Ausgangssignal erzeugt wird, das den Schall in einer einstellbaren bevorzugten Richtung hoher Empfindlichkeit des Mikrofonarrays enthält, mit den Schritten

- Mischen mehrerer Mikrofonsignale in einer Mischmatrix (310) auf (2M+1) Mischsignale, wobei M die Ordnung des gemeinsamen Ausgangssignals ist, und wobei die Mikrofonsignale von den Richtmikrofonen kommen und die

Richtmikrofone im Wesentlichen in einer Ebene und auf einem Kreis (120) oder Kreisabschnitt so angeordnet ist, dass für jedes der Richtmikrofone eine bevorzugte Richtung hoher Empfindlichkeit (115) im Wesentlichen orthogonal zu dem Kreis (120) oder Kreisabschnitt liegt;

- Filtern der Mischsignale in einer Mehrzahl von (2M+1 ) Filtern (320,...,322‘), wobei gefilterte Mischsignale (QF-M,GF-M+I ,... ,QFO, ... ,QFM-I, QFM) entstehen;

- Gewichten jedes der gefilterten Mischsignale mit einer Gewichtung (gA>,..., goW,..., gtA ) in einer Mehrzahl von (2M+1) Gewichtungseinheiten (330), wobei die Gewichtung jeder Gewichtungseinheit der einstellbaren bevorzugten Richtung hoher Empfindlichkeit (Ft) des Mikrofonarrays entspricht; und

- Aufsummieren der (2M+1 ) gewichteten, gefilterten Mischsignale in einer Summationseinheit (350), wobei das gemeinsame Ausgangssignal (360) entsteht.

13. Verfahren nach Anspruch 12, mit dem zusätzlichen Schritt

- Detektieren einer Änderung eines Eingangssignals, das die einstellbare bevorzugte Richtung hoher Empfindlichkeit (Ft) des Mikrofonarrays steuert; und

- Ändern der bevorzugten Richtung hoher Empfindlichkeit (Ft) des Mikrofonarrays entsprechend der detektierten Änderung.

14. Verfahren nach einem der Ansprüche 12 oder 13, wobei die Anzahl der

Richtmikrofone mindestens 2M+1 beträgt.

Description:
Mikrofonarray

Die Erfindung betrifft ein Mikrofonarray.

Hintergrund

Bei Tonaufnahmen in großen Sportstätten können für eine immersive Wiedergabe die akustischen Ereignisse auf dem Spielfeld besonders interessant sein, so wie Geräusche des Balls, des Schlägers usw. und die Gespräche der Spieler, Schiedsrichter, Trainer, usw.

Dabei ist es wegen der vielen Umgebungsgeräusche schwierig, eine gute Tonqualität und Sprachverständlichkeit zu erreichen. Das hängt damit zusammen, dass Mikrofone oft am Spielfeldrand positioniert sein müssen, weil ein großer Abstand zu den gewünschten Schallquellen eingehalten werden muss. Die Störgeräusche umfassen im Wesentlichen den Lärm des Publikums, das sich in den Sportstätten normalerweise auf Zuschauertribünen befindet. Außerdem sollten die Mikrofone zur Tonaufnahme weder dem Publikum noch den üblicherweise vorhandenen Kameras die Sicht versperren.

Ein typisches Beispiel ist das Spielfeld eines Fußballstadions, bei dem Ballgeräusche, Spielergespräche, das Pfeifen des Schiedsrichters und Traineranweisungen aufgenom- men werden sollen. Vergleichbare Probleme können bei anderen Sportarten wie z.B. Baseball oder auch in anderen Situationen auftreten, in denen Tonaufnahmen von Schallquellen gemacht werden sollen, die weit über eine ebene Fläche verteilt und ggf. beweglich sind und die trotz Störgeräuschen aus der Umgebung nicht direkt mit einem Mikrofon versehen werden kön- nen.

Eine unter der Bezeichnung„KICK“ bekannte Lösung der Firma LAWO besteht in einem Aufbau aus zahlreichen Richtmikrofonen oder Mikrofonen mit Supernierencharakteristik, die um ein Fußballspielfeld herum am Spielfeldrand parallel zum Boden verteilt sind (https://www.lawo.com/en/products/audio-production-tools/kic k.html). Zur Erfassung der Ballgeräusche wird die Position des Balls automatisch oder halbautomatisch visuell verfolgt. Die Positionsdaten werden in eine automatische Audio-Mischeinheit gegeben, die auch die Ausgangssignale der Mikrofone erhält und entsprechend der Positionsdaten verarbeitet bzw. gewichtet und mischt. Die dahinterstehende Idee ist, dass Signale von Mikrofonen, die der momentanen Ballposition am nächsten sind, besonders hoch gewichtet werden. Ein Nachteil dieser bekannten Lösung ist, dass ein hoher Verkabelungsaufwand erforderlich ist. Die Kabel und die Mikrofone müssen vor jedem Spiel verlegt und nach jedem Spiel wieder abgebaut werden. Zusätzliche Mikrofone erfordern zusätzliche Kabel und verteuern das System. Außerdem sorgt die feste Ausrichtung der Mikrofone dafür, dass deren optimal erfasster Bereich relativ breit sein muss, um auch Bereiche zwischen benachbarten Mikrofonen abzudecken. Trotzdem werden diese Bereiche nur mit geringer Tonqualität und somit suboptimal erfasst. Darüber hinaus führt ein größerer Erfassungsbereich der Mikrofone in der Ebene (Azimutwinkel) auch dazu, dass der vertikale Erfassungsbereich (Elevationswinkel) größer wird, da die Richtcharakteristiken bekannter Mikrofone rotationssymmetrisch sind. Dies führt dazu, dass Geräusche aus den höher gele- genen Zuschauertribünen miterfasst werden.

Eine andere mögliche Lösung besteht in einer manuellen Ausrichtung oder Nachführung von Richtmikrofonen mit besonders hoher Richtwirkung. Dies ist jedoch mit einer zeitlichen Verzögerung verbunden. Außerdem ist im Fall der manuellen Ausrichtung Bedienpersonal für jedes Richtmikrofon notwendig, und es kann sich dabei Körperschall auf das Mikrofon übertragen. Bei einer möglichen Fernbedienung zur Nachführung der Mikrofone würden sowohl zusätzliche Verzögerungen als auch Motorgeräusche auftreten, die zwangsläufig vom Mikrofon aufgenommen und als Störgeräusche hörbar würden. Von einer fehlerhaften Ausrichtung eines Richtmikrofons sind verschiedene Frequenzen unterschiedlich betroffen, weil die Richtwirkung der Richtmikrofone für höhere Frequenzen stärker ist als für niedrigere. Dies führt dazu, dass sich die Klangfarbe des Tonsignals ständig ändert. Eine weitere bekannte Lösung, um eine hohe Richtwirkung zu erzielen, ist die Strahlformung (beamforming). Dabei werden die Ausgangssignale mehrerer, zu einem Array angeordneter Mikrofone zusammengeschaltet, z.B. mittels Verzögerung, Addition und Filterung. Der resultierende Strahl, d.h. der Bereich besonders hoher Empfindlichkeit, hat eine ein- stellbare Richtung und ist üblicherweise rotationssymmetrisch . Die jeweilige Form des Strahls hängt von dem Typ, der Anzahl und der Anordnung der Mikrofone sowie von dem Algorithmus ab, der zur Kombination verwendet wird. Übliche Algorithmen sind z.B. der Verzögerungs- und Summationsalgorithmus („Delay-and-Sum“, DS) und der„Minimum Va- riance Distortionless Response“ (MVDR) Algorithmus, die jedoch jeweils auch Nachteile haben. Normalerweise werden Mikrofonarrays aus Mikrofonen ohne oder mit geringer Richtwirkung aufgebaut, weil sie einfach zu handhaben und günstig sind. Um eine hohe Richtwirkung über einen weiten Azimutwinkel und eine vergleichbare Richtwirkung bezüglich der Elevation zu erhalten, sind dabei sehr viele Mikrofone notwendig, was zu einem hohen Rechenaufwand führt. Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Mikrofonanordnung anzugeben, die die oben genannten Probleme löst.

Um mehrkanalige Audioaufnahmen zu machen, z.B. für 22 Kanäle, ist eine Anordnung mit kreisförmig angeordneten Richtrohrmikrofonen bekannt (Y. Sasaki, T. Nishiguchi, K. Ono: „Development of multichannel single-unit microphone using shotgun microphone array“). Dabei werden benachbarte Richtrohrmikrofone benutzt, um bei tiefen Frequenzen die rotationssymmetrische Richtcharakteristik jedes einzelnen Richtrohrmikrofons durch Filterung zusätzlich auf die jeweilige Richtung zu verengen. Bei einer anderen bekannten Lösung (K.Niwa,Y.Koizumi, K.Kobayashi, H.Uematsu:„Binaural sound generation correspon- ding to omnidirectional Video view using angular region-wise source enhancement“) wer- den Richtrohrmikrofone als eine Alternative zu Beamforming genutzt.

Zusammenfassung der Erfindung

Eine Aufgabe der vorliegenden Erfindung besteht in der Bereitstellung einer Mikrofonanordnung mit besonders hoher Richtwirkung in vertikaler Richtung und einer hohen, jedoch in weiten Grenzen einstellbaren Richtwirkung in horizontaler Richtung. Die Aufgabe wird durch das in Anspruch 1 angegebene Mikrofonarray gelöst.

Erfindungsgemäß hat ein Mikrofonarray eine Mehrzahl von Mikrofonen, deren Ausgangssignale zu mindestens einem gemeinsamen Ausgangssignal kombiniert werden, wobei die Mikrofone Richtrohrmikrofone mit einer bevorzugten Richtung hoher Empfindlichkeit ange ordnet sind. Die Mikrofone sind außerdem im Wesentlichen gleichmäßig so auf einem Kreis oder Kreisabschnitt angeordnet, dass jedes der Mikrofone eine andere bevorzugte Richtung hoher Empfindlichkeit aufweist, wobei vorzugsweise die Winkel zwischen den einzelnen Mikrofonen im Wesentlichen über den ganzen Kreis oder Kreisabschnitt gleich sind. Dabei können die Mikrofone bezüglich des Kreises oder Kreisabschnitts nach innen oder nach außen zeigen. In einer Ausführungsform liegen alle Mikrofone im Wesentlichen in einer Ebene. In einer anderen Ausführungsform liegen die Mikrofone in mehreren, z. B. zwei oder drei, parallelen und benachbarten Ebenen. Dabei kann die Dicke jeder Ebene etwa dem Durchmesser eines Mikrofons bzw. Richtrohrs entsprechen. Das gemeinsame Ausgangssignal des Mikrofonarrays wird durch Strahlformung (beamforming) gewonnen. Durch die hohe Richtwirkung der Richtrohrmikrofone sind sowohl der Elevationswinkel wie auch der Azimutwinkel des Erfassungsbereichs der Anordnung sehr klein, während der Azimutwinkel in einem sehr großen Bereich, der bis zu 360° betragen kann, einstellbar ist. Die resultierende Richtwirkung der Mikrofonanordnung in Azimutrichtung kann dabei stärker als die Richtwirkung eines einzelnen Richtrohrmikrofons sein, selbst wenn keines der Richtrohrmikrofone in die entsprechende Richtung zeigt. In Ausführungsformen, in denen die Mikrofone über einen Vollkreis verteilt angeordnet sind, zeigen immer auch einige Richtrohrmikrofone entgegen der eigentlichen Zielrichtung. Dies ermöglicht eine gleichbleibende Richtcharakteristik unabhängig von der Ausrichtung des Mikrofonarrays.

Ein Verfahren zur Audioaufnahme mittels Richtrohrmikrofonen ist in Anspruch 12 angege- ben.

Weitere vorteilhafte Ausführungsformen werden in den Ansprüchen 2-11, 13-14 sowie in der folgenden detaillierten Beschreibung angegeben.

Kurze Beschreibung der Zeichnungen

Weitere Einzelheiten und vorteilhafte Ausführungsformen sind in den Zeichnungen darge- stellt. Darin zeigt

Fig. 1 ein Mikrofonarray in einer ersten Ausfü hru ngsform ;

Fig. 2 ein Richtrohrmikrofon mit Interferenzrohr;

Fig. 3 ein Blockschaltbild einer Signalverarbeitung für den Beamforming-Algorith- mus;

Fig. 4 ein Mikrofonarray in einer zweiten Ausführungsform;

Fig. 5 ein Mikrofonarray in einer dritten Ausführungsform;

Fig. 6 ein Mikrofonarray in einer vierten Ausführungsform;

Fig. 7 ein Blockschaltbild einer Multifokus-Signalverarbeitung für den Beamfor- ming-Algorithmus; Fig. 8 ein Diagramm der Radialkomponenten von Modalantworten eines Sennhei- ser MKH8070 Richtrohrmikrofons;

Fig. 9 ein Mikrofonarray in einer fünften Ausführungsform; und

Fig. 10 eine perspektivische Ansicht eines Mikrofonarrays in einer Ausführungs- form.

Detaillierte Beschreibung der Erfindung

Fig. 1 zeigt exemplarisch in einer Ausführungsform der Erfindung ein zirkulares Mikrofonarray 100 mit einunddreißig Richtmikrofonen 110, wobei sowohl das Mikrofonarray 100 als auch jedes einzelne Richtmikrofon 110 eine sehr hoher Richtwirkung aufweisen. Jedes der Richtmikrofone 110 enthält eine Mikrofonkapsel, wobei die Mikrofonkapseln aller Richtmikrofone 110 auf einem Kreis 120 mit dem Radius r um einen Mittelpunkt C herum angeordnet sind. Außerdem enthält jedes Richtmikrofon 110 ein Interferenzrohr, das orthogonal zu dem Kreis 120 liegt und radial nach außen gerichtet ist. Das Interferenzrohr sorgt für die Richtcharakteristik des jeweiligen Richtmikrofons. Die Mikrofone werden daher auch als Richtrohrmikrofone bezeichnet. Die bevorzugte Richtung hoher Empfindlichkeit jedes

Richtrohrmikrofons ist in seiner jeweiligen Längsrichtung, also ebenfalls orthogonal zum Kreis 120 bzw. radial zur gesamten Anordnung. Damit hat jedes Mikrofon eine andere bevorzugte Richtung hoher Empfindlichkeit. Die Richtrohrmikrofone sind im Wesentlichen gleichmäßig über den Kreis verteilt, so dass zwischen den Mikrofonen jeweils gleiche Win- kel liegen, z.B. 360 31=11 ,6°. Weiterhin können in einer Ausführungsform alle Richtrohrmikrofone im Wesentlichen in einer gemeinsamen Ebene angeordnet sein. Die gesamte Anordnung wird z.B. in einem Fußbalistadion im Wesentlichen waagerecht positioniert, so dass die Richtrohrmikrofone parallel zum Boden ausgerichtet sind.

Alternativ könnten die Richtrohrmikrofone in zwei oder mehr verschiedenen Ebenen ange- ordnet sein. Diese Ebenen sollten bevorzugt eng zusammenliegen. Die Mikrofone können grundsätzlich auch in völlig verschiedenen Ebenen angeordnet sein, jedoch sollte dann die Empfindlichkeit aller Mikrofone bezüglich einer festgelegten Elevation ähnlich sein. Mit anderen Worten, die„Blickrichtungen“ oder Fokusbereiche der verschiedenen Mikrofone sollten in einer beabsichtigten Entfernung alle im Wesentlichen in einer Ebene liegen. Der Radius des Kreises 120 oder Kreissegments bestimmt die Aliasfrequenz und den Betriebsfrequenzbereich. Ein größerer Radius bei konstanter Anzahl der Richtmikrofone bewirkt Verbesserungen für tiefe Frequenzen, indem er zu einer Verschiebung dieses Bereichs zu tieferen Frequenzen und zu einer tieferen Aliasfrequenz führt. Eine Erhöhung der Anzahl der Mikrofone führt zu einer höheren Aliasfrequenz. Fig. 2 zeigt exemplarisch ein einzelnes Richtro rmikrofon 200, das als Richtmikrofon 110 in der Anordnung 100 verwendet werden kann. Das Richtrohrmikrofon 200 enthält ein als Interferenzrohr wirkendes Rohr 210 mit einer darin liegenden Mikrofonkapsel 240 (nicht in der Zeichnung sichtbar). Die Mikrofonkapsel kann über einen elektrischen Anschluss 250 am hinteren Ende des Richtrohrmikrofons elektrisch angeschlossen werden. Das Richtrohr 210 enthält in diesem Beispiel an seinem vorderen Ende eine oder mehrere Öffnungen 230, die dem Schalleintritt dienen. Seitlich befinden sich über die Länge des Rohrs verteilt weitere Öffnungen 220, durch die auch seitlich eintreffender Schall in das Rohr gelangen kann. Dieser seitlich eintreffende Schall gelangt auch durch die Öffnungen 230 in das Rohr, allerdings phasenversetzt wegen des längeren Weges. Im Rohr überlagert er sich mit dem durch die Seitenöffnungen 220 eintreffenden seitlichen Schall. Durch Interferenz innerhalb des Rohres wird dieser Schall daher kompensiert, so dass sich eine geringere Empfindlichkeit für den seitlich eintreffenden Schall ergibt. Nur für frontal eintreffenden Schall überlagern sich die durch die Öffnungen 220,230 in das Rohr gelangenden Anteile konstruktiv, was zu einer höheren Empfindlichkeit des Mikrofons für den frontal eintreffenden Schall führt („endfire shotgun microphone“). Die Seitenöffnungen 220 des Interferenzrohres sind normalerweise nicht über dessen Umfang verteilt, sondern befinden sich nur auf einer Seite, die im Folgenden als Oberseite des Richtrohrmikrofons bezeichnet wird.

Richtrohrmikrofone bieten den Vorteil einer besonders hohen Richtwirkung, was sich so- wohl auf einen sehr kleinen Azimutwinkel als auch einen sehr kleinen Elevationswinkel bezieht. Der Elevationswinkel ist der Winkel senkrecht zur Zeichenebene in Fig. 1. Zwar ist auch der Azimutwinkel, d.h. der Winkel in der Zeichenebene der Fig. 1 , jedes einzelnen Richtrohrmikrofons sehr klein, aber durch Einbeziehen benachbarter Richtrohrmikrofone und durch geeignete Berechnungen zur Kombination der verschiedenen Mikrofonsignale lässt sich eine Richtwirkung der gesamten Anordnung in der Ebene steuern. Insbesondere lässt sich die Richtwirkung einer rotationssymmetrischen Anordnung wie in Fig. 1 elektronisch in jede beliebige Richtung der Ebene, d.h. zu jedem beliebigen Azimutwinkel steuern. Dabei ist der Elevationswinkel der Richtcharakteristik der gesamten Anordnung derselbe wie der Elevationswinkel der Richtcharakteristik jedes einzelnen Richtrohrmikrofons, also sehr klein. Daher ist es nicht notwendig, Mikrofone in mehreren vertikalen Ebenen anzuordnen, um eine hohe vertikale Richtwirkung zu erzielen. Dadurch entsteht eine flache Anordnung, die z.B. in einem Sportstadion die Sicht der Zuschauer oder Kameras nicht stört, wenn das Mikrofonarray am Spielfeldrand positioniert wird. Außerdem sind keine Berechnungen für eine (ggf. zeitlich veränderliche) Kombination der Mikrofonsignale über die ver- tikale Achse erforderlich. Ein weiterer Vorteil einer rotationssymmetrischen Anordnung wie in Fig. 1 besteht darin, dass die Richtwirkung ebenso wie die Frequenzcharakteristik in jede beliebige Richtung der Ebene, d.h. zu jedem beliebigen Azimutwinkel, gleichmäßig ist. So entstehen keine klanglichen Verfärbungen von seitlich eintreffenden Tönen, wie z.B. Geräuschen aus dem Publikum, wenn die Richtung hoher Empfindlichkeit der Anordnung geändert wird. Außerdem ist es durch mehrfach parallele unterschiedliche Verarbeitung der Mikrofonsignale leicht, mehrere Richtungen gleichzeitig als Richtungen hoher Empfindlichkeit zu definieren. Dadurch lässt sich der Strahl auf mehrere Azimutwinkel gleichzeitig fokussieren, d.h. es können mehrere Schallquellen aus unterschiedlichen Richtungen gleichzeitig mit hoher Richtwirkung („directivity“) aufgenommen werden.

Verschiedene Methoden der Signalverarbeitung können verwendet werden. Eine mögliche und besonders vorteilhafte Signalverarbeitung für das Mikrofonarray ist der Beamforming- Algorithmus. Hierbei basiert die Strahlformung auf dem sogenannten modalen Beamfor- ming, das speziell für Konfigurationen geeignet ist, in denen alle Mikrofone im Wesentli- chen gleiche Direktivität (Richtwirkung) haben und auf einer Kugel oder auf einem Kreis angeordnet sind. Für den Betriebsfrequenzbereich des Arrays ist es möglich, eine annähernd gleichförmige Richtwirkung über alle Frequenzen des Betriebsfrequenzbereichs zu erzielen. Die Anzahl Q der benutzten Mikrofone bestimmt den maximalen realisierbaren Grad M des Ausgangssignals, der der räumlichen Auflösung der Richtcharakteristik (beam pattem) entspricht, gemäß M Die Verarbeitung erfolgt in zwei Schritten: (a) ein frequenzunabhängiges Mischen (oder Matrizieren) der Mikrofonsignale, um 2M+1 Zwischensignale oder Mischsignale zu erzeugen, und (b) Filtern und anschließendes Gewichten und Aufsummieren der Zwischensignale oder Mischsignale.

Besonders beachtenswert ist die Option, den Strahl (d.h. die resultierende Richtung hoher Empfindlichkeit) auf einen gewünschten Azimutwinkel Ft zu lenken, indem die reellwertigen Gewichtungen g f T) entsprechend errechnet werden. Die Steuerung (d.h. die Angabe von Informationen über den gewünschten Azimutwinkel Ft) kann entweder manuell oder automatisiert erreicht werden, z.B. durch ein visuelles Verfolgungssystem. Von besonderer Bedeutung ist, dass die eigentliche Steuerung des Mikrofonarrays elektronisch, d.h. berüh- rungslos, erfolgt und dass die Steuerinformation zeitlich variiert. Weiter werden die gefilterten Signale vor dem Aufsummieren entsprechend gewichtet, was die gleichzeitige Aufnahme mehrerer Schallquellen als Ziele erleichtert. Ein Beispiel ist in Fig. 7 gezeigt und wird weiter unten erläutert. Fig. 3 zeigt ein Blockschaltbild einer Signalverarbeitung für den modalen Beamforming- Algorithmus für ein Array von zirkulär angeordneten Richtmikrofonen. Die Q Mikrofonsignale C(w,ci C(w,co) werden in einer Transformationsmatrix Ύ^(f 1 , f 2 , ..., Fo) 310 frequenzunabhängig gemischt. Die T ransformationsmatrix gilt für einen gewünschten maxi- malen Grad und liefert (2M+1) Ausgangssignale. Jedes Ausgangssignal wird gefiltert, wobei von den (2M+1 ) Filtern 320,... ,322' ein Filter 320 einmal und alle anderen jeweils zweimal gleichartig als Filterpaar 321 ,32 T auftreten. Z.B. sind das Filter 321 für den (-M+1)-ten Ausgang der Matrix und das Filter 32T für den (M-1 )-ten Ausgang der Matrix gleich. Jedes Filter bzw. Filterpaar hat eine eigene Filterfunktion, entsprechend einer Ord- nung einer bestimmten Mode. Das Ausgangssignal jedes Filters 32Q,...,322‘ wird in einer oder mehreren Gewichtungseinheiten 330 entsprechend der gewünschten Azimutrichtung Ft mit einem entsprechenden Wert (gain) g^ gewichtet. Die 2M+1 gewichteten gefilterten Mischsignale werden in einer Summationseinheit 340 aufsummiert, und das Summensignal U(w) kann dann entweder als Ausgangssignal 360 ausgegeben werden, oder optional in einem Equalisationsfilter 350 gefiltert und dann ausgegeben werden. Somit wird ein sehr flexibles zeitvariantes Beamforming ermöglicht.

Für die Anzahl der Richtmikrofone und ihre Positionen gilt folgendes. Generell bestimmt die Anzahl der Mikrofone die räumliche Auflösung der möglichen Richtcharakteristik, insbesondere den Richtungsindex (maximum directivity index), der das Verhältnis zwischen der Ausgangsleistung in Bezug auf eine gewünschte Zielrichtung und der gesamten, über alle anderen Richtungen integrierten Ausgangsleistung angibt. Im Kontext der modalen Strahlsteuerung (modal beam forming) ist es sinnvoll, die Anzahl Q der Mikrofone in Abhängigkeit von dem erforderlichen maximalen Grad M zu wählen, gemäß Q=2M+1. Wenn die weiter unten beschriebene Zirkuläre Harmonische Transformation benutzt wird, ist es in Anbetracht der dafür gemachten Annahmen vorteilhaft, eine gleichmäßige Verteilung der Mikrofone auf einem Kreis zu verwenden. Dies sichert eine gleichmäßige Signalqualität über alle (Azimut-) Richtungen, wie es bei der modalen Strahlformung beabsichtigt ist.

Fig. 4 zeigt ein Mikrofonarray 400 in einer zweiten Ausführungsform. Dabei werden elf Richtmikrofone 410i,...,410n gleichmäßig über einen Kreis 420 verteilt radial angeordnet. Gemäß der Formel G = 2M + 1 mit Q=11 lässt sich ein Signal mit dem Grad von höchstens M=5 erzeugen.

Wenn ein anderer Algorithmus als die modale Strahlsteuerung benutzt wird, kann es jedoch sinnvoll sein, die Richtmikrofone anders anzuordnen, nämlich nicht exakt radial, sondern leicht verdreht bzw. verschoben. Die gesamte Anordnung wird dadurch kleiner, ohne dass die Länge der einzelnen Richtmikrofone oder der Durchmesser des Mikrofonkreises reduziert werden. Fig. 5 zeigt ein Mikrofonarray 500 in einer dritten Ausführungsform, bei dem jedes der elf Richtmikrofone 510i,...,510n um einen Winkel a gedreht ist und ihre Mikrofonkapseln auf einem Kreis 520 angeordnet sind. Der verwendete Algorithmus muss diese Drehung berücksichtigen, wobei sehr kleine Winkel vernachlässigt werden können.

Es kann außerdem für bestimmte Anwendungen sinnvoll sein, die Richtmikrofone auf einem Kreissegment mit einem bestimmten Winkel anzuordnen, z.B. wenn nur geringe Störgeräusche von hinten zu erwarten sind. Der Nachteil einer Kreissegmentanordnung gegenüber einer Vollkreisanordnung ist jedoch, dass bei einer Ausrichtung nahe am Rand die Störgeräusche aus Richtungen, in die kein Richtmikrofon zeigt, nicht gut unterdrückt werden können. Dieses Problem kann teilweise kompensiert werden, indem das Kreissegment größer gemacht wird als der zu beobachtende Bereich. Fig. 6 zeigt ein Mikrofonarray 600 in einer vierten Ausführungsform, bei dem wieder elf Richtmikrofone 610i,...,610n gleichmäßig über einen Halbkreis 620 verteilt sind. Für eine zentrale Ausrichtung nahe 0° entsprechend dem Mikrofon 610e ist diese Anordnung gut ersetzbar. Auf für einen Bereich von z.B. ±45° um die zentrale Ausrichtung kann ein akzeptables Ergebnis erreichbar sein. Entsprechend ist ein Mikrofonarray der in Fig. 6 gezeigten Form z.B. an den Ecken eines Spielfeldes ersetzbar, wo ein Bereich von im Wesentlichen 90° erfasst werden soll.

Allerdings sind für eine kreissegmentförmige Anordnung von Richtmikrofonen andere Al- gorithmen als modale Strahlsteuerung normalerweise besser geeignet, weil sie nicht auf einer kreissymmetrischen Anordnung der Mikrofone beruhen. Jedoch haben solche alternativ ersetzbaren Algorithmen den Nachteil, dass nicht nur ihre skalaren Gewichtungen, sondern auch ihre Filterfunktionen richtungsabhängig sind. Da die Berechnung der Filterfunktionen bzw. Filterkoeffizienten oft relativ rechenaufwendig ist, können diese vorab be- rechnet werden. Die Vorrichtung enthält dann einen Speicher, in dem die jeweiligen Filterkoeffizienten für bestimmte Richtungen abgelegt sind und aus dem sie bei Bedarf abgerufen werden können. Auf diese Art ist auch mit solchen alternativen Algorithmen ein Betrieb in Echtzeit möglich.

Fig. 7 zeigt ein Blockschaltbild einer Multifokus-Signalverarbeitung für den Beamforming- Algorithmus. Wie schon die in Fig. 3 gezeigte Einzelfokus-Signalverarbeitung enthält die Multifokus-Signalverarbeitung eine Mischmatrix 310 zum Mischen der Mikrofonsignale auf (2M+1 ) Mischsignale, wobei M die Ordnung des gemeinsamen Ausgangssignals ist, und eine Mehrzahl von (2M+1) Filtern 320,321 ,321‘,322,322 * zum Filtern der Mischsignale, wobei gefilterte Mischsignale QF-M,QF-M+I, ... ,QFO, ...,QFM-I, QFM entstehen. Die gefilterten Mischsignale werden nun nicht nur an (2M+1 ) erste Gewichtungseinheiten 330i weitergeleitet, sondern auch an (2M+1 ) zweite Gewichtungseinheiten 3302. Die ersten Gewichtungseinheiten 330i gewichten jedes der gefilterten Mischsignale mit einer ersten Gewichtung g-M ( ®Ti ) , . .. ,go { ®Ti ) , . .. ,gM i ®Ti ) , und die zweiten Gewichtungseinheiten 3302 gewichten jedes der gefilterten Mischsignale mit einer zweiten Gewichtung g-M ( ®T2 ) , . . . ,go i ®T2 ) , ... , gM ( ®T2 } . Dabei entspricht die Gewichtung jeder ersten Gewichtungseinheit der ersten bevorzugten Richtung hoher Empfindlichkeit Fti , und die Gewichtung jeder zweiten Gewichtungseinheit entspricht der zweiten bevorzugten Richtung hoher Empfindlichkeit FTS . Die Ausgangssignale der ersten Gewichtungseinheiten 330i und die Ausgangssignale der zweiten Gewichtungseinheiten 3302 werden getrennt voneinander in zwei separaten Summationseinheiten 340I,3402 aufaddiert, optional gefiltert 350I,3502 und dann ausgegeben. Damit hat das Mikrofonarray gleichzeitig zwei bevorzugte Richtungen hoher Empfindlichkeit Fti,Ft2 . Die beiden Ausgangssignale 360I,3602 enthalten die Audiosignale aus diesen zwei bevorzugten Richtungen hoher Empfindlichkeit des Mikrofonarrays. Z.B. können Geräusche aus Richtung des Balls und aus Richtung des Schiedsrichters gleichzeitig extrahiert und aufgenommen werden. Ein Vorteil der Anordnung ist, dass die zweiten Gewichtungseinheiten 330 2 dieselben gefilterten Mischsignale wie die ersten Gewichtungseinheiten 330i verarbeiten, und nur eine andere Richtungsinformation für die bevorzugte Rich tung hoher Empfindlichkeit Ft2 benutzen. Daher müssen die Filter 320,..., 322' nur einmal berechnet und implementiert werden, denn sie sind richtungsunabhängig. Die Gewichtungseinheiten können z.B. als Multiplizierer implementiert werden. Die gesamte in Fig. 3 oder in Fig. 7 gezeigte Anordnung kann durch einen oder mehrere Mikroprozessoren ggf. mit entsprechenden Softwareprogrammen realisiert werden.

Details der zweidimensionalen modalen Strahlsteuerung werden im Folgenden erklärt. Zunächst werden grundlegende Annahmen und Zusammenhänge erklärt. In einem kompakten Areal von Interesse innerhalb des drei-dimensionalen Raumes, das das Zentrum eines gedachten Koordinatensystems enthält, frei von Schallquellen ist und von außen durch ein von der z-Achse unabhängiges Schallfeld angeregt wird, liegt ein Array von Q akustischen Sensoren (d.h. Mikrofonen), die sich linear verhalten. Diese sind auf einem Kreis innerhalb der xy-Ebene des gedachten Koordinatensystems angeordnet, mit den (zwei-dimensionalen) Koordinaten

Dabei ist ro der Radius des Kreises und der Azimutwunkel des q-ten Mikrofons, gemessen gegen den Uhrzeigersinn in der xy-Ebene von der x-Achse aus. Die Repräsentation des q-ten Mikrofonsignals im Frequenzbereich bei einer Kreisfrequenz w kann als Überlagerung (composition) von Antworten auf individuelle ebene Wellen beschrieben werden, die von allen möglichen Azimutwinkeln F eintreffen, d.h.

Dabei ist O(w,F) die sogenannte Amplitudendichtefunktion der ebenen Welle (plane wave amplitude density function), die im Wesentlichen eine Frequenzbereichs-Repräsentation des Schalldrucks im Koordinatenursprung ist, der durch eine einzelne, ebene, mit einem Azimutwinkel F einfallenden Welle hervorgerufen wird. H(w, x q , f) ist die Richtcharakteristik des q-ten Mikrofons. Durch Reihenzerlegung der Richtcharakteristik H{w, x q , f) und der Amplitudendichtefunktion der ebenen Welle€(w, f) in Reihen reellwertiger orthonormaler Zirkulär Harmonischer (einer Sonderform der Sphärisch Harmonischen), definiert durch

for m > 0

for m - 0

(3) for m < 0

gemäß

und unter Ausnutzung der Orthonormalität der Zirkulär Harmonischen, d.h.

rg m ( )trg m ,(ij!>)d f = 5 m>m , (6) wobei 5 V die Kronecker-Delta-Funktion ist, kann die Repräsentation des Mikrofonsignals im Frequenzbereich x formuliert werden als

Die individuellen Gewichte H h (w, x q ) der Zirkulär Harmonischen Reihe in (4) werden als Modalantworten vom Grad m bezeichnet.

Wenn alle Mikrofone gleiche Richtcharakteristiken haben und orthogonal zu dem Kreis nach außen oder innen gerichtet sind, kann dies formal ausgedrückt werden als mit /ί RKO to(w, r 0 , f) als F-symmetrische Prototyp-Richtcharakteristik (prototype directivity).

Diese kann betrachtet werden als einem Mikrofon an einer Position (r 0 , (p q = 0) zugehörig. Wegen dieser F-Symmetrie ist die Zirkulär Harmonische Reihenzerlegung von p ROT o (^A r o > ) gegeben durch

^RKOTq( w < G 0< F) — S5h=-oo ^RKOTO,th( w > G q) ^ΈthίF) (1 0) mit

^rkoto ,th (w, Go) = 0 for m < 0. (1 1)

Für diesen speziellen Fall können die Modalantworten faktorisiert werden in eine frequenz- und radiusabhängige Komponente und eine andere Komponente, die nur vom Azimutwin- kel abhängt gemäß

mit

Außerdem bemerkenswert sind die Symmetrie der Radialkomponenten

und die Tatsache, dass die Radialkomponenten vom Produkt der Kreisfrequenz und dem Radius abhängen:

& m (w,r 0 ) = ö m (wr 0 ) (14a)

Durch Einsetzen von (12) in (8) kann die Frequenzbereichs-Repräsentation c(w, x q ) des q-ten Mikrofonsignals ausgedrückt werden als

Im Folgenden wird das grundlegende Prinzip der modalen Strahlformung (modal beam- forming) beschrieben. Dieses kann in die folgenden beiden Schritte unterteilt werden:

(1) Rekonstruktion der zugrunde liegenden Überlagerung des einwirkenden Schallfel- des individueller ebener Wellen aus den Mikrofonsignalen ^(w,c,), repräsentiert durch die Koeffizienten C m { ) der Zirkulär Harmonischen Reihenzerlegung der Amplitudendichtefunktion der ebenen Wellen, und (2) Gewichten der individuellen ebenen Wellen des einwirkenden Schallfeldes gemäß einer gewünschten Richtcharakteristik (target beam-pattern) und anschließend deren Integration, um das Ausgangssignal des Strahlformers (Beamformer) zu erhalten.

Ein Blockdiagramm eines typischen modalen Strahlformers ist in Fig. 3 und Fig. 7 gezeigt, wie oben beschrieben. Die beiden genannten Schritte werden im Folgenden detaillierter beschrieben.

Zur Motivation der Rekonstruktion des einwirkenden Schallfelds wird die Zirkulär Harmonische Reihenzerlegung der Mikrofonsignale im Frequenzbereich

verglichen mit (15). Dabei wird klar, dass die Reihenkoeffizienten X m (a), r 0 ) in Beziehung stehen zu den gesuchten Zirkulär Harmonischen Reihenkoeffizienten C m (w) der Amplitudendichtefunktion der ebenen Welle gemäß

Daher werden zwei weitere Schritte durchgeführt:

(1 ) Die Zirkulär Harmonischen Reihenkoeffizienten der Mikrofonsignale im Frequenzbereich werden abgeschätzt durch eine Zirkulär Harmonische Transformation gemäß

Hier ist zu beachten, dass wegen der endlichen Anzahl Q der räumlichen Abtastpunkte x q der maximale Absolutwert des Grades m, der rekonstruiert werden kann, ebenfalls endlich ist und von der Verteilung der räumlichen Abtastpunkte x q auf dem Kreis abhängt. Z.B. sind die Gewichte für den speziellen Fall einer gleichmäßigen Verteilung alle gleich, nämlich und der maximale Absolutwert des Grades m, der rekonstruiert werden kann, ist gegeben durch

(19)

Durch Definition des Vektors C(w), der die Signale aller Mikrofone enthält, als

des Vektors aller Zirkulär Harmonischen Reihenkoeffizienten als und der diskreten Zirkulär Harmonischen T ransformationsmatrix als

TM(f 1 , f 2 . " , f (} ) =

kann die Abschätzung der Zirkulär Harmonischen Reihenkoeffizienten durch folgende Matrizenmultiplikation ausgedrückt werden:

XCH(«, r o) = T (M) (f n f 2 , ... , Fo) · C(w) (23)

Besonders wichtig ist, dass diese Matrix frequenzunabhängig ist.

(2) Unter Berücksichtigung von (17) und (14) werden die Zirkulär Harmonischen Rei henkoeffizienten der Amplitudendichtefunktion der ebenen Welle im Prinzip wie folgt abgeschätzt:

mit

1

/ | m | (",r 0 ) (25) ö|m| (*V o)'

was einer Filterung für jeden einzelnen geschätzten Zirkulär Harmonischen Reihenkoeffizienten der Mikrofonsignale l m (co,r 0 ) im Frequenzbereich entspricht.

Mit den abgeschätzten Zirkulär Harmonischen Reihenkoeffizienten der Amplitudendichtefunktion der ebenen Welle werden nun die einzelnen ebenen Wellen des einwirkenden Schallfeldes entsprechend einer gewünschten Richtcharakteristik gewichtet, um anschließend integriert bzw. aufsummiert zu werden. Der maximale Grad M der Zirkulär Harmonischen Reihenkoeffizienten der Amplitudendichtefunktion der ebenen Welle bestimmt die maximal mögliche räumliche Auflösung der gewünschten Richtcharakteristik. Daher wird ein Prototyp einer gewünschten Richtcharakteristik mittels einer abgebrochenen Zirkulär Harmonischen Reihenentwicklung desselben Grades M definiert:

die für einen Ziel-Azimutwinkel f Ί = 0 eingestellt wird und F-symmetrisch ist. Wegen der Symmetrie sind die Reihenkoeffizienten für negative Grad-Indizes m Null. Wenn die Richtcharakteristik auf einen beliebigen gewünschten Azimutwinkel Ft eingestellt wird, können ihre entsprechenden Zirkulär Harmonischen Reihenkoeffizienten aus denjenigen für f t = 0 berechnet werden gemäß Das aktuelle Strahlformer-Ausgangssignal 7(w) im Frequenzbereich wird als gewichtete Summe der Zirkulär Harmonischen Reihenkoeffizienten der Amplitudendichtefunktion der ebenen Welle wie folgt berechnet:

Wegen der Äquivalenz von (28) mit

wird die Integration der gewichteten Beiträge der ebenen Welle zum einwirkenden Schallfeld deutlich.

Für die meisten Anwendungsfälle ist die hier benutzte frequenzunabhängige Richtcharakteristik vorteilhaft und gewünscht. Es lässt sich jedoch auch sehr einfach eine frequenzab- hängige Richtcharakteristik erstellen, indem die Gewichtungsfaktoren frequenzabhängig gemacht werden. Dies erfordert je einen Filter pro Koeffizient der Zirkulär Harmonischen Reihenkoeffizienten der Amplitudendichtefunktion der ebenen Welle vor der Summation.

Optional kann ein Equalizingfilter 350,350' auf das Ausgangssignal 7(w) des Strahlformers angewandt werden, um eine richtungsunabhängige Färbung (coloration).zu erzeugen bzw. eine richtungsabhängige Färbung zu kompensieren, z.B. um von räumlichem Aliasing betroffene hochfrequente Signalkomponenten zu dämpfen.

Der Radius des Kreises, auf dem die Mikrofonkapseln der Richtmikrofone angeordnet sind, beeinflusst mindestens zwei Kennwerte des Arrays, nämlich die in der Praxis realisierbare Richtwirkung bei niedrigen Frequenzen und diejenige Frequenz, ab der das räumliche Aliasing einsetzt.

Die Richtwirkung bei niedrigen Frequenzen wird wie folgt beeinträchtigt. Die radialen Komponenten & m (c <j ,r 0 ) der Modalantworten haben typischerweise eine Hochpass-Charakteristik, wobei die Grenzfrequenz (cutoff frequency) mit dem Grad-Index m steigt. Zur Veranschaulichung zeigt Fig. 8 exemplarisch ein Diagramm der Radialkomponenten von Modal- antworten für verschiedene Grade m eines Sennheiser MKH8070 Richtrohrmikrofons, aufgetragen über ein Produkt w · r 0 . Wie zu erkennen ist, werden insbesondere für niedrige Spektralfrequenzen die Beiträge der Moden mit steigendem Grad m innerhalb der gemessenen Mikrofonsignale (16) sehr klein. Um die entsprechenden Zirkulär Harmonischen Reihenkoeffizienten der Amplitudendichtefunktion der ebenen Welle zu rekonstruieren, ist deshalb ein hoher Verstärkungsfaktor von -— j— - notwendig (siehe (26)), da

klein ist. Das führt zu einer typischerweise geringen Verstärkung des Weißen Rauschens für eine Richtcharakteristik mit einem hohen Grad M, was bedeutet, dass das Mikrofonrauschen im Ausgangssignal des Strahlformers stark verstärkt wird. Durch Vergrößerung des Radius r des Arrays werden die in Fig. 8 dargestellten Kurven im Wesentlichen nach links verschoben, d.h. in Richtung niedrigerer Frequenzen. Dies führt zu einer Verringerung der Hochpass-Grenzfrequenzen und reduziert dadurch den Effekt der Verstärkung des Weißen Rauschens bei niedrigen Frequenzen, verglichen mit einem kleineren Radius.

Räumliches Aliasing ist ein Phänomen, das auftritt, wenn z.B. ein Schallfeld an zu wenigen Abtastpunkten abgetastet wird, um hochfrequente räumliche Oszillationen des Schalldrucks zu erfassen. Da die Relevanz der Zirkulär Harmonischen mit höherem Grad m in- nerhalb der Signaturfunktion normalerweise mit der Spektralfrequenz steigt, gilt dies auch für die Größe des durch das räumliche Aliasing hervorgerufenen Fehlers. Insbesondere kann die Winkelfrequenz, bei der der Beitrag der Zirkulär Harmonischen mit Graden größer als M zur Signaturfunktion signifikant wird, angesehen werden als diejenige Frequenz, bei der der Aliasingeffekt störend bzw. nennenswert wird. Im Wesentlichen liegt diese Win- kelfrequenz bei

wobei cs die Schallgeschwindigkeit ist. Das bedeutet, dass für eine gewählte Anzahl Q von Mikrofonen die räumliche Aliasingfrequenz erhöht werden kann, indem der Radius r des Arrays reduziert wird. Alternativ kann für einen gegebenen Radius des Arrays die Anzahl der Mikrofone erhöht werden.

Für Mikrofonarrays für hörbare Frequenzen sollten die Mikrofonkapseln auf einem Kreis oder Kreisabschnitt mit einem Radius mit mindestens rmn = 5 cm liegen. Aus praktischen Gründen ist ein maximaler Radius von ca. r m ax = 100 cm zu empfehlen. Für Mikrofonarrays die zur Anwendung z.B. in einem Sportstadion gedacht sind, ist es vorteilhaft, wenn der Radius bei nach außen zeigenden Richtrohrmikrofone zwischen r m m = 30 cm und rmax = 40 cm und bei nach innen zeigenden Richtrohrmikrofone z. B. zwischen r m m = 40 cm und r ma x = 60 cm beträgt. Mit dem beispielhaft beschriebenen Aufbau lässt sich z.B. für Frequenzen von 200 Hz - 3 kHz eine sehr hohe Richtwirkung erzielen. Für Aufnahmen in einem Sportstadion sind Frequenzen unterhalb von 3 - 4 kHz besonders relevant. Eine kleinere Bauform des Mikrofonarrays ist möglich, wenn die kreisförmig angeordneten Richtrohrmikrofone radial nach innen zeigen. Die oben angegebenen Berechnungen gelten in dem Fall weiterhin. Fig. 9 zeigt schematisch ein Mikrofonarray 900 mit elf Richtrohrmikrofonen in einer fünften Ausführungsform, bei der die einzelnen Richtrohrmikrofone 910i ,... ,91011 im Wesentlichen in Richtung des Zentrums C des Arrays ausgerichtet sind.

Die jeweiligen Mikrofonkapseln (nicht dargestellt) liegen auf dem Kreis 920 mit dem Radius r. Bei einem Radius von r = 50 cm und unter Verwendung von z.B. Sennheiser MKH8070 Richtrohrmikrofonen mit einer Länge von ca. 46,5 cm (wobei die Mikrofonkapsel ca. 6 cm vom hinteren Ende entfernt ist) beträgt der Durchmesser des gesamten Arrays daher nur 2*(50+6) cm = 112 cm statt 2*(50+40,5) cm = 181 cm.

Fig. 10 zeigt in einer weiteren Ausführungsform eine perspektivische Ansicht eines ähnlichen Mikrofonarrays 1000 mit fünfzehn Richtrohrmikrofonen 1010i,...,1010i5, die ebenfalls in Richtung des Zentrums C des Arrays ausgerichtet sind. Die Mikrofone können z.B. auf einem Ring oder einer Platte befestigt werden. Dabei ist insbesondere zu beachten, dass die seitlichen Öffnungen 220 der Interferenzrohre der Richtrohrmikrofone 1010i,...,1010i5 nicht verdeckt sein dürfen, da sie hier die wichtigsten Einlassöffnungen für den Schall darstellen. Somit werden die Richtrohrmikrofone 1010i, .. 101 Ois nicht durch die jeweils gegenüber, d.h. in„Blickrichtung“ liegenden Richtrohrmikrofone gestört. Die Richtrohrmikrofone 1010i,...,1010i5 sind daher so angeordnet, dass ihre Oberseiten mit den seitlichen Öffnungen 220 frei für den Schall zugänglich sind und bevorzugt alle in dieselbe Richtung weisen. Ebenso wie in den vorher beschriebenen Beispielen liegen die Richtrohrmikrofone 1010i,...,1010i5 im Wesentlichen in einer Ebene, wobei sich die Richtwirkung des Mikrofonarrays innerhalb dieser Ebene elektronisch steuern lässt. Zu beachten ist, dass die Darstellung in Fig. 10 nicht unbedingt maßstabgetreu ist. Z.B. sollen die Mikrofone 1010i,..., 101 Ois möglichst gleichmäßig über den Kreis 1020 verteilt sein.

Ein besonderer Vorteil des erfindungsgemäßen Mikrofonarrays ist, dass es nicht bewegt werden muss, sondern ortsfest bleibt, wobei die Richtung höchster Empfindlichkeit durch elektronische Steuerung eingestellt werden kann, und zwar im Fall der kreisförmigen Anordnung auf jede beliebige Richtung innerhalb der Kreisebene (entsprechend einem Azi- mutwinkel von 0°-360° bei waagerechtem Aufbau). Es kann in anderen Anwendungsfällen sinnvoll sein, die Kreisebene senkrecht zu positionieren, um einen Elevationswinkel von 0°-360° zu erfassen und dabei den Azimutwinkel des Erfassungsbereichs sehr gering zu halten. Ebenso sind beliebige, dazwischen liegende Ausrichtungen der Mikrofonebene möglich. Wie in den Zeichnungen dargestellt, befindet sich kein Mikrofon in der Mitte der Anordnung. Die jeweils angegebene Anzahl von Richtmikrofonen pro Array ist die jeweilige Mindestanzahl; es ist immer möglich und kann vorteilhaft sein, die Anzahl Q der Mikrofone zu erhöhen, wie oben erläutert. Dabei kann die Anzahl Q gerade oder ungerade sein.

In einer Ausführungsform betrifft die Erfindung ein Verfahren zur Audioaufnahme mittels eines Mikrofonarrays aus Richtmikrofonen, wobei mindestens ein gemeinsames Aus- gangssignal erzeugt wird, das den Schall in einer einstellbaren bevorzugten Richtung hoher Empfindlichkeit des Mikrofonarrays enthält, mit den Schritten: Mischen mehrerer Mikrofonsignale in einer Mischmatrix auf (2M+1 ) Mischsignale, wobei M die Ordnung des gemeinsamen Ausgangssignals ist, und wobei die Mikrofonsignale von den Richtmikrofonen kommen und die Richtmikrofone im Wesentlichen in einer Ebene und auf einem Kreis oder Kreisabschnitt so angeordnet ist, dass für jedes der Richtmikrofone eine bevorzugte Richtung hoher Empfindlichkeit im Wesentlichen orthogonal nach außen oder nach innen zu dem Kreis oder Kreisabschnitt liegt, Filtern der Mischsignale in einer Mehrzahl von (2M+1 ) Filtern, wobei gefilterte Mischsignale entstehen, Gewichten jedes der gefilterten Mischsignale mit einer Gewichtung in einer Mehrzahl von (2M+1 ) Gewichtungseinheiten, wobei die Gewichtung jeder Gewichtungseinheit der einstellbaren bevorzugten Richtung hoher Empfindlichkeit des Mikrofonarrays entspricht, und Aufsummieren der (2M+1) gewichteten, gefilterten Mischsignale in einer Summationseinheit, wobei das gemeinsame Ausgangssignal entsteht.

Die oben beschriebenen Ausführungsbeispiele sind exemplarisch und können miteinander kombiniert werden, auch wenn eine solche Kombination nicht ausdrücklich genannt ist. Z.B. können in einer Arrayanordnung wie in Fig. 5 dargestellt die einzelnen Richtmikrofone auch nach innen zeigen, wie in Fig. 9 und Fig. 10.