Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MIXTURE CONTAINING AN ORGANOMETALLIC SKELETAL MATERIAL, AND PCM DEVICE
Document Type and Number:
WIPO Patent Application WO/2008/122542
Kind Code:
A2
Abstract:
The invention relates to mixtures each containing, in relation to the total weight of the mixture: a) between 2 and 60 wt. % of a PCM device constituent A, and b) between 40 and 98 wt. % of a skeletal material constituent B, constituent A containing at least one microencapsulated PCM device material, and constituent B containing at least one porous organometallic skeletal material containing at least one at least bidentate organic compound which is co-ordinately bound to at least one metal ion. The invention also relates to the use of such mixtures, especially in methods for separating materials from a material mixture.

Inventors:
STEIN HILDEGARD (DE)
PASTRE JOERG (DE)
SCHUBERT MARKUS (DE)
KIENER CHRISTOPH (DE)
Application Number:
PCT/EP2008/053859
Publication Date:
October 16, 2008
Filing Date:
April 01, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
STEIN HILDEGARD (DE)
PASTRE JOERG (DE)
SCHUBERT MARKUS (DE)
KIENER CHRISTOPH (DE)
International Classes:
B01D53/02; B01D53/047; B01J13/02; B01J20/22; B01J20/28; C09K5/00; F17C11/00
Domestic Patent References:
WO2005049484A12005-06-02
Foreign References:
FR2891159A12007-03-30
EP1536128A12005-06-01
DE102005039623A12007-03-01
JP2003314796A2003-11-06
US20070068389A12007-03-29
Attorney, Agent or Firm:
ISENBRUCK, Günter (PatentanwälteTheodor-Heuss-Anlage 12, Mannheim, DE)
Download PDF:
Claims:

Patentansprüche

1. Mischung enthaltend jeweils bezogen auf das Gesamtgewicht der Mischung

a) 2 bis 60 Gew.-% einer Latentwärmespeicherkomponente A und b) 40 bis 98 Gew.-% einer Gerüstmaterialkomponente B,

wobei die Komponente A mindestens ein mikroverkapseltes Latentwärmespeichermaterial enthält und wobei die Komponente B mindestens ein poröses me- tallorganisches Gerüstmaterial enthaltend mindestens eine an mindestens ein

Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält.

2. Mischung nach Anspruch 1 , dadurch gekennzeichnet, dass das mindestens eine mikroverkapselte Latentwärmespeichermaterial eine organische lipophile

Substanz ist.

3. Mischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mikro- verkapselung ein Homo- oder Copolymer auf Basis von Methylmethacrylat ent- hält.

4. Mischung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mindestens eine mikroverkapselte Latentwärmespeichermaterial einen Schmelzpunkt im Bereich von -20 0 C bis 120 0 C aufweist.

5. Mischung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mindestens eine Metallion ein Ion ausgewählt aus der Gruppe der Metalle bestehend aus Mg, AI, Y, Sc, Zr, Ti, V, Cr, Mo, Fe, Co, Cu, Ni, Zn und Lanthan- iden ist.

6. Mischung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich die mindestens eine mindestens zweizähnige organische Verbindung von einer Di-, Tri- oder Tetracarbonsäure ableitet.

7. Mischung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Anteil der Komponenten A und B in der Mischung 10 - 50 Gew.-% A und 50 - 90 Gew.-% B beträgt.

8. Mischung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens eine der Komponenten A oder B als Formkörper vorliegt.

9. Mischung nach Anspruch 8, dadurch gekennzeichnet, dass Komponente A als sternförmiges Granulat vorliegt.

10. Mischung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass Komponente B tablettenförmig oder als strangförmiges Extrudat vorliegt.

1 1. Mischung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Ausdehnung des Formkörpers in mindestens eine Dimension des Raumes für Komponente A im Bereich von 0,2 mm bis 5 cm und für Komponente B im Bereich von 0,2 bis 30 mm liegt.

12. Verwendung einer Mischung nach einem der Ansprüche 1 bis 1 1 zur Aufnahme mindestens eines Stoffes zu dessen Speicherung, Abtrennung, kontrollierten Abgabe, chemischen Umsetzung oder als Träger.

13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass der Stoff ein Gas oder Gasgemisch ist.

14. Verfahren zur Abtrennung eines Stoffes aus einem Stoffgemisch die Schritte enthaltend

(a) Inkontaktbringen des Stoffes mit einer Mischung nach einem der Ansprüche 1 bis 1 1 zu dessen zumindest teilweisen Aufnahme durch Adsorption bei einem ersten Druck,

(b) zumindest teilweise Abgabe des Stoffes durch Desorption bei einem zweiten Druck, der niedriger ist als der erste Druck und

(c) gegebenenfalls Wiederholung der Schritte (a) und (b).

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Wiederholung der Adsorption in Schritt (a) in einer Zeit von weniger als 60 Minuten erfolgt.

16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass der erste Druck mindestens 1 ,2 bar (absolut) beträgt.

17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass der zweite Druck höchstens 1 ,1 bar (absolut) beträgt.

18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass

der abzutrennende Stoff Kohlendioxid enthält.

19. Verfahren nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass das Stoffgemisch neben dem abzutrennenden Stoff mindestens ein Gas ausgewählt aus der Gruppe bestehend aus Methan, Ethan, Propan, n-Butan, 2- Methylbutan, Kohlenmonoxid und Wasserstoff enthält.

Description:

Mischung enthaltend ein metallorganisches Gerüstmaterial sowie einen Latentwärmespeicher

Beschreibung

Die vorliegende Erfindung betrifft Mischungen enthaltend eine Latentwärmespeicherkomponente A und eine Gerüstmaterialkomponente B, die Verwendung solcher Mischungen sowie Verfahren zur Abtrennung eines Stoffes aus einem Stoffgemisch mit Hilfe solcher Mischungen.

Für die adsorptive Aufnahme von Stoffen, insbesondere Gasen, sind im Stand der Technik zahlreiche Adsorbentien beschrieben. Häufig verwendete Adsorbentien sind hierbei Aktivkohle, Silikagel, Zeolithe sowie seit jüngerer Zeit poröse metallorganische Gerüstmaterialien.

Die Adsorption von beispielsweise Gasen erfolgt typischerweise exotherm, so dass das Adsorbens bei der Adsorption durch Aufnahme der frei werdenden Energie erwärmt wird. Diese Wärmeaufnahme kann jedoch nachteilig für den vorgesehenen Adsorpti- onszweck sein. So kann beispielsweise bei einer Trennung die Trenneffizienz vermindert werden.

Entsprechendes gilt bei der Desorption, wobei hier durch Temperaturerniedrigung der Desorptionsprozess negativ beeinträchtigt werden kann.

Um dies zu vermeiden, kann eine externe Temperaturregelung, beispielsweise durch Wärmeaustauscher, erfolgen. Darüber hinaus besteht die Möglichkeit, die entstehende Wärme durch ein weiteres Material zu regulieren. Bei diesem Material handelt es sich typischerweise um Latentwärmespeicher, die bei einer vorgegebenen Temperatur ei- nen Phasenübergang vollziehen, wobei die durch Adsorption frei werdende Wärme zu dieser Phasenumwandlung genutzt wird, was den Effekt hervorruft, dass die Temperatur des Adsorbensmaterials nicht oder weniger stark ansteigt.

In WO-A 2004/050789 wird ein Kompositmaterial vorgeschlagen, das sowohl adsorpti- onsfähiges Material wie auch Latentwärmespeicher in dem Kompositmaterial vereinigt. ähnliche Systeme werden in JP-A 2001/145832 und JP-A 2003/31 11 18 vorgeschlagen.

Die Herstellung solcher Kompositmaterialien ist jedoch aufwendig, so dass ein Bedarf an einfacher herzustellenden und zumindest teilweise effizienteren Systemen besteht.

Eine Aufgabe der vorliegenden Erfindung liegt somit darin, solche Systeme bereitzustellen, insbesondere für den Einsatz der Abtrennung eines Stoffes aus einem Stoffgemisch.

Die Aufgabe wird gelöst durch eine Mischung enthaltend jeweils bezogen auf das Gesamtgewicht der Mischung

a) 2 bis 60 Gew.-% einer Latentwärmespeicherkomponente A und b) 40 bis 98 Gew.-% einer Gerüstmaterialkomponente B,

wobei die Komponente A mindestens ein mikroverkapseltes Latentwärmespeichermaterial enthält und wobei die Komponente B mindestens ein poröses metallorganisches Gerüstmaterial enthaltend mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält.

Es wurde gefunden, dass einfache Mischungen der Komponenten A und B in dem oben genannten Gewichtsanteil einfache und effiziente Systeme darstellen, die insbesondere bei der Abtrennung von Stoffen einsetzbar sind.

Die erfindungsgemäße Mischung enthält eine Latentwärmespeicherkomponente A und eine Gerüstmaterialkomponente B. Darüber hinaus kann die Mischung weitere Komponenten aufweisen.

Hierbei beträgt der Anteil der Komponente A 2 bis 60 Gew.-% bezogen auf das Ge- samtgewicht der Mischung. Vorzugsweise beträgt der Anteil der Komponente A 10 bis 50 Gew.-% bezogen auf das Gesamtgewicht der Mischung. Insbesondere ist ein Anteil von 15 bis 45 Gew.-% für die Komponente A bezogen auf das Gesamtgewicht der Mischung bevorzugt.

Darüber hinaus beträgt der Anteil der Gerüstmaterialkomponente B 40 bis 98 Gew.-% bezogen auf das Gesamtgewicht der Mischung. Vorzugsweise beträgt dieser Anteil 50 bis 90 Gew.-% und insbesondere bevorzugt beträgt dieser Anteil 55 bis 85 Gew.-% bezogen auf das Gesamtgewicht der Mischung.

Die Latentwärmekomponente A enthält mindestens ein mikroverkapseltes Latentwärmespeichermaterial. Das Material und die Mikroverkapselung bilden zusammen den Latentwärmespeicher.

Darüber hinaus können weitere unterschiedliche Latentwärmespeicher eingesetzt wer- den. Dies ist insbesondere dann von Vorteil, wenn unterschiedliche Temperaturen

durch die Phasenumwandlung der Latentwärmespeicher adressiert werden sollen.

Die mikroverkapselten Latentwärmespeichermaterialien der Latentwärmespeicherkomponente A sind vorzugsweise Teilchen mit einem Kapselkern bestehend überwiegend, zu mehr als 95 Gew.-%, aus Latentwärmespeichermaterialien und einem Polymer als Kapselwand.

Der Kapselkern ist abhängig von der Temperatur fest oder flüssig. Die mittlere Teilchengröße der Kapseln (Z-Mittel mittels Lichtstreuung) beträgt typischerweise 0,5 bis 100 μm, bevorzugt 1 bis 80 μm insbesondere 1 bis 50 μm. Das Gewichtsverhältnis von Kapselkern zu Kapselwand beträgt im Allgemeinen von 50:50 bis 95:5. Bevorzugt wird ein Kern/Wand-Verhältnis von 70:30 bis 93:7.

Latentwärmespeichermaterialien sind definitionsgemäß Substanzen, die in dem Tem- peraturbereich, in welchem eine Wärmeübertragung vorgenommen werden soll, einen Phasenübergang aufweisen. Vorzugsweise weisen die Latentwärmespeichermaterialien einen fest/flüssig Phasenübergang im Temperaturbereich von -20 0 C bis 120 ° C auf. Demzufolge ist bevorzugt, dass das mindestens eine umkapselte Latentwärmespeichermaterial einen Schmelzpunkt im Bereich von -20 0 C bis 120 0 C aufweist. Mehr bevorzugt ist ein Bereich von 0 0 C bis 80 0 C und insbesondere ein Bereich von 20°C bis 60°C.

Im Rahmen der vorliegenden Erfindung wird der Begriff „Schmelzpunkt" auch dann vereinfachend verwendet, wenn das Latentwärmespeichermaterial einen Schmelzbe- reich aufweist. Hierbei ist dann der untere Grenzwert des Schmelzbereichs als Schmelzpunkt im Rahmen der vorliegenden Erfindung zu betrachten. Sofern mehrere Schmelzpunkte und/oder Schmelzbereiche auftreten, genügt es, wenn nur einer dieser im vorgegebenen Temperaturbereich auftritt. Vorzugsweise treten jedoch mehr als einer, insbesondere alle in dem vorgegebenen Temperaturbereich auf.

In der Regel handelt es sich bei dem Latentwärmespeichermaterial um eine organische, bevorzugt lipophile Substanz.

Als geeignete Substanzen sind beispielhaft zu nennen:

aliphatische Kohlenwasserstoffverbindungen wie gesättigte oder ungesättigte Cio-C 40 -Kohlenwasserstoffe, die verzweigt oder bevorzugt linear sind, z.B. wie n- Tetradecan, n-Pentadecan, n-Hexadecan, n-Heptadecan, n-Octadecan, n-Nona- decan, n-Eicosan, n-Heneicosan, n-Docosan, n-Tricosan, n-Tetracosan, n-Penta- cosan, n-Hexacosan, n-Heptacosan, n-Octacosan sowie cyclische Kohlenwas-

serstoffe, z.B. Cyclohexan, Cyclooctan, Cyclodecan;

aromatische Kohlenwasserstoffverbindungen wie Benzol, Naphthalin, Biphenyl, o- oder n-Terphenyl, Ci-C 4 o-alkylsubstituierte aromatische Kohlenwasserstoffe wie Dodecylbenzol, Tetradecylbenzol, Hexadecylbenzol, Hexylnaphthalin oder

Decylnaphthalin;

gesättigte oder ungesättigte C 6 -C 3 o-Fettsäuren wie Laurin-, Stearin-, öl- oder Behensäure, bevorzugt eutektische Gemische aus Decansäure mit z.B. Myrist- in-, Palmitin- oder Laurinsäure;

Fettalkohole wie Lauryl-, Stearyl-, Oleyl-, Myristyl-, Cetylalkohol, Gemische wie Kokosfettalkohol sowie die sogenannten Oxoalkohole, die man durch Hydrofor- mylierung von α-Olefinen und weiteren Umsetzungen erhält;

C 6 -C 3 o-Fettamine, wie Decylamin, Dodecylamin, Tetradecylamin oder Hexadecy- lamin;

Ester wie CrCio-Alkylester von Fettsäuren wie Propylpalmitat, Methylstearat oder Methylpalmitat sowie bevorzugt ihre eutektischen Gemische oder Methyl- cinnamat;

natürliche und synthetische Wachse wie Montansäurewachse, Montanesterwachse, Carnaubawachs, Polyethylenwachs, oxidierte Wachse, Polyvinylether- wachs, Ethylenvinylacetatwachs oder Hartwachse nach Fischer-Tropsch-

Verfahren;

halogenierte Kohlenwasserstoffe wie Chlorparaffin, Bromoctadecan, Brompenta- decan, Bromnonadecan, Bromeicosan, Bromdocosan.

Weiterhin sind Mischungen dieser Substanzen geeignet, solange es nicht zu einer Schmelzpunkterniedrigung außerhalb des gewünschten Bereichs kommt, oder die Schmelzwärme der Mischung für eine sinnvolle Anwendung zu gering wird.

Vorteilhaft ist beispielsweise die Verwendung von reinen n-Alkanen, n-Alkanen mit einer Reinheit von größer als 80% oder von Alkangemischen, wie sie als technisches Destillat anfallen und als solche handelsüblich sind.

Weiterhin kann es vorteilhaft sein, den Kapselkern bildenden Substanzen in ihnen lös- liehe Verbindungen zuzugeben, um so die zum Teil bei den unpolaren Substanzen

auftretende Kristallisationsverzögerung zu verhindern. Vorteilhaft verwendet man, wie in der US-A 5,456,852 beschrieben, Verbindungen mit einem 20 bis 120 K höheren Schmelzpunkt als die eigentliche Kernsubstanz. Geeignete Verbindungen sind die o- ben als lipophile Substanzen erwähnten Fettsäuren, Fettalkohole, Fettamide sowie aliphatische Kohlenwasserstoffverbindungen. Sie werden in Mengen von 0,1 bis 10 Gew.-% bezogen auf den Kapselkern zugesetzt.

Je nach Temperaturbereich, in dem die Wärmespeicher gewünscht sind, werden die Latentwärmespeichermaterialien gewählt.

Bevorzugte Latentwärmespeichermaterialien sind aliphatische Kohlenwasserstoffe besonders bevorzugt die oben beispielhaft aufgezählten. Insbesondere werden aliphatische Kohlenwasserstoffe mit 14 bis 20 Kohlenstoffatomen sowie deren Gemische bevorzugt.

In den bevorzugten Latentwärmespeicher Mikrokapseln sind die Kapselwandbildenden Polymere vorzugsweise aus 30 bis 100 Gew.-%, mehr bevorzugt 30 bis 95 Gew.-% eines oder mehrerer d-C 24 -Alkylester der Acryl- und/oder Methacrylsäure als Monomere I aufgebaut. Außerdem können die Polymere bis zu 80 Gew.-%, vor- zugsweise 5 bis 60 Gew.-%, insbesondere 10 bis 50 Gew.-%, eines bi- oder polyfunktionellen Monomers als Monomere II, welches in Wasser nicht löslich oder schwer löslich ist, einpolymerisiert enthalten. Daneben können die Polymere bis zu 90 Gew.-%, vorzugsweise bis zu 50 Gew.-%, insbesondere bis zu 30 Gew.-% sonstige Monomere III einpolymerisiert enthalten.

Als Monomere I eignen sich d-C 24 -Alkylester der Acryl- und/oder Methacrylsäure. Besonders bevorzugte Monomere I sind Methyl-, Ethyl-, n-Propyl- und n-Butylacrylat und/oder die entsprechenden Methacrylate. Bevorzugt sind iso-Propyl-, iso-Butyl-, sec.-Butyl- und tert.-Butylacrylat und die entsprechenden Methacrylate. Ferner ist Me- thacrylsäure zu nennen. Generell werden die Methacrylate bevorzugt.

Geeignete Monomere Il sind bi- oder polyfunktionelle Monomere, welche in Wasser nicht löslich oder schwer löslich sind, aber eine gute bis begrenzte Löslichkeit in der lipophilen Substanz haben. Unter Schwerlöslichkeit ist eine Löslichkeit kleiner 60 g/l bei 2O 0 C zu verstehen. Unter bi- oder polyfunktionellen Monomeren versteht man Verbindungen, die wenigstens 2 nichtkonjugierte ethylenische Doppelbindungen haben. Vornehmlich kommen Divinyl- und Polyvinylmonomere in Betracht, die eine Vernetzung der Kapselwand während der Polymerisation bewirken.

Bevorzugte bifunktionelle Monomere sind die Diester von Diolen mit Acrylsäure oder

Methacrylsäure, ferner die Diallyl- und Divinylether dieser Diole.

Bevorzugte Divinylmonomere sind Ethandioldiacrylat, Divinylbenzol, Ethylenglykoldi- methacrylat, 1 ,3-Butylenglykoldimethacrylat, Methallylmethacrylamid und Allylmeth- acrylat. Besonders bevorzugt sind Propandiol-, Butandiol-, Pentandiol- und Hexandiol- diacrylat oder die entsprechenden Methacrylate.

Bevorzugte Polyvinylmonomere sind Trimethylolpropantriacrylat und -methacrylat, Pen- taerythrittriallylether und Pentaerythrittetraacrylat.

Als Monomere III kommen sonstige Monomere in Betracht, bevorzugt sind Monomere lila wie Vinylacetat, Vinylpropionat und Vinylpyridin.

Besonders bevorzugt sind die wasserlöslichen Monomere INb, z.B. Acrylnitril, Methac- rylnitril, Methacrylamid, Acrylsäure, Itaconsäure, Maleinsäure, Maleinsäureanhydrid, N- Vinylpyrrolidon, 2-Hydroxyethylacrylat und -methacrylat und Acrylamido-2-methyl- propansulfonsäure. Daneben sind insbesondere N-Methylolacrylamid, N-Methylol- methacrylamid, Dimethylaminoethylmethacrylat und Diethylaminoethylmethacrylat zu nennen.

Nach einer weiteren bevorzugten Ausführungsform sind die Wand-bildenden Polymere aus 30 bis 90 Gew.-% Methacrylsäure, 10 bis 70 Gew.-% eines Alkylesters der (Meth)acrylsäure, bevorzugt Methylmethacrylat, tert-Butylmethacrylat, Phenylmeth- acrylat und Cyclohexylmethacrylat, und 0 bis 40 Gew.-% weitere ethylenisch ungesät- tigter Monomeren gebildet. Diese weiteren ethylenisch ungesättigten Monomere können die für diese Ausführungsform bisher nicht erwähnten Monomere I, Il oder III sein. Da sie in der Regel keinen wesentlichen Einfluss auf die gebildeten Mikrokapseln dieser Ausführungsform haben, ist ihr Anteil bevorzugt < 20 Gew.-% insbesondere <10 Gew.-%. Derartige Mikrokapseln sowie ihre Herstellung werden in der EP-A-1 251 954 beschrieben, auf die ausdrücklich Bezug genommen wird.

Besonders bevorzugt enthält die Mikroverkapselung (Kapselwand) ein Homo- oder Copolymer auf Basis von Methylmethacrylat (MMA), beispielsweise Polymethylmeth- acrylat (PMMA).

Die oben genannten Mikrokapseln lassen sich durch eine sogenannte in-situ- Polymerisation herstellen.

Die bevorzugten Mikrokapseln sowie ihre Herstellung sind aus der EP-A 457 154, DE- A 10 139 171 , DE-A 102 30 581 und EP-A 1 321 182 bekannt, auf die ausdrücklich

verwiesen wird. So stellt man die Mikrokapseln in der Weise her, dass man aus den Monomeren, einem Radikalstarter, einem Schutzkolloid und der einzukapselnden Ii- pophilen Substanz eine stabile öI-in-Wasser-Emulsion herstellt, in der sie als disperse Phase vorliegen. Anschließend löst man die Polymerisation der Monomeren durch Er- wärmung aus und steuert sie durch weitere Temperaturerhöhung, wobei die entstehenden Polymere die Kapselwand bilden, welche die lipophile Substanz umschließt.

In der Regel führt man die Polymerisation bei 20 bis 100 0 C, vorzugsweise bei 40 bis 80 0 C durch. Natürlich sollte die Dispersions- und Polymerisationstemperatur oberhalb der Schmelztemperatur der lipophilen Substanzen liegen.

Nach Erreichen der Endtemperatur setzt man die Polymerisation zweckmäßigerweise noch etwa für eine Zeit von bis zu 2 Stunden fort, um Restmonomergehalte abzusenken. Im Anschluss an die eigentliche Polymerisationsreaktion bei einem Umsatz von 90 bis 99 Gew.-% ist es in der Regel vorteilhaft, die wässrigen Mikrokapseldisper- sionen weitgehend frei von Geruchsträgern, wie Restmonomere und anderen organischen flüchtigen Bestandteilen zu gestalten. Dies kann in an sich bekannter Weise physikalisch durch destillative Entfernung (insbesondere über Wasserdampfdestillation) oder durch Abstreifen mit einem inerten Gas erreicht werden. Ferner kann es chemisch geschehen, wie in der WO 9924525 beschrieben, vorteilhaft durch redox- initiierte Polymerisation, wie in der DE-A 4 435 423, DE-A 4419518 und DE-A 4435422 beschrieben.

Man kann auf diese Weise Mikrokapseln mit einer mittleren Teilchengröße im Bereich von 0,5 bis 100 μm herstellen, wobei die Teilchengröße in an sich bekannter Weise über die Scherkraft, die Rührgeschwindigkeit, das Schutzkolloid und seine Konzentration eingestellt werden kann.

In der Regel werden die Mikrokapseln in Gegenwart wenigstens eines organischen Schutzkolloids hergestellt, das sowohl anionisch als auch neutral sein kann. Auch können anionische und nichtionische Schutzkolloide zusammen eingesetzt werden. Bevorzugt verwendet man anorganische Schutzkolloide gegebenenfalls in Mischung mit organischen Schutzkolloiden oder nichtionische Schutzkolloide.

Organische Schutzkolloide sind wasserlösliche Polymere, da diese die Oberflächenspannung des Wassers von 73 mN/m maximal auf 45 bis 70 mN/m senken und somit die Ausbildung geschlossener Kapselwände gewährleisten sowie Mikrokapseln mit bevorzugten Teilchengrößen zwischen 0,5 und 30 μm, vorzugsweise 0,5 und 12 μm, ausbilden.

Organische neutrale Schutzkolloide sind Cellulosederivate wie Hydroxyethylcellulose, Methylhydroxyethylcellulose, Methylcellulose und Carboxymethylcellulose, Polyvinyl- pyrrolidon, Copolymere des Vinylpyrrolidons, Gelatine, Gummiarabicum, Xanthan, Natriumalginat, Kasein, Polyethylenglykole, bevorzugt Polyvinylalkohol und partiell hydrolysierte Polyvinylacetate sowie Methylhydroxypropylcellulose. Besonders bevorzugte organisch neutrale Schutzkolloide sind OH-Gruppen tragende Schutzkolloide wie Polyvinylalkohol und partiell hydrolisierte Polyvinylacetate sowie Methylhydroxypropylcellulose.

Als organisch anionische Schutzkolloide eignen sich Polymethacrylsäure, die Copoly- merisate des Sulfoethylacrylats und -methacrylats, Sulfopropylacrylats und -meth- acrylats, des N-(Sulfoethyl)-maleinimids, der 2-Acrylamido-2-alkylsulfonsäuren, Styrol- sulfonsäure sowie der Vinylsulfonsäure.

Bevorzugte organisch anionische Schutzkolloide sind Naphthalinsulfonsäure und Naphthalinsulfonsäure-Formaldehyd-Kondensate sowie vor allem Polyacrylsäuren und Phenolsulfonsäure-Formaldehyd-Kondensate.

Als anorganische Schutzkolloide sind sogenannte Pickering-Systeme zu nennen, die eine Stabilisierung durch sehr feine feste Partikel ermöglichen und in Wasser unlöslich, aber dispergierbar sind oder unlöslich und nicht dispergierbar in Wasser, aber benetzbar von der lipophilen Substanz sind.

Die Wirkweise und ihr Einsatz ist in der EP-A 1 029 018 sowie der EP-A 1 321 182 beschrieben, auf deren Inhalte ausdrücklich Bezug genommen wird.

Ein Pickering-System kann dabei aus den festen Teilchen allein oder zusätzlich aus Hilfsstoffen bestehen, die die Dispergierbarkeit der Partikel in Wasser oder die Benetzbarkeit der Partikel durch die lipophile Phase verbessern.

Die anorganischen festen Partikel können Metallsalze sein, wie Salze, Oxide und Hydroxide von Calcium, Magnesium, Eisen, Zink, Nickel, Titan, Aluminium, Silicium, Barium und Mangan. Zu nennen sind Magnesiumhydroxid, Magnesiumcarbonat, Magnesiumoxid, Calciumoxalat, Calciumcarbonat, Bariumcarbonat, Bariumsulfat, Titandi- oxid, Aluminiumoxid, Aluminiumhydroxid und Zinksulfid. Silikate, Bentonit, Hydroxyapa- tit und Hydrotalcite seien ebenfalls genannt. Besonders bevorzugt sind hochdisperse Kieselsäuren, Magnesiumpyrophosphat und Tricalciumphosphat.

Die Pickering-Systeme können sowohl zuerst in die Wasserphase gegeben werden, als auch zu der gerührten Emulsion von öl-in-Wasser zugegeben werden. Manche

feinen, festen Partikel werden durch eine Fällung hergestellt, wie in der EP-A 1 029 018, sowie der EP-A 1 321 182 beschrieben.

Die hochdispersen Kieselsäuren können als feine, feste Teilchen in Wasser dispergiert werden. Es ist aber auch möglich, sogenannte kolloidale Dispersionen von Kieselsäure in Wasser zu verwenden. Die kolloidalen Dispersionen sind alkalische, wässrige Mischungen von Kieselsäure. Im alkalischen pH-Bereich sind die Partikel gequollen und in Wasser stabil. Für eine Verwendung dieser Dispersionen als Pickering-System ist es vorteilhaft, wenn der pH-Wert der öl-in-Wasser Emulsion mit einer Säure auf pH 2 bis 7 eingestellt wird.

Im Allgemeinen werden die neutralen Schutzkolloide in Mengen von 0,1 bis 15 Gew.- %, vorzugsweise von 0,5 bis 10 Gew.-% eingesetzt, bezogen auf die Wasserphase. Für anorganische Schutzkolloide werden in der Regel Mengen von 0,5 bis 15 Gew.-%, bezogen auf die Wasserphase, eingesetzt. Die organisch anionischen und nichtionischen Schutzkolloide werden in der Regel in Mengen von 0,1 bis 10 Gew.-% eingesetzt, bezogen auf die Wasserphase der Emulsion.

Gemäß einer Ausführungsform werden anorganische Schutzkolloide sowie Mischun- gen mit organischen Schutzkolloiden bevorzugt.

Gemäß einer weiteren Ausführungsform werden organisch neutrale Schutzkolloide bevorzugt.

Vorzugsweise wählt man die Dispergierbedingungen zur Herstellung der stabilen öl-inWasser Emulsion in an sich bekannter Weise so, dass die öltröpfchen die Größe der gewünschten Kapseln haben. Auch Mikrokapseln können so erhalten werden.

Die durch die Polymerisation erhaltenen Mikrokapseldispersionen ergeben bei Sprüh- trocknung ein gut rieselfähiges Kapselpulver. Die Sprühtrocknung der Mikrokapseldis- persion kann in üblicher Weise erfolgen. Im Allgemeinen wird so vorgegangen, dass die Eingangstemperatur des Warmluftstroms im Bereich von 100 bis 200 0 C, vorzugsweise 120 bis 160 0 C, und die Ausgangstemperatur des Warmluftstroms im Bereich von 30 bis 90°C, vorzugsweise 60 bis 80 0 C liegt. Das Versprühen der wässrigen Polymeri- satdispersion im Warmluftstrom kann beispielsweise mittels Ein- oder Mehrstoffdüsen oder über eine rotierende Scheibe erfolgen. Die Abscheidung des Polymerisatpulvers erfolgt normalerweise unter Verwendung von Zyklonen oder Filterabscheidern. Die versprühte wässrige Polymerisatdispersion und der Warmluftstrom werden vorzugsweise parallel geführt.

Gegebenenfalls setzt man zur Sprühtrocknung Sprühhilfsmittel zu, um die Sprühtrocknung zu erleichtern, oder bestimmte Pulvereigenschaften einzustellen, z.B. Staubarmut, Rieselfähigkeit oder verbesserte Redispergierbarkeit. Dem Fachmann sind eine Vielzahl von Sprühhilfsmitteln geläufig. Beispiele hierfür finden sich in DE-A 19629525, DE-A 19629526, DE-A 2214410, DE-A 2445813, EP-A 407889 oder EP-A 784449. Vorteilhafte Sprühhilfsmittel sind beispielsweise wasserlösliche Polymere vom Typ Polyvinylalkohol oder teilhydrolysierte Polyvinylacetate, Cellulosederivate wie Hydroxyethylcellulose, Carboxymethylcellulose, Methylcellulose, Methylhydroxyethyl- cellulose und Methylhydroxypropylcellulose, Polyvinylpyrrolidon, Copolymere des Vi- nylpyrrolidons, Gelatine, bevorzugt Polyvinylalkohol und partiell hydrolysierte Polyvinylacetate sowie Methylhydroxypropylcellulose.

Die Latentwärmespeicherkomponente A kann Latentwärmespeicher als Pulver oder als Formkörper, beispielsweise als Granulat enthalten. Hierbei sind grundsätzlich alle im Stand der Technik bekannten Formen, wie beispielsweise kugel-, Scheiben-, Stäbchen-, ring- oder sternchenförmige Körper denkbar. Bevorzugt sind sternchenför- mige Formkörper.

Die Abmessungen der Formkörper für die Komponenten A liegen vorzugsweise im Bereich von 200 μm bis 5 cm, mehr bevorzugt im Bereich von 500 μm bis 2 cm und insbesondere im Bereich von 1 mm bis 1 cm. Demzufolge weist ein entsprechender Formkörper eine Ausdehnung in mindestens eine Dimension des Raumes auf, die im Bereich von 0,2 mm bis 5 cm liegt. Für die bevorzugten Bereiche gilt entsprechendes.

Diese Formkörperteilchen können dabei eine amorphe, kugelartige bis hin zu einer stäbchenförmigen Gestalt haben, abhängig von der jeweiligen Herstellungsmethode. In Fällen von kugelartigen Gebilden beträgt der mittlere Durchmesser vorzugsweise 200 μm bis 2 cm, weiter bevorzugt 500 μm bis 1 cm. Stäbchenartige Formen haben in ihrer längsten Ausdehnung einen Wert von höchstens 5 cm, in der Regel im Bereich von 1 mm bis 2 cm. Die kürzeste Ausdehnung hat meist einen Wert von mindestens 200 μm, in der Regel von 500 μm bis 10 mm, bevorzugt 500 μm bis 5 mm. Bei den stäbchenartigen Teilchen wird das Verhältnis von Länge zu Durchmesser üblicherweise den Wert von 10 : 1 , vorzugsweise den Wert 5 : 1 nicht überschreiten.

In den bevorzugten Mikrokapselzubereitungen sind 90 Gew.-% der Teilchen > 500 μm, vorzugsweise >700 μm insbesondere >1 mm, bestimmt durch Siebtechnik.

Die Teilchen sind in einer Ausführungsform asymmetrische Aggregate aus Pulverparti- kein, die die Form einer Kugel, eines Stäbchen, eines Zylinders nur ungefähr aufwei-

sen und deren Oberfläche oftmals uneben und zackig ist. Solche Teilchen werden oftmals auch als Granulat oder Agglomerat bezeichnet. Eine andere Form der Agglome- rate sind Presslinge sogenannte Pellets oder Tabletten, wie sie von der Arzneimittelherstellung her bekannt sind.

Die erfindungsgemäßen Teilchen können, wie oben bereits ausgeführt wurde, beliebige geometrische Formen annehmen. Geometrische Grundkörper können beispielsweise Kugeln, Zylinder, Würfel, Quader, Prismen, Pyramiden, Kegel, abgestumpfte Kegel und abgestumpfte Pyramiden sein. Ferner sind Sternstränge, Kreuzstränge, Ripp- stränge und Trilobe geeignet. Dabei können die geometrischen Körper sowohl hohl wie auch ausgefüllt sein. Hohlräume, wie eingearbeitete Röhren, vergrößern die Oberfläche des geometrischen Körpers bei gleichzeitiger Verringerung seines Volumens. Sternförmige Körper sind bevorzugt.

Gemäß einer Ausführungsform werden Teilchen bevorzugt, deren Verhältnis von Oberfläche zu Volumen der folgenden Relation gehorcht:

^J Oberfläche \ Volumen

bevorzugt ≥ 2,6, besonders bevorzugt ≥ 2,8 und insbesondere ≥ 3,0.

Dabei sind unter den Begriffen Oberfläche und Volumen solche Oberflächen und Volumina zu verstehen, die das Auge bei der Betrachtung des geometrischen Körpers visuell wahrzunehmen vermag. D. h., innere Volumina und Oberflächen, die von fein- teiligen Poren und/oder Rissen im Material des geometrischen Körpers herrühren, sind nicht miteinbezogen.

Die durch Quecksilberporosimetrie nach DIN 66133 gemessene Porenfläche der erfindungsgemäßen Teilchen beträgt bevorzugt 2-100 m 2 /g.

Die erfindungsgemäßen grobteiligen Formkörper bzw. Zubereitungen bestehen gemäß einer Ausführungsform zu mindestens 90 Gew.-% überwiegend aus Mikrokapseln und polymerem Bindemitteln.

Nach einer anderen Ausführungsform bestehen die erfindungsgemäßen Zubereitungen zu mindestens 80 Gew.-% aus Mikrokapseln und polymerem Bindemittel.

Gemäß dieser Ausführungsform enthält die Zubereitung 2 - 20 Gew.-% Graphit bezogen auf das Gesamtgewicht der grobteiligen Zubereitung. Besonders bevorzugt sind

derartige Graphit enthaltende Teilchen, bei denen das Verhältnis von Oberfläche der folgenden Relation gehorcht:

^Oberfläche y/Volumen

Bevorzugt beträgt der Bindemittelgehalt, gerechnet als Feststoff, 1 - 40 Gew.-%, bevorzugt 1 - 30 Gew.-%, insbesondere 1 - 20 Gew.-% und ganz besonders bevorzugt 2 - 15 Gew.-% bezogen auf das Gesamtgewicht der grobteiligen Zubereitung.

Bevorzugte Zubereitungen enthalten bezogen auf ihr Gesamtgewicht 55 - 94 Gew.-% Latentwärmespeichermaterial, 1 - 40 Gew.-% polymeres Bindemittel gerechnet als Feststoff, Mikrokapselwandmaterial sowie 0 - 10 Gew.-% sonstige Zusatzstoffe.

Besonders bevorzugt werden Granulate aus 85 - 99 Gew.-% mikroverkapselten La- tentwärmespeichern, 1 - 15 Gew.-% polymerem Bindemittel gerechnet als Feststoff und 0 - 5 Gew.-% sonstigen Zusatzstoffen.

Da die grobteiligen Mikrokapselzubereitungen meist unter Verarbeitung mit Wasser oder wässrigen Stoffen hergestellt werden, können die Zubereitungen noch Reste von Wasser enthalten. Die Menge an Restfeuchte beträgt üblicherweise von 0 bis etwa 2 Gew.-% bezogen auf das Gesamtgewicht.

Polymere Bindemittel sind allgemein bekannt. Es handelt sich dabei um fluide Systeme, die als disperse Phase in wässrigem Dispergiermedium aus mehreren ineinander verschlungenen Polymerisatketten bestehenden Polymerisatknäuel, die sogenannte Polymermatrix oder Polymerisatpartikel, in disperser Verteilung befindlich enthalten. Der gewichtsmittlere Durchmesser der Polymerisatpartikel liegt häufig im Bereich von 10 bis 1000 nm, oft 50 bis 500 nm oder 100 bis 400 nm. Neben dem Polymerisat enthält das polymere Bindemittel die unten beschriebenen Hilfsstoffe.

Erfindungsgemäß können als polymere Bindemittel grundsätzlich alle feinteiligen Polymerisate eingesetzt werden, die bei der Verarbeitungstemperatur in der Lage sind, einen Polymerfilm zu bilden, d.h. bei diesen Temperaturen filmbildend sind. Nach einer bevorzugten Variante sind die Polymerisate nicht wasserlöslich. Dies ermöglicht eine Verwendung der erfindungsgemäßen grobteiligen Zubereitungen in feuchten oder wässrigen Systemen.

Erfindungsgemäß können solche Polymerisate eingesetzt werden, deren Glasübergangstemperatur -60 bis +150 0 C, oft -20 bis +130 0 C und häufig 0 bis +120°C beträgt.

Mit der Glasübergangstemperatur (T 9 ), ist der Grenzwert der Glasübergangstemperatur gemeint, dem diese gemäß G. Kanig (Kolloid-Zeitschrift & Zeitschrift für Polymere, Bd. 190, Seite 1 , Gleichung 1 ) mit zunehmendem Molekulargewicht zustrebt. Die Glasübergangstemperatur wird nach dem DSC-Verfahren ermittelt (Differential Scanning Calorimetry, 20 K/min, midpoint-Messung, DIN 53 765).

Ganz besonders bevorzugt werden Polymerisate mit einer Glasübergangstemperatur im Bereich von 40 bis 120 0 C. In der Regel werden diese bei Temperaturen im Bereich von 20 bis 120 0 C verarbeitet. Derart erhaltene grobteilige Zusammensetzungen zeigen besonders gute mechanische Stabilität und haben gute Abriebwerte.

Die Glasübergangstemperatur von Polymerisaten, die aus ethylenisch ungesättigten Monomeren aufgebaut sind, kann in bekannter Weise über die Monomerzusammen- setzung gesteuert werden (T.G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1_, 123 [1956] und Ullmanns Enzyklopedia of Industrial Chemistry 5. Aufl., Vol. A21 , Weinheim (1989) S. 169).

Bevorzugte Polymerisate sind aus ethylenisch ungesättigten Monomeren M aufgebaut, die in der Regel wenigstens 80 Gew.-%, insbesondere wenigstens 90 Gew.-%, ethyle- nisch ungesättigte Monomere A mit einer Wasserlöslichkeit < 10 g/l (25 0 C und 1 bar) umfassen, wobei bis zu 30 Gew.-%, z.B. 5 bis 25 Gew.-% der Monomere A durch Acrylnitril und/oder Methacrylnitril ersetzt sein können. Daneben enthalten die Polymere noch 0,5 bis 20 Gew.-% von den Monomeren A verschiedene Monomere B. Hier und im Folgenden sind alle Mengenangaben für Monomere in Gew.-% auf 100 Gew.-% Monomere M bezogen.

Monomere A sind in der Regel einfach ethylenisch ungesättigt oder konjugierte Diolefi- ne. Beispiele für Monomere A sind:

- Ester einer α,ß-ethylenisch ungesättigten C 3 -C 6 -Monocarbonsäure oder C 4 -C 8 - Dicarbonsäure mit einem Ci-Cio-Alkanol. Vorzugsweise handelt es sich dabei um Ester der Acrylsäure oder Methacrylsäure, wie Methyl(meth)acrylat, Ethyl- (meth)acrylat, n-Butyl(meth)acrylat, t-Butyl(meth)acrylat, 2-Ethylhexyl- (meth)acrylat etc.;

vinylaromatische Verbindungen, wie Styrol, 4-Chlorstyrol, 2-Methylstyrol etc.;

Vinylester aliphatischer Carbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, wie Vinylacetat, Vinylpropiat, Vinyllaurat, Vinylstearat, Versaticsäurevinylester etc.;

Olefinen, wie Ethylen oder Propylen;

konjugierten Diolefinen, wie Butadien oder Isopren;

Vinylchlorid oder Vinylidenchlorid.

Bevorzugte filmbildende Polymerisate sind ausgewählt unter den nachfolgend aufgeführten Polymerklassen I bis IV:

I) Copolymerisate von Styrol mit Alkyl(acrylaten), d.h. Copolymerisate, die als Monomer A Styrol und wenigstens einen Ci-Cio-Alkylester der Acrylsäure und gegebenenfalls einen oder mehrere Ci-Ci O -Alkylester der Methacrylsäure einpoly- merisiert enthalten;

II) Copolymerisate des Styrols mit Butadien, d.h. Copolymerisate die als Monomer A Styrol und Butadien sowie gegebenenfalls (Meth)acrylsäureester von CrC 8 - Alkanolen, Acrylnitril und/oder Methacrylnitril einpolymerisiert enthalten;

III) Homo- und Copolymerisate von Alkyl(meth)acrylaten (Reinacrylate), d.h. Homo- und Copolymerisate, die als Monomere A wenigstens einen Ci-Ci O -Alkylester der Acrylsäure und/oder einen Ci-Cio-Alkylester der Methacrylsäure einpolymerisiert enthalten, insbesondere Copolymere, die als Monomere A Methylmethacrylat, wenigstens einen Ci-Cio-Alkylester der Acrylsäure und gegebenenfalls einen C 2 - Cio-Alkylester der Methacrylsäure einpolymerisiert enthalten;

IV) Homopolymerisate von Vinylestern aliphatischer Carbonsäuren und Copolymerisate von Vinylestern aliphatischer Carbonsäuren mit Olefinen und/oder Al- kyl(meth)acrylaten, d.h. Homo- und Copolymerisate, die als Monomer A wenigs- tens einen Vinylester einer aliphatischen Carbonsäure mit 2 bis 10 C-Atomen und gegebenenfalls ein oder mehrere C 2 -C6-Olefine und/oder gegebenenfalls einen oder mehrere CrCio-Alkylester der Acrylsäure und/oder der Methacrylsäure einpolymerisiert enthalten;

V) Copolymerisate von Styrol mit Acrylnitril.

Typische Ci-Ci O -Alkylester der Acrylsäure in den Copolymerisaten der Klasse I bis IV sind Ethylacrylat, n-Butylacrylat, tert.-Butylacrylat, n-Hexylacrylat und 2-Ethylhexyl- acrylat.

Typische Copolymerisate der Klasse I enthalten als Monomere A 20 bis 80 Gew.-% und insbesondere 30 bis 70 Gew.-% Styrol und 20 bis 80 Gew.-%, insbesondere 30 bis 70 Gew.-%, wenigstens eines Ci-Ci O -Alkylesters der Acrylsäure wie n-Butylacrylat, Ethylacrylat oder 2-Ethylhexylacrylat, jeweils bezogen auf die Gesamtmenge der Mo- nomere A.

Typische Copolymerisate der Klasse Il enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A, 30 bis 85 Gew.-%, vorzugsweise 40 bis 80 Gew.-% und besonders bevorzugt 50 bis 75 Gew.-% Styrol und 15 bis 70 Gew.-%, vorzugsweise 20 bis 60 Gew.-% und besonders bevorzugt 25 bis 50 Gew.-% Butadien, wobei 5 bis 20 Gew.-% der vorgenannten Monomere A durch (Meth)acrylsäureester von d-Cs-Alkanolen und/oder durch Acrylnitril oder Methacrylnitril ersetzt sein können.

Typische Copolymerisate der Klasse III enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A, 20 bis 80 Gew.-%, vorzugsweise 30 bis 70 Gew.-

% Methylmethacrylat und mindestens ein weiteres, vorzugsweise ein oder zwei weitere

Monomere, ausgewählt unter Acrylsäureestern von Ci-Ci 0 -Alkanolen, insbesondere n-Butylacrylat, 2-Ethylhexylacrylat und Ethylacrylat und gegebenenfalls einen Meth- acrylsäureester eines C 2 -Cio-Alkanols in einer Gesamtmenge von 20 bis 80 Gew.-% und vorzugsweise 30 bis 70 Gew.-% einpolymerisiert.

Typische Homo- und Copolymerisate der Klasse IV enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A, 30 bis 100 Gew.-%, vorzugsweise 40 bis 100 Gew.-% und besonders bevorzugt 50 bis 100 Gew.-% einen Vinylester einer aliphatischen Carbonsäure, insbesondere Vinylacetat und 0 bis 70 Gew.-%, vorzugsweise 0 bis 60 Gew.-% und besonders bevorzugt 0 bis 50 Gew.-% eines C 2 -C 6 -Olefins, insbesondere Ethylen und gegebenenfalls ein oder zwei weitere Monomere, ausgewählt unter (Meth)acrylsäureestern von Ci-Cio-Alkanolen in einer Menge von 1 bis 15 Gew.-% einpolymerisiert.

Unter den vorgenannten Polymerisaten sind die Polymerisate der Klassen IV und V besonders geeignet.

Bevorzugt werden Homopolymerisate von Vinylestern aliphatischer Carbonsäuren, insbesondere von Vinylacetat. Eine spezielle Ausführungsform sind solche, die mit Schutzkolloiden wie Polyvinylpyrrolidon und anionischen Emulgatoren stabilisiert werden. Eine solche Ausführungsform wird in der WO 02/26845 beschrieben, auf die ausdrücklich Bezug genommen wird.

Als Monomere B kommen grundsätzlich alle Monomere in Betracht, die von den vor-

genannten Monomeren verschieden und mit den Monomeren A copolymerisierbar sind. Derartige Monomere sind dem Fachmann bekannt und dienen in der Regel der Modifizierung der Eigenschaften des Polymerisats.

Bevorzugte Monomere B sind ausgewählt unter monoethylenisch ungesättigten Mono- und Dicarbonsäuren mit 3 bis 8 C-Atomen, insbesondere Acrylsäure, Methacrylsäure, Itaconsäure, deren Amiden wie Acrylamid und Methacrylamid, deren N-Alkylolamiden wie N-Methylolacrylamid und N-Methylolmethacrylamid, deren Hydroxy-CrC 4 -alkyl- estern wie 2-Hydroxyethylacrylat, 2- und 3-Hydroxypropylacrylat, 4-Hydroxybutylacrylat 2-Hydroxyethylmethacrylat, 2- und 3-Hydroxypropylmethacrylat, 4-Hydroxybutylmeth- acrylat und monoethylenisch ungesättigten Monomeren mit Oligoalkylenoxid-Ketten vorzugsweise mit Polyethylenoxidketten mit Oligomerisierungsgraden vorzugsweise im Bereich von 2 bis 200, z.B. Monovinyl- und Monoallylether von Oligoethylenglykolen sowie Ester der Acrylsäure, der Maleinsäure oder der Methacrylsäure mit Oligoethylen- glykolen.

Der Anteil der Monomere mit Säuregruppen beträgt vorzugsweise nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 5 Gew.-%, z.B. 0,1 bis 5 Gew.-%, bezogen auf die Monomere M. Der Anteil an Hydroxyalkylestern und Monomeren mit Oligoalky- lenoxidketten liegt, sofern enthalten, vorzugsweise im Bereich von 0,1 bis 20 Gew.-% und insbesondere im Bereich von 1 bis 10 Gew.-%, bezogen auf die Monomere M. Der Anteil der Amide und N-Alkylol-amide liegt, sofern enthalten, vorzugsweise im Bereich von 0,1 bis 5 Gew.-%.

Neben den vorgenannten Monomeren B kommen als weitere Monomere B auch vernetzende Monomere, wie Glycidylether und -ester, z.B. Vinyl-, AIIyI- und Methallyl- glycidylether, Glycidylacrylat und -methacrylat, die Diacetonylamide der obengenannten ethylenisch ungesättigten Carbonsäuren, z.B. Diaceton(meth)acrylamid, und die Ester der Acetylessigsäure mit den obengenannten Hydroxyalkylestern ethylenisch ungesättigter Carbonsäuren, z.B. Acetylacetoxyethyl(meth)acrylat in Betracht. Als Monomere B kommen weiterhin Verbindungen, die zwei nicht-konjugierte, ethylenisch ungesättigte Bindungen aufweisen, z.B. die Di- und Oligoester mehrwertiger Alkohole mit a,b-monoethylenisch ungesättigten C 3 -Ci 0 -Monocarbonsäuren wie Alkylenglykol- diacrylate und -dimethacrylate, z.B. Ethylenglykoldiacrylat, 1 ,3-Butylenglykoldiacrylat, 1 ,4-Butylenglykoldiacrylat, Propylenglykoldiacrylat, sowie weiterhin Divinylbenzol, Vi- nylmethacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat, Methylenbisacrylamid, Cyclopentadienylacrylat, Tricyclodecenyl(meth)acrylat, N, N'- Divinylimidazolin-2-on oder Triallylcyanurat in Betracht. Der Anteil vernetzender Monomere liegt in der Regel nicht über 1 Gew.-%, bezogen auf die Gesamtmonomer- menge und wird insbesondere 0,1 Gew.-% nicht überschreiten.

Weiterhin sind als Monomere B auch Vinylsilane, z.B. Vinyltrialkoxysilane geeignet. Diese werden, sofern gewünscht, in einer Menge von 0,01 bis 1 Gew.-%, bezogen auf die Gesamtmonomermenge bei der Herstellung der Polymerisate eingesetzt.

Wässrige Polymerisatdispersionen sind insbesondere durch radikalisch initiierte wäss- rige Emulsionspolymerisation von ethylenisch ungesättigten Monomeren zugänglich. Diese Methode ist vielfach vorbeschrieben und dem Fachmann daher hinreichend bekannt [vgl. z.B. Encyclopedia of Polymer Science and Engineering, Vol. 8, Seiten 659 bis 677, John Wiley & Sons, Inc., 1987; D. C. Blackley, Emulsion Polymerisation, Seiten 155 bis 465, Applied Science Publishers, Ltd., Essex, 1975; D. C. Blackley, Polymer Latices, 2 nd Edition, Vol. 1 , Seiten 33 bis 415, Chapman & Hall, 1997; H. Warson, The Applications of Synthetic Resin Emulsions, Seiten 49 bis 244, Ernest Benn, Ltd., London, 1972; D. Diederich, Chemie in unserer Zeit 1990, 24, Seiten 135 bis 142, Verlag Chemie, Weinheim; J. Piirma, Emulsion Polymerisation, Seiten 1 bis 287, Academic Press, 1982; F. Hölscher, Dispersionen synthetischer Hochpolymerer, Seiten 1 bis 160, Springer-Verlag, Berlin, 1969 und die Patentschrift DE-A 40 03 422]. Die radikalisch initiierte wässrige Emulsionspolymerisation erfolgt üblicherweise dergestalt, dass man die ethylenisch ungesättigten Monomeren, häufig unter Mitverwendung von oberflä- chenaktiven Substanzen, in wässrigem Medium dispers verteilt und mittels wenigstens eines radikalischen Polymerisationsinitiators polymerisiert. Häufig werden bei den erhaltenen wässrigen Polymerisatdispersionen die Restgehalte an nicht umgesetzten Monomeren durch dem Fachmann ebenfalls bekannte chemische und/oder physikalische Methoden [siehe beispielsweise EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741 184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 und 19847115] herabgesetzt, der Polymerisatfeststoffgehalt durch Verdünnung oder Aufkonzentration auf einen gewünschten Wert eingestellt oder der wässrigen Polymerisatdispersion weitere übliche Zusatzstoffe, wie beispielsweise bakterizide oder schaumdämpfende Additive zugesetzt. Häufig betragen die Polymerisat- feststoffgehalte der wässrigen Polymerisatdispersionen 30 bis 80 Gew.-%, 40 bis 70 Gew.-% oder 45 bis 65 Gew.-%. Ebenso bevorzugt werden die aus den Polymerisatdispersionen hergestellten Polymerisatpulver sowie wässrige Dispersionen die durch Redispergieren der Polymerpulver in Wasser erhältlich sind. Sowohl wässrige Polymerdispersionen als auch die daraus hergestellten Pulver sind überdies kommer- ziell erhältlich, z.B. unter den Marken ACRONAL ® , STYRONAL ® , BUTOFAN ® , STY- ROFAN ® und KOLLICOAT ® der BASF-Aktiengesellschaft, Ludwigshafen, Deutschland, VINNOFIL ® und VINNAPAS ® der Fa. Wacker Chemie-GmbH, Burghausen, und RHO- DIMAX ® der Fa. Rhodia S.A.

Als oberflächenaktive Substanzen für die Emulsionspolymerisation kommen die übli-

cherweise für die Emulsionspolymerisation eingesetzten Emulgatoren und Schutzkolloide in Betracht. Bevorzugte Emulgatoren sind anionische und nichtionische Emulgatoren, die im Unterschied zu den Schutzkolloiden in der Regel ein Molekulargewicht unterhalb 2000 g/mol aufweisen und in Mengen von bis zu 0,2 bis 10 Gew.-%, vor- zugsweise 0,5 bis 5 Gew.-%, bezogen auf das Polymerisat in der Dispersion bzw. auf die zu polymerisierenden Monomere M eingesetzt werden.

Derartige Schutzkolloide sind beispielhaft bereits oben für die Mikrokapselbildung genannt.

Zu den anionischen Emulgatoren zählen Alkali- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8-C 2 0), von Schwefelsäurehalbestern ethoxylierter Alkanole (EO-Grad: 2 bis 50, Alkylrest: C 8 bis C 2 o) und ethoxylierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C 4 -C 2 0), von Alkylsulfonsäuren (Alkylrest: C 8 bis C 2 o), von sulfonierten Mono- und Di- Cβ-Cis-alkyldiphenylethern, wie sie in US-A 4,269,749 beschrieben werden, und von Alkylarylsulfonsäuren (Alkylrest: C 4 -C 2 O)- Weitere geeignete anionische Emulgatoren finden sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , S. 192-208.

Geeignete nichtionische Emulgatoren sind araliphatische oder aliphatische nichtionische Emulgatoren, beispielsweise ethoxylierte Mono-, Di- und Trialkylphenole (EO- Grad: 3 bis 50, Alkylrest: C 4 -C 9 ), Ethoxylate langkettiger Alkohole (EO-Grad: 3 bis 50, Alkylrest: C 8 -C 3 6), sowie Polyethylenoxid/Polypropylenoxid-Blockcopolymere. Bevorzugt werden Ethoxylate langkettiger Alkanole (Alkylrest: C 1 0-C 22 , mittlerer Ethoxylie- rungsgrad: 3 bis 50) und darunter besonders bevorzugt solche auf Basis von Oxoalko- holen und nativen Alkoholen mit einem linearen oder verzweigten Ci 2 -Ci 8 -Alkylrest und einem Ethoxilierungsgrad von 8 bis 50.

Selbstverständlich kann das Molekulargewicht der Polymere durch Zugabe von Reg- lern in einer geringen Menge, in der Regel bis zu 2 Gew.-%, bezogen auf die polymerisierenden Monomere M, eingestellt werden. Als Regler kommen insbesondere organische Thioverbindungen, ferner Allylalkohole und Aldehyde in Betracht. Bei der Herstellung der Butadien enthaltenden Polymere der Klasse I werden häufig Regler in einer Menge von 0,1 bis 2 Gew.-%, vorzugsweise organische Thioverbindungen wie tert- Dodecylmercaptan eingesetzt.

Nach Beendigung der Polymerisation werden die verwendeten Polymerdispersionen vor ihrer erfindungsgemäßen Verwendung häufig alkalisch, vorzugsweise auf pH- Werte im Bereich von 7 bis 10 eingestellt. Zur Neutralisation können Ammoniak oder organische Amine eingesetzt, sowie vorzugsweise Hydroxide, wie Natriumhydroxid,

Kaliumhydroxid oder Calciumhydroxid verwendet werden.

Zur Herstellung von Polymerpulvern werden die wässrigen Polymerdispersionen in bekannter Weise einem Trocknungsverfahren, vorzugsweise in Gegenwart üblicher Trocknungshilfsmittel, unterworfen. Bevorzugtes Trocknungsverfahren ist die Sprühtrocknung. Sofern erforderlich, wird das Trocknungshilfsmittel in einer Menge von 1 bis 30 Gew.-% vorzugsweise 2 bis 20 Gew.-%, bezogen auf den Polymergehalt der zu trocknenden Dispersion eingesetzt.

Die Sprühtrocknung der zu trocknenden Polymerisatdispersionen erfolgt in der Regel wie bereits für die Mikrokapseldispersion beschrieben, oftmals in Gegenwart eines üblichen Trocknungshilfsmittels wie Homo- und Copolymere des Vinylpyrrolidons, Homo- und Copolymere der Acrylsäure und/oder der Methacrylsäure mit Hydroxylgruppen tragenden Monomeren, vinylaromatischen Monomeren, Olefinen und/oder (Meth)acryl- säureestern, Polyvinylalkohol und insbesondere Arylsulfonsäure-Formaldehyd- Kondensationsprodukte sowie Gemischen davon.

Ferner kann man der zu trocknenden Polymerisatdispersion während des Trocknungsvorganges ein übliches Anticaking-Mittel (Antibackmittel) wie ein feinteiliges anorgani- sches Oxid beispielsweise eine feinteilige Kieselsäure oder ein feinteiliges Silicat, z.B. Talkum zusetzen.

Für gewisse Verwendungen der erfindungsgemäßen grobteiligen Zubereitungen ist eine Wasserstabilität der Bindemittelpolymere nicht notwendig, beispielsweise in abge- schlossenen nichtwässrigen Systemen. In solchen Fällen sind auch Bindemittelpolymere geeignet, die wasserlöslich oder teilweise wasserlöslich sind.

Geeignet sind natürliche polymere Bindemittel wie Stärke und Cellulose sowie synthetische polymere Bindemittel. Derartige Bindemittel sind beispielsweise Polyvinyl- pyrrolidon, Polyvinylalkohol oder teilhydrolysiertes Polyvinylacetat mit einem Hydrolysegrad von wenigsten 60 %, sowie Copolymere des Vinylacetats mit Vinylpyrrolidon, ferner Pfropfpolymere des Polyvinylacetats mit Polyethern insbesondere Ethylenoxid. Als besonders vorteilhaft haben sich Pfropfpolymere des Polyvinylacetats mit Ethylenoxid erwiesen. Solche Pfropfpolymere sind beispielsweise in der EP-A 1 124 541 be- schrieben, auf deren Lehre ausdrücklich verwiesen wird.

Derartige Polymere sind überdies kommerziell erhältlich, z.B. unter den Marken KOLLIDON ® und KOLLICOAT ® der BASF Aktiengesellschaft.

Die Herstellung der grobteiligen Zubereitung kann derart erfolgen, dass man die Mikro-

kapseln zusammen mit dem polymeren Bindemittel und Wasser in eine grobteilige Form bringt, beispielsweise granuliert oder extrudiert, und anschließend gegebenenfalls trocknet. Das Bindemittel kann dem Mikrokapselpulver zugesetzt werden. Nach einer weiteren Ausführungsform kann das Bindemittel bereits als Sprühhilfsmittel wäh- rend der Sprühtrocknung der Mikrokapseln zugesetzt werden. Derartig bevorzugte Bindemittel sind die oben für die Sprühtrocknung der Mikrokapseln genannten. Sie werden üblicherweise in einer Menge von 1 bis 10 Gew.-% bezogen auf den Feststoffanteil der Mikrokapseldispersion zugesetzt. In diesen Fällen ist die Zugabe von weiterem Bindemittel möglich, in der Regel aber nicht notwendig.

Als Bindemittel können auch die bei der Herstellung der Mikrokapseln eingesetzten organischen Schutzkolloide wirken. Eine Zugabe weiterer Bindemittel ist dann in der Regel nicht nötig. Nach dieser bevorzugten Variante werden aus 10 bis 100 Gew.-% eines oder mehrerer d-C 24 -Alkylester der Acryl- und/oder Methacrylsäure (Monomere I), 0 bis 80 Gew.-% eines bi- oder polyfunktionellen Monomers (Monomere II), welches in Wasser nicht löslich oder schwer löslich ist und 0 bis 90 Gew.-% sonstige Monomere (Monomer III), jeweils bezogen auf das Gesamtgewicht der Monomere, dem Latentwärmespeichermaterial und dem organischen Schutzkolloid eine öl-in-Wasser- Emulsion hergestellt und die Kapselwand durch radikalische Polymerisation gebildet, die resultierende Mikrokapseldispersion sprühgetrocknet und in eine grobteilige Form gebracht.

Die Herstellung der Zubereitung kann nach den für Agglomerate wie Pellets, Tabletten und Granulaten bekannten Methoden erfolgen.

Erfindungsgemäße Agglomerate sind erhältlich durch Bewegung des Mikrokapsel- pulvers zusammen mit dem Bindemittel in einer Trommel oder auf geeigneten Tellern, sogenannten Pelletiertellern. Bei der Trommelgranulierung wandern die Mikrokapseln kontinuierlich in axialer Richtung durch eine leicht geneigte, rotierende Trommel und werden dabei mit dem polymeren Bindemittel besprüht. Bei der Tellergranulierung werden die Mikrokapseln kontinuierlich über eine Dosiereinrichtung auf einen Pelletierteller aufgebracht, mit dem polymeren Bindemittel bedüst und laufen nach Erreichen einer bestimmten Granulatkorngröße über den Tellerrand. Die Trommel- und Tellergranulation eignet sich besonders für kontinuierlichen Betrieb und damit für großvolu- mige Produkte. Die Trocknung erfolgt mit Vorteil in einem kontinuierlichen Wirbelschicht- oder einem Trommeltrockner. Beim absatzweisen Verfahren kommt auch Vakuumtrocknung in Frage.

Ferner können Granulate in herkömmlichen Wirbelbettgranulatoren hergestellt werden. Dabei werden die Mikrokapselpulver, die durch einen aufwärts gerichteten Warmluft-

ström in Schwebe gehalten werden, im Gleich- oder Gegenstrom mit der polymeren Bindemitteldispersion besprüht und getrocknet. Das heißt das polymere Bindemittel wird auf ein fluidisiertes Pulver aufgesprüht. Die Wirbelschichtgranulierung eignet sich gleichermaßen für den absatzweisen wie für den kontinuierlichen Betrieb.

In einer Variante der Wirbelbettgranulierung können auch eine wässrige Mikrokapsel- dispersion und eine wässrige Bindemitteldispersion gemeinsam oder über zwei verschiedene Düsen in den Granulator verdüst und getrocknet werden. Diese Vorgehensweise hat den Vorteil, dass die Mikrokapseldispersion nicht extra vorgetrocknet werden muss, sondern zusammen mit der Bindemitteldispersion granuliert werden kann.

Weiterhin können Granulate durch Mischergranulierung hergestellt werden. Es werden Mischer eingesetzt, die mit starren oder rotierenden Einsätzen versehen sind (z. B. Diosna-Pharmamischer) und im Idealfall in einem Arbeitsgang mischen, granulieren und trocknen. Das Mikrokapselpulver wird unter Zugabe des polymeren Bindemittels und ggf. Wasser, durch die Umlagerungsbewegung zu Granulaten aufgebaut. Diese werden anschließend im Wirbelschicht-, Umluft-, oder Vakuumtrockner getrocknet und mittels Siebmaschinen oder Mühlen zerkleinert. Besonders schonend und staubfrei ist beispielsweise ein Vakuum-Rotationsmischtrockner.

Nach einer anderen Ausführungsform extrudiert man die Mikrokapseln zusammen mit dem polymeren Bindemittel.

Die Herstellung der grobteiligen Zubereitung erfolgt unter Zugabe von Wasser und dem polymeren Bindemittel. Dabei ist es möglich, das Wasser zu dem Mikrokapsel- und/oder Bindemittelpulver zuzudosieren. Nach einer bevorzugten Ausführungsform vermischt man das Mikrokapselpulver direkt mit einer Bindemitteldispersion des gewünschten Wassergehaltes. Der Wassergehalt beträgt 10- 40 Gew.-% bezogen auf das Gesamtgemisch. Ein niedrigerer Wassergehalt führt in der Regel zu einer unvollständigen Durchmischung der beiden Komponenten und schlechter Formbarkeit. Höhere Wassergehalte sind prinzipiell möglich, oberhalb von 50 Gew.-% Wasser lässt sich die Masse nicht mehr extrudieren, sondern zerfließt. Bevorzugt ist ein Wassergehalt von 20 - 35 Gew.-% am Austragspunkt, da in diesem Bereich die erhaltenen Pellets bereits eine gute Festigkeit aufweisen.

Geeignet sind Extruder wie Ein- oder Zweischneckenextruder und die sogenannte Schmelzekalandrierung oder Schmelzetablettierung. Zweischneckenextruder arbeiten nach dem Prinzip eines Mischaggregats, das gleichzeitig vorwärts hin auf ein Düsen- Werkzeug transportiert und verdichtet.

Nach einer bevorzugten Ausführungsform wird das Produkt in der Einzugszone gegen die Aufwärmzone verdichtet. In der Mittelzone des Extruders werden die Stoffe disper- giert und ggf. entgast. In der Endzone des Extruders wird das Gemisch unter Druck durch ein Düsenwerkzeug ausgebracht.

Man extrudiert im Temperaturbereich der Glasübergangstemperatur des Bindemittelpolymers und bevorzugt unterhalb der Erweichungs- oder Zersetzungstemperatur der Mikrokapselwand. Das Bindemittelpolymer sollte unter den Verarbeitungsbedingungen einen Film bilden, d.h. es sollte zumindest teilweise aufschmelzen oder erweichen, ohne allerdings zu dünnflüssig zu werden, um die Mikrokapselzubereitung in Form zu bringen. Ein geeigneter Temperaturbereich ist der Bereich von 25 K unterhalb bis etwa 50 K oberhalb der Glasübergangstemperatur. Der Erweichungsbereich des Bindemittelpolymers kann allerdings durch Weichmacher- oder Lösungsmitteleffekte mitunter deutlich abgesenkt werden, so dass in Gegenwart dieser Substanzen auch eine Verarbeitung bis 50 K unterhalb der Glasübergangstemperatur möglich ist. Bei Einsatz flüchtiger Weichmacher ist es somit möglich, diese nach dem Formgebungsprozess zu entfernen, wodurch eine größere Festigkeit erreicht wird. Da Wasser für polare und die wasserlöslichen, filmbildenden Polymere ein Weichmacher ist, gilt die Betrachtung der Glasübergangstemperatur des reinen Polymers in diesen Fällen nicht.

Das Düsenwerkzeug des Extruders kann je nach Wunsch aus einer oder mehreren Lochdüsen oder einer Flachdüse bestehen oder auch eine komplexere Form, beispielsweise rohrförmig, haben. Bevorzugt werden Düsen, mit denen Teilchen erhalten werden, deren Verhältnis von Oberfläche zu Volumen der folgenden Relation gehorcht:

^Oberfläche ^Volumen

Bevorzugte Düsen weisen beispielsweise eine Kreuz- oder Sternform, beispielsweise 3-, 4-, 5- oder 6-zackig, auf.

Nach einer bevorzugten Variante betragen die Temperaturen im Extruder 40 bis 120 0 C. Dabei ist es möglich, dass eine konstante Temperatur vorherrscht. Ebenso ist es möglich, dass entlang der Transportrichtung der Mikrokapsel/Bindemittelmischung ein Temperaturgradient von 40 bis auf 120 0 C herrscht. Dabei sind bei dem Gradienten jegliche Abstufungen möglich von kontinuierlich bis stufenweise. Die Agglomerierung bei diesen Temperaturen hat den Vorteil, dass ein Teil des Wassers bereits während des Misch- und/oder Verdichtungsprozesses verdampft.

Gegebenenfalls werden zum Extrudieren Gleitmittel wie Stearinsäure zugegeben.

Sonstige Zusatzstoffe der grobteiligen Mikrokapselzubereitung können sein: Farbstoffe, Pigmente, Antistatika, Hydrophilierungsmittel und bevorzugt Graphit insbesondere ex- pandiertes Graphit.

Gemäß einer bevorzugten Ausführungsform enthält die Zubereitung 2 bis 20 Gew.-% Graphit bezogen auf das Gesamtgewicht der grobteiligen Zubereitung.

Die Herstellung von expandiertem Graphit sowie Produkten aus expandiertem Graphit ist bekannt aus der US-A 3 404 061. Für die Herstellung von expandiertem Graphit werden Graphiteinlagerungsverbindungen oder Graphitsalze, z.B. Graphithydrogensulfat oder Graphitnitrat, schockartig erhitzt. Das dabei entstehende sogenannte Graphit- expandat besteht aus wurm- oder ziehharmonikaförmigen Aggregaten.

Durch Verdichten dieses Graphitexpandats unter Druck können ohne Binderzusatz selbsttragende Graphitfolien oder -platten hergestellt werden. Zerkleinert man solch verdichtetes oder "vorverdichtetes" Graphitexpandat mit Hilfe von Schneid-, Prall- und/oder Strahlmühlen, dann erhält man je nach Zerkleinerungsgrad ein Pulver oder Häcksel aus vorverdichtetem Graphitexpandat. Diese Pulver lassen sich fein verteilt und homogen in Pressmassen einmischen. Alternativ kann Graphitexpandat auch direkt, d.h. ohne vorherige Verdichtung, zu einem in Pressmassen einmischbaren Pulver zerkleinert werden.

Pulver oder Häcksel aus verdichtetem Graphitexpandat können reexpandiert werden, wenn dies für die weitere Verwendung erforderlich ist. Ein solcher Prozess ist in der US-A 5 882 570 beschrieben. Auf diese Weise erhält man ein sog. reexpandiertes Graphitpulver (Reexpandat).

Im Folgenden wird der Begriff "expandierter Graphit" zusammenfassend gebraucht für (i) Graphitexpandat, (ii) durch Zerkleinern von verdichtetem Graphitexpandat erhaltene Pulver bzw. Häcksel, (iii) durch Zerkleinern von Graphitexpandat gewonnenes Pulver, und (iv) durch Reexpandieren von zerkleinertem verdichtetem Graphitexpandat hergestelltes Reexpandat. Alle Formen (i) bis (iv) des expandierten Graphits sind geeignete Zusatzstoffe der grobteiligen Mikrokapselzubereitung. Dabei hat das Graphitexpandat eine Schüttdichte von 2 bis 20 g/l, das zerkleinerte Graphitexpandat hat eine Schüttdichte von 20 bis 150 g/l, das zerkleinerte verdichtete Graphitexpandat eine Schüttdichte von 60 bis 200 g/l, und das reexpandierte verdichtete Graphitexpandat eine Schüttdichte von 20 bis 150 g/l.

Bei expandiertem Graphit mit einer mittleren Partikelgröße von ca. 5 μm beträgt die spezifische Oberfläche nach der BET-Methode typischerweise zwischen 25 und 40 m 2 /g. Mit zunehmendem Durchmesser der Teilchen nimmt die BET-Oberfläche des expandierten Graphits zwar ab, bleibt jedoch weiterhin auf einem relativ hohen Niveau. So weist expandierter Graphit mit einer mittleren Partikelgröße von 5 mm immer noch eine BET-Oberfläche von mehr als 10 m 2 /g auf. Für die Herstellung der erfindungsgemäßen Teilchen ist expandierter Graphit mit mittleren Partikelgrößen im Bereich von 5 μm bis 5 mm geeignet. Bevorzugt wird expandierter Graphit mit einer mittleren Teilchengröße im Bereich von 5 μm bis 5 mm, besonders bevorzugt im Bereich von 50 μm bis 1 mm.

Die erfindungsgemäßen Mikrokapselzubereitungen haben das Latentwärmespeichermaterial dicht eingeschlossen, so dass keine Emissionen an die Umgebungsluft nachweisbar sind. Dies ermöglicht ihren Einsatz nicht nur in geschlossenen Systemen, son- dem darüber hinaus auch in offenen Systemen.

Die grobteiligen Mikrokapselzubereitungen als Komponente A eignen sich hervorragend zur Verwendung in Mischung mit der Gerüstmaterialkomponente B. Sie zeigen eine gute Härte und sind abriebfest. Ihre grobteilige Struktur ermöglicht eine frei wähl- bare Speichergeometrie, beispielsweise Schüttungen in chemischen Reaktoren oder Kolonnen, sowie in durchströmten Anwendungen wie Wärmetauschern.

Aufgrund der günstigen Verhältnisse von Oberfläche zu Zwischenräumen der Teilchen untereinander ist eine große Wärmeübertragung möglich, die durch die gute Durch- strömbarkeit eines beliebigen Trägermaterials wie Luft oder Wasser schnell abgeführt werden kann. Bezogen auf das Volumen der Zubereitung zeigen die grobteiligen Mik- rokapseln eine sehr hohe Speicherkapazität und weisen damit einen sehr hohen Wirkungsgrad auf. Damit haben sie bei gleicher Speicherleistung im Vergleich zu herkömmlichen Wärmespeichern einen geringen Platzbedarf wie auch ein niedrigeres Speichergewicht.

Darüber hinaus enthält die erfindungsgemäße Mischung eine Gerüstmaterialkomponente B. Diese enthält mindestens ein poröses metallorganisches Gerüstmaterial enthaltend mindestens eine an mindestens ein Metallion koordinativ gebundene, mindes- tens zweizähnige organische Verbindung. Darüber hinaus kann die Komponente B auch mehrere unterschiedliche poröse metallorganische Gerüstmaterialien enthalten.

Solche metallorganischen Gerüstmaterialien (MOF) sind im Stand der Technik bekannt und werden beispielsweise beschrieben in US 5,648,508, EP-A-O 790 253, M. O'Keeffe

et al., J. SoI. State Chem., 152 (2000), Seite 3 bis 20, H. Li et al., Nature 402, (1999), Seite 276, M. Eddaoudi et al., Topics in Catalysis θ, (1999), Seite 105 bis 1 11 , B. Chen et al., Science 291, (2001 ), Seite 1021 bis 1023 und DE-A-101 1 1 230.

Als eine spezielle Gruppe dieser metallorganischen Gerüstmaterialien werden in der jüngsten Literatur so genannte „beschränkte" Gerüstmaterialien beschrieben, bei denen das Gerüst durch spezielle Wahl der organischen Verbindung sich nicht unendlich sondern unter Ausbildung von Polyedern erstreckt. A.C. Sudik, et al., J. Am. Chem. Soc. 127 (2005), 7110-7118, beschreiben solche speziellen Gerüstmaterialien. Hierbei werden diese zur Abgrenzung als metallorganische Polyeder (MOP = Metal-Organic Polyhedra) genannt.

Eine weitere spezielle Gruppe von porösen metallorganischen Gerüstmaterialien sind solche, bei denen die organische Verbindung als Ligand ein mono-, bi- oder polycycli- sches Ringsystem darstellt, das sich zumindest von einem der Heterocyclen ausgewählt aus der Gruppe bestehend aus Pyrrol, alpha-Pyridon und gamma-Pyridon ableitet und mindestens zwei Stickstoff-Ringatome aufweist. Die elektrochemische Herstellung solcher Gerüstmaterialien ist in WO-A 2007/131955 beschrieben.

Insbesondere diese speziellen Gruppen sind im Rahmen der vorliegenden Erfindung geeignet.

Die metallorganischen Gerüstmaterialien gemäß der vorliegenden Erfindung enthalten Poren, insbesondere Mirko- und/oder Mesoporen. Mikroporen sind definiert als solche mit einem Durchmesser von 2 nm oder kleiner und Mesoporen sind definiert durch einen Durchmesser im Bereich von 2 bis 50 nm, jeweils entsprechend nach der Definition, wie sie Pure & Applied Chem. 57 (1983), 603 - 619, insbesondere auf Seite 606 angegeben ist. Die Anwesenheit von Mikro- und/oder Mesoporen kann mit Hilfe von Sorptionsmessungen überprüft werden, wobei diese Messungen die Aufnahmekapazi- tat der MOF für Stickstoff bei 77 Kelvin gemäß DIN 66131 und/oder DIN 66134 bestimmt.

Vorzugsweise beträgt die spezifische Oberfläche - berechnet nach dem Langmuir- Modell (DIN 66131 , 66134) für ein MOF in Pulverform mehr als 100 m 2 /g, mehr bevor- zugt über 300 m 2 /g, mehr bevorzugt mehr als 700 m 2 /g, weiter mehr bevorzugt mehr als 800 m 2 /g, weiter mehr bevorzugt mehr als 1000 m 2 /g und besonders bevorzugt mehr als 1200 m 2 /g.

Formkörper enthaltend metallorganische Gerüstmaterialien können eine niedrigere aktive Oberfläche besitzen; vorzugsweise jedoch mehr als 150 m 2 /g, mehr bevorzugt

mehr als 300 m 2 /g, weiter mehr bevorzugt mehr als 700 m 2 /g.

Die Metallkomponente im Gerüstmaterial nach der vorliegenden Erfindung ist vorzugsweise ausgewählt aus den Gruppen Ia, IIa, lila, IVa bis Villa und Ib bis VIb. Besonders bevorzugt sind Mg, Ca, Sr, Ba, Sc, Y, Ln, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ro, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, AI, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb und Bi, wobei Ln für Lanthanide steht.

Lanthanide sind La, Ce, Pr, Nd, Pm, Sm, En, Gd, Tb, Dy, Ho, Er, Tm, Yb.

In Bezug auf die Ionen dieser Elemente sind besonders zu erwähnen Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ln 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2+ , Al 3+ , Ga 3+ , In 3+ , Tl 3+ , Si 4+ , Si 2+ , Ge 4+ , Ge 2+ , Sn 4+ , Sn 2+ , Pb 4+ , Pb 2+ , As 5+ , As 3+ , As + , Sb 5+ , Sb 3+ , Sb + , Bi 5+ , Bi 3+ und Bi + .

Weiterhin besonders bevorzugt sind Mg, AI, Y, Sc, Zr, Ti, V, Cr, Mo, Fe, Co, Cu, Ni, Zn, Ln. Weiter bevorzugt sind AI, Mo, Y, Sc, Mg, Fe und Zn. Insbesondere sind AI und Zn bevorzugt.

Der Begriff "mindestens zweizähnige organische Verbindung" bezeichnet eine organische Verbindung, die mindestens eine funktionelle Gruppe enthält, die in der Lage ist, zu einem gegebenen Metallion mindestens zwei koordinative Bindungen, und/oder zu zwei oder mehr, bevorzugt zwei Metallatomen jeweils eine koordinative Bindung auszubilden.

Als funktionelle Gruppen, über die die genannten koordinativen Bindungen ausgebildet werden kann, sind insbesondere beispielsweise folgende funktionellen Gruppen zu nennen: -CO 2 H, -CS 2 H, -NO 2 , -B(OH) 2 , -SO 3 H, -Si(OH) 3 , -Ge(OH) 3 , -Sn(OH) 3 , -Si(SH) 4 , -Ge(SH) 4 , -Sn(SH) 3 , -PO 3 H, -AsO 3 H, -AsO 4 H, -P(SH) 3 , -As(SH) 3 , -CH(RSH) 2 , -C(RSH) 3 -CH(RNH 2 ), -C(RNH 2 ) 3 , -CH(ROH) 2 , -C(ROH) 3 , -CH(RCN) 2 , -C(RCN) 3 wobei R beispielsweise bevorzugt eine Alkylengruppe mit 1 , 2, 3, 4 oder 5 Kohlenstoffatomen wie beispielsweise eine Methylen-, Ethylen-, n-Propylen-, i-Propylen, n-Butylen-, i-Bu- tylen-, tert-Butylen- oder n-Pentylengruppe, oder eine Arylgruppe, enthaltend 1 oder 2 aromatische Kerne wie beispielsweise 2 Cβ-Ringe, die gegebenenfalls kondensiert sein können und unabhängig voneinander mit mindestes jeweils einem Substituenten geeignet substituiert sein können, und/oder die unabhängig voneinander jeweils mindestens ein Heteroatom wie beispielsweise N, O und/oder S enthalten können. Gemäß ebenfalls bevorzugten Ausführungsformen sind funktionelle Gruppen zu nennen, bei

denen der oben genannte Rest R nicht vorhanden ist. Diesbezüglich sind unter anderem -CH(SH) 2 , -C(SH) 3 , -CH(NH 2 ) 2 , -C(NH 2 ) 3 , -CH(OH) 2 , -C(OH) 3 , -CH(CN) 2 oder -C(CN) 3 Zu nennen.

Die funktionellen Gruppen können jedoch auch Heteroatome eines Heterocyclus sein. Insbesondere sind hierbei Stickstoffatome zu nennen.

Die mindestens zwei funktionellen Gruppen können grundsätzlich an jede geeignete organische Verbindung gebunden sein, solange gewährleistet ist, dass die diese funk- tionellen Gruppen aufweisende organische Verbindung zur Ausbildung der koordinati- ven Bindung und zur Herstellung des Gerüstmaterials befähigt ist.

Bevorzugt leiten sich die organischen Verbindungen, die die mindestens zwei funktionellen Gruppen enthalten, von einer gesättigten oder ungesättigten aliphatischen Ver- bindung oder einer aromatischen Verbindung oder einer sowohl aliphatischen als auch aromatischen Verbindung ab.

Die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung kann linear und/oder verzweigt und/oder cyclisch sein, wobei auch mehrere Cyclen pro Verbindung möglich sind. Weiter bevorzugt enthält die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung 1 bis 15, weiter bevorzugt 1 bis 14, weiter bevorzugt 1 bis 13, weiter bevorzugt 1 bis 12, weiter bevorzugt 1 bis 1 1 und insbesondere bevorzugt 1 bis 10 C-Atome wie beispielsweise 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. Insbeson- dere bevorzugt sind hierbei unter anderem Methan, Adamantan, Acetylen, Ethylen oder Butadien.

Die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung kann einen oder auch mehrere Kerne wie beispielswei- se zwei, drei, vier oder fünf Kerne aufweisen, wobei die Kerne getrennt voneinander und/oder mindestens zwei Kerne in kondensierter Form vorliegen können. Besonders bevorzugt weist die aromatische Verbindung oder der aromatische Teil der sowohl aliphatischen als auch aromatischen Verbindung einen, zwei oder drei Kerne auf, wobei einer oder zwei Kerne besonders bevorzugt sind. Unabhängig voneinander kann weiter jeder Kern der genannten Verbindung mindestens ein Heteroatom wie beispielsweise N, O, S, B, P, Si, AI, bevorzugt N, O und/oder S enthalten. Weiter bevorzugt enthält die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung einen oder zwei C 6 -Kerne, wobei die zwei entweder getrennt voneinander oder in kondensierter Form vorliegen. Insbesondere sind als aromatische Verbindungen Benzol, Naphthalin und/oder Biphenyl und/oder

Bipyridyl und/oder Pyridyl zu nennen.

Mehr bevorzugt ist die mindestens zweizähnige organische Verbindung, ein aliphati- scher oder aromatischer, acyclischer oder cyclischer Kohlenwasserstoff mit 1 bis 18, vorzugsweise 1 bis 10 und insbesondere 6 Kohlenstoffatomen, der zudem ausschließlich 2, 3 oder 4 Carboxylgruppen als funktionelle Gruppen aufweist.

Beispielsweise leitet sich die mindestens zweizähnige organische Verbindung von einer Dicarbonsäure ab, wie etwa Oxalsäure, Bernsteinsäure, Weinsäure, 1 ,4-Butan- dicarbonsäure, 1 ,4-Butendicarbonsäure, 4-Oxo-Pyran-2,6-dicarbonsäure, 1 ,6-Hexan- dicarbonsäure, Decandicarbonsäure, 1 ,8-Heptadecandicarbonsäure, 1 ,9-Hepta- decandicarbonsäure, Heptadecandicarbonsäure, Acetylendicarbonsäure, 1 ,2-Benzol- dicarbonsäure, 1 ,3-Benzoldicarbonsäure, 2,3-Pyridindicarbonsäure, Pyridin-2,3- dicarbonsäure, 1 ,3-Butadien-1 ,4-dicarbonsäure, 1 ,4-Benzoldicarbonsäure, p-Benzol- dicarbonsäure, lmidazol-2,4-dicarbonsäure, 2-Methylchinolin-3,4-dicarbonsäure, Chino- lin-2,4-dicarbonsäure, Chinoxalin-2,3-dicarbonsäure, 6-Chlorchinoxalin-2,3-dicarbon- säure, 4,4'-Diaminphenylmethan-3,3'-dicarbonsäure, Chinolin-3,4-dicarbonsäure, 7- Chlor-4-hydroxychinolin-2,8-dicarbonsäure, Diimiddicarbonsäure, Pyridin-2,6-dicarbon- säure, 2-Methylimidazol-4,5-dicarbonsäure, Thiophen-3,4-dicarbonsäure, 2-lsopropyl- imidazol-4,5-dicarbonsäure, Tetrahydropyran-4,4-dicarbonsäure, Perylen-3,9-dicar- bonsäure, Perylendicarbonsäure, Pluriol E 200-dicarbonsäure, 3,6-Dioxaoctan- dicarbonsäure, 3,5-Cyclohexadien-1 ,2-dicarbonsäure, Octadicarbonsäure, Pentan-3,3- carbonsäure, 4,4'-Diamino-1 ,1 '-diphenyl-3,3'-dicarbonsäure, 4,4'-Diaminodiphenyl-3,3'- dicarbonsäure, Benzidin-3,3'-dicarbonsäure, 1 ,4-Bis-(phenylamino)-benzol-2,5-dicar- bonsäure, 1 ,1 '-Dinaphthyldicarbonsäure, 7-Chlor-8-methylchinolin-2,3-dicarbonsäure, 1 -Anilinoanthrachinon-2,4'-dicarbonsäure, Polytetrahydrofuran-250-dicarbonsäure, 1 ,4- Bis-(carboxymethyl)-piperazin-2,3-dicarbonsäure, 7-Chlorchinolin-3,8-dicarbonsäure, 1 -(4-Carboxy)-phenyl-3-(4-chlor)-phenylpyrazolin-4,5-dicarbon säure, 1 ,4,5,6,7,7,-Hexa- chlor-5-norbornen-2,3-dicarbonsäure, Phenylindandicarbonsäure, 1 ,3-Dibenzyl-2-oxo- imidazolidin-4,5-dicarbonsäure, 1 ,4-Cyclohexandicarbonsäure, Naphthalin-1 ,8-dicar- bonsäure, 2-Benzoylbenzol-1 ,3-dicarbonsäure, 1 ,3-Dibenzyl-2-oxoimidazolidin-4,5-cis- dicarbonsäure, 2,2'-Bichinolin-4,4'-dicarbonsäure, Pyridin-3,4-dicarbonsäure, 3,6,9- Trioxaundecandicarbonsäure, Hydroxybenzophenondicarbonsäure, Pluriol E 300- dicarbonsäure, Pluriol E 400-dicarbonsäure, Pluriol E 600-dicarbonsäure, Pyrazol-3,4- dicarbonsäure, 2,3-Pyrazindicarbonsäure, 5,6-Dimethyl-2,3-pyrazindicarbonsäure, 4,4'- Diaminodiphenyletherdiimiddicarbonsäure, 4,4'-Diaminodiphenylmethandiimiddicarbon- säure, 4,4'-Diaminodiphenylsulfondiimiddicarbonsäure, 1 ,4-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 1 ,3-Adamantandicarbonsäure, 1 ,8-Naphthalindicarbon- säure, 2,3-Naphthalindicarbonsäure, 8-Methoxy-2,3-naphthalindicarbonsäure, 8-Nitro- 2,3-naphthalincarbonsäure, 8-Sulfo-2,3-naphthalindicarbonsäure, Anthracen-2,3-

dicarbonsäure, 2',3'-Diphenyl-p-terphenyl-4,4"-dicarbonsäure, Diphenylether-4,4'- dicarbonsäure, lmidazol-4,5-dicarbonsäure, 4(1 H)-Oxothiochromen-2,8-dicarbonsäure, 5-tert-Butyl-1 ,3-benzoldicarbonsäure, 7,8-Chinolindicarbonsäure, 4,5-lmidazoldicarbon- säure, 4-Cyclohexen-1 ,2-dicarbonsäure, Hexatriacontandicarbonsäure, Tetradecandi- carbonsäure, 1 ,7-Heptadicarbonsäure, 5-Hydroxy-1 ,3-Benzoldicarbonsäure, 2,5-Di- hydroxy-1 ,4-dicarbonsäure, Pyrazin-2,3-dicarbonsäure, Furan-2,5-dicarbonsäure, 1- Nonen-6,9-dicarbonsäure, Eicosendicarbonsäure, 4,4'-Dihydroxydiphenylmethan-3,3'- dicarbonsäure, i-Amino^-methyl-θJO-dioxo-θJ O-dihydroanthracen^^-dicarbon- säure, 2,5-Pyridindicarbonsäure, Cyclohexen-2,3-dicarbonsäure,2,9-Dichlorfluorubin- 4,1 1 -dicarbonsäure, 7-Chlor-3-methylchinolin-6,8-dicarbonsäure, 2,4-Dichlorbenzo- phenon-2',5'-dicarbonsäure, 1 ,3-Benzoldicarbonsäure, 2,6-Pyridindicarbonsäure, 1- Methylpyrrol-3,4-dicarbonsäure, 1-Benzyl-1 H-pyrrol-3,4-dicarbonsäure, Anthrachinon- 1 ,5-dicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2-Nitrobenzol-1 ,4-dicarbonsäure, Hep- tan-1 ,7-dicarbonsäure, Cyclobutan-1 ,1 -dicarbonsäure 1 ,14-Tetradecandicarbonsäure, 5,6-Dehydronorbornan-2,3-dicarbonsäure, 5-Ethyl-2,3-pyridindicarbonsäure oder Campherdicarbonsäure,

Weiterhin mehr bevorzugt handelt es sich bei der mindestens zweizähnigen organischen Verbindung um eine der oben beispielhaft genannten Dicarbonsäure als solche.

Beispielsweise kann sich die mindestens zweizähnige organische Verbindung von einer Tricarbonsäure ableiten, wie etwa

2-Hydroxy-1 ,2,3-propantricarbonsäure, 7-Chlor-2,3,8-chinolintricarbonsäure, 1 ,2,3-, 1 ,2,4-Benzoltricarbonsäure, 1 ,2,4-Butantricarbonsäure, 2-Phosphono-1 ,2,4-butantri- carbonsäure, 1 ,3,5-Benzoltricarbonsäure, 1-Hydroxy-1 ,2,3-Propantricarbonsäure, 4,5-

Dihydro-4,5-dioxo-1 H-pyrrolo[2,3-F]chinolin-2,7,9-tricarbonsäure, 5-Acetyl-3-amino-6- methylbenzol-1 ,2,4-tricarbonsäure, 3-Amino-5-benzoyl-6-methylbenzol-1 ,2,4-tricarbon-

+säure, 1 ,2,3-Propantricarbonsäure oder Aurintricarbonsäure,

Weiterhin mehr bevorzugt ist die mindestens zweizähnige organische Verbindung einer der oben beispielhaft genannten Tricarbonsäuren als solche.

Beispiele für eine mindestens zweizähnige organische Verbindung, die sich von einer Tetracarbonsäure ableitet, sind

1 ,1-Dioxidperylo[1 ,12-BCD]thiophen-3,4,9,10-tetracarbonsäure, Perylentetracarbon- säuren wie Perylen-3,4,9,10-tetracarbonsäure oder Perylen-1 ,12-sulfon-3,4,9,10-tetra- carbonsäure, Butantetracarbonsäuren wie 1 ,2,3,4-Butantetracarbonsäure oder Meso- 1 ,2,3,4-Butantetracarbonsäure, Decan-2,4,6,8-tetracarbonsäure, 1 ,4,7,10,13,16-Hexa-

oxacyclooctadecan-2,3,1 1 ,12-tetracarbonsäure, 1 ,2,4,5-Benzoltetracarbonsäure,

1 ,2,11 ,12-Dodecantetracarbonsäure, 1 ,2,5,6-Hexan-tetracarbonsäure, 1 ,2,7,8-Octan- tetracarbonsäure, 1 ,4,5,8-Naphthalintetracarbonsäure, 1 ,2,9,10-Decantetracarbon- säure, Benzophenontetracarbonsäure, 3,3',4,4'-Benzo-phenontetracarbonsäure, Tetra- hydrofurantetracarbonsäure oder Cyclopentantetracarbonsäuren wie Cyclopentan- 1 ,2,3,4-tetracarbonsäure.

Weiterhin mehr bevorzugt handelt es sich bei der mindestens zweizähnigen organischen Verbindung um eine der oben beispielhaft genannten Tetracarbonsäuren als solche.

Bevorzugte Heterocyclen als mindestens zweizähnige organische Verbindungen, bei denen eine koordinative Bindung über die Ringheteroatome erfolgt, sind die folgenden substituierten oder unsubstituierten Ringsysteme:

Ganz besonders bevorzugt werden gegebenenfalls mindestens einfach substituierte mono-, di-, tri-, tetra- oder höherkernige aromatische Di-, Tri- oder Tetracarbonsäuren eingesetzt, wobei jeder der Kerne mindestens ein Heteroatom enthalten kann, wobei

zwei oder mehr Kerne gleiche oder unterschiedliche Heteroatome enthalten kann. Beispielsweise bevorzugt werden monokernige Dicarbonsäuren, monokernige Tricarbon- säuren, monokernige Tetracarbonsäuren, dikernige Dicarbonsäuren, dikernige Tricar- bonsäuren, dikernige Tetracarbonsäuren, trikernige Dicarbonsäuren, trikernige Tricar- bonsäuren, trikernige Tetracarbonsäuren, tetrakernige Dicarbonsäuren, tetrakernige Tricarbonsäuren und/oder tetrakernige Tetracarbonsäuren. Geeignete Heteroatome sind beispielsweise N, O, S, B, P bevorzugte Heteroatome sind hierbei N, S und/oder O. Als geeigneter Substituent ist diesbezüglich unter anderem -OH, eine Nitrogruppe, eine Aminogruppe oder eine Alkyl- oder Alkoxygruppe zu nennen.

Insbesondere bevorzugt werden als mindestens zweizähnige organische Verbindungen Imidazolate, wie 2-Methylimidazolat, Acetylendicarbonsäure (ADC), Campherdi- carbonsäure, Fumarsäure, Bernsteinsäure, Benzoldicarbonsäuren wie Phthalsäure, Isophthalsäure, Terephthalsäure (BDC), Aminoterephthaläure, Triethylendiamin (TE- DA), Naphthalindicarbonsäuren (NDC), Biphenyldicarbonsäuren wie beispielsweise 4,4'-Biphenyldicarbonsäure (BPDC), Pyrazindicarbonsäuren, wie 2,5-Pyrazin- dicarbonsäure, Bipyridindicarbonsäuren wie beispielsweise 2,2'-Bipyridindicarbon- säuren wie beispielsweise 2,2'-Bipyridin-5,5'-dicarbonsäure, Benzoltricarbonsäuren wie beispielsweise 1 ,2,3-, 1 ,2,4-Benzoltricarbonsäure oder 1 ,3,5-Benzoltricarbonsäure (BTC), Benzoltetracarbonsäure, Adamantantetracarbonsäure (ATC), Adamantandiben- zoat (ADB) Benzoltribenzoat (BTB), Methantetrabenzoat (MTB), Adamantantetraben- zoat oder Dihydroxyterephthalsäuren wie beispielsweise 2,5-Dihydroxyterephthalsäure (DHBDC) eingesetzt.

Ganz besonders bevorzugt werden unter anderem 2-Methylimidazol, 2-Ethylimidazol, Phthalsäure, Isophthalsäure, Terephthalsäure, 2,6-Naphthalindicarbonsäure, 1 ,4- Naphthalindicarbonsäure, 1 ,5-Naphthalindicarbonsäure, 1 ,2,3-Benzoltricarbonsäure, 1 ,2,4-Benzoltricarbonsäure, 1 ,3,5-Benzoltricarbonsäure, 1 ,2,4,5-Benzoltetracarbon- säure, AminoBDC, TEDA, Fumarsäure, Biphenyldicarboxylat, 1 ,5- und 2,6-Naphtha- lindicarbonsäure, tert.-Butylisophthalsäure, Dihydroxybenzoesäure.

Neben diesen mindestens zweizähnigen organischen Verbindungen kann das metallorganische Gerüstmaterial auch einen oder mehrere einzähnige Liganden und/oder einen oder mehrere mindestens zweizähnige Liganden, die sich nicht von einer Di-, Tri- oder Tetracarbonsäure ableiten, umfassen.

Neben diesen mindestens zweizähnigen organischen Verbindungen kann der MOF auch eine oder mehrere einzähnige Liganden umfassen.

Geeignete Lösemittel zur Herstellung der MOF sind u.a. Ethanol, Dimethylformamid,

Toluol, Methanol, Chlorbenzol, Diethylformamid, Dimethylsulfoxid, Wasser, Wasserstoffperoxid, Methylamin, Natronlauge, N-Methylpolidonether, Acetonitril, Benzyl- chlorid, Triethylamin, Ethylenglykol und Gemische hiervon. Weitere Metallionen, mindestens zweizähnige organische Verbindungen und Lösemittel für die Herstellung von MOF sind u.a. in US-A 5,648,508 oder DE-A 101 11 230 beschrieben.

Die Porengröße des metallorganischen Gerüstmaterials kann durch Wahl des geeigneten Liganden und/oder der mindestens zweizähnigen organischen Verbindung gesteuert werden. Allgemein gilt, dass je größer die organische Verbindung desto größer die Porengröße ist. Vorzugsweise beträgt die Porengröße von 0,2 nm bis 30 nm, besonders bevorzugt liegt die Porengröße im Bereich von 0,3 nm bis 3 nm bezogen auf das kristalline Material.

In einem Formkörper enthaltend ein metallorganisches Gerüstmaterial treten jedoch auch größere Poren auf, deren Größenverteilung variieren kann. Vorzugsweise wird jedoch mehr als 50 % des gesamten Porenvolumens, insbesondere mehr als 75 %, von Poren mit einem Porendurchmesser von bis zu 1000 nm gebildet. Vorzugsweise wird jedoch ein Großteil des Porenvolumens von Poren aus zwei Durchmesserbereichen gebildet. Es ist daher weiter bevorzugt, wenn mehr als 25 % des gesamten Po- renvolumens, insbesondere mehr als 50 % des gesamten Porenvolumens von Poren gebildet wird, die in einem Durchmesserbereich von 100 nm bis 800 nm liegen und wenn mehr als 15 % des gesamten Porenvolumens, insbesondere mehr als 25 % des gesamten Porenvolumens von Poren gebildet wird, die in einem Durchmesserbereich oder bis zu 10 nm liegen. Die Porenverteilung kann mittels Quecksilber-Porosimetrie bestimmt werden.

Nachfolgend sind Beispiele für metallorganische Gerüstmaterialien angegeben. Neben der Kennzeichnung des Gerüstmaterials, dem Metall sowie dem mindestens zweizähnigen Liganden ist weiterhin das Lösemittel sowie die Zellenparameter (Winkel α, ß und γ sowie die Abstände A, B und C in ä) angegeben. Letztere wurden durch Rönt- genbeugung bestimmt.

ADC Acetylenedicarbonsäure NDC Naphtalindicarbonsäure BDC Benzoldicarbonsäure ATC Adamantantetracarbonsäure BTC Benzoltricarbonsäure BTB Benzoltribenzoesäure MTB Methantetrabenzoesäure ATB Adamantantetrabenzoesäure ADB Adamantandibenzoesäure

Weitere metallorganische Gerüstmaterialien sind MOF-2 bis 4, MOF-9, MOF-31 bis 36, MOF-39, MOF-69 bis 80, MOF103 bis 106, MOF-122, MOF-125, MOF-150, MOF-177, MOF-178, MOF-235, MOF-236, MOF-500, MOF-501 , MOF-502, MOF-505, IRMOF-1 , IRMOF-61 , IRMOP-13, IRMOP-51 , MIL-17, MIL-45, MIL-47, MIL-53, MIL-59, MIL-60, MIL-61 , MIL-63, MIL-68, MIL-79, MIL-80, MIL-83, MIL-85, CPL-1 bis 2, SZL-1 welche in der Literatur beschrieben sind.

Besonders bevorzugte metallorganische Gerüstmaterialien sind MIL-53, Zn-tBu- isophthalsäure, AI-BDC, MOF-5, IRMOF-8, Cu-BTC, AI-NDC, AI-AminoBDC, Cu-BDC- TEDA, Zn-BDC-TEDA, AI-BTC, AI-NDC, Mg-NDC, Al-Fumarat, Zn-2-Methylimidazolat, Zn-2-Aminoimidazolat, Cu-Biphenyldicarboxylat-TEDA, MOF-177, MOF-74. Weiter mehr bevorzugt sind AI-BDC und AI-BTC.

Neben der konventionellen Methode zur Herstellung der MOF, wie sie beispielsweise in US 5,648,508 beschrieben ist, können diese auch auf elektrochemischem Wege hergestellt werden. Diesbezüglich wird auf die DE-A 103 55 087 sowie WO-A 2005/049892 verwiesen. Die auf diesem Weg hergestellten metallorganischen Ge- rüstmaterialien weisen besonders gute Eigenschaften in Zusammenhang mit der Adsorption und Desorption von chemischen Stoffen, insbesondere von Gasen.

Unabhängig von dessen Herstellung fällt das metallorganische Gerüstmaterial in pul- verförmiger bzw. kristalliner Form an. Dieses kann als solches als Sorbens in der erfin- dungsgemäßen Mischung alleine oder zusammen mit anderen Sorbentien oder weiteren Materialien eingesetzt werden. Vorzugsweise geschieht dies als Schüttgut, insbesondere in einem Festbett. Weiterhin kann das metallorganische Gerüstmaterial in einen Formkörper umgewandelt werden. Bevorzugte Verfahren sind hierbei die Verstrangung oder Tablettierung. Bei der Formkörperherstellung können zum metallor- ganischen Gerüstmaterial weitere Materialien, wie beispielsweise Binder, Gleitmittel oder andere Additive hinzugesetzt werden. Ebenso ist es denkbar, dass Mischungen von Gerüstmaterial und anderen Adsorbentien beispielsweise Aktivkohle als Formkörper hergestellt werden oder getrennt Formkörper ergeben, die dann als Formkörpermischungen eingesetzt werden.

Hinsichtlich der möglichen Geometrien dieser Formkörper existieren im Wesentlichen keine Beschränkungen. Beispielsweise sind unter anderem Pellets wie beispielsweise scheibenförmige Pellets, Pillen, Kugeln, Granulat, Extrudate wie beispielsweise Stränge, Waben, Gitter oder Hohlkörper zu nennen.

Vorzugsweise liegt Komponente B als Formkörper vor. Bevorzugte Ausgestaltungen sind Tabletten sowie strangförmige Extrudate. Die Formkörper erstrecken sich vorzugsweise in mindestens eine Dimension des Raumes im Bereich von 0,2 mm bis 30 mm, weiter bevorzugt von 0,5 mm bis 5 mm, insbesondere von 1 mm bis 3 mm.

Das Mittelgewicht der Mischung liegt typischerweise im Bereich von 0,2 bis 0,7 Kg/l.

Zur Herstellung dieser Formkörper sind grundsätzlich sämtliche geeigneten Verfahren möglich. Es sind insbesondere folgende Verfahrensführungen bevorzugt:

Kneten des Gerüstmaterials allein oder zusammen mit mindestens einem Bindemittel und/oder mindestens einem Anteigungsmittel und/oder mindestens einer Templatverbindung unter Erhalt eines Gemisches; Verformen des erhaltenen Gemisches mittels mindestens einer geeigneten Methode wie beispielsweise Extrudieren; optional Waschen und/oder Trocknen und/oder Calcinieren des

Extrudates; optional Konfektionieren.

Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Trägermaterial. Das erhaltene Material kann dann gemäß der vorstehend be- schriebenen Methode zu einem Formkörper weiterverarbeitet werden.

Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Substrat.

Kneten und Verformen kann gemäß jedes geeigneten Verfahrens erfolgen, wie beispielsweise in Ullmanns Enzyklopädie der Technischen Chemie, 4. Auflage, Band 2, S. 313 ff. (1972) beschrieben, deren diesbezüglicher Inhalt durch Bezugnahme in den Kontext der vorliegenden Anmeldung vollumfänglich einbezogen wird.

Beispielsweise bevorzugt kann das Kneten und/oder Verformen mittels einer Kolbenpresse, Walzenpresse in Anwesenheit oder Abwesenheit mindestens eines Bindermaterials, Compoundieren, Pelletieren, Tablettieren, Extrudieren, Co-Extrudieren, Ver- schäumen, Verspinnen, Beschichten, Granulieren, bevorzugt Sprühgranulieren, Versprühen, Sprühtrocknen oder einer Kombination aus zwei oder mehr dieser Methoden erfolgen.

Ganz besonders werden Pellets und/oder Tabletten hergestellt.

Das Kneten und/oder Verformen kann bei erhöhten Temperaturen wie beispielsweise im Bereich von Raumtemperatur bis 300 0 C und/oder bei erhöhtem Druck wie beispielsweise im Bereich von Normaldruck bis hin zu einigen hundert bar und/oder in einer Schutzgasatmosphäre wie beispielsweise in Anwesenheit mindestens eines Edelgases, Stickstoff oder einem Gemisch aus zwei oder mehr davon erfolgen.

Das Kneten und/oder Verformen wird gemäß einer weiteren Ausführungsform unter Zugabe mindestens eines Bindemittels durchgeführt, wobei als Bindemittel grundsätzlich jede chemische Verbindung eingesetzt werden kann, die die zum Kneten und/oder Verformen gewünschte Viskosität der zu verknetenden und/oder verformenden Masse gewährleistet. Demgemäß können Bindemittel im Sinne der vorliegenden Erfindung sowohl Viskositätserhöhende als auch Viskositätserniedrigende Verbindungen sein.

Als unter anderem bevorzugte Bindemittel sind beispielsweise Aluminiumoxid oder Aluminiumoxid enthaltende Binder, wie sie beispielsweise in der WO 94/29408 beschrieben sind, Siliciumdioxid, wie es beispielsweise in der EP 0 592 050 A1 beschrie- ben ist, Mischungen ais Siliciumdioxid und Aluminiumoxid, wie sie beispielsweise in

der WO 94/13584 beschrieben sind, Tonminerale, wie sie beispielsweise in der JP 03- 037156 A beschrieben sind, beispielsweise Montmorillonit, Kaolin, Bentonit, Hallosit, Dickit, Nacrit und Anauxit, Alkoxysilane, wie sie beispielsweise in der EP 0 102 544 B1 beschrieben sind, beispielsweise Tetraalkoxysilane wie beispielsweise Tetramethoxysi- lan, Tetraethoxysilan, Tetrapropoxysilan, Tetrabutoxysilan, oder beispielsweise Trial- koxysilane wie beispielsweise Trimethoxysilan, Triethoxysilan, Tripropoxysilan, Tribu- toxysilan, Alkoxytitanate, beispielsweise Tetraalkoxytitanate wie beispielsweise Tetra- methoxytitanat, Tetraethoxytitanat, Tetrapropoxytitanat, Tetrabutoxytitanat, oder beispielsweise Trialkoxytitanate wie beispielsweise Trimethoxytitanat, Triethoxytitanat, Tripropoxytitanat, Tributoxytitanat, Alkoxyzirkonate, beispielsweise Tetraalkoxyzirkonate wie beispielsweise Tetramethoxyzirkonat, Tetraethoxyzirkonat, Tetrapropoxyzirkonat, Tetrabutoxyzirkonat, oder beispielsweise Trialkoxyzirkonate wie beispielsweise Tri- methoxyzirkonat, Triethoxyzirkonat, Tripropoxyzirkonat, Tributoxyzirkonat, Silikasole, amphiphile Substanzen und/oder Graphite zu nennen. Insbesondere bevorzugt ist Graphit.

Als viskositätssteigernde Verbindung kann beispielsweise auch, gegebenenfalls zusätzlich zu den oben genannten Verbindungen, eine organische Verbindung und/oder ein hydrophiles Polymer wie beispielsweise Cellulose oder ein Cellulosederivat wie beispielsweise Methylcellulose und/oder ein Polyacrylat und/oder ein Polymethacrylat und/oder ein Polyvinylalkohol und/oder ein Polyvinylpyrrolidon und/oder ein Polyisobu- ten und/oder ein Polytetrahydrofuran eingesetzt werden.

Als Anteigungsmittel kann unter anderem bevorzugt Wasser oder mindestens ein Al- kohol wie beispielsweise ein Monoalkohol mit 1 bis 4 C-Atomen wie beispielsweise

Methanol, Ethanol, n-Propanol, iso-Propanol, 1-Butanol, 2-Butanol, 2-Methyl-1-pro- panol oder 2-Methyl-2-propanol oder ein Gemisch aus Wasser und mindestens einem der genannten Alkohole oder ein mehrwertiger Alkohol wie beispielsweise ein Glykol, bevorzugt ein wassermischbarer mehrwertiger Alkohol, allein oder als Gemisch mit Wasser und/oder mindestens einem der genannten einwertigen Alkohole eingesetzt werden.

Weitere Additive, die zum Kneten und/oder Verformen eingesetzt werden können, sind unter anderem Amine oder Aminderivate wie beispielsweise Tetraalkylammonium- Verbindungen oder Aminoalkohole und Carbonat enthaltende Verbindungen wie etwa Calciumcarbonat. Solche weiteren Additive sind etwa in der EP 0 389 041 A1 , der EP 0 200 260 A1 oder der WO 95/19222 beschrieben.

Die Reihenfolge der Additive wie Templatverbindung, Binder, Anteigungsmittel, viskosi- tätssteigernde Substanz beim Verformen und Kneten ist grundsätzlich nicht kritisch.

Gemäß einer weiteren bevorzugten Ausführungsform wird der gemäß Kneten und/oder Verformen erhaltene Formkörper mindestens einer Trocknung unterzogen, die im Allgemeinen bei einer Temperatur im Bereich von 25 bis 300 0 C, bevorzugt im Bereich von 50 bis 300 0 C und besonders bevorzugt im Bereich von 100 bis 300 0 C durchgeführt wird. Ebenso ist es möglich, im Vakuum oder unter Schutzgasatmosphäre oder durch Sprühtrocknung zu trocknen.

Gemäß einer besonders bevorzugten Ausführungsform wird im Rahmen dieses Trock- nungsvorgangs mindestens eine der als Additive zugesetzten Verbindungen zumindest teilweise aus dem Formkörper entfernt.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer erfindungsgemäßen Mischung zur Aufnahme mindestens eines Stoffes, zu dessen Spei- cherung, Abtrennung, kontrollierten Abgabe, chemischen Umsetzung oder als Träger.

Vorzugsweise handelt es sich bei dem mindestens einen Stoff um ein Gas oder Gasgemisch.

Verfahren zur Speicherung mit Hilfe von metallorganischen Gerüstmaterialien im Allgemeinen sind in WO-A 2005/003622, WO-A 2003/064030, WO-A 2005/049484, WO- A 2006/089908 sowie DE-A 10 2005 012 087 beschrieben. Die dort beschriebenen Verfahren können auch für das erfindungsgemäße metallorganische Gerüstmaterial eingesetzt werden.

Verfahren zur Trennung beziehungsweise Reinigung mit Hilfe von metallorganischen Gerüstmaterialien im Allgemeinen sind in der EP-A 1 674 555, DE-A 10 2005 000938 und in der deutschen Patentanmeldung mit der Anmeldenummer DE-A 10 2005 022 844 beschrieben. Die dort beschriebenen Verfahren können auch für das erfindungs- gemäße metallorganische Gerüstmaterial eingesetzt werden.

Sofern das erfindungsgemäße poröse metallorganische Gerüstmaterial zur Speicherung eingesetzt wird, erfolgt dies vorzugsweise in einem Temperaturbereich von -200°C bis +80°C. Mehr bevorzugt ist ein Temperaturbereich von -40°C bis +80 0 C.

Im Rahmen der vorliegenden Erfindung werden vereinfachend die Begriffe „Gas" und „Flüssigkeit" verwendet, wobei hier jedoch ebenso Gasgemische sowie Flüssigkeitsgemische beziehungsweise flüssige Lösungen unter dem Begriff „Gas" beziehungsweise „Flüssigkeit" zu verstehen sind.

Bevorzugte Gase sind Wasserstoff, Erdgas, Stadtgas, Kohlenwasserstoffe, insbesondere Methan, Ethan, Ethen, Acetylen, Propan, n-Butan sowie i-Butan, Kohlenmonoxid, Kohlendioxid, Stickoxide, Sauerstoff, Schwefeloxide, Halogene, halogenide Kohlenwasserstoffe, NF 3 , SF 6 , Ammoniak, Borane, Phosphane, Schwefelwasserstoff, Amine, Formaldehyd, Edelgase, insbesondere Helium, Neon, Argon, Krypton sowie Xenon.

Besonders bevorzugt handelt es sich bei dem Gas um Kohlendioxid, das aus einem Kohlendioxid enthaltenden Gasgemisch abgetrennt wird. Bevorzugt weist dabei das Gasgemisch neben Kohlendioxid wenigstens H 2 , CH 4 oder Kohlenmonoxid auf. Insbe- sondere weist dabei das Gasgemisch neben Kohlendioxid Kohlenmonoxid auf. Ganz besonders bevorzugt sind Gemische, die wenigstens 10 und höchsten 45 Vol.-% Kohlendioxid und wenigstens 30 und höchstens 90 Vol.-% Kohlenmonoxid enthalten.

Eine bevorzugte Ausführungsform ist die Druckwechseladsorption mit mehreren paral- lelen Adsorberreaktoren, wobei die Adsorbensschüttung ganz oder teilweise aus dem erfindungsgemäßen Material besteht. Die Adsorptionsphase findet für die CO 2 /CO- Trennung bevorzugt bei einem CO 2 -Partialdruck von 0,6 bis 3 bar und Temperatur von wenigstens 20, jedoch höchstens 70 0 C statt. Zur Desorption des adsorbierten Kohlendioxids wird der Gesamtdruck in dem betreffenden Adsorberreaktor üblicherweise ab- gesenkt auf Werte zwischen 100 mbar und 1 bar.

Weiterhin bevorzugt ist die Verwendung des erfindungsgemäßen Gerüstmaterials zum Speichern eines Gases bei einem Mindestdruck von 100 bar (absolut). Mehr bevorzugt beträgt der Mindestdruck 200 bar (absolut), insbesondere 300 bar (absolut). Hierbei handelt es sich besonders bevorzugt bei dem Gas um Wasserstoff oder Methan.

Bei dem mindestens einen Stoff kann es sich jedoch auch um eine Flüssigkeit handeln. Beispiele für eine solche Flüssigkeit sind Desinfektionsmittel, anorganische oder organische Lösemittel, Treibstoffe - insbesondere Benzin oder Diesel -, Hydraulik-, Kühler-, Bremsflüssigkeit oder ein öl, insbesondere Maschinenöl. Weiterhin kann es sich bei der Flüssigkeit um halogenierte aliphatische oder aromatische, cyclische oder acyc- lische Kohlenwasserstoffe oder Mischungen davon handeln. Insbesondere kann die Flüssigkeit Aceton, Acetonitril, Anilin, Anisol, Benzol, Benzonitril, Brombenzol, Butanol, tert.-Butanol, Chinolin, Chlorbenzol, Chloroform, Cyclohexan, Diethylenglykol, Diethyl- ether, Dimethylacetamid, Dimethylformamid, Dimethylsulfoxid, Dioxan, Eisessig, Essigsäureanhydrid, Essigsäureethylester, Ethanol, Ethylencarbonat, Ethylendichlorid, Ethy- lenglykol, Ethylenglykoldimethylether, Formamid, Hexan, Isopropanol, Methanol, Me- thoxypropanol, 3-Methyl-1 -butanol, Methylenchlorid, Methylethylketon, N-Methyl- formamid, N-Methylpyrrolidon, Nitrobenzol, Nitromethan, Piperidin, Propanol, Propy- lencarbonat, Pyrridin, Schwefelkohlenstoff, Sulfolan, Tetrachlorethen, Tetrachlorkoh-

lenstoff, Tetrahydrofuran, Toluol, 1 ,1 ,1-Trichlorethan, Trichlorethylen, Triethylamin, Triethylenglykol, Triglyme, Wasser oder Mischungen hiervon handeln.

Weiterhin kann der mindestens eine Stoff ein Geruchsstoff sein.

Vorzugsweise handelt es sich bei dem Geruchsstoff um eine flüchtige organische oder anorganische Verbindung, die mindestens eines der Elemente Stickstoff, Phosphor, Sauerstoff, Schwefel, Fluor, Chlor, Brom oder lod enthält oder ein ungesättigter oder aromatischer Kohlenwasserstoff oder ein gesättigter oder ungesättigter Aldehyd oder ein Keton ist. Mehr bevorzugte Elemente sind Stickstoff, Sauerstoff, Phosphor, Schwefel, Chlor, Brom; insbesondere bevorzugt sind Stickstoff, Sauerstoff, Phosphor und Schwefel.

Insbesondere handelt es sich bei dem Geruchsstoff um Ammoniak, Schwefelwasser- stoff, Schwefeloxide, Stickoxide, Ozon, cyclische oder acyclische Amine, Thiole, Thio- ether sowie Aldehyde, Ketone, Ester, Ether, Säuren oder Alkohole. Besonders bevorzugt sind Ammoniak, Schwefelwasserstoff, organische Säuren (bevorzugt Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Capron- säure, Heptylsäure, Laurinsäure, Pelargonsäure) sowie cyclische oder acyclische Koh- lenwasserstoffe, die Stickstoff oder Schwefel enthalten sowie gesättigte oder ungesättigte Aldehyde, wie Hexanal, Heptanal, Oktanal, Nonanal, Decanal, Octenal oder No- nenal und insbesondere flüchtige Aldehyde wie Butyraldehyd, Propionaldehyd, Acetal- dehyd und Formaldehyd und weiterhin Treibstoffe wie Benzin, Diesel (Inhaltsstoffe).

Bei den Geruchsstoffen kann es sich auch um Riechstoffe, die beispielsweise zur Herstellung von Parfümen verwendet werden, handeln. Beispielhaft seien als Riechstoffe oder öle, die solche Riechstoffe freisetzen zu nennen: ätherische öle, Basilikumöl, Geranienöl, Minzöl, Canangabaumöl, Kardamomöl, Lavendelöl, Pfefferminzöl, Muskat- öl, Kamillenöl, Eukalyptusöl, Rosmarinöl, Zitronenöl, Limettenöl, Orangenöl, Bergamot- tenöl, Muskateller Salbeiöl, Korianderöl, Zypressenöl, 1 ,1-Dimethoxy-2-pherylethan, 2,4-Dimethyl-4-phenyltetrahydrofuran, Dimethyltetrahydrobenzaldehyd, 2,6-Dimethyl-7- octen-2-ol, 1 ,2-Diethoxy-3,7-dimethyl-2,6-octadien, Phenylacetaldehyd, Rosenoxid, Ethyl-2-methylpentanoat, 1-(2,6,6-Trimethyl-1 ,3-cyclohexadien-1-yl)-2-buten-1-on,

Ethylvanillin, 2,6-Dimethyl-2-octenol, 3,7-Dimethyl-2-octenol, tert-Butylcyclohexyl- acetat, Anisylacetate, Allylcyclohexyloxyacetat, Ethyllinalool, Eugenol, Cumarin, Ethyl- acetacetat, 4-Phenyl-2,4,6-trimethyl-1 ,3-dioxan, 4-Methylen-3,5,6,6-tetramethyl-2- heptanon, Ethyltetrahydrosafranat, Geranylnitril, cis-3-Hexen-1-ol, cis-3-Hexenylacetat, cis-3-Hexenylmethylcarbonate, 2,6-Dimethyl-5-hepten-1-al, 4-(Tricyclo[5.2.1.0]decyli- dene)-8-butanal, 5-(2,2,3-Trimethyl-3-cyclopentenyl)-3-methylpentan-2-ol, p-tert-Butyl- alpha-methylhydrozimtaldehyd, Ethyl[5.2.1.0]tricyclodecancarboxylat, Geraniol, Citro-

nellol, Citral, Linalool, Linalylacetat, Jonone, Phenylethanol oder Mischungen hiervon.

Im Rahmen der vorliegenden Erfindung weist ein flüchtiger Geruchsstoff vorzugsweise einen Siedepunkt oder Siedepunktsbereich von weniger als 300 0 C auf. Mehr bevorzugt ist der Geruchsstoff eine leicht flüchtige Verbindung oder Gemisch. Insbesondere bevorzugt weist der Geruchsstoff einen Siedepunkt oder Siedebereich von weniger als 250 0 C, mehr bevorzugt weniger als 230 0 C, insbesondere bevorzugt weniger als 200 0 C auf.

Bevorzugt sind ebenfalls Geruchsstoffe, die eine hohe Flüchtigkeit aufweisen. Als Maß für die Flüchtigkeit kann der Dampfdruck herangezogen werden. Im Rahmen der vorliegenden Erfindung weist ein flüchtiger Geruchsstoff vorzugsweise einen Dampfdruck von mehr als 0,001 kPa (20°C) auf. Mehr bevorzugt ist der Geruchsstoff eine leicht flüchtige Verbindung oder Gemisch. Insbesondere bevorzugt weist der Geruchsstoff einen Dampfdruck von mehr als 0,01 kPa (20 0 C) auf, mehr bevorzugt einen Dampfdruck von mehr als 0,05 kPa (20 0 C) auf. Besonders bevorzugt weisen die Geruchsstoffe einen Dampfdruck von mehr als 0,1 kPa (20 °C) auf.

Beispiele, bei der eine chemische Umsetzung in Gegenwart des erfindungsgemäßen metallorganischen Gerüstmaterials stattfinden kann, stellen die Alkoxylierung von Mo- noolen sowie Polyolen dar. Die Durchführung solcher Alkoxylierungen sind WO-A 03/035717 sowie WO-A 2005/03069 beschrieben. Ebenso kann das erfindungsgemäße poröse metallorganische Gerüstmaterial zur Epoxidierung sowie Herstellung von Polyalkylencarbonaten und Wasserstoffperoxid eingesetzt werden. Solche Reaktionen sind in WO-A 03/101975, WO-A 2004/037895 sowie US-A 2004/081611 beschrieben.

Besonders bevorzugt sind katalytische Umsetzungen.

Darüber hinaus kann das erfindungsgemäße metallorganische Gerüstmaterial als Trä- ger, insbesondere als Träger eines Katalysators, dienen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Abtrennung eines Stoffes aus einem Stoffgemisch die Schritte enthaltend

(a) Inkontaktbringen des Stoffes mit einer erfindungsgemäßen Mischung zu dessen zumindest teilweisen Aufnahme durch Adsorption bei einem ersten Druck,

(b) zumindest teilweise Abgabe des Stoffes durch Desorption bei einem zweiten

Druck, der niedriger ist als der erste Druck und

(c) gegebenenfalls Wiederholung der Schritte (a) und (b).

Das erfindungsgemäße Verfahren zur Abtrennung eines Stoffes aus einem Stoffgemisch erfolgt vorzugsweise durch Druckwechseladsorption (PSA). Weiterhin bevorzugt ist Vakuumdruckwechseladsorption.

Weiterhin ist im Rahmen der vorliegenden Erfindung bevorzugt, dass die Wiederholung der Adsorption in Schritt (a) in einer Zeit von weniger als 60 Minuten erfolgt. Hierbei ist es zweckmäßig, dass der erste Druck mindestens 1 ,2 bar (absolut) beträgt. Demzufol- ge ist der zweite Druck höchstens 1 ,1 bar (absolut).

Vorzugsweise beträgt die Zeit für die Wiederholung weniger als 20 Minuten, weiter bevorzugt weniger als 10 Minuten. Der erste Druck ist weiter mehr bevorzugt größer als 2 bar (absolut), jedoch kleiner als 10 bar. Die Desorption erfolgt weiter bevorzugt bei einem Druck von weniger als 500 mbar, insbesondere weniger als 300 mbar (absolut).

Im Rahmen der vorliegenden Erfindung ist es besonders bevorzugt, dass der abzutrennende Stoff Kohlendioxid enthält. Darüber hinaus kann das Stoffgemisch min- destens ein Gas ausgewählt aus der Gruppe bestehend aus Methan, Ethan, Propan, n- Butan, 2-Methylbutan, Kohlenmonoxid und Wasserstoff enthalten.

Beispiele

Nachfolgend wird als Gerüstmaterialkomponente B AI-BDC als metallorganisches Gerüstmaterial verwendet („AI-MOF"). Dessen Herstellung ist in Beispiel 1 der WO-A 2007/023134 beschrieben.

Als Latentwärmekomponente A wird ein Latentwärmespeicher analog Beispiel 8 der DE-A 2005/002 41 1 eingesetzt. Hierbei wird ein Extruder-Versuchsaufbau (dichtkämmender Gleichdralldoppelschneckenextruder) mit einer Austragsdüse mit Kreuzform Herstellung eines Granulates verwendet (4 x 3 mm Profildüse).

Materialien:

A) sprühgetrocknetes Polymethylmethacrylat (PMMA)-Mikrokapselpulver gemäß DE-A 197 49 731 mit einem Kern aus n-Eicosan (Schmelzpunkt ca. 35°C), bestehend aus 87 Gew.-% Kern, 10 Gew.-% vernetzter PMMA-Wand und 3 % Dispergiermittel Polyvinyl- alkohol. Mittlere Teilchengröße der Kapseln: 3-5 Mikrometer. B) 55 gew.-%ige, wässrige Polymerdispersion eines Polymers aus 88 Gew.-% Styrol,

10 Gew.-% Acrylnitril und 2 Gew.-% Acrylsäure, zahlenmittleres Molekulargewicht Mn: 8000, volumenmittleres Molekulargewicht Mw:45 000, Glasübergangstemperatur Tg: 105 0 C.

In dem Exdruder werden die beiden Materielaien mit folgenden Geschwindigkeiten zugeführt: Material A (Wärmespeicher-Kapseln) 36 kg/h, Material B (Polymerdispersion verdünnt auf Feststoffgehalt von 25%) 6kg/h. Die Kopftemperatur des Extruders beträgt 80 0 C. Mit dieser Temperatur wird das Material homogen und gleichmäßig aus der Düse gefördert und durch einen wasserfreien Trockenabschlag Granulate von 2-3 mm Länge und 3 mm Gesamtdurchmesser erhalten. Die Kanten der Granulate sind abgerundet. Der theoretische Bindemittelanteil im Granulat beträgt 4,0 Gew.-%. Das Granulat wird anschließend im Warmluftstrom getrocknet und anschließend noch bei 1 10 0 C für 1 h getempert.

Der gemessene mittlere Korndurchmesser des getemperten kreuzförmigen Granulates betrug 2,6 mm (Meßmethode gemäß ASTM D-2862).

Beispiel 1 :

In einen 50ml Druckbehälter aus Stahl mit integriertem Thermoelement wird eine Mi- schung aus 25ml (12,34g) AI-MOF Tabletten (1 ,5x1 ,5mm) sowie 25ml (9,88g) Latentwärmespeicher gefüllt. Danach wird der Druckbehälter geschlossen. Anschließend wird innerhalb von 10 Sekunden 20bar CO 2 Druck aufgebaut und 3 Minuten gewartet. Danach wird auf Umgebungsdruck entspannt und wieder 3 Minuten gewartet. Nach 10 Wiederholungen wird das System vollständig evakuiert.

Vergleichsbeispiel 1 :

Ein 50ml Druckbehälter aus Stahl mit integriertem Thermoelement wird mit 25ml (12,34g) AI-MOF Tabletten (1 ,5x1 ,5mm) sowie 25ml 6mm Glaskugeln gefüllt. Danach wird der Druckbehälter geschlossen. Anschließend wird innerhalb von 10 Sekunden 20bar CO 2 Druck aufgebaut und 3 Minuten gewartet. Danach wird auf Umgebungsdruck entspannt und wieder 3 Minuten gewartet. Nach 10 Wiederholungen wird das System vollständig evakuiert.

Fig. 1 zeigt den Temperaturverlauf für Beispiel 1 und Vergleichsbeispiel 1 , wobei die Temperatur T in 0 C als Funktion der Zeit t in Sekunden dargestellt ist. Hierbei entspricht die dicke Kurve Beispiel 1 und die dünne Kurve Vergleichsbeispiel 1.

Wie den Kurven zu entnehmen ist, kann durch Einsatz der erfindungsgemäßen Mi- schung die Temperaturschwankung verringert werden.

Beispiel 2:

In einen 50ml Druckbehälter aus Stahl mit integriertem Thermoelement wird eine Mischung aus 25ml (12,34g) AI-MOF Tabletten (1 ,5x1 ,5mm) sowie 25ml (9,88g) Latent- wärmespeicher gefüllt. Danach wird der Druckbehälter geschlossen. Anschließend wird innerhalb von 10 Sekunden 20bar CO 2 Druck aufgebaut und 10 Minuten gewartet. Danach wird auf Umgebungsdruck entspannt und wieder 10 Minuten gewartet. Nach 10 Wiederholungen wird das System vollständig evakuiert.

Vergleichsbeispiel 2:

Ein 50ml Druckbehälter aus Stahl mit integriertem Thermoelement wird mit 25ml (12,34g) AI-MOF Tabletten (1 ,5x1 ,5mm) sowie 25ml 6mm Glaskugeln gefüllt. Danach wird der Druckbehälter geschlossen. Anschließend wird innerhalb von 10 Sekunden 20bar CO 2 Druck aufgebaut und 10 Minuten gewartet. Danach wird auf Umgebungs- druck entspannt und wieder 10 Minuten gewartet. Nach 10 Wiederholungen wird das System vollständig evakuiert.

Fig. 2 zeigt den Temperaturverlauf für Beispiel 2 und Vergleichsbeispiel 2, wobei die Temperatur T in 0 C als Funktion der Zeit t in Sekunden dargestellt ist. Hierbei ent- spricht die dicke Kurve Beispiel 2 und die dünne Kurve Vergleichsbeispiel 2.

Wie den Kurven zu entnehmen ist, kann durch Einsatz der erfindungsgemäßen Mischung die Temperaturschwankung verringert werden.