Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MIXED LIGHT SOURCE
Document Type and Number:
WIPO Patent Application WO/2012/156217
Kind Code:
A1
Abstract:
The invention relates to a mixed light source (1) is specified, comprising a first semiconductor component (21), which is provided for generating a first radiation portion, and comprising a second semiconductor component (22), which is provided for generating radiation of a second radiation portion, which is different from the first radiation portion, wherein - the first semiconductor component is secured by means of a first securing location (61) to a first heat sink of a first thermal resistance R1; - the second semiconductor component is secured by means of a second securing location (62) to a second heat sink of a second thermal resistance R2; and - the thermal resistances R1 and R2 are different from one another.

Inventors:
KUHN GERHARD (DE)
MARKYTAN ALES (DE)
GAERTNER CHRISTIAN (DE)
SCHEUBECK MANFRED (DE)
VARGA HORST (DE)
Application Number:
PCT/EP2012/058302
Publication Date:
November 22, 2012
Filing Date:
May 04, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
KUHN GERHARD (DE)
MARKYTAN ALES (DE)
GAERTNER CHRISTIAN (DE)
SCHEUBECK MANFRED (DE)
VARGA HORST (DE)
International Classes:
H01L33/64; H01L25/075
Foreign References:
EP2072886A22009-06-24
US20090059582A12009-03-05
US20070147044A12007-06-28
US20060261351A12006-11-23
DE102011101645A2011-05-16
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Patentansprüche

1. Mischlichtquelle (1) mit einem ersten

Halbleiterbauelement (21), das für die Erzeugung eines ersten Strahlungsanteils vorgesehen ist, und mit einem zweiten

Halbleiterbauelement (22), das für die Erzeugung von

Strahlung eines vom ersten Strahlungsanteil verschiedenen zweiten Strahlungsanteils vorgesehen ist, wobei

- das erste Halbleiterbauelement mittels einer ersten

Befestigungsstelle (61) an einem ersten Kühlkörper (31) mit einem ersten Wärmewiderstand Rl befestigt ist;

- das zweite Halbleiterbauelement mittels einer zweiten

Befestigungsstelle (62) an einem zweiten Kühlkörper (32) mit einem zweiten Wärmewiderstand R2 befestigt ist; und

- die Wärmewiderstände Rl und R2 voneinander verschieden sind .

2. Mischlichtquelle nach Anspruch 1,

wobei

- der erste Strahlungsanteil im Betrieb einen Lichtstrom Φ1 aufweist, der sich in Abhängigkeit von der Temperatur der ersten Befestigungsstelle mit einem ersten

Temperaturkoeffizienten Kl ändert;

- der zweite Strahlungsanteil im Betrieb einen Lichtstrom Φ2 aufweist, der sich in Abhängigkeit von der Temperatur der zweiten Befestigungsstelle mit einem zweiten

Temperaturkoeffizienten K2 ändert;

- Kl größer als K2 ist; und

- Rl kleiner als R2 ist.

3. Mischlichtquelle nach Anspruch 2,

wobei im Betrieb das erste Halbleiterbauelement eine erste Verlustleistung PI und das zweite Halbleiterbauelement eine zweite Verlustleistung P2 erzeugen und die Beziehung gilt:

(Rl * P1)/(R2 * P2)= A * K2/K1, wobei A ein Anpassungskoeffizient mit 0,5 A < 2 ist.

4. Mischlichtquellen nach Anspruch 3,

wobei 0,8 < A < 1,2 gilt.

5. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper und der zweite Kühlkörper

thermisch voneinander entkoppelt sind.

6. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei

- bereichsweise zwischen dem ersten Kühlkörper und dem zweiten Kühlkörper eine Isolationsschicht (4) ausgebildet ist ;

- die Isolationsschicht an den ersten Kühlkörper und an den zweiten Kühlkörper angrenzt; und

- die Isolationsschicht aus einem Material gefertigt ist, das eine mindestens zehnfach niedrigere Wärmeleitfähigkeit aufweist als der erste Kühlkörper.

7. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper und der zweite Kühlkörper in

Aufsicht auf die Mischlichtquelle überlappen.

8. Mischlichtquelle nach einem der vorangegangenen

Ansprüche, wobei das erste Halbleiterbauelement und das zweite

Halbleiterbauelement auf voneinander verschiedenen

Verbindungshalbleitermaterialsystemen basieren . 9. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei sich der erste Kühlkörper vom zweiten Kühlkörper in der geometrischen Form unterscheidet. 10. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper eine vom zweiten Kühlkörper verschiedene Emissivität aufweist. 11. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper ein aktiver Kühlkörper und der zweite Kühlkörper ein passiver Kühlkörper ist. 12. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper und der zweite Kühlkörper

bezüglich der Materialien voneinander verschieden sind. 13. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper eine erste thermische Kapazität Cl und der zweite Kühlkörper eine zweite thermische Kapazität C2 aufweisen und die Beziehung gilt:

R1*C1/ (R2*C2) = B,

wobei 0,5 < B < 2 ist.

14. Mischlichtquelle nach Anspruch 13,

wobei 0,8 < B < 1,2 gilt.

15. Mischlichtquelle nach einem der vorangegangenen

Ansprüche,

wobei der erste Kühlkörper (31) ein Unterteil (31a) und ein mit dem Unterteil (31a) verbundenes Oberteil (31b) aufweist und der zweite Kühlkörper (32) das Oberteil des ersten Kühlkörpers in lateraler Richtung umläuft oder umgekehrt.

Description:
Beschreibung

Mischlichtquelle Die vorliegende Patentanmeldung betrifft eine

Mischlichtquelle mit einem ersten Halbleiterbauelement und einem zweiten Halbleiterbauelement.

Bei Mischlichtquellen mit Halbleiterbauelementen können für die Erzeugung von Strahlung in unterschiedlichen

Spektralbereichen Halbleiterbauelemente auf der Basis von unterschiedlichen VerbindungshalbleitermaterialSystemen

Anwendung finden. Eine unterschiedlich starke

Temperaturabhängigkeit der emittierten Strahlungsleistung für verschiedene Halbleiterbauelemente kann zu einer Verschiebung des Farborts der insgesamt von der Mischlichtquelle

abgestrahlten Strahlung führen.

Eine Aufgabe ist es, eine Mischlichtquelle anzugeben, bei der eine Abhängigkeit des Farborts, insbesondere im Hinblick auf eine Temperaturänderung der Halbleiterbauelemente, auf einfache Weise verringert ist.

Diese Aufgabe wird durch eine Mischlichtquelle gemäß

Patentanspruch 1 gelöst. Weitere Ausgestaltungen und

Zweckmäßigkeiten sind Gegenstand der abhängigen

Patentansprüche .

Eine Mischlichtquelle weist gemäß einer Ausführungsform ein erstes Halbleiterbauelement, das für die Erzeugung eines ersten Strahlungsanteils vorgesehen ist, und ein zweites Halbleiterbauelement, das für die Erzeugung von Strahlung eines vom ersten Strahlungsanteil verschiedenen zweiten Strahlungsanteils vorgesehen ist, auf. Das erste Halbleiterbauelement ist mittels einer ersten

Befestigungsstelle an einem ersten Kühlkörper mit einem ersten Wärmewiderstand Rl befestigt. Das zweite

Halbleiterbauelement ist mittels einer zweiten

Befestigungsstelle an einem zweiten Kühlkörper mit einem zweiten Wärmewiderstand R2 befestigt. Die Wärmewiderstände Rl und R2 sind voneinander verschieden. Vorzugsweise ist der zweite Wärmewiderstand R2 um mindestens 20 % größer als der erste Wärmewiderstand Rl .

Im Unterschied zu einer Mischlichtquelle, bei der alle

Halbleiterbauelemente auf einem gemeinsamen Kühlkörper angeordnet sind, können unterschiedliche Wärmewiderstände bewirken, dass sich an den Befestigungsstellen im Betrieb voneinander verschiedene Temperaturen einstellen.

Vorzugsweise ist die Temperatur der Befestigungsstellen so aneinander angepasst, dass eine durch unterschiedliche

Temperaturkoeffizienten bedingte unterschiedlich starke

Änderung der Abstrahlung, etwa des Lichtstroms, kompensiert wird .

Näherungsweise nimmt der im Betrieb erzeugte Lichtstrom Φ eines Halbleiterbauelements mit zunehmender Temperatur linear mit einem Temperaturkoeffizienten K ab.

Die Temperatur einer Befestigungsstelle T B s liegt im Betrieb des Halbleiterbauelements typischerweise um einen Wert ΔΤ über einer Umgebungstemperatur T 0 . Diese Temperaturdifferenz berechnet sich aus dem Produkt aus dem Wärmewiderstand R des Kühlkörpers mit der Verlustleistung P des

Halbleiterbauelements . Somit gilt für die Temperatur an der Befestigungsstelle die Beziehung T B s = T 0 + R * P. Mit anderen Worten bestimmt der Wärmewiderstand die Temperaturänderung ΔΤ gegenüber der

Umgebungstemperatur bei einer vorgegebenen Verlustleistung.

Je höher der Wärmewiderstand des Kühlkörpers ist, desto höher ist also die Temperatur der Befestigungsstelle bei einer vorgegebenen Umgebungstemperatur und einer vorgegebenen

Verlustleistung des Halbleiterbauelements.

In einer bevorzugten Ausgestaltung weist der erste

Strahlungsanteil im Betrieb einen Lichtstrom Φ1 auf, der sich in Abhängigkeit von der Temperatur der ersten

Befestigungsstelle mit einem ersten Temperaturkoeffizienten Kl ändert. Der zweite Strahlungsanteil weist im Betrieb einen Lichtstrom Φ2 auf, der sich in Abhängigkeit von der

Temperatur der zweiten Befestigungsstelle mit einem zweiten Temperaturkoeffizienten K2 ändert. Vorzugsweise ist Kl > K2 und Rl < R2. Mit anderen Worten ist das Halbleiterbauelement mit dem größeren Temperaturkoeffizienten auf dem Kühlkörper mit dem kleineren Wärmewiderstand angeordnet.

Bei einer im Betrieb des ersten Halbleiterbauelements erzeugten ersten Verlustleistung PI und einer vom zweiten Halbleiterbauelement erzeugten zweiten Verlustleistung P2 gilt vorzugsweise die Beziehung:

(Rl * P1)/(R2 * P2) = A * K2/K1, wobei A ein Anpassungskoeffizient mit 0,5 A < 2 ist.

Für den Idealfall eines Anpassungskoeffizienten von A = 1 gilt also die Beziehung ΔΤ1 * Kl = ΔΤ2 * K2. In diesem Fall fällt die Strahlungsleistung für das erste

Halbleiterbauelement und für das zweite Halbleiterbauelement also trotz eines unterschiedlich starken

Temperaturkoeffizienten gleich stark ab. Die Abhängigkeit des Verhältnisses zwischen dem ersten Strahlungsanteil und dem zweiten Strahlungsanteil und somit der Farbort der

Mischlichtquelle ist damit für A=l eliminiert und für einen geringfügig von 1 abweichenden Wert weitestgehend reduziert. Vorzugsweise gilt 0,8 < A -S 1,2.

In einer bevorzugten Ausgestaltung sind der erste Kühlkörper und der zweite Kühlkörper thermisch voneinander entkoppelt. Thermisch entkoppelt bedeutet in diesem Zusammenhang

insbesondere, dass sich im Betrieb der Mischlichtquelle für den ersten Kühlkörper und für den zweiten Kühlkörper

weitgehend voneinander unabhängige Temperaturen einstellen können. Insbesondere hat die Verlustleistung des ersten

Halbleiterbauelements keinen oder zumindest keinen

wesentlichen Einfluss auf die Temperatur des zweiten

Kühlkörpers und die Verlustleistung des zweiten

Halbleiterbauelements keinen oder zumindest keinen

wesentlichen Einfluss auf die Temperatur des ersten

Kühlkörpers. So kann vereinfacht erzielt werden, der erste Kühlkörper im Betrieb der Mischlichtquelle im Bereich der ersten Befestigungsstelle eine andere Temperatur aufweist als der zweite Kühlkörper im Bereich der zweiten

Befestigungsstelle. Der erste Kühlkörper und der zweite

Kühlkörper können mechanisch miteinander stabil verbunden sein, grenzen jedoch zweckmäßigerweise nicht unmittelbar aneinander an.

In einer bevorzugten Weiterbildung ist zumindest

bereichsweise zwischen dem ersten Kühlkörper und dem zweiten Kühlkörper eine Isolationsschicht ausgebildet. Die Isolationsschicht grenzt vorzugsweise an den ersten

Kühlkörper und weiterhin bevorzugt an den zweiten Kühlkörper an. Vorzugsweise ist die Isolationsschicht so ausgebildet, dass der erste Kühlkörper und der zweite Kühlkörper an keiner Stelle unmittelbar aneinander angrenzen. Die

Isolationsschicht ist weiterhin bevorzugt aus einem Material gefertigt, das eine mindestens 10-fach niedrigere

Wärmeleitfähigkeit aufweist als der erste Kühlkörper.

Vorzugsweise weist die Isolationsschicht eine

Wärmeleitfähigkeit von höchstens 10 W/ (m * K) auf, besonders bevorzugt von höchstens 1 W/ (m * K) . In einer weiteren bevorzugten Ausgestaltung überlappen der erste Kühlkörper und der zweite Kühlkörper in Aufsicht auf die Mischlichtquelle. Im Vergleich zu nebeneinander

angeordneten Kühlkörpern kann so eine in Bezug auf den

Farbort räumlich gleichmäßige Abstrahlung der

Mischlichtquelle im Fernfeld, insbesondere in einem

verglichen mit dem Abstand der Halbleiterbauelemente großen Abstand, vereinfacht erzielt werden.

In einer bevorzugten Ausgestaltung basieren das erste

Halbleiterbauelement und das zweite Halbleiterbauelement auf voneinander verschiedenen

Verbindungshalbleitermaterialsystemen . Mit verschiedenen Verbindungshalbleitermaterialsystemen können auf einfache Weise Strahlungsanteile in unterschiedlichen

Spektralbereichen erzielt werden. Vorzugsweise sind die

VerbindungshalbleitermaterialSysteme I I I-V-

Verbindungshalbleitermaterialsysteme, die sich in dem Gruppe- V-Element des Halbleitergitters, das den überwiegenden Teil, also mehr als 50 %, der Gruppe-V-Gitterplätze besetzt, voneinander unterscheiden.

Das erste Halbleiterbauelement basiert vorzugsweise auf einem phosphidischen Verbindungshalbleitermaterial.

„Auf Phosphid-Verbindungshalbleitern basierend" bedeutet in diesem Zusammenhang, dass ein Halbleiterkörper des

Halbleiterbauelements, insbesondere ein zur Erzeugung von Strahlung vorgesehener aktiver Bereich, vorzugsweise

Al n Ga m Ini- n - m P umfasst, wobei 0 < n < 1, 0 < m < 1 und n+m < 1 ist, vorzugsweise mit n + 0 und/oder m + 0. Dabei muss dieses Material nicht zwingend eine mathematisch exakte

Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es ein oder mehrere Dotierstoffe sowie zusätzliche

Bestandteile aufweisen, die die physikalischen Eigenschaften des Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (AI, Ga, In, P) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.

Das zweite Halbleiterbauelement basiert weiterhin bevorzugt auf einem nitridischen Verbindungshalbleitermaterial.

„Auf Nitrid-Verbindungshalbleitern basierend" bedeutet im vorliegenden Zusammenhang, dass ein Halbleiterkörper des Halbleiterbauelements, insbesondere ein zur Erzeugung von Strahlung vorgesehener aktiver Bereich, ein Nitrid-III/V- Verbindungshalbleitermaterial, vorzugsweise

Al n Ga m Ini- n - m N umfasst, wobei 0 < n < 1, 0 < m < 1 und n+m < 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen

physikalischen Eigenschaften des Al n Ga m I ni- n - m N-Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (AI, Ga, In, N) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.

Die bei diesen Halbleitermaterialsystemen unterschiedlichen Temperaturkoeffizienten können durch unterschiedliche

Wärmewiderstände für die Kühlkörper kompensiert werden.

In einer Ausgestaltungsvariante unterscheidet sich der erste Kühlkörper vom zweiten Kühlkörper in der geometrischen Form. Die geometrische Form umfasst hierbei insbesondere die Größe des Kühlkörpers.

Alternativ oder ergänzend kann der erste Kühlkörper eine vom zweiten Kühlkörper verschiedene Emissivität aufweisen.

Beispielsweise kann zur Erhöhung der Emissivität eine

Beschichtung auf dem Kühlkörper ausgebildet sein.

In einer alternativen Ausgestaltung ist der erste Kühlkörper ein aktiver Kühlkörper und der zweite Kühlkörper ein passiver Kühlkörper. Der aktive Kühlkörper kann beispielsweise über ein Kühlmedium oder über einen Lüfter gekühlt werden.

In einer weiteren Ausgestaltungsvariante sind der erste

Kühlkörper und der zweite Kühlkörper bezüglich der

verwendeten Materialien voneinander verschieden.

In einer weiteren bevorzugten Ausgestaltung weist der erste Kühlkörper eine erste thermische Kapazität Cl und der zweite Kühlkörper eine zweite thermische Kapazität C2 auf, wobei die Beziehung gilt:

Rl * Cl / (R2 * C2) = B, wobei für den Koeffizienten B 0,5 -£ B -£ 2, vorzugsweise

0,8 -S B -S 1,2 gilt. Je näher der Koeffizient B an dem

Idealwert von 1 liegt, desto genauer ist das transiente

Verhalten der Mischlichtquelle, also das Verhalten der

Mischlichtquelle während einer Änderung der Temperatur, stabilisiert .

In einer bevorzugten Ausgestaltung sind auf dem ersten

Kühlkörper eine Mehrzahl von ersten Halbleiterbauelementen und auf dem zweiten Kühlkörper eine Mehrzahl von zweiten Halbleiterbauelementen angeordnet .

Zwischen dem zumindest einen ersten Halbleiterbauelement und dem ersten Kühlkörper und/oder zwischen dem zumindest einen zweiten Halbleiterbauelement und dem zweiten Kühlkörper ist vorzugsweise ein Zwischenträger angeordnet, beispielsweise eine Leiterplatte, etwa eine gedruckte Leiterplatte (Printed Circuit Board, PCB) oder eine Metallkern-Leiterplatte (Metal Core Printed Circuit Board, MCPCB) oder ein Keramik-Träger mit elektrischen Anschlussleitern für die

Halbleiterbauelemente .

Weitere Merkmale, Ausgestaltungen und Zweckmäßigkeiten ergeben sich aus der folgenden Beschreibung der

Ausführungsbeispiele in Verbindung mit den Figuren.

Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und Größenverhältnisse der in den Figuren

dargestellten Elemente untereinander sind nicht als

maßstäblich zu betrachten. Vielmehr können einzelne Elemente zur verbesserten Darstellbarkeit und/oder zum besseren

Verständnis übertrieben groß dargestellt sein.

Es zeigen:

Figur 1 ein erstes Ausführungsbeispiel für eine

Mischlichtquelle in schematischer Schnittansicht,

Figur 2 ein zweites Ausführungsbeispiel für eine

Mischlichtquelle in schematischer Schnittansicht, Figur 3 ein drittes Ausführungsbeispiel für eine

Mischlichtquelle in perspektivischer schematischer Darstellung, und

Figur 4 Simulationsergebnisse für den Lichtstrom Φ und die

Temperaturänderung ΔΤ in Abhängigkeit von der Zeit t beim Einschaltvorgang einer Mischlichtquelle, jeweils im Vergleich zu einer herkömmlichen

Mischlichtquelle . Eine Mischlichtquelle 1 gemäß dem in Figur 1 dargestellten ersten Ausführungsbeispiel weist einen ersten Kühlkörper 31 mit einer ersten Hauptfläche 310 auf. Seitens der ersten Hauptfläche ist auf dem ersten Kühlkörper ein erstes

Halbleiterbauelement 21 mit einem zur Erzeugung von Strahlung vorgesehenen aktive Bereich 210 angeordnet. Im Betrieb der Mischlichtquelle ist der aktive Bereich 210 zur Erzeugung eines ersten Strahlungsanteils vorgesehen. Das erste

Halbleiterbauelement ist mittels einer Befestigungsschicht 71, beispielsweise einem Lot oder einer elektrisch leitfähigen Klebeschicht, an einem ersten Zwischenträger 51 befestigt. Der Zwischenträger kann beispielsweise als eine Leiterplatte, etwa als eine PCB-Leiterplatte oder eine

Metallkern-Leiterplatte, ausgebildet sein. Auch ein

Keramikträger mit elektrischem Anschlussleiter kann Anwendung finden .

Das erste Halbleiterbauelement 21 mit dem Zwischenträger 51 ist mittels einer ersten Verbindungsstelle 61 an dem ersten Kühlkörper 31 befestigt. Die erste Verbindungsstelle grenzt unmittelbar an den ersten Kühlkörper an. Die erste

Verbindungsstelle kann beispielsweise durch eine Lotschicht oder eine elektrisch leitfähige Klebeschicht gebildet sein.

Der aktive Bereich 210 kann beispielsweise auf einem

phosphidischen Verbindungshalbleitermaterial basieren. Mit diesem Halbleitermaterial ist Strahlung im gelben oder roten Spektralbereich besonders effizient erzeugbar. Das erste Halbleiterbauelement 21 kann beispielsweise zur Erzeugung von Strahlung im roten Spektralbereich, insbesondere zur

Erzeugung von Strahlung mit einer Peak-Wellenlänge zwischen einschließlich 600 nm und einschließlich 660 nm vorgesehen sein .

Weiterhin umfasst die Mischlichtquelle 1 einen zweiten

Kühlkörper 32 mit einer zweiten Hauptfläche 320. Wie im

Zusammenhang mit dem ersten Halbleiterbauelement 21

beschrieben, ist auf dem zweiten Kühlkörper 32 ein zweites Halbleiterbauelement 22 mit einem zur Erzeugung von Strahlung eines zweiten Strahlungsanteils vorgesehenen aktiven Bereich 220 angeordnet. Das zweite Halbleiterbauelement 22 ist über eine zweite Befestigungsschicht 72 mit einem zweiten Zwischenträger 52 verbunden. Das zweite Halbleiterbauelement mit dem zweiten Zwischenträger ist mittels einer zweiten Verbindungsstelle 62 mit dem zweiten Kühlkörper 32 verbunden. Die Zwischenträger 51, 52 können bezüglich des verwendeten Materials gleichartig oder voneinander verschieden sein.

Das zweite Halbleiterbauelement 22 basiert auf einem von dem ersten Halbleiterbauelement verschiedenen

Verbindungshalbleitermaterialsystem. Beispielsweise kann das zweite Halbleiterbauelement 22, insbesondere der aktive

Bereich 220, auf einem nitridischen

Verbindungshalbleitermaterial basieren. Nitridisches

Verbindungshalbleitermaterial eignet sich insbesondere für die Erzeugung von Strahlung im blauen und ultravioletten Spektralbereich. Das zweite Halbleiterbauelement 22 kann selbst zur Erzeugung von Mischstrahlung vorgesehen sein.

Beispielsweise kann auf dem zweiten Halbleiterbauelement 22 ein Konversionselement 225 ausgebildet sein, das die im aktiven Bereich 220 erzeugte Primärstrahlung zumindest teilweise absorbiert und in eine Sekundärstrahlung

konvertiert .

Beispielsweise kann der von dem zweiten Halbleiterbauelement 22 insgesamt erzeugte zweite Strahlungsanteil mit der

Primärstrahlung und der Sekundärstrahlung im CIE-Diagramm für C x einen Wert zwischen einschließlich 0,2 und einschließlich 0,45 und für C y einen Wert zwischen einschließlich 0,1 und einschließlich 0,61 aufweisen.

Zusammen mit dem ersten Strahlungsanteil 21 kann so von der Mischlichtquelle für das menschliche Auge weiß erscheinende Strahlung mit einem hohen Farbwiedergabeindex abgestrahlt werden .

Der erste Kühlkörper 31 und der zweite Kühlkörper 32 sind in diesem Ausführungsbeispiel mittels einer Isolationsschicht 4 thermisch voneinander entkoppelt.

Für die Isolationsschicht 4 eignet sich insbesondere ein Material, dessen Wärmeleitfähigkeit um mindestens einen

Faktor 10 kleiner ist als eine Wärmeleitfähigkeit des ersten Kühlkörpers 31. Insbesondere eignet sich ein Material mit einer Wärmeleitfähigkeit von höchstens 1 W/ (m*K) . Die

Isolationsschicht 4 kann beispielsweise einen Kunststoff enthalten oder aus einem Kunststoff bestehen.

Der erste Kühlkörper 31 weist einen ersten Wärmewiderstand Rl auf, der kleiner ist als ein Wärmewiderstand R2 des zweiten Kühlkörpers 32. Der Wärmewiderstand bestimmt die

Temperaturdifferenz ΔΤ zwischen der Umgebungstemperatur und der Temperatur an den Verbindungsstellen 61, 62. So können sich an den Verbindungsstellen 61, 62 voneinander

verschiedene Temperaturen einstellen.

In dem gezeigten Ausführungsbeispiel wird für den ersten Kühlkörper 31 ein im Vergleich zum zweiten Kühlkörper 32 niedrigerer Wärmewiderstand durch eine größere Ausführung des ersten Kühlkörpers erreicht. Alternativ oder ergänzend kann für den ersten Kühlkörper 31 eine aktive Kühlung,

beispielsweise mittels eines Lüfters, einer Heat Pipe oder einer Thermal Base oder mittels einer Wasserkühlung

vorgesehen sein, während der zweite Kühlkörper 32 als ein passiver Kühlkörper ausgebildet ist. Bei einer vorgegebenen Verlustleistung PI und einem

Temperaturkoeffizienten Kl für das erste Halbleiterbauelement und einer vorgegebenen Verlustleistung P2 und einem

Temperaturkoeffizienten K2 für das zweite

Halbleiterbauelement sind die thermischen Widerstände Rl und R2 derart ausgeführt, dass die Beziehung

(Rl * P1)/(R2 * P2) = A * K2/K1 gilt, wobei A ein

Anpassungskoeffizient mit 0,5 -S A -S 2 ist. Für den Idealwert von A = 1 sind die thermischen Widerstände Rl und R2 so an die Halbleiterbauelemente 21, 22 angepasst, dass der Helligkeitsverlust bei einem Temperaturanstieg für das erste Halbleiterbauelement 21 gleich dem

Helligkeitsverlust für das zweite Halbleiterbauelement 22 ist. Auch bei einem Abfall der Helligkeit mit zunehmender Temperatur bleibt also das Verhältnis des ersten

Strahlungsanteils zum zweiten Strahlungsanteil konstant, sodass sich der Farbort der von der Mischlichtquelle

insgesamt abgestrahlten Strahlung nicht oder zumindest nicht wesentlich ändert. Vorzugsweise gilt für den Anpassungsfaktor A die Beziehung: 0,8 < A < 1,2.

In der Figur ist lediglich zur vereinfachten Darstellung nur ein erstes Halbleiterbauelement 21 und ein zweites

Halbleiterbauelement 22 gezeigt. Zur Erhöhung der insgesamt von der Mischlichtquelle 1 abgestrahlten Strahlungsleistung kann die Mischlichtquelle auch mehrere erste

Halbleiterbauelemente und mehrere zweite

Halbleiterbauelemente aufweisen, wobei der erste Kühlkörper 31 zweckmäßigerweise frei von zweiten Halbleiterbauelementen 22 und der zweite Kühlkörper 32 frei von ersten

Halbleiterbauelementen 21 ist. Weiterhin kann die Mischlichtquelle auch mehr als zwei Kühlkörper,

beispielsweise drei Kühlkörper aufweisen.

Die Kühlkörper 31, 32 können jeweils ein Metall,

beispielsweise Kupfer, Aluminium, Molybdän oder Wolfram oder eine Legierung mit einem der genannten Materialien enthalten oder aus einem solchen Material bestehen. Die

Wärmeleitfähigkeit des Materials für den Kühlkörper beträgt vorzugsweise mindestens 40 W / (m*K) , besonders bevorzugt mindestens 100 W / (m*K) . Auch eine Keramik kann für die

Kühlkörper 31, 32 Anwendung finden.

In dem Ausführungsbeispiel wurde lediglich exemplarisch eine als Weißlichtquelle ausgebildete Mischlichtquelle mit einem ersten Halbleiterbauelement auf der Basis von einem

phosphidischen Verbindungshalbleitermaterial und einem zweite Halbleiterbauelement auf der Basis von einem nitridischen Verbindungshalbleitermaterial gezeigt. Die Anordnung von gesonderten, insbesondere thermisch voneinander entkoppelten, Kühlkörpern eignet sich jedoch grundsätzlich für

Mischlichtquellen mit zumindest zwei verschiedenen Typen von Halbleiterbauelementen, die eine unterschiedlich starke

Temperaturabhängigkeit aufweisen. Zweckmäßigerweise ist das Halbleiterbauelement mit der größeren Temperaturabhängigkeit an dem Kühlkörper befestigt, an dem sich im Betrieb die kleinere Temperatur an der Befestigungsstelle einstellt.

Für eine Stabilisierung des Farborts der Mischlichtquelle auch während einer Temperaturveränderung, beispielsweise bei einer Veränderung der Umgebungstemperatur oder während eines Einschaltvorgangs der Mischlichtquelle, sind vorzugsweise auch die thermischen RC-Konstanten, also das Produkt aus thermischem Widerstand und thermischer Kapazität der Kühlkörper aneinander angepasst. Vorzugsweise gilt die

Beziehung :

Rl * C1/(R2 * C2) = B mit 0,5 < B < 2.

Je näher der Koeffizient B an dem Idealwert von 1 ist, desto besser sind die thermischen RC-Konstanten der Kühlkörper 31, 32 aneinander angepasst. Vorzugsweise gilt: 0,8 -S B -S 1,2. Simulationsergebnisse für den Lichtstrom Φ und die

Temperaturänderung ΔΤ in Abhängigkeit von der Temperatur t beim Einschaltvorgang der Mischlichtquelle ist in Figur 4 dargestellt. Den Simulationsberechnungen liegen

Temperaturkoeffizienten von Kl = 0,006 K "1 und K2 = 0,0026 K " zugrunde.

Für das Verhältnis der thermischen Widerstände gilt R1/R2 = 1/3. Für die thermischen Kapazitäten gilt C1/C2 = 9/3. Der erste Kühlkörper und der zweite Kühlkörper sind bezüglich ihrer thermischen RC-Konstante also gleich.

In Figur 4 zeigt eine Kurve 81 den Temperaturanstieg ΔΤ1 an der ersten Verbindungsstelle 61. Eine Kurve 82 zeigt einen Temperaturanstieg ΔΤ2 an der zweiten Verbindungsstelle 62.

Im Vergleich dazu zeigt Figur 91 Simulationsergebnisse für einen Temperaturanstieg im Fall einer Mischlichtquelle, bei der das erste Halbleiterbauelement 21 und das zweite

Halbleiterbauelement 22 auf einem gemeinsamen Kühlkörper angeordnet sind.

Eine Kurve 85 zeigt den Lichtstrom Φ des ersten

Halbleiterbauelements 21, eine Kurve 86 den Lichtstrom Φ des zweiten Halbleiterbauelements 86. Im Vergleich hierzu zeigen die Kurven 95 und 96 jeweils den Lichtstrom für ein erstes beziehungsweise zweites Halbleiterbauelement im Fall einer Anordnung auf einem gemeinsamen Kühlkörper.

Der Lichtstrom Φ ist für alle Kurven jeweils auf den

Lichtstrom unmittelbar nach dem Einschalten normiert.

Wie die Kurven 81, 82 zeigen, stellen sich für die

Verbindungsstellen 61, 62 unterschiedliche Temperaturen ein. Dadurch werden die unterschiedlich großen

Temperaturkoeffizienten der Halbleiterbauelemente 21, 22 kompensiert, sodass der Lichtstrom Φ, wie die Kurven 85, 86 zeigen, für die beiden Strahlungsanteile der

Halbleiterbauelemente 21, 22 über den gesamten Zeitverlauf nur geringfügig voneinander abweichen. Folglich ändert sich der Farbort der Mischlichtquelle über die Zeit t nur

geringfügig. Auf eine vergleichsweise aufwändige Regelung zur Ansteuerung der Halbleiterbauelemente kann verzichtet werden.

Bei einer herkömmlichen Mischlichtquelle mit einem

gemeinsamen Kühlkörper fällt der Lichtstrom für

t > 60 s für den zweiten Strahlungsanteil (Kurve 96) etwa um 17 % und für den ersten Strahlungsanteil um etwa 38 % (Kurve 95) ab, so dass sich der Farbort der Mischlichtquelle

vergleichsweise stark verändert.

Ein zweites Ausführungsbeispiel für eine Mischlichtquelle ist in Figur 2 in schematischer Schnittansicht dargestellt.

Dieses zweite Ausführungsbeispiel entspricht im Wesentlichen dem im Zusammenhang mit Figur 1 beschriebenen ersten

Ausführungsbeispiel. Im Unterschied hierzu ist auf dem ersten Kühlkörper 31 eine Beschichtung 35 ausgebildet. Die Beschichtung 35 ist dafür vorgesehen, die Emissivität des ersten Kühlkörpers zu erhöhen und damit die Temperatur an der ersten Verbindungsstelle 61 zu verringern. Die Beschichtung weist vorzugsweise eine Emissivität von mindestens 0,8, besonders bevorzugt von mindestens 0,9 auf.

Im Vergleich hierzu beträgt die Emissivität eines polierten Metalls typischerweise einen Wert von etwa 0,3 und die

Emissivität eines rauen Metalls eine Emissivität von 0,5 bis 0,6. Auch bei gleicher Größe und bei gleichem Material für die Kühlkörper 31, 32 kann also der thermische Widerstand des ersten Kühlkörpers im Vergleich zum zweiten Kühlkörper durch Aufbringen der Beschichtung stark verringert werden,

beispielsweise um einen Faktor zwischen einschließlich 1,5 und einschließlich 3.

Selbstverständlich können auch unterschiedliche Maßnahmen für ein Ausbilden von Kühlkörpern mit unterschiedlichem

thermischen Widerstand miteinander kombiniert werden, beispielsweise unterschiedlich große Kühlkörper, deren

Oberflächen zu einem unterschiedlich starken Anteil mit einer Beschichtung versehen sind.

Ein drittes Ausführungsbeispiel für eine Mischlichtquelle ist in Figur 3 in perspektivischer Darstellung schematisch gezeigt. Dieses dritte Ausführungsbeispiel entspricht im Wesentlichen dem im Zusammenhang mit Figur 1 beschriebenen ersten Ausführungsbeispiel. In diesem Ausführungsbeispiel sind der erste Kühlkörper 31 und der zweite Kühlkörper 32 so ausgebildet, dass diese in Aufsicht auf die Mischlichtquelle, also mit Blick auf die erste Hauptfläche 310 des ersten Kühlkörpers 31 überlappen. Der erste Kühlkörper 31 weist ein Unterteil 31A und ein mit dem Unterteil verbundenes Oberteil 31B auf. Insbesondere kann der erste Kühlkörper mit dem Unterteil und dem Oberteil einstückig ausgebildet sein.

Das Oberteil 31B weist in Aufsicht einen geringeren

Querschnitt auf als das Unterteil 31A. In dem gezeigten

Ausführungsbeispiel sind das Unterteil und das Oberteil jeweils mit einer zylindrischen Grundform ausgebildet, wobei die Achsen der Zylinder kollinear verlaufen. Der zweite

Kühlkörper 32 ist ringförmig ausgebildet und umläuft das Oberteil 31B des ersten Kühlkörpers 31 in lateraler Richtung. Zwischen dem ersten Kühlkörper 31 und dem zweiten Kühlkörper 32 ist durchgängig eine Isolationsschicht 4 ausgebildet, so dass die Kühlkörper 31, 32 an keiner Stelle unmittelbar aneinander angrenzen. Die Kühlkörper 31, 32 sind mittels der Isolationsschicht also thermisch voneinander entkoppelt und weiterhin über die Isolationsschicht mechanisch miteinander verbunden .

Selbstverständlich können das Unterteil 31A und das Oberteil 31B des ersten Kühlkörpers 31 auch eine von einer

zylindrischen Grundform abweichende Form aufweisen,

beispielsweise eine mehreckige, insbesondere rechteckige Grundform. Weiterhin kann der erste Kühlkörper 31 auch so ausgebildet sein, dass das Oberteil 31B den zweiten

Kühlkörper 32 bereichsweise umläuft, das heißt, das Oberteil 31B kann ringförmig den beispielsweise zylinderförmig

ausgeführten zweiten Kühlkörper 32 umlaufen.

Mit der beschriebenen Anordnung verschiedener Typen von

Halbleiterbauelementen auf jeweils zugeordneten Kühlkörpern, die in Aufsicht auf die Hauptfläche des Kühlkörpers überlappen, ist vereinfacht eine Mischlichtquelle realisierbar, bei der zwei getrennte Kühlkörper in kompakter Weise und voneinander thermisch entkoppelt so angeordnet sind, dass die von den ersten Halbleiterbauelementen 21 und den zweiten Halbleiterbauelementen 22 abgestrahlte

Strahlungsleistung in lateraler Richtung eine hohe farbliche Homogenität aufweist.

Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2011 101 645.0, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die

Erfindung jedes neue Merkmal sowie jede Kombination von

Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den

Patentansprüchen oder den Ausführungsbeispielen angegeben ist.