Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MODIFIED MICROALGAE FOR ENHANCED PHOSPHATE UPTADE INVOLVING OVEREXPRESSION OF PSR1 AND OPTIONALLY UNDEREXPRESSION OF PTC1
Document Type and Number:
WIPO Patent Application WO/2023/198774
Kind Code:
A1
Abstract:
The invention provides a recombinant microalgal strain comprising in its genome a first modification which causes overexpression of a PSR1 gene, and optionally a further modification which reduces or eliminates expression from an endogenous PTC1 gene. The strains of the invention have utility in promoting phosphate uptake, for example from wastewater, with the microalgae then being useful as fertilisers.

Inventors:
YI KEKE (CN)
WANG LONG (CN)
JIA XIANQING (CN)
XU LEI (CN)
Application Number:
PCT/EP2023/059559
Publication Date:
October 19, 2023
Filing Date:
April 12, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INST OF AGRICULTURAL RESOURCES AND REGIONAL PLANNING OF THE CHINESE ACADEMY OF AGRICULTURAL SCIENCES (CN)
International Classes:
C12N1/12; C02F3/34; C05F11/00; C12N15/63
Domestic Patent References:
WO2021170754A12021-09-02
WO2014076571A22014-05-22
WO1995034668A21995-12-21
WO2019200318A12019-10-17
WO2017165290A12017-09-28
Foreign References:
US10155954B22018-12-18
CN109970868A2019-07-05
CN109970868A2019-07-05
US20120208201A12012-08-16
US6706394B22004-03-16
US5516670A1996-05-14
US5231020A1993-07-27
US20190045812A12019-02-14
US20180187170A12018-07-05
Other References:
BAJHAIYA AMIT K. ET AL: "PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii", PLANT PHYSIOLOGY, vol. 170, no. 3, 1 March 2016 (2016-03-01), pages 1216 - 1234, XP093057086, Retrieved from the Internet DOI: 10.1104/pp.15.01907
NGAN CHEW YEE ET AL: "Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae", NATURE PLANTS, vol. 1, no. 8, 27 July 2015 (2015-07-27), XP093057239, Retrieved from the Internet DOI: 10.1038/nplants.2015.107
SLOCOMBE STEPHEN P. ET AL: "Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates", FRONTIERS IN PLANT SCIENCE, vol. 11, 30 June 2020 (2020-06-30), pages 1 - 17, XP093057085, DOI: 10.3389/fpls.2020.00982
MAU LISA ET AL: "Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer", FRONTIERS IN PLANT SCIENCE, vol. 12, 28 January 2021 (2021-01-28), XP093057090, DOI: 10.3389/fpls.2021.631314
WANG LONG ET AL: "Engineering microalgae for water phosphorus recovery to close the phosphorus cycle", PLANT BIOTECHNOLOGY JOURNAL, vol. 21, no. 7, 15 March 2023 (2023-03-15), GB, pages 1373 - 1382, XP093057202, ISSN: 1467-7644, Retrieved from the Internet DOI: 10.1111/pbi.14040
WANG, L.JIA, X.XU, L.YU, J.REN, S.YANG, Y.WANG, K.LOPEZ-ARREDONDO, D.HERRERA-ESTRELLA, LLAMBERS, H.: "Engineering microalgae for water phosphorus recovery to close the phosphorus cycle", PLANT BIOTECHNOL J, 2023, Retrieved from the Internet
SAMBROOK ET AL.: "Molecular Cloning: a Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
ZHANG ET AL., THE PLANT CELL, vol. 4, 1992, pages 1575 - 1588
LUMBRERAS ET AL.: "Efficient foreign gene expression in C. reinhardtii mediated by an endogenous intron", THE PLANT JOURNAL, vol. 14, no. 4, 1998, pages 441 - 447, XP001150496, DOI: 10.1046/j.1365-313X.1998.00145.x
FUKUDA H ET AL., BRIEF FUNCT. GENOMIC PROTEOMIC, vol. 5, no. 3, 2006, pages 190 - 208
RENTHAL WNESTLER E. J., SEMIN CELL DEV BIOL., vol. 20, no. 4, 2009, pages 387 - 94
LIN Y. Y. ET AL., GENES DEV., vol. 22, no. 15, 2008, pages 2062 - 74
FROMM, PROC. NATL. ACAD. SCI. (USA, vol. 82, 1985, pages 5824 - 5828
MARUYAMA, BIOTECHNOLOGY TECHNIQUES, vol. 8, 2004, pages 821 - 826
KIM, MAR. BIOTECHNOL., vol. 4, 2002, pages 63 - 73
CHAMPAGNE ET AL.: "Magnetophoresis for pathway engineering in green cells", METABOLIC ENGINEERING V: GENOME TO PRODUCT, ENGINEERING CONFERENCES INTERNATIONAL LAKE TAHOE CA, 2004, pages 76
ELIZABETH H HARRIS: "Chlamydomonas As A Model Organism", ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, vol. 52, 2001, pages 363 - 406
EMBO PRACTICAL COURSE: MOLECULAR GENETICS OF CHLAMYDOMONAS, LABORATORY PROTOCOLS. GENEVA
SMITH ET AL., NATURE, vol. 334, 1988, pages 724 - 726
ENGLISH ET AL., THE PLANT CELL, vol. 8, 1996, pages 179 - 188
BOURQUE, PLANT SCIENCE, vol. 105, 1995, pages 125 - 149
FLAVELL, PNAS USA, vol. 91, 1994, pages 3490 - 3496
VAN DER KROL ET AL., THE PLANT CELL, vol. 2, 1990, pages 279 - 289
ANGELLBAULCOMBE, THE EMBO JOURNAL, vol. 16, no. 12, 1997, pages 3675 - 3684
VOINNETBAULCOMBE, NATURE, vol. 389, 1997, pages 553
FIRE A ET AL., NATURE, vol. 391, 1998
FIRE, TRENDS GENET, vol. 15, 1999, pages 358 - 363
V. RUBIO ET AL., GENES DEV, vol. 15, 2001, pages 2122 - 2133
HAMMOND ET AL., NATURE REV. GENES, vol. 2, 2001, pages 1110 - 1119
TUSCHL, CHEM. BIOCHEM., vol. 2, 2001, pages 239 - 245
ZAMORE P.D., NATURE STRUCTURAL BIOLOGY, vol. 8, no. 9, 2001, pages 746 - 750
SCHWAB ET AL., PLANT CELL, vol. 18, 2006, pages 1121 - 1133
MOHSENPOUR, SEYEDEH FATEMEH ET AL.: "Integrating micro-algae into wastewater treatment: A review", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 752, 2021, pages 142168
WOLLMANN, F.DIETZE, S.ACKERMANN, J.-U.BLEY, T.WALTHER, T.STEINGROEWER, J.KRUJATZ, F: "Microalgae wastewater treatment: Biological and technological approaches", ENGINEERING IN LIFE SCIENCES, vol. 19, 2019, pages 860 - 871
MIRANDA, A.F.RAMKUMAR, N.ANDRIOTIS, C. ET AL.: "Applications of microalgal biofilms for wastewater treatment and bioenergy production", BIOTECHNOLOGY FOR BIOFUELS, vol. 10, 2017, pages 120
CHOUDHARY, P.PRAJAPATI, S.K.KUMAR, P.MALIK, A.PANT, K.K.: "Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications", BIORESOURCE TECHNOLOGY, vol. 224, 2017, pages 276 - 284, XP029848412, DOI: 10.1016/j.biortech.2016.10.078
"Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production", ALGAL RESEARCH, vol. 24, 2017, pages 477 - 485
SOLOVCHENKO, A.VERSCHOOR, A.M.JABLONOWSKI, N.D.NEDBAL, L: "Phosphorus from wastewater to crops: An alternative path involving microalgae", BIOTECHNOLOGY ADVANCES, vol. 34, 2016, pages 550 - 564, XP029637409, DOI: 10.1016/j.biotechadv.2016.01.002
ZOU, Y.ZENG, Q.LI, H.LIU, HLU, Q.: "Emerging technologies of algae-based wastewater remediation for bio-fertilizer production: a promising pathway to sustainable agriculture", JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, vol. 96, 2021, pages 551 - 563
CHU, Q.LYU, T.XUE, L. ET AL.: "Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers", JOURNAL OF CLEANER PRODUCTION, vol. 283, 2021, pages 124627
MULBRY, W.,KONDRAD, S., PIZARRO, C., KEBEDE-WESTHEAD, E.: "Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers ", BIORESOUR. TECHNOL., vol. 99, pages 8137 - 8142, XP023182718, DOI: 10.1016/j.biortech.2008.03.073
ALVAREZ, A.L.WEYERS, S.L.GOEMANN, H.M.PEYTON, B.M.GARDNER, R.D.: "Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture", ALGAL RESEARCH, vol. 54, 2021, pages 102200
LI, K.LIU, Q.FANG, F. ET AL.: "Microalgae-based wastewater treatment for nutrients recovery: A review", BIORESOURCE TECHNOLOGY, vol. 291, 2019, pages 121934, XP085800073, DOI: 10.1016/j.biortech.2019.121934
QIN, L.GAO, M.ZHANG, M.FENG, L.LIU, QZHANG, G.: "Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control", WATER RESEARCH, vol. 187, 2020, pages 116430, XP086343175, DOI: 10.1016/j.watres.2020.116430
REICH, P.BOLEKSYN, J: "Global patterns of plant leaf N and P in relation to temperature and latitude", PROC. NATL. ACAD. SCI., vol. 101, 2004, pages 11001 - 11006
NIE, X.MUBASHAR, M.ZHANG, S.QIN, Y.ZHANG, X.: "Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review", J. CLEAN. PROD., vol. 277, 2020, pages 124209, XP086330619, DOI: 10.1016/j.jclepro.2020.124209
LI, X.PATENA, W.FAUSER, F. ET AL.: "A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis", NAT GENET, vol. 51, 2019, pages 627 - 635, XP036900970, DOI: 10.1038/s41588-019-0370-6
MOLNAR, A.BASSETT, A.THUENEMANN, E.SCHWACH, F.KARKARE, S.OSSOWSKI, S.WEIGEL, DBAULCOMBE, D: "Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii", THE PLANT JOURNAL, vol. 58, 2009, pages 165 - 174, XP002648123, DOI: 10.1111/J.1365-313X.2008.03767.X
FERENCZI, A.PYOTT, D.E.XIPNITOU, AMOLNAR, A: "Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 114, 2017, pages 13567 - 13572, XP055529174, DOI: 10.1073/pnas.1710597114
D. CORDELLJ.-O. DRANGERTS. WHITE, GLOB. ENVIRON. CHANGE., vol. 19, 2009, pages 292 - 305
G. K. MACDONALDE. M. BENNETTP. A. POTTERN. RAMANKUTTY, PROC. NATL. ACAD. SCI., vol. 108, 2011, pages 3086 - 3091
D. CORDELLS. WHITE, ANNU. REV. ENVIRON. RESOUR., vol. 39, 2014, pages 161 - 188
D. W. SCHINDLER ET AL., PROC. NATL. ACAD. SCI., vol. 105, 2008, pages 11254 - 11258
K. LI ET AL., BIORESOUR. TECHNOL., vol. 291, 2019, pages 121934
Y. XUY. WUS. ESQUIVEL-ELIZONDOJ. DOLFINGB. E. RITTMANN, TRENDS BIOTECHNOL, vol. 38, 2020, pages 1292 - 1303
A. SOLOVCHENKOA. M. VERSCHOORN. D. JABLONOWSKIL. NEDBAL, BIOTECHNOL. ADV., vol. 34, 2016, pages 550 - 564
L. QIN ET AL., WATER RES, vol. 187, 2020, pages 116430
I. S. A. ABEYSIRIWARDANA-ARACHCHIGEH. M. K. DELANKA-PEDIGES. P. MUNASINGHE-ARACHCHIGEN. NIRMALAKHANDAN, BIORESOUR. TECHNOL., vol. 332, 2021, pages 125128
D. D. WYKOFFA. R. GROSSMAND. P. WEEKSH. USUDAK. SHIMOGAWARA, PROC. NATL. ACAD. SCI., vol. 96, 1999, pages 15336 - 15341
J. L. MOSELEYC.-W. CHANGA. R. GROSSMAN, EUKARYOT. CELL., vol. 5, 2006, pages 26 - 44
A. K. BAJHAIYAA. P. DEANL. A. H. ZEEFR. E. WEBSTERJ. K. PITTMAN, PLANT PHYSIOL., vol. 170, 2016, pages 1216 - 1234
L. WANG ET AL., MOL. PLANT., vol. 14, 2021, pages 838 - 846
M. AKSOYW. POOTAKHAMA. R. GROSSMAN, PLANT CELL, vol. 26, 2014, pages 4214 - 4229
F. WOLLMANN ET AL., ENG. LIFE SCI., vol. 19, 2019, pages 860 - 871
S. F. MOHSENPOURS. HENNIGEN. WILLOUGHBYA. ADELOYET. GUTIERREZ, SCI. TOTAL ENVIRON, vol. 752, 2021, pages 142168
X. LI ET AL., NAT. GENET., vol. 51, 2019, pages 627 - 635
J. D. QUISELD. D. WYKOFFA. R. GROSSMAN, PLANT PHYSIOL., vol. 111, 1996, pages 839 - 848
W. ZHANG ET AL., PROC. NATL. ACAD. SCI., vol. 118, 2021
K. SHIMOGAWARAS. FUJIWARAA. GROSSMANH. USUDA, GENETICS, vol. 148, 1998, pages 1821 - 1828
T. P. WERNERN. AMRHEINF. M. FREIMOSER, ARCH. MICROBIOL., vol. 184, 2005, pages 129 - 136
A. CHENJ. HUS. SUNG. XU, NEW PHYTOL, vol. 173, 2007, pages 817 - 831
R. ASCHAR-SOBBI ET AL., J. FLUORESC., vol. 18, 2008, pages 859 - 866
F.-J. LIC. Y. HE, AUTOPHAGY, vol. 10, 2014, pages 1978 - 1988
C.-W. CHANGJ. L. MOSELEYD. WYKOFFA. R. GROSSMAN, PLANT PHYSIOL., vol. 138, 2005, pages 319 - 329
X. JIA ET AL., J. PLANT PHYSIOL., vol. 248, 2020, pages 153141
D. KIMB. LANGMEADS. L. SALZBERG, NAT. METHODS., vol. 12, 2015, pages 357 - 360
M. PERTEA ET AL., NAT. BIOTECHNOL., vol. 33, 2015, pages 290 - 295
M. I. LOVEW. HUBERS. ANDERS, GENOME BIOL, vol. 15, 2014, pages 1 - 21
L. KUMARM. E. FUTSCHIK, BIOINFORMATION, vol. 2, 2007, pages 5 - 7
T. TIAN ET AL., NUCLEIC ACIDS RES., vol. 45, 2017, pages W122 - W129
ACEVEDO, B., OEHMEN, A., CARVALHO, G., SECO, A., BORRAS, L., BARAT, R.: "Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage", WATER RES, vol. 46, 2012, pages 1889 - 1900, XP028459019, DOI: 10.1016/j.watres.2012.01.003
CHEN, X., LI, Z., HE, N., ZHENG, Y., LI, H., WANG, H., WANG, Y., LU, Y., LI, Q., PENG, Y.: "Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor", BIOTECHNOL. BIOFUELS, vol. 11, 2018, pages 190
QIN, L.GAO, M.ZHANG, M.FENG, L.LIU, Q.ZHANG, G.: "Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control", WATER RES., vol. 187, 2020, pages 116430, XP086343175, DOI: 10.1016/j.watres.2020.116430
LORENZO-ORTS, L.COUTO, D.HOTHORN, M.: "Identity and functions of inorganic and inositol polyphosphates in plants", NEW PHYTOL, vol. 225, 2020, pages 637 - 652
SIEBERS, N.HOFMANN, D.SCHIEDUNG, H.LANDSRATH, A.ACKERMANN, B.GAO, L.MOJZES, P.JABLONOWSKI, N. D.NEDBAL, L.AMELUNG, W: "Towards phosphorus recycling for agriculture by algae: Soil incubation and rhizotron studies using 33P-labeled microalgal biomass", ALGAL RES, vol. 43, 2019, pages 101634
Attorney, Agent or Firm:
MEWBURN ELLIS LLP (GB)
Download PDF:
Claims:
Claims

1 A recombinant microalgal strain comprising in its genome a first modification which causes overexpression of a PSR1 gene, and optionally a further modification which reduces or eliminates expression from an endogenous PTC1 gene.

2 The recombinant strain of claim 1 comprising the further modification which reduces or eliminates expression from an endogenous PTC1 gene.

3 The recombinant strain of any one of claims 1 to 2 wherein the microalgal strain is a chiorophyte.

4 The recombinant strain of claim 3 wherein the chiorophyte is Chlamydomonas.

5 The recombinant strain of claim 3 or claim 4 wherein the strain is selected from the strains shown in Table 1 .

6 The recombinant strain of any one of claims 1 to 5 wherein the PSR1 gene is

(i) from a species shown in Table 1 and/or

(ii) comprises any of SEQ ID No 2, or any of SEQ ID Nos 48 to 70, or 72 to 90 or a homologue or derivative thereof,

(iii) encodes any of SEQ ID No 1 , or any of SEQ ID Nos 5 to 27, or 29 to 47 or a homologue or derivative thereof.

7 The recombinant strain of any one of claims 1 to 6 wherein the PSR1 gene has at least 75, 80, 85, 90, 95, 96, 97, 98, 99% or 100% identity with any of SEQ ID No 2, or any of SEQ ID Nos 48 to 70, or 72 to 90.

8 The recombinant strain of any one of claims 1 to 6 wherein the PSR1 gene encodes a PSR1 polypeptide having at least 75, 80, 85, 90, 95, 96, 97, 98, 99% or 100% identity with any of SEQ ID No 1 , or any of SEQ ID Nos 5 to 27, or 29 to 47.

9 The recombinant strain of any one of claims 1 to 6 wherein the PSR1 gene encodes a homologue of a PSR1 polypeptide as shown in SEQ ID No 71 .

10 The recombinant strain of any one of claims 1 to 9 wherein the first modification causes up regulation of an endogenous PSR1 gene.

11 The recombinant strain of any one of claims 1 to 9 wherein the first modification is expression of a PSR1 transgene.

12 The recombinant strain of any one of claims 1 to 11 wherein the PTC1 gene comprises the sequence as shown in SEQ ID 4, or any of SEQ ID Nos 134 to 165 or 167 to 176 or is a homologue or genomic equivalent of any of those sequences. 13 The recombinant strain of any one of claims 1 to 12 wherein the PTC1 gene encodes a PTC1 polypeptide having at least 75, 80, 85, 90, 95, 96, 97, 98, 99% or 100% identity with any of SEQ ID No 3, or any of SEQ ID Nos 91 to 123 or 125 to 133 or is a homologue thereof.

14 The recombinant strain of any one of claims 1 to 13 wherein the PTC1 gene encodes a homologue of a PTC1 polypeptide as shown in SEQ ID No 124.

15 The recombinant strain of any one of claims 1 to 14 wherein the further modification down-regulates or inactivates the PTC1 gene.

16 The recombinant strain of any one of claims 1 to 15, which strain:

(i) demonstrates at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% increase in total phosphate or polyphosphate in the strain after culture for 60 hours under comparable conditions compared to a parent strain; or

(ii) demonstrates at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% increase in phosphate removal efficiency by the strain after culture for 60 hours under comparable conditions compared to a parent strain; or

(iii) demonstrates at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% decrease in complete-removing time of total phosphate in a medium after culture under comparable conditions compared to a parent strain; or

(iv) demonstrates at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% decrease in total phosphate in a medium after culture for 60 hours under comparable conditions compared to a parent strain.

17 A biologically pure culture of a recombinant strain of any one of claims 1 to 16.

18 A cell extract; a cell suspension; a cell homogenate; a cell lysate; or a cell pellet of a recombinant strain of any one of claims 1 to 16.

19 A process for producing a recombinant microalgal strain having enhanced PRE efficiency of any one of claims 1 to 16, the process comprising the step of introducing a genetic modification into a parent strain which causes overexpression of a PSR1 gene.

20 The process of claim 19 further comprising the step of introducing a genetic modification into a parent strain which reduces or eliminates overexpression from an endogenous PTC1 gene.

21 A recombinant microalgal strain obtained or obtainable by the process of any one of claims 19 to 20.

22 A method of reducing inorganic or organic phosphorus in an environment, the method comprising introducing or culturing the recombinant strain as defined in any one of claims 1 to 16, or claim 21 , into the environment. 23 The method according to claim 22 wherein the environment is a water body, optionally a waste water source from a municipal or aquacultural or agricultural source from which phosphorus is to be extracted.

24 The method according to any one of claims 22 to 23, which comprises a batch process by which the recombinant strain is added to the environment periodically over a period of time, and is optionally suspended in the environment.

25 The method according to any one of claims 22 to 23, which comprises a continuous flow process in which the recombinant strain is immobilised and exposed to an aqueous source from which phosphorus is to be extracted.

26 The method according to any one of claims 22 to 23, wherein the recombinant strain is exposed to the aqueous source from which phosphorus is to be extracted by raceway ponds, tubular photobioreactors (PBRs), flat panel PBRs, or soft frame PBRs.

27 The method according to any one of claims 22 to 23, wherein the recombinant strain is exposed to the aqueous source from which phosphorus is to be extracted via a permeable floating PBR.

28 The method according to any one of claims 22 to 23, wherein the recombinant strain is exposed to the aqueous source from which phosphorus is to be extracted in the form of a microalgal biofilm.

29 The method according to any one of claims 23 to 28 which further comprises the step of recovering the recombinant strain from the environment or reactor, optionally for use a fertiliser.

30 The method according to claim 29 which further comprises the step of heat-treating the recovered recombinant strain.

31 A fertiliser product obtained or obtainable from the method of claim 29 or claim 30, the fertiliser comprising, consisting or consisting essentially of the recombinant strain.

32 The fertiliser product of claim 30 which is slow release fertiliser or is liquid fertiliser.

33 A method of increasing the phosphorus availability in an environment, which is optionally a plant growing environment, the method comprising dispersing the fertiliser product of any one of claims 30 to 31 into the environment.

34 The method of claim 33 wherein the dispersion is by side-dressing into a growing crop.

Description:
MODIFIED MICROALGAE FOR ENHANCED PHOSPHATE UPTADE INVOLVING OVEREXPRESSION OF PSR1 AND OPTIONALLY UNDEREXPRESSION OF PTC1

Cross-reference to related applications

This patent application claims the benefit of priority of PCT/CN2022/086874 filed 14 April 2022 and which is herein incorporated in its entirety.

Technical field

The present invention relates generally to recombinant microalgal strains for use in promoting phosphate uptake and their use as fertilisers.

Background to the invention

As a finite, non-renewable resource, our present supply of Phosphorus (P) is primarily mined from rock P reserves and limited in a number of geographical regions ( 1, 2). Undue P releases increase environmental pollution due to anthropogenic activities, including industrial wastewater, municipal sewage effluent, and agricultural run-off (3). Reducing P emissions to the ecosystem is proposed as key to reducing eutrophication (4).

Therefore there is a need in the art for a system which can improve P provision for food security, while also reducing environment pollution. Sustainable and energy-efficient approaches for P recovery from waste and recycling it for agriculture are therefore required. Phosphorus is stored as inorganic phosphate (Pi) in the vacuoles of land plants but as inorganic polyphosphate (polyP) in chiorophyte algae. As an environmentally-friendly and sustainable alternative to energy-intensive and conventional biological treatment processes, enhanced biological phosphorus removal (EBPR) is increasingly employed in wastewater treatment (WWT) (5-7). EBPR systems are usually based on polyP accumulating organisms (PAO) such as bacteria and algae.

Because of their relatively low operational cost, lack of a requirement for carbon nutrition, and avoidance of sludge handling problems, algae-based EBPR systems offer competitive and attractive nutrient removal options (5). Algae can perform sustained “luxury” P uptake (i.e. take up more P than is necessary for immediate growth) driven by photosynthesis, and can grow fast while using nutrients available in wastewater. Furthermore they can form biomass suitable for bio-fertilizer production.

Recent improvements to EBPR systems include the use of membrane bioreactor (8) or optimizing processing conditions (9).

A recent study showed that loss-of-function of a tonoplast-located P transporter -Phosphate Transporter C1 (CrPTCI ), containing both SPX and SLC domains (which are named after the SPX-SLC protein), caused excess polyP accumulation in acidocalcisomes and highly induced phosphorus starvation response in the model green alga Chlamydomonas reinhardtii (Chlorophyta) { 13).

Patent publication CN 109970868 relates to methods for improving the content of total phosphorus and polyphosphoric acid of algae by manipulation of PTC in C. reinhardtii. Nevertheless it can be seen that providing novel algae-based EBPR systems with improved P removal efficiency and/or maximum P accumulation capacity would provide a useful contribution to the art.

Disclosure of the invention

The present inventors have confirmed that knock-out of the CrPTCI gene in a C. reinhardtii, led to rapidly P removal from wastewater and high P and vacuolar polyP accumulation in cells. However the inventors then used transcriptomic analysis to show that in the Crptcl mutant, the core regulator of P-starvation response PSR1 dependent P-starvation signaling was induced even under P sufficient conditions.

The inventors then demonstrated that PSR1 over-expression lines (PSR1-OE) showed a rapid P removal with enhanced P removal ability.

Based on their novel insights, the inventors created novel strains with high expression of PSR1 in the Crptcl mutant background (termed herein “SPAO lines”) which unexpectedly demonstrated an excellent ability to remove and accumulate P from water without unduly compromising cell growth. P removal simulation results showed that engineered SPAO strains can remove 30mg/L P from wastewater in 2 days, while the wild-type strains take more than 7 days.

The results disclosed herein demonstrate the utility for microalgal strains in which P- homeostasis and signaling are simultaneously modified in order to enhance the efficiency of P removal from the environment. In preferred embodiments P vacuolar transport is also modified.

Some of the findings of the present application were published after the presently claimed priority date (Wang, L., Jia, X., Xu, L., Yu, J., Ren, S., Yang, Y., Wang, K., Lopez-Arredondo, D., Herrera-Estrella, L., Lambers, H. and Yi, K. (2023), Engineering microalgae for water phosphorus recovery to close the phosphorus cycle. Plant Biotechnol J. https://doi.org/10-1111/pbi.14040).

Thus in one aspect there is provided a recombinant microalgal strain comprising in its genome a modification which causes overexpression of a PSR1 gene.

By “recombinant microalgae” is meant a microalgae in which a nucleic acid sequence contains at least one targeted genetic alteration introduced by man that distinguishes the engineered cell from the naturally occurring cell. Such microalgae may also be referred to as “engineered” or “modified”. Thus the microalgal strains of the invention are non-naturally occurring, owing to their genetic modifications. Recombinant microalgae can be prepared by transformation or other known molecular biology techniques as further detailed below.

The term "overexpression" as used herein refers to excessive expression of a gene product (RNA or protein, here for PSR1 ) in greater-than-normal amounts (i.e. compared to the same strain lacking the modification). Therefore this encompasses the introduction of a PSR1 transgene, leading to greater amounts of PSR1 polypeptide than would otherwise have been the case.

Overexpression of a PSR1 gene modulates P homeostasis or signalling, and in particular triggers starvation signalling, so as to promote P uptake compared to a parent strain lacking said modification. More specifically, and without being bound by mechanism, it is believed that over-expression of PSR1 promotes Pi acquisition through directly up-regulating the expression of P starvation-induced genes (PSIGs) which are responsible for Pi absorption from the extracellular environment and alkaline phosphatases (ALPs) which liberate soluble reactive phosphorus from dissolved organic P compounds.

Microalgae encompass a broad range of organisms, mostly unicellular aquatic organisms. The unicellular eukaryotic microalgae (including green algae, diatoms, and brown algae) are photosynthetic and have a nucleus, mitochondria and chloroplasts.

Preferably the microalgae are fresh water algae.

Preferably the microalgae are Chlorophyta (unicellular green algae), more preferably said microalgae is chosen from the group consisting of Chlamydomonas, Chlorella, and Scenedesmaceae

Even more particularly said microalgae is chosen from the group consisting of Chlamydomonas, more particularly Chlamydomonas reinhardtii. C. reinhardtii is a eukaryote distributed in various environments such as fresh water and oceans. An example strain is C. reinhardtii strain CC-4533.

In one embodiment the microalgae is selected from the following species: Asteromonas gracilis, Botryococcus terribilis, Carteria crucifera, Chlamydomonas bilatus, Chlamydomonas eustigma, Chlamydomonas incerta, Chlamydomonas noctigama, Chlamydomonas schloesseri, Chlamydomonas sp.-M2762, Chromochloris zofingiensis, Coccomyxa subellipsoidea C-169, Cylindrocapsa geminella, Edaphochlamys debaryana, Enallax costatus, Entransia fimbriata, Eudorina elegans, Golenkinia longispicula, Gonium pectorale, Haematococcus pluvialis, Hafniomonas reticulata, Ignatius tetrasporus, Mesostigma viride, Monoraphidium neglectum, Oedogonium cardiacum, Oedogonium foveolatum, Pandorina morum, Phacotus lenticularis, Planophila terrestris, Pteromonas angulosa, Raphidocelis subcapitata, Scherffelia dubia, Stephanosphaera pluvialis, Symbiochloris reticulata, Tetradesmus deserticola, Tetraselmis chui, Tetraselmis striata, Trebouxia sp. A1 -2, Vitreochlamys sp, Volvox aureus-M1028, Volvox aureus-M2242, Volvox globator,

Whole genome sequencing information is available for all of these strains, and PSR and PTC polypeptide and nucleic acid sequences are provided herein (SEQ ID Nos 1 to 176), as shown in Table 1 .

In the light of the present disclosure those skilled in the art can readily provide mutants according to the present invention in these species. It will be appreciated that where the invention is discussed in relation to C. reinhardtii, unless context demands otherwise, that discussion will apply mutatis mutandis to these other strains.

In C. reinhardtii, it is known that P deficiency response is regulated by the MYB-CC gene - Phosphate Starvation-Responsive 1 (PSR1) ( 10, 11). PSR1 is believed to be a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism ( 12).

In one embodiment the overexpressed PSR1 gene is the PSR1 from a species shown in Table 1 hereinafter.

In one embodiment the overexpressed PSR1 gene has the sequence of any of SEQ ID No 2, or any of SEQ ID Nos 48 to 70, or 72 to 90 or is a homologue or derivative or genomic equivalent thereof.

For example the gene may encodes a PSR1 polypeptide having at least 75, 80, 85, 90, 95, 96, 97, 98, 99% identity with any of SEQ ID No 1 , or any of SEQ ID Nos 5 to 27, or 29 to 47.

For example the gene may encode a homologue of a PSR1 polypeptide, for example as shown in SEQ ID No 71 (which is a homologue of SEQ ID No 70). That encodes a polypeptide having SEQ ID No 28.

In one embodiment the overexpressed PSR1 gene is the PSR1 from C. reinhardtii gene or a homologue or derivative thereof.

In one embodiment the overexpressed PSR1 gene has SEQ ID 2 or is a homologue or derivative thereof.

For example the gene may encode a PSR1 polypeptide having at least 75, 80, 85, 90, 95, 96, 97, 98, 99% identity with SEQ ID 1 .

Homologues and derivatives (collectively “variants”) are discussed in more detail hereinafter.

In one embodiment overexpression is achieved by up-regulation of an endogenous PSR1 gene.

For example the strain and respective PSR1 gene may be selected from those described in Table 1 .

In another embodiment overexpression is achieved by expression of a PSR1 transgene.

Such a PSR1 transgene may be same as an endogenous gene in the strain, or may be heterologous to the strain.

Methods for up-regulation of endogenous genes, and expression of transgenes, are discussed in more detail hereinafter.

In a preferred embodiment, in addition to the first modification relating to PSR1 gene expression, the recombinant microalgal strain comprises in its genome a further (second) modification which reduces or eliminates expression from an endogenous gene (thereby reducing production of an endogenous PTC1 polypeptide).

The PTC1 polypeptide is a tonoplast-located Pi efflux transporter. It comprises both SPX and SLC domains { 13).

Therefore this (second) modification is a loss of function modification which inhibits the tonoplast-located P transporter, thereby inhibiting vacuolar P export transport and thereby increasing_accumulation of inorganic polyphosphate (polyP) in vacuoles compared to a parent strain lacking said modification.

In one embodiment the strain is of a species shown in Table 1 and/or the PTC1 gene is a gene identified therein, or is a homologue thereof.

In one embodiment the gene or sequence encoding the endogenous PTC1 polypeptide comprises the sequence as shown in SEQ ID 4, or any of SEQ ID Nos 134 to 166 or 168 to 176, or is a homologue of any of those.

For example the gene may encode a homologue of a PTC1 , for example as shown in SEQ ID No 167 (which is a homologue of SEQ ID No 166). That encodes a polypeptide having SEQ ID No 124.

The endogenous PTC1 protein may have any of the sequences shown in SEQ ID No 3, or any of SEQ ID Nos 91 to 123 or 125 to 133 or is a homologue thereof.

The PTC1 protein may have the sequence shown in SEQ ID NO: 3.

In one embodiment the gene or sequence encoding the endogenous PTC1 polypeptide has SEQ ID 3 or is a homologue thereof.

In another embodiment the gene is a native gene to the microalgal strain that is homologous to the Chlamydomonas reinhardtii PTC1 gene, for example the homologous PTC1 gene it has greater than least 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99% homology to the CDS of said gene.

The encoded endogenous PTC1 polypeptide may share at least 75, 80, 85, 90, 95, 96, 97, 98, 99% identity with SEQ ID 3 As explained above the second modification down-regulates or inactivates the PTC1 gene (e.g. knocks it out, or down).

Such a modification can be achieved using a number of methods known in the art. For example utilising chemical mutagenesis and selection, genome editing, or an inducible promoter and trans acting elements. Gene silencing (for example based on RNA technologies) may also be used.

In one embodiment the gene is rendered non-functional. For example the endogenous gene may include an insertion within it which renders it non-functional, or the gene may be substantially deleted.

Methods for down regulation or inactivation of an endogenous gene are discussed in more detail hereinafter.

In one embodiment of the invention, the strain of the invention is in the form of biologically pure culture of said strain (isolated from any contaminants), which may be a slope culture or liquid medium broth. In another embodiment it is in the form of a freeze dried sample, a liquid nitrogen frozen sample, or a frozen preparation in glycerol of said strain.

In another aspect there is provided a cell extract; a cell suspension; a cell homogenate; a cell lysate; or a cell pellet of a strain of the invention.

In another aspect there is provided a culture broth of said strain, which may be cell free or substantially cell free.

In another aspect there is provided a process for producing a recombinant microalgal strain as described above, having enhanced P removal efficiency (PRE), the method comprising introducing the first genetic modification described above into a parent strain such as to cause overexpression of the PSR1 gene.

In one embodiment the process further comprises (in any order) introducing the second genetic modification described above into a parent strain such as to eliminate or reduce expression of an endogenous PTC1 polypeptide.

Alternatively the second genetic modification may be pre-existing in a modified parent strain, and the first genetic modification described above is introduced into the modified parent strain such as to cause overexpression of the PSR1 gene.

The processes may be used, inter alia, to achieve one or more of the following:

(1) increasing the capacity for polyphosphoric acid content of the resulting microalgae;

(2) increasing the capacity for total phosphorus content of the microalgae; (3) increasing alkaline phosphatase activity of microalgae;

In another aspect there is provided a recombinant microalgal strain obtained or obtainable by these processes. For example a recombinant microalgal strain obtained by introducing and expressing a PSR1 gene into a recipient microalgae in which the endogenous PTC1 gene has been impaired as described herein.

In another aspect there is provided a recombinant microalgal strain as described herein capable of accumulating (e.g. from P-containing wastewater) a total P concentration of at least 30, 40, 50, 60 mg g-1 DW e.g. up to 70 mg g -1 DW e.g. about 68 mg g -1 DW.

In another aspect there is provided a recombinant microalgal strain as described herein having a total P concentration of at least 30, 40, 50, 60 mg g-1 DW e.g. up to 70 mg g -1 DW e.g. about 68 mg g -1 DW

In another aspect there is provided a recombinant microalgal strain as described herein capable of accumulating (e.g. from P-containing wastewater) a total P concentration of at least 3%, 4%, 5%, 6% e.g. up to 7%.

In another aspect there is provided a recombinant microalgal strain as described herein having a total P concentration of at least 3%, 4%, 5%, 6% e.g. up to 7%.

***

As demonstrated in the Examples hereinafter, the first and second modifications described above lead to increased ‘luxury’ P uptake, and increase total P and polyP in the recombinant strain, thereby improving its overall PRE.

For example, based on an initial P content of 30 mg/L and an initial inoculation amount of alga of 10 5 cells, preferred strains according to the invention can remove all P in the medium after 60 hours, as compared to a wild-type strain requiring 9 days, as shown in the follow table. In one embodiment the strains of the invention demonstrate at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% increase in any of total P or polyP in the strain after culture for 60 hours under comparable conditions compared to a parent strain (for example a wild-type strain lacking said modification or modifications, or a parent strain including only the 2 nd modification.

In one embodiment the strains of the invention demonstrate at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% increase in PRE by the strain after culture for 60 hours under comparable conditions compared to a parent strain (for example a wild-type strain lacking said modification or modifications, or a parent strain including only the 2 nd modification.

In one embodiment the strains of the invention demonstrate at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% decrease in complete-removal time of total P in a medium in which the strain is cultured compared to a parent strain cultured under comparable conditions (for example a wild-type strain lacking said modification or modifications, or a parent strain including only the 2nd modification.

In one embodiment the strains of the invention demonstrate at least a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200% decrease in total P amount in the medium in which the strain is cultured for 60 hours compared to a parent strain cultured under comparable conditions (for example a wild-type strain lacking said modification or modifications, or a parent strain including only the 2nd modification.

Some of these aspects and embodiments will now be discussed in more detail.

It will be recognised that whenever a particular protein or nucleic acid is referred to herein e.g. with reference to an accession number or SEQ ID NO., the invention applies mutatis mutandis to variants (e.g. homologues or derivatives).

For example where PSR1 gene from C. reinhardtii is discussed, a homologue or derivative thereof may be used to achieve overexpression. Such a homologue or derivative will encode a polypeptide sharing the biological activity of the C. reinhardtii PSR1 i.e. MYB-CC polypeptide which shares sequence identity with that PSR1 as well as the ability to regulate the P deficiency response. As explained above, and without being bound by mechanism, it is believed that PSR1 promotes Pi acquisition through directly up-regulating the expression of P starvation-induced genes (PSIGs) and alkaline phosphatases (ALPs).

For example where PTC1 gene from Chlamydomonas reinhardtii is discussed, a homologue thereof may be targeted to reduce or eliminate its expression in the respective host microalga. Such a homologue will encode a polypeptide which shares sequence identity with that PTC1 as well as sharing the biological activity of the C. reinhardtii PTC1 i.e. a tonoplast-located P transporter which catalyses vacuolar P export.

The term "identity" refers to sequence similarity to a reference sequence. Identity can be evaluated using the naked eye or computer software. Using computer software, the identity between two or more sequences can be expressed in percentage (%), which can be used to evaluate the identity between related sequences. Sequence identity may be assessed as using BLASTp (proteins) or Megablast (nucleic acids) from NCBI (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) using default settings.

Variants of the sequences disclosed herein (for example any of those shown in Table 1) preferably share at least 55%, 56%, 57%, 58%, 59%, 60%, 65%, or 70%, or 80% identity, most preferably at least about 90%, 95%, 96%, 97%, 98% or 99% identity. Such variants may be referred to herein as “substantially homologous”.

In specific embodiments, two nucleic acid sequences are "substantially homologous" when at least about 55% or at least about 99% of the nucleotides (or any integer value in between) match over a defined length of the nucleic acid sequences i.e. they share this level of identity as determined by a sequence comparison algorithm such as BLAST.

Substantially homologous nucleic acids may be those which hybridize (to the respective complement of) a nucleotide sequence described herein e.g. encoding the PSR1 or PTC1 sequences of Chlamydomonas reinhardtii under stringent conditions e.g. hybridization in a solution of 2xSSC, 0.1% SDS at 68 ° C for 2 times, 5 min each time, and in a solution of 0.5xSSC, 0.1% SDS, at 68° C (washing the membrane 2 times, each time 15min).

Similarly, in particular embodiments of the invention, two amino acid sequences are "substantially homologous" when greater than 75% of the amino acid residues are identical wherein identical contemplates a conservative substitution at a nucleic acid position. In a preferred embodiment at least 99% of the amino acid residues are identical (or any integer value in between).

The term "homologous" or “homologues” refers to the relationship between two genes or proteins that possess a "common evolutionary origin", and embraces alleles (which will include polymorphisms or mutations at one or more bases), paralogues, isogenes, or other homologous genes belonging to the same families as the relevant enzymes.

Also included are orthologues or homologues from different microbial or other species. The invention embraces upregulation of a PSR1 sequence in the strain (either native or transgenic) which is substantially homologous to the PSR1 sequences of C. reinhardtii.

The invention embraces reducing or eliminating expression of an endogenous PTC1 sequence in the strain which is substantially homologous to the PTC1 sequences of C. reinhardtii.

“Derivatives” (in relation to the PSR1 transgenes used in the invention, or their encoded polypeptides) may be prepared, for instance, by site directed or random mutagenesis, or by direct synthesis. Preferably the variant nucleic acid is generated either directly or indirectly (e.g. via one or more amplification or replication steps) from an original nucleic acid having all or part of a sequence referred to herein. Changes (“mutations”) may be desirable for a number of reasons. For instance they may introduce or remove restriction endonuclease sites or alter codon usage.

Alternatively changes to a sequence may produce a derivative by way of one or more (e.g. several) of addition, insertion, deletion or substitution of one or more nucleotides in the nucleic acid, leading to the addition, insertion, deletion or substitution of one or more (e.g. several) amino acids in the encoded polypeptide.

Other desirable mutations may be random or site directed mutagenesis in order to alter or evolve the activity (e.g. specificity) or stability of the encoded polypeptide. Changes may be by way of conservative variation, i.e. substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as arginine for lysine, glutamic for aspartic acid, or glutamine for asparagine. As is well known to those skilled in the art, altering the primary structure of a polypeptide by a conservative substitution may not significantly alter the activity of that peptide because the side-chain of the amino acid which is inserted into the sequence may be able to form similar bonds and contacts as the side chain of the amino acid which has been substituted out. This is so even when the substitution is in a region which is critical in determining the peptides conformation. Also included are variants having non-conservative substitutions. As is well known to those skilled in the art, substitutions to regions of a peptide which are not critical in determining its conformation may not greatly affect its activity because they do not greatly alter the peptide's three dimensional structure. In regions which are critical in determining the peptides conformation or activity such changes may confer advantageous properties on the polypeptide. Indeed, changes such as those described above may confer slightly advantageous properties on the peptide e.g. altered stability or specificity.

Derivatives include of fragments of the full-length polypeptides disclosed herein, especially active portions thereof. An “active portion” of a polypeptide means a peptide which is less than said full length polypeptide, but which retains its essential biological activity.

Also included are nucleic acids corresponding to those above, but which have been extended at the 3' or 5' terminus.

The term ‘variant’ nucleic acid as used herein encompasses all of these possibilities. When used in the context of polypeptides or proteins it indicates the encoded expression product of the variant nucleic acid.

As explained above, overexpression of PSR1 is typically achieved by introduction of a transgene encoding a PSR1 , or by enhancement of expression of native PSR1 gene.

Generally speaking, those skilled in the art are well able to construct vectors and design protocols for recombinant gene expression (e.g. for expressing a heterologous nucleic acid within a host or one or more cells of a host). Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory Press or Current Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, 1992.

"Expression vector" or "transformation vector" or "recombinant DNA construct", or similar terms, are defined herein as DNA sequences that are required for the transcription of recombinant genes and the translation of their mRNAs in the microalgae algae host cells.

“Expression vectors” contain one or more expression cassettes for the recombinant genes (one or more gene encoding the protein, peptide or polypeptide of interest and often selectable markers). A vector including nucleic acid according to the present invention need not include a promoter or other regulatory sequence, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the genome. In the case of chloroplast genome transformation, expression vectors will typically contain homologous recombination regions for the integration of expression cassettes inside the chloroplast genome.

Preferably the nucleic acid in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in the host algal cell.

For microalgae chloroplast expression, promoters, 5’llTRs and 3’llTRs that can be used in the context of the invention are for example: the promoters and 5’llTRs of the genes psbD, psbA, psaA, atpA, and atpB, the 16S rRNA promoter ( Prrn ) promoter fused with a 5’IITR, the psbA 3' UTR, the atpA 3’IITR or the rbcL 3' UTR.

A 5’IITR from exogenous origin as for instance the 5’IITR of the gene 10L of the bacteriophage T7 can be used also fused downstream a microalgae promoter. In particular, the nucleic acid sequence is operationally linked at its 5’end to the C. reinhardtii 16S rRNA promoter (Prrn).

Stable expression and translation of the nucleic acid sequence according to the present invention can for example be controlled by the promoter and 5’IITR from psbD and the atpA 3’IITR.

US2012/0208201 describes methods of enhanced gene expression algae, using an algae compatible transcriptional promoter functionally upstream of a coding sequence for a gene expression enhancer (GEE) fusion protein.

Vectors for use in the invention may comprise a plasmid capable of integrating the DNA sequence of interest into a chromosome of the algae. There are a large numbers of such vectors known and characterized. A preferred vector of the invention is pSP124 (Lumbreras et al., Efficient foreign gene expression in C. reinhardtii mediated by an endogenous intron, The Plant Journal 14(4):441 -447 (1998)).

Embodiments of the present invention may use one or more vectors to introduce a cassette encoding PSR1 and a gene silencing inhibitor into the nucleus DNA of algae. A gene silencing inhibitor is a peptide that induces relaxation of nucleosomes in the algae's nucleus. Gene silencing inhibitors include histone acetyl transferases (HATs) and other peptides that modify elements of the nucleosome, causing the chromatin structure to relax and to allow transcription factors to access the gene of interest. HAT proteins and the HAT domains of p300 and of other HAT proteins are known to cause histone acetylation and can be utilized in the invention. In accordance to the invention the domain responsible for the acetylation activity or the whole protein is deployed. See Fukuda H, et al., Brief Funct. Genomic Proteomic, 5(3):190-208 (2006); Renthal W. and Nestler E. J., Semin Cell Dev Biol. 20(4):387-94 (Epub 2009); and Lin Y. Y. et al., Genes Dev., 22(15):2062-74 (2008).

As explained in WO2021/170754, the chloroplast genome of microalgae host cell can be targeted for transformation according to any suitable techniques well known by the man skilled in the art including, without limitations biolistics (Boynton et ai, 1988; Goldschmidt- Clermont, 1991), electroporation (Fromm et ai, Proc. Natl. Acad. Sci. (USA) (1985) 82:5824- 5828 ; see Maruyama et at. (2004), Biotechnology Techniques 8:821-826), glass bead transformation, protoplasts treated with CaCh and polyethylene glycol (PEG) (see Kim et ai (2002), Mar. Biotechnol. 4:63-73) or microinjection.

WO20 14/076571 describes a variety of different methods for transfecting vectors into algal cells nuclei or chloroplasts. In various embodiments, vectors can be introduced into algae nuclei by, for example without limitation, electroporation, magnetophoresis. The latter is reportedly a nucleic acid introduction technology using the processes of magnetophoresis and nanotechnology fabrication of micro-sized linear magnets (Kuehnle et al., U. S. Patent No. 6,706,394; 2004; Kuehnle et al., U. S. Patent No. 5,516,670; 1996) that proved amenable to effective chloroplast engineering in freshwater Chlamydomonas (Champagne et al., Magnetophoresis for pathway engineering in green cells. Metabolic engineering V: Genome to Product, Engineering Conferences International Lake Tahoe CA, Abstracts pp 76; 2004).

To identify the microalgal transformants, a selectable marker gene may be used. Mention may be made for example of the aadA gene coding aminoglycoside 3"- adenylyltransferase and conferring the resistance to spectinomycin and streptomycin in the case of C. reinhardtii chloroplast transformation.

Transformed algae can be recovered on a solid nutrient media or in liquid media. Elizabeth H Harris, Chlamydomonas As A Model Organism, Annual Review of Plant Physiology and Plant Molecular Biology 52:363-406 (2001) and EMBO Practical Course: Molecular Genetics of Chlamydomonas, Laboratory protocols. Geneva, Sep. 18-28, 2006.

As explained above, reduction or elimination of expression of an endogenous PTC1 polypeptide can be achieved in a variety of ways. For example direct gene knockout or knockdown (e.g. by modification of the encoding gene acting in cis), or gene silencing acting in trans.

Such a modification can be achieved using a number of methods known in the art. For example utilising chemical mutagenesis and selection, genome editing, or an inducible promoter and trans acting elements. Gene silencing (for example based on RNA technologies) may also be used.

In one embodiment the gene is rendered non-functional. For example the endogenous gene may include an insertion within it which renders it non-functional, or the gene may be substantially deleted.

The term "knockout" or "gene knockout" refers herein to any organism and/or its corresponding genome where the gene of interest has been rendered unable to perform its function. This can be accomplished by both classical mutagenesis, natural mutation, specific or random inactivation, targeting in cis or trans, or any method wherein the normal expression of a protein is altered to reduce its effect. For example but not to limit the definition:

1 ) one can use chemical mutagenesis to damage the gene and then select for organisms not expressing the gene,

2) one can target the gene and remove a portion or all of the gene by homologous recombination,

3) one can use RNAi methods to produce an inhibitor molecule for a particular protein and similar methods and

4) one can use genome editing tools (i.e. CRISPR-Cas) to specifically modify the gene.

For example, to permanently inactivate PTC1 a plasmid can be constructed for gene deletion by integrational mutagenesis or gene replacement techniques well known in the art. Integrational mutagenesis and gene replacement can selectively inactivate undesired genes from host genomes. In this technique, a fragment of the target gene is cloned into a non- replicative vector with a selection marker, resulting in the non-replicative integrational plasmid. The partial gene in the non-replicative plasmid can recombine with the internal homologous region of the original target gene in the parental chromosome (double crossover), which results in the insertional inactivation of the target gene. The use of gene replacement (by double recombination) may be preferred to insertional inactivation (single recombination) since it permits the generation of more stable engineered strains, without the need to maintain selection of vectors.

Down regulation may be achieved by methods known in the art, for example using antisense technology.

In using anti-sense genes or partial gene sequences to down-regulate gene expression, a nucleotide sequence is placed under the control of a promoter in a "reverse orientation" such that transcription yields RNA which is complementary to normal mRNA transcribed from the "sense" strand of the target gene. See, for example, Rothstein et al, 1987; Smith et al, (1988) Nature 334, 724-726; Zhang et al, (1992) The Plant Cell 4, 1575-1588, English et al., (1996) The Plant Cells, 179-188. Antisense technology is also reviewed in Bourque, (1995), Plant Science 105, 125-149, and Flavell, (1994) PNAS USA 91 , 3490-3496.

An alternative to anti-sense is to use a copy of all or part of the target gene inserted in sense, that is the same, orientation as the target gene, to achieve reduction in expression of the target gene by co-suppression. See, for example, van der Krol et al., (1990) The Plant Cell 2, 291 -299; Napoli et a!., (1990) The Plant Cell 2, 279-289; Zhang eta!., (1992) The Plant Cell 4, 1575-1588, and US-A-5,231 ,020. Further refinements of the gene silencing or co-suppression technology may be found in WO95/34668 (Biosource); Angell & Baulcombe (1997) The EMBO Journal 16,12:3675-3684; and Voinnet & Baulcombe (1997) Nature 389: pg. 553.

Double stranded RNA (dsRNA) has been found to be even more effective in gene silencing than both sense or antisense strands alone (Fire A. et al Nature, Vol 391 , (1998)). dsRNA mediated silencing is gene specific and is often termed RNA interference (RNAi) (See also Fire (1999) Trends Genet. 15: 358-363, Sharp (2001) Genes Dev. 15: 485-490, Hammond et al. (2001) Nature Rev. Genes 2: 1110-1119 and Tuschl (2001) Chem. Biochem. 2: 239-245).

RNA interference is a two-step process. First, dsRNA is cleaved within the cell to yield short interfering RNAs (siRNAs) of about 21 -23nt length with 5' terminal phosphate and 3' short overhangs (~2nt) The siRNAs target the corresponding mRNA sequence specifically for destruction (Zamore P.D. Nature Structural Biology, 8, 9, 746-750, (2001)

Another methodology known in the art for down-regulation of target sequences is the use of “microRNA” (miRNA) e.g. as described by Schwab et al 2006, Plant Cell 18, 1121-1133.

This technology employs artificial miRNAs, which may be encoded by stem loop precursors incorporating suitable oligonucleotide sequences, which sequences can be generated using well defined rules in the light of the disclosure herein.

Thus in various embodiments the invention may provide methods for influencing or affecting PRE in an algal host which method comprises any one or more of: (i) causing or allowing transcription from a nucleic acid encoding a PSR1 polypeptide (which may be a native one or active variant thereof, or heterologous to the host); (ii) causing or allowing transcription from a nucleic acid (a) comprising the complement sequence of a PTC1 nucleotide sequence such as to reduce the respective encoded polypeptide activity by an antisense mechanism; (b) encoding a stem loop precursor comprising 20-25 nucleotides, optionally including one or more mismatches, of PTC1 nucleotide sequence such as to reduce the respective encoded polypeptide activity by an miRNA mechanism; (c) encoding double stranded RNA corresponding to 20-25 nucleotides, optionally including one or more mismatches, of a PTC1 nucleotide sequence such as to reduce the respective encoded polypeptide activity by an siRNA mechanism.

WO2014/076571 describes methods of modifying algae genomes, based on the use of rare- cutting endonuclease, especially a homing endonuclease or a TALE-Nuclease, being expressed over several generations to efficiently modify said target sequence

WO2019/200318 gives examples of systems for genetically modifying algal genomes, such as a CRISPR/Cas system (e.g., a type I, II, or III CRISPR/Cas system, as well as modified versions thereof, such as a CRISPR/dCas9 system), TALENs, or zinc fingers to accomplish the desired genomic editing.

US2019/0045812 describes mutants constructed by using CRISPR gene scissors technology (RGEN RNPs) without any introduction of an exogenous DNA in a microalga C. reinhardtii to knock out a target gene. US2018/0187170 describes Chlamydomonas reinhardtii knockout lines generated in different parental backgrounds.

In another aspect there are provided uses of a recombinant microalgal strain of the invention to reduce Pi or organophosphorus in an environment (e.g. external environment) in which said strain is present or introduced.

Strains of the invention may optionally be used in mixed consortia to maximise effectiveness and versatility, including mixed microalgae-bacteria consortia.

Thus there is a provided a method of reducing Pi or organophosphorus in an environment, the method comprising introducing or culturing strain of the invention in the environment. Methods of culturing the strains are described hereinafter.

Typically the environment is an aqueous environment e.g. a water body, which is optionally is or comprises waste water from a municipal or agricultural source (e.g. aquaculture pond, or agricultural flow-off). For example the microalgae may be used to treat Primary settled wastewater (PSW) or secondary treatment effluent (STE). However the strains may be used in other aqueous environments, or even terrestrial ones where there is sufficient water present e.g. through flooding or waterlogging.

The methods of the invention may comprise a batch process by which the strains are added to the environment, and optionally removed at intervals for utility as a fertiliser (see below).

Alternatively the methods may comprise continuous flow processes, by which the strains are immobilised or suspended and exposed continuously to a water stream or flow from which Pi or organophosphorus is to extracted, and optionally removed at intervals for utility as a fertiliser (see below).

General systems for continuous flow microalgal cultures are known in the art, for example by using algae-anchored fiber spheres, or other established technologies such as Membrane Bioreactors (MBRs) (Chen et al., 2018; Qin et al., 2020), or Sequencing Batch Reactors (SBRs) (Acevedo et al., 2012). A further publication (P.D. Alvarez-Diaz, J. Ruiz, Z. Arbib, J. Barragan, M.C. Garrido-Perez, J. A. Perales. Examples of MBRs are shown in Figure 9.

As explained in the introduction, enhanced biological phosphorus removal (EBPR) is already employed in wastewater treatment (5). An example microalgae-based wastewater treatment (MBWT) process is shown in Figure 6, and example designs are shown in Figure 7 (both discussed more fully in Reference 5). Commonly used designs include open raceway ponds (RPs), tubular photobioreactors (PBRs), flat panel (FP) PBRs, soft frame PBRs and other hybrid PBRs. PBRs can be based on vertical tubes.

Any of these systems may be utilised with the modified strains of the present invention. In these systems the strains may optionally be suspended or immobilised.

Mohsenpour, Seyedeh Fatemeh, et al. "Integrating micro-algae into wastewater treatment: A review." Science of the Total Environment 752 (2021 ): 142168, describes in detail mechanisms for P removal by microalgae, abiotic and biotic factors influencing micro-algae wastewater treatment, and microalgae bioreactor configurations for wastewater treatment.

WO2017/165290 describes methods and apparatus for cultivating algae biomass in which auto-flocculating (self-aggregated) species of algae that are grown in raceways under controlled culture conditions such as controlled water velocity and controlled composition of the algae growth medium. The apparatus for growing algae biomass (referred to therein as a “Sustainable Algae Floe with Recirculation” (“SAFR”) apparatus") comprises: at least one Algae Growth Raceway (AGR); an Algae Growth Medium (AGM) reservoir functionally connected to the AGR, at least one AGM flow disrupter positioned in the AGR; and an AGM circulation system (e.g., pump) for circulating AGM through the at least one AGR.

The SAFR apparatus, systems, and methods are reported to find applications in water treatment, such as removal of nutrients (e.g. phosphorus) from waste water, eutrophic aquifers and aquaculture.

Culture systems may be based on the use of in situ treatment of aqueous environments e.g. aquaculture systems. Culture systems suitable for this purpose include permeable floating photobioreactors. Culture systems may be based around autotrophic or split-mixotrophic systems, in which additional organic carbon is supplied e.g. during hours of darkness.

These and other types of system for wastewater treatment are generally known in the art, and discussed (for example) in the following: Wollmann, F., Dietze, S., Ackermann, J.-ll., Bley, T., Walther, T., Steingroewer, J. and Krujatz, F. (2019) Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19, 860- 871.

Microalgal biofilms and their use in the treatment of wastewaters are described by Miranda, A.F., Ramkumar, N., Andriotis, C., et al. (2017) Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnology for Biofuels, 10, 120. Algal biofilm reactors are discussed by Choudhary, P., Prajapati, S.K., Kumar, P., Malik, A. and Pant, K.K. (2017) Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresource Technology, 224, 276-284 - see Figure 8 herein.

The publication “Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production”, Algal Research, Volume 24, Part B, 2017, Pages 477-485) describes how microalgae may be used as both bioenergy sources as well as wastewater pollution reducers.

Solovchenko, A., Verschoor, A.M., Jablonowski, N.D. and Nedbal, L. (2016) “Phosphorus from wastewater to crops: An alternative path involving microalgae”. Biotechnology Advances, 34, 550-564, describes how the ability of microalgae to accumulate large quantities of P can be a way to direct waste P back to crop plants. As noted therein, algae can acquire and store P through luxury uptake, and the P enriched algal biomass can be used as bio-fertilizer. In particular, cultivation technologies can be used for solar-driven recycling of P and other nutrients from wastewater into algae-based bio-fertilizers.

Such systems can be used analogously with the strains of the present invention.

In one embodiment the uses or methods described above comprise the further step of recovering the strain following a period of culture in the environment and utilising the same as a P-rich fertiliser.

It has been demonstrated that the P in microalgae can be rapidly transformed in soil and mobilized for plant growth (Siebers et al., 2019). Optionally the strains of the invention, having accumulated luxury P, can be combined with a further microorganism which enhances degradation of polyp to inorganic P.

The microalgae strains of the present invention may be used in slow-release or liquid biofertilisers. Typically the production process of slow-release algal fertilizer involves the algae cultivation, biomass dehydration, and biomass pasteurization or pulverization (see e.g. Zou, Y., Zeng, Q., Li, H., Liu, H. and Lu, Q. (2021) “Emerging technologies of algae-based wastewater remediation for bio-fertilizer production: a promising pathway to sustainable agriculture”. Journal of Chemical Technology & Biotechnology, 96, 551-563.).

Microalgae may be utilised as a hydrochar. An example processes for production utilises harvested biomass and a reactor heated to 200-300C at 3 C/min, and held at the final temperature for a duration of 2 h. The reactor is then rapidly cooled down to room temperature using a recirculating condensing engine. The solid and liquid products are separated by centrifugation and fully gravity-filtered through a 0.45 mm membrane (see e.g. Chu, Q., Lyu, T., Xue, L., et al. (2021) Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. Journal of Cleaner Production, 283, 124627).

In a further aspect the invention provides a fertiliser product obtained from the methods described above e.g. comprising, consisting or consisting essentially of a strain of the invention (once it has been cultured in the P containing environment, and having accumulated luxury P).

Optionally this comprises further biological or chemical components e.g. further microorganisms.

The effectiveness of algae based fertilisers has been demonstrated in the study Mulbry, W., Kondrad, S., Pizarro, C., Kebede-Westhead, E., 2008. Treatment of dairy ma- nure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol. 99, 8137-8142. The authors demonstrated that 20-day-old cucumber and corn seedlings grown in a potting mixcontaining algae assimilated 38% to 60% of the P applied with the microalgal biomass. The plants grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer-amended potting mixes with respect to seedling dry weight and nutrient content.

An added benefit of algal biomass is that it does not need to be tilled into soil, which is generally necessary for mineral P fertilizers. Algal biomass may be side-dressed into growing crops, thereby saving labour and energy.

As explained in Alvarez, A.L., Weyers, S.L., Goemann, H.M., Peyton, B.M. and Gardner, R.D. (2021) “Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture”. Algal Research, 54, 102200, the diverse effects that microalgal biomass (or microalgal compounds) have on soils and plants, and the different mechanisms of action, offer the opportunity to potentially derive multiple agricultural products from microalgae with applications for soil improvement and crop production and protection.

For example, in addition to use as biofertilizer (whether provided in viable or non-living form - e.g. oven-dried) when applied to soil (micro-algal soil amendment), the microalgal biomass can improve physical properties such as soil structure and water retention, and therefore one of the potential applications is as soil conditioners.

In addition, microalgae may have utility as plant biostimulants, biopesticides or biocontrol agents.

In a further aspect there is provided use of the microalga strain-based fertiliser as an agricultural fertiliser e.g. a method of increasing the P availability in an environment (and optionally improving one or more of the other properties discussed above) by dispersing the strain-based fertiliser in the environment, for example to grow crops or other plants.

Definitions

“Nucleic acid” according to the present invention may include cDNA, RNA or genomic DNA. Where a DNA sequence is specified, e.g. with reference to a figure, unless context requires otherwise the RNA equivalent, with II substituted for T where it occurs, is encompassed. Nucleic acids may include more than one nucleic acid molecule. Nucleic acid molecules according to the present invention may be provided isolated and/or purified from their natural environment, in substantially pure or homogeneous form, or free or substantially free of other nucleic acids of the species of origin, and double or single stranded. Where used herein, the term “isolated” encompasses all of these possibilities. The nucleic acid molecules may be wholly or partially synthetic. In particular they may be recombinant in that nucleic acid sequences which are not found together in nature (do not run contiguously) have been ligated or otherwise combined artificially. Nucleic acids may comprise, consist, or consist essentially of, any of the sequences discussed hereinafter.

The “complement” of a nucleic acid described herein means the complementary sequence of the or a nucleotide sequence comprised by the nucleic acid. Optionally complementary sequences are full length compared to the reference nucleotide sequence.

By "promoter" is meant a sequence of nucleotides from which transcription may be initiated of DNA operably linked downstream (i.e. in the 3' direction on the sense strand of doublestranded DNA).

"Operably linked" means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is "under transcriptional initiation regulation" of the promoter.

By “endogenous” is meant the native polypeptide (or encoding gene) which originates from the microalgal strain.

The term "heterologous" is used broadly herein to indicate that the gene/sequence of nucleotides in question have been introduced into said cells of the host or an ancestor thereof, using genetic engineering, i.e. by human intervention. “Heterologous” (or “exogenous”, the terms are used interchangeably). Nucleic acid heterologous to a host cell will be non-naturally occurring in cells of that type, variety or species. Thus the heterologous nucleic acid may comprise a coding sequence of or derived from a particular type of plant cell or species or variety of plant, placed within the context of a plant cell of a different type or species or variety of plant. A further possibility is for a nucleic acid sequence to be placed within a cell in which it or a homologue is found naturally, but wherein the nucleic acid sequence is linked and/or adjacent to nucleic acid which does not occur naturally within the cell, or cells of that type or species or variety of plant, such as operably linked to one or more regulatory sequences, such as a promoter sequence, for control of expression.

“Transformed” in this context means that the nucleotide sequences of the heterologous nucleic acid alter one or more of the cell’s characteristics and hence phenotype e.g. with respect to PRE efficiency. Such transformation may be transient or stable.

A number of patents and publications are cited herein in order to more fully describe and disclose the invention and the state of the art to which the invention pertains. Each of these references is incorporated herein by reference in its entirety into the present disclosure, to the same extent as if each individual reference was specifically and individually indicated to be incorporated by reference.

Throughout this specification, including the claims which follow, unless the context requires otherwise, the word “comprise,” and variations such as “comprises” and “comprising,” will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a pharmaceutical carrier” includes mixtures of two or more such carriers, and the like. Ranges are often expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent “about,” it will be understood that the particular value forms another embodiment.

Any sub-titles herein are included for convenience only, and are not to be construed as limiting the disclosure in any way.

The invention will now be further described with reference to the following non-limiting Figures and Examples. Other embodiments of the invention will occur to those skilled in the art in the light of these.

The disclosure of all references cited herein, inasmuch as it may be used by those skilled in the art to carry out the invention, is hereby specifically incorporated herein by crossreference.

Fig. 1. Knock-out of CrPTCI confers high P removal capacity without compromising cell growth. (A) Growth of CC-4533 and the Crptcl mutant strains in the TAP (with Pi supply) and TA (without Pi supply) mediums. Colonies from left to right are a series of dilutions. The right panel shows the growth curves of CC-4533 and the Crpsrl mutant under Pi supply (+P) and Pi deprivation (-P) conditions. (B) Total P and polyP content of CC-4533 and the Crptcl mutant. (C) Assessment of P removal ability of CC-4533 and the Crptcl mutant with 1 mM Pi supply. (D) Principal component analysis (PCA) shows the global similarity and divergence of transcriptome data. The first two components are shown in the plot. (E) Gene ontology (GO) enrichment analysis of significantly up-regulated genes in the Crptcl mutant under -P condition. GO terms are highly enriched in ion transport-related terms. GO: 0006817 is P transport. (F) Heatmap of expression profiles of genes involved in P homeostasis under +P and -P conditions.

Fig. 2. Over-expression of PSR1 confers high P removal capacity. (A) Relative expression levels of PSR1 and PTB2of three representative PSR1-OE tines. (B) Total P and ployP contents in the PSR1-OE lines. (C) P removal ability of the PSR1-OE tines with 1 mM Pi supply. (D) Growth of CC-4533 and the PSR1-OE14 line in the TAP and TA mediums. Colonies from left to right are a series of dilutions. The right panel shows growth curves of CC-4533 and the PSR1-OE14 line under 1 mM Pi supply conditions.

Fig. 3. Over-expression of PSR1 in the Crptcl mutant enhances P removal of the Crptcl mutant. (A) Relative expression levels of PSR1 and PTB2of three representative SPAO lines. (B) Total P and ployP contents in the SPAO lines. (C) Assessment of P removal capacity of the SPAO lines under 1 mM Pi supply. (D) Growth of CC-4533 and the SPAO24 line in the TAP and TA mediums. Colonies from left to right are a series of dilutions. The right panel shows growth curves of CC-4533 and the SPAO24 line under 1 mM Pi supply conditions. (E) Correlation of P removal efficiency (PRE) and relative expression of PSR1 under backgrounds of CC-4533 (blue) and the Crptcl mutant (red). PRE results were calculated at 48h under the 1 mM Pi supply condition. (F) SPAO24 showed the highest polyP accumulation and slowest relative polyP reduction upon P deprivation. The left panel shows representative pseudo-color images of cellular polyP stained with DAPI. Bar, 10 pm. Experiments were repeated three times with similar results. The right panel shows the relative polyP contents of different strains under P deprivation treatment.

Fig. 4. SPAO shows a high P removal ability under different simulated conditions and proposed model for SPAO design. Evaluation of P removal ability of CC-4533, the Crptcl mutant, the PSR1-OE14 line, and SPAO24 line in synthetic aquacultural wastewater (SAWW). (B) Proposed model for SPAO design. Compared to conventional PAO (wildtype microalgae), improved PAO presents higher polyP accumulation and higher P removal capacity. Three improving approaches for genetic engineering of improved PAO are suggested: 1 ) genetic operation of genes controlling the vacuolar P homeostasis. Downregulation (or loss-of-function) of SPX-SLC proteins could raise the P accumulation in vacuoles and further increase the P removal capacity in improved PAO; 2) increase the expression of PSR1 , which further promotes Pi acquisition through directly up-regulating the expression of P starvation-induced genes (PSIGs); 3) the best way - combining above two approaches - enhancing P starvation signalling and trapping P into vacuoles and generating the SPAO strains which showed the highest PRE and highest polyP accumulation.

Fig. 5. Large-scale culture of SPAO24 and CC-4533 in 1 L, 2L and 8L medium.

(A-C) Extended culture of SPAO24 and CC-4533 in 1 L, 2L and 8L medium. Photos taken at 1 day after inoculation.

(D-E) Total P content in medium and OD750 detected at 40 and 60 hours after inoculation into 2L medium.

Fig. 6. Example Microalgae-based wastewater treatment (MBWT) process.

Figure taken from Li, K., Liu, Q., Fang, F., et al. (2019) Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291 , 121934).

Fig. 7. Examples of designs and configurations of MBWT processes.

(a) SB-MPBR, (b) twin-layer (TL) PBR, (c) air-lift (AL) PBR, (d) RABR-enhanced RP, (e) RABR, (f) multilayer PBR (from Li et al, supra)

Fig. 8. Schematic of algal biofilm reactor (ABR).

A side view; B front view; L: Length of growth surface B: width of growth surface (from Choudhary, P., Prajapati, S.K., Kumar, P., Malik, A. and Pant, K.K. (2017) Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresource Technology, 224, 276- 284).

Fig. 9. Schematic diagram of MBR setup.

Equipped with Chlorella encapsulated macrocapsules (a) and free Chlorella cells (b) (from Qin, L., Gao, M., Zhang, M., Feng, L., Liu, Q. and Zhang, G. (2020) Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Research, 187, 116430).

Fig. 10 Over-expression of PSR1 in the Crptcl mutant further enhanced phosphorus (P) removal and cellular accumulation.

(a) Total P concentrations of CC-4533 and SPAO23 strains cultured in the medium with different P inputs. Error bars indicate SE. (b) Total P concentration of land plants and algae. Data on the total P concentration of land plants were collected from the previous study (Reich, P.B. and Oleksyn, J. (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci., 101 , 11001-11006) and from measurements in this study.

Fig. 11 Evaluation of P-removal capacity of the CC-4533 and SPAO23 lines with actual industrial wastewater.

Error bars indicate SE.

Example 1 - summary of investigation

We have investigated whether it is possible to engineer one or more genes involved in cellular P homeostasis in algae to generate improved algae (termed super PAO (“SPAO”) here) with higher efficiency of P luxury uptake and higher P accumulation capacity.

We tested three engineering strategies following:

1 ) knocking out CrPTCI to restrict polyP into vacuoles;

2) over-expression of PSR1 to trigger excessive global P starvation signalling, and

3) a combination of these two approaches - over-expression of PSR1 in the Crptcl mutant.

We then conducted a detailed assessment of the engineered strains and employed them to recycle P from simulated wastewater. We found that all these three kinds of engineered strains have a higher ability to remove P from the environment without compromising biomass production compared to wildtype, but that the third type showed particularly unexpected benefits.

Example 2 - increasing accumulation of polyP in vacuoles

Given that excess Pi is stored as polyP in algae vacuoles (also called acidocalcisomes) { 14), we investigated whether we could modulate vacuole-located P transporters to increase the accumulation of polyP in vacuoles to further improve luxury P uptake

In our previous study, CrPTCI was shown to be involved in cellular P homeostasis, and loss-of-function of CrPTCI caused the excess P and polyP accumulation in acidocalcisomes ( 13), indicating that the Crptcl mutant is a potential improved PAO.

In the design of engineered microalgae, an efficient PAO is expected to have a high P removal ability without compromising cell viability under either P sufficient or P deficient conditions (6).

To test this, we first evaluated its physiological status under both Pi sufficient and deficient conditions (Fig. 1 A). Given that the Crptcl mutant accumulates more P and polyP, we hypothesized that the Crptcl mutant should be less sensitive to low Pi stress. Therefore, we investigated the growth under P-replete or depleted conditions. Like the WT, the Crptcl -1 mutant grew less on the P-depleted condition than on the P-replete condition but showed no growth defect compared to the wildtype in both conditions (Fig. 1 A). The total P content and polyP contents in the Crptcl mutant are significantly higher (around two times) than in the wild-type strain (CC-4533) (Fig 1 B). These data show that the Crptcl mutant is less sensitive to Pi deficiency stress and could accumulate more P in the cells under both P-replete and depleted conditions, suggesting that the Crptcl mutant has the potential to remove P from external environments. We then assessed the P removal ability of the Crptcl mutant by simulating the wastewater environment through an external 1 mM Pi supply (Fig. 3C). After 120 hours, the Crptcl mutant could remove nearly all Pi in the medium, while the wildtype line could only remove around 62% Pi, leaving a final Pi concentration of 11 .72 mg L -1 in the medium. Together, Crptcl has a high potential for P removal, regardless of whether Pi or organophosphorus is present in the external environment.

Example 3 - dissecting the gene regulatory network upon Pi starvation and assessing the effect of CrPTCI on P homeostasis and increased accumulation of polyP in vacuoles

We analyzed gene expression profiles of the Crptcl mutant after six hours of Pi starvation treatment using RNA-seq. Principal component analysis (PCA) shows the global similarity of bio-replicates for each treatment and significant differences in expression profiles between the Crptcl mutant and CC-4533 either under Pi sufficiency or Pi deficiency conditions (Fig 1 D). Gene ontology (GO) enrichment analysis of significantly up-regulated genes in the Crptcl mutant under P starvation shows that terms related to ion transport are enriched considerably (Fig 1 E). Among them, the annotation with the largest gene ratio is enriched in phosphate ion transport (G0:0006817). Notably, genes involved in Pi homeostasis are dramatically up-regulated, including the core regulator PSR1 and some genes of several well-known Pi-signalling related gene families, such as phosphatase, PTA, and PTB families (Fig. 1 F). These results indicate that loss-of-function of CrPTCI caused the overaccumulation of polyP in vacuoles and induced P starvation signalling to promote P uptake further.

Example 4 - effect of modulation of expression of the core regulator PSR1 in algae

We speculated that increasing the expression of the core regulator PSR1 in algae might increase P removal directly.

To test this, we developed three PSR1 over-expression (termed PSR1-OE) lines with different expression levels of PSR1 (Fig. 2A) and further evaluated their physiological characters and P entrapment potential. All three representative PSR 1-OE lines showed higher expression of PSR1 than wildtype, up to more than 13.4 times. The relative expression of a PTB2 '\s also higher in all PSR 1-OE lines, indicating higher P uptake in the PSR 1 -OE lines (Fig. 2A). Both total P and polyP showed significant elevation in all three PSR 1 -OE lines (Fig. 2B). Further P removal simulation results show that all PSR 1 -OE lines show excellent P removal ability (Fig. 2C), indicating that engineering the core regulator PSR1 can enhance the luxury P uptake. Meanwhile, the strain with a higher expression of PSR1 showed a higher P removal efficiency (PRE). Thus, the PSR1-OE14 strain was selected for further analysis, with the highest expression of PSR1. Growth assessment results found no growth defects in the PSR1-OE14, no matter under Pi sufficiency or Pi deficiency conditions (Fig. 2D). The results showed that the PSR1 -OE14 strain had a higher PRE than Crptcl. Example 5 - an algal strain with further enhanced PAO performance

The above results show that either inducing P starvation signalling by increasing PSR1 expression or over-accumulation polyP in vacuoles by knock-out CrPTCI could increase the luxury P uptake. However it could not be predicted how these different approaches may interact, or whether algal strains embodying both approaches would be robust and viable.

Therefore we next attempted to create strains with high expression of PSR1 in the Crptcl mutant background. All three representative Crptcl :PSR1-OE lines (termed as SPAO hereafter) presented a higher expression of PSR1 than that in wildtype, as well as the expression of PTB2 (Fig. 3A). Also, both total P and polyP showed significant elevation in all three SPAO lines (Fig. 3B). Further P removal simulation results show that all SPAO lines show excellent P removal ability (Fig. 3C). Among them, the SPAO24 line can completely remove P in the medium at 60h, which is much faster than the PSR-OE14 line (completely removed P at 72h). Growth assessment results found no growth defects in the SPAO24 line, whether under Pi sufficiency or Pi deficiency conditions (Fig. 3D). In addition, we found that PRE increased with PSR1 expression in different backgrounds, but in the Crptcl background, the strains with similar PSR expression levels had higher PRE (Fig. 3E), suggesting that trapping P in vacuoles significantly promotes PRE, while the combination of the two approaches gives a more effective interactive strategy. PolyP staining and contents also showed that after 24 P starvation treatment, SPAO24 retained more polyP in vacuoles than the wild type, Crptcl and PSR1-OE14 lines (Fig. 3F). While PSR 1 -OE lines showed a substantial reduction in polyP content, indicating that PSR 1-OE lines cannot trap P in vacuoles steadily when P in solution decreases to P deficient conditions. Taken together, these data suggest that over-expression of PSR1 in the Crptcl background can further improve PRE.

Example 6 - assessment of algal strains of the invention with synthetic aguacultural wastewater (SAWW)

To assess the P removal ability of the strains described above, we further conducted a simulated evaluation of three representative strains of the three approaches, using synthetic aquacultural wastewater (SAWW). These were the Crptcl mutant, PSR1-OE14 line, and SPAO24 line, along with wildtype CC-4533 as a control. The results showed that all three engineered strains showed higher P removal ability than wild type, and SPAO24 strain showed highest PRE (Fig. 4A). Thus, three improved approaches for genetic engineering of SPAO are proposed (following (Fig. 4B):

1 ) genetic manipulation of endogenous genes controlling vacuolar P homeostasis. Downregulation (or loss-of-function) of SPX-SLC proteins can raise the P and polyP accumulation in vacuoles, and further increase the P removal capacity in SPAO.

2) increase the expression of core regulator of P starvation response - PSR1 . PSR1 further promotes Pi acquisition through directly up-regulating the expression of P starvation-induced genes (PSIGs), such as phosphate transporters (PTs) which are responsible for Pi absorption from the extracellular environment and alkaline phosphatases (ALPs) which could liberate soluble reactive phosphorus from dissolved organic P compounds. 3) combining above two approaches - enhancing P starvation signaling and trapping P into vacuoles.

Example 7 - scaled up culture

In the Examples above microalgae culture was carried out at lab-scale (typically 100 to 150 mL medium).

In further experiments we used extended culture in larger volumes (1 L, 2L, and 10L) of medium. As shown in Figure 5, using a same inoculation amount with the previous labscale system (about 10 5 cells/L), the SPAO24 strain showed an growth advantage compared to wild-type strain CC-4533 in all large-scale culture systems within a relatively short time after inoculation (about 1 day).

Example 8 - utility of algae as fertiliser

For use as fertiliser the microalgae are recovered and added to fields growing crop plants.

Although higher crop plants can typically take up inorganic phosphate from external environments, the polyPs can be degraded naturally by polyphosphatases, which occur in bacteria and fungi in the natural environment and are reviewed in (Lorenzo-Orts et al., 2020). In brief, in bacteria, long-chain polyPs can be sequentially hydrolyzed by exopolyphosphatase 1 (PPX1 ). PPX1 belongs to the same protein superfamily as actin, HSP70 chaperones and sugar kinases, and hydrolyzes both polyP and the alarmone guanosine pentaphosphate (pppGpp). The short-chain inorganic polyphosphatase ygiF from Escherichia co// hydrolyzes tripolyphosphate into pyrophosphate and Pi. In yeast, PPX1 belongs to the DHH phosphatase family and hydrolyzes the terminal Pi from short-chain polyPs. Siebers et al., 2019 demonstrates that the P in algae can be rapidly transformed in soil and mobilized for plant growth.

Example 9 - Assessment of the max capacity of cellular P in engineered algae

Given that the SPAO23 strain accumulated more than twice as much total P as the WT did under normal culture conditions (Figure 3b), then, it is asked what is the possible maximum P accumulation capacity in SPAO strains. To assess this, the SPAO23 strain and the WT were cultured in modified TAP conditions amended with different concentrations of Pi. Total P concentrations increased with increasing P input and did no further increase after P input exceeded 93 mg L -1 (3 times of the normal concentration in TAP) (Figure 10a). At 93 mg L -1 P input, the total P concentration in the SPAO23 line reached a maximum of 68.3 mg g -1 DW, while the total P concentration in WT was relatively stable at about 20 mg g -1 DW (Figure 10a). Thus, it is proposed that the over-expression of PSR1 in the Crptcl background can enormously increase maximum P accumulation capacity up to almost 7% dry matter. So far, this is the maximum stoichiometric proportion of total P have to be achieved in plants (Figure 10b).

Example 10 - Removing P from industrial wastewater

To evaluate the P-removal capacity of the engineered algae strains in the real wastewater environment, the wastewater from a chemical plant in Nantong, China, was collected for further analysis. The wastewater was used in the experiments directly without filtration to minimize any change in water composition. Characteristic analysis showed that the wastewater contained 56 mg L -1 total P and 34 mg L -1 total N, with 1100 mg L -1 chemical oxygen demand (COD). To simulate the actual wastewater treatment scenario as much as possible (Nie, X., Mubashar, M., Zhang, S., Qin, Y., and Zhang, X. (2020) Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. J. Clean. Prod., 277, 124209), after adjusting the wastewater to the algal growth conditions (details in Methods), an approximately 10% initial inoculum (about 10 6 cells L -1 ) of SPAO23 strains and its WT were used to inoculate wastewater in a 50 mL working volume. Measurement of the residual P in the wastewater showed that SPAO23 had removed 97.4% of the total P from the wastewater after 60 h, and it recovered all the P within 72 h (Figure 11). In contrast, the wastewater inoculated with the WT strain reached the lowest residual P at 60 h (34.5% of initial P concentration), and this even increased with prolonged cultivation (Figure 11). The above results confirmed that SPAO23 has superior P removal application prospects.

Example 11 - conclusions from Examples 1 -10

The current evidence supports the view that integrating microalgae as an alternative biological wastewater treatment approach is environmentally and technologically feasible (5, 16). Species of several algae genera have been assessed and employed for phosphorus removal capacities from wastewater, such as Chlorella, Scenedesmus, Cyanobacteria, Oocystis, and Ankistrodesmus ( 16). In this study, we proved that engineering the genes involving the P homeostasis could enhance the luxury P removal and enable the development of species or strains that are more efficient at P removal from wastewater. PSR1 has been shown to be conserved in regulating the P starvation signalling in green plants ( 17). Our previous study also has demonstrated that SPX-SLC proteins are widely found in green algae, which are responsible for the efflux of vacuolar polyP in green algae ( 13). These conservative mechanisms of P homeostasis are widespread in green algae. Thus, although this study uses the model green alga - C. reinhardtii as an example, it is credible that analogous methodology may be used to produce other genetically engineered microalgae with enhanced ability to remove P from wastewater.

Materials and Methods used in Examples

Chlamydomonas reinhardtii strains and growth conditions

The Chlamydomonas reinhardtii strain CC-4533 (also refers to CMJ030) and Crptcl (LMJ.RY0402.181899) were purchased from the Chlamydomonas Resource Center ( 18).

This strain was generated by the CIB1 -insertion method as follows: To generate mutants, cells of the wild-type strain CC-4533 were transformed with DNA cassettes (termed CIB1 cassette) that randomly insert into the genome, confer paromomycin resistance for selection, and inactivate the genes into which they insert. Each cassette contained two unique 22-nucleotide barcodes, one at each end of the cassette.

Transformants were arrayed on agar plates, and each insertion in a transformant would contain two barcodes. To make sure the insertion, DNA was then extracted from each pool, and barcodes were amplified and deep-sequenced. Li, X., Patena, W., Fauser, F., et al. (2019) A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat Genet, 51 , 627-635.

Alternatively, an miRNA targeting Chlamydomonas PTC1 may be provided according to (Molnar et al., 2009) using the WMD3 tool at http://wmd3.weigelworld.org/. Resulting oligonucleotides are annealed by boiling and slowly cooling down in a thermocycler and ligated into Spel-digested miRNA2, yielding miRNA2-PTC. miRNA2-PTC is linearized by digestion with Seal and transformed into Chlamydomonas strain CC-4533 by electroporating (Bio-Rad; Gene Pulser2 electroporation system) with pulse settings of 800 V and 25 uF, followed by immediate decanting into a 15-mL tube containing 13 mL of TAP supplemented with 40 mM sucrose. Cells are then collected by centrifugation at 1000g for 4 min, with most of the supernatant being decanted, and the cells resuspended in the remaining 500 mL of supernatant. Resuspended cells are gently plated onto 2% (w/v) TAP agar plates containing 20 mg/mL paromomycin. These plates are stored at 5 mmol photons m -2 s -1 light for 2 weeks, until transformant colonies appear (Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., Weigel, D. and Baulcombe, D. (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. The Plant Journal, 58, 165-174).

Alternatively, a CRISPR based method may be used via transformation with an RNP complex consisting of LbCpfl protein and a gRNA targeting a PAM sequence in the first exon of CrPTCI as described in Ferenczi et al. (2017). Cells were incubated at 40°C for 20 min. Purified LbCpfl (80 pM) is preincubated with gRNA (1 nmol) at 25°C for 20 min to form RNP complexes. For template DNA-mediated editing, ssODN (5.26 nmol) is added at a 1 :10 molar ratio to LbCpfl . Final volumes are around 270-280 pL. Cells are electroporated in 4-mm cuvettes (800 V, 25 pF) by using Gene Pulser Xcell (Bio-Rad). 800 pL of TAP with 40 mM sucrose is added immediately after electroporation. Cells are recovered overnight (24 h) in 5 mL TAP with 40 mM sucrose shaken at 110 rpm and then plated onto TAP media supplemented with 10 pM rapamycin (Ferenczi, A., Pyott, D.E., Xipnitou, A. and Molnar, A. (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf 1 ribonucleoproteins and single-stranded DNA. Proceedings of the National Academy of Sciences, 1 14, 13567-13572). ***Cells were cultured in a standard Tris-acetate-phosphate TAP medium at pH 7.0 under continuous illumination (50 mmol photons nr 2 s -1 ) on a rotating platform (150 rpm) at 24 °C. For Pi deprivation, cells in the mid-logarithmic phase (5-8 x 10 6 cells mL -1 ) were pelleted by centrifugation (2,000 g, 5 min), washed twice with TA in which 1 .5 mM potassium chloride was substituted for 1 mM potassium phosphate ( 19), and then resuspended in TA medium.

Generation of over-expression Chlamydomonas lines

To create CrPSRI over-expression strains, the genomic DNA of CrPSRI was introduced into the HSP70-ARbcS2-Ble vector {20), then the reconstructed plasmids were linearized with Seal before electroporation into CC-4533 and the Crptcl mutant cells. Transformants were selected on the solid TAP medium containing 10 pg mL -1 bleomycin {21). Positive transformants were further validated by relative expression level of PSR1 using qRT-PCR.

Measurement of total P and polyP

For measurement of total polyP, 0.5 mL cells were harvested (2300 g, 2 min) and the pellet was frozen immediately at -20 °C for later analysis. After thawing, 50 pL of 1 M F^SCUwas added to the cells. PolyP was purified using PCR purification columns {22). 5 pL polyP solution was mixed with an equal volume of 2 M HCI and heated at 95 °C for 30 min. The content of Pi released from polyP was measured by the Mo-blue method (86 pL of 28 mM ammonium heptamolybdate in 2.1 M H2SO4 and 64 pL of 0.76 mM malachite green in 0.35% polyvinyl alcohol). The absorbance was measured at a wavelength of 595 nm in a TECAN infinite Elisa Reader. For the measurement of total phosphorus concentration, 5 mL cells were harvested and dried. The total P content was measured as previously (23).

Staining PolyP with DAPI

PolyP within cells was stained with DAPI and imaged through a ZEISS LSM 880 scanning confocal microscope. Cells were grown in TAP medium to 6 x 10 6 cells mL -1 and incubated with DAPI. DAPI was excited at 405 nm and emission was collected from 532 to 632 nm, similar to conditions previously described (24).

Quantitative real-time PCR analysis

Total RNA was extracted from frozen cell pellets using the RNeasy Mini Kit (Qiagen) and reverse transcribed to complementary DNA after DNase I treatment following the standard instructions (NEB). Quantitative real-time PCR was performed using a SYBR Premix kit (Roche) on a QuantStudio 6 Flex machine (Life Technologies). The CBLP gene was used as an internal control (26). The primer pairs used for RT-qPCR are given in the Table S1 :

Synthetic aquacultural wastewater

Synthetic aquaculture wastewater (SAWW) was prepared based on the characteristics of local aquaculture wastewater from Zhoushan, China. The components were the following: ammonium, 120 mg L" 1 ; orthophosphate, 20 mg L" 1 ; and 92.3 mg L -1 of CH3COONa as an additional carbon source. Other nutrients added as the TAP medium. The pH of the synthetic aquaculture wastewater was controlled at approximately 7.

Wastewater source and experimental setup

Industrial wastewater used in this study was collected from a chemical plant located in Nantong, China, which contains 34 mg L -1 total N and 56 mg L -1 total P, with 2200 mg L -1 chemical oxygen demand (COD). To adjust the wastewater to the algal growth conditions, 3 mM NH4CI, 0.2 mM MgSO4, 0.34 mM CaCh, and 0.5 ml L -1 Hunter’s Trace Stock Solution (Harris, E.H. (1989) The Chlamydomonas Sourcebook. Elsevier) were added to generate experimental conditions. The pH was controlled at approximately 7.0. The working volume was 50 mL, and the initial inoculum was approximately 10% (about 10 6 cells L -1 ).

Elemental analysis

For elemental analysis, 10 mL of algal cells were harvested, dried, and then digested with 65% HNO3 at 75°C for six hours. The elemental concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Scientific, USA). The results are given in the Table S2:

Table S2. Elemental analysis of CC-4533 and SPAO23.

RNA sequencing and data analysis

Total RNA was extracted by TaKaRa MiniBEST Universal RNA Extraction Kit, and at least two independent biological replicates were used for each line. Library construction of RNA and sequencing was carried out by HiSeq 4000 platform with paired-end (2 x 150bp) sequencing. Transcriptome data were prepared as described in our previous study (27). Briefly, the paired-end reads for each individual were mapped against the Chlamydomonas reinhardtii reference genome (JGI v5.5) using HISAT2 (version 2.1.0) {28). FPKM (fragments per kilobase of exon model per million reads mapped) and TPM (transcripts per million) values were calculated by StringTie (version 1.3.4b) with default parameters {29). Differential expression analysis was carried out by DESeq2 {30). Z-score value of each gene was calculated by Mfuzz {31). Significant changes in differentially expressed genes (DEGs) were determined as fold-change more than 2 and fold-change less than 0.5 for up-regulation and down-regulation respectively, with P value < 0.05. Gene ontology (GO) analysis was performed using agriGO v2.0 (32). Significantly enriched GO items were filtered by P value < 0.01 and false discovery rate (FDR) < 0.05. Diagrams were drawn by R scripts available by request.

References

1 . D. Cordell, J.-O. Drangert, S. White, Glob. Environ. Change. 19, 292-305 (2009).

2. G. K. MacDonald, E. M. Bennett, P. A. Potter, N. Ramankutty, Proc. Natl. Acad. Sci.

108, 3086-3091 (201 1 ).

3. D. Cordell, S. White, Annu. Rev. Environ. Resour. 39, 161-188 (2014).

4. D. W. Schindler et al., Proc. Natl. Acad. Sci. 105, 1 1254-1 1258 (2008).

5. K. Li et al., Bioresour. Technol. 291 , 121934 (2019).

6. Y. Xu, Y. Wu, S. Esquivel-Elizondo, J. Dolfing, B. E. Rittmann, Trends Biotechnol. 38, 1292-1303 (2020).

7. A. Solovchenko, A. M. Verschoor, N. D. Jablonowski, L. Nedbal, Biotechnol. Adv. 34, 550-564 (2016).

8. L. Qin et al., Water Res. 187, 116430 (2020).

9. I. S. A. Abeysiriwardana-Arachchige, H. M. K. Delanka-Pedige, S. P. Munasinghe- Arachchige, N. Nirmalakhandan, Bioresour. Technol. 332, 125128 (2021 ).

10. D. D. Wykoff, A. R. Grossman, D. P. Weeks, H. llsuda, K. Shimogawara, Proc. Natl. Acad. Sci. 96, 15336-15341 (1999).

1 1. J. L. Moseley, C.-W. Chang, A. R. Grossman, Eukaryot. Cell. 5, 26-44 (2006).

12. A. K. Bajhaiya, A. P. Dean, L. A. H. Zeef, R. E. Webster, J. K. Pittman, Plant Physiol.

170, 1216-1234 (2016).

13. L. Wang et al., Mol. Plant. 14, 838-846 (2021 ).

14. M. Aksoy, W. Pootakham, A. R. Grossman, Plant Cell. 26, 4214-4229 (2014).

15. F. Wollmann et al., Eng. Life Sci. 19, 860-871 (2019).

16. S. F. Mohsenpour, S. Hennige, N. Willoughby, A. Adeloye, T. Gutierrez, Sci. Total

Environ. 752, 142168 (2021 ).

17. V. Rubio et al., Genes Dev. 15, 2122-2133 (2001 ).

18. X. Li et al., Nat. Genet. 51 , 627-635 (2019).

19. J. D. Quisel, D. D. Wykoff, A. R. Grossman, Plant Physiol. 111 , 839-848 (1996).

20. W. Zhang et al., Proc. Natl. Acad. Sci. 118, e21044431 18 (2021 ).

21. K. Shimogawara, S. Fujiwara, A. Grossman, H. Usuda, Genetics. 148, 1821-1828 (1998).

22. T. P. Werner, N. Amrhein, F. M. Freimoser, Arch. Microbiol. 184, 129-136 (2005).

23. A. Chen, J. Hu, S. Sun, G. Xu, New Phytol. 173, 817-831 (2007).

24. R. Aschar-Sobbi et al., J. Fluoresc. 18, 859-866 (2008).

25. F.-J. Li, C. Y. He, Autophagy. 10, 1978-1988 (2014).

26. C.-W. Chang, J. L. Moseley, D. Wykoff, A. R. Grossman, Plant Physiol. 138, 319— 329 (2005).

27. X. Jia et al., J. Plant Physiol. 248, 153141 (2020).

28. D. Kim, B. Langmead, S. L. Salzberg, Nat. Methods. 12, 357-360 (2015).

29. M. Pertea et al., Nat. Biotechnol. 33, 290-295 (2015).

30. M. I. Love, W. Huber, S. Anders, Genome Biol. 15, 1-21 (2014).

31. L. Kumar, M. E. Futschik, Bioinformation. 2, 5-7 (2007).

32. T. Tian et al., Nucleic Acids Res. 45, W122-W129 (2017).

Additional references:

Acevedo, B., Oehmen, A., Carvalho, G., Seco, A., Borras, L., and Barat, R. (2012). Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res. 46:1889-1900. Chen, X., Li, Z., He, N„ Zheng, Y„ Li, H„ Wang, H„ Wang, Y„ Lu, Y„ Li, Q„ and Peng, Y. (2018). Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnol. Biofuels 11 :190. Qin, L., Gao, M., Zhang, M., Feng, L., Liu, Q., and Zhang, G. (2020). Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res. 187:116430. {=8 above)

Lorenzo-Orts, L., Couto, D., and Hothorn, M. (2020). Identity and functions of inorganic and inositol polyphosphates in plants. New Phytol. 225:637-652.

Siebers, N., Hofmann, D., Schiedung, H., Landsrath, A., Ackermann, B., Gao, L., Mojzes, P., Jablonowski, N. D., Nedbal, L., and Amelung, W. (2019). Towards phosphorus recycling for agriculture by algae: Soil incubation and rhizotron studies using 33P-labeled microalgal biomass. Algal Res. 43:101634.

Table 1 : Non-limiting host species of the invention

NCBI https://www.ncbi.nlm.nih.gov/nucleotide

OneKP https://db.cngb.org/onekp

PhycoCosm https://phycocosm.jgi.doe.gov/phycocosm

MNRPPVGSASRTADQQLSS SAEVQPRTVQKLPTTVDELINQEWPIWGELAPNDDS ITTCWTDLLTGPPPKNQDMHRPQHATIQ DDTSPGLYLARQQYLPGMGTLPPGGVPPLCAPPGLMDGGGMNLVPGMQASMAAAQSQQPP KQRLRWTPELHDRFVNAVQNLGG ADRATPKGVLRVMGVQGLTIYHVKSHLQKYRLAKFLPEEGGNS SKSLGGSKRDTDSDNDDASDGDPLKMADLKAGATELLTGE DGSVNIEEALRMQMEVQKRLHEQLELQRALQLKIEAQGRYLQQIMEEQRNAALARRAQAG GAASGATTQGQATSAGQAASASS S RS SAGGGGKGPEGAAAPAAGEGGAGADS I SHAADGARAGAEAGDAQRQAVAS PS GAPVFAAS GVHDADGAGATCPAVGAAGG HAPSPALVPKTESVACGGSLAMPDALASLPGGGGHHLGASGKLPGCELPLPSWSEPGAAL LTANGGILPFPSKVEGRNLPQLS LPSHLLLGVEDVDDGGGGGGGGGGGGQSLQSGVGVGSKRAYDEMMGGGIAMEDGAGDRLH TDGSGLPTGGSLLPDDASLLAAQ GGHAS GGAD PAPHML

>Raphidocelis_subcapitata . PSR1

MAERTPGSPAGEGDEAVLAGLAGWLNDELSYWPEWPVGPPAPPLDPQAHCDGPVIAL PGAHCPMEQRQVAAGPPGPHGGAGPH AVAQPQQQHPALQAGQGHALDAFQS YQATAYGMQLAVHAQQGGFDPGMLGAAGALAPGALFGVPPAYGMAGGKPGAMAGGNKS RLRWTPELHAS FVAAAESLGGADKATPKGILKLMAVPGLTI FHIKSHLQKYRLNVRAPDGTEGASDGGGESAVEGASGEGGAT VRMGALRAESLDATAPS SALALPPTALGASPAVGVKPEHPEVDAHSLLKQQQHAVPASTTSTCAGLS SATGLEAAAAAGGAGS EAAAGGPSTARRRNLEDALQLQMDLQRRLHDQLEAQRALQLSLEAHGRYIARLMEQEGLG HRLQDLAAITAPGPGAGAEAEAA PGGGDGGGAAGSGGAGSGGAGPGGAPAAAPASEANSSGLRAAAGGCGGGRSVAGGCCDGA LPLARAGSSALDS SDHPAEPHQQ PARWQQPTPPPSASGRRDDRSQDQRLHAAAGQLLAWGRSAPPPHDAAGLDAAGAPQGKRP RLSGA

>Symbiochloris_reticulata_Af rica . PSR1

MLFPGQLQPVSAALLSHFTEADVSHSFLPPDYMQPHFCGSDLPEAAHSMPLASAAQQ APVFGATANEPS SAGAGS SQAGKPRL RWTPELHSRFVAAVNHLGGPDRATPKGVLKLMLVEGLTI YHIKSHLQKYRLNIRLPGDSGPVGSLSGSRKKRKRSRRARSSDL EDEEEEDDMDEADSMEDMLPGDELHGRQQAVGEAGLALDAALPEQGNAQVPGQQPEQQPN AQRQRDLEEALILQMDMQKRLHE QLESQRQLQLSLEAHGRYI SSLIEREGLQSKLPAGTHAAMQSGLPRLPEASLGMAAGMCGPADGSGAGTIAPGTSGGMS WGQM THVTLPHSAES PPLLSHTSRTGATAADAGQFLMVGDPGDLGPLPSMLLDTDLQAAAAVWDDGMHRPRKHAP NGHLEHASGLDE GLFDQHEGEEHGRLQRRRQPS SRLRQS

>Tetradesmus_deserticola . PSR1

MDSGAHDLGDHTGDWLEFWHESEFKLDGVSTAAAQPGQHAPMDLPGGLGDFFLPSGS MLPQPHSGDAQQLVLAPAGDPYAGSL TMLPGLEQQQQHYKGPDLS FMSTSSGAAGQMTQLMPPTAQLESYTSS FS SDPTLSGMHSAPMLYHAASFQLPGTRSGSLQEAP AGKTRLRWTPELHSRFVQSVNSLGGPDKATPKGILKLMSVDGLTI FHIKSHLQKYRLNIRLPETSEMGAQPANSSGS PDQEAT AATDSAADTHATLATSTINPSAAAAVAAGAAAPTAAVAPASASAGGGSSLQQQQQQQSLV PTSQQQQQQQPPPPQQQQQQRIL SGVEQLSGASPLQLTTSGVLEMPDSAASAAQQQQQQQQQQQQQPTGAAADAAEDSLHMKS DTRRDLERALLQQMHLQKKLHEQ LETQRQLQHSLEVHQRYIHKLMEQEGLAHKI PEMSAAFNAGALPPPGSVVSEAMPGQPLAVGTAPQQQQQQQQQASSAAPPLQ RHHSLPHQQQLHTGVGNSDAAAGVGTSKRSS SHHHHHHHQHHQQHHPQQQHHPQPMQQQQEPGQDAAGIDPLPGSCGNLLSDH ELLLGFPELRDSGDEGGGMGLLSEPGQPQGKRQRLLTPDIAKWPSVDSAEGQH

>Tetraselmis_striata . PSR1

MNIRHDDDAAAASVQVRERVPWSQGIRGVEGAVWVFILARFTPTAPQTRQTLQPPYR QLARHREDPATSPDPRTGRPAMDLN EDADAELNFFKAMEAFS PPSFEGGEAEDHLHGLSVPGLPHMAGATDTHAHNPPASTGDGSQSATVHNTSGARGHDLL VNNGHS WEPLSFEEVMRNGGVNPSQASSLASTSTAATELLMHRGNTFLPSGNGGGRQAPPGQFGMG GMPSMMAFGAPQQQQQHQQHQP TPQQQPPQRNGSEDGMQHFGGLFPQSAAFRPRLRWTNDLHNQFLDSVERLGGTDKATPSA ILKHMGVDGLSLGHVKSHLQKYR TELKRAKAVRGKAMDDMHQMKKGARSKAAAADVAAEAAEWAEASGSAEAGLEQLGATQRE LQRQLAARAASGPNAKELEEAM RTQLELQKMLCAQLEAQKELQRSLEQHTKYI SVLMKRQSGDDLHAHGEGDTAGEHEMSKA

>Trebouxia_sp . . PSR1

MDNDTIDWLDLDYWPEKDSKKPADMDNSFAWLAQQAQPLSGQPLPGSQYQVQPHVMQ PHDGLLYHDTFHPHSTAGSLLSDLSG DLLDTTAVDISNAQFEAIPSQSPHQQSNMQLRSDTAHNGAPQPLQDMIQAPVFGRSTSSM SQQAGNNSQSAAAQAAGKPRLRW TPELHTRFVGCVSQLGGPEKATPKGIMKLMSVEGLTI YHIKSHLQKYRLNIRLPESEQVEMSEAVSGEHEGRKSQRGKRRSTR KQRKRSKRS SSRRRALEKSDGDDDEADDLDDDQFDEEEGDNELDGHAAS SGVGEASSMLDGVTNREEDAQREVQRQRNLEQAL LIQMEMQKKLHEQLESQRQLQLSLEAHGRYITSLIEREGLQHRLLPQLVAAAAPSLARTV PALAALAASMPPGSSGQISDQQT HYMPLSASGASEFSPQQLLAGRFSSLPNSVNLNQDPS PGATDAARSLDVSPSSLSRHVSGAVPRNPFGTINQAAFGEPS SPGL LLNTDLQAAAAAWDDQQRHILTGPGSRPLDGMPAVPGQ

>Chlamydomonas_reinhardtii . PSR1

ATGGACAAAGCTGAACGCGCTGCTGGTGGCCCTAACGCTGCAAGCGAGGACGACTGG CTGCTGGAGTTTTGGCCGGAGCCTGC

AGCGGACTTTCCTGCACCGGTCGCTCCGATGCTGTCGCAGCATCAAGACGCAGCACA GCTGCCTGAGGCCATGCCGCAGCAGC

AAGGACTGGCGCTGGGTGGATATGGTCTCACGCAGCAGCCTTCTGACTTTATGCAAA CGGGCATGCCCGGCTTCGACGCGTTC

AGCAGCGGGAAGGCTGCAACCCTCGGGCTGCCCCTGCTTGCCGACCCCCAGCGCGCC TCCACCGACGGCGCCTCTGCGCTTAT

GAACGCGGCGCAGCAGTCCTCAGAGTACATGCTGGCCCCCGGCATGGGCGGCATGCC GCATCTACTAGCACCGAGCGTTGGCA

CGGCGCTGCCCGGCACTGGGCACACCGGCTTCGCGGACCTGTCCATGGGGGGCATGG CGGGGGGCATCCCGGGCCTCGGGGGG

CCAGGCATTATGCATGGGCAGTACTTCATGCAGCCGCAGCGAGCAGCCACGGGCCCC GCCAAGAGCCGGCTGCGCTGGACGCC

GGAGCTGCACAACCGCTTCGTCAACGCGGTGAACTCGCTGGGGGGGCCGGACAAGGC CACGCCCAAGGGCATCCTTAAGCTCA

TGGGCGTCGACGGCCTCACCATCTACCACATCAAGTCGCACCTGCAGAAGTACCGCC TCAACATCCGGCTGCCGGGAGAGAGC

GGCCTCGCGGGCGACTCGGCGGACGGCTCGGACGGCGAGCGCTCGGACGGCGAGGGC GGCGTGCGGCGCGCCACCTCGCTGGA GCGGGCAGACACCATGTCGGGGATGGCGGGAGGGGCCGCCGCAGCGTTAGGGAGAGCGGG CGGGACGCCGGGCGGTGCGCTAA TCTCCCCCGGCCTTGCCGGCGGGACGTCAAGCACCGGTGGGATGGCAGCCGGCGGCGGCG GGGGTGGCGGCTTGGTGACTGAG CCCAGCATCTCTAGGGGCACGGTCCTCAACGCGGCCGGCGCAGTTGCCACCGCCGCGCCG GCTGCGGCGGCGCCTGCCGGCGG GTCCGCCGCCGTGAAGCGGCCGGCGGGTACGTCTCTGAGCAGCGGCAGCACTGCCTCGGC TACTCGGCGCAATCTGGAGGAGG CGCTGCTGTTCCAAATGGAGCTGCAGAAGAAGCTGCACGAGCAGCTGGAGACGCAGCGTC AACTGCAGCTGAGCTTGGAGGCG CACGGGCGCTACATCGCCAGCCTCATGGAGCAGGAGGGACTCACCTCGCGACTGCCCGAG CTCAGCGGCGGCGCGCCGGCGGC GGCGCCTGTGGCCGCAGGCGGCGCAGCGGGCGGCATGATTGCGCCGCCGCCACCGCAGCA GCAGCTGCAGCACCAGCCGCAGC TGCTGCAGCCGCAGGGCAGCTTGCCAGCCGGCGGTTCCTCTGAAGCCCATGCCGCAGCCG GCGCCGGCACGATGGTGGTGCAC CAGCAGCAGCAGCAGCACGTGCACCATCATCACCAGCAGCAGCAGGTGCAGATGCAGCAG CATGCCCGCCACTGCGACACGTG TGGCGCCGGTGGCGCTGGGGGTGCGCCCAGCGGCGGCAGCAGCATGCAGCAGCTTCAGGC TGCGGAGCAGCAGCGCACGGAGC TTGTTGTGGCGGGGCGGCTAGGCTCCATGCCGGCGCCCGCCTCTTCGTCGCCGCTAGCAG GGCAGGCACACCAGCAGCAGCCG CTGGCCGGCGGGGCGGCGCACTTGGTGCACGTGCACTCGCACACGCCTGGGGGGCAGCCG CACGTGCAGCACCAGGACGCGTT TGCCGGCGCGGCTACGGCGGCAGCGCACGCTTCGCCGGGGCTGCCGCAGTCACATTCGCA CCTGCTCCCAGCCGACCTCTCCA GCAACGCCGGTCCTGACACAAGCGCGGGGCAGATTAAGCCTGAGCCTGATATGTCGCAGC AACAGCAGCAACAAGAGCAACAG GAGGCGGAGCAGCTTGCGCAGGGTTTGCTCAATGACAGCAGCGCTGGCGCGGGGGCTGTC AGCGGCAGCGATGGTGGGGGCCT TGGGGACTTTGACTTCGGTGATTTCGGGGACCTGGACGGGGGAGCCCAGGGCGGCCTACT AGGCCCCGGAGACCTCATTGGCA TCGCCGAGCTGGAGGCAGCGGCCGCGCACGAGCAGCAGCAAGAGCAAGAGCACGACCCAC TAGATGCGGATCGCGCAAAGCGG CAGCGAGTGGAGCCATAG

>Monoraphidium_neglectum. PSR1

ATGCAGCAGGACCTGCTGGGTGGCCCTCCTGGGCCCATGCATCATGATGAACAGCAC GAAATGTTGCAGCAGCAGCCGCAGCA GCAGCAGGCACAACCCCAGGCGCAGCAGCAGCAACAGCAGCAGCACCCGCAGCAGCAGCA CCAGCAGCACCAGCACCTGCCCG GCAAGGCCGCCTTTCCCCCGGGCATGGGTGTGCCTGGCATGGATCACTTTCACGGCACAC CCTACGGCATGCAAGCTGTGCCC ATGCAGCCAGGCCACTTTGAACATCTGCTCAACGCAATGCCCGTGACGGGTCACTCGTTG AGCTCGTCGTTCGCAACGGACAA CGTGCACATGAGCGGAGCCCAGCCCACGCTCTATCTGGCCGCGGGTTTCAACATGGCCGG TTCCAAGCCAGGCGTGAGTGCGG CTGGCTCGGCTGGCGGCGGTGGCGGTGGCGGCAGCAAGACGCGCCTGCGATGGACGCCCG AGCTCCACTCGTCATTTGTGCGC TCCGTGCAGCAGCTGGGAGGGCCCGACAAGGCGACGCCCAAGGGCATCCTGAAAGCCATG AACATGGATGGCCTCACCATTTT CCACATCAAGAGCCACCTGCAGAAGTACCGCCTGAATGCGCGCGTGCCCGGCGCCAGCAG CGTTGACGGTGGCAGCGATGGCT GCGCGGCTGGGGACTCGGCAGAGGGCAACAGCGGCAGCCGACCGGCCTCTGCAGCTTTAG ACGGGCTGGGCAGCGTCCCCGTG TCTGCCCTGACGCGCAAGAATCTGGAGGACGCCTTGGTGCTGCAGATGGAGCTCCAGAAA AAGCTCCACGAGCAGCTCGAGCT CCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTTATGCTGCTGCTGCTGCTGCT GCTGCTGCTGCTGCTGCTGCTGC TGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC TGCTGCTGCTGCGGCTGCTGAGC CTGGAGCCGCGTCGTTCCTGCGACGGCAGCGTCGCGTGCAGCTGCAGCTGCGCTGAGGTG TTCATCTCGGGTGAGCTCTACTA G

>Entransia_f imbriata . PSR1

GCCCAGAGCAGCAGCAAGAGGATGCCGGCTGACTCGGGGGCAGAGCCTACTGGGAGC ACCGGCAGCGGCCACCATTCGCAGGG GCGGATGTCCGAAGGGGTGTACCTTTCCAGCAACAAACAGCGCCTCCGCTGGACGCCGGA GCTGCACGAGCTTTTCGTCTCTG CTGTGCACGAGCTAGGAGGCGCAGACCGCTCGACCCCGAAGGGCATCCTCCGCCTCATGG GCAAGCAAGGCCTTACCATCTAC CATGTGAAGAGCCACCTCCAGAAGTACCGTCTTGCCAAGCTCAGCGGACAGTCCAAGTAC AGCCAGCCAGCCACCCCGCCCCC TCAAGGCGCCGATACTGGGATGGCCCCCCTGCCACCCATACGCCCCGGGTCCTCCGGTGG TGGCGCGCCGACAGCCTCCGTCA CCTCCACTGTCTCGGAGCAGGACATTGAGAAGGATGCGGGCATGGGAGCTCTGCCTAAAT CACTGCAGATCTCAGAGGCACTC CGGATGCAGATGGAGGTCCAGAAACGCCTCCATGAGCAGCTCGAGGTCCAGCGCCAGCTC CAGCTTCGTATTGAGGCTCAGGG GAAGTACCTACAGCAGATTATAGAGGAGCAGCAG

>Golenkinia_longispicula . PSR1

GCAGGTGGATCGGCTAAGACTCGACTGCGTTGGACACCGGAATTGCACAGCAGATTT GTGGCCTCGGTCAACCAGCTTGGGGG ACCAGACAAGGCCACTCCTAAAGGGATCCTGAAACTGATGGGAGTTGAGGGGCTCACAAT CTACCATATTAAGAGCCACTTGC AAAAGTACCGCCTTAATATCCGTCTCCCCGAGGCATCGTCCAGTGGCCCCCTGACCTCCT CCGATATCGGTCTAGACACCCCG GACGCGACGATGTCAATATCAGAAGCAACCATGCCCATAGTGTCTGAAGCTCAGGTGCAG CAGCGGGTGGAGCAGAGCTCTGT ACAGACCCTAACATCATTGACGAGCACCCAGGCTGAGACGCAATCTACAACTCCCACAGC TTCTGCTTCACTAGAGCCCGTCA CCCACTTTGTCTCCCAGCCCATGGCAGTGGTTGACCCCACCTCAGAATCCAGGAGGTTCA CCCGCAAGGACCTGGAGGAGGCA TTGCTGCTGCAAATGGAGTTGCAAAAGAAGTTGCATGAACAGCTAGAGTGTCAGCGCCAG TTGCAACATCATTTGGAGGCACA TGGGCGCTATATCGCTCAGCTCATGGAGCAAGAGGGCCTGGCCCATCGCCTGGCGGATTT AACAGGCCAACCCCTGCATCCGG GACCCAGTAGCTCAGAGGCA

>Oedogonium_cardiacum. PSR1

GCCCGTGCAGGCACTGTGAAGGCAAGGCTGCGCTGGACTCCTGAGCTTCACACACGC TTCGTGGCATCTGTTCAAAGTTTAGG CGGGCCAGAAAAAGCAACTCCCAAGGGCATTTTGAAGCTGATGGGAGTAGACGGGCTAAC CATTTATCATATAAAGAGCCATT TGCAAAAGTTTCGTCTTAACATGCGTCTGCCTGAATCAACTAATACTAGTCAAGGAAACG AGGCTGGCACAAGCAGCAAACGA AGTAAGAAAGATGATCTCCAAGGAGGTGATTCCCCTCCTTTTGAGCAACCGAAAGCCAGT GAAACCTCTACATCTTCACAACC ACCACCAGGTGCATTGACCACCTCCACAGCAACCAGCGCACCTGAAGCTCTAATCCATCA TGAATTCCCGTTCCCTCAATTCG GGTCTGGGTCTGGTACTATCACCCGTAAGGACTTGGAGGAAGCCATGTTGCTGCAAATGG AGATGCAGAAGAAACTGCATGAT CAGTTGGAGACTCAGCGACACTTGCAGCTCAGTTTAGAGGCACATGGCAGGTACATTGCA AGTCTTATTGAGCAGGAGGGTCT AGGGCAACAGATGCCGGAATTGAGT

>Cylindrocaps a_geminella . PSR1 AGTGGTGATTACGTATACCCAGCAGCCGCACCTGGCCACCTGAGCCAGCTAGGGCCCGGA ATGGGCCCCGGGCTTCAGTCCAT GTCACATAGCATGGGCTTCTTGGCTGAAGGCTCTCATGCGTCTGGCTCTCACGGAATGTA CCCGCACTCAACTATTTTTACGA ACACTCCGTCGAAAGATGGATCGAGGAAAGGCCGACTAAGATGGACTCCTGAACTACACG GTCGCTTTGTTAGTGCTGTAACC CAGCTTGGTGGTGCGGATAAAGCAACTCCAAAGGGGATTTTGAAAATCATGGGTGTAGAG GGCCTAACTATTTACCATATCAA GAGCCATCTGCAGAAGTATCGTTTGAACATCAAGATGCCAGAAGCAGAGGCAGGAGGGAC AGGCCAGTCAACCGATACTGCGT TGAAGGTTGAAAGCAACGTGCCAGCAGTAGGTCAGGCCAGGCCGCTAGGCGCTGCAGTTC CTCCGGGCAATGGTTCCTTCAGG GACATGGGTGCGGAAGTGAACCCGGCTGCTGTTTCTGCACGTGCTGACACCACGGCTGGT CCGTTTGTTGGAGAACAGCGTGG AGATCAAGTCACACAGCCTGTCCGCGGTCAGGAGCAGCTGCCGCCAGTGGTCCAGCAGAG CAGCGCGGCACCAGCGGACAGTG TGAACATTCACGAGGTCCTCAAGCAGCACGTAGCACTGCAGCGAAAACTGGCGGAGCAGC TTGAGACGCAGCGCCAGCTTCAG TCTCACCTGGAGCAACACGGCAGGTTCCTGCGCGAGTTGATAAACACTAGTGCCAGCACG TCG

>Scherf f elia_dubia . PSR1

TCCCCGTCTGCATTCAAGCCGCGGCTACGCTGGACAAACGAACTGCACAACCAATTT ATAGAAGCAGTGGAGACTCTTGGGGG GCATGGCAAGGCCACACCATCAGCACTGCTGAAGCACATGAACATGGAGGGCCTGACCCT TGGACATGTCAAGAGCCATCTCC AGAAGTACCGCACAGAGATTCGCCGTGCCAAGGAAGCTCGGTGCAAGGTCAAAGATGTTC TCAAGGAGATCAAGCGGGACAAA GCCAGCAAGCCTGGGGCAGGGGGCAAGGCGTTGGATGTTGCAAGAGAGGCGTACGAGGAT GGGCCCAATGCGAGGGAGCTCGA GGAGGCTATGCACACCCAGCTGGAGCTGCAGCGACTGCTGTGCGACCAGCTTGAGGCCCA GAAGAAGCTGCAGAGTAGCTTGG AGCAGCACACAAAGTACATCTCGGTCCTCATGCGGAACAAGTCGGATGTGCGCACCAAGC CCAGGGACCCACCGGACACAGGC TCCATTGAACCGGGTTTTCAGGCCGTGGGGGCAGAGAGCGGGCCCAGCACTTCGGAGGCC

>Hafniomonas_reticulata . PSR1

AAGAGCCGTCTCCGCTGGACGCCTGAGCTGCACACCCGCTTTGTTGCCGCTGTATCC AGCCTGGGTGGCCCAGAGAAGGCCAC GCCCAAGGGTGTGTTGAAGCTCATGGGCGTAGAAGGCCTGACCATCTACCATATCAAGAG CCACCTTCAAAAATACCGCCTCA ACATCAAGATGCCTGCAGACGGCAAGCAAATGTCCGGCAGTGACATGAGCGGGGCCGTAC TAGGAGACCCGAACCGACCAGAG TTACCCTCAGTCAGCAGCCTTGCCTTAGACACAAGCGAAGCCACACACCTTTCACCGCAC TTGCGACCACATGGGAGCCCAGC TCCCTTGGCGGCCACCAGCGTCCCGTCCCTCAGCAGCCTGCCGGGCTCGATCGATGCGAA GGGCAGCCTAGAGCAGGCGCTGC TGTTCCAGATGGAGCTGCAGAAGAAGCTGCATGAGCAGCTGGAGGCTCAGCGGCAGCTGC AACACAGCCTGGAGGCGCATGGC CGCTACATCGCCTCACTGATGGAGGCTGCGCAGGAGGGCGTC

>Tetras elmis_chui . PSR1

CAGAACACCAACTTCCAAATGCCCTCGGGCATGCACTTTCCGAATTTCAACCCAAAC GTGCCCGATGGAAATATGCCCAACTT CGGTTCAAGTTTATTTCCACCGACTACGTTTAGACCGCGGCTGCGGTGGACCAACGACCT GCACAACCAGTTTCTTGAGTCGG TGGAGCAGCTGGGTGGGCACGGCAAAGCCACGCCATCCGCGATCCTTAAGCACATGGCTG TCGACGGACTGTCGTTAAGCCAC GTGAAAAGTCACCTCCAAAAATATAGGACCGAGCTGAAGAGGGCAAAGGCGGTGCGGGGG AGGGCACTGAACGATATGAACCA GATCAAGAAGGGCGCTCGCCGTAGGGCGGGCGAGGGAAGCGGAGGGAGTAGTGCGGAGGA GGGTCTGGATATTTTGGGGTCTA CGCACGAGGAGCTGCAGAAGCAGCTGGCAGCGAAGGCGAAAGGCCCCAACGCGAAAGAGC TGGAGGACGCCATGCGCACGCAG CTGGAGCTACAGAAGATGCTCTGCGCGCAACTCGAGGCGCAGAAGAAGTTGCAGAGCAGT TTGGAGCAGCACACAAAGTACAT ATCGGTGTTGATGCAAAAG

>Volvox_globator . PSR1

GAATTCCTGCCCGTCCTTGGCTTTGACGCATACAGCGCAAAGCCAACTGGACTGGGC TTGGGCGGGCTTCTACCAGACCCGCC CCGAACATCTACCGATGGAGCATCTACGCTGCTCCAATCCTCAGATTTTATGCTATCCAT GCCAGCCGTACCGCACCTGATGC AGCCCGGCGTAGGAACTTTGCAGCCCCCGCAGTCCGCTTTCCCGGACCTCACGCTCCCAG GCGCCGGTAGCCTGGGGCTCAAC TCTGGGCTACTCCACCACCCGAGTGGCCACTTCATGGGTCAGCCTCAGCGCGCAGCCACT GCCACGGCCCCCGGTCACGGACC CGCCAAGAGCCGTCTTCGTTGGACCCCCGAGCTCCACAATCGCTTCGTCATGGCCGTCAA CCAACTGGGCGGACCGGAGAAAG CAACACCAAAAGGCATCCTCAAGTTAATGGGCGTGGATGGCCTCACAATATACCACATTA AGAGCCACTTGCAAAAATACCGT TTAAATATACGTCTACCAGGCGACGGGGTTCAGGGAGACAGTGCGGCGGATTCGGACATG TCGGACGGGGAACCGGGCGGCGA CGGATTCGGCGGGCCATCCACGGTTGCGGGGGAAATGCAGTCTGGGCTAGCTGGCGGAGG CGGCGTCAGTGGG

>Volvox_aureus-M1028 . PSR1

GGGCGTGCTGCCCTCCCCATGGACAAGGCTGAGCGCGCAGCCAGCAACGCGATTGGC AACGAGGACGACTGGCTCTTGGAGTT CTGGCCGGAGCCAGCTGCGGCGGACTTCCTTGGCCCAGTTGCGGGCGCGATGCAGCAGCA GCAGCAGCACCCGTTACAATTGG ACCATTCACAGCTGCCAGAGCAGGTTCCCCACTCTGGAAGTTTTCAGATGAGCCAATTCG GCCTCAGTCCTCCTACCAGCGAT TACCTCCCGGGGCTCCAGTTCGACGCATACGGCAGCAAACCGCACGGTCTCAGCGGGCTC GGCGGGCTTTTTCACGACCACCA ACGCTCCTCCACCAACGGTGCATCAACACTGCTCCAACCCTCCGACTTATTGTTTCCCAT GTGTGGGGTTACTCACGCACTTA TGCAACACCCTGCGGGCGTTGCGGGCTTCCAACAGCCCGCTTTTCCAGACCTGCCGCTCG GCGGGGTGGGTCTGCACCCGGGG TTGCTTCCCGGCCACTATCTGTCGCATCAGCAAAGAGCAGCCTCGTGCCCCGCGAAGAGC CGCCTCCGCTGGACCCCCGAGCT TCATAATCGCTTCGTGGCCTCAGTGAACCAGCTAGGCGGCCCCGAGAAGGCCACTCCGAA GGGTATCATGAAGCTGATGGGCG TAGACGGCCTCACCATATACCACATCAAGAGCCACCTGCAGAAGTATCGCTTGAACATAC GGCTGCCTGGGGAGACGATGCCC GGCGACAGTGCAGACACGGATGGCTCCGACGGCGAAGGCGAAGCACCTTCAGCGTCAATG GACAGATTGGACAGGTTGGAAGC AACGCAGTCGGGGATGTTGGGGGGAGAAGGTGGCGCCGGTGGCGCTGGAGGAGGGGCCAC GACTGCCGCAACGGAGCAAACGG TGTCCATCAGCGCTCAGGGAAAGTCTGGTCGGCGCTCGGGTCCTGCCGGTGGTACTTCTT GCAGCAGCGGCAGTGCCCCCTCA GCTACGCGGCGCAACCTCGAAGAGGCGCTTCTGTTCCAGATGGAGCTTCAGAAGAAGCTC CACGAACAGTTGGAGACGCAACG TCAGCTGCAGCTCAGTTTGGAGGCGCACGGCCGCTATATCGCCAGCTTGATGGAACAGGA GGGCCTTACGGGGAAGCTGCCGG AGCTGACTGAAGCCCCGCTGGGTGGTGGCGGCGCCAGTGCTTCCATTGGAAGCCGGGAGC GCCGGGCTTCCGGCGGCCTAGGA GCGGGGCTGTCATCAGTACAACAGGCGCCGTTGGGAAGCGCGCCGCCACCACTCACCACG TCTAAAGACCGTGGGGGAAGAGG GATAGCTGCCGGCCGCGCTATCAGTGGGGGCTGTGGCGCGCTTCAGTCTCCGGCCACGAA TCTGAGTGGGGCTTCACCCCATC TCCAGGCTTCGTCTGGGGGCGTTGCCGGCGTCGGGCTGCAGCCGCTACAGCCGCCACCTG CTGCTGTGGGGGCTGCAGCCGGG C GGCAAGGCAATCAGCAACAGAAGC CT CAGCAT CAGT TC CAGAAC CAGCAACAGCAGCAACAACAGCAACAGAAGCAAGTGCA AGCGGTTGGCAATAGCATTCTCACTGGTGTACGACATAGCCCTCTGCACGGATTGCCATC ACTTGGCGGTAGTGGTGGCGGCG GCCGCGGAAGTGTGACCAGTGTGACCAGTAGTAGCTCGATGCATTTTCAGATGCAGCAGG ACCATCAGCGTTTGGAACTTATG CGGTTGGGCCGACTTGGGTCGCACCCGACCCCGGGGTCACCAAGCGGTAATCCGCTGGTC GATGGTGGCGGCGGCGGAGGAGG AGCAGGAGTGAATGAGAAGCCTCAGCACATTGTTTCCAACACTGGCCTGGCGGTTGTGGG TGAGAGCAGTATCCCGCTGGAGC AACCTGTAGTGATACTGCAGGATGGTGGCCATTCTGGGCAAACAGCAGCCCTAGCGCATC AGCAGCCTGAGCCGCCGCAGGTG CACCCGCAGCCGGCATTGAGGGCAGCGTCGGGACAGCTGGAATCTGGGCTCGGGTTGGGG GATGCATTGGAGGGAATTATAGG CGAAAGTGGAAATGGCGGTGGTGGTGCCAACGGTGGCAGTGTAGTGCCGCTGCCGGACTT CGACTTTGGAGATTTTCCGGATT TGGATAGCGGAGGATTGGAGCATCAGGGTTTGTTGGGACCTGGTGACCTG

>Ignatius_tetrasporus . PSR1

GCGAAGCCGCGATTGCGATGGACGCCCGAGCTGCACAAACGCTTTGTTCATGCAGTG CAGCAGCTCGGCGGTCCAGACAAGGC GACGCCCAAAGCCATTCTAAAGCTCATGGCATCACCTGGCTTGACAATTTTTCACATCAA AAGCCATTTGCAGAAGTTTAGGC TCAACATCAAACTCCCTGATACGAAGAAAGAAGGTTCAAAAGCGACAGTATCCGGCCAAT CAGAGCCGTTTGCGGACCAGGCT GACAATGCTGTCAGCATGCAGTTTGAGGAGCCCACCAGCGAACCGGAAGTTGCAGTCTCG CCATCAGCAGGCAGCTCGCATGT CGCTTACAAGGGTCTGCTCGGCAAGAACCTTGGCGAAGCTTTAGTGCGGCAGATGGAGCT GCAAAAGAAGCTTCACAAGCAGC TGGAGTCGCAGCGACATTTACAATTGAGTTTGGAAGCGCATGGTCGCTACATCGCCGGTC TGATTGCGCGC

>Gonium_pectorale . PSR1

ATGGACAAGGCTGAACGGCAAGCCGCCACCTCAATAGGGCCTGAAGACGACTGGCTG CTGGAGTTCTGGCCAGAGCCTACGGT TTCCGACCTGCCGCGGTTTGGGCCCGCGATGCAGCCCCTGCACCAGCCCCACCAGCCCCT GGACGCACCCCAGCATCCGGAAC TCCTCTCACAACAGCAGCAACAACATCAAGCCTTGCAACTAGGAGCGTATGGCCTGCAAG CACAAGCGCCCATGGGATCGGAC TATGGCTTGCCCGGACTCGGTTTCGACGCGTTTGGCGGCAAGGCCCCGCTGGGCATGGGC GGGATGCTGTCCGAGCACCCGCG CGCTTCGGAGGGAGCTTCCGCCATGCTGCCCCCATCGGACTTTATGCTGCCAATGGGCGG CGTGGGCAGCATGCCGCACCTCA TGCAGCCGGGGATGGGTGCGCTGCAGCAGCACTCCTTCCACGACTTCAGCCTTGGGGGCG CAGGGCTGGCGCAGGGCATGCTG CACGGACACTACATGGCCCACCAGCAGCGAGCAGCGGCGGGCCCCTCGAAGAACCGTCTC CGCTGGACGCCGGAGCTGCACAC CCGCTTCGTGACCTCGGTCAACCAGCTAGGAGGCCCCGAGAAGGCCACCCCCAAGGGCAT CCTCAAGCTGATGGGCGTGGACG GCCTCACCATCTACCACATCAAGAGCCACCTGCAAAAGTACCGCCTCAACATCCGGCTGC CGGGCGAGGGCGGCATGCAGGGC GACTCGCCGGTCGACTCGGAGATGTCGGAAGGGGAGGGCGCCGCGCCGTCGGCG

>Planophila_terrestris . PSR1

CAGCCGTCCGCGAGCACCACAGGGAAGTCAGGGCGACTCCGATGGACGCTGGAGCTG CACAAGAAGTTTGCAGACGCGGTGGC GAAGCTGAACGGCCCCGATAAAGCCACGCCAAAGGGCATACTGAAGCTCATGGACACCAA AGGCCTCACCATTTACCACATCA AATCGCACCTGCAAAAGTACAGGTCCAACATGCGCACAATGCAGCCGGCGCCCATGCAAG CGGCGCTCTCCGACGCGCACACA GCAACACATCACGACGCGCGCAGCTTTGGCATGCAGTCCTTTGACGCTGCGGTCTCAGCG TCCGGGGCCATGCATTCGGGCGC GCTCACATCAAACCCGCTGGGTTTGGGTTTGAATTTCCCGCAGAGCTCGGTCAGCAGCAT GGGCGCGATGCTCGGCGGCATGG GCTCAGCGGCTGCGGGCCCGCTCACGATGACTGGGCTGCCGCCGATCCGCACCGACGCGT CGCTGCTGCGGGCCGCGAGTCAG GGGCCTAGTCAGGGGCCCGACGCGCTGAGCTGGGCGCATGCGCATGGCACCTCTCCCGCG TTTGCGCGCGGCGGCTCACCGAC GTGCAGCGTGCACAGCGGGGCGGGGCGGCGGGACGAGGGGCGCGGGGCGTCCGGCGAGGG GGTGGACCAGAGCCACAGCTGGA CCAAGGCGCTTGTCAAACAGATGGAGCTCCAGAAGCAGCTTCATGAGCAGCTCTCGATGC AGCGGCAGCTGCAGCTCAACCTC GAGGCGCACGGCCGCTACATGTTGCGGCTCGTGGCCAAGGAGGGC

>Pteromonas_angulosa . PSR1

GGGGGCGCGACAGCCTCTGGAGGCTGCCGGGCGGGTAATGGGCTGGGGAGCGGAATG AGCGAGCCACACGAGCCTCGGGACGG CAAGCAGCACTTGGGCTCGCTCGACGAGCTTTGGCTGGACGACCACGCCGTAGGCGAGCT TTCCTGGTGGCCGGAGCCCCAGC TTCCACTACCAGACCCACTGCTGCTGCAAGGTGGCGCAGCGGGCTTGATGCTGGGCCACC AGCCTCAGCAGCAGGCCCAGCAG CAGCAACCCGCCTACCATGGCCGCATGCCCCCGCAGCAGCAGCAGCAGCAGCCCTCCCAG TTCAACAACGAGTATGGTTACGC GCCAGTGCCCCATGACCCATATGCACTGGGGGCGCACGCTCAGGCGCCAGCAGGGCCCTC GGGAGACATGTCAGCAGGGGTCA GTGCAGTGAATTACGCCAGCTTGACCCCTGGGCCTGCGATCCCCCAGCCACACTTGCCAC CGCAGCCAATGCCACAGCAGCTG CAGCAGCACCCTGGCTACATGGACCCGTCGATGATGGGCGGCATGTATGGCGGCCAGTTC TACCCAGCAGCCCCCCAGCAAGG GCCCGCCAAGTCGCGACTCAGGTGGACCCCTGAGCTGCACAACCGGTTTGTGGCAGCAGT GAACCAGCTGGGCGGTGCTGAAA AGGCCACCCCCAAGGGCATCCTCAAGTTCATGGGCGTGGACGGGCTCACCATCTTCCACA TCAAAAGCCACTTGCAGAAGTAC CGCCTGAACATCAAGATGCCTGGGGAGGGCACCCCCATGCCCGGCGACAGCGACAGCGAG TCCATCGATGTGGGGGTGCGCCC CAT GCAGCAGC CACAGCAGCAGATGCAGCAGCCACAGCAGCAGAT GCAGAT GCAGCAGCAGGGTGACAC GT CCAT GC GCAGCA AGTCCAGGGGCGACAGCGGGGATGGAGTGCGGGGTGGTGGCGCAGTAGTTGCACCTGCGT CCCAGGCAGCTGGGCCAGGGTTG TCCTCCTCAACGTCGTCTGCCATCAACCGCAAGAACCTGGAGGAGGCGCTGCTGCTGCAG ATGGAGCTGCAGAAGAAGCTACA CGAGCAGCTCGAGACGCAACGCCAGCTGCAACTGAGTCTGGAGGCACACGGGCGATACAT AGCAAGCTTGATGGAGCAGGAGG GGCTTACGCAGCGCATCCCGCAGCTGCACGGCAATGCACAGATGCCTGCCAGCACAGCCA ATGCTGCGGCAGCGGTCGCAGCG GCGGCTGCGGCGGCAGCAGCAGCATCAAGCAAGCACAACGACCCACGGGGAGCTGCGGCT GGGTCCAGTGCGTCTGGGCAAGG GGGGCAGTCTGCGGCACCATCTCAGCCTGCATTGGAGCACAGGGCAGCGTCAGGAGCAGG AGCCATGCCCGCGCACTACCAGC AGCAGCCGCCACAGCAGCAGTACATGCAGCAGCAACAGCAGCAACACCCTGTGTCTGACA GCGGCATGGCCGCCGCCGCGGCA GCCGCAGCAGCCGCTGCAGCTGCAGCTGGCATGGCAGGCCCTAGCGAGATGTACGCTGGG CACTCCCAGCAGCAGCACCACTC GTCACAGCAGCAGCAGCAGCCATACCTCCAGCTGCAGCACCGGACATCGCAGCAGCAGGG CGAGCACCAGCCCTCCAGTATAG CAGCAGCCGGCAGCGCGTGGGGGGAAGCAGCATCCACGGGTCACGGGCCTGGG

>Asteromonas_gracilis . PSR1 GGTCCATCTAAGTCGAGATTACGTTGGACCCCCGAGTTGCACAATCGTTTTGTACAAGCA GTCAATTATCTTGGTGGTCCAGA TAGGGCAACACCGAAAGGTATCCTCAAGCTTGTCAATGGGGAAGGCCTCACCATCTACCA CATCAAAAGCCATCTACAGAAGT ACCGTTTGAACATCAAGCTACCAATGGATCCCTCGGGATCGGAATATATGAGTGACAGCC AGCAGGACGTGTCAGCCTCAGGA GAGATGCGCAGCAGTGTAGGGCATGTGGTGACCAGGAGGAGAGCTTCGCCGATGCCCGGT GCTGCCCAAGAAACGCCTCAGCA ACATGCGACACAAGTGCAGGCAGTTGGCAACACTCAAGAGGGAACATCAAGGTGTTTAGA TACTTCAGCCGTTGCGTCGGGGG ACAAGTCCAAAAGCCTAGAGGATGCGCTTTTGTTTCAGATGGAGCTGCAGAAGAAATTGC ATGAACAGCTGGAGTCGCAGCGC CAGCTGCAGCAAAGTCTGGAGGCACATGGACGTTACATCGCCAGCCTGATGGAGCAGGAG GGGCTA

>Haematococcus_pluvialis-B . PSR1

AAGTCGCGATTGCGCTGGACGCCCGAGCTGCACAACAGATTTGTGCAGTCAGTGACT ACCCTTGGGGGCCCAGACCGAGCGAC GCCCAAAGGCATCCTTAAGCTGATGGGCGTAGATGGTCTTACCATGTACCACATTAAGAG TCACTTGCAGAAGTACCGGCTCA ACATTAAAATGCCAGCTGAAAGCGGGGGCCAGGACAGCTTGAGCGACAGCCAGGACCAGC AGCCACCCAGCGCCATGGAAGTC CGAAGCAGCAGTCGTGGGCCAACATCTACACCACAGTTGCGGGCGCCAGGCTCGAGCTAC GACTGTAGTGGGCAAGCCCCAGC TCTGGTCTCGGCAGCGTCTGTCACCGCTGTACCCGCACCGTCTTCGGCCGGTGCCGCCTC TTCAGGCACAAACAGGCGCAACC TTGAGGATGCACTGCTGTTCCAGATGGAGCTGCAGAAAAAGCTTCATGAGCAGTTGGAGT CTCAACGGCAACTACAGCTCAGC CTTGAGGCGCATGGTCGCTACATTGCCAGCCTTATGGAGCAAGAAGGCTTGACACAGCGG

>Chlamydomonas_bilatus-B . PSR1

GGGCACCCCGGGCACCATGAGCAGTTCCGAAGACAAAGCGAAGACAAGCCTGGCTCC TCCAAATCGCGGCTTAGGTGGACGCC CGAGCTGCACAACCGCTTCGTCAACGCTGTGAATCAGCTGGGAGGCGCGGAGAAGGCCAC TCCGAAGGGCGTGCTCAAGCTCG TGAACGTCGAGGGGCTCACGATTTACCACATCAAGAGCCACCTCCAAAAGTATCGTCTCA GCATGAAGCTTCCTGGCGATGCC GGCGGCGCAGAGAGCCCTGCAGAGTCTGACAGTGGCCTGGAGCAGGGGCAGGGGCAGCAG CCCACGCGGCGCCGCAGCAGCAT G

>Vitreochlamys_sp . PSR1

GGCATCGGACACAACGTGCTGGCGCTCCAGGGGTTGCCGTCTCAATCACCAGCCCAA ATGCTTCCGTTCGTGCCCGACTACAG CGGCCAATTAGGAGCAGGAGCCTTGCCGCCTGGCCTCCACTTACAACAAGGCGTGCTGAG GAGCAGCAGCGCCGCTCAAGCAC AGAGAGCCCGTCTGCGATGGACGCCAGAGCTGCACAACCGATTTGTCACTGCCGTCAATG CACTCGGTGACAAAGCAACTCCT AAAGGGATTCTCAAGCTTATGGGAGCTGAGGACCTGACCATCTATCACATCAAGAGTCAC CTGCAAAAGTACCGCCTGAACAT CCGTCTTCCCAGTGGTCCCCACGCCGATTCTGGGGTGTCCTCAGACAATGACATGGGCGG AATGGGCAATGCGCTGAGCACGG TGTCATCTGGGCCGCTCGGGGACCTCGCAGATTTCCCACAGCAGCACGAGTTCCAGACGC AGCAGCAAAGGAGCTTGAGCATG TCGCAGACCCAGCAGCAGCTGTCGCAGCCGCAAGCACCCTTCATACCTGGGACAGCGTCC AGCCCAATGCAGGCAGCGTCTAT CGCACCCAATCCAGGAGGTTCGTCACCGACAATGCAGCAGATGATGCCTGACCAGCAGCA TCGCATGGGCAACCTTGAGCATG CGCTGCTGGTCCAGTTGGAGCTGCAGAAGAAACTGCACGAACAATTGGAGGCCCAGCGAC AGATACAAATGAAGATTGAGGCG CATGGGCGATATCTGGCGAGTCTAATGGCCTCAGAG

>Botryococcus_terribilis . PSR1

GGCATGGGGGGCCACCAAGCTCCCTTGGGTGGGGCCCCGATCTTCACAACAAGCAGA TCAGTGAGTTCCTCTCAGGGCATGAG AGACCCGGGAAAACAGCGTCTGCGCTGGACGCCGGAGCTGCACGCGCGCTTCGTCGGAGC GGTAAACCAGCTTCACGGGCCGG AAAGGGCGACGCCAAAAGGCATTCTGAAGCTGATGGATATCGACGGGCTGACAATCTATC ACATCAAAAGCCACCTGCAGAAA TACCGCCTCAACATCAAACTCCCGGGCCAAGGCGGGCCGATGTTTGAAGAGGACGACATG TCGGAGCGGCGCAGCACGAAGAG ACGGCGCACTAAGGCGCGCTCTACGAAGCGGCGGCGGAAGGCACGGGGTCGAATCTCGGA CAGCGAGAGCGAGGAGGACCATT ACGAGAGCGAGGAAGAGGAGAACGACCCTGAGGAAGTCGAGGCGGAAGAGGAGGAGGACG ACGACGGAGGCGAGGTAGCGTCC CGAGGGACCGGCGCTCCCTCGGGCGTCCCTGTGCCGGTGCCACATCACCCTGCAAGATCG CAGCCCATGCCTACTGCCAGCAG CACAGAGGACTCGGTGGACGCTGACGGGAAGAAAGCAACCCGCCACGACCGGCAGGCCGC GCTTACTAAGGCCCTCAACGACC AGATGGAGATGCAGCAGAAGCTGATGGAGCAGCTGGAGTCTCAGCGACGCCTCCAAAGCC AAGTGGAGAGGCACACGGCGTAC CTGCGGGGGCTTATGGAGGAGGAGGGCCTC

>Eudorina_elegans . PSR1

GGGCGTGTTGCCCTCCCCATGGCCAAGGCTGAGCGCGCATCTGGCACCGTAGTTTGC AACGAGGACGACTGGCTTGTGGAGTT TTGGCCGGAGCCAGCGGCGGCAGACCTCCTGAGCGCGGTTCCGGGCGCAATGCAGGCGCA GCAGCAACACCCGCACCAACAAC TGGACCCCTCCCAGCTATCGGAGCTTCTCCCACAGCAGACGGGGCTCCAGATGGGCCAAT TTAGCTTGCATCAAACCAATGAA TACCTCTCAAGCATCCAGTTCGACGCGTTTGGTGGTGGCAAAGCGACTGGACTGGCGGGG CTGGGCGGGTTGCTGCCAGATCA CCAGCGCTCCTCCACAGACGGCGCTTCGGCGCTGCTGCAGTCCTCAGATTTCATGCTGCC CATGGCCGGCGGCCTGCAGCAGC CGGCCTTCCCGGACTTAGCGTTGGGGGGCGTGACGCTCAACCCAGGCATGATGCCCGCCC ACTTCCTGGGTCACCAGCAACGA GCAGCGTCAGGACCCGCCAAGAGCCGACTGCGCTGGACGCCCGAGCTGCACAACCGCTTC GTGGCGTCGGTCAACCAACTGGG CGGGCCGGAGAAGGCGACGCCCAAGGGCATCTTGAAGCTCATGAGCGTGGATGGCCTCAC AATCTACCACATTAAGAGCCACC TCCAAAAGTACCGCCTCAATATCCGCCTGCCCGGCGAA

>Pandorina_morum. PSR1

GGGCTCGGCGGGCTGTTGCCCGATCACCAGCGCTCGTCCACAGATGGCGCGTCAGCG CTGCTGCAGTCTTCCGATTTCATGCT TCCCCTCGGTGGCGTGCCCCACCTTATGCAGCCCGGCGTCGCTGGCTTGCAGCAGTCCGC GTTTCCGGACCTGGCGCTGGGCG GCGTGGGCATCAATCAGATGCTCCTGCAAGGTCACTTTCTGGCGCACCCGCAGCGAGCAG CGTCGGGCCCCGCCAAGAGCCGG CTGCGGTGGACGCCCGAGTTACACAACCGCTTCGTGGCATCTGTCAACCAGCTGGGCGGC CCGGACAAGGCCACGCCCAAGGG CATCCTGAAGCTCATGGGCGTGGACGGCCTCACGATATACCACATCAAGAGCCACCTGCA GAAGTACAGGCTCAACATCCGGC TGCCCGGGGAGACCACGCAGGGCGACTCTGCGGACTCGGACGCATCCGACGGCGAGGCAG CGGACCCCTCGGCGTCCATGGAC CGCACTGTAGAGACGCAGTCGGGACTGGGCGGGGGCTGCGGCGGATCCTTGGCC >Oedogonium_f oveolatum. PSR1

GCCCGTGCAGGCACTGTCAAGGCACGCCTGCGTTGGACGCCAGAGCTTCATACACGC TTTGTGGCATCTGTCCAGAGCCTGGG

CGGGCCAGACAAGGCCACTCCAAAGGGCATTTTAAAACTGATGGGAGTTGAAGGATT AACAATTTATCACATAAAGAGCCATT

TGCAGAAATTTCGGCTTAATATGCGTCTGCCTGAATCGACATCCACCAGCCAAGGAA ACGAGGCCGGCACAAGCAGTAAACGC

AGCAAGAAAGATGAGCCTCAAGGAGGCGATTCTCCAGCTGTTGAACAACCGAAAGCC AGTGAGACTTCTACAGCTTCGCAACC

TCCACCCGCTGCGTTGACAACTTCCACGGCAACCAGTGCGCCTGCAGCCGCACTTCA TCATGAATTTCACTTTCCCCAACTTG

GCCGTGGTATCGGATCTATCACGCGCAAAGATTTGGAGGAAGCCATGTTGCTGCAGA TGGAAATGCAGAAAAAACTCCACGAG CAGCTGGAGACACAAAGGCACCTACAACTCAGTTTAGAAGCGCATGGAAGGTACATTGCG AGTCTTATCGAGCAGGAGGGCCT GGCCCAGCAGATGCCTGAATTG

>Chlamydomonas_sp . -M2762 . PSR1

CCGCAGCGCCCTGCTCCCAAAGGCTCCTCCAAGTCACGACTGCGGTGGACTCCCGAG CTTCATAATCGCTTTGTCAACTCAGT

CAACCAGCTGGGAGGACCAGACAAGGCTACTCCCAAGGGCATCCTCAAGTTGATGTC TGTTGATGGCTTGACAATCTATCACA

TCAAGAGCCACTTGCAGAAGTATCGCCTCAACGTGAAGACCCCGGGTGACTCCGCAG CAATGTATGATATGGACTCTGATGGG

GACGGTGAGGGCGAGGTGACAGACACCCGACCGGCGCGCTCCAAGGGTCAGAGCGAG GCGACAACATCTTCGGGTGGGACAGC

CAGGGGCAAGCACAGCAACCGGCAGCATCAGGCTGCCTCGGCGCCCGTGGGCCTTCC TGCGGCAGCGCCAGCGCCACCGGTGC

CTGGTATGACCACCGCCGCGTCGCTGCCTGTGGTGTCCAGCAACAACCGCAAGAACC TAGAAGATGCGCTGCTCGTGCAGATG

GACCTGCAGAAGAAGCTTCATGAGCAGCTGGAGAACCAGCGCCAGCTGCAGGCCCAG CTGCAGGCACACGGGCACTACATCGC CAGCCTCATGCAGCAGGAGGGCATGGCCACGCCCGCTGAGACGCAGCCCCCAGCGCCAGA CACCAAGCCACCGGGCCTGCCCA GCACCTCCGCACCGGCTGGGCTCCCGGGCCCACTTCCACCT

>Chlamydomonas_sp . -M2762 . PSR2 /homologue

GGTGTCTCCAAGTCAAGGCTGCGTTGGACTCCAGAGCTACACAACCGCTTTGCAGCT GCTGTGAGGCTGCTGGGAGGACCAGA

CAAGGCGACGCCAAAGGGCATCCTCAGCCAGATGAGCGCGCCTGGGCTGACTATTTA CCACATCAAGAGCCACCTGCAGAAAT

ACCGCCTCAGCAGCAAAAGCCCTGGCAACTTCAGCCTGAACGATGACTCTGACGACG GGCTTGCAGGGGAGGGAGACGAGGAC

ACGAGCTGCATGGCCAGTGGCCACCGCCAAGACTTTGCCGCTGCAGCGCTGCCCGGC GATGCTGACAGGCGAGCGGCACATCC

TGGCTCACCCAGACGAGCGATCGTCACCAACATGGAGGTGTCAGGCAGCCCGGCCCC GTCAGTGCGGCCGCAAGCAGCGGTCA

TGACAGCTCCGCGCCTGCCTGATGCCGCCGCGAGCAATCGCAGGAACCTGGAGATGG CTCTGCTGAGGCAGATGGAGCTGCAG

AAGAAGCTGCATGAGCAGCTCGAGGCCCAGCGCCACCTGCAGCTGAGCCTGGAGGCT CACGGCCACTACATCGCCACGCTGAT GCAGAAGGAGGGCTACGCCGGGGGCCCGACGCCCCCGGAGCCCGCTGCGGGAGCCTGCCC GGCCCCAGCCACAGCGGCGGCTG GCACGGCCGTGATCAGCTCAGCCGTTCCCCAGGGCCTCGCCAGGGCCTGCTCATCA

>Chlamydomonas_noctigama . PSR1

TATCAAATGCCAGGTATTGTCGGCGCTGCACCCACGAAGAAAGGCAGACTGCGTTGG ACACCGGAATTACATGCCTGCTTCGT

CAATTCGGTCCACCAGCTGGGAGGATTTGAGAAAGCGACACCGAAAGAAATCCTGAG ACTAATGAAGACCGAGGGCATAACGT

TGTACCATATTAAGAGCCATCTTCAGAAGTACAGGCACTGCATGAAGCTCGGAAGAC TTGGGGGCACAGACAGCTCAGATGCG

TCGGAAAACCTCCCGGGCGATCAACAGTCTCCCCAACCGATACTGGATTGCCATATG CCTGGACGGACAGACGGGAGTTTGGA

GGTCGCGCCATCGCGGCCAGCGGATGGAGGACGTACGACATGTCATCGTCACAATGA CAGCACCCGACAGTTTTCAGATGCAA

ATGTGCAGGCCTCTGCGTCCTCCTGCAGCATTCGCCGCACCGCACTAGAGGAAGCAA TTGCTCTGCAGAAGGAACTGCAGAAA AAATTCCGGGAGCAGATGCAGACGCAGATAGAGCTGCAAGCTCGTCTGGAGGCCCATGGC CGCTACATAGCGACGCTGGTTGA GCGT

>Carteria_crucif era . PSR1

GGAACACCGAAGTCCCGTTTGCGATGGACTCCCGAGCTGCATAACCGGTTTGTAAAC GCAGTAAATCAGCTCGGTGGCCCGGA

GAAAGCAACACCGAAAGGCATTATGAAGCTCATGAGTGTGGACGGCCTTACAATATA CCATATAAAAAGCCACTTACAAAAGT

ACAGACTAAACATTCGACTTCCGGCTGAGTCGCAGCTTACAGATAGCAGCACCGAGA ACAAACACGAGCTGCAAGGCCAGTCG

CCAGTTCAAGAACCGCAACAGCAGGAGAGAGATTGCGGTGGAACGTCAGCAATACCG TGCGAATTAACAGTTCCTACGACAAC

GTCAGGAAGCGGTGCAGTAACGACCGTTCCCAACGCCCTGTACACTAACGTCCAAGC CTCCATCGTCGCTTCGCAAGCCTCCA

TCGTCGCTTCGGCCCACCCACCCCCGTCAACCGCCGAGCCACCGGTTCAGGCCGGGC CCAGCTCATCGGAGCGCAGGTCCTCC

CCTGAACCCTCTTCCTCGACTAGGAAAAATCTCGAAGAGGCGCTGCTTTTCCAAATG GAGCTCCAGAAAAAGCTGCATGAGCA GTTGGAGTCTCAACGGCAGTTGCAGTTGAGCTTAGAAGCTCACGGTCGTTATATTGCTAG CCTGATGGAGCAGGAGGGTCTTA C GC ATAAAC TAC C GGAAC T CACAGGGCAAAC GTTAGGAGCAC C TT CAT C A

>Volvox_aureus-M2242 . PSR1

GGGCGTGCTGCCCTCCCCATGGACAAGGCTGAACGCGCAGCCAGCAACGCGATTGGC AACGAGGACGACTGGCTCTTGGAGTT

CTGGCCGGAGCCAGCTGCGGCGGACTTCCTTGGCCCAGTTGCGGGCGCGATGCAGCA GCAGCACCCGTTACAATTGGACCATT

CACAGCTGCCAGAGCAGGTTCCCCACTCTGGAAGTTTTCAGATGGGCCAGTTTGGTC TCAGTCCTCCTACCAGCGATTACCTC

CCGGGGCTCCAGTTCGATGCATACGGCAGCAAACCGCACGGTCTCAGCGGGCTCGGC GGGCTTTTTCACGACCACCAACGCTC

CTCCACCAACGGTGCATCAACACTGCTCCAACCCTCAGACTTATTGTTTCCCATGTG TGGGGTTACTCACGCACTTCTGCAAC

ACCCTGGGGGCGTTGCGGGCTTCCAACAGCCCGCATTTCCAGACCTGCCGCTCGGCG GGGTGGGTCTGCACCCGGGGTTGCTT

CCCGGTCACTATCTGTCGCACCAGCAAAGAGCAGCCTCTTGCCCCGCGAAGAGCCGC CTCCGCTGGACCCCCGAGCTTCATAA

TCGCTTCGTGGCCTCAGTGAACCAGCTAGGCGGCCCCGAGAAGGCCACTCCGAAGGG CATCATGAAGCTGATGGGAGTAGACG

GCCTCACCATATACCACATCAAGAGCCACCTGCAGAAGTATCGCTTGAACATACGGC TGCCTGGGGAGACGATGCCCGGCGAC

AGTGCAGACACGGATGCCTCCGACGGCGAAGGCGAAGCACCTTCAGCGTCAATGGAC AGATTGGACAGGTTGGAAGCAACGCA GTCGGGGATGTTGGGGGGAGAAGGTGGCGGTGGTGGCACTGGAGGAGGGGCCACTACCGC CGCGACGGAGCAAACGGTGTCCA TCAGCGCTCAGGGAAAGTCTGGTCGGCGCTCGGGTCCCGCCGGTGGTACTTCTTGCAGCA GCGGCAGTGCCCCCTCCGCTACG CGGCGCAACCTCGAGGAGGCGCTTCTGTTCCAGATGGAGCTTCAGAAGAAGCTCCACGAG CAGTTGGAGACGCAACGTCAGCT GCAGCTCAGTTTGGAGGCTCACGGCCGCTACATCGCCAGCTTGATGGAACAGGAGGGCCT TACGGGGAAACTGCCGGAGCTGA CTGAAGCCCCGCTGGGTGGTGGCGGCGCCAGTGCTTCCATTGGCAGCCGTGAGCGCCGGG CTTCAGGCGGCCTAGGCGCGGGG CTGTCCTCAGTGCCACAGCCGCCCTTGGGAAGCGGGCCGCCACTACTCACCACGTGTAAG GACCGGGGGGGAAGAGGGATAGC TGCCGGCCGCGCTGCCAGTGGGAGCTGCGGCGCGCTGCAGTCGCCAGCCACGAATCTGAG TGGGGCTTCACCCCATCTCCAGG CTTCGTCTGGGGGCGTTGCCGGCGTCGGGCTACAGCCGCTACAGCCGCCACCTGCTGCTG TGGGCGCTGCAGCTGCGGCAAGT CAATCAGCAACAGAAGC CT CAGCAT CAGT TC CAGAACAGCAACAGCAGCAACAGCAGCAACAGCAGCAACAGCAGCAACAACA GCAACAGAAGCAACAGCAGCAACAGAATCAGGTGCAAGCGGTTGGCAATTGCATTCTCAC TGGTGTACGACATAGCCCTCTGC ACGGATTGCCATCTCTTGGCGGTAGTGGTGGCGGCGGCCGTGGAAGTGTGACCAGTGTGA CCAGTAGTAGCTCGATGCATTTT CAGATGCAGCAGGATCATCAGCGTTTGGAACTGATGCGGTTGGGCCGACTTGGGTCGCAC CCCACCCCTGGGTCACCAAGCGG TAATCCGCAGGTCGACGGTGGCGGAGGAGGAGCAGGAGTGAGTGAGAAGCCTCAGCAAGT TGTTTTCAACCCTGGCCTGGTGG TTGTGCGTGAGAGCAGTATCCCGCTGGAGCAACCTGTAGTGATACTGCAGGATGGTGGCC ATCATGGCCAAACAGCAGCCCTA GCGCACCTGCAGCCTGAGCCGCGGCAGGTGCACCCGCAGCCGGCATTGAGGTCAGCATCG GGACAGCTGGGATCGGGGCTCGG GTTGGGGGATGCATTGGAGGGAATTATGGGCGAGAGTGGAAATGGCGGTGGTGGTGCCAA CGGTGGCATTGTAGGGCCGCTGC CGGACTTTGACTTTGGAGATTTCCCGGATTTGGATAGCGGAGGATTGGAACATCAGGGTT TGTTGGGACCTGGTGACCTG

>Phacotus_lenticularis . PSR1

CCCAAGTCTCGCCTCAGGTGGACGCCGGAGCTACACAATCGTTTCGTGTCAGCAGTG AACCAGCTGGGGGGTGCTGACAAGGC CACACCCAAGGGCATTCTGAAGCTGATGGGAGTGGATGGGCTCACTATCTTCCACATCAA GAGCCACCTGCAGAAGTACCGCC TGAACATCAAGATGCCCGGGGACAGCAGTATGCTTGCAGGCGACTCTGACAGCGAGTCCA TCGACCCGCAGCGCAGCCTCCGC ATGCCCGAGCCCATGCGCAGCAAGTCCAAGGGCGACAGCGGGGACGCGCAGCGGGGCCCA GCAGTGCCGTCGGGTGCCCCAGC GCCAGCAGGGCCCAGCATGCCGGCGCCCTCGCCTTCTGGCGCCGGGCCCAGCATGCCCGC GCCCTCGTCGTCCACGTCGTCTG CCATCAACCGCAAGAACCTGGAGGAGGCGCTGCTGTTCCAGATGGAGCTGCAGAAGAAGC TTCATGAGCAGCTTGAGACACAA CGGCAGCTGCAGCTCAGTCTGGAGGCGCATGGCCGCTACATAGCCAGCCTGATGGAGCAG

>Stephanosphaera_pluvialis . PSR1

GGACAGGCGTTGATGCAGCCCCAATTCTCATCGCAAGCTCCCAAACCCGACCCAGCT GCGCCCAAGCAGCGGCTCCGATGGAC ACCCGAGCTGCACAATCTATTCGTTCAAGCGGTGGACCAGCTGGGAGGCCCAGAGCGTGC CACACCCAAGGGCATCCTCAATT TGATGAGTGTCGAAAAGCTCACCATTTACCACATCAAAAGTCACCTTCAGAAGTACCGTC TCAACATCAAGTGCCCTAATGGC GATTCTGGTGCAGCTGGAGACAGTGACAGCTACGACCAGGCACCATCAGGTGGCGTGGTT GAAGGGCGCAGCCTCAGCAGGGG CTCAGTGCCCACACTCACACACCCACATGCTTCCCTGACCAGTCTTTTGACCGGCAGCAT GCCTTCAGCAGCAGCCACTTCAC CCCAGGCAGTCACACCAGCAGCATCAGCAATCCACGTGCATTCACCCCCACCTGTGGGCT GCCCTACCCAGCCGTCTCTGCAG CTCACTGTAGGCACAAGCGCACCTGGCAGCCTCAGCCAGGCTCCTGTGTCCCAGCTCAGC AACATGTCTGGTGGGCTGTCTAC CACTGTCACCGCTGCCAACAGGAAGAACCTAGAGGACGCCCTGATGGTCCAGATGGAGCT GCAAAAGCGCTTACATGAGCAGC TGGAGCAACAACGGCAGCTACAGCTCAGTCTTGAGGCGCATGGCAGGTACATAGCCAGCC TGATGGAACGAGAGGGCATGACA

>Chlamydomonas_eustigma . PSR1

ATGGCTGACCCCATCGGCCAGCCCAGCCTCCCAACAGACGACCCTCTGTTATTAACA TTGAAAACTGGAGGGGTCGACGAACC TGACCTCGATTTTAATTCTTGGTTAGAATTCTGGCCTGAATCCGAACTCCCGAGCATGCA CAGCTTTTTACCTCAAGCAAATA ATGTGCCAATAGATGAATCTTACCGACAAGGATTTGCCTTGCAGTCAGCAATACCAGACA TCCCACGGATGCAGGGCGGTCTC CTAGATAACTATGACAGAGTACCGACCCTCTTGTCAGCTGGATCAGCGAGAGACATGCAT ATGCTAGCAGATTTTCATGGTAA TATGAAGTCTCTTCCACATCATGCTGGTTTCTCTTCGTTCAGTGGAGACATGGGGCCTTC TGCTGGGTCGTATTACCATGAGA AGGAGAGTAGACACGGCTCAAATTCAAGGTCTCGTCTTCGATGGACGCCTGAACTCCACA ACCGCTTTGTGAACTCAGTAAAT CAGTTGGCAGGGCCTGAGAAAGCCACCCCAAAAGGCATCTTGAAGCTCATGAATGTGGAG GGATTGACAATCTATCACATAAA AAGCCATTTGCAGAAGTATCGCCTCAACATCAAAATGCCAGGAGACATGAACTTGGAGAG CTGTGGTGATGACTCAGACATGG ATGAAAGACCCACATCCACTACGCCTGTGGACAGGAACCGCCGAGCTCCTGACCTCGAGC GCCAAGTCTCCCTCAATATGGAC AGACTGGGGAGAGCTGGCAAGGTTGCTAGTGAGAGGGAAACTCTAGATCAAGGCAGGAGA GGCATGGACACATCATCAGGCTT GGCAGGCCCAGCTACTGGCCATACAGAGTCAACGCCTCCTCGACCCTCCACAAGTGCTGG AACCACGGCTCCACTCTCGTCAT CATCATCAGCACTGAACCGCAAAAATCTAGAGGATGCTTTGCTGTTCCAAATGGAGCTAC AGAAGAAGCTGCATGAACAACTT GAGACTCAGCGCCAGCTGCAGCTCAGTCTAGAGGCCCATGGGCGGTACATTGCTAGTTTG ATGGAGCAGGAAGTTCTGGCATC CAAGCAGGATGGTCAACAACCTTCTACTGAGCCCTCACTTGGTGGAGGAGGGGGGACAAC CCGGGGTGGGATCACAGCTGCTG GCTTGTGCAGACCTCCTTCTGGGGCCTCTGATGAAGTCATGATAGCTGATAAGGCAGGGA TGGTGTCAACCTCAGGTGCAGCA TCACCGCAGTACCTCGATCATGGTGGTGCAAAGCAAGGAGGAGCCCACCTGCAGTACTTC AGCTCCGCAGGCAGTGAGGCCTC TGCCTCTGCTGCAGGCACAGGCCTGCATGGCCTTTCAGTCTCTGCAAGCAATGGTGCTCA TGGAGCCATGCTGTCAGGTAATC AGTTTATGGGCATGGGAGGGGATAGCTCCATGGCGCTCATGTCTCCAGGTAAGCACATGG AGACTCACATGGGTGGAACCGTC ATGCATGGGAAGCAGCTGCATGGTGTCATGCGAGGAGGCATGGTTGGTACAGCTGCAGCA CCCAGTCCCCCCCTCCTCCCGCT CATGGACGCCCATCCCTCCCATGACGGCTCCCCTGGTGCCTCCTTGTTGCCTACCTCCCT CATGATGGTTCAGCAGTCGTCCC CAGATCTGGAGCTATTGGTACATGAAGCAGGCAGCCTGGCTTCAGCGGGAGACTGCAACC ATGCATCTAAGCGCATTAAGTTA GAAAATGAGTTATGA

>Chlamydomonas_incerta . PSR1

ATGGACAAAGCTGAACGCGCTCCTGGTGGCCCTAACGCCGCAAGCGAGGACGACTGG CTGCTGGAGTTCTGGCCGGAGCCTGC CGCGGACTTCCCTGCGCCGGTCGCAGCGATGCAGCCGCAGCATCAGGACGCTACACAGCT GCAGGAGGCCGTTCCGCAGCAGC AAGGGCTCGCGCTGGGTGCATATGGCCTCGCCCAGCAGCCCTCTGACTTCATGCAGTCAA GCATGCCCGGCTTTGACGCGTTC GGCAGCGGGAAGGCCGCAACCCTCGCCGGGCTGCCCGGCCTGCTGCCCGACGCCCAGCGC GCCTCCACCGACGGCGCCTCTGC GCTTATGAACGCGGCGCAGCAGTCCTCGGAGTACATGCTGGCCGCCGGCATGGGCGGCGT GCAGCACTTGTTAGCACCGAGCG TTGGCACGGCGCTGCCCGGCAGCGGGCACACCGGCTTCGCGGACCTGTCGATGGGGGGCC TGGCGGGCGGCCTTGCGGGCCTG GGGGGGCCGGGGATGATGCACCACGGGCAGTTCTTCATGCAGCCGCAGCGAGCAGCCACA GGCCCCGCCAAGAGCCGGCTGCG CTGGACGCCGGAGCTGCATAATCGCTTCGTCAACTCGGTCAACAGCCTGGGCGGGCCGGA CAAGGCCACGCCCAAGGGCATCC TCAAGCTCATGGGCGTGGACGGCCTCACCATCTACCACATCAAGTCGCACCTGCAGAAGT ACCGCCTCAACATCCGGCTGCCG GGCGAGAGCGGCGTGGCGGGCGACTCGGCGGACGGCTCGGACGGCGAGCGCTCAGACGGC GAGGGCGGCGGCGGCGGCGGGCG GCGCGCCACGTCGCTGGAGCGGGCGGACACGATGTCGGGTATGGCCGGCGCCGTGGCGGG CGGGAGGCCGGGCGGGGCGCTGC TGTCGCCGGGGCTCGCCGGCGCCACGACGAGCACCGGTGCGGTGGGCGGCGGCGGCGGCT TGATGACCGAGCCCAGCATCTCG CGGGGCGCGGTGCTGAACGCGGCCGGCGCAGCTCCCGCGGGGGTGGTGGCGGCGGCGGTC GGCGGTTCGGCCGGCGTGAAGCG GCCGGCGGGGACGTCGCTGAGCAGCGGCAGCACGGCGTCGGCGACGCGGCGCAACCTGGA GGAGGCGCTGCTGTTCCAGATGG AGCTGCAGAAGAAGCTGCACGACCAGCTCGAGACGCAGCGGCAGCTGCAGCTCAGTCTGG AGGCGCACGGGCGCTATATCGCC AGCCTGATGGAGCAGGAGGGCCTCACCTCGCGCCTGCCAGAGCTCAGCGGCGGCGGACCA GCCGCGCCGCCCGCTGGCGCGGG CGGCGCCGCCGGCGGCATGATTGCGCCGCCGCCGGCGCAGCAGCAGCTGCAGCACCAGCC GCAGCAGCTGCTGCAGCCGCAGG GCAGCCTGCCGGCCGGCGGTGGCTCCGGCGTAGATGCTGGCAGCGGCGGCGGCGGCATGA ACCTGCAGCCACAGCACCAGCAT GTCCACCTCCATCACCACCAGCAGCAGCTGCAGCCGCTCGCGCGCCATTGCGACACGTGT GGCGCCGGCGGCGCTGGCGGGGC GCCCAGCGGCGGCAGCAGCATGCAGCAGCTGCAGGCGGCCGAGCAGCAGCGCACTGAGTT GGTGGCGACGGGGCGGCTCGGGT CCATGCCCGCGCCCGCGTCTTCGTCACCCCTCGCGGGGCAGCAGCACCAGCCGCTGGCCG GCGGGGCGGCGCACGTGCACATG CACGCGCACACGCCCGGGGCGCAGCCGCAGCCGCACGTGCAGCGGCAGGACTCATATGCT GGCGCGGCCGCTGCGGCGGCTGC GGCGGCTGCTGCAGCATTGCCGCAATCGCATTCACACACGCTCCCAGCCGACCTGTCCAG CAACGCCGTCGCTGACCCAAGCG CAGGGCCGATCAAGCCTGAGCAGGGCCTGTCGCCGCAACAGCAACAGCAACAACAAGAGC AGCAGGAAGCGGAGCAGCTGGCG CAGGGGTTGCTCCATGACAGCAGCGCCGGCGCAGGGGCTGTGAGCGGTAGCGACGGCGGC GGGCTTGGCGACTTCGACTTTGG CGATTTCGGGGACCTCGACGGCGGCGCCCAGGGCGGCCTGCTTGGCGCCGGGGACCTGAT CGGCATCGCGGAGCTAGAGGCGG C GGCC GC GCAC GAGCAGCAGC TGCAGCAGCAACAGCAGCAGCAACAGCAGCAGCAACAGCAGCAGCAACAGCT GCAGGGACAA GAACAGGAGCAGCTGGATGCGGACCGCGCAAAACGGCAGCGGCTGGAGCAGTAG

>Chlamydomonas_schloess eri . PSR1

ATGGACAAAGCTGAACGCGCTGCTGGCTGCACCAACGCTGCGAGCGAGGACGACTGG CTGCTGGAGTTTTGGCCGGAGCCTGC CACGGACTTTCCAGCGCCGGGGGCAGCGATGCAGCCGGCGCATCAGGACGCGACACAGCT GCCAGAGACCATTCCGCAGCAGC AAGGGCTGGCGCTGGGCGCATATGGCCTCACCCAGCAGCCGGCGGACTTTATGCAGTCGG GCATACCCGGCTTTGACGCATTC AGCACTGGGAAGGCGCCCGGGCTGGCCGGACTGCCGAGCCTTCTTCCGGACCCGCAGCGC GCCTCCACCGACGGGGCATCAGC GCTGATGACTGCGGCGCAGCAGCCCTCAGAGTACATGCTGCCGCCAGCCATGGGCAGCGT GCCGCACCTTCTGGCGCCAAGCG TTGGCACGGTGCTGCCCGGCACGGGGCACACAGGGTTCCCCGACCTTTCCATGGGCGGCA TGCCGGGCGGCCTTGCCGGCCTC GGGGGGCCCGGCATGATGCATGGGCAGTTCTTCATGCAGCCGCAGCGAGCAGCCACGGGC CCCGCCAAGAGCCGGCTACGCTG GACGCCTGAGCTGCACAACCGCTTCGTGACGGCGGTCAACCAGCTGGGCGGGCCCGACAA GGCCACGCCCAAGGGCATCCTCA AGCTCATGGGCGTGGACGGCCTCACCATCTACCACATCAAGTCGCACCTGCAGAAGTACC GCCTCAACATACGGCTGCCGGGC GAGAGCGGGTTGGCGGGCGACTCGGCGGACGGCTCCGACGGCGAGCGCTCCGACGGCGAG GGCGGAGGAGGCGGGGGCGCGAT GGGGCGGCGCGCGAGCTCGCTGGAGCGGGCGGACACTGCCTCGGGCATGGCGGGGCCCGG CGCGGTGGCGCCGGGGCGGGCGG GCAGCACGCCGGGAGGGCAGCTGCTCTCACCGGGCGTGGGGGCCACCGCTGGCGCCATGG CGGCGGCAGCCGAGCCGTCCATG TCCAGGGGCGCGGTCCTGGGCGCGTCGGGCGCTGCCGCAGCCGCGGCGCCGGCGGCGGCC GGGGCGGCGGCCGGCGGCGTGAA GCGACCGGCTGGGGGGCCGTCGCTGAGCAGCGGCAGCACGGCCTCGGCGGCGCGGCGCAA CCTGGAGGAGGCGCTGCTGTTCC AAATGGAGCTGCAGAAGAAGCTGCACGAGCAGCTGGAGACGCAGCGGCAGCTGCAGCTGA GCCTGGAGGCGCACGGCCGCTAT ATCGCCAGCCTGATGGAGCAGGAGGGCCTCACCTCGCGACTGCCCGAGCTCAGCGGCGGC GCGCCCGCGGCGCCGCCCGCGGC CCCCGGCGGCATGCTTGCGCCTCCGCCCCAGCCGCAGCAACAGCAACAGCAACAGCAGCT GCTGCAGCCGCAAGGCAGCCTGC CGGCCGGTGGGACCACCGCCGGGTTGGACGCGGCTGCCGCCACTGGTTGTGGGGGAGGCG AAGGCCCGCAGGTGCAGCAGCAG CAGCAGCAGCAGCACCATGTCCGCCACTGCGAGACGTGCGGCGCTGGTGGCGCCCCCAGC GGCGGTAGCAGCATGCAGCAGCT GCAGGCGGCAGAGCAGCAGCGCAATGAGCTGGCGGCTGCGGGGCGGCTGGGCTCCATGCC GGCGGCCGCGTCCTCGTCGCCGC ACGCGGGGCACGCGCCGCTGCAGCCGCCGGGCGCACATCTGCATGTGCCCACGCCTGGGA TGCATCAGCAGCAGCAACAGCAC ATACAGCCGCAAGACTCGTACGCTGGCGCAGCTGCGGCGGCAGCAGCACAAGCGTCACCG GCGGCGCTCCCACAGTCGCATTC GCACACGCTGCCAGGGGACATGAGCAGCAGCGGGGTCATGGAGCAGCCAGGTCCAGGGCT GGTTAAGGCCGAGCCAGGCCTGT CGCCGCAGCAGCAGCAACAGCAACCGCAAATGCAGCAAGACGCAGATCAGGGGTTACTCG GCGACGGCGGCGCCGGTGCAGCG GGTGTGAGCGGCAGTGACGGCGGCGGCCTAGGCGACTTCGACTTCGGGGATTTTGGGGAC CTGGACGGCAGCGCCCAGGGTGG CCTGTTGGGTCCTGGCGACCTCATTGGCATTGCGGAGCTGGAGGCAGCGGCCGCACACGA CCAGCAGCAACAGCTGCAGCAGC TACACCAGCAGGAGGAGCAGGAACAACTGGATGCGGATCGCGTGAAGCGGCAGCGGCTGG AGCAGTAG

>Chromochloris_zof ingiens is . PSR1

ATGGACCAGCGCAGGGAGCCCGCTGCAGCTAGTCGTGACGCTGATACAGCTGATATC AATTGGTTAGAGTTCTGGCCAGAAAG CGAGTTTAAAATCGACGGTGCTCCGGCAGGTGGCAGCATGGACCCGAGCTTGGGCACCTT AGGAGGACTTGGGGATTATCTGG GCTCTAATCTGCAGCACCCCCAGCTGGCAACAGCTGCGCCGCTGCAACTCACCCTGCCAG GAGAGTTTGGCAGCGCACAGGGA CTTCCCTTGCTAAGCTCTCTGGAAGCGTATCAGGGAAGTGGAGATCTGAATGTGTTACAA AGCACGCAACCAGGGCAGTTGCC ACAGCTGCTGTCATCAGCACCCTTAGCTGGACATTCACTGTCGTCATCATATGGGTCTGA CCCCTCAGGTTTCACTGCCAACC TCACATCTCCAGCACTATACCCCACTGGGTCGTATCTTGCTCAAAATTCAAAGCCAGGTT TGCCGCCGAAAACGCGCTTGCGA TGGACTCCTGAGTTGCACAGCAGGTTTGTATCAGCCGTGCATCAGCTTGGTGGGCCAGAT AAAGCAACTCCCAAGGGCATCCT TAAGCTCATAGGGGTAGATGGGTTGACCATATTTCATATCAAAAGTCACCTGCAGAAGTA CAGGCTCAACATCCGACTACCAG AATCTGGACGATCAGATTCCCAGGGTGGTTCAGAGCCCCTGGAAGGTGGCTCAGGTGCAG ACAGCAGGATGAGAGCACCCAGC TCCACACAAACACAAGCGAAACTAGGGTTGAGCAATCAACTAGAATCAGGTCAAGCAGGA ACCGAAGCTACACCCTCAGCTAC AGCTGCATCATCGCAGGACTATGCTGCCGCCCACACAGTGTCGCGACCACGCAGCTCAAA TGCTGGCCCCAGCAGCGGTGCAG GCAAAGCAGCTGTTGGGGATCAGCTGCCAGCAGCTGGCGGATCAGGTTCATACTCGACGG TGGGACAAGGTGGGGCAAAGCca gcagcacagaaacagcagcaattgaagcagcagTTGACAGCTGGGTTGCCAATATCTGCT GTCACGCGAAAAGACCTAGAGGA TGCGCTCTTACTACAAATGGAGCTGCAGAAGAAGCTGCATGAGCAATTGGAGTCTCAACG CCAGCTACAACTGAGTCTTGAAG CCCATGGCAGGTACATAGCCAGCCTGATGGAACAGGAAGGCTTGGGGCACAGAGTACCTG ACATAGCTCAGCTTACTGGTGTA CAGCCGGAGCATTTGCAGCACAAAGAGCAGCAAGCAGGCGGTGTGCCTCTGTCATTCACC CAGTCACTGACAGAAGACCTCAA

TGTTGATGACTCAGCTTTACATATGTTTCCAGGGGGTCATTCAGCAGGTCCTAGTCA TAGGCATCAGCATGCGACAGAACAGG

GTCTGCCAGATTCTCCACACCTTCTTTTGAACTTCCCCGAACTCAATGAGCTAGCAG ATGTCCCACAAGCAGGTGCAGGCAGC AATATGTTGTTGCCACACATGCCCATGGGACAGCAGAATCACATGCAGCCAACCCACAAA CGGCAGCGCTTAGATGAGGGTGG CAGCGCGCAGAACCACGGCAGTCATTCTGGTTCACGACAACAACACTGA

>Coccomyxa_subellipsoidea . PSR1

ATGCAGCAGAACCAGCACTACAACTGGGTATCACAGCATGTCAGCGTTGAAGATCAT CAGGAGCCGCATACGCAGCATCAATT

GCCGCAAACAGTAGGACACGAGCACCTCACAGCAGCTCACGCTGCCTTCTCAGACTT TGGGCAGCACAGGGGCGATCAGGCGA

TTGCAGGGATCACAGGGGATCAGGCAGAACTGTTGGAGGCCATATCTGGTACAGAGA CAGAACTGGGGCTGCCATACACTGCC

CTTGATCATCTGCAGCCTCACCACCCCCAGAACGACTTGCATCAGCATGGGGTTGGC TATGGGATGGAGAGAAATCCATCAGA

GCCCACACAGTCGCAGGGGAAGGATGCGAAGCCGCGCTTGCGCTGGACGCCAGAGTT GCATGCGCGCTTCGTGTCAGCAGTGG

CTTCCTTGGAGGGGCCGGACAAGGCAACGCCGAAGAGCATCCTGAAGCTGATGGCAG TGGAGGGCCTGACCATCTACCACATC

AAGAGCCACTTGCAGAAGTACCGGCTCAACGTGCGGCTGCCGGGCGAGTCCGGTGAC ATGATCAGCGGCCCCGACGAGTCTGA

GGAGCCCTCGCGACGCAAGCGGCGCAGCCGCTCGCATGGCCAGGCCTCCAGCCGCAG GCGCAGCAGCCGGCAGCGCAAACGGC

GCAGGTCGTCGGACGAGGACAGCGATGAGGACGACATGGAGGATGAGGATATGGATG ACGACGAGAACTTCGAGGAGGGCATC

AGCCGCGCGCGGCCGGGCACCAGCGTGAGCGGCATCAACGGCAGCAGTCCCCACGGT GGCAGCCCGCGCGGTGGCAGCCCCCG

GGGGGTCAGCCCCCGGGGCCGCAGCCCGCGAGGAGGGAGCCCGCATGGAGGAGGGAA TAGCATGGCCTGCCTGCAGGTGGAGC

CGCTGGAGGTGCCTGACCTGGACCCCGAGAAGCAGCACAGCCTGGAGGAGGCCCTGC TCAAGCAGATGGACATGCAGAAGCGG

CTGCACGAACAGCTGGAGGAGCAGCGGCGGCTGCAGTTGTCGCTGGAGGCGCACGGG CGGTACATCACCAGCTTGATACAGAA

GAAGGGGCTGGAGGGGCTTCCTCCGCAGACCAAGGAGGCTTTAGATGCCGCCCTGGT GCCCCCACAAGGCTCAGGGCTGAGCA

CGCTGACACACAACACGGCACCGCAGTGGACGCCGTCAGTGAGCGAGGGGTCTTCGC TGGCGCAGCAGGTCGGCCATGTCATG

CACCACAGCACAGCCTTCATGCTGGGCTCAGCCAGCGCCACAGACCCTGAATCATCT CTCCTTCTGGACACCAATATGCAGGC

GGCGGCAGCTGTGTGGGATCCGAGCCAGGCGCATGGGCTGGACCAGAGCGGCTCTAA GCAGCTGTATGAGGAGCCAAAAGAGC TGTACGAGGAGCCCGGACAGCTGTATGAGGAGAGGGGCGGCCACGTCAAGCCAGAGGAGC AACTCTGA

>Symbiochloris_reticulata . PSR1

ATGGACACCCATGACATAGCGCCTGCGCTTCCAGAGAGAAGCTTGGAGTGGCTGGAA TTTTGGCCAGAGGCAGAGTTCAGAGC

AGAGGACCACAGTATGAACAGCAACCCGTTTTGTTGGGTACAGCATGATGATCAGCA ACCGTCAAGTGGCGCCAAAGCCTCCG

CTGGACCAGTGTCAGCGGCACAGACCTCGGAACCTGGCATGCTCTTTCCAGGGCAAT TGCAGCCGGTCTCTGCAGCCCTTCTG

AGTCACTTCACGGAGGTGCATACTGGCGTGCAGGCCGACGTCTCGCACAGCTTCCTA CCGCCCGACTATATGCAGCCCCACTT

CTGTGGTAGTGATTTGCCGGAAGCTGCCCACTCTATGCCGCTTGCTTCAGCAGCTCA GCAGGCGCCTGTTTTTGGTGCAACTG

CCAACGAGCCAAGCTCAGCTGGAGCTGGCAGCTCACAAGCTGGAAAGCCGCGCTTGA GATGGACGCCAGAGCTGCACTCCCGC

TTTGTCGCTGCCGTCAATCACCTGGGTGGACCTGATCGAGCTACTCCCAAAGGCGTG CTCAAGCTGATGTTGGTGGAGGGTCT

CACTATCTACCATATCAAGAGCCACCTGCAGAAGTATCGTCTGAACATCCGCCTGCC AGGCGACTCCGGCCCCGTCGGCAGCC

TCAGTGGCTCACGCAAGAAGCGCAAACGCAGCAGACGAGCCAGGTCCTCAGACTTGG AGGATGAGGAGGAGGAAGATGACATG

GATGAGGCAGACAGCATGGAGGACATGTTGCCTGGAGATGAGCTACATGGCAGGCAG CAGGCAGTTGGTGAGGCTGGTCTGGC

ACTGGATGCAGCCCTGCCAGAGCAGGGCAACGCTCAGGTGCCTGGGCAGCAGCCTGA GCAGCAGCCAAATGCTCAACGGCAAC

GAGATCTTGAAGAGGCCCTCATCTTGCAGATGGATATGCAGAAGCGCTTGCACGAGC AGCTGGAGTCACAGCGGCAGCTGCAG

CTCAGCCTGGAGGCGCACGGCCGCTACATCAGCAGCTTGATAGAGCGCGAGGGTCTG CAGAGCAAACTGCCAGCCGGGACGCA

TGCAGCCATGCAGAGCGGCCTGCCCCGGCTGCCCGAGGCGTCCCTCGGCATGGCTGC AGGCATGTGCGGTCCAGCAGACGGCA

GCGGAGCGGGCACCATTGCGCCGGGCACGTCCGGCGGCATGTCATGGGGTCAGATGA CCCATGTCACCCTACCGCACAGCGCA

GAGTCACCTCCGCTGCTGTCCCACACCAGCCGCACCGGCGCTACTGCTGCGGATGCC GGGCAGTTCCTGATGGTCGGGGATCC

CGGAGATCTGGGGCCGCTGCCCAGCATGCTTCTGGACACCGATCTGCAAGCAGCGGC AGCTGTGTGGGACGACGGCATGCACC

GGCCCCGAAAGCATGCGCCGAATGGGCACCTAGAGCATGCTTCGGGGCTTGACGAGG GCCTCTTTGACCAGCATGAAGGGGAA GAGCATGGAAGGCTGCAGCGCCGCAGACAGCCATCTTCTCGCCTCAGACAATCATGA

>Edaphochlamys_debaryana . PSR1

ATGGCCAAGGCTGAAGGTCGCCCTGGAACCATTGTGGGAAGCGAGGAGGACTGGTTA TTGGAGTTTTGGCCGGAGCCGACGCT

GGAGCTCTCGGGGCCGGCCGCGATGCAGCCGCAGCAGTCGCCGTCGCTTGACGCGCC CATAACCGACCTGCAGCAGCTTGCAC

CACAGCAAACATCACAACAGGCGCAGCAGCCCGGAGGGCTGCCGCTGGGGCAATACG CGCTCGCCTCGGCTGCCGATTACCTC

CAAACCGCGCAGCATGCCCTCAGCGCATACGACCCCTACCGGACCAAGTCCGCGCCG CCCCTGCCCCTGGGCCTGCTCCCAGA

CCGGCCTTCGGACTGTGCATCGGGGTTACTGCCTCCGCCAGCTGGCGGGGAATACCT GGGGGCCCTGGGCACAGCCCAGGGGG

GTCTGGGGCCCGTGCCACACCCCCTCATGGCGCCGGGCGCTGTCTCAGGGCTACAGC AAGGGCAGCCGGGGGGCGGCTACGGA

GACCTCGGCCTGGGGGCCATGGGCATGGGCATGGGCGGCCTGGGCCTGCAGCAGGGG ATGCTGCACCCGCACGCCCATTACTT

CGCGGCGCCCCCCCGTGCCGCCGCGGGCCCTAGCAAGAGCCGGCTCCGATGGACGCC CGAGCTCCACAACCGCTTCGTCCAAG

CCGTGAACACGCTCGGCGGGCCTGACAAGGCAACGCCCAAGGGCATTCTAAAGCTCA TGGGCGTGGACGGACTCACCATCTAT

CACATCAAGTCCCATCTGCAGAAATACCGCCTTAATATTAGGCTGCCTGGGGACTCC GCCGCCGGGCCCCAAGGCGACTCCGC

CGATGACTCCGACGCGGAGGGCGGCGGCGGCGGCACGACCGCGACCGGCATGGCGGC GGCACCGTCGATGTCGTTAGACCGCG

GCGGCATGGAGACGACGTCGGGGCTGCTGGGCCGTCGGCTCGGCAGCAACGCCGCCA CCGCCGCCGCCGCCGCGGGCTTCCTG

GCGGGGGGCGGCGGGGGTGGCGGCGGCGGCATGGCGGAGCCAAGCCTGTCCAACTCG ATAGCGGCGGCGCAGGTGGCGCAGCA

GCAGGCCGCCGCCGCGGCGGCGGCGCAGATGGCGGCGGCGCGGCCCGCCGGCGGCAG CACCAGCAGCGGCAGTACGCCGTCGG

CGACCCGGCGGAACCTGGAGGAGGCGCTGCTCTTCCAAATGGAGCTCCAGAAGAAGC TGCACGAGCAGCTGGAGACCCAGCGC

CAGCTGCAGCTCAGCCTCGAGGCGCACGGGCGCTACATCGCCTCGCTCATGGAGCAG GAGGGCCTCACCTCCCGCCTGCCGCA

GCTCAGCAGCGGCGACGGGCCGACGGCGCAGCTCGCGCTACCCGGGCCCGGCGGCGA GGGCGGCGGCGACGGGCTGCAGCGGC

AGCCGTCGGGCATTGGCGGCGGCGGCGGCGGGCCGCAGCAGGGCGGGCCGCTGGTGG GGGCGACGGGGCAAGGCGTGGACCAC GCGGGGCTAGGCGGCGTGGGGCCCGACGGGCGGCGGATATCCTCCCAGGGCCTCGGCGCG CCCTCTCCCCAGGCGCTCCTGCC GTTCCAGTTGTCCAGTGCTGGGCAGCCGACGGGCCGCCACCAGCTAGGGATGCAGCCCTC GCCCCAGCACCTGCCGGGGCCCG GCGGCGACGGAGGCGGCGGCGGGGGGCCCGGCGACGAGCATCAGCGGCGGCGGTCCGAGA TCGCGTACGACGGTACGGGTGGG TCGGGCCTCACTGGCGGCGCCAGCGGCGGCTCGTCCGTACAGCAGCTGGCGGTGGCGGAG GCGCAGCGGCATGACCTCATGCG AGCCGGCCGCCTCGGGTCCATGCCGTCCGCCGCCGCCGCCGCACTCCAGGCCGCCGGCTC CAACTCGCTTCCGCAGCAGCACA TGTACTCGCCCGCGCAGCAAGACTCCCTCGGCCTCTCCCAACAGCAGCAGCAGCAGCAAG CACAAGCCGACGCCCAGGCGCAC GCGCAAGCGCACGCAGCGGCCCAGGAGCACGCGGCGGCTGCCGCCGTCGCCGCCGGCATG CAGCTCAGCATGGCACACGCGCC GTCGGGCAGCGGCCTCGGCGACGGCGGCGGCGGGCTGGGCGACGGCGGCGGCGGGCTGGG GGATTTCGACCTGGCGGACTTCG TCGGCGACCTAGACGCCAGCGGCGTGGCGGCGCTCGAGGGGCAGGGGTTCGCGGGGCTCC AGGGGGGCCTGCAGGGGGACTCC GAGATGGGCCTTCTTGCGGGTATCGGAGACGACCTGGCGGCGGCGGCCGCCGAGGCGCAG GCACAAGGGCTCGTCTCGCCGCG GCGCGGGTCCTCGGGCGGGGAGGATAGCGGGCGGAGCAAGCGCGCGCGGCTGCAGGGCAG CTCGTCGGGGGAGGGCCAGGGCT AG

>Enallax_costatus . PSR1

ATGGATCCCGGGCCTAATCATTCTTTGGGCCCTTTAGAACCAGATCATTGTGACCTT GGATACCTGGAGTTTTGGCAGGAAAG CGAGTTCAAGCTCGAACCTGCAGCACACCATACCTTAGGGATGGACCACCTAGGCGACCA CTTTTTGGCAGCAGGAGCAGTTG GAGGGAGCGCAGGGCAGTATGGGCAGCTTGGTTTGGCGGCGGGACCAGACCCCTACAGCA ACCAAGGCATACCTCTGGTGCCA GCCCTTAACGATCAGCACTTCCAGGCGGGTGACGTATCGCTGCTGAGCACGTCCACGGGC CAAGGCAATCAGGTGCCACAGCT GCTGACAACACCTGCTCTGGAGTCTTATACGTCGTCCTACGGGGCAGACCCACTCAGCAG CATGCCATCCGGGGCAATGCTTT ACTCATCGGGAGCGTTCGCGATGCCTGGCAGCAAGGGGTCTTCAGCTTTTGACGCTCCTT CAAACAAGACACGTCTGCGCTGG ACACCAGAGTTGCACAGCCGCTTTGTCAGCGCAGTGAATCAGTTGGGAGGTCCTGATAAA GCAACACCAAAAGGCATCCTTAA GCTCATGGGGGTGGATGGGCTAACCATATTTCACATCAAGAGTCACCTGCAGAAGTACAG GCTCAACATCAGGCTGCCAGAAG GTGCTCAGCCAGCCATGAGCACCGGGTCTATGCAGGAGGGGGATGCAGCAGCCGCAGCTG TAGATAGTGCAGCTGATACACAG ACAGCGGTGATGTCCGGAGCACAAGCAGCTGCAGCTCAACAGCCAAGTCAGCAGCAGCAG CAGCGTGGTCAGCAGGATAAATC TGGTCAGCAGGATAAGCCTACTCAGCAGCAGCAGCAGCAGGCACCAGCTCTGGTCCCTCA GCCAAGCAGCAGTGCTGGCCGTG CAGCTGCTTCTCTATCCCCATTGATACGTGAGGGTTCAACAACATCTATACCTGGGCTCA GCTCAGGGGCAGTGCCCGACATG CAAGCACCACTGCTACCTCCTGGTACTGGCTCGGGTGGGCCGGCAGGACAGCAGCAACAG CAGCAGTCGCAGCAGCAACCGCC GCCGCCGCAGCAGCAGTTGAAGCAAGCGCAACAGCAGCCTCTACAACAGCCGCAGCAGCA TGCTCGGCCGGTGCCGGAGACGG CAGCAGCAGCTGGAGGAGCAGCAGCTACTGACGAGAACAATGATGCTGCCATCAAGCACA GCACTCGGCGTGACCTGGAGAGG GCTCTCCTGCGCCAGATGGAGCTGCAGAAGCAGCTGCATGAACAACTTGAGATGCAGCGT GCACTGCAGCATAGCTTTGAGGT TCATCAGCGCTACATACACAGCCTCATGGAGCAGGAGGGGCTGGCTCACAAGATACCAGA GATGTCAGCAGCCTTAGGGGCAG TAGCAGCAGCCACAGCTACAGCACCACCTGGAAGTGTGGTCAGTGAAGCCATGCCAGTGC AGCCCGCACAGCCCAGTAACAAC AGTCAGCCACTGCAGCAGCAGCAGCAGCAGCAGCCGCCAGGAGCACAAGCTGGAGCTGCA GTGCCAGCCCCTGGGCAGCAGCA ACAGCAGCAGGTGCTGCAGCTACCACAGAAGCAACAACATACAGGCCATGCAAGCGCCAA TGATGCTGCGCCTGTGGCAGCTG CTGCGGTGACTGATCAGTTCCTGAGTGATGCTGAGCTGTTGATGGGTTTCCCTGATCTGC AGCATGACACCGGTGACATAGAC CCCATACAGCAGCACCTGCTCGGGGATGAGGCAGCAGGGGGACCACCAAAGAGGCAGCGC ATGTCAGGGCAGGATGTCTGA

>Mesostigma_viride . PSR1

ATGAACCGCCCCCCGGTCGGGAGTGCTTCACGTACCGCTGACCAGCAGCTGAGTTCG TCAGCGGAGGTGCAGCCAAGGACCGT TCAAAAGCTGCCTACCACTGTTGACGAGCTTATAAATCAAGAATGGCCTATTTGGGGAGA GCTTGCGCCTAACGATGACAGCA TTACTACTTGCTGGACGGACTTGTTGACCGGGCCTCCGCCCAAGAATCAAGACATGCACC GTCCACAACATGCAACCATTCAA GATGATACGTCTCCAGGGCTTTACCTTGCCAGGCAGCAGTATCTCCCAGGGATGGGGACA CTGCCACCTGGCGGGGTTCCCCC CCTGTGTGCCCCCCCCGGCTTGATGGATGGTGGCGGCATGAACCTGGTGCCGGGCATGCA GGCCTCGATGGCGGCGGCCCAGT CGCAGCAGCCGCCCAAGCAGCGGTTGCGGTGGACGCCAGAGCTGCACGACCGCTTTGTCA ACGCGGTGCAGAACCTGGGGGGA GCGGACCGTGCCACTCCCAAGGGTGTCCTGCGCGTGATGGGTGTGCAGGGGCTGACCATC TACCACGTGAAGAGCCACCTACA GAAGTACCGGCTGGCCAAGTTCCTGCCTGAGGAGGGAGGCAACTCATCCAAATCGCTGGG CGGTAGCAAGCGCGACACGGACA GCGACAACGATGACGCGTCGGACGGCGACCCGCTCAAGATGGCGGACCTCAAGGCGGGCG CGACCGAGCTGCTGACGGGGGAG GACGGCTCGGTGAACATTGAGGAGGCGCTGCGCATGCAGATGGAGGTGCAGAAGCGGCTG CATGAACAGCTCGAGCTGCAACG CGCGCTGCAGCTCAAGATCGAGGCACAGGGTCGCTACCTGCAGCAGATTATGGAGGAGCA GCGGAACGCCGCGCTCGCACGCC GCGCGCAGGCTGGGGGGGCGGCCAGCGGCGCCACCACGCAGGGGCAGGCCACCTCGGCAG GGCAAGCTGCGTCCGCCAGCAGT AGCAGGAGCAGCGCGGGGGGTGGGGGAAAGGGGCCCGAGGGGGCAGCAGCGCCGGCAGCG GGTGAGGGAGGTGCCGGGGCGGA TAGCATTAGCCACGCTGCGGATGGTGCCCGCGCGGGTGCAGAGGCAGGAGATGCACAGCG CCAGGCGGTCGCCTCCCCATCGG GCGCCCCCGTGTTTGCAGCCTCGGGCGTACACGACGCGGATGGAGCGGGCGCCACCTGTC CAGCCGTGGGCGCAGCAGGTGGC CACGCGCCATCCCCGGCCCTGGTGCCGAAGACAGAATCGGTTGCTTGCGGTGGTTCCCTT GCGATGCCCGATGCGCTGGCGTC ACTCCCAGGGGGCGGCGGTCACCACCTGGGCGCGAGTGGCAAGCTGCCAGGGTGCGAATT GCCGCTGCCCTCGTGGTCGGAGC CAGGTGCCGCGCTGCTGACGGCCAACGGGGGCATCTTGCCGTTCCCTAGTAAGGTCGAGG GGCGCAATCTACCCCAGTTGTCG CTGCCGTCGCACCTGCTGCTGGGGGTGGAGGATGTGGATGATGGTGGCGGTGGTGGGGGT GGTGGTGGCGGTGGGGGCCAGTC CTTGCAATCAGGTGTCGGTGTTGGCAGCAAGCGCGCGTACGATGAGATGATGGGGGGGGG CATCGCGATGGAGGACGGAGCGG GCGACCGGCTGCACACGGACGGCAGTGGGTTGCCCACAGGGGGGTCCCTGCTGCCCGATG ACGCGTCCCTGCTGGCGGCCCAG GGGGGGCACGCGTCCGGTGGGGCGGACCCAGCTCCACACATGCTCTAG

>Raphidocelis_subcapitata . PSR1

ATGGCGGAGCGCacccccggcagccccgcgggggagggcgacgaggcggTTCTCGCG GGCCTCGCGGGCTGGCTGAACGATGA GCTCAGCTATTGGCCGGAGTGGCCCGtcggccccccagccccgcccctggACCCCCAGGC CCACTGCGACGGCCCCGTGATCG CTCTCCCGGGCGCTCACTGCCCGatggagcagcggcaggttgCAGCGGGACCCCCCGGAC CCCacgggggggcgggaccCCAC GCGGTGgcacagccccagcagcagcatcccGCCCTGCAGGCGGGCCAGGGGCACGCCTTG GATGCTTTCCAGTCCTACCAgGC GACCGCTTACGGCATGCAGTTGGCggtgcacgcgcagcaggggggctTCGACCCTGGCat gctcggcgcggcgggcgcgctcg cgcccggcgcgctcttCGGCGTGCCGCCAGCGTACGGCatggccggcggcaagccaGgcg ccatgGCCGGCGGCAACAAATCC CGCCTGCGCTGGACGCCCGAGCTGCACGCGTCCTTtgttgccgccgcggagTCGCTCGGG GGCGCTGACAAGGCGACGCCCAA GGGCATCCTGAAGCTCATGGCCGTGCCCGGGCTCACCATCTTCCACATCAAGAGCCACCT CCAAAAGTACCGCCTCAACGTGC GCGCACCGGACGGGACCGAGggcgccagcgacggcggcggggagtcggccgtcgagggcg ccagcggcgagggcggcgcgacg gtgcgcatgggcgcgctgcgggcggagaGCCTGGATGCCACGGCGCCtagcagcgcgctg gcgctgccgccgacggcgctggg cgcttCGCCGGCGGTGGGTGTGAAGCCGGAGCACCCAGAGGTCGATGCGCACAGCCTGCt taagcagcagcagcacgcagtGC CTgccagcaccaccagcacgTGCGCGGGCCTCAGCAGCGCGAcgggcctcgaggcggcgg cggcggcgggtggcgccggctcc gaggcggcggcgggcggcccctccacggcgcggcgcaggaacCTGGAGgatgcgctgcag ctgcagatGGACCTGCAGAGGCG GCTGCACGaccagctcgaggcgcagcgggcgctgcagctgagcCTGGAGGCACACGGGCG CTACATCGCGCGGCTGATGGAGC AGGAGGGCCTCGGCCACAGGCTGCAGGACCTCGCGGCGATaaccgcgccgggcccgggcg cgggcgcggaggccgaggcggcg ccgggcggcggcgatggcggcggcgcggcgggctctggcggcgcgggctctggcggcgcg ggccccggcggcgcgcccgcggc ggcgccggccagcgaggcgaacagcagcggcttgagggcggcggccggcggctgcggcgg cggcaggagtgtggcgggcggct gctgcgacgGTGCGctcccgctggcgcgggcgggctccTCTGCCCTGGACAGCAGCGACC ACCCCGCAgagccgcaccagcag ccggcgaggtggcagcagcccacgccgccgccctccgcgtcagggcggcgggacgaCCGC AGCCAAGACCagcggctgcacgc cgccgccgggcagctgctggcgtggggccgcagcgcgccgccgccgcacgacgcggccgg gctggacgcggccggcgcgccgc agggtaagcggccgcggctcagTGGCGCCTGA

>Symbiochloris_reticulata_Af rica . PSR1

ATGCTCTTTCCAGGGCAATTGCAGCCGGTCTCTGCAGCCCTTCTGAGTCACTTCACG GAGGCCGACGTCTCGCACAGCTTCCT ACCGCCCGACTATATGCAGCCCCACTTCTGTGGTAGTGATTTGCCGGAAGCTGCCCACTC TATGCCGCTTGCTTCAGCAGCTC AGCAGGCGCCTGTTTTTGGTGCAACTGCCAACGAGCCAAGCTCAGCTGGAGCTGGCAGCT CACAAGCTGGAAAGCCGCGCTTG AGATGGACGCCAGAGCTGCACTCCCGCTTTGTCGCTGCCGTCAATCACCTGGGTGGACCT GATCGAGCTACTCCCAAAGGCGT GCTCAAGCTGATGTTGGTGGAGGGTCTCACTATCTACCATATCAAGAGCCACCTGCAGAA GTATCGTCTGAACATCCGCCTGC CAGGCGACTCCGGCCCCGTCGGCAGCCTCAGTGGCTCACGCAAGAAGCGCAAACGCAGCA GACGAGCCAGGTCCTCAGACTTG GAGGATGAGGAGGAGGAAGATGACATGGATGAGGCAGACAGCATGGAGGACATGTTGCCT GGAGATGAGCTACATGGCAGGCA GCAGGCAGTTGGTGAGGCTGGTCTGGCACTGGATGCAGCCCTGCCAGAGCAGGGCAACGC TCAGGTGCCTGGGCAGCAGCCTG AGCAGCAGCCAAATGCTCAACGGCAACGAGATCTTGAAGAGGCCCTCATCTTGCAGATGG ATATGCAGAAGCGCTTGCACGAG CAGCTGGAGTCACAGCGGCAGCTGCAGCTCAGCCTGGAGGCGCACGGCCGCTACATCAGC AGCTTGATAGAGCGCGAGGGTCT GCAGAGCAAACTGCCAGCCGGGACGCATGCAGCCATGCAGAGCGGCCTGCCCCGGCTGCC CGAGGCGTCCCTCGGCATGGCTG CAGGCATGTGCGGTCCAGCAGACGGCAGCGGAGCGGGCACCATTGCGCCGGGCACGTCCG GCGGCATGTCATGGGGTCAGATG ACCCATGTCACCCTACCGCACAGCGCAGAGTCACCTCCGCTGCTGTCCCACACCAGCCGC ACCGGCGCCACTGCTGCGGATGC CGGGCAGTTCCTGATGGTCGGGGATCCCGGAGATCTGGGGCCGCTGCCCAGCATGCTTCT GGACACCGATCTGCAAGCAGCGG CAGCTGTGTGGGACGACGGCATGCACCGGCCCCGAAAGCATGCGCCGAATGGGCACCTAG AGCATGCTTCGGGGCTTGACGAG GGCCTCTTTGACCAGCATGAAGGGGAAGAGCATGGAAGGCTGCAGCGCCGCAGACAGCCA TCTTCTCGCCTCAGACAATCATG A

>Tetradesmus_deserticola . PSR1

ATGGACTCTGGTGCTCATGACTTAGGGGACCATACAGGCGATTGGCTTGAGTTTTGG CACGAGTCTGAGTTTAAGTTAGACGG CGTATCGACCGCAGCAGCCCAGCCCGGCCAGCACGCCCCTATGGACCTGCCTGGAGGGCT CGGCGACTTCTTCTTGCCCAGCG GCAGCATGCTGCCGCAGCCGCACTCTGGAGACGCGCAGCAGTTGGTATTAGCACCTGCAG GCGATCCCTATGCAGGCAGCCTG ACCATGCTGCCAGGGCTGGAACAGCAACAGCAGCACTACAAGGGGCCTGACCTGTCGTTC ATGAGCACATCCTCTGGAGCAGC AGGGCAGATGACGCAGTTGATGCCGCCTACTGCACAGCTGGAGTCGTACACTTCTTCATT CAGCTCAGACCCTACCCTCAGCG GCATGCATTCAGCACCTATGCTGTATCACGCAGCTTCTTTTCAGCTGCCGGGCACGAGGT CTGGGAGCCTGCAAGAAGCCCCT GCAGGCAAGACACGGCTGCGCTGGACACCGGAGCTACACAGCCGCTTTGTGCAGTCAGTC AATTCCCTTGGCGGCCCTGATAA GGCAACACCTAAGGGCATACTGAAGCTCATGTCAGTAGATGGGCTCACCATCTTCCACAT CAAGAGTCACCTGCAGAAGTACC GTCTGAACATCAGGCTGCCGGAGACCTCAGAGATGGGTGCACAGCCTGCAAACAGCAGCG GATCACCAGACCAGGAGGCAACA GCAGCAACAGACAGCGCAGCAGACACGCACGCAACGCTGGCGACAAGCACCATAAACCCA TCAGCAGCAGCAGCAGTGGCAGC AGGCGCTGCCGCACCTACTGCAGCTGTGGCACCAGCCAGTGCGAGTGCTGGCGGGGGTAG TTCGCTGCAGCAGCAGCAGCAGC AGCAGTCACTGGTTCCTACGTCTCAGCAGCAGCAGCAACAGCAGCCACCGCCGCCGCAGC AGCAGCAGCAGCAGCGCATTTTG AGTGGTGTCGAGCAGCTGTCAGGTGCATCGCCACTGCAGCTGACCACTTCAGGCGTTCTG GAGATGCCAGACAGCGCTGCGTC CGCAGCCCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAACAGCAGCCCACAGGCGCTGC AGCAGATGCTGCAGAGGACAGCC TGCACATGAAGAGTGACACGCGGCGGGACTTGGAACGTGCACTGCTGCAGCAGATGCACC TGCAGAAGAAGCTGCACGAGCAG CTTGAGACTCAGCGTCAGCTGCAGCATAGTCTGGAGGTCCACCAGCGATACATCCACAAG CTCATGGAGCAAGAAGGGCTAGC GCACAAGATCCCTGAGATGTCAGCAGCTTTCAACGCGGGAGCATTGCCACCGCCAGGCAG TGTCGTGAGTGAAGCAATGCCAG GCCAGCCACTGGCAGTCGGAACCGCTCCTCAGCAGCAGCAGCAGCAGCAGCAGCAGGCGA GCAGTGCAGCGCCGCCGCTGCAG CGGCACCATTCGCTGCCGCACCAGCAACAGTTGCACACTGGTGTCGGCAACTCTGATGCA GCTGCTGGTGTTGGCACCTCAAA GCGTAGCAGTAGTCACCACCACCACCACCACCATCAACATCATCAGCAGCACCACCCCCA GCAGCAGCACCACCCGCAGCCGA TGCAGCAGCAGCAGGAGCCAGGTCAAGACGCAGCAGGTATCGACCCGCTGCCTGGCAGCT GTGGCAACCTGCTGAGTGATCAT GAGCTGCTGCTGGGGTTCCCTGAGCTGCGCGACAGTGGTGACGAGGGCGGGGGCATGGGG CTGCTCAGCGAGCCTGGGCAGCC GCAAGGCAAGCGGCAGCGGCTGCTGACGCCCGACATAGCCAAGTGGCCTTCAGTGGACAG CGCTGAAGGCCAGCACTGA

>Tetraselmis_striata . PSR1

ATGAACATTCGTCACGACGACGATGCCGCCGCCGCCAGCGTACAGGTGCGAGAACGG GTTCCATGGTCACAGGGGATTCGGGG GGTGGAGGGTGCGGTGGTGGTGGTTTTCATCCTAGCCCGCTTCACTCCAACCGCGCCACA GACCCGCCAGACCTTGCAGCCCC CGTATCGCCAGCTCGCGCGGCATCGTGAGGACCCTGCCACGAGCCCCGACCCGCGCACCG GTCGTCCCGCCATGGACCTCAAC GAGGACGCGGACGCGGAGCTGAACTTTTTCAAGGCGATGGAAGCCTTCAGTCCACCCAGC TTTGAGGGCGGCGAGGCGGAGGA CCACCTGCACGGCCTCAGCGTCCCGGGTCTCCCCCACATGGCCGGGGCCACCGATACACA TGCGCACAATCCCCCCGCCAGCA CAGGAGACGGCTCGCAAAGCGCCACGGTGCACAACACATCCGGGGCACGTGGGCATGACC TTCTGGTGAACAACGGGCACAGC ATGTGGGAGCCGCTGTCGTTTGAGGAGGTGATGCGCAACGGCGGCGTGAATCCCTCCCAG GCCTCAAGCCTCGCGTCGACCAG CACCGCCGCCACGGAGCTGCTGATGCATCGCGGCAACACGTTCCTGCCCAGCGGGAATGG CGGCGGCAGGCAGGCGCCGCCTG GCCAGTTTGGGATGGGCGGCATGCCGTCCATGATGGCGTTTGGTGCCCCGCAGCAGCAGC AGCAACATCAGCAACACCAGCCG

ACGCCTCAGCAGCAGCCGCCGCAGCGGAATGGGTCGGAGGATGGCATGCAGCACTTT GGAGGCCTGTTCCCGCAGTCGGCGGC GTTCCGGCCGCGGCTGCGCTGGACCAACGACCTGCACAACCAGTTTCTGGACAGCGTCGA GCGGCTGGGCGGCACCGACAAGG CCACGCCGTCCGCGATCCTCAAGCACATGGGCGTGGATGGGCTCAGCCTGGGCCACGTGA AGAGCCACCTGCAGAAGTACCGC

ACCGAGCTGAAGCGCGCCAAGGCGGTGCGGGGCAAGGCGATGGACGACATGCACCAG ATGAAGAAGGGGGCGCGCAGCAAGGC GGCGGCGGCGGACGTGGCGGCGGAGGCGGCGGAGGTGGTGGCGGAGGCGAGCGGTAGCGC GGAGGCGGGGCTGGAGCAGCTGG GCGCGACGCAGCGGGAGCTGCAGCGGCAGCTCGCGGCGCGCGCGGCGAGCGGGCCCAACG CCAAGGAGCTGGAGGAGGCGATG

CGCACGCAGCTGGAGCTGCAGAAGATGCTGTGCGCGCAGCTGGAGGCGCAGAAGGAG CTGCAGCGGAGCCTGGAGCAGCACAC CAAGTACATTTCTGTGCTGATGAAGCGGCAATCGGGGGACGACCTTCACGCGCACGGCGA GGGTGACACGGCCGGCGAGCATG AGATGTCCAAGGCCTGA

>Trebouxia_sp . . PSR1

ATGGACAACGACACCATAGACTGGCTTGACCTGGACTACTGGCCTGAGAAAGATTCC AAAAAGCCTGCAGACATGGACAACTC GTTCGCTTGGCTTGCACAGCAAGCTCAGCCATTATCTGGGCAGCCACTGCCAGGATCGCA GTACCAGGTCCAGCCACATGTAA TGCAGCCACATGATGGACTGTTGTATCACGACACGTTTCACCCCCACTCCACAGCAGGAT CCCTGCTTTCAGACCTCTCAGGG

GATTTGCTAGATACAACAGCTGTAGACATTTCGAATGCACAGTTCGAGGCCATTCCT TCGCAGAGCCCGCACCAGCAGAGCAA

CATGCAATTACGATCAGATACTGCTCACAACGGAGCCCCACAACCTCTGCAAGACAT GATCCAAGCTCCCGTCTTTGGCAGAA GCACTTCATCTATGTCTCAGCAAGCAGGCAACAACTCCCAGTCTGCAGCAGCACAAGCTG CTGGCAAACCGCGCTTGCGGTGG ACGCCTGAGCTTCATACTCGCTTTGTTGGCTGTGTAAGTCAGCTAGGCGGTCCTGAAAAA GCCACACCCAAGGGTATCATGAA

GCTCATGTCAGTGGAAGGTCTCACCATATACCATATCAAGAGTCACTTGCAAAAGTA CAGGCTAAACATCAGGCTGCCGGAGT CAGAGCAGGTCGAAATGAGTGAAGCTGTGTCAGGTGAGCATGAGGGGCGCAAAAGTCAGC GAGGCAAAAGGCGCAGCACCAGG AAACAGCGCAAACGCTCAAAGCGCTCGTCTAGCAGGCGACGTGCCTTGGAGAAGAGTGAT GGTGATGATGATGAAGCCGATGA

CTTGGATGATGATCAGTTCGATGAGGAGGAGGGTGACAATGAGCTGGATGGGCATGC TGCTTCTTCTGGAGTAGGGGAGGCTT CCAGCATGCTGGATGGAGTCACCAACAGGGAAGAAGATGCACAACGTGAGGTGCAGCGGC AGCGCAATCTGGAGCAGGCTTTG CTGATCCAGATGGAAATGCAGAAGAAGCTGCATGAGCAGTTGGAATCACAGCGGCAGCTT CAGCTCAGCTTAGAGGCGCATGG

CCGCTACATCACCAGCCTCATTGAAAGAGAAGGTCTGCAGCACAGATTGTTGCCGCA GCTGGTAGCTGCAGCTGCCCCCAGTC

TGGCACGCACTGTCCCTGCCCTAGCAGCACTAGCAGCCTCAATGCCTCCAGGCTCCT CAGGTCAGATTTCAGATCAGCAGACT

CACTATATGCCTCTGTCAGCTTCTGGCGCTTCAGAATTCTCCCCTCAGCAGCTGCTG GCTGGCAGATTTTCCTCCTTGCCTAA CTCAGTCAATCTGAACCAGGATCCCAGTCCCGGTGCAACAGACGCTGCAAGATCCCTGGA CGTGTCGCCATCTTCGCTGAGCA GGCATGTCAGTGGTGCAGTTCCGCGTAACCCATTCGGCACTATCAATCAGGCTGCGTTTG GAGAGCCAAGCTCGCCTGGATTA

CTGCTGAACACCGACCTGCAGGCTGCTGCTGCCGCTTGGGACGATCAGCAGCGGCAT ATCCTGACAGGTCCTGGAAGCAGACC CTTGGATGGGATGCCAGCTGTACCTGGTCAATAG

>Chlamydomonas_reinhardtii . PTCI

MKFTHQLKFNSVPEWREHYIQYGHLKKYI YALAKKEADLQAGGQDEEALLAPLLEAERDQGPTEEGFQRELDAQLAATLSFFA VKEADLLAKVSALELDIQSLEKI PNRAEASTLARMGGSASPGGPMSS PRAAAAAAMSAMASLVSHSPSTLDLARMVNSTPPED HRKIRVKFWENPPRHLFSTNLNTRRAKLQARFQDLYI SLHDLREFLHINKEGFRKI IKKHDKLTRAVDLRARWWPNVEAHLAP AAKQAELDGAIGALTDHYAVLYTRGDVAQAEEQLSRGLREHITVERNTVWRDMAAMERKY AAVSVKQAAAPGARVTWLRTHAR WLKLALSVAVFWLANVEVWPGAENEPRNNCLALLVFASLLWSLEAVPLFVTSMALPLLIV ALGVLVDRSKDPPQRMTPQQAA PAI FHAMFS QT IMLLLGGFAI AAAL S KHAIAKQVAVS ILS RVGRKPRNVLLAAMFTATFASMWT S NVAAPVLC FGL I QP I LRT LDPGHPFAKALVMGIALASNVGGMTSPIS SPQNIFAIERMSLDGRPPSWLAWFAVALPVAVACNFVCWGLLLLCYQPGKAIAE VRPIKPNTDPINGTQVYI IWSLLTVAAWCANTFLQRYTGEMGVIAVVPLVAFFGFDVLNKDDFNSFLWNVVMLAMGGL SLGE AVKSSGLLAALALTI SDLVMGLSLWQVAAIFCGMVLVATTFISHTVGAMVILPIVQSVGEAMAGTPHPKLLVMAA ALMCSGAM GLPVSGFPNMNAVSLEDSTGNAIVGTGDFLAVGVPSSVFAYGI IVSLGYVLMLAVGF

>Monoraphidium_neglectum. PTCI

MDKAERELRSELREEVGFERNTVWRDMVAMERRTGAVVRQDTHGITDDTIREPWVKR YWQPMTLTVSLIALVTLLLVPI FEDE PEKQNCLALLVFASLLWCTEALPLFVTSMIVPLLVWLRVLVDRTVS PPERLS PEKAAPAVFHIMFGQVIMLLLGGFAIAAAL SKHFIAKQLAVAILSRVGRRPRDVLLANMLVATFASMWI SNVAAPVLCFSLVQPILRTLPPTHPFAKALVIGIALASNLGGMT S PI SS PQNI FAIERMS IGGDPPSWLTWFAVALPVAFFGNVLCWGLILIVYKPGLKIKEVRPLKPPEDPLSATQIYW WSLAT VALWCCNNLLSHITGEMGVLAILPLVAFFGFGVLSKDDFNGFLWNWMLAMGGLALGEAVK SSGLLLTIAQAIQSMVDGLDLW SVLAI FCALVLMATTFI SHTVGAMVILPIVQSVGQQMPGHHDKLLVMGAALMCSGAMGLPVSGFPNMNAVALEDPTG VNYVDT VDFLKVGVPGSVMVYWLIVSVGYVLMRAVGY

>Entransia_f imbriata . PTCI

MKFSHALKFNSVSEWKAFYIDYVHLKRFVYQLEAAAVTALPETPRLTSLSLVSTLGD VEAGEEASGPSPLVTDAAFVHALERE LEKIVTFYAKKEQELVSQIENAETQAREFEARQYTRSRRQGHGQSTMTAPEGGRRVGDEG AVDLREPLLGGKESSGLGSGAGP DSTAQRVWVWQQEDSGVRLAKERLRLQMTDLYVQLFGLQDYIDLNRTGFRKILKKHAKVT HHALQSEFMPRVNVGLDKKHEQQ QEAALARWQLYS IVCCNGSSELARLELKRHLRDHLVWERNTVWQDMVSKERRSASAHVYEEKTAWYLRCLRP LSLLLAVGVL VALLVVPVFPEAPKQNCLALLAFVSLLWCTETI PLYTTSMLVPLLAVVLRVLVDSKTGRRLSPQEAASAIFHTMFSEVIMLLL GGFAIASALSKYFIAKRLATTILSRVGQAPQNVLLASMLVASFLSMWISNVAAPVLCFSL VQPILRTLPSGHPYGRALVMGIA LASNLGGMASPIS SPQNIFAIEELSLLGDPPSWLQWFVIALPICLVGNIGCWALLLAAYAPHKQPNTIRPLKP TQDPITLSQV YWWSVVTVALWCANSWLRQYLGQMGWAVVPLVAFFGTGILTKDDFNNFLWNVVMLAMGGL ALGECVTS SGLLHS IAAS IQ ATVANLGPWQVAAVFCGLVLVATTFISHTVGAMVILPIVMTVGSAMPDPHPKLLVMASVL MCSGAMGLPVSGFPNMNAIALED GTGKTYLTTLDFLWVGI PS SLLAYGI I ITLGYGIM

>Golenkinia_longispicula . PTCI

MKFTHQLKFNCAPEWKDYYIHYSVLKKLI YQIGGDDIRESAGIGPAEQEPLLPVIDKDEKERQFESLLNTELTRILDFYTRTE RELFSQLEGLGLEIREYEEGRLPTTSEGLETELDGRRRFWS SHDLPKDLKAAKDSLAMKLEDLYEELNNLLEYITLNHTGFRK ILKKHDKVTQRELKSQYMPLVEAKLVHNKKERVQERIDQWHQYAVIVCNGHEGRALTELR KKLRDHLVFERQTVWQDMVAIE RRTAAAQVSNKAPEGGKGPRKWCQRLWSPLAIGASLLVLALLLRMSLFDEPAKQNCFAML VFCSMLWCSEAVPLFVTSMMVPF LVVVLRVLTDGTPERQRQTPNQAAGAI FHAMFSQTIMLLLGGFTIAAALSKHFIAKQLAAAILSRVGRKPATVLLTSMMVATF ASMWI SNVAAPVLCFSLMQTILRTLSPSHPFAKSLVLGIALASNIGGMTSPIASPQNIFAVERMS LHGS PPGWLSWFGVAI PV S ILSNLLVWAVILWYRPGRYIKEVRPLKAPEDPLTGTQMYVIGVSLLTWLWCCNS FLQKYTGEMGVLALLPMIAFFGFGIL NKDDFNGFLWNWMLAMGGLALGEAVKSSGLLAS IAQGIEELVQGMSLYQVSVVFGLMVLVCTTFISHTVGAMVILPIVQSVG ERMSDPHPNVLVMSAALLCSCAMGLPV

>Oedogonium_cardiacum. PTCI

EAI PLFVTSMLVPVLAVSLRVIVVDGRRLEPPDAASYLFGKMFSQVVMLLLGGFAIAAALSKH NIARKMAIAVLSRVGREPAH VLLATMMVATFLSMWISNVAAPVLCFSLVQPILRTLDTNHS FAKALVMGIALASNVGGMAS PI SS PQNI FAIQVMGSGGDKPP SWTQWFAVALPVSWCNMLIWALLLLVYQPHKHIKEVRPIRAIQDKYTLQQVMWLVSLVTV ALWCLNGVLEPYLGSMGVIAI LPLVAFFGFGILTKDDFNAFLWHWMLAMGGLAVGECVKSSHLLQTIAAEIQEMTVGWSMY AIVCMFCALVLCCTTFISHTVG AFVILPVLKSVGDEMARSGQPNHSKLLVMAAALMCSGAMGLPVSGFPFMNAVALEDQAGL NYVATIDFIKAGLLS SVFAYVI I ITLGYSLMFMIGF

>Cylindrocaps a_geminella . PTCI

MKYGTQLKLNMNPDWKDHYINYSMLKHMI YQISNKENQVPIDFEQGEPAEPLQPLLRWNSAPDLESTFVKAFEGELARVIEFY TQKEAELFAKCGTLGLKIHQMDGLSAPPSDS PVASQAEDERIAFWAHVPGHLVAQRDELRKEMEALYVALKDLES FRSLNFEG FRKALKKHDKETTTALMPQLMPVLQSKLS SSQTAI IQQRGDWLHLFAVWCHGDLQAARRDLDSRLQDEVLFERRS IWQDMV ATERLRGSAPQWPKDSGSAYGASLTGWFERNKQWTLLLLS FGAFAVLLNYPVFDDESKNNCLAMFVLLSLLWSTEALPLFVT SMLVPLLWILRVLVDNTQDPPVRLTPQDAAAS IFHSMFSQTILLLLGGFTIAAALTKHFLAKQLAVTILSRVGRKPEHVLLA NMLVATFLSMWISNVAS PVLCFSLVTPILRTLPTHHPFGKALVMGIALASNLGGMTS PI SS PQNLFAIERMGLDGHPPSWLAW FLVALPVSFLGNLICWGVLLAVYRPQQKIREVRQLKPSGDPITWKQVYVLVVSLTTVGLW CANTALQQYTGEMGVLAIVPLVA FFGFDILNKDDFNHFLWNVVMLAMGGLALGEAVKS SGLLLTIAEAIKELVIGFDLWTVLVI FCGLVLVGTTFI SHTVGAMVIL PIVQSVGDQLPGPPHAKLLVMGSALMCSGAMGLPVSGFPNMNAVALEDPTGLNYVATIDF LKVGVVCSFFTYGI IVTLGYGLM LLAGF

>Scherf f elia_dubia . PTCI

LNVTGFRKILKKHDKVTNKELKGDFLPIVASKLNPKKERVDQVLQELIGVYATIGCE GDVNAAAAQLQVNLRDQVEFERQAVW KDKIEEERKLANAKVVDKGKKAWYADYKKPFCLLLSAALIFGVLGSPLFPS SPPKRNCLAI FVGAAALWCTEAVPLYVTSMLI PAAVVTLRALEDADGVRMTATETADRVFSKMFSQTIMLLLGGFTMAAAITKHLIAKRMAF QVLCRVGRRPGNVLLASMFIALF S SMWI SNVASPVMCYGIVQPILRTLAPDDRFASALVMAIALAANVGGMTSPIASPQNIFAVERMA MDGNPPSWLAWFSVSMPV SMFCILVLWRI ILAVYRIGPHTAEVRPMRPLDDVFTMQHVFI ILI SVLTMGLWCANTWLLSVLGGMGITALLPMVAFFGSGIL NKLDFES FPWSWMLAMGGIVLGEAVKSSGLLGFIAQGIVGLVDGFTVWQVLMIFGAVIGVVTSFISH TVGAMVILPWQSVG EEMAKASGVAHYKLLVMGAALCCSGGMALPVSS FPNMTAASLTDPT

>Hafniomonas_reticulata . PTCI

TAGNAEKAEGELSAHLREQVQYERNTWRDMVANERTKTAESSKQVRTLSQS IVCIAIVAVVALIHANI FPDQPSKNNCLAML VFVS ILWASEAVPLFATSMMVPLLTVLLGIWVDPSQKPPKRLDHTAAASAVFSAMFNQVIMLLL GGFAIAAALSKHFIAKRVA VAILSRVGRKPHNI ILASMCVAAFMSMWI SNVAAPVLCFSLIAPILRTLDASHPFAKALVMGIALASNVGGMTSPIS SPQNLF AIERMSMPPSWLSWFAVALPVAGIS I ILCWLI ILIVYRPWTKVKEVRPLKQDDPITYTQAFWLVSVVTVGLWCAESQLESVF GQMGVIAILPMLAFFATGILNKDDFNGFLWNWMLAMGGLVLGGAVKNCGLLEDIANAIKN QVADLELFQVLVVFCLLVLFCT TFI SHTVGAIVILPIVQQVGESFPGTPHSKLLVMGAALMCSGAMGLPVSGFPNMNAVALEDAT GQTYVQTLDFLKVSVPCS IC A

>Tetras elmis_chui . PTCI

LLSAAVLWCTEAVPLYVTSMALI FAVVVLRAMLDGDGVRMSAQDTMKRVFSKI FSQTVMLLLGGFTMAAALSKHLIAKRLAIG VMSQVGRKPSNVLIASMAIALFS SMWI SNVAAPVLCFS IVQPILRTLPTDDPLGAALVMGIAMSSNIGGMTSPIASPQNIFAI ERMSLDGHPPSWITWFAVSMPVS ITCMLLVWRLLLAI YPVS SNQDVRPLRQLHDPFTFQHVYI I IVCL

>Volvox_globator . PTCI

LWSLEAI PLFVTSMALPLLIVVLGVLQDS PNTEKPATRLTPQQAATAIFHAMFSQTIMLLLGGFAIAAALSKHAIAKQVAVAI LSRVGRKPRWLLAAMFTATFASWISWAAPVLCFGLVQPILRTLDPGHQFAKSLVMGIALA SNVGGMTS PI SS PQNI FAIE RMSLDGQPPSWLSWFTVALPVS IAAFMLCWAILLVVYQPDRAIAEVRPIKPNTDPTNGTQVYI IVVALLTVSAWCANTFLQS Y TGEMGI IAILPLVAFFGFDVLNKDDFNSFLWWVMLAMGGLALGEAVKS SGLLAALASDISDLVLGLSLWQVTLI FCGLVLVA TTFISHTVGAMVILPIVQSVGERMIGTPHPKLLVMATALTCSGAMGLPVSGFPNMNAVSL EDATGNPIVSTKDFLMVGVPS S I AAYGI IVTLGYGLMLLVGF

>Volvox aureus-M1028 . PTCI MKFTHQLKFNSVPEWREHYIQYAHLKKYIYALAKREADLQAGGQLHDDELLTPLVPETSR QGFSEEGFQRELDAQLAS ILS FF AVKEAELLAKVSELELDVQSLEKIPNRQEAS SMSRISGNPSTTGYHS SS SPRGPVGLPSMSLMSVSPSTLDLARMVDSTPPED FRKVRVKFWENPPRHVFSPNLNTRRQKLLGRFQDLFIGLHDLREYLHINKEGFRKTIKKH DKLTRSVDLRVRWWPNVEVHLAP VAKQQELERAIAALTDHYAVLYMGGDLTKADEQLSRGLREHITVERNTVWRDMAAMERKY AAVSVKQATAPRDGGRQAHVRWA KLAACCLVFASLLLWGGPVENGQVNQPRNNCLALLVFASLLWSLEAVPLYVTSMALPFLI VAMGVLVDHPSDSKDPPRRLTPQ QAAPAIFHAMFSQTIMLLLGGFS IAAALSKHAIAKQVAVAILSRVGRKPRNVLLAAMFTATFASMWI SNVAAPVLCFGLIQPI LRTLDPGHPFAKSLVMGIALASNVGGMTS PI SS PQNI FAIERMSMDGQPPSWLSWFAVAIPVS ITCNFLCWALLLLVYQPGRA LGEVRPLKPNTDPINGTQVYI IVVSMLTVAAWCANTFLQRYTGEMGI IAIVPLVAFFGFDVLNKDDFNS FLWNWMLAMGGLS LGEAVKS SGLLAALTNS ISELVTGFTMFQVTLI FCGLVLLATTFI SHTVGAMVILPIVQSVGESMAGTPHPKLLVMASALMCS GAMGLPVSGFPNMNAVSLEDSTGNAIVSTKDFLYVGVPS SVMAYGI IVSLGYVLMLLVGM

>Ignatius_tetrasporus . PTCI

DMYSKLEDLVNFLELNREGFRKALKKHDKVTQRNLSPILLPEALEALNVQDNKNAIE ERKQDVVQCYATSQQKGEVLAATNVL KRQQREMVEFERSTVWREHMAVERQHAQATAKAVELTGWQHWWSSHRNLIWIAVAVAAFF IVLLVPMPI FDTVEQHNCAALLT MAGILWCFEALPLFATGMLVPFLWVLRVMRVADTPQHACTHDCRLSAPDAASAVFHSMMD QVIFLLLGGFTIAAALTKHNIA KQLASAGLASVRDAPGKLLFAAMNIATVS SLFI SNVAAPVLCFSLVQPILRTHKHDHPFSKALVIGIALASNIGGMTSPIS SP QNI FAIQKMDEDGRAPSWLVWFAVALPVAFACNAACFTVIWHFYKPYKTRTAIRLPKLTDKLN STQVFVIVVSLLTVGLWCAN AQLEKYFGKMGI IAILPWLFYGSGVLNKDDLNNYLWNVWLAMGGLALGEAVKS SGLLHVIANLLADAVGSLDLWLVLIVFC GFVLIGTTFISHTVGAMI ILPILQTVGKNLPGAPHPQLLVMGAALMCSGAMGLSVSGFPNMTAAAQQASTGEHYINSA DFLQV GIPCSVITYGI IVTLGYGLMLAVGL

>Gonium_pectorale . PTCI

MKFTHQLKFNSVPEWREHYIQYAHLKKYI YALAKKEADLQAGAPTIEEGPLAPLLQDARATQGPSEEGFQRELDAQLAALLAF FAVKEADLLAKVSGLELDVQSLEKI PGRREASTLSRLGITGGPCS SSDAIAPGAAVGATVAPLTTLTMDAS PSTLDLARMVTC TPPQDHRKVRVKYWENPPRSTFS PNLNSRKMKLQGRFQDLYIGLHDLRQFLI INKEGFRKI IKKHDKLTRMVDLRDCWWPNVE AHLAPTTKQQELDRAIADI SDHYAVVYTGGDVAKAEEQLSRGLREHITFERNTVWRDMAAMERKYAAVSVKQAAPPGGA KASR LRDYLQWTKLALSCAVFAILLNVDVWPGPQNGPRNNCLALLVFASLLWSLEAVPLFVTSM AIPFLWTLEVLTDGTKDPPQRL T PQQAAS WFHAMFS QTVMLLLGGFS IAAAL S KHAIAKQVAVT I L S RVGRRPRNVLLAAMFTATFASMWI S NVAAPVLC FGLV QPILRTLNPGHPFAKALVMGIALASNVGGMTSPIS SPQNIFAIERMSMDGHPPSWLSWFAVALPVS 11 INLVCWALLLLVYQP ERYITEVRRVKPNTDPVNGTQVYIVIVSLLTWCWCGNSYLQRYTGEMGI IAIVPLVAFFGFGVLNKDDFNSFLWNVVMLAMG GLS LGEAVKS S GLLAALALDI SNLVTGLS LWQVAAVFFGMVLVATTFI SHTVGAMVI LP IVQSVGEAMAS PTHPKLLVMGAAL MCSGAMGLPVSGFPNMNAVSLEDSTGNAIVSTKDFLLVGVPSS FFAYLVIVTLGYVLMLLVGL

>Planophila_terrestris . PTCI

MKFSHSLKFNSVAEWRQHYINYGALKKLS YAIEKQEEEGRQREMFAQQSMDLRQRSMRQSVDLPRGAVEEDEARRRASLDASS S FTGSVQQPLLQRLS SGLGGSLRLSMLERSAEEGGKVSQADFQRSLDSELHKIVDFYITKEAELKKELAAAELDA RAAEAS SA GSSGFAEMQAERLPRPS FWRTAASDALKAKMHERLCSLYVQLVDLLNFIELNRTGFRKILKKHDKVTDVSLMTDYMP WTSKL S SKREEDLGAMINEVIKLHAMVMHNSDTNASEVDLKRNLRDHVTYERDTIWRDMVALERRN ITVKVPEGAPTGGFAKWWQIYH TPVMVAAALLLFFVILNIDIWPNDTPKRRCAAMLALLVTLWTSEALPLYVTSMLVPLLTV LLRILPDEAAPDGHPQQLPAPKA AEAVFKVMFSQVIMLLLGGFAIAGALSKHYIAKAMASNILSRVGTRPRDVILANMFVATF ASMWI SNVAAPVLCFSLIQPILR TLPSHHPVSKCLVMGIALASNVGGMTS PI SS PQNI FAIELMARDGAAPNWLTWFVVS IPVS IASNLFIWAILLAVYRPGLAIR EVRHMRRVQEPITKVQVYVVAVS SLTVALWCAS SALEQYLGSQGI IAIFPLVMFFGLGVLDKDDFNNFLWHWMLAQGGLVLG LAVKGSGLLADVAGAIRGVTAGMSLFGILFTFCALVLVCTTFI SHTVGAMVILPIVRSVGQHLSPTPHPRLLVMGAALACSGA MGLPVSGFPNMNAVSLEDATGKTYVNTLDFLMVGLLGSLTTFCVIVTLGYALMM

>Pteromonas_angulosa . PTCI

MKFTHQLKFNSVPEWRDNYIDYAHLKKFI FAIARAEQDDIQQLHGGADGTSMPLLQHTVTMGHDKVDATEDNLRQALDKELQR VIS FYMTKEAETLAKVTSMELEINTLEMTRAPRGTSMDHMQGAQRGGSGGSGGSGGGVDLNQQ LPSPPQGLATDVEATPPAAH VSASMAAPKSPGTMSRQMRVDFWARANPGARHGGS FGGGSAAFLFVRELQSHKERLRWFSDLYLQLHDLLNFLRVNKEGFRK I IKKHDKMTSSNLKEHYWPVLESKYPIVRADMLEATINSLVDLYAVI YNQGSVELAKDHLDKLLRDQIKVERNTVWRDMVAQE RRTTAAVVEGAVRRPWWAQLTPHIALLSSVLVFAVLLSMEDIFEGEPEKQNCLALLI FVSMLWATEAVPLYVTSLAI PLLVW LKVLMDKSVDPPVRMTAQQAAPAIFHSMMSQVILLLLGGSAIASALTKHFIAKKLAQWLS RAGRQPHNVLLALMLVAVVASM FISNVAAPVLCWSLVDPILKAFDAENPFSKSLVMGIALASNIGGMTS PI SS PQNI FAIERMSMDGHPPSWLAWFAVALPVS FI CILVCWGLILAVYRPWTKVAEVRPLKPSSDKVTFTQFYVVAVTAVTVTLWCFNTQLQPYT GEMGVVATI PI IAFFGFGVLNKD DFLSS PWLVMTLAMGGLGLGEAVKS SGLLLS IAHTIGDVVQGMDVFTVCCI FCALVLVCTS FI SHTVGAMI ILPIVQSVGEQM PGPHHAKLLVMSSALMCSGAMGLPVSGFPNMFLISKDDGTGKNYINTLDFIKVGVPGS IGAYFVIVSVGYLLMLAV

>Asteromonas_gracilis . PTCI

MKFSHQLKFNSVADWKEHYIHYANLKKI IYEIARLEQARANPDAGEVTELGEPLLSRPPVQNYELAI STKESEFVGELDRELA HI ITFILRKEAELVSQLEALDLEVHSLESADPQYRKSLDRDFLDQDAAVGAENGTGYQAGI PARPERIKFWSQGAEPHLAARD ARNVAQLKPAQREALSQKFVDLFTTLNDLLEYLVLNREGFRKLIKKHDKMTSSASMKES YWPLIEQRYPEHKRVSMGQNIERL VDLYAILFEGGDTSSAREALSQNLRQHIKVERNTVWRDMVAMERRTVAATVDAPKRKRAW FSTHRKHLSLLLAS IVFASMLSL KLFKEPEKSNCAAILVFVSLLWASEAI PLFVTAMVVPVLWSLRVLVDDSSAKHPIRLS STDAANAI FHAMFSQVTMLLLGGF TIAAALSKHFIAKQMAVAVLSRVGRLPRNVLLASMCVAAFASMWT SNVAAPVLCFSLVQPILRTLDVSS PFAKSLVMGIALAS NIGGMTS PI SS PQNI FAIERMSMDGVAPSWLSWFAVALPVS FI S I ILCWLLLLLVYRPGMSTTEVRPLKPYTDPMNMTQVYVI VVSMVTVLLWCANSEVQQFVGNMGVVAVLPMIAFFGFGVLSKDDFNGFLWNWMLAMGGSA LGEAVKSSGLLSTFANDI SGQV HGLDLWTVSAI FCGVVLICATFI SHTVAAWILPIVQSVGEAMQENPHPKLLVMATALTCSAAMGLPVSGFPNMNAVSLEDGT

GQTFVNTLDFLKVGVPS SVATYFVI ISAGYYFM

>Haematococcus_pluvialis-B . PTCI

RVRFWAELGMRRGGRDLRFARDVMRIRFHDLYTSLNDLIEYLSLNREGFRKLIKKHD KLTSTCLKEAYWPDFERRYPMKRKEE LERHLDRLIELYAVMFAGGDTRKARDLLLKTLREHIKVERNTVWRDMVALERRTVAATVG AASGVARLSKYKAYSERLGLLAA LLVFAALLWAPVFEEKEKSNCLAILVLASMLWATEAI PLFATAMLIPVLVVMLRVLVDHGRPAGAQRLTPQEAAPLI FHAMFS QVIMLLLGGFTIAAALSKHFIAKQMAVAVLSRVGRKPHNVLLASMFVAI FASMWI SNVAAPVLCFSLVQPILRTLDVNTPFAK SLVMGIALASNIGGMTS PI SS PQNI FAIERMSMDGNPPSWLSWFFVALPVAI I SNFICWAAILLVYQPWHKTSEVRPIKPS SD PVTWTQVYVI FVS LATVGLWCGNVALQKYTGEMGVVAVLPMVAFFGFGVLNKDDFNGFLWNWMLAMGGSALGE AVKS S GLLL TIAQGIQEMVDGLNLWTVTI I FCACVLVCTTFI SHTVGAWILPIVQSVGESMPGQPHPKLLVMSAALMCSGAMGLPVSGFPN MNAVSLEDSTGQTYVGALDFIKVGVPS S ILAYAVI ITVGYSLMLI IGF

>Chlamydomonas_bilatus . PTCI

QTIMLLLGGFAIAGALSKHFIAKQLAIAVLSRVGRKPHNVLLAAMFVATFASMWI SNVAAPVLCFS I IMPILKTLDTAS SFAK SMVMGIALASNVGGMTS PI SS PQNI FAIERMSMDGQPPSWLAWFAVALPVATLCNLLCWLLILAVYQPWRTINDVRPLKPNTD PMNFTQAYVI FI S LATVGLWCANTS LQQYTGEMGVVAVLPLVAFFGS GVLS KDDFNGFLWNWMLAMGGLALGEAVKS S GLLQ SMAEGITEVTDGMDLYQVLLVFCLMVLISTTFI SHTVGAWILPIVQSVGEAMPGSPHPKLLVMASALMCSGAMGLPVSGFPN MNAVSLEDSTGQNYVDTLDFLKVGVPGSVLAYGVIVTLGYNLMLMVRF

>Vitreochlamys_sp . PTCI

MKFSSLLKFNCVPEWRDHYVQYGHLKKYIYALAKWEADHLHETQPPDLESLTS PLLPTSGLGSAYGPSEEAFQRELDQSLLEV IRFFSMKEAELVSKCQALLLELVSVEKLPSGSSAGRRSFSGASTPSGAATPTS SAPHGSTANVLAGAKSRLTASPQTSPHVTL SGAKGAGGLGGMHLS PSWHLMDVANHKDHRTVRVEFWRKPPRRLFQNLEAARSKLKPRLQELYIALHDLAEFLHL NREGLRK VVKKHDKLTRRVTLKTKWPQVEHLIPPTKKEEVDRAVSELVDNYAVLFTGGSMAAAEQAL SQGLRDYVTMERNTVWRDMAAM ERRFASLAVKKGSAS FIATWWTQPLKIAVSLLVLSVLLNVTIWPEDEKNNCLAVLLFASMMWSLEAI PLFVTSMTIPFLWCF QLLVDHSQDPPVRMTAQQAAPAI FHAMFSQVIMLLLGGFAIAAALSKHAIAKQISVAVLSRVGRKPRNVLLASMFVATFASMW I SNVAAPVLCFGLIQPILRTLDPGHPFAKCLVMGIALASNVGGMTSPIS SPQNIFAIERMSVDGKAPSWLSWFAVALPVS IVS NLICWAVLLLVYRPWTKIQEVRPIKPITDPINGTQVYI IWSVVTVALWCSNTILQPYTGEMG

>Botryococcus_terribilis . PTCI

MKFSQQI I FNS VPEWKDNYI S YAQLKRLI YS EEAARLAAGRDGARGASMRLQRLRKTAMQFKDDLKKEADKWRFFHEEVES I WSRFHLVLHEIECFEQQEWLPPSAAGLDTSPTS PLLSATSMPATPKTPPMPSPRS SPFQRAGSAGMGLLRTVTGILPRPKRSP RTLSGPLLEVEDGTPRDDSKTWIWQQAEPS IARKRDELRGQLSEVYQDANNMIEFRRLNLDGFRKILKKYDKVLEGLPGAEKL SESQFPGIKERLEALDLTRMQEVEGEVVRLYARVCCSGVYAVAEELLKKQKKDRIVFDRS TVWKEMVERERKRSAAHVEGGAA PRAWYQRHWQLMACAFCGAVFLALLWVPI FEEVEKQHCAALLAFVSLLWCTEALPLFATAMLVPFLVVTLGVLVDRSVDPPHR LTPQEAAPAVFKTMMSQVIMLLLAS FAIAGALSKHFIAKWLASVFLSRFGKRPSRVLLANMGVATFASMWI SNVAAPVLCFSL LQPILRNLSAKDS FAKALVLGIALASNLGGMTS PIAS PQNLFAIQQMSVGGNAPSWLQWWLVALPVAI IGNLVCWGLLLWRYQ PPPDDVRELHEAKGFHINPTQMYWAVSLLTVGLWCCNGYLTPYFGEMGVIAI IPLVAFFGTGVLDKDDFNAFLWNVVILAMG GMALGSAVDSSGLLLTIAKKLEGLVSSHGPWVLAIFCALVLFATTFVSHTVGAIVILPIV RAVGETMTDPHPKMLVMGAALM CSGAMGLPVSGFPNMNAISLEDKTGVNYLTTKDFLLVGVPS SVATWGI IVSVGYVLM

>Eudorina_elegans . PTCI

MKFTHTLKFNAADSWREHYIQYAHLKKYI YALAKREADLQAGGHVPDDESLHAPLVPETSRSGQGVSEEGFQRELDAQLAAIL S FFAVKEAELLAKVSELELDLQSLEKI PNRQEASTMSRLGGGGGAAGSNPTGS PGTAAVAAVSAVLPSLS ILSVS PSTLDLAR MVNSTPPEEHRKVRVKFWENPPRHVFLPSLHARRTKLQGRFQDLYIGLHDLREYLHINKE GFRKI IKKHDKLTRAVDLRVRWW PWEAHLAPDAKQQELDRAIAALTDHYAVLYMGGDVAKADEQLSHGLREHITVERNTVWRD MAAMERKYAAVSVKQAAAPGGL RGS YRKLAACCAVFAVMLHVKWGEDEDEPKNNCLALLAFASLLWSLEAVPLFVTSMALPLLIW TGVLVGPDKQPLTPQQAA PAI FHAMFS QT IMLLLGGFAI AAAL S KHAIAKQVAVAI L S RVGRKPRNVLLAAMFTATFASMWT S NVAAPVLC FGL I QP I LRT LDPGHPFAKSLVMGIALASNVGGMTSPIS SPQNIFAIECMS FDGHPPSWLSWFAVALPVS ITCNFACWAVLLLVYQPGRAIAE VRPIKPNTDPINGTQVYI IWSLLTVAAWCANTFLQRYTGEMGVIAILPLVAFFGFDVLNKDDFNSFLWNVVMLAMGGL SLGE AVKSSGLLAALASDI SGWKDLTLFQVAVIFCGWLVATTFISHTVGAMVILPIVQTVGKAMEGTPHPKLLVMAAAL MCSGAM GLPVSGFPNMNAVSLEDSTGNAIVSTQDFLYVGVPSS I IAYGI IVTLGYVLMLLVGL

>Pandorina_morum. PTCI

MKFTHQLKFNSVPEWREHYIQYAHLKKYIYALAKREADLQAGGDEDGLLSPLVPETS RAGQGVSEEGFQRELDAQLAS ILS FF AVKEAELLAKVSELELDVQSLEKIPSRQEASVSLSRLGAGGGSGGGNPTSS PGSAAVSAVSAVLPSLSLLSVS PSTLDLARMV S STPPEEHRKVRVKFWENPPRHVFS PNLHARRAKLQGRFQDLYIGLHDLREYLHINKEGFRKI IKKHDKLTRAVDLRARWWPN VEAHLAPDAKQQELDRAIAALTDHYAVLYTGGDVEKAEEQLSRGLREHITVERNTVWRDM AAMERKYAAVSVKQAAAPGLLRF SANRAHVRWAKLALCCVVFAILLNVDFYKENDMEPPDVQRAKNKCLALLVFASMLWSLEA VPLFVTSMALPFLIVMLGVLMDS DGKERLQPKSAAPAI FHAMFSQTVMLLLGGFAIAAALSKHAIAKQVAAAILSRVGRKPRNVLLAAMFTATFASMW ISNVAAPV LCFGLIQPILRTLDPGHPFAKSLVMGIALASNVGGMTSPIS SPQNIFAIEEMSKGANPPSWLSWFAVALPVS IACNLICWAVL LLAYRPGHVISEVRPIKPNTDPINGTQVYI IWSLLTVAAWCSNTFLQRYIGEMGVIAIVPLVAFFGFDVLNKDDFNSFLWNV VMLAMGGMSLGEAVKSSGLLSALATDI SNLVLHLS IFQITVIFCGMVLVATTFISHTVGAMVILPIVWSVGEKIKGDDPASQS HSKLLVMAAALMCSGAMGLPVSGFPMYINAVSLEDSTGNPIVNTQDFIYVGVPS S I FAYGVIVTLGYVLMSLVGF

>Oedogonium_f oveolatum. PTCI VKFTHYLKFNSVPEWRGQYLAYGLLKKLIYKQEKLLALSRAAPHPESVDIEHEEPTVETP FLQVPSTPPSQLDLS PRRS FDRS FLSGKLS PRSASTTGNPEIEFVRLLGSERTRLNEFIASKYTELTGQLSNVTEVMRVKEMEGGLPHSD PNPYSLAAHRVAFWSQ APMQKAREQLI PQLVELCVFLTGLKDYVEMNKEGFRKILKKWDKVNEARLSEQEMPLVEQTLDVGRRLQDL DEAIGHVMSLYA LLTSKGNMDLAWRSMKEHQSEHIRFQRSTVWHDLIALERRTLTATAVRPVDEVMGWWAVN RKHFMIVASLMVFLLLLEAKTFE GDEAAPQRNCLALLVFVSCLWATEAIPLFVTSMLVPLLAVSLRWWDGKRLEPPDAATFMF GKMFSQVIMLLLGGFAIAAAL SKHNIARKMAI SVLSRVGRAPGRVLLATMMVATFLSMWI SNVAAPVLCFSLVQPILRTLDTNHQFAKALVMGIALASNVGGMT S PI SS PQNI FAIQVMSGGGHS PPSWTQWFWALPVSAVCNVLIWGLLLAVYQPHKHIKEVRPIRALQDAFTLQQVWVLVSLL TVTLWCLNGMLEPYLGSMGVIAILPLVAFFGFGILTKDDFNAFLWNVVMLAMGGLAVGEC VKS SHLLQS IARGIQDTTAGWSL YCVLAMFCALVLCCTTFI SHTVGAFVI LPVLQS VGDEMAAAGQPNHS KLLVMAAALMCS GAMGLPVS GFPNMNAVALEDQAGF NYVATIDFIKVGLLS SGFAYVVI ISLGYLLMLMVGF

>Chlamydomonas_sp . -M2762 . PTCI

PARRLDKLDAAIAKLVDLHAVI YLAGDATKAKDQLSRVLRDVERNTVWRDMVAMERRAVSATVEGTKRPPWWKGYTEHMGLV L SVAVFAVLLSVEI FDEEEKNNCLALLAFVSMLWATEAIPLFATSMLVPPLVVILRVLVDRTKDPPVRLTAQQA APTI FHAMFS QTIMLLLGGFAIAAALSKHFIA

>Chlamydomonas_noctigama . PTCI

MKFTHQLKFNTVPEWRDHYIHYAALKKI IYAIAKAEADEHQHPAGHDDEHLGVALLDKVEATEEYLIKSLDKELAEVIKFYMA KEAEILGKLEQLDLEVHSLEQRSALGTTLRSTSMPLPSDAVPVILEEDDLSRTESVRASR TEFWRTNSRSLKPTSRALIKDSG KMKQRI IDLYS SLHDLADFLNFNKEGFRKILKKHDKVTS SNLKDRYWRVVEDKYPSKKAEVLEQAMDRLTDQFAVLYLQGDTV KAKDTLGRVLREQIKVERNTVWKDMVAMERRTVAAVIKPGAAEPKKVSFFAKHHSRIMLL LSVWFASLLSVEIFPEPEKQNC LAMLVFVSLLWATEAIPLYATSMLVPPLVVLLKVLVDRSHEEPIRMTAQQAAPTI FHAMFSQTIMLLLGGFAIAAALSKHFIA KQLAIAVMSRVGRKPHNVLLASMFVATFASMWI SNVAAPVLTFS IVMPILKTLETSSAFAKSMVMGIALASNIGGMTSPIS SP QNI FAIERMSMDGQPPSWLSWFAVSLPVS SVCI ILCWLLILAVYQPWRSVSDVRPLKPNTDPMNMTQVFVIVI SMATVGLWCA NTALQSYTGEMGVVAMLPLVAFFGFGVLSKDDFNGFLWNVVMLAMGGLALGEAVKSSGLL QS IAEAIKEVTDGYDLYQVLLVF CVMILVCTTFI SHTVGAMVILPIVQKVGEDMPGPHPKLLVMAAALMCSGAMGLPVSGFPNMQAVSLEDSTG QNYVDTLDFLKV GVPGSVLAYLVIVSLGYTLMLLVRF

>Carteria_crucif era . PTCI

QVYVIWSVVTWLWCLNSALQNVTGEMGVIAI IPMVAFFGTGVLSKDDFNGFLWNVVMLAMGGLAMGEAVKS SGLLAAIAEG IKELVAGMDLWEVLAIFCSLILVCTTFISHTVGAMVILPIVQSVGEMALGHPHPRLLVMG SALMCSGAMGLPVSGFPNMNAVA L ED S T GVNYVS TVD FLWVG I P S S I FAYW I VTVGYFLMLMVRF

>Volvox_aureus-M2242 . PTCI

CLALLVFASLLWSLEAVPLYVTSMALPFLIVAMGVLVDHPNDSKDPPKRLTPQQAAP AI FHAMFSQTIMLLLGGFS I SAALSK HAIAKQVAVAILSRVGRKPRNVLLAAMFTATFASMWI SNVAAPVLCFGLIQPILRTLDPGHPFAKSLVMGIALASNVGGMTSP I SS PQNI FAIERMSMDGQPPSWLSWFAVAIPVS ITCNFLCWALLLLVYQPGRALGEVRPLKPNTDPINGTQVYI IWSMLTVA AWCANTFLQRYTGEMGI IAIVPLVAFFGFDVLNKDDFNS FLWNVVMLAMGGLSLGEAVKSSGLLAALTNS I SELVTGFTMFQV TLI FCGLVLLATTFI SHTVGAMVILPIVQSVGESMAGTPHPKLLVMASALMCSGAMGLPVSGFPNMNAVSLEDST GNAIVSTK DFL YVGVPS SVMAYGI TVS LGYVLMLLVGM

>Phacotus_lenticularis . PTCI

MKFTHQLKFNSVPEWRDQYVDYAHLKRFI YAIARAEQDDIQQLHEVHDTTMPLLPHTVTMGHDKVEATEENLRQALDKELQRV I SFYMAKEADILAKVTALELGIHALEKLPARGVSLELDPTRQGSQVAAGGVAGGGAPPGGR HVPLLQGAPSVTREGSGGIAHS I SPQQSS SS PQLGGPGSGRTAGTGGSQSASPQPSGAMHGGDLEAPLQGGDHTGKTSPHWSRAARVEFWG RAQPAHRFTGGASF SAASFSGPFVRDMQAHKERLRPQFSDLYLSLHDLLGFLRLNKEGFRKI IKKHDKMTS SNLREQYWPLLEAKYPIQRAELLEAT IASLVDHYAVIYLGGDVGTSKAHLDKVLRDQIQVERNTVWRDMVAQERRTTAAWATTYKQ KVWAKVTPHIALVS SVAVFALL LSVEDLFPEAPEKQNCLALLI FVSMLWATEAVPLYVTSLAI PLLAVTLRVLVDKTTDPPQRMPAQQAAPAI FHSMCSQVILLL LGGSAIASALTKHFIAKKLAQWLAQAGRQPHNVLLALMLVATVASMFI SNVAAPVLCWSLVEPILKSFDADNPFSKSLVMGI ALASNIGGMTS PI SS PQNI FAIERMGMDGHPPSWLSWFAVALPVS FICILVCWGLILGVYR PWSKVAELRPLKAS AD KVTFTQ I YVVLVTWTVGLWCCNTMLQPYTGEMGIVATI PI IAFFGFGVLNKDDFLS SPWLVMTLAMGGLALGEAVKSSGLLLS IAHS I GDLVQDLDLFTVCVI FCGLVLVCAS FI SHTVGAMI ILPIVQSVGEQMPGPHHSKLLVMASALMCSGAMGLPVSGFPNMFLI SK DDGTGKNYVNTLDFIKVGVPGSVGAFFVIATVGYVLMLMV

>Stephanosphaera_pluvialis . PTCI

RRQRVRFWASLDTRAELRDLRLVRGMMRYRFNDIYTTLNDLMEYIMLNREGLRKVVK KHDKLTTTVALKES YWPTVDQQLALS KRDAMAQQIEQLVDLYAVMFTAGDVDAAKELLSKNLREHIKVERNTVWRDMVALERRTVA ATVQQTTGKAAAKLQRYREPLCL LLSLAAFFALLRAAPFAEPEKNQCLALLALCSLLWATEAVPLFATALAI PPLVWMRVLVDRSDPAAPHRLTPQQAAPAIFHA MFSQVIMLLLGGFAIAAALSKHFIAKQMAVAVLSRVGRKPHNVLLAAMFVATFASMWTSN VAAPVLCFSLVQPILRTMDVTTP FAKSLVMGIALASNIGGMTSPIS SPQNIFAIERMGMDGHPPSWLAWFAVALPVAI ISNLLAWGLLLLVYRPWTHTTEVRPLKP S SDPINLTQVYVCLVSLATVGLWCANTALQKYTGEMGWAVLPLVAFFGFGVLNKDDFNGFL WNVVMLAMGGSALGEAVKS SG LLVS IAES IRQLVAGMDLWVTVVFCLAVLFCTTFISHTVGAMVILPIVQSVGEAMPGPPHSKLLVMAS ALMCSGAMGLPVSG FPNMNAVSLEDATGQTYVSASDFIAVGVPSSVAAYAVIVTVGYSLMLLVGF

>Chlamydomonas_eustigma . PTCI

MKFTHQIKFNSVPEWRDHYIDYAHLKKI I YAIAKAEADEQQQHHLDEEHPLLTRQQTAHGEKVEATEEALIQALDKELAKI IK FIMAKEAETLGKLAQLDLEVHSLEAQRVGSMFTPPIVNRFTSLQDAGNTRLGGSLPDPQK DGFETLGLADRRPSEVMEEAVRP DLEGGIGSNSFRASRVHFWHSNSLPATTRTGARVLAKDSAKMKPRITDLFVVLHDLKNYL SLNKEGFRKILKKHDKMTS SNLK SRYWCI IEEQYPSKKEEGIMQAINKLVDLYAVLFLKGDFEKAS SVLNRVLGEQIKVERNTVWRDMVAMERKTVNAAVHKPQGV ATRVTWLQQNMKHILLMLAVLTFATLLTVQTFEEPEKNNCLAMLVFVSMLWATEAIPLFA TSMLVPPLVVILRVMVDHTKS PP ERMPAKDAAPAIFHSMFSQAIMLLLGGFAIAAALSKHYIAKQLAI SVMSRVGRKPQFVILAAMCVAAFVSMFI SNVAAPVLTY S I VMPILKTLDTGCPFGKAL VMGIALASNVGGMTS PI SS PQNI FAIQLMSNDSNPPSWLAWFAISLPVSALCVLMCWSLILIV YQPWRRVAEVRPLKPSTDPINGTQVYVI I ISLATVALWCANTVLTPYTGEMGVVAVLPLVAFFGFGVLSKEDFNGFLWNVIML AMGGMAVGEAVKS SGLLHS IALGIQDLTSGLDLFQVMI I FCLLVLICTTFI SHTVGAMVILPIVQSVGESMPGTAHPKLLVMA TVLMC S GAMGL P I S GFPNMQAVS LDDGMGQNYVS T I D FLMVGVPS S VLAYFVI VS VGYS LMLLVRF

>Chlamydomonas_incerta . PTCI

MKFTHQLKFNSVPEWREHYIQYGHLKKYIYALAKREADLQAGGQEEEALLAPLLLEA GRDQGPTEEGFQQELDAQLAATLS FF AVKEADLLAKVSALELDIQSLEKIPNRAEASTLARMGMGMGGSAS PGGPMS SPRAAAAAAMSAVASLVSHS PSTLDLARMVNS TPPEDHRKVRVKFWENPPRHLFSTNLSARRAKLQARFQDLYISLHDLREFLHINKEGFRK I IKKHDKLTRAVDLRARWWPNVE AHLAPAAKQAELDGAIAALTDHYAVLYTRGDVAQAEEQLSRGLREHITVERNTVWRDMAA MERKYAAVSVKQAAAPGARVTWL RTHARWLKLALSVAVLVVLANVEVWPGPENEPRNNCLALLVFASLLWSLEAVPLFVTSMA LPLLIVAMGVLVDRSKDPPQRMS PQQAAPAIFHAMFSQTIMLLLGGFS lAAALSKHAIAKQVAVAILSRVGRKPRHVLLAAMFTATFASMWI SNVAAPVLCFGLIQ PILRTLDPGHPFAKAL VMGIALASNVGGMTS PI SS PQNI FAIERMSLDGSPPSWLAWFAVALPVAVAANFVCWGLLLLCYQPD KAIAEVRPIKPNTDPINGTQVYI IVVSLLTVAAWCANTFLQRYTGEMGVIAWPLVAFFGFDVLNKDDFNS FLWNWMLAMGG LSLGEAVKS SGLLAALALTISDLVTGLSLWQVATI FCGMVLVATTFI SHTVGAMVILPIVQSVGEAMPGTPHPKLLVMAAALM CSGAMGLPVSGFPNMNAVSLEDSTGNAIVGTGDFLAVGVPS SVFAYGI IVSLGYLLMLAVGF

>Chlamydomonas_schloess eri . PTCI

MKFTHQLKFNSVPEWREHYIQYGHLKKYIYALAKKEADLQAGGHDDEEALLAPLLEA GRDQGPTEEGFQRELDAQLAATLS FF AVKEADLLAKVSALELDIQSLEKIPNRAEASTLARMGGPGSAMAS PGGGGPMASPRAAAAAAMSAVASLVSHS PSTLDLARLV NNTPPEDHRKIRVKFWENPPRHLFSTNLSTRRAKLQARFQDLYISLHDLREFLHINKEGF RKI IKKHDKLTRAVDLRARWWPN VEAHLAPAAKQAELDGAIAQLTDHYAVLYTRGDVAQAEEQLSRGLREHITVERNTVWRDM AAMERKYAAVSVKQAAAPGARVT WLRTHARWLKLAGAVLVFLVLANVQVWPGAENEPRNNCLALLVFASLLWSLEAVPLFVTS MALPLLIVALGVLVDHTKDPPQR MTPQQAAPAIFHAMFSQTIMLLLGGFS IAAALSKHAIAKQVAVAILSRVGRKPRNVLLAAMFTATFASMWI SNVAAPVLCFGL IQPILRTLDPGHPFAKAL VMGIALASNVGGMTS PI SS PQNI FAIERMSLDGRPPSWLAWFAVALPVAVACNFVCWGLLLLCYQ PGKAIAEVRPIKPNTDPINGTQVYI IVVSLLTVAAWCANTFLQREVHKS I YATTGEMGVIAWPLVAFFGFDVLNKDDFNS FL WNVVMLAMGGLSLGEAVKS SGLLAALALS ISDLVTGLSLWQVATI FCGMSAAKLWSPPGGRSNQPGPRQQPQKGYCWYNNAGP SGLTNH

>Chromochloris_zof ingiens is . PTCI

MKFSQTLKFNRRPDWEIHYINYAHLKRLITKVQQAEFAEQNNLPLHFGDEEAGVRSP LLSQTS FNRQQSVSAALTRQQS FTIS AAQCDEAFIKALDSELARI IQFYMRKESELLARFESAALRIHS IEGPALPGPAALDTAQRIQFWSQDTKEIALEREKLRSEMT DLYEQLHALSKYLELNFTGFRKILKKHDKMTSQNQYKDS YMPIVEAKLPLKNREMISGVINNLVEMYAVVCTRGDVNRAQAEL KRKLKDEVAFERSTVWRDMVAMERRGASVAVHEAS SLADQPKKPRWWQAHRQLLLVTLCVTVFAVLLSVPI FQQPEKQNCLAL LAFVSLLWCTEAI PLFVTS ILVPLLIVVLRVLVDRSADPPRRLPPQEAAPAVFHVMFSQVIMLLLGGFAIAAALSKHFI AKQL AVAILSRVGRKPQYVLLANMLVATFASMWISNVAAPVLCFSLVQPILRTLS PSHAFAKSLVIGIALASNLGGMTS PI SS PQNI FAIERMSMDGNPPSWLSWFAVALPVSVLGNLLCWGLILLVYNPGATIKEVRPVKPPEDPL NGTQI YVILVSVATVGLWCFNSF IQHVTGEMGVLAILPLVAFFGFGVLDKDDFNGFLWNVVMLAMGGLALGEAVKS SGLLLTIATGIQDFVAGLGLWSVLAVFCFL VLICTTFISHTVGAMI ILPIVQSVGETMSGTPHPKLLVMGSALMCSGAMGLPVSGFPNMNAVALEDPTGQNYVNTI DFLKVGV PGS IMAYGVIVSLGYVLMIAVGM

>Coccomyxa_subellipsoidea . PTCI

MKFGAERAGHALLSWLTAAWLWLLQAWEVVAEWGRQCWGALLHAWHYIASAVMQAVH WQTENRIADLGRIPEEVGGDLDRTIS LALEEGGDDIKGAFDSELNRITTFHKKKEEELLGAVDKLGEEVSSAVEPSAQQSAPDAS SPLLGTSRNAEALYWGQDTVAVRI AREQLRETFQELYVEIQGLIDFVEVNRTGFRKALKKHDKVLGALGHPKMQPTYMPNVEAA FPEKNRLRVSEAQKQLVELYAW CCHNNLLLAQLELKAQLRSQLKLERTTVWKDMVEKERKENAATVDDSGAESKPWYRS SLFMIALSCVVFAVLLSVPI FEERAK QNCLALLGFASMLWCTEALPLYVTSMLVPLLAVVLRVMVDDSGKHPVRKSAPDAADAIFK AMFSQAS SQLFIS PHCTIERHVD GLPSYPTTIMLLLGGFAIASAFTKHFIAKRVAVWVLGKVSAKPHAVLIANMFVATFASMW TTNVAAPVLCFSVLDPILRTLPS GHS FGKALVLGIALASNLGGMTS PI S S PQNI FAIQEMGRDGEPPSWLAWFAVALPVACVGNFACWGFLLLAYRPGRTLKEVRR MPFSSDPFTWKQI YVWISLGTVGLWCANTALSKFTGQMGIVAIVPMVAFFGFGLLSKDDFNNQLWNWMLAMGG SALGEAVK S SGLLSS IAHS IEDVVAGMGVWAVFAI FCALVLVATTFI SHTVGAMVILPIVSAVGAQMEEPHPRLLVMGAALMCSGAMGLPV SGFPNMTAYAKEDPTGNPWLSTIDFFKVGVPCSLATYGLIVTVGYGIMKFVLGW

>Coccomyxa_subellipsoidea . PTC 2 /homologue

MKFGAERAGHALLSWLTAAWLWLLQAWEVVAEWGRQCWGALLHAWHYIASAVMQAVH WVRGLEEVGGDLDRTI SLALEEGGDD IKGAFDSELNRITTFHKKKEEELLGAVDKLGEEVS SAVEPSAQQSAPDASS PLLGTSRNAEALYWGQDTVAVRIAREQLRETF QELYVEIQGLIDFVEVNRTGFRKALKKHDKVLGALGHPKMQPTYMPNVEAAFPEKNRLRV SEAQKQLVELYAVVCCHNNLLLA QLELKAQLRSQLKLERTTVWKDMVEKERKENAATVDDSGAESKPWYRSSLFMIALSCWFA VLLSVPIFEERAKQNCLALLGF ASMLWCTEALPLYVTSMLVPLLAWLRVMVDDSGKHPVRKSAPDAADAI FKAMFSQASSQLFI SPHCTIERHVDGLPSYPTTI MLLLGGFAIASAFTKHFIAKRVAVWVLGKVSAKPHAVLIANMFVATFASMWITNVAAPVL CFSVLDPILRTLPSGHS FGKALV LGIALASNLGGMTSPIS SPQNIFAIQEMGRDGEPPSWLAWFAVALPVACVGNFACWGFLLLAYRPGRTLKEVRRMPF SSDPFT WKQIYWVI SLGTVGLWCANTALSKFTGQMGIVAIVPMVAFFGFGLLSKDDFNNQLWNVVMLAMGGSAL GEAVKS SGLLSS IA HS I EDWAGMGVWAVFAI FCALVLVATTFI SHTVGAMVI LP IVSAVGAQMEEPHPRLLVMGAALMCS GAMGLPVS GFPNMTAY AKEDPTGNPWLSTIDFFKVGVPCSLATYGLIVTVGYGIMKFVLGW

>Symbiochloris_reticulata . PTCI

MQLGLGRDDMQRLFVLLTGLERYIDLNIAGFRKALKKHDKVLADAESGKLKETYMPT VHRQCCLNKKPILETLYAIVCCDGNN EMALIDLKRRLGETVQFERNTVWKDMVQKDRKRGTLKVDDGLIGSWWHRARQPAAIAMSL AVFVVLLYTPTFREPEKRNCLAL LAFTSLLWCTEALPLYVTSMLVPLLWVLRVLVDGSQHPPQRLSCKQAAPHIFHAMNSQVI MLLLGGFTIAAALSKHAIAKIL ASWVLSKVGQRPGAVLMANMLVATFASMWISNVAAPVLCFSLVQPVLRTLDATHS FAKSLVMGIALASNLGGMTS PI SS PQNL FAIERMSMAGLPPSWLSWFAVALPVAFLGNFLVCGLLLLVYQDPHFTEVRPMQPIKDPIN GKQMYI IAVSVGSVTMWCFNSVL QQWFGEMGI IAILPMIAFYGFGILDKDDFNSMLWNWMLAMGGLALGEAVTSSGLLLS IAEQLQHLVQGASVWRVLVIFCGLV LVATTFVSHTVGAMVVLPI IQSVGSQLSDPHPKLLVMGAALMCSGAMGLPVSGFPNMNAVALEDSKGINYLTTIDFFKV GLLS SLIAYGLIVTLGYGIMYYGIGW

>Edaphochlamys_debaryana . PTCI

MKFTHQLKFNSVPEWREHYIQYAHLKKYI YALAKKEADHQADGAGTGDVEGLIAPLLQDGGRASGPTEEGFQRELDSQLAALL GFFAVKEADLLAKVSELELEVQSMEKI PNRNEASNLVRARGGGSAASGTPS PGAS PRASAAGAALSALSGLLAAS PSTMDLAR MVAAS PPEDHRSVRVAFWKNPPRHLFS SSLQSRAAKLQSRFQDLYIALHDLREFLHINKEGFRKI IKKHDKLTRSVDLRARWW PNVEAHLAPAAKQAELDGAIAGLTDTYAVVYCRGDAS SAEELLSRGLREHITVERNTVWRDMAALERKYAAVSVKQAAGAAKP SWLWRHARWLKLGFALAVFGIMLQYEVWPGPENAPRNGCLALLVFASLLWSLEAVPLFVT SMLLPLLIVLLGVLVDRTKDPPQ RMTPQQAAPAI FHAMFSQTIMLLLGGFAIAAALSKHAIAKQFAVAILSRVGRRPRNVLLASMFTATFASMW ISNVAAPVLCFG LIQPILRTLDPGHPFAKALVMGIALASNVGGMTSPIS SPQNIFAIERMSLDGRPPSWLAWFAVALPVS IACNFVCWGLLLAVY RPERVIAEVRPIKPNTDPINGTQVYICAVSLLTVGAWCANTFLQKFTGEMGWAVVPLVAF FGFDVLNKDDFNSFLWNVVMLA MGGLCLGEAVKSSGLLAALALGI SDLVTGLSLWQVAVVFCGMVLVATTFISHTVGAMVILPIVQSVGEAMPGTPHPKLLVMAA ALMCSGAMGLPVSGFPNMNAVSLEDATGNAIVATQDFLLSGVPGS IAAYGI IVTLGHHTMALLAAP

>Enallax_costatus . PTCI

MKFTHVLKFNSVPEWRESYINYPLLKKLILAASTAEYHEAYEGLALTQDEEAGPRSP LLSAQPSLSRSLSVTMTREQREKEFL EALDNELAKI IRFYLKKEAEI SAKFEELSMMVHHAEGIPSPTPEQMADGHDVTTAARVAFWSQGGRAVAAQREKLKTSLEE LY ATTFSLANYVEQNRTGFRKILKKHDKLVSHTMS SNYLPIVDQKFPASHAATLHHQLEAITALYAVVCCNGNLEHANS ILRKQQ QEQVS FQRNS IWKDMVGQERRAATVRVQDGKEVEPESWFTAHRQAVILAIALAVFVVLLTVPI FKQPEKQNCLALLAFASMLW CTEAI PLFVTSMLVPFLWVLQVLDDVTQEPPERLTPKQAAPRVFHTMFSQTIMLLLGGFAIAAAL SKHFIAKQLAVAILSRV GRKPHHVLLANMLVATFASMWISNVAAPVLCFSLVQPILRTLPTTHAFCKSLVIGIALAS NLGGMTS PIAS PQNI FAVERMGM GGTPPSWLEWFAIALPVSFLGNLLCWGLLLLVYKPGKDIKEVRPLKPTEDPLTGTQI YVIVISLATVTLWCCNSFLQEYTGEM GVLAI FPLVAFFGFGVLNKDDFNGFLWNVVMLAMGGLALGEAVQS SGLLLEISNS ISHLVAGQSLWAVLAI FCGLVLVGTTFI SHTVGAMVILPIVQAVGQQMPGGDHSKLLVMGAALMCSGAMGLPVSGFPNMNAVALEDPT GANYVYTKDFLLVGVPGS IMAYG I I I SVGYLLMLAVGF

>Mesostigma_viride . PTCI

MKFGKVLKDDAVPDWIPKYVAYKKLKRWQRMELTVEQELQQAASKRGAAGSSDVTS PLATKETLLQRKSDEFMEGVEEEVAK VNHFYDEWSALRCDLEAYEKQLAAQLAGGNKKAFQKMFVLASDLNAYITLNSTAFRKIMK KHDKLTGLHRMDAFVARIKHEG FMEAKALRELSARLEAMMS PDALDSLKQQYHLERQKRSESAGGSTGS PAKPTRILFS IAVFFLILALPPFWSARPASGGNDDG lADVSDGAGVSGGVAFGVDYGYEGEPASLGAQGGVGEAAVAARDRLMRVLWERHYARDEA ASS S IGDYVSGNSAFGPTQEERA HRCFALLIFIACMWVLEALPYFVTSLMIPPLWMLNIMADPTDKDKALSAPDS SRLVLS SMFDHVLILLLGGFTLSAAFGQCA FELRIAGALQRALGHRPWLFMLAIMLLSLFLCMWLSNVTAPVLMLSVLLPILRDFDHGGR YPKALLLGLAFACNLGGMVTPIA S PQNAVALVALDAQHFTITFFEWMAVALPFCVLLVWVWAYLI FALRPDDVVS IPPVMYKTTPLS SKHIWVLLFSLATIGLWS TLSLTVSVLGDLGI IALLFMVFAFGTGVLSKHDLNSFSWHLLLLIAGGNVLGRAVQS SGLIQIVAQIVTPYLHDILWVAALEL LAFMI I ITTFVSHSVAAI IMMPLIVAIGKEI SPLSAEVLVLLCTLADSAAMALPMTS FPNVNSLLVEDDYGVPYLRVVDFIKV GAPVS IMWTAIATLGYSLAVFVLRP

>Raphidocelis_subcapitata . PTCI

MKFTHQLKFNAVPEWKEHYINYPLLKKI IYATRAAECQDAYDGVGGDEEAAGPSASGGSLLRS PRTSLSGGSLRAPLLQGVGG LSLSRSGSVGARAGDSEFIKALDQELARI IS FYLRKEGELTSAFESLNLQLHSRDGCDAAAPAAGGAGGGGGGAAGFGTAPAA PAAGAVDGAAAAEAGEAAAAAAVPQSQAERQRRAEFQRRTAYWAANDRGVAAERERFRQK LVGLFVQLDGLKKYLEMNHTGFR KILKKHDKETTQHQYKDSYMAIVDAKLPLRSLEGLNRLIERLREMHAAVCCKGNLEKAER ELRSELREEVGFERNTVWRDMVA MERRTGAWLQEPAHGIADESRQEPWLRRHWQPLALCVSGLAFAALLAAPLFEGAPEKRNC LAMLAFVSLLWCTEALPLFVTS MLVPLLVWLRVLVDRTVEPPVRLEPQQAAPAI FRVMFGQVIMLLLGGFAIAAALSKHFIAKQLAVAILSRVGRRPRDVLLAN MLVATFASMWI SNVAAPVLCFSLVQPILRTLPPSHPFAKSLVIGIALASNLGGMTSPIS SPQNIFAIERMSMDGHPPSWLAWF AVALPVAFAGNVLCWGLILAVYRPGQKIREVRPLKPPEDPLSPTQVYWWSLATVALWCCN SLVAGVTGEMGVLAILPLVAF FGFGVLSKDDFNGFLOTWMLAMGGLALGEAVKSSGLLLTIAQSVGQQLPGPPHDKLLVMG AALMCSGAMGLPVSGFPNMNAV ALEDPTGVNYVDTIDFLKVGVPGSVLAYWI IVTVGYGIMRAVGM

>Symbiochloris_reticulata_Af rica . PTCI

MKFTKELKYNAVEEWRAHYINYAAFKRLI YGEEKRKFGDNERMVPGTPQEDDHPTQEPLLHQTDDKAFMSLLDSELARVHEFY LERERELGGQLDSLLSHARTVEVNERPATPSTEHGRRSSEGRLHLARRS SSRMQGALADLQAEAVSSEFWSQNQDFAVQAARE QLRDDMQRLFVLLTGLERYIDLNIAGFRKALKKHDKVLADAESGKLKETYMPTVHRQCCL NKKPILEGALRKLQTLYAIVCCD GNNEMALIDLKRRLGETVQFERNTWKDMVQKDRKRGTLKVDDGLIGSWWHRARQPAAIAM SLAVFVVLLYTPTFREPEKRNC LALLAFTSLLWCTEALPLYVTSMLVPLLVWLRVLVDGSQHPPQRLSCKQAAPHI FHAMNSQVIMLLLGGFTIAAALSKHAIA KILASWVLSKVGQRPGAVLMANMLVATFASMWI SNVAAPVLCFSLVQPVLRTLDATHSFAKSLVMVALPVAFLGNFLVCGLLL LVYQDPHFTEVRPMQPIKDPINGKQMYI IAVSVGSVTMWCFNSVLQQWFGEMGI IAILPMIAFYGFGILDKDDFNSMLWNVVM LAMGGLALGEAVTSSGLLLS IAEQLQHLVQGASVWRVLVIFCGLVLVATTFVSHTVGAMWLPI IQSVGSQLSDPHPKLLVMG AALMCSGAMGLPVSGFPNMNAVALEDSKGINYLTTIDFFKVGLLS SLIAYGLIVTLGYGIMYYGIGW

>Tetradesmus_deserticola . PTCI

MKFTHTLKYNSVPEWRESYINYSLLKKLILAASTAEYHEAYEGVHPAADLEDAGPRS PLLSRQASLQASLSRSLSVTMTREQR EKE FLETLDNE LAKI IRFYLKKEAEITAKYEEVSMMVQHAEGIAS PTPGQAAEVSGLQAAQRTAFWSQS SRPVAAQREKLRAA LEDLYATCCNLAS YVEQNRTGFRKILKKHDKLVSHPMSAIYLPIVDQKFPESHAAHLRAQMDAIASLYSMVCC NGNADKAAAI LRKQQQEQVFFERNS IWKDMVGQERRAATLHLQDGKEAVQESWLSTHRQAMLVTLALAVFAFLLYYPIFKEPEKQ NCLALLAF AS ILWCTEAIPLFVTSMLVPFLIVLLRVLDDVDQEPPARLTPQQAAPRVFHTMFSQTIMLLL GGFAIAAALSKHFIAKQLAVA ILSRVGRKPHHVLLANMLVATFASMWI SNVAAPVLCFSLVQPILRTLPTNHAFCKSLVLGIALASNLGGMTSPIS SPQNIFAI ERMSMGGSPPSWLQWFAIALPVS FLGNVLCWAVILAVYKPGQNIKEVRPLKPNEDPMSGTQI YTI IVSLATVTAWCCNS FLQA YTGEMGVLAI I PLVAFFGFGVLSKDDFNGFLWNWMLAMGGLALGEAVQSSGLLATI SNLI SDLVGGQSLWAVLAIFCALVLV GTTFI SHTVGAWILPIVQSVGDKMPGGHSKLLVMGAALMCSGAMGLPVSGFPNMNAVSLEDSTGQ NYIGTADFLKVGVLGSV LAYGI I I S I GYGLMLAVGF

>Tetraselmis_striata . PTCI

MKFEHALEFNSVPEWRGHYLNYEQLKRLVYAVEAQQSAAQRASLDLSRRPSGVQEDP EAGS PLLPGGSEVEGGQEAEAEFVSC AEGELKRVHAFLTAREAGLLGQWEEAALAAHSAEAS YVPARTTRGGAFTRSHWWQQPTMQAQRRTLVATLGSLFVSLHDLS S Y AELNETGFRKILKKHDKVTGGALKGALLPWQARLGAKRARLDQALEEVTSLYATLAFDGD ADVAAAHLREGLREQVVFERSA VWKDRMEEERRVATAHVVGPKAAAAKPWLLSGKAIAGLAALALAGAVLGSSAFGADDAGA TKRACLAILLASAVLWCTEAVPL YVTSMALIFAVVTLRAMLDGDGARLSAPDAMKRVFSKIFSQTVMLLLGGFTMAAALSKHL IAKRLAIGVMAQVGRRPASVLLA AMGIALFSSMWISNVAAPVLCFS IVAPILRTLPTDDPLGAAMVIGIAMASNIGGMTS PIAS PQNI FAIERMSMDGHPPSWLAW FAVSMPVS ITCLLLVWRLLLI I YPIDRDQEVRPLRQLDDPFTLHHAFVIAVCLATMGLWCANTWLLHLLGGMGVTALIPMVA F FGFGTLGKDDFES FPWSWMLAMGGI ILGDAATESGLLAAMTEQIVGWGSLTVCEVLVIFTGVIAVVTSFISHTVGAMVILP VVQS IGAELAKSTGVDHSKLLVMGGALMCSGGMALPVSGFPNMSASS IQDPTGRNYVHVGDFLKTGI PSTAITWLCVIAIGYP IMSAINL

>Trebouxia_sp . . PTCI

MKFSQALKANSVPDWKHHYIHYSRLKKMI FRLEQLQGNAPLSPVPEHRQSLDFTNPSAPLLSRQS SSMLQRTS SGLEHAHIDE LMFEREIHDELARVKAFYVEKHDELDAEVLAVLAKVAAAERRGISGPGHQDVEGGQSLPE EQRIAFWTDVNVPRNIKERLSGA LTDVYIQLDNLSKFVELNYDGFRKILKKHDKMTNTELSGRLMPTVSDMLAKEQRKGALEG LKNSVVHEYALIAHSGGEREAEQ ELGRHRRDQLDF

>Chlamydomonas_reinhardtii . PTCI

ATGAAGTTTACGCACCAGCTGAAGTTTAATAGTGTGCCGGAATGGAGAGAACACTAC ATACAGTATGGACATCTTAAGAAGTA

CATTTATGCGCTAGCTAAGAAGGAAGCGGACCTTCAAGCTGGCGGCCAAGATGAGGA GGCGCTGCTCGCCCCGCTGTTGGAAG

CGGAGCGTGATCAGGGCCCCACGGAGGAGGGCTTCCAGCGGGAGTTAGACGCGCAGC TTGCGGCCACGCTAAGCTTCTTCGCG

GTGAAGGAGGCGGACCTGCTCGCCAAGGTGTCCGCACTGGAGCTGGACATTCAAAGC CTGGAGAAGATCCCCAACCGCGCCGA

GGCGTCCACACTGGCGCGCATGGGCGGCAGCGCCAGCCCCGGCGGCCCCATGAGCAG CCCGCGCGCCGCCGCCGCCGCCGCCA

TGTCGGCCATGGCCTCGCTGGTCAGCCACAGCCCCTCCACACTGGACCTGGCGCGCA TGGTCAACAGCACGCCGCCAGAGGAC

CACCGCAAGATCCGGGTCAAGTTCTGGGAGAACCCGCCCCGCCACCTGTTCAGCACC AACCTCAACACGCGCAGGGCCAAGCT

GCAGGCGCGCTTCCAGGACCTGTACATCTCGCTGCACGACCTGCGCGAGTTCTTGCA CATCAACAAGGAGGGCTTCCGCAAGA

TCATCAAGAAGCACGACAAGCTGACCCGCGCCGTGGACCTGCGCGCCCGCTGGTGGC CCAACGTGGAGGCGCACCTGGCGCCC

GCCGCCAAGCAGGCCGAGCTGGACGGCGCCATCGGGGCGCTGACCGACCACTACGCA GTGCTGTACACGCGCGGTGACGTGGC

TCAGGCGGAGGAGCAGCTGTCGCGGGGGCTGCGCGAGCACATCACCGTGGAGCGAAA CACCGTGTGGCGAGACATGGCGGCCA

TGGAGCGCAAGTACGCGGCGGTGTCGGTGAAGCAGGCGGCCGCGCCCGGGGCGCGCG TCACGTGGCTGCGCACGCACGCGCGC

TGGCTGAAGCTGGCCCTGAGTGTGGCGGTGTTCGTGGTGCTGGCCAATGTAGAGGTG TGGCCGGGCGCCGAGAACGAGCCGCG

CAACAACTGCCTGGCGCTGCTAGTGTTCGCGTCGCTGCTGTGGAGCCTGGAGGCTGT GCCGCTGTTCGTGACCAGCATGGCGC

TGCCGCTGCTGATTGTGGCGCTGGGGGTGCTGGTGGACCGCTCCAAGGACCCGCCGC AGCGCATGACCCCGCAGCAGGCGGCG

CCGGCCATCTTCCACGCCATGTTCTCGCAGACCATCATGCTGCTGCTGGGCGGCTTC GCCATCGCCGCCGCCCTGTCCAAACA

CGCCATCGCCAAGCAGGTGGCGGTGTCCATCCTGTCCCGTGTGGGCCGCAAGCCGCG CAATGTGCTGCTGGCGGCCATGTTCA

CAGCCACCTTCGCCAGCATGTGGATCAGCAACGTGGCGGCGCCCGTGCTGTGCTTCG GACTCATACAGCCCATCCTCAGGACG

CTGGACCCCGGCCACCCGTTCGCCAAGGCGCTGGTGATGGGCATTGCGCTGGCGTCC AACGTGGGCGGCATGACCAGCCCCAT

CAGCAGCCCGCAGAACATCTTCGCCATCGAGCGCATGAGCCTGGACGGCCGCCCGCC CTCGTGGCTGGCCTGGTTCGCGGTGG

CGCTGCCCGTGGCGGTCGCATGTAACTTTGTGTGCTGGGGTCTGCTGCTGCTGTGCT ACCAGCCCGGCAAGGCCATCGCCGAG

GTGCGGCCCATCAAGCCCAACACCGACCCCATCAATGGCACACAGGTGTACATCATT GTTGTGTCGCTGCTGACGGTGGCGGC

CTGGTGCGCCAACACCTTCCTGCAGCGCTACACTGGCGAGATGGGCGTGATCGCGGT GGTGCCGCTGGTGGCGTTCTTCGGCT

TCGACGTGCTCAACAAGGACGACTTCAACAGCTTCCTGTGGAACGTGGTCATGCTGG CCATGGGGGGACTCAGCCTGGGCGAG

GCCGTCAAGAGCAGCGGCCTGCTGGCGGCGCTGGCGCTCACCATCAGCGACCTGGTC ATGGGGCTCAGCCTGTGGCAGGTGGC

GGCCATATTCTGTGGCATGGTACTTGTGGCCACCACCTTCATCAGCCACACGGTGGG CGCCATGGTCATCCTGCCCATCGTGC

AGAGCGTGGGCGAGGCCATGGCCGGCACGCCGCACCCCAAGCTGCTGGTCATGGCGG CGGCGCTCATGTGCTCGGGCGCCATG

GGCCTGCCTGTGAGCGGCTTCCCCAACATGAACGCCGTGAGCCTGGAGGACAGCACC GGCAACGCCATCGTGGGCACCGGCGA CTTCCTGGCGGTGGGCGTGCCCAGCTCCGTGTTCGCGTACGGCATCATTGTCTCGCTGGG CTACGTGCTCATGCTGGCGGTGG

GCTTCTAG

>Monoraphidium_neglectum. PTCI

ATGGACAAGGCTGAGAGGGAGCTGCGCAGTGAGCTGCGGGAGGAGGTCGGGTTCGAG CGCAACACGGTGTGGCGCGACATGGT GGCCATGGAGCGGCGCACGGGGGCGGTCGTCAGGCAGGACACCCACGGCATCACAGACGA CACCATCCGCGAGCCCTGGGTGA AGCGCTACTGGCAGCCCATGACGCTGACTGTGTCGCTCATCGCGCTCGTCACGCTGCTGC TGGTGCCCATATTTGAGGACGAG

CCCGAGAAGCAGAACTGCCTGGCCCTGCTGGTGTTTGCGAGCCTGCTGTGGTGCACT GAGGCGCTGCCGCTGTTTGTGACGTC CATGATCGTGCCGCTGCTGGTGGTGGTGCTGCGGGTGCTGGTGGACAGGACTGTCAGTCC GCCCGAGCGCCTGTCCCCGGAGA AGGCCGCCCCCGCAGTGTTCCACATCATGTTTGGCCAGGTCATCATGCTGCTCCTGGGCG GCTTCGCCATCGCCGCGGCCCTG

TCGAAGCATTTCATAGCCAAGCAGCTCGCCGTCGCCATCCTGTCGCGCGTCGGGCGC CGCCCCCGGGACGTGCTGCTTGCCAA CATGCTGGTGGCGACGTTTGCCAGCATGTGGATCTCAAACGTGGCCGCGCCGGTGCTGTG CTTCAGCTTAGTGCAGCCGATCC TGCGCACCCTGCCGCCGACCCACCCCTTCGCCAAAGCCCTGGTCATCGGCATCGCCCTGG CCTCAAACCTGGGCGGCATGACA

TCACCCATCTCGTCCCCCCAGAACATCTTTGCCATTGAGCGCATGTCCATCGGCGGG GACCCCCCCTCCTGGCTCACCTGGTT TGCGGTGGCCCTGCCCGTGGCGTTCTTTGGCAACGTGCTGTGCTGGGGGCTCATCCTCAT AGTCTACAAGCCGGGGCTCAAAA TCAAGGAGGTGCGCCCGCTGAAGCCCCCGGAGGACCCCCTCAGCGCCACCCAGATCTACG TGGTGGTGGTGTCACTGGCCACG

GTGGCCCTGTGGTGCTGCAATAACCTGCTGTCACACATCACGGGAGAGATGGGCGTG CTCGCAATCCTGCCGCTTGTCGCGTT

CTTCGGGTTCGGTGTGCTGTCGAAGGACGACTTCAACGGTTTCCTGTGGAACGTGGT GATGCTGGCTATGGGGGGCCTGGCCC TGGGGGAGGCCGTCAAGTCCAGCGGGCTGCTGCTCACCATTGCACAGGCCATCCAGTCGA TGGTGGACGGCCTCGACCTGTGG AGCGTCCTGGCCATATTCTGCGCCCTCGTCCTCATGGCCACCACCTTCATCTCCCACACC GTCGGCGCCATGGTCATCCTGCC

CATCGTGCAGTCCGTCGGCCAGCAGATGCCGGGCCACCACGACAAGCTACTGGTCAT GGGCGCGGCCCTCATGTGCAGCGGGG CCATGGGCCTGCCGGTCAGCGGGTTCCCAAACATGAACGCGGTCGCGCTGGAGGACCCGA CGGGGGTCAACTACGTCGACACC GTCGACTTTTTGAAGGTCGGGGTGCCGGGGTCCGTCATGGTTTACTGGCTGATCGTGAGC GTCGGCTACGTGCTGATGCGGGC

GGTGGGGTACTGA

>Entransia_f imbriata . PTCI

ATGAAGTTCTCCCATGCCCTGAAATTCAATTCCGTGTCAGAGTGGAAGGCATTCTAT ATAGACTATGTACACCTCAAGAGGTT TGTGTACCAACTGGAGGCCGCTGCGGTGACCGCCCTTCCAGAAACCCCGCGTCTGACTAG CTTATCTCTCGTGTCCACACTGG GGGATGTCGAGGCAGGGGAGGAGGCATCGGGCCCTTCGCCTTTGGTCACAGATGCCGCAT TCGTGCATGCCCTGGAGCGGGAG

CTTGAGAAGATAGTCACCTTCTACGCAAAGAAGGAGCAGGAGCTGGTCTCACAGATC GAGAATGCGGAGACGCAGGCGCGGGA GTTTGAGGCGCGGCAGTACACCAGAAGCAGGCGCCAGGGGCACGGGCAATCCACGATGAC GGCGCCGGAAGGGGGGAGGCGTG TGGGCGATGAGGGAGCGGTGGATCTTCGAGAACCTCTGTTGGGAGGGAAGGAGAGCAGTG GACTGGGGAGCGGTGCCGGGCCT

GACTCCACAGCACAGCGCGTGTGGGTGTGGCAGCAGGAGGACAGTGGAGTGCGGCTG GCGAAGGAGAGGCTCAGGCTCCAGAT GACGGACCTCTATGTCCAGCTGTTTGGCCTGCAAGATTACATCGACCTCAACCGCACAGG GTTCCGGAAGATCCTCAAGAAGC ACGCCAAGGTGACGCACCATGCGCTGCAGTCGGAGTTCATGCCGCGGGTCAATGTGGGGC TGGACAAAAAACATGAGCAGCAG

CAGGAGGCTGCTCTGGCACGTGTGGTCCAGTTGTACTCCATCGTGTGCTGCAACGGA AGCTCGGAGCTTGCCCGGCTGGAGCT CAAACGCCACCTGAGGGACCACCTGGTGTGGGAGAGGAACACTGTGTGGCAGGACATGGT GTCCAAGGAGCGCCGGAGTGCTT CAGCTCACGTGTACGAGGAGAAGACAGCCTGGTACCTGCGCTGCCTGCGGCCGCTGTCGC TGCTGCTGGCCGTGGGTGTGCTG GTCGCGCTTCTCGTGGTGCCCGTCTTCCCCGAGGCCCCCAAGCAGAACTGTCTGGCACTG CTTGCCTTTGTCTCTCTTCTTTG GTGCACTGAGACCATCCCCCTCTACACCACCTCCATGCTCGTCCCCCTGCTGGCCGTCGT CCTCCGGGTGCTGGTTGACTCCA AGACGGGCCGCCGGTTGAGCCCCCAGGAGGCAGCCTCAGCCATATTCCACACGATGTTCT CAGAGGTGATCATGCTCCTCCTC GGTGGCTTTGCCATCGCGTCCGCCCTCAGCAAGTACTTCATCGCCAAGCGCCTCGCCACG ACGATCCTGTCCCGCGTCGGCCA GGCCCCCCAGAACGTCCTCCTCGCCTCGATGCTGGTCGCTTCCTTCCTTTCCATGTGGAT CTCCAACGTGGCCGCCCCCGTGC TCTGCTTCTCGCTCGTGCAGCCCATACTGCGGACGCTGCCCAGTGGCCACCCCTACGGCC GGGCACTGGTCATGGGCATTGCC CTCGCATCAAACCTCGGCGGCATGGCCAGCCCCATCAGCAGTCCCCAGAACATCTTCGCT ATCGAGGAGCTCTCGCTGCTCGG TGACCCCCCGAGCTGGCTGCAATGGTTCGTCATCGCCCTCCCCATCTGCCTCGTCGGGAA CATCGGGTGCTGGGCCCTGCTGC TCGCCGCCTACGCCCCGCACAAGCAGCCCAACACGATCCGACCGCTGAAACCGACCCAGG ATCCCATCACACTGTCCCAGGTC TATGTTGTGGTGGTCAGTGTGGTCACGGTGGCCCTCTGGTGTGCCAACAGTTGGCTCAGG CAATACCTGGGCCAGATGGGAGT TGTCGCTGTCGTCCCCCTCGTCGCCTTCTTCGGCACCGGGATACTCACCAAGGACGATTT CAACAACTTCTTGTGGAACGTCG TGATGCTGGCCATGGGGGGCCTCGCCCTCGGCGAGTGTGTCACCAGCTCCGGCCTCCTCC ACTCCATCGCCGCCTCCATCCAG GCGACCGTTGCGAACCTGGGCCCGTGGCAAGTTGCGGCCGTGTTCTGCGGATTGGTTCTG GTGGCCACCACCTTCATTTCCCA CACAGTCGGGGCCATGGTGATACTACCCATTGTGATGACCGTGGGGTCAGCCATGCCGGA CCCCCACCCCAAGCTCCTAGTCA TGGCCTCTGTGCTGATGTGCTCAGGCGCCATGGGGCTCCCAGTGAGTGGCTTCCCAAATA TGAACGCCATTGCACTCGAAGAT GGCACAGGGAAGACGTACCTGACCACCCTAGATTTCCTATGGGTTGGCATTCCAAGCTCA TTGCTCGCATACGGGATCATCAT CACCCTGGGTTACGGGATTATG

>Golenkinia_longispicula . PTCI

ATGAAGTTTACTCATCAGTTGAAGTTCAACTGTGCCCCGGAGTGGAAGGACTATTAC ATTCACTACTCCGTGTTGAAAAAGCT CATATATCAGATAGGAGGCGATGATATACGTGAGAGTGCGGGTATAGGCCCTGCGGAGCA AGAGCCTCTGCTGCCAGTGATTG ACAAAGACGAGAAAGAGAGACAGTTTGAGAGTCTCTTAAACACTGAGCTGACGAGGATCC TTGACTTCTACACCCGCACGGAG

CGTGAACTGTTTTCTCAGCTAGAGGGCCTGGGCCTTGAGATCAGAGAATATGAGGAG GGAAGGCTACCCACAACATCTGAAGG GTTGGAAACAGAGCTGGATGGTCGCCGGCGCTTCTGGTCGTCCCACGACCTCCCCAAGGA CCTCAAAGCCGCCAAAGACAGCC TGGCCATGAAGCTTGAGGACCTGTACGAGGAGCTGAACAATCTGTTGGAGTACATCACGT TGAACCACACGGGCTTCAGGAAG

ATCCTCAAGAAACACGACAAGGTGACCCAGAGGGAGCTGAAGTCGCAGTACATGCCC CTGGTGGAGGCCAAGCTGGTCCATAA CAAGAAGGAGAGAGTGCAGGAGCGCATCGACCAGGTGGTCCATCAGTATGCAGTGATTGT CTGCAATGGCCATGAAGGCCGGG CCCTCACAGAACTCAGGAAGAAGTTGAGGGACCACCTTGTATTCGAGCGCCAGACTGTGT GGCAGGACATGGTGGCAATAGAG CGTCGCACAGCTGCAGCACAGGTCAGCAACAAGGCGCCTGAGGGAGGCAAAGGCCCCCGT AAGTGGTGCCAGCGGTTGTGGAG TCCCCTGGCCATAGGTGCCTCTTTGCTGGTGCTGGCTCTGCTGCTGAGGATGTCCCTCTT TGACGAGCCGGCGAAACAGAACT GTTTTGCTATGTTGGTGTTCTGCTCCATGTTGTGGTGCTCAGAGGCGGTGCCCCTGTTTG TGACGTCCATGATGGTGCCCTTC CTGGTGGTGGTGTTGAGGGTGCTGACAGATGGCACTCCTGAGCGGCAGAGGCAGACCCCC AACCAGGCAGCCGGGGCCATATT CCATGCGATGTTCTCACAGACCATCATGCTGCTCCTCGGTGGCTTCACCATTGCGGCGGC TCTTAGTAAGCACTTCATAGCTA AACAGTTGGCAGCGGCAATTCTCAGCCGAGTGGGTAGGAAGCCCGCAACAGTGCTGCTGA CCAGTATGATGGTGGCGACCTTT GCCAGCATGTGGATTTCCAACGTGGCGGCTCCGGTGCTGTGCTTTTCTCTGATGCAGACC ATCCTGAGGACCCTTTCCCCCTC ACACCCGTTTGCCAAGAGTTTGGTGCTGGGCATTGCCCTGGCCTCCAACATCGGGGGGAT GACCTCGCCCATTGCCAGCCCAC AGAACATCTTCGCAGTAGAGAGGATGTCACTCCATGGCAGCCCCCCGGGGTGGTTGAGTT GGTTTGGTGTCGCCATTCCTGTC AGTATCTTGTCCAACCTGCTTGTTTGGGCCGTTATCTTGGTCGTGTACAGGCCAGGCCGC TACATCAAGGAGGTAAGGCCCCT CAAGGCCCCCGAAGACCCCCTCACAGGTACCCAAATGTACGTCATCGGGGTCAGTCTGCT CACTGTGGTGCTCTGGTGCTGCA ACTCCTTCCTCCAGAAATATACCGGAGAGATGGGGGTGCTGGCCCTACTGCCCATGATTG CCTTCTTTGGCTTTGGTATCTTG AACAAGGACGACTTCAACGGCTTTCTTTGGAACGTGGTGATGTTGGCCATGGGGGGTCTG GCCTTAGGCGAGGCAGTGAAGAG CAGCGGTCTGCTGGCCTCCATTGCTCAGGGCATTGAGGAGCTGGTGCAGGGTATGAGCTT GTACCAGGTGTCTGTGGTGTTTG GCCTCATGGTGCTGGTGTGTACCACCTTCATCAGCCATACGGTGGGGGCCATGGTAATCC TGCCCATTGTGCAGTCCGTGGGG GAGAGGATGTCAGATCCCCATCCCAACGTATTAGTCATGAGCGCTGCACTGTTGTGTAGC TGCGCGATGGGTCTGCCGGTC

>Oedogonium_cardiacum. PTCI

GAGGCAATCCCCCTCTTTGTGACCAGCATGCTCGTGCCCGTGTTGGCCGTATCCCTG CGGGTGATAGTGGTGGACGGAAGGAG GCTGGAGCCGCCTGACGCGGCCTCATACTTGTTCGGGAAGATGTTCTCACAGGTGGTCAT GTTGCTGCTCGGTGGTTTTGCCA TTGCTGCAGCTTTGAGCAAGCATAACATTGCGCGCAAGATGGCCATAGCCGTCCTTTCAA GAGTTGGGCGCGAACCTGCACAC GTTTTGCTAGCCACAATGATGGTTGCCACTTTCCTATCTATGTGGATTTCAAATGTGGCT GCACCAGTGCTTTGTTTCTCTCT CGTGCAGCCCATCTTGAGGACACTGGATACAAACCATAGCTTTGCGAAGGCGCTGGTGAT GGGCATCGCGCTAGCTTCCAATG TGGGCGGCATGGCCAGCCCCATCAGTAGTCCCCAAAACATATTCGCCATCCAAGTCATGG GCAGTGGGGGTGACAAACCTCCA AGTTGGACGCAATGGTTTGCTGTGGCATTGCCAGTGTCCGTCGTGTGCAACATGCTCATT TGGGCACTGCTATTGCTGGTGTA CCAACCACATAAGCACATCAAAGAGGTTCGCCCCATTCGTGCAATCCAGGACAAGTACAC TCTTCAGCAAGTCATGGTGGTTC TGGTCAGTCTGGTTACAGTAGCTCTGTGGTGCCTGAATGGCGTGCTGGAGCCCTACCTGG GATCTATGGGTGTCATAGCTATC TTACCGCTGGTGGCGTTCTTCGGTTTTGGCATCTTGACCAAGGATGATTTCAACGCGTTT TTGTGGCATGTGGTCATGTTGGC CATGGGGGGACTGGCAGTGGGAGAGTGTGTGAAGAGCTCACACTTATTGCAGACCATTGC TGCCGAAATCCAGGAGATGACGG TTGGATGGTCCATGTATGCTATTGTGTGCATGTTTTGTGCGCTGGTGCTATGCTGCACGA CCTTCATTTCGCACACGGTGGGC GCCTTCGTGATTTTGCCTGTTTTGAAGAGTGTGGGAGACGAGATGGCGAGATCCGGGCAG CCAAACCACTCCAAGCTTTTGGT CATGGCCGCAGCTCTGATGTGCTCTGGTGCCATGGGCCTGCCAGTGAGTGGTTTCCCCAA CATGAACGCGGTGGCCCTGGAGG ACCAAGCGGGGCTCAACTACGTAGCCACAATAGACTTCATCAAAGCAGGGCTGCTCAGCT CAGTGTTTGCATACGTCATTATT ATAACCCTGGGATACTCACTTATGTTTATGATCGGTTTT

>Cylindrocaps a_geminella . PTCI

ATGAAGTACGGCACGCAGCTTAAGCTGAACATGAATCCTGACTGGAAGGATCACTAC ATCAACTATTCCATGCTGAAGCACAT GATCTATCAGATCTCCAATAAGGAGAACCAGGTGCCTATTGACTTTGAGCAGGGAGAGCC AGCAGAGCCCCTACAGCCCCTCC TTCGATGGAACAGCGCGCCGGACCTGGAGAGCACGTTCGTAAAGGCATTTGAAGGGGAGC TCGCGCGTGTGATTGAGTTCTAC ACGCAGAAAGAGGCAGAGCTCTTCGCCAAGTGCGGTACTCTAGGTTTGAAGATTCACCAG ATGGATGGGCTGAGCGCCCCGCC GTCGGACTCTCCAGTCGCTTCTCAGGCCGAGGACGAGCGCATCGCGTTCTGGGCGCACGT GCCGGGCCACTTGGTCGCCCAGC GCGACGAGCTTCGCAAAGAGATGGAGGCGCTGTACGTGGCCCTTAAGGACCTGGAAAGCT TCAGGTCGCTGAACTTCGAGGGC TTCCGCAAGGCTCTGAAAAAGCACGATAAGGAGACCACCACTGCGCTTATGCCGCAGCTG ATGCCCGTGCTGCAGTCCAAGCT GTCCTCGTCGCAAACGGCCATCATCCAACAGCGCGGAGACGTGGTGCTGCACCTGTTCGC TGTGGTTGTGTGCCATGGCGACC TGCAGGCGGCTCGCAGGGACCTCGACTCGCGGCTGCAGGATGAGGTTCTGTTCGAGCGAC GCAGCATCTGGCAGGATATGGTG GCGACCGAGCGGCTGCGTGGCTCAGCGCCGCAAGTGGTGCCCAAGGACTCCGGATCGGCG TACGGCGCGAGCCTGACAGGCTG GTTCGAGCGGAACAAGCAGTGGACACTGCTGCTGCTGTCGTTCGGGGCGTTCGCGGTGCT GCTGAACTACCCCGTGTTCGACG ACGAGTCCAAGAACAACTGCCTCGCGATGTTCGTGCTGCTGTCTCTTCTGTGGAGCACAG AGGCGCTCCCACTATTCGTCACG AGCATGCTGGTGCCGCTGCTGGTGGTCATACTCAGGGTGCTGGTGGACAACACCCAGGAC CCGCCCGTGCGGCTGACGCCTCA GGACGCTGCGGCGTCCATCTTCCACTCGATGTTCTCGCAAACCATCCTGCTGCTGCTCGG CGGCTTCACCATCGCTGCCGCGC TGACCAAGCACTTCCTGGCCAAGCAGCTGGCGGTGACCATCCTCTCACGTGTCGGCCGCA AACCCGAGCACGTGCTGCTGGCC AACATGCTGGTAGCAACGTTCTTGTCAATGTGGATATCGAACGTGGCGTCGCCTGTGCTG TGCTTCTCGCTGGTCACTCCGAT CCTGCGCACGCTGCCCACGCACCACCCCTTCGGCAAGGCGCTCGTTATGGGGATCGCGCT CGCGTCGAACCTCGGGGGGATGA CCAGCCCGATCAGCAGCCCTCAGAACCTGTTTGCGATCGAGCGCATGGGTCTGGATGGTC ACCCGCCCAGCTGGCTGGCGTGG TTTCTGGTGGCACTGCCCGTGTCCTTCTTAGGCAACCTGATCTGCTGGGGCGTGCTGCTG GCAGTGTACCGCCCGCAGCAGAA GATTCGAGAGGTCCGTCAGCTGAAGCCCAGCGGCGACCCCATCACGTGGAAGCAGGTGTA CGTGCTTGTCGTGAGCCTCACCA CAGTGGGCCTGTGGTGCGCTAATACGGCCTTGCAGCAGTACACGGGCGAGATGGGCGTGC TGGCGATCGTGCCGCTGGTGGCG TTCTTCGGTTTCGACATCCTCAACAAGGACGACTTCAACCACTTTCTGTGGAACGTGGTG ATGCTGGCGATGGGCGGCCTGGC GCTGGGCGAGGCAGTCAAGTCGTCCGGCCTGCTGCTGACCATCGCCGAGGCGATCAAGGA ACTCGTAATCGGGTTCGATCTCT GGACTGTTCTCGTGATCTTCTGCGGCCTTGTTCTCGTGGGCACCACCTTCATCTCGCACA CCGTCGGCGCGATGGTGATCCTC CCGATCGTGCAATCCGTGGGCGACCAGCTGCCCGGCCCGCCGCACGCGAAGCTTCTCGTG ATGGGTTCGGCCCTAATGTGCTC CGGCGCAATGGGCCTGCCCGTGAGCGGCTTCCCGAACATGAACGCGGTGGCACTGGAGGA TCCCACGGGGCTGAACTACGTGG CCACCATCGACTTCCTCAAGGTCGGCGTGGTCTGCTCGTTCTTTACGTACGGCATCATAG TAACGCTCGGCTACGGCCTCATG CTGCTGGCCGGCTTC

>Scherf f elia_dubia . PTCI

CTGAACGTGACGGGGTTCCGCAAGATCCTGAAGAAGCACGACAAGGTGACGAACAAG GAGCTCAAGGGCGACTTCCTGCCCAT CGTGGCCAGCAAGCTCAACCCCAAGAAGGAGCGCGTGGACCAGGTGCTGCAGGAGCTCAT CGGCGTGTACGCGACGATAGGCT GCGAGGGCGATGTGAACGCCGCAGCCGCGCAGCTGCAGGTCAACCTGCGCGACCAGGTGG AGTTCGAGCGGCAGGCGGTGTGG AAGGACAAGATCGAGGAGGAGCGCAAGCTGGCCAACGCCAAGGTGGTGGACAAGGGCAAG AAGGCATGGTACGCGGACTACAA GAAGCCCTTCTGCCTGCTGCTCAGCGCCGCGCTCATCTTCGGGGTGCTCGGCTCGCCCCT CTTCCCCTCCTCCCCCCCCAAGC GCAACTGCCTCGCCATCTTCGTGGGCGCCGCCGCGCTGTGGTGCACCGAAGCGGTGCCGC TGTACGTCACCTCCATGCTCATC

CCCGCCGCCGTCGTCACGCTGCGCGCGCTCGAGGACGCGGACGGCGTGCGGATGACT GCCACAGAGACCGCGGACCGCGTGTT CTCAAAGATGTTCAGCCAAACCATCATGCTGCTGTTGGGGGGGTTCACCATGGCAGCTGC CATCACCAAGCACCTCATCGCCA AGCGGATGGCCTTTCAGGTGCTCTGCCGCGTGGGGCGGCGGCCGGGGAATGTGTTGCTGG CCTCTATGTTCATTGCCCTCTTC AGCAGCATGTGGATCTCCAACGTGGCCTCGCCCGTCATGTGCTACGGCATCGTGCAGCCC ATCCTGCGCACGCTGGCGCCCGA

CGACCGCTTCGCGTCTGCGCTGGTGATGGCGATCGCGCTGGCGGCCAACGTAGGCGG CATGACCTCCCCCATCGCCAGCCCGC AGAACATCTTTGCAGTGGAGCGCATGGCGATGGATGGCAACCCGCCCAGCTGGCTGGCCT GGTTCTCGGTCTCCATGCCCGTC TCCATGTTCTGCATCCTCGTGCTGTGGCGCATCATCCTCGCGGTGTACAGGATCGGGCCG CACACTGCGGAGGTGCGCCCCAT GCGGCCGCTGGACGACGTCTTCACGATGCAGCACGTGTTCATCATTCTCATCAGCGTCCT CACGATGGGCCTCTGGTGCGCCA

ACACGTGGCTGCTCAGCGTGCTCGGCGGCATGGGCATCACCGCGCTGCTGCCGATGG TGGCATTCTTCGGCTCGGGCATCCTC AACAAGCTCGACTTCGAGAGCTTCCCCTGGAGCGTGGTGATGCTCGCCATGGGCGGCATT GTGCTGGGGGAGGCGGTCAAGAG CAGCGGGCTGCTGGGCTTCATCGCGCAGGGCATAGTGGGGCTGGTGGATGGGTTCACAGT GTGGCAGGTGCTGATGATCTTCG GCGCGGTGATCGGGGTGGTCACCAGCTTCATCTCGCACACTGTGGGCGCGATGGTCATCC TGCCGGTGGTGCAGAGCGTGGGC

GAGGAGATGGCCAAGGCCTCGGGCGTGGCGCACTACAAGCTGCTGGTGATGGGGGCG GCGCTGTGCTGCTCGGGTGGGATGGC GCTGCCGGTGAGCAGCTTCCCCAACATGACAGCCGCCTCGCTGACAGACCCCACC

>Hafniomonas_reticulata . PTCI

ACTGCTGGCAATGCCGAGAAGGCTGAGGGTGAGCTGAGTGCTCATCTAAGAGAGCAA GTGCAGTACGAGCGCAATACAGTGTG GCGTGACATGGTGGCGAACGAACGCACGAAGACCGCCGAAAGCAGCAAGCAAGTTCGAAC GCTATCGCAATCTATTGTCTGCA TCGCCATCGTCGCTGTTGTCGCTCTGATCCATGCCAACATCTTCCCAGATCAACCCTCCA AAAACAACTGCCTTGCGATGCTC GTGTTTGTGAGCATCCTATGGGCATCCGAAGCAGTTCCTCTGTTTGCGACGTCTATGATG GTGCCTTTGCTTACGGTGCTTCT

TGGCATTTGGGTGGACCCTTCTCAAAAACCACCTAAGAGGCTGGACCACACGGCTGC TGCTTCTGCTGTTTTCTCTGCTATGT TCAACCAGGTCATCATGCTTTTGCTCGGTGGCTTTGCCATCGCCGCCGCCCTCTCAAAAC ACTTCATCGCGAAGCGTGTTGCT GTCGCCATTCTCTCCCGTGTGGGTCGCAAACCTCACAACATCATCCTCGCGTCTATGTGT GTGGCGGCCTTCATGTCGATGTG GATATCGAACGTCGCGGCGCCTGTGCTTTGCTTTTCGTTGATAGCGCCTATCTTGCGAAC GTTGGATGCATCGCACCCCTTTG

CCAAGGCGTTGGTGATGGGCATTGCTTTGGCGTCGAATGTGGGAGGGATGACGAGCC CTATTAGCAGCCCCCAGAACCTGTTC GCGATTGAGCGCATGTCCATGCCCCCTTCCTGGTTGTCTTGGTTTGCGGTTGCGCTTCCA GTGGCAGGTATTTCTATCATTCT CTGTTGGCTCATCATTCTCATTGTATACCGGCCGTGGACAAAAGTGAAGGAAGTCCGACC CTTGAAACAAGATGATCCTATCA CGTACACGCAGGCATTCGTCGTTCTCGTCAGCGTCGTCACGGTTGGTCTTTGGTGTGCGG AGTCTCAGCTAGAAAGTGTGTTT

GGACAGATGGGGGTGATTGCAATTTTGCCCATGCTCGCATTCTTTGCAACTGGTATT CTCAACAAGGATGACTTCAACGGTTT CTTGTGGAACGTGGTTATGCTTGCCATGGGCGGGTTAGTGCTAGGTGGAGCTGTGAAGAA CTGTGGATTGTTAGAAGACATTG CAAACGCTATCAAGAACCAAGTTGCTGACTTGGAATTGTTCCAGGTTCTTGTCGTGTTCT GCCTGCTCGTGCTCTTCTGCACG ACATTCATTTCCCATACAGTGGGCGCCATTGTCATTCTACCCATCGTTCAGCAAGTGGGC GAAAGTTTCCCTGGCACCCCTCA

TTCAAAGTTGCTGGTCATGGGCGCCGCCCTCATGTGCAGTGGTGCTATGGGCCTACC CGTGTCAGGCTTCCCAAACATGAATG CGGTCGCACTGGAGGACGCCACCGGACAGACGTACGTGCAGACTCTTGATTTTCTCAAAG TCAGTGTTCCTTGCTCAATCTGT GCG

>Tetras elmis_chui . PTCI

CTACTGAGCGCAGCCGTGCTTTGGTGCACGGAGGCCGTCCCGCTTTACGTCACGTCG ATGGCGCTCATCTTCGCTGTGGTCGT TCTGCGGGCGATGTTGGACGGGGACGGCGTGCGGATGTCAGCGCAGGACACCATGAAGCG CGTATTCTCTAAGATCTTCAGCC AGACTGTCATGCTTCTCCTAGGGGGCTTCACTATGGCGGCAGCCCTGTCGAAGCACCTGA TCGCCAAGCGGTTGGCCATCGGG GTGATGTCGCAGGTGGGCCGTAAGCCATCCAACGTGCTCATCGCCTCCATGGCCATCGCA CTCTTCAGCAGCATGTGGATCTC

CAACGTAGCGGCGCCCGTACTGTGTTTTAGCATAGTGCAGCCTATCCTGCGTACTCT ACCTACGGATGACCCTCTAGGTGCTG CGCTGGTTATGGGTATCGCGATGTCCTCCAACATCGGCGGCATGACCTCCCCCATCGCCA GCCCTCAAAACATATTCGCCATC GAACGCATGTCCCTGGACGGCCACCCTCCTAGCTGGATTACCTGGTTTGCCGTCTCCATG CCCGTGTCTATCACCTGCATGCT GCTCGTATGGAGACTCCTCCTCGCCATTTACCCGGTCAGTAGCAATCAGGATGTCCGTCC GCTGCGGCAACTACACGACCCGT

TCACGTTTCAGCACGTGTACATAATCATCGTGTGCTTA

>Volvox_globator . PTCI

CTGTGGTCGTTGGAGGCCATTCCCCTGTTCGTCACCAGCATGGCTCTTCCGCTCCTC ATCGTCGTGCTGGGGGTGCTACAAGA CTCACCCAACACAGAGAAACCTGCCACTCGACTCACTCCGCAGCAGGCGGCGACCGCCAT ATTCCATGCCATGTTCTCACAGA CTATCATGCTGCTGTTGGGCGGTTTCGCTATCGCTGCGGCGCTCTCCAAACATGCCATTG CCAAGCAGGTTGCGGTTGCCATT TTGTCCAGAGTGGGTCGTAAGCCTCGCAACGTGCTGCTGGCCGCCATGTTCACCGCCACG TTCGCCTCCATGTGGATATCGAA

CGTGGCAGCACCCGTGCTGTGTTTCGGATTGGTACAACCCATTTTGCGCACCCTGGA CCCTGGACACCAATTCGCCAAGTCTC TAGTCATGGGTATCGCCCTCGCCTCCAATGTGGGTGGCATGACCTCCCCCATCTCGTCGC CGCAGAATATCTTCGCGATAGAG CGCATGTCCTTGGACGGCCAACCGCCTAGCTGGCTGTCCTGGTTTACGGTGGCGCTACCC GTGTCGATTGCAGCCAACATGCT CTGCTGGGCGATCCTGCTGGTGGTGTACCAACCCGACCGAGCCATCGCGGAGGTTCGGCC CATTAAACCCAACACCGACCCCA

CCAACGGCACCCAGGTGTACATCATCGTTGTGGCGCTGCTCACGGTGTCAGCATGGT GTGCAAACACATTCCTACAGAGCTAC ACGGGTGAGATGGGTATCATCGCCATCTTGCCCCTTGTGGCGTTCTTCGGGTTCGATGTG CTCAACAAGGATGACTTCAACTC CTTTCTGTGGAATGTGGTCATGCTGGCCATGGGGGGACTCGCGCTGGGTGAGGCCGTTAA GAGCAGTGGCCTGCTGGCCGCCC TCGCCTCGGACATCAGCGACCTGGTGTTGGGTCTCAGTCTCTGGCAGGTTACACTCATCT TCTGTGGACTGGTTCTGGTGGCC

ACCACTTTCATCAGCCACACGGTGGGCGCCATGGTCATCCTACCCATCGTACAGTCC GTGGGGGAGCGAATGATTGGCACACC GCACCCCAAACTGCTCGTCATGGCGACAGCACTGACATGTTCAGGTGCCATGGGTCTGCC TGTGAGTGGCTTCCCCAACATGA ACGCGGTGAGTCTGGAGGACGCCACGGGCAACCCCATCGTCAGCACAAAGGACTTTCTCA TGGTGGGGGTGCCCTCGTCCATT GCGGCGTACGGCATCATTGTGACGCTGGGGTACGGCTTGATGCTGTTGGTGGGCTTT

>Volvox_aureus-M102 8 . PTCI

ATGAAGTTCACACATCAGCTGAAGTTTAACAGCGTCCCGGAGTGGCGCGAGCACTAC ATACAGTATGCACATTTAAAAAAGTA CATATATGCTCTTGCAAAGAGGGAGGCGGATTTGCAGGCTGGGGGCCAGCTTCATGATGA CGAGTTGCTCACCCCACTTGTTC CGGAGACTTCACGCCAGGGCTTTAGCGAAGAAGGCTTTCAACGGGAACTTGATGCCCAGC TTGCTTCAATTCTTTCATTTTTT GCTGTCAAAGAAGCAGAGCTGCTTGCTAAAGTGTCGGAACTGGAATTAGACGTGCAAAGT TTGGAAAAAATTCCGAATCGGCA AGAAGCATCCTCGATGTCTCGCATTAGCGGTAATCCATCGACTACCGGCTATCACAGCAG CAGCAGTCCTAGGGGGCCTGTCG GTTTGCCGTCGATGTCGTTGATGTCCGTTTCTCCCTCCACGCTTGACCTGGCACGGATGG TGGACTCTACTCCGCCAGAGGAC TTCCGCAAAGTGCGAGTCAAGTTCTGGGAAAATCCGCCACGGCACGTTTTCTCTCCAAAC CTTAACACGCGACGGCAAAAGCT TTTAGGGCGGTTTCAGGACCTGTTCATTGGCCTGCACGACTTGCGGGAGTATTTGCACAT CAACAAGGAAGGATTTCGGAAGA CTATCAAGAAGCACGATAAGCTGACTCGCTCTGTCGATCTTCGCGTGCGCTGGTGGCCGA ACGTGGAAGTGCACTTGGCGCCC GTAGCGAAGCAACAAGAGCTAGAGAGGGCAATTGCGGCGCTCACGGATCACTATGCGGTG CTGTACATGGGGGGTGACCTTAC

AAAAGCCGACGAGCAACTGTCGCGAGGCCTGCGTGAGCATATCACGGTGGAGCGCAA TACTGTGTGGCGCGATATGGCGGCAA TGGAGCGCAAATACGCGGCGGTGTCTGTCAAACAGGCGACAGCTCCCAGAGATGGTGGGC GGCAAGCTCATGTCCGGTGGGCT AAGCTGGCCGCGTGCTGCCTGGTCTTCGCATCGCTGTTGCTATGGGGGGGACCCGTGGAG AATGGGCAGGTCAACCAGCCCAG AAACAACTGCTTGGCGTTGCTGGTGTTTGCATCTTTGTTGTGGTCACTGGAGGCCGTGCC TCTGTACGTCACAAGTATGGCTC TACCTTTTCTGATTGTCGCCATGGGTGTCCTTGTTGACCACCCAAGTGATTCCAAGGATC CACCTAGACGCCTCACACCGCAG CAAGCTGCACCAGCGATCTTCCATGCCATGTTCTCACAGACAATCATGTTACTTCTTGGT GGTTTTTCGATAGCGGCCGCTCT CTCCAAGCACGCCATCGCAAAGCAGGTGGCTGTGGCCATTTTATCTCGTGTTGGAAGGAA ACCACGCAACGTACTGCTTGCTG CAATGTTTACAGCCACATTCGCATCAATGTGGATTTCCAATGTGGCGGCACCAGTACTCT GTTTTGGCCTAATTCAACCCATC CTGAGAACCCTGGACCCGGGACATCCTTTTGCGAAGTCCCTGGTTATGGGCATTGCGCTG GCTTCCAATGTCGGAGGAATGAC ATCGCCCATATCTTCACCCCAAAACATTTTTGCAATAGAGCGCATGTCGATGGATGGACA GCCGCCCAGCTGGCTCTCTTGGT TCGCTGTAGCAATACCAGTGTCCATCACATGCAATTTTCTCTGTTGGGCCTTACTCCTTC TGGTCTACCAACCAGGACGAGCT TTGGGTGAGGTCCGACCGCTAAAACCCAACACGGACCCCATTAACGGAACACAGGTGTAC ATCATTGTTGTGTCGATGTTGAC TGTGGCAGCCTGGTGTGCGAACACATTCCTCCAGAGGTATACTGGCGAGATGGGCATCAT CGCCATTGTCCCTTTGGTAGCTT TTTTCGGTTTCGACGTACTCAACAAGGATGATTTCAACTCGTTTCTATGGAACGTCGTCA TGCTGGCCATGGGCGGGTTGTCT CTAGGTGAAGCAGTTAAGAGCAGCGGTTTGCTTGCAGCACTCACAAACAGTATTAGTGAA CTGGTGACAGGCTTCACTATGTT CCAAGTTACCCTCATATTCTGTGGCCTGGTGCTGCTGGCGACAACGTTTATCAGCCACAC AGTAGGGGCTATGGTCATCCTAC CAATCGTGCAGAGTGTTGGAGAGAGCATGGCTGGGACACCACACCCTAAGCTGTTGGTCA TGGCATCGGCGCTCATGTGCTCT GGTGCTATGGGCTTGCCTGTCAGCGGATTTCCGAACATGAACGCTGTCAGCTTGGAGGAT AGCACTGGCAATGCAATTGTCAG TACTAAGGACTTCCTGTACGTCGGTGTGCCTTCATCGGTGATGGCTTATGGCATAATCGT CAGTCTAGGGTATGTGCTCATGC TGTTGGTAGGTATG

> I gnatius_tetrasporus . PTC I

GACATGTACTCCAAACTGGAAGATCTGGTCAACTTTCTCGAACTGAATCGTGAAGGC TTCAGGAAAGCATTGAAGAAGCATGA TAAAGTGACTCAACGCAATCTGTCTCCAATCTTGCTGCCGGAAGCTTTGGAGGCACTCAA TGTGCAGGACAACAAGAACGCAA TTGAAGAAAGGAAGCAGGATGTCGTGCAGTGTTATGCAACAAGTCAGCAGAAAGGCGAAG TGCTTGCCGCAACCAATGTACTC AAACGCCAGCAAAGGGAGATGGTGGAGTTTGAGCGCAGCACGGTATGGCGGGAGCACATG GCAGTGGAGCGGCAGCACGCGCA AGCGACCGCGAAAGCCGTGGAGTTGACAGGCTGGCAGCATTGGTGGAGCAGCCATCGCAA TCTGATTTGGATCGCGGTTGCTG TCGCCGCGTTCTTCATTGTGCTGCTTGTTCCCATGCCCATCTTTGACACCGTTGAACAGC ACAACTGCGCTGCTTTGCTAACT ATGGCGGGCATTCTATGGTGCTTCGAAGCGCTGCCGCTGTTCGCAACGGGCATGCTGGTA CCGTTTCTTGTTGTTGTGCTGCG CGTGATGCGCGTTGCCGACACACCACAGCACGCTTGCACGCATGACTGCCGGCTGTCGGC GCCTGATGCTGCGAGCGCTGTGT TTCACAGCATGATGGACCAGGTGATATTTTTGCTGTTGGGAGGCTTTACGATAGCAGCAG CGCTGACGAAACACAACATTGCG AAGCAACTCGCATCAGCAGGATTGGCAAGTGTGCGCGACGCGCCTGGCAAACTGTTGTTC GCAGCAATGAACATTGCGACAGT GTCGAGTCTTTTCATCTCCAATGTTGCGGCTCCTGTGCTCTGCTTCTCGCTCGTGCAGCC GATTTTGCGCACGCACAAGCACG ATCATCCGTTTTCCAAGGCGCTGGTTATCGGCATCGCGCTTGCATCAAATATTGGCGGCA TGACCTCCCCCATTTCAAGTCCG CAGAACATATTTGCGATTCAGAAGATGGATGAAGACGGACGAGCACCAAGCTGGCTCGTT TGGTTCGCAGTTGCGCTGCCTGT CGCGTTTGCATGCAACGCCGCGTGCTTCACAGTCATCTGGCACTTCTACAAACCCTACAA AACACGCACGGCTATTCGTCTCC CGAAACTTACCGACAAACTGAACTCCACTCAGGTGTTTGTGATCGTCGTGAGCTTGCTGA CGGTTGGATTGTGGTGCGCGAAC GCGCAGCTCGAAAAGTACTTTGGCAAAATGGGAATCATTGCGATCCTGCCTGTTGTGTTG TTTTATGGAAGTGGCGTTTTAAA CAAAGACGACTTGAACAACTACTTGTGGAACGTTGTCGTGCTGGCAATGGGTGGGCTCGC GCTTGGAGAGGCTGTGAAGTCAT CGGGCCTGTTACACGTCATCGCGAATCTGTTGGCGGATGCTGTTGGATCGTTGGACCTGT GGCTCGTGCTCATCGTGTTTTGT GGGTTTGTGCTGATCGGTACCACTTTCATCTCCCACACGGTGGGAGCGATGATCATCTTG CCCATCCTTCAAACAGTTGGCAA GAATCTTCCAGGCGCGCCGCATCCGCAGCTGTTAGTCATGGGAGCCGCATTGATGTGCAG CGGCGCCATGGGTTTGTCCGTCA GTGGCTTTCCAAACATGACTGCAGCTGCTCAACAAGCCAGCACCGGCGAGCATTACATCA ATTCAGCTGATTTCCTGCAAGTT GGCATTCCGTGTTCCGTCATTACATATGGCATCATCGTTACTCTTGGGTACGGTTTGATG CTGGCTGTGGGACTG

>Gonium_pectorale . PTC I

ATGAAGTTTACCCACCAGCTGAAGTTCAACAGCGTCCCGGAATGGCGTGAACACTAC ATACAGTATGCGCATCTTAAGAAGTA CATATACGCGCTTGCGAAGAAGGAGGCCGATTTGCAGGCCGGAGCGCCGACAATTGAAGA AGGTCCGCTTGCACCGCTGTTGC AGGATGCGCGTGCTACACAGGGCCCCTCCGAGGAAGGCTTTCAGCGCGAGCTTGACGCTC AGCTGGCAGCTCTCTTGGCCTTC TTTGCCGTTAAAGAGGCGGATTTGCTTGCGAAGGTGTCCGGGCTGGAACTGGACGTGCAG AGCTTGGAAAAGATTCCTGGTCG TCGCGAAGCTTCAACATTATCACGTCTGGGGATAACAGGTGGCCCATGCAGCAGCTCAGA TGCCATTGCCCCTGGTGCCGCGG TGGGCGCGACTGTAGCGCCCTTGACCACACTGACAATGGACGCGAGCCCGTCCACCCTTG ACCTGGCAAGGATGGTCACATGC ACGCCGCCTCAAGACCATCGCAAAGTGCGCGTCAAGTATTGGGAAAATCCACCTCGGAGC ACATTCTCGCCTAACCTCAACTC GCGGAAAATGAAGCTGCAGGGACGCTTCCAGGACCTGTACATTGGGTTGCACGATTTGCG GCAGTTCCTTATTATTAATAAAG AGGGCTTTCGCAAGATCATCAAGAAGCACGACAAGCTAACCCGCATGGTGGACCTTCGTG ATTGTTGGTGGCCAAACGTAGAG GCGCACCTGGCCCCAACCACCAAGCAGCAGGAACTTGATCGAGCTATCGCCGACATCTCC GACCACTACGCCGTTGTTTACAC CGGAGGCGATGTGGCCAAGGCGGAGGAACAGCTTTCCAGGGGCCTCCGTGAACACATCAC TTTTGAACGAAATACAGTCTGGC GTGACATGGCGGCCATGGAGCGCAAGTACGCCGCTGTGTCAGTCAAGCAAGCTGCCCCAC CGGGTGGTGCCAAGGCCAGCCGG CTGCGCGACTACCTTCAGTGGACAAAGCTTGCACTGTCGTGCGCAGTGTTTGCAATCTTG CTGAACGTCGATGTGTGGCCAGG GCCACAAAACGGCCCGCGGAACAACTGCCTGGCACTACTCGTTTTCGCCTCACTTCTATG GTCATTAGAGGCCGTCCCGCTCT TCGTGACAAGTATGGCCATCCCTTTTCTGGTTGTGACGTTAGAGGTTTTGACAGACGGGA CGAAGGATCCACCGCAGCGCCTG ACTCCTCAGCAAGCGGCATCTGTCGTTTTCCATGCAATGTTCTCACAGACCGTTATGCTC CTGCTGGGTGGCTTCTCTATTGC GGCTGCGCTGTCGAAACATGCAATTGCTAAACAGGTGGCAGTTACGATCTTGTCCCGAGT CGGGCGCAGACCACGCAACGTCC TTCTTGCTGCCATGTTCACCGCGACATTTGCCTCAATGTGGATATCGAATGTGGCGGCAC CGGTACTATGCTTTGGCCTTGTG CAGCCAATCTTGAGGACGTTAAATCCGGGGCATCCATTTGCTAAGGCATTAGTGATGGGC ATCGCACTGGCGTCGAATGTTGG GGGTATGACATCACCAATATCATCGCCACAGAACATCTTCGCTATAGAGCGGATGTCCAT GGACGGCCACCCCCCTAGCTGGC TTTCATGGTTTGCTGTCGCGCTGCCAGTGTCCATCATAATTAACCTGGTATGCTGGGCAT TACTCCTGTTGGTCTACCAGCCA GAGCGCTACATCACTGAAGTGCGGCGCGTCAAGCCAAATACGGACCCAGTAAACGGGACA CAGGTGTACATTGTGATAGTGTC ACTGCTGACCGTTGTCTGCTGGTGTGGCAACTCATATCTGCAAAGATACACCGGCGAAAT GGGCATTATTGCTATTGTCCCAT TGGTTGCGTTCTTTGGATTTGGCGTTCTCAATAAGGATGATTTCAACTCGTTTTTGTGGA ATGTTGTTATGCTGGCCATGGGT GGCTTGTCATTAGGTGAAGCCGTGAAGAGCAGTGGCCTTTTGGCAGCCCTCGCGTTAGAC ATCAGCAATCTGGTTACCGGGCT CAGCTTATGGCAGGTCGCGGCCGTATTCTTTGGCATGGTTTTGGTGGCGACGACTTTCAT CAGCCATACGGTTGGCGCTATGG TCATTCTACCGATAGTGCAGTCTGTCGGCGAGGCCATGGCCAGCCCGACGCACCCGAAGC TGCTTGTCATGGGCGCGGCTCTC ATGTGCTCAGGCGCCATGGGTCTTCCAGTAAGTGGCTTTCCGAACATGAACGCCGTTAGC CTCGAGGACAGCACTGGCAATGC TATTGTTAGCACGAAAGACTTCCTCCTCGTGGGTGTGCCATCATCTTTCTTCGCATATCT GGTCATAGTTACGCTTGGGTACG TCCTGATGCTCTTGGTAGGGTTA

>Planophila_terrestris . PTCI

ATGAAGTTTTCCCACTCCCTCAAGTTCAACAGCGTCGCAGAATGGAGGCAGCACTAC ATAAATTACGGCGCCTTGAAGAAGCT GTCTTATGCGATCGAAAAGCAGGAGGAGGAAGGCCGGCAGCGCGAGATGTTTGCGCAGCA AAGCATGGACCTGCGGCAGCGCT CGATGCGCCAGAGCGTCGATCTGCCGCGGGGCGCAGTGGAGGAGGACGAAGCCCGGCGGC GCGCGTCGCTCGACGCATCCTCC TCGTTCACGGGCTCCGTTCAGCAGCCGCTCCTGCAGCGGCTCTCGTCTGGCCTGGGCGGG TCTTTGCGTTTGTCCATGCTGGA GCGCAGTGCGGAAGAGGGCGGCAAGGTCTCGCAGGCCGACTTCCAGCGCAGCCTCGACTC GGAGCTGCATAAGATAGTGGACT TCTACATCACAAAGGAGGCGGAGCTGAAGAAGGAGCTTGCGGCCGCGGAGCTCGATGCCC GCGCCGCCGAAGCGTCGTCTGCG GGATCGTCTGGCTTTGCAGAGATGCAGGCGGAGCGGCTGCCGCGGCCGTCGTTCTGGCGG ACCGCCGCGTCCGACGCGCTCAA AGCCAAGATGCACGAGCGCCTGTGCTCGCTGTACGTGCAGCTGGTGGACCTGCTGAACTT CATCGAGCTCAACCGCACGGGCT TCCGCAAGATCCTCAAGAAGCACGACAAGGTGACCGACGTGTCGCTCATGACCGACTACA TGCCCGTCGTGACCAGCAAGCTG AGCTCCAAGCGCGAGGAGGACCTTGGGGCGATGATCAATGAAGTCATCAAGCTGCACGCC ATGGTAATGCACAACTCAGACAC GAACGCTTCGGAGGTCGACCTCAAGCGCAACTTGCGGGATCACGTGACATATGAGCGCGA CACCATCTGGCGCGACATGGTTG CGCTGGAGCGCCGCAACATTACTGTCAAGGTGCCGGAGGGGGCGCCGACGGGTGGGTTTG CAAAATGGTGGCAGATATACCAC ACGCCCGTCATGGTGGCGGCGGCGCTGCTGCTCTTTTTCGTCATCCTCAACATCGACATC TGGCCGAACGACACGCCCAAGCG CCGCTGCGCCGCGATGCTCGCTCTCCTCGTCACGCTGTGGACCAGCGAGGCTTTGCCACT GTACGTCACGTCCATGCTGGTGC CCCTGCTGACTGTGTTGCTGCGCATCCTCCCGGACGAAGCTGCCCCAGACGGACACCCTC AGCAGCTGCCGGCGCCGAAAGCC GCGGAAGCCGTCTTCAAGGTGATGTTTTCGCAAGTGATCATGCTGCTGCTTGGTGGCTTT GCCATCGCAGGCGCTCTCTCAAA GCACTACATCGCCAAGGCCATGGCGTCCAATATCTTGTCCCGCGTCGGCACTCGCCCACG GGACGTCATCCTGGCCAACATGT TTGTTGCAACGTTTGCCAGCATGTGGATCTCCAACGTGGCGGCGCCGGTTCTGTGCTTCT CGCTCATACAGCCGATCCTGCGC ACGCTGCCGAGTCACCATCCCGTCAGCAAGTGCCTGGTGATGGGCATCGCGCTGGCGTCC AATGTGGGCGGCATGACGTCGCC GATCTCGAGCCCCCAGAACATTTTCGCAATTGAGCTGATGGCGCGCGACGGCGCAGCGCC CAACTGGCTCACGTGGTTCGTGG TCAGCATCCCGGTGTCGATCGCGTCCAACCTCTTCATCTGGGCCATCCTGCTGGCGGTGT ACCGGCCCGGGCTCGCGATCCGA GAGGTCCGCCACATGCGCCGCGTGCAGGAGCCGATCACCAAAGTACAGGTGTATGTGGTC GCTGTCAGCAGCCTGACGGTCGC GCTCTGGTGCGCCAGCTCAGCGCTGGAGCAGTACCTCGGCAGCCAGGGCATCATCGCGAT CTTTCCGCTTGTCATGTTCTTCG GCCTCGGCGTTCTCGACAAAGACGACTTCAACAACTTTCTCTGGCATGTTGTCATGCTCG CTCAGGGGGGCCTCGTGCTTGGG CTGGCGGTGAAGGGGTCGGGCCTGCTGGCGGACGTGGCAGGCGCGATCCGCGGCGTCACG GCCGGCATGTCGCTCTTCGGCAT CCTCTTCACGTTCTGCGCGCTGGTGCTCGTATGCACGACCTTCATCTCGCACACCGTCGG CGCGATGGTCATCCTGCCCATCG TGCGCTCCGTGGGGCAGCACCTCTCCCCGACGCCGCACCCGCGGCTGCTCGTGATGGGCG CCGCGCTCGCGTGCTCCGGCGCG ATGGGCCTGCCCGTGTCCGGATTTCCAAACATGAACGCGGTTTCGCTTGAAGATGCCACT GGAAAGACTTACGTGAACACACT CGATTTTCTCATGGTGGGCCTGCTGGGAAGCTTGACTACGTTCTGTGTCATTGTGACGCT GGGCTACGCTCTGATGATG

>Pteromonas_angulosa . PTCI

ATGAAGTTCACGCACCAGCTCAAGTTCAACTCCGTGCCGGAGTGGCGCGACAACTAC ATTGACTATGCGCACCTCAAGAAGTT CATCTTTGCCATCGCGCGGGCGGAGCAGGATGACATCCAGCAGCTGCATGGCGGTGCTGA TGGCACATCCATGCCCTTGCTAC AGCACACGGTCACCATGGGGCACGACAAGGTGGACGCCACGGAGGACAACCTCCGCCAGG CGCTGGACAAGGAGCTGCAGCGC GTGATCAGCTTCTACATGACCAAGGAGGCGGAGACGCTGGCCAAGGTGACTTCCATGGAG CTTGAGATCAACACGCTGGAGAT GACCCGTGCCCCCCGAGGCACCTCCATGGACCACATGCAGGGAGCCCAGCGTGGAGGATC TGGTGGATCCGGTGGCTCCGGAG GCGGAGTGGACCTGAACCAGCAGCTGCCATCGCCTCCCCAGGGCCTTGCCACGGACGTGG AGGCCACCCCCCCAGCGGCGCAC GTGAGCGCCAGCATGGCAGCCCCCAAGTCACCTGGCACCATGTCGCGCCAGATGCGTGTG GACTTCTGGGCGCGCGCCAACCC CGGCGCCAGGCACGGCGGGTCGTTCGGCGGCGGCTCCGCGGCCTTCCTCTTCGTGCGCGA GCTGCAGTCCCACAAGGAGCGCC TGCGTGTCGTGTTCAGCGACCTCTACCTGCAGCTGCACGACCTGCTCAACTTCCTGAGGG TGAACAAGGAGGGCTTCCGCAAG ATCATCAAGAAGCACGACAAGATGACGAGCAGCAACCTGAAGGAGCACTACTGGCCAGTC CTGGAGTCCAAGTACCCCATCGT GCGCGCCGACATGCTGGAGGCAACCATCAACTCGCTGGTCGACCTCTACGCAGTCATCTA CAACCAGGGCAGCGTGGAGCTGG CCAAGGACCACCTGGACAAGCTGCTGCGCGACCAGATCAAGGTGGAGCGCAACACGGTGT GGCGCGACATGGTGGCCCAGGAG CGCCGCACCACCGCGGCCGTGGTGGAGGGTGCGGTCAGGCGGCCCTGGTGGGCCCAGCTG ACCCCCCACATCGCACTGCTGAG

CAGCGTGCTGGTGTTTGCAGTCCTGCTGTCCATGGAGGACATCTTCGAGGGCGAGCC GGAGAAGCAGAACTGCCTGGCGCTCC

TCATCTTTGTCTCCATGCTCTGGGCCACCGAGGCGGTCCCACTCTACGTCACCTCCC TCGCCATCCCCCTGCTGGTGGTGGTG

CTCAAGGTGCTGATGGACAAGAGCGTGGACCCCCCCGTGCGCATGACGGCGCAGCAG GCCGCGCCCGCCATCTTCCACTCCAT

GATGTCGCAGGTCATCCTGCTGCTGCTGGGCGGCTCTGCCATCGCCTCCGCCCTCAC CAAGCACTTCATCGCCAAGAAGCTGG

CCCAGGTGGTGCTCTCGCGCGCCGGCCGGCAACCACACAATGTGCTGCTGGCGCTGA TGTTGGTGGCCGTTGTTGCCTCCATG

TTCATCTCCAACGTGGCTGCGCCTGTGCTGTGCTGGTCGCTTGTGGACCCGATCCTC AAGGCCTTTGACGCAGAGAACCCGTT

CTCCAAGTCGCTGGTCATGGGCATCGCGCTGGCCTCCAACATCGGCGGCATGACCTC CCCCATCTCCTCCCCCCAGAACATCT

TTGCCATCGAGCGCATGAGCATGGACGGCCACCCGCCTTCCTGGCTGGCGTGGTTCG CCGTCGCCCTGCCCGTCTCCTTCATC

TGCATCCTGGTGTGCTGGGGCCTGATCCTCGCCGTGTATCGCCCCTGGACCAAGGTG GCTGAGGTGAGGCCCCTGAAGCCAAG

CTCCGACAAGGTCACCTTCACGCAGTTCTACGTTGTGGCCGTCACCGCCGTCACCGT CACCCTGTGGTGCTTCAACACCCAGC

TGCAGCCGTACACCGGGGAGATGGGCGTGGTGGCCACCATCCCCATCATCGCCTTCT TTGGCTTTGGTGTGCTCAACAAGGAC

GACTTCCTGTCCTCCCCCTGGCTGGTCATGACGCTGGCCATGGGCGGCCTGGGCCTG GGTGAGGCGGTCAAGAGCAGCGGCCT

GCTGCTGTCCATCGCACACACCATCGGCGACGTGGTGCAGGGCATGGACGTCTTCAC CGTCTGCTGCATCTTCTGCGCCCTGG

TCCTGGTCTGCACCTCCTTCATCAGCCACACGGTGGGCGCCATGATCATCCTGCCCA TCGTGCAGTCGGTGGGCGAGCAGATG

CCCGGCCCCCACCACGCCAAGTTGCTGGTCATGTCCTCCGCCCTCATGTGCTCCGGA GCCATGGGCCTCCCTGTCAGCGGCTT

CCCCAACATGTTCCTCATCAGCAAGGACGACGGCACGGGCAAGAACTACATCAACAC GCTCGACTTCATCAAGGTGGGCGTGC CCGGCTCCATCGGCGCCTACTTTGTGATTGTCTCCGTCGGCTACCTCCTCATGCTGGCGG TC

>Asteromonas_gracilis-A . PTCI

ATGAAATTTTCGCACCAACTGAAATTCAATAGCGTAGCTGACTGGAAAGAGCATTAT ATTCATTATGCTAACCTTAAGAAAAT

CATTTACGAAATCGCTCGTCTGGAGCAGGCGCGAGCCAATCCAGATGCCGGAGAGGT CACAGAATTGGGGGAGCCCTTACTTT

CCAGACCACCAGTTCAAAATTACGAACTTGCTATTTCTACAAAGGAATCTGAATTTG TCGGGGAGCTTGATCGTGAGCTGGCT

CATATCATTACATTCATCTTGCGGAAGGAGGCTGAGTTGGTGAGCCAGCTTGAAGCA CTAGATCTCGAGGTCCACAGCTTGGA

GAGTGCAGATCCCCAATATCGTAAGAGCTTGGATAGGGATTTTTTGGACCAGGATGC TGCAGTAGGAGCTGAGAATGGGACCG

GGTATCAAGCGGGCATTCCAGCTCGACCTGAGCGAATCAAGTTCTGGTCCCAAGGTG CTGAACCTCACCTTGCTGCTCGTGAT

GCGCGAAATGTGGCCCAACTGAAACCTGCACAAAGAGAGGCTCTGTCACAGAAATTC GTCGACCTTTTTACCACTTTAAATGA

CCTATTGGAATACCTGGTCCTCAACCGCGAAGGCTTCAGGAAGCTGATCAAGAAGCA TGATAAGATGACGTCTTCAGCAAGCA

TGAAGGAAAGCTACTGGCCTCTGATTGAGCAGCGTTATCCAGAGCATAAGAGGGTTT CAATGGGACAGAATATTGAGCGGCTG

GTGGACCTGTATGCTATTCTGTTCGAGGGGGGTGACACGTCGTCAGCCAGAGAGGCC CTGTCACAGAATCTGCGGCAGCATAT

CAAAGTAGAGCGAAACACTGTCTGGAGGGACATGGTGGCAATGGAGAGGCGCACAGT TGCTGCAACAGTAGACGCGCCTAAGA

GGAAGAGAGCCTGGTTCAGCACTCACAGGAAGCACCTGTCCCTCCTGCTGGCTTCGA TTGTGTTCGCATCTATGCTCAGCTTG

AAGCTTTTTAAAGAGCCTGAGAAATCGAATTGTGCGGCGATTCTGGTGTTCGTGTCG CTTCTCTGGGCGAGTGAAGCTATCCC

CTTATTCGTGACCGCAATGGTGGTCCCTGTCCTGGTGGTGTCGCTGCGTGTTCTTGT TGACGACTCTAGCGCAAAGCATCCCA

TCCGCCTTTCTTCCACGGATGCTGCCAACGCCATCTTCCACGCCATGTTCTCCCAGG TTACCATGCTGCTCCTGGGTGGCTTC

ACCATCGCAGCCGCCTTGTCCAAGCACTTCATTGCCAAACAAATGGCGGTTGCAGTG CTGTCCAGGGTGGGCAGGCTTCCGCG

CAACGTCCTTTTGGCGTCGATGTGTGTCGCTGCCTTCGCATCCATGTGGATCTCCAA CGTTGCCGCACCGGTGCTGTGCTTCT

CTCTAGTGCAGCCCATTCTGCGCACACTGGACGTGAGCTCACCCTTCGCGAAAAGCC TCGTCATGGGCATTGCCCTCGCCTCA

AACATAGGGGGTATGACCAGCCCTATCTCCTCCCCCCAAAATATCTTCGCCATCGAG CGCATGTCCATGGATGGCGTCGCTCC

CAGCTGGCTGTCCTGGTTCGCGGTGGCGCTACCCGTCTCTTTCATCAGCATTATCCT CTGCTGGCTCCTCCTCCTCCTCGTGT

ATCGGCCTGGGATGTCTACAACCGAGGTCCGGCCTCTGAAGCCGTATACGGACCCTA TGAACATGACGCAGGTGTACGTGATT

GTGGTGTCCATGGTCACGGTTTTGCTGTGGTGCGCCAACTCCGAGGTGCAGCAGTTT GTGGGGAACATGGGGGTTGTGGCGGT

GCTGCCCATGATTGCTTTCTTCGGCTTTGGGGTGTTGAGCAAGGACGACTTCAATGG CTTCCTATGGAACGTGGTCATGCTGG

CCATGGGGGGCTCGGCCCTGGGGGAGGCTGTGAAGAGCAGCGGCCTGCTGTCCACGT TTGCAAATGACATCAGCGGGCAGGTA

CATGGGCTTGACTTGTGGACCGTCAGTGCGATTTTCTGCGGTGTCGTGCTCATCTGC GCCACGTTCATCAGCCACACGGTGGC

GGCAATGGTCATTCTCCCCATTGTCCAGTCCGTCGGCGAGGCGATGCAGGAGAACCC TCATCCAAAGCTGCTGGTCATGGCCA

CTGCCCTCACGTGCTCAGCTGCCATGGGCTTGCCCGTGAGTGGCTTCCCCAATATGA ATGCTGTGTCACTGGAGGATGGCACC

GGCCAAACCTTCGTCAACACCCTGGACTTTTTGAAGGTGGGCGTCCCCAGCTCCGTC GCTACGTATTTCGTGATTATTTCTGC GGGCTACTACTTCATG

>Haematococcus_pluvialis-B . PTCI

CGGGTGCGGTTCTGGGCAGAGCTGGGCATGCGGCGCGGCGGCAGAGACTTGCGGTTT GCCCGGGATGTCATGCGCATCCGCTT

CCATGACTTGTACACCAGCCTGAACGACCTCATAGAGTACCTCAGCTTGAATAGGGA GGGGTTCCGCAAGCTCATCAAGAAGC

ATGACAAGCTGACCAGCACATGCCTCAAGGAGGCCTACTGGCCTGACTTTGAGCGTC GCTACCCCATGAAGCGCAAGGAAGAG

CTGGAGCGGCACCTTGATCGCCTCATAGAGCTGTACGCTGTCATGTTTGCTGGCGGA GACACGCGCAAGGCCAGGGACCTGCT

GCTGAAGACGCTGCGAGAGCACATCAAGGTGGAGCGCAACACAGTGTGGAGGGACAT GGTGGCACTGGAGCGGCGCACTGTGG

CAGCCACTGTGGGCGCTGCTTCTGGGGTAGCTCGCCTCAGCAAGTACAAGGCATACA GCGAGCGCCTTGGCCTGCTGGCAGCC

CTCCTGGTCTTTGCTGCGCTGTTGTGGGCACCAGTGTTTGAGGAGAAGGAGAAGAGC AACTGCCTGGCCATTCTCGTCCTGGC

ATCCATGCTTTGGGCCACAGAGGCCATTCCTTTGTTTGCCACGGCCATGCTCATCCC CGTACTGGTGGTCATGCTCAGGGTGT

TGGTGGACCACGGGCGGCCTGCAGGTGCCCAGCGCCTCACCCCTCAGGAGGCGGCCC CCCTCATCTTCCACGCCATGTTCTCC

CAGGTCATCATGCTGCTGCTCGGGGGGTTCACCATAGCTGCTGCCCTTTCAAAACAC TTCATCGCCAAGCAGATGGCAGTAGC

AGTACTGTCCAGGGTGGGGCGTAAGCCACACAACGTGCTGCTGGCCTCCATGTTTGT GGCCATCTTTGCCTCCATGTGGATCT

CTAACGTTGCTGCGCCTGTGCTGTGCTTCTCCCTGGTGCAGCCCATACTCAGAACCT TGGATGTAAACACTCCCTTTGCCAAA

TCCCTGGTCATGGGGATAGCCCTTGCCTCAAACATCGGTGGTATGACCTCTCCTATC TCCTCACCCCAGAACATCTTTGCCAT

TGAGCGCATGTCCATGGATGGCAACCCACCCAGCTGGCTCAGCTGGTTCTTCGTGGC ACTGCCTGTGGCAATCATCAGCAACT

TCATCTGTTGGGCCGCCATTCTCCTGGTGTACCAGCCCTGGCACAAGACGTCTGAGG TCCGGCCCATCAAGCCCAGCTCGGAC

CCTGTCACCTGGACGCAGGTGTATGTCATATTTGTGTCGCTGGCGACGGTGGGTTTG TGGTGCGGCAACGTGGCCCTGCAGAA

GTACACAGGGGAGATGGGTGTGGTGGCGGTGCTGCCCATGGTGGCATTCTTTGGGTT CGGTGTGCTCAACAAGGATGACTTCA ACGGCTTCTTGTGGAACGTGGTGATGCTGGCCATGGGCGGTTCAGCCCTGGGGGAAGCTG TGAAGAGCAGTGGCCTGCTGTTG

ACCATTGCTCAAGGCATCCAAGAGATGGTGGATGGCCTGAACCTGTGGACTGTCACC ATCATCTTCTGCGCCTGTGTGCTGGT

GTGCACCACCTTCATCTCTCACACAGTGGGCGCCATGGTCATCCTGCCTATCGTGCA AAGCGTGGGGGAGAGCATGCCCGGCC

AGCCCCACCCCAAGCTGCTGGTCATGAGCGCAGCACTCATGTGCTCAGGCGCCATGG GCTTGCCCGTCAGCGGCTTCCCCAAC ATGAATGCCGTGTCCCTGGAAGACTCCACAGGGCAGACATATGTCGGAGCACTCGACTTC ATCAAGGTCGGGGTACCTAGCTC GATCCTAGCGTACGCCGTGATCATCACGGTCGGGTATTCGTTGATGTTGATCATTGGCTT C

>Chlamydomonas_bilatus-B . PTCI

CAGACCATCATGCTCCTGCTCGGTGGCTTTGCCATCGCCGGCGCGCTGAGCAAGCAC TTCATCGCCAAGCAGCTCGCGATCGC

CGTGCTGTCGCGCGTCGGGCGCAAGCCCCACAACGTGCTGCTCGCCGCCATGTTTGT GGCGACGTTTGCGTCAATGTGGATCA

GCAACGTGGCAGCACCGGTGCTCTGCTTCTCCATCATCATGCCCATCCTCAAGACGT TGGACACAGCCAGCTCGTTCGCCAAG

TCCATGGTGATGGGCATCGCGCTCGCGTCCAACGTGGGCGGCATGACATCGCCCATC AGCAGCCCGCAGAACATCTTTGCCAT

CGAGCGCATGTCCATGGACGGGCAGCCCCCCTCCTGGCTCGCCTGGTTTGCGGTCGC ACTGCCCGTCGCAACGCTCTGCAACC

TGCTGTGCTGGCTGCTCATCCTGGCCGTGTACCAGCCCTGGCGCACCATCAATGACG TGAGGCCGCTCAAGCCCAACACAGAC

CCCATGAACTTCACACAGGCTTACGTCATCTTCATCTCATTGGCGACAGTGGGGCTG TGGTGCGCCAACACCAGCTTGCAACA

GTACACTGGCGAGATGGGCGTTGTGGCTGTACTGCCCCTGGTTGCCTTCTTTGGCTC CGGAGTGCTCAGCAAGGATGACTTCA

ACGGCTTCCTCTGGAACGTGGTCATGCTGGCCATGGGAGGCCTGGCGCTTGGCGAGG CTGTAAAGAGCAGCGGCCTGCTCCAG

TCCATGGCAGAGGGCATCACGGAGGTGACGGATGGGATGGACCTCTACCAGGTGCTG CTGGTCTTCTGCCTCATGGTGCTCAT

CAGCACCACCTTCATCAGCCACACGGTCGGCGCGATGGTGATCCTGCCCATTGTGCA GAGCGTGGGTGAGGCTATGCCGGGCA

GCCCGCACCCCAAGCTCCTGGTCATGGCCAGTGCTCTCATGTGCTCAGGCGCCATGG GCCTGCCAGTCAGCGGCTTCCCCAAC ATGAACGCCGTTTCACTCGAGGACTCAACCGGGCAGAACTACGTGGACACGCTGGACTTC CTCAAGGTTGGAGTGCCAGGCTC GGTACTCGCCTATGGCGTCATTGTCACCCTGGGCTACAACCTCATGCTCATGGTGCGCTT C

>Vitreochlamys_sp . PTCI

ATGAAGTTTAGCTCTCTTTTAAAGTTCAACTGTGTACCTGAGTGGCGTGACCATTAC GTTCAGTATGGCCACCTGAAAAAGTA

CATATACGCGTTGGCGAAATGGGAAGCGGACCACCTACACGAAACTCAGCCTCCGGA CCTGGAGTCGCTCACGTCTCCCTTGC

TGCCAACCAGTGGACTGGGGTCTGCTTATGGACCCAGCGAGGAGGCCTTCCAGCGTG AGCTGGACCAGTCACTGCTGGAGGTG

ATCCGCTTCTTCAGCATGAAGGAGGCAGAGTTGGTGTCCAAGTGCCAGGCGCTGCTG CTGGAGCTGGTCTCGGTGGAGAAGCT

GCCGTCCGGGTCGTCCGCGGGGCGCCGCTCCTTCAGCGGCGCCTCCACGCCCTCGGG TGCCGCCACGCCCACGTCCTCGGCGC

CCCACGGCTCCACCGCCAACGTCCTGGCCGGCGCCAAGTCGCGTCTCACCGCCTCGC CGCAGACGTCGCCCCACGTGACGCTC

AGCGGCGCCAAGGGCGCGGGGGGGCTGGGCGGCATGCACTTGTCGCCCTCCGTCGTG CATCTCATGGACGTGGCTAACCACAA

GGACCACCGTACAGTGCGTGTGGAATTCTGGCGCAAGCCCCCGCGCCGCCTGTTCCA GAACCTGGAGGCCGCTCGCAGCAAGC

TCAAGCCCAGGCTCCAGGAGCTGTACATTGCTCTGCACGACCTTGCCGAGTTCCTCC ACCTCAACCGCGAGGGCCTGCGCAAG

GTCGTGAAGAAACACGACAAGCTGACCCGCCGGGTCACGCTCAAGACCAAGTGGTGG CCCCAAGTGGAGCACCTCATCCCGCC

CACCAAGAAGGAGGAGGTGGACAGGGCAGTTTCGGAGCTGGTGGACAACTACGCGGT CTTGTTCACGGGCGGCTCAATGGCGG

CTGCTGAGCAGGCGCTCAGCCAGGGGCTGCGTGACTACGTGACCATGGAGCGCAACA CCGTGTGGCGTGACATGGCTGCCATG

GAGCGCCGCTTTGCATCCCTCGCAGTCAAGAAGGGCTCCGCAAGCTTCATTGCCACC TGGTGGACGCAGCCGCTCAAGATCGC

CGTGAGTCTGTTGGTGCTGTCGGTGCTGCTCAACGTGACGATCTGGCCCGAGGACGA GAAGAACAACTGTCTGGCGGTGCTGC

TGTTTGCGTCCATGATGTGGTCGCTGGAGGCTATCCCGCTGTTTGTCACGTCCATGA CCATCCCCTTCCTCGTCGTCTGCTTC

CAGCTGCTGGTGGACCATTCGCAAGACCCACCCGTGCGTATGACCGCGCAGCAGGCT GCACCCGCCATCTTCCACGCCATGTT

CAGCCAGGTCATCATGCTGCTGCTGGGGGGCTTTGCCATCGCAGCGGCGCTTTCCAA GCATGCCATCGCCAAGCAGATCTCAG

TGGCTGTCCTCTCACGCGTCGGGCGTAAGCCGCGCAACGTGCTCCTCGCTAGCATGT TTGTGGCTACATTTGCGTCCATGTGG

ATTTCAAACGTGGCTGCGCCCGTGCTGTGCTTTGGCCTCATCCAGCCCATCCTCCGC ACCCTCGACCCAGGCCACCCTTTCGC

CAAGTGCTTGGTGATGGGCATCGCGCTGGCCAGCAACGTGGGCGGCATGACGTCGCC CATCAGCTCCCCGCAGAACATCTTTG

CCATTGAGCGCATGTCCGTGGACGGCAAGGCGCCTTCGTGGCTGTCGTGGTTTGCCG TCGCGCTCCCTGTGTCCATTGTGTCC

AACCTGATCTGCTGGGCGGTGCTGCTGCTGGTGTACCGCCCCTGGACCAAAATCCAG GAGGTACGACCCATCAAGCCCATCAC CGACCCCATCAACGGCACGCAGGTGTACATCATCGTGGTGTCGGTGGTGACGGTGGCGCT GTGGTGCAGCAACACCATCCTAC AACCGTACACGGGCGAGATGGGC

>Botryococcus_terribilis . PTCI

ATGAAGTTTTCCCAGCAGATCATATTCAATTCCGTTCCTGAATGGAAAGATAACTAC ATCAGCTATGCCCAACTCAAAAGGTT

GATATACTCCGAGGAAGCTGCACGTTTAGCGGCTGGCAGAGATGGAGCCCGGGGGGC ATCGATGCGGCTGCAGCGTCTGCGGA

AGACAGCGATGCAGTTCAAGGACGATCTCAAGAAGGAAGCTGACAAGGTCGTCAGGT TCTTCCATGAGGAGGTGGAGAGTATC

TGGAGCAGGTTCCATCTGGTACTGCACGAGATCGAATGCTTTGAGCAGCAGGAGTGG CTTCCCCCCTCTGCTGCGGGCCTGGA

CACCTCCCCGACCAGCCCCCTTCTCTCCGCCACATCCATGCCCGCCACCCCCAAAAC GCCCCCCATGCCAAGCCCGCGCTCCA

GCCCCTTCCAGAGGGCCGGCTCAGCCGGCATGGGGCTCTTGCGGACGGTGACGGGGA TTCTCCCGCGGCCGAAGCGCAGCCCT

AGAACTTTGTCTGGGCCCTTGCTTGAGGTGGAGGATGGGACCCCCCGGGATGATTCT AAGACCTGGATTTGGCAGCAGGCAGA

ACCCAGTATTGCCCGGAAACGGGACGAGCTCAGGGGTCAGTTGTCGGAGGTGTACCA GGATGCAAACAACATGATCGAGTTCC

GGAGATTGAACCTGGACGGCTTTCGCAAGATCCTGAAGAAGTACGACAAAGTCCTGG AAGGCCTCCCCGGAGCAGAGAAACTG

TCTGAATCACAGTTTCCTGGGATCAAGGAGAGACTCGAGGCACTGGACTTGACACGG ATGCAGGAAGTGGAAGGGGAGGTGGT

GAGGTTGTACGCGCGCGTGTGCTGCTCCGGTGTATATGCAGTTGCTGAGGAACTGCT CAAGAAGCAGAAGAAGGATCGCATCG

TCTTTGACCGGAGCACCGTCTGGAAGGAGATGGTCGAGCGGGAAAGAAAACGCAGCG CTGCGCACGTGGAGGGCGGGGCCGCG

CCTCGTGCCTGGTACCAGCGCCACTGGCAGCTCATGGCCTGCGCCTTCTGCGGGGCC GTGTTCCTCGCACTGCTCTGGGTGCC

CATCTTTGAGGAGGTGGAGAAGCAACACTGCGCCGCCCTCTTGGCCTTCGTCTCACT CCTCTGGTGCACGGAGGCCCTCCCGC

TGTTTGCCACTGCCATGCTGGTGCCCTTCCTGGTGGTGACCCTCGGGGTGTTGGTGG ACCGCAGCGTTGACCCTCCCCACCGC

CTCACGCCCCAGGAGGCTGCCCCCGCCGTCTTCAAGACCATGATGTCCCAGGTGATC ATGCTGCTGCTCGCGAGCTTTGCCAT

TGCCGGAGCGCTGAGCAAGCACTTCATCGCCAAGTGGCTGGCGTCGGTCTTCCTGTC GCGCTTCGGCAAGCGGCCCTCTCGGG TGCTTCTGGCCAACATGGGGGTGGCCACGTTTGCCAGCATGTGGATTAGTAATGTGGCTG CGCCTGTGCTCTGCTTCTCCCTG CTGCAGCCTATCCTCCGCAACCTCTCTGCAAAGGACAGCTTTGCAAAGGCACTCGTGCTA GGCATTGCCCTAGCAAGCAATCT GGGGGGCATGACGAGTCCGATTGCCAGCCCCCAGAACCTGTTTGCAATCCAGCAGATGTC GGTCGGGGGCAATGCCCCCTCCT GGCTCCAGTGGTGGTTGGTTGCTCTGCCTGTTGCCATTATAGGCAACCTGGTGTGCTGGG GCCTGCTGCTGTGGAGATACCAG CCGCCCCCAGATGACGTGCGCGAGCTGCATGAAGCCAAGGGGTTCCACATCAACCCGACC CAGATGTATGTGGTGGCTGTCTC ACTCCTGACCGTGGGGCTCTGGTGCTGCAACGGCTACTTGACTCCCTACTTTGGGGAGAT GGGCGTCATCGCCATCATCCCGC TGGTTGCGTTCTTCGGCACGGGTGTCCTGGACAAGGATGACTTCAACGCATTCCTGTGGA ACGTTGTGATTCTGGCAATGGGC GGGATGGCGCTGGGATCTGCAGTGGACAGCTCAGGTCTTCTGCTCACAATCGCAAAAAAG CTGGAAGGTCTGGTGTCCTCGCA CGGCCCCTGGGTGGTACTGGCCATTTTCTGCGCGCTGGTACTGTTTGCGACGACGTTTGT CTCCCACACGGTCGGGGCCATCG TCATCCTCCCGATCGTGCGAGCCGTCGGGGAGACCATGACGGACCCACACCCAAAGATGC TGGTCATGGGGGCAGCCCTCATG TGCTCCGGTGCCATGGGCCTGCCCGTCTCCGGCTTCCCCAACATGAACGCAATCTCCCTT GAGGACAAGACAGGCGTCAACTA CCTGACGACCAAAGACTTCCTGCTGGTGGGGGTCCCGTCGTCCGTCGCCACGTGGGGCAT CATTGTCAGTGTGGGCTACGTGC TCATG

>Eudorina_elegans . PTCI

ATGAAGTTTACACATACCCTAAAGTTTAACGCAGCCGACTCGTGGAGGGAACACTAC ATTCAATATGCACACCTGAAGAAGTA CATTTACGCCCTTGCAAAAAGGGAGGCGGACCTCCAGGCTGGTGGCCATGTGCCCGACGA CGAGTCTCTGCACGCGCCGCTTG TACCGGAGACCTCTCGCTCTGGACAGGGCGTCAGCGAAGAAGGCTTTCAGCGGGAACTCG ACGCCCAGCTGGCCGCCATCCTT TCATTTTTTGCTGTCAAAGAAGCGGAACTGCTTGCGAAGGTGTCGGAGTTGGAGTTGGAC TTGCAAAGTTTGGAGAAGATACC TAATCGGCAAGAAGCGTCGACCATGTCGCGCCTCGGTGGCGGCGGTGGGGCAGCGGGCAG CAACCCAACCGGCAGCCCTGGAA CTGCCGCCGTGGCGGCTGTCTCTGCGGTGTTGCCCTCCTTGTCGATTCTCTCTGTCAGTC CCTCCACCCTCGACCTGGCGCGC ATGGTGAACTCCACTCCGCCGGAGGAGCACCGCAAGGTCCGGGTGAAGTTCTGGGAGAAC CCGCCAAGGCACGTGTTCTTACC GAGCCTGCATGCACGACGGACAAAGCTCCAGGGCCGCTTTCAGGATCTGTACATCGGCTT GCATGACCTGCGGGAGTACTTGC ACATCAACAAGGAAGGCTTTCGCAAAATTATTAAGAAGCATGACAAGTTGACGCGTGCAG TGGATCTTCGCGTGCGCTGGTGG CCCAACGTTGAGGCGCACCTGGCACCTGATGCCAAGCAGCAGGAGCTGGATCGGGCCATT GCAGCGCTGACGGATCACTATGC GGTGCTGTACATGGGGGGCGACGTGGCTAAGGCTGATGAGCAGCTGTCCCACGGCCTCCG TGAGCATATTACGGTGGAGCGGA ACACGGTGTGGCGCGATATGGCGGCCATGGAGCGCAAGTACGCAGCGGTGTCCGTCAAGC AGGCAGCGGCTCCTGGGGGCCTC AGAGGCAGCTACCGCAAGCTCGCGGCCTGCTGTGCAGTGTTCGCAGTGATGTTGCACGTG AAGGTTTGGGGGGAGGATGAGGA CGAGCCCAAGAACAACTGCTTGGCGTTGCTGGCGTTTGCGTCTCTGCTGTGGTCGCTTGA GGCCGTCCCGCTGTTCGTAACCA GCATGGCCCTTCCGCTGCTCATTGTGGTAACGGGCGTACTGGTCGGGCCCGACAAGCAGC CCCTCACCCCGCAGCAAGCGGCC CCGGCCATCTTCCATGCTATGTTTTCCCAGACGATTATGCTGCTGCTGGGCGGCTTCGCA ATTGCGGCTGCACTGTCCAAGCA CGCCATTGCGAAGCAGGTGGCGGTTGCTATTTTGTCCCGCGTGGGGCGCAAGCCCCGCAA CGTGCTTCTTGCTGCGATGTTCA CCGCAACCTTTGCGTCGATGTGGATTTCCAATGTCGCGGCACCAGTGCTGTGCTTCGGGC TCATCCAGCCAATCTTGCGCACC CTTGACCCGGGTCATCCATTTGCCAAGTCTCTGGTGATGGGGATTGCGTTGGCGTCGAAC GTTGGAGGCATGACATCGCCCAT ATCATCGCCGCAGAACATTTTCGCGATCGAGTGCATGTCATTCGACGGCCATCCCCCCAG CTGGCTTTCCTGGTTTGCCGTTG CCCTGCCGGTGTCCATAACATGTAACTTTGCCTGCTGGGCTGTGCTCCTACTCGTTTACC AGCCTGGGCGGGCAATCGCGGAG GTGCGACCTATCAAGCCAAACACGGATCCCATCAACGGGACTCAGGTTTACATCATCGTC GTGTCGCTGCTGACCGTGGCTGC CTGGTGCGCAAACACTTTCCTTCAAAGGTACACTGGTGAGATGGGTGTCATTGCGATTTT GCCGCTCGTTGCGTTCTTTGGCT TCGATGTACTCAACAAGGACGACTTCAACTCATTCCTGTGGAACGTGGTCATGCTGGCCA TGGGAGGGTTGTCGCTAGGTGAG GCGGTCAAGAGCAGCGGCTTGCTGGCAGCGCTCGCATCGGACATCAGCGGGGTGGTGAAG GATCTCACCCTGTTCCAGGTGGC GGTTATATTCTGCGGAATGGTGTTGGTGGCGACAACATTCATCAGTCACACAGTGGGGGC TATGGTCATCCTGCCCATCGTAC AAACTGTCGGAAAGGCCATGGAGGGGACGCCGCATCCAAAGCTTCTTGTTATGGCAGCGG CGCTGATGTGCTCAGGTGCCATG GGTTTGCCAGTGAGTGGCTTCCCTAATATGAACGCGGTTAGCCTGGAGGACAGCACTGGC AATGCCATCGTCAGTACGCAGGA CTTCTTGTATGTCGGTGTGCCTTCGTCAATAATCGCCTACGGTATTATAGTTACCCTAGG ATATGTGCTGATGCTGCTGGTTG GGCTT

>Pandorina_morum. PTCI

ATGAAGTTTACACACCAGCTGAAGTTCAACAGTGTCCCCGAATGGCGGGAGCACTAC ATTCAGTACGCACATCTTAAGAAATA TATTTATGCATTGGCCAAACGGGAGGCAGATCTGCAGGCTGGAGGCGACGAAGATGGACT CTTATCACCCTTGGTACCGGAGA CGTCTCGGGCCGGTCAGGGTGTCAGCGAGGAAGGCTTTCAGCGGGAGCTTGATGCTCAGC TTGCGTCCATTCTTTCGTTCTTT GCCGTCAAAGAAGCGGAGCTACTTGCGAAAGTGTCGGAGCTGGAATTGGATGTACAAAGC CTGGAAAAGATACCGAGCCGTCA GGAGGCGTCTGTCTCCCTATCACGCTTGGGCGCTGGCGGGGGATCAGGGGGAGGGAACCC CACGAGCAGCCCCGGGTCGGCGG CCGTGTCGGCCGTGTCCGCCGTGCTGCCCTCGCTGTCGCTGCTATCGGTCAGCCCCTCCA CACTCGACCTCGCACGGATGGTC AGCTCCACCCCGCCCGAGGAGCACCGGAAGGTGCGGGTCAAGTTCTGGGAGAACCCGCCG CGGCACGTCTTCTCACCAAACCT ACACGCGCGGCGGGCGAAGCTGCAGGGTCGTTTCCAGGACCTGTACATCGGCTTGCACGA CCTGCGCGAGTACCTGCACATCA ACAAGGAGGGTTTCCGCAAGATCATCAAGAAGCACGACAAGTTGACGCGCGCGGTAGACC TCCGAGCACGATGGTGGCCCAAC GTGGAGGCGCACCTCGCGCCCGACGCGAAGCAGCAGGAGCTCGACCGCGCCATCGCGGCG CTGACGGACCACTACGCGGTGCT GTACACGGGTGGCGACGTTGAGAAGGCTGAGGAGCAGCTGTCGCGCGGCCTGCGGGAGCA CATCACGGTGGAGCGCAACACAG TGTGGCGCGATATGGCGGCCATGGAGCGCAAGTACGCGGCCGTGTCGGTGAAGCAGGCGG CGGCGCCCGGCTTACTGCGGTTC AGCGCCAATCGGGCGCATGTGCGATGGGCAAAGCTGGCGCTCTGCTGCGTGGTGTTCGCC ATCCTGCTCAACGTGGACTTTTA CAAGGAGAACGATATGGAGCCGCCCGACGTACAACGGGCAAAGAATAAGTGCCTCGCCTT GCTGGTGTTCGCATCCATGCTGT GGTCTCTGGAGGCGGTGCCGCTATTCGTGACTAGCATGGCTCTGCCGTTTCTGATCGTCA TGCTGGGGGTCCTTATGGACTCC GACGGCAAGGAGCGGCTCCAGCCCAAGAGTGCGGCGCCCGCCATTTTCCACGCGATGTTC TCCCAGACGGTCATGCTTCTGCT CGGCGGCTTCGCCATTGCGGCTGCTCTGTCCAAGCATGCAATTGCAAAGCAGGTGGCGGC GGCCATCTTGTCGCGTGTGGGAC GGAAGCCCCGCAACGTGCTGCTCGCCGCCATGTTCACCGCGACGTTCGCGTCAATGTGGA TCTCCAACGTCGCTGCACCGGTC TTGTGCTTCGGGCTCATCCAGCCAATCTTGCGGACACTCGACCCTGGCCACCCCTTTGCC AAGTCACTCGTGATGGGGATCGC ACTGGCATCGAACGTCGGCGGCATGACATCTCCAATCTCGTCGCCACAGAACATTTTCGC CATCGAGGAGATGTCCAAGGGTG CCAATCCGCCGAGCTGGCTTTCCTGGTTCGCCGTGGCGTTGCCGGTTTCCATCGCATGCA ATCTGATTTGCTGGGCCGTGCTG CTCCTGGCGTACCGGCCTGGCCACGTCATCTCCGAGGTGCGGCCCATCAAACCCAACACG GACCCCATCAATGGCACACAGGT GTACATCATCGTGGTGTCGCTCTTGACCGTGGCTGCCTGGTGTTCAAATACATTTCTACA AAGGTACATCGGTGAAATGGGCG TCATCGCCATCGTGCCACTGGTGGCGTTCTTCGGGTTCGACGTGCTCAACAAAGACGACT TCAATTCGTTCCTGTGGAATGTC GTCATGCTCGCCATGGGAGGCATGTCGCTCGGCGAGGCTGTCAAGAGCAGCGGGCTGCTG TCGGCGCTTGCGACGGACATCAG CAACTTGGTACTTCACTTATCCATCTTCCAAATAACTGTCATTTTCTGCGGCATGGTGCT GGTGGCGACCACCTTCATCAGCC ACACCGTCGGAGCCATGGTCATACTGCCGATTGTTTGGTCCGTGGGCGAAAAGATCAAGG GTGACGACCCAGCCAGTCAGAGC CATTCAAAGCTCCTGGTGATGGCTGCGGCGCTCATGTGTTCAGGTGCCATGGGTTTGCCC GTAAGCGGCTTTCCAAACATGAA CGCTGTGAGCCTCGAAGACAGCACAGGCAATCCGATCGTAAACACGCAAGACTTCATCTA CGTTGGTGTGCCTTCGTCAATTT TTGCATACGGGGTCATCGTCACCTTGGGTTACGTGCTGATGTCGTTGGTGGGCTTT

>Oedogonium_f oveolatum. PTCI

GTGAAGTTCACACACTATCTTAAGTTCAACAGTGTTCCAGAATGGAGAGGCCAATAC CTGGCGTATGGCTTATTGAAGAAGCT TATATACAAGCAGGAGAAGCTGCTTGCTTTAAGCCGGGCGGCTCCCCATCCAGAATCCGT TGACATTGAACATGAGGAGCCCA CGGTGGAAACGCCATTCTTGCAAGTCCCGTCGACACCACCATCTCAGCTGGATTTGTCCC CCCGTCGCTCCTTTGACCGCAGC TTCCTCTCGGGTAAACTGTCCCCCCGCAGCGCGAGCACAACGGGCAACCCTGAGATTGAG TTTGTGAGGTTATTGGGCTCGGA GCGCACTCGCCTCAATGAGTTCATCGCGAGCAAATATACGGAGCTGACTGGGCAACTATC CAACGTGACAGAGGTGATGCGAG TGAAGGAGATGGAGGGCGGCCTGCCCCACTCGGACCCCAACCCATACAGCCTGGCGGCAC ATCGGGTGGCGTTCTGGAGCCAG GCTCCCATGCAGAAGGCGCGCGAGCAGCTCATCCCGCAGCTGGTGGAGCTGTGCGTGTTC CTGACGGGGCTCAAGGACTACGT GGAGATGAACAAGGAGGGGTTCCGGAAGATCCTGAAGAAGTGGGACAAGGTCAACGAGGC GCGGCTGAGCGAACAGGAAATGC CGCTGGTGGAGCAGACGCTGGACGTGGGGCGGAGGCTGCAGGACCTTGATGAAGCCATTG GTCACGTGATGTCTTTGTACGCG CTGCTCACCTCCAAGGGCAACATGGACCTGGCCTGGCGCAGCATGAAGGAGCACCAGTCG GAGCACATCAGGTTCCAGCGCAG CACCGTGTGGCACGACCTGATCGCCCTCGAGCGCCGCACCCTGACCGCCACCGCCGTGCG GCCTGTAGATGAGGTGATGGGCT GGTGGGCTGTCAACCGGAAGCACTTCATGATTGTGGCCTCGCTGATGGTGTTCCTGCTGC TGCTGGAGGCCAAGACGTTTGAG GGTGACGAAGCCGCCCCGCAGCGGAACTGCCTCGCGCTGCTGGTCTTTGTCTCGTGCCTG TGGGCTACAGAGGCGATCCCGCT GTTTGTGACGAGCATGCTGGTGCCGCTGCTGGCGGTGTCGCTGCGTGTGGTGGTGGTGGA CGGGAAGCGGCTGGAGCCACCAG ATGCGGCCACCTTCATGTTCGGGAAAATGTTCTCACAGGTGATCATGCTGCTGTTGGGCG GCTTTGCCATTGCAGCGGCCCTG AGCAAGCACAACATTGCGCGCAAGATGGCCATATCGGTGCTGTCCCGCGTGGGGAGAGCC CCGGGGCGGGTCTTGTTGGCGAC CATGATGGTGGCCACATTCCTGTCGATGTGGATCTCCAACGTGGCCGCGCCAGTGCTGTG CTTCTCTCTCGTGCAGCCCATAC TGCGGACTCTCGACACAAACCACCAGTTTGCCAAGGCGCTTGTGATGGGCATCGCGCTGG CCTCCAACGTGGGCGGCATGACC AGCCCCATCAGCAGCCCGCAGAACATCTTCGCCATCCAGGTCATGTCAGGCGGCGGCCAC AGCCCCCCCAGCTGGACGCAGTG GTTCGTGGTGGCGCTGCCCGTGTCTGCCGTGTGCAACGTGCTCATCTGGGGGCTGCTGCT GGCGGTGTACCAGCCGCACAAGC ACATCAAAGAGGTGCGGCCCATCCGCGCCCTCCAGGACGCCTTCACGCTGCAGCAGGTGG TGGTGGTGCTGGTCAGCCTGCTC ACCGTGACGCTGTGGTGCCTCAATGGCATGCTGGAGCCCTACCTGGGGTCCATGGGGGTC ATCGCCATCCTGCCGCTGGTGGC CTTCTTCGGGTTCGGCATTCTGACCAAGGACGACTTCAACGCCTTCCTGTGGAACGTGGT CATGCTGGCCATGGGGGGGCTGG CGGTCGGGGAGTGCGTGAAGAGCTCGCACCTACTGCAGTCCATCGCGCGCGGCATCCAGG ACACGACTGCCGGCTGGTCCCTG TACTGCGTGCTGGCCATGTTCTGCGCGCTGGTGCTGTGCTGCACGACCTTCATCTCACAC ACGGTGGGCGCATTTGTGATCCT CCCTGTGCTGCAGAGCGTGGGAGACGAGATGGCGGCGGCCGGACAGCCGAACCACTCCAA GCTGCTGGTCATGGCGGCAGCTC TGATGTGCTCCGGCGCCATGGGCCTGCCGGTCAGCGGCTTCCCCAACATGAACGCCGTGG CGCTGGAGGACCAGGCGGGGTTC AATTACGTGGCCACAATCGACTTCATCAAAGTGGGGCTGCTCAGCTCAGGGTTTGCGTAC GTGGTCATTATCTCGCTCGGATA TTTACTGATGCTGATGGTGGGCTTT

>Chlamydomonas_sp . -M2762 . PTCI

CCAGCGCGCAGGCTGGACAAGCTGGACGCAGCCATCGCAAAGCTGGTGGACCTGCAC GCGGTCATCTACCTGGCGGGTGATGC CACCAAGGCCAAGGACCAGCTCTCCCGCGTGCTGCGCGACGTGGAGCGCAACACGGTGTG GCGCGACATGGTCGCCATGGAGC GGCGGGCTGTGAGCGCCACGGTGGAGGGCACCAAGCGGCCGCCATGGTGGAAGGGCTACA CGGAGCACATGGGGCTGGTGCTG AGCGTGGCTGTCTTCGCGGTGCTTCTCTCGGTGGAGATATTCGACGAGGAAGAGAAGAAC AACTGCCTGGCGCTGCTGGCCTT TGTGTCCATGCTGTGGGCCACGGAGGCCATCCCGCTCTTCGCCACCTCCATGCTGGTGCC GCCCCTGGTGGTCATCCTGAGGG TGCTCGTGGACCGCACCAAGGACCCCCCCGTGCGCCTCACAGCGCAGCAGGCCGCGCCCA CCATCTTCCACGCCATGTTCTCG CAGACCATCATGCTGCTGCTGGGCGGCTTCGCCATCGCCGCCGCCCTCTCCAAGCATTTC ATCGCC

>Chlamydomonas_noctigama . PTCI

ATGAAGTTCACCCACCAGCTCAAGTTCAACACAGTGCCGGAATGGAGGGACCATTAC ATCCACTACGCGGCGCTGAAGAAAAT CATCTACGCCATCGCCAAAGCCGAGGCTGACGAGCATCAGCATCCAGCGGGCCATGACGA CGAACACCTGGGCGTCGCACTGC TGGATAAGGTTGAGGCCACTGAGGAGTACCTGATCAAGAGCCTGGACAAGGAGCTGGCTG AGGTCATCAAGTTCTACATGGCC AAGGAGGCGGAGATCCTGGGCAAGCTGGAGCAGCTGGACCTGGAGGTGCACAGCCTGGAG CAGCGCAGTGCTCTGGGCACGAC GCTGCGGTCGACGTCGATGCCCCTGCCCAGCGATGCTGTGCCTGTGATCCTTGAAGAAGA TGACCTGTCTCGCACCGAGTCGG TGCGTGCCTCCCGCACCGAGTTCTGGCGCACCAACAGCCGCAGCCTCAAGCCCACCTCCA GAGCCCTCATCAAGGACAGCGGC AAGATGAAGCAGCGCATCATAGACCTGTACAGCTCTCTGCACGACCTGGCGGACTTCCTT AACTTCAACAAGGAGGGCTTCCG CAAGATACTGAAGAAGCATGACAAGGTGACCAGCAGCAACCTGAAGGACCGCTACTGGAG GGTGGTGGAGGACAAGTACCCCA GCAAGAAGGCAGAGGTGCTGGAGCAGGCCATGGACAGGCTGACCGACCAGTTTGCAGTGC TGTACCTGCAGGGTGACACAGTG AAGGCCAAGGACACCCTGGGCAGGGTGCTGAGGGAGCAGATCAAGGTTGAGCGCAACACT GTGTGGAAGGACATGGTGGCCAT GGAGCGCCGCACAGTGGCAGCTGTCATCAAGCCGGGTGCAGCGGAGCCCAAGAAGGTGTC CTTCTTCGCCAAGCACCACTCCC GGATCATGCTGCTGCTCTCCGTGGTGGTCTTTGCATCGCTGCTGTCGGTGGAGATCTTCC CGGAGCCTGAGAAGCAGAACTGC CTTGCCATGCTGGTGTTTGTGTCCCTGCTGTGGGCCACTGAGGCCATCCCCTTGTATGCC ACCTCCATGCTGGTGCCCCCCCT GGTGGTGCTGCTCAAGGTGCTGGTGGACCGCAGTCACGAGGAGCCCATCCGCATGACAGC GCAGCAAGCGGCCCCCACCATCT TCCATGCCATGTTCTCCCAGACCATCATGCTGTTGCTGGGTGGCTTTGCCATCGCCGCCG CCCTCAGCAAGCACTTCATCGCC AAGCAGCTGGCCATCGCCGTGATGTCACGCGTGGGGCGCAAGCCTCACAACGTGCTGCTG GCCTCCATGTTCGTCGCCACCTT TGCGTCGATGTGGATCAGCAACGTCGCGGCGCCGGTGCTCACCTTCTCCATCGTCATGCC CATCCTCAAGACCCTGGAGACCA GCAGTGCCTTTGCCAAGTCCATGGTCATGGGCATCGCCCTGGCCTCCAACATTGGGGGCA TGACCTCGCCCATCAGCAGCCCC CAGAACATCTTTGCCATCGAGCGCATGTCCATGGACGGGCAGCCCCCCAGCTGGCTCTCC TGGTTCGCAGTGTCACTGCCGGT GTCCAGCGTGTGCATCATCCTGTGCTGGCTGCTCATCCTGGCAGTGTACCAGCCCTGGCG CAGCGTCAGTGACGTGCGCCCCC TCAAGCCCAACACCGACCCCATGAACATGACACAGGTGTTTGTGATTGTGATCTCCATGG CAACGGTCGGCCTGTGGTGCGCC AACACAGCCCTGCAGTCGTACACTGGGGAGATGGGTGTGGTGGCGATGCTGCCGCTGGTT GCGTTCTTTGGCTTTGGAGTGCT CAGCAAGGATGACTTCAATGGCTTCCTGTGGAACGTGGTCATGCTGGCCATGGGGGGCCT GGCTCTGGGGGAGGCTGTCAAGA GCAGTGGTCTGCTGCAGTCCATTGCTGAGGCCATTAAGGAGGTCACTGATGGATATGACT TGTACCAGGTCCTGCTGGTCTTC TGTGTCATGATCCTCGTCTGCACCACCTTCATCAGCCACACCGTTGGTGCCATGGTGATC CTGCCCATCGTGCAGAAGGTCGG GGAGGACATGCCTGGGCCCCACCCCAAGCTGCTGGTCATGGCCGCTGCCCTTATGTGCTC AGGTGCCATGGGCCTGCCCGTGA GTGGCTTCCCCAACATGCAGGCTGTGTCCCTGGAGGACTCCACTGGGCAGAACTATGTGG ACACCCTGGACTTCCTCAAGGTC GGTGTGCCCGGCTCCGTACTGGCATACCTTGTCATCGTATCACTTGGCTACACGCTGATG CTCCTGGTCCGCTTT

>Carteria_crucif era . PTCI

CAGGTGTATGTGATCGTTGTGAGTGTGGTGACTGTTGTGCTGTGGTGCCTCAACAGT GCCCTACAGAATGTGACGGGTGAGAT GGGAGTCATTGCCATCATACCCATGGTGGCCTTCTTTGGCACTGGGGTGCTCAGTAAGGA TGACTTCAACGGATTCTTGTGGA ACGTGGTGATGTTGGCCATGGGCGGTCTAGCCATGGGAGAAGCGGTGAAGAGCAGCGGGC TGTTGGCAGCTATTGCTGAGGGC ATCAAAGAATTGGTGGCAGGGATGGACTTGTGGGAGGTGCTAGCGATATTCTGCAGCCTC ATCCTGGTCTGTACCACCTTCAT CAGCCACACGGTGGGGGCCATGGTGATCTTGCCCATCGTGCAGTCAGTGGGGGAGATGGC GCTGGGCCACCCTCACCCCCGCC TCTTAGTCATGGGGTCAGCGCTCATGTGCAGTGGCGCCATGGGCCTGCCCGTGTCAGGCT TCCCCAACATGAACGCAGTGGCT CTGGAGGACTCCACTGGGGTCAACTACGTTAGCACTGTGGACTTCTTGTGGGTGGGTATC CCCAGCAGCATCTTTGCTTACGT GGTCATTGTGACAGTCGGCTACTTCCTCATGCTCATGGTCAGATTC

>Volvox_aureus-M2242 . PTCI

TGCTTGGCGTTGCTGGTGTTTGCATCTTTGTTGTGGTCACTGGAGGCCGTGCCTCTG TACGTAACAAGTATGGCTCTACCTTT TCTGATTGTCGCCATGGGTGTCCTTGTTGACCACCCAAATGATTCCAAGGATCCACCTAA ACGCCTCACACCGCAGCAAGCTG CACCAGCGATCTTCCATGCCATGTTCTCACAGACAATCATGTTACTTCTTGGTGGTTTCT CGATATCAGCCGCTCTGTCCAAG CACGCCATCGCAAAGCAGGTGGCTGTGGCTATTTTGTCTCGTGTTGGAAGAAAACCACGC AACGTACTGCTTGCTGCAATGTT TACAGCCACATTCGCATCAATGTGGATTTCCAATGTGGCGGCACCAGTACTCTGTTTTGG CCTAATTCAACCCATCCTGAGGA CCCTGGACCCTGGACATCCTTTTGCGAAGTCCCTGGTTATGGGCATTGCGCTGGCTTCCA ATGTCGGAGGAATGACGTCACCC ATATCTTCACCCCAAAACATTTTTGCAATAGAGCGCATGTCGATGGATGGACAGCCGCCC AGCTGGCTCTCTTGGTTCGCTGT AGCAATACCAGTTTCCATCACATGCAATTTTCTCTGTTGGGCCTTACTCCTTCTGGTCTA CCAACCAGGACGAGCTTTGGGTG AGGTCCGACCGTTAAAACCCAACACGGACCCCATCAACGGGACACAGGTGTACATCATCG TTGTGTCGATGTTGACTGTGGCA GCCTGGTGTGCGAACACATTCCTCCAGAGGTATACTGGCGAGATGGGCATCATCGCCATT GTCCCATTGGTAGCGTTTTTCGG TTTCGACGTACTGAATAAGGATGATTTCAACTCGTTTCTCTGGAACGTCGTCATGCTGGC CATGGGCGGGTTGTCTCTAGGTG AAGCAGTTAAGAGCAGCGGTTTGCTTGCAGCGCTCACAAACAGTATTAGTGAACTGGTAA CAGGCTTCACTATGTTTCAAGTT ACCCTCATATTCTGTGGCCTGGTGCTGCTGGCGACGACGTTTATCAGCCACACAGTAGGG GCTATGGTTATCCTACCAATCGT GCAGAGTGTTGGAGAGAGTATGGCGGGGACACCACACCCTAAGCTGTTGGTCATGGCATC GGCGCTCATGTGCTCTGGTGCTA TGGGCTTGCCTGTCAGCGGATTTCCGAACATGAACGCTGTCAGCTTGGAGGATAGCACTG GAAATGCGATTGTCAGTACTAAG GACTTCCTGTACGTCGGTGTGCCTTCATCGGTGATGGCTTATGGCATAATCGTCAGTCTA GGGTATGTGCTCATGCTGTTGGT AGGTATG

>Phacotus_lenticularis . PTCI

ATGAAGTTCACGCATCAGCTCAAGTTTAACTCGGTCCCAGAGTGGCGGGACCAGTAT GTTGACTACGCCCACCTCAAGCGCTT CATCTATGCCATTGCCCGCGCCGAGCAGGATGACATCCAGCAGCTGCACGAGGTGCACGA CACCACGATGCCTCTGCTGCCCC ACACCGTCACCATGGGTCATGACAAGGTGGAGGCCACGGAGGAGAACCTGCGCCAGGCGC TGGACAAGGAGCTGCAGCGCGTC ATCTCCTTCTACATGGCCAAGGAGGCGGACATCTTGGCCAAGGTGACGGCGCTGGAGCTG GGCATCCATGCGCTGGAGAAGCT GCCCGCCCGGGGGGTCAGTCTGGAGCTGGACCCCACCCGGCAGGGCAGCCAGGTGGCGGC TGGGGGCGTTGCGGGAGGGGGGG CCCCCCCAGGGGGGCGCCACGTCCCCCTACTGCAGGGCGCCCCCTCGGTCACGCGCGAGG GCTCGGGCGGCATTGCGCACTCC ATCTCCCCCCAGCAGTCCTCCTCCTCCCCCCAGCTGGGCGGCCCCGGCAGTGGCCGCACC GCCGGCACCGGGGGCAGTCAGTC CGCCTCCCCCCAGCCCTCGGGAGCCATGCACGGGGGGGACCTGGAGGCCCCCCTGCAGGG GGGCGACCACACCGGCAAGACCT CCCCCCACTGGTCACGCGCCGCCCGCGTCGAGTTCTGGGGGCGGGCCCAGCCCGCGCACC GCTTCACCGGGGGAGCCTCCTTC TCAGCCGCCTCCTTCTCGGGGCCCTTCGTGCGCGACATGCAGGCCCACAAGGAGAGGCTG CGCCCCCAGTTCAGCGACCTCTA TCTCTCCCTGCACGACCTCCTGGGCTTCCTCAGGCTCAACAAGGAGGGCTTCCGCAAGAT CATCAAGAAGCACGACAAGATGA CCAGCAGCAACCTGAGGGAGCAGTACTGGCCGCTGCTGGAGGCCAAGTACCCCATCCAGA GGGCCGAGCTACTGGAGGCCACC ATCGCCTCCCTGGTGGACCACTACGCCGTCATCTACCTGGGGGGCGACGTGGGCACCTCC AAGGCCCACCTGGACAAGGTGCT GCGTGACCAGATCCAGGTGGAGCGCAACACAGTGTGGAGGGACATGGTGGCTCAGGAGAG GCGCACCACAGCGGCCGTGGTGG CCACCACGTACAAGCAGAAAGTGTGGGCCAAGGTGACGCCCCACATCGCGCTGGTCTCCA GCGTCGCCGTCTTTGCCCTGCTG CTGTCTGTGGAGGACCTGTTCCCCGAGGCGCCCGAGAAGCAGAACTGCCTGGCGCTCCTA ATCTTCGTGTCCATGCTGTGGGC CACCGAGGCGGTCCCCCTCTACGTCACCTCCCTGGCCATCCCCCTGCTGGCGGTCACGCT GAGGGTGCTGGTGGACAAGACCA CCGACCCCCCCCAGCGCATGCCGGCGCAGCAGGCCGCCCCCGCCATCTTCCACTCCATGT GCTCCCAGGTGATCCTGCTGCTG CTGGGTGGCTCGGCCATCGCCTCGGCCCTCACCAAGCACTTCATTGCCAAGAAGCTGGCG CAGGTGGTGCTGGCCCAGGCCGG CCGCCAGCCCCACAATGTGCTGCTGGCGCTCATGCTGGTGGCAACCGTGGCCTCCATGTT CATCTCCAACGTGGCCGCCCCCG TGCTCTGCTGGTCCCTGGTGGAGCCCATCCTCAAGTCCTTTGACGCCGACAACCCCTTCT CCAAGTCGCTGGTTATGGGCATC GCGCTGGCCTCCAACATTGGCGGCATGACCTCCCCAATCTCCTCCCCCCAGAACATCTTT GCCATTGAGCGCATGGGCATGGA CGGGCACCCCCCCTCCTGGCTCTCCTGGTTCGCGGTGGCGCTGCCAGTCTCCTTCATCTG CATCCTGGTGTGCTGGGGCCTCA TCCTGGGGGTGTACCGCCCCTGGTCCAAGGTGGCGGAGCTGAGGCCCCTCAAGGCCAGCG CCGACAAGGTCACCTTCACCCAG ATCTACGTGGTGCTGGTGACGGTGGTGACGGTGGGGCTCTGGTGCTGCAACACGATGCTG CAGCCGTACACGGGCGAGATGGG CATCGTGGCCACCATCCCCATCATCGCCTTCTTTGGCTTTGGGGTGCTCAACAAGGACGA CTTCCTCTCCTCCCCCTGGCTGG TCATGACGCTGGCCATGGGCGGCCTGGCGCTGGGCGAGGCGGTCAAGAGCAGCGGGCTGC TGCTGTCCATCGCACACTCCATT GGCGACCTGGTGCAGGACCTGGACCTCTTCACCGTCTGCGTCATCTTCTGTGGCTTAGTC CTGGTCTGCGCCTCCTTCATCAG CCACACGGTGGGCGCCATGATCATCCTGCCCATCGTGCAGTCGGTGGGCGAGCAGATGCC GGGCCCCCACCACTCCAAGCTCC TGGTCATGGCCTCGGCCCTCATGTGCTCGGGGGCCATGGGCCTGCCCGTGTCGGGCTTCC CCAACATGTTCCTCATCTCCAAG GACGACGGCACCGGCAAGAACTACGTCAACACGCTGGACTTCATCAAGGTGGGCGTGCCC GGCTCAGTGGGCGCCTTCTTCGT CATCGCCACCGTGGGCTACGTCCTCATGCTCATGGTG

>St ephanosphaera_pluviali s . PTCI

AGGAGACAGAGAGTGCGCTTCTGGGCTTCTCTAGACACCAGGGCAGAGCTCCGGGAC TTGCGGCTGGTGCGGGGCATGATGCG CTACCGCTTCAACGACATCTACACAACACTGAATGACCTCATGGAATACATCATGCTGAA CCGCGAGGGGCTCCGCAAGGTGG TGAAGAAGCACGACAAGCTGACCACAACTGTGGCGCTCAAGGAATCCTACTGGCCGACTG TGGACCAACAGCTGGCGCTGAGC AAGAGGGATGCAATGGCCCAGCAGATAGAGCAGCTGGTGGACCTGTACGCGGTGATGTTC ACAGCAGGGGACGTGGACGCTGC GAAGGAGCTGCTGAGCAAAAACTTGCGCGAACACATCAAGGTGGAGCGCAACACGGTGTG GCGGGACATGGTGGCCCTTGAGC GTCGCACAGTGGCTGCCACAGTGCAGCAGACCACAGGCAAGGCCGCAGCCAAATTGCAGA GGTACAGGGAGCCCTTGTGTCTG CTGCTGTCCCTTGCTGCCTTCTTCGCCCTGCTGCGGGCAGCCCCCTTTGCTGAGCCAGAG AAGAACCAGTGCCTGGCCCTGCT GGCGCTGTGCTCCCTGTTGTGGGCAACAGAGGCAGTGCCCCTGTTCGCCACTGCCCTGGC CATCCCCCCTTTGGTTGTGGTCA TGCGGGTGTTGGTGGACAGGAGTGACCCTGCAGCGCCACACAGGCTGACGCCCCAGCAGG CCGCCCCTGCCATCTTCCACGCC ATGTTCTCTCAGGTCATCATGCTGCTGCTTGGCGGGTTTGCCATCGCTGCCGCACTCTCC AAGCACTTCATTGCAAAGCAGAT GGCAGTGGCAGTCTTATCCCGTGTGGGACGCAAGCCACACAACGTGCTGCTGGCTGCCAT GTTTGTGGCCACCTTTGCGTCCA TGTGGATCAGCAACGTGGCCGCCCCTGTGCTTTGCTTCTCCCTTGTGCAACCCATCCTGC GGACCATGGACGTGACAACGCCA TTTGCCAAGAGCCTGGTGATGGGCATCGCGCTGGCATCAAACATAGGTGGCATGACCTCG CCCATCTCCTCGCCCCAGAACAT TTTTGCCATAGAGAGGATGGGTATGGATGGGCACCCGCCCAGCTGGCTTGCATGGTTTGC AGTAGCCCTTCCCGTCGCCATCA TCAGTAACCTGCTGGCTTGGGGCTTGTTGCTGCTGGTGTACCGGCCATGGACACACACCA CAGAGGTCCGCCCCCTCAAGCCC AGCTCCGACCCCATCAACCTGACGCAGGTGTATGTGTGCCTGGTGAGTCTGGCAACAGTG GGTCTGTGGTGCGCCAACACAGC ACTGCAGAAGTACACTGGGGAGATGGGTGTTGTGGCAGTGCTACCCCTTGTGGCCTTCTT TGGCTTTGGTGTGCTGAACAAGG ACGATTTCAATGGCTTCCTTTGGAACGTTGTCATGTTGGCCATGGGCGGCTCAGCACTGG GTGAGGCTGTCAAGAGCAGCGGG CTGCTGGTGTCCATCGCTGAGAGCATCAGGCAGCTGGTGGCAGGCATGGACCTGTGGATG GTGACGGTGGTGTTCTGCCTGGC AGTGCTGTTCTGCACCACCTTCATCTCACACACAGTGGGAGCCATGGTCATCCTACCAAT TGTGCAGAGCGTGGGGGAGGCCA TGCCCGGGCCGCCCCACTCCAAGCTGCTGGTCATGGCCTCTGCGCTCATGTGCTCAGGTG CTATGGGCCTGCCAGTCAGTGGC TTCCCCAACATGAATGCAGTGTCACTGGAGGATGCTACAGGGCAAACGTATGTCAGTGCC AGTGACTTCATTGCAGTGGGAGT GCCATCCAGCGTAGCAGCATATGCAGTCATAGTCACAGTGGGGTACAGTCTGATGCTGCT GGTTGGGTTC

>Chlamydomonas_eust igma . PTC I

ATGAAGTTCACTCATCAAATTAAGTTCAACAGTGTTCCCGAGTGGAGAGACCACTAC ATCGACTATGCCCACCTGAAGAAAAT CATATATGCAATCGCAAAAGCTGAGGCTGATGAGCAGCAGCAACACCATCTAGATGAGGA ACATCCTCTTCTTACCAGACAAC AGACTGCTCATGGAGAGAAGGTTGAAGCTACTGAGGAGGCTTTGATCCAGGCACTTGATA AGGAGCTTGCCAAGATTATCAAA TTCATTATGGCCAAAGAGGCTGAGACCCTGGGGAAGCTAGCTCAGCTGGATCTAGAGGTT CACAGTCTTGAGGCCCAGCGGGT TGGAAGTATGTTCACACCTCCCATTGTGAACAGGTTCACATCACTTCAAGATGCAGGGAA TACACGTCTTGGAGGCTCACTGC CAGATCCCCAAAAAGATGGTTTTGAAACTCTAGGACTAGCCGACAGAAGACCCTCTGAGG TTATGGAGGAGGCTGTACGCCCT GATCTGGAAGGGGGTATTGGCTCAAACTCTTTCCGTGCCTCCCGAGTCCATTTTTGGCAC TCAAACAGTCTGCCTGCTACCAC TCGCACTGGTGCTCGAGTACTGGCTAAGGACAGTGCTAAGATGAAACCAAGAATCACGGA CCTGTTTGTTGTGCTGCATGACT TGAAGAACTATCTGTCCTTAAACAAGGAGGGCTTCAGAAAGATTTTGAAGAAGCATGACA AGATGACTAGCAGTAATCTGAAG AGCAGGTATTGGTGTATCATTGAGGAACAGTACCCCAGCAAGAAAGAGGAGGGCATCATG CAAGCTATCAACAAGCTAGTGGA TCTGTATGCTGTGCTCTTCCTGAAGGGTGATTTTGAGAAGGCATCAAGCGTCCTTAATCG TGTGCTAGGAGAACAGATTAAGG TGGAGAGGAACACTGTGTGGAGGGATATGGTGGCAATGGAGCGCAAGACTGTGAATGCTG CAGTTCATAAGCCACAAGGTGTG GCCACTCGTGTCACCTGGCTGCAGCAGAACATGAAGCACATCCTGTTGATGCTTGCCGTC CTGACCTTTGCCACACTTCTGAC AGTGCAGACCTTTGAAGAGCCAGAGAAGAACAACTGCTTGGCTATGCTGGTGTTTGTGTC CATGCTGTGGGCCACTGAGGCCA TCCCTCTGTTTGCCACCTCCATGCTGGTGCCACCCTTAGTGGTCATCCTCAGGGTTATGG TGGATCACACAAAGTCACCTCCA GAGCGCATGCCTGCGAAGGATGCTGCACCTGCCATCTTCCACTCCATGTTCTCACAGGCA ATCATGCTCTTGCTGGGTGGTTT CGCTATTGCTGCTGCCCTGAGCAAGCACTACATTGCCAAGCAGCTAGCTATCTCGGTCAT GTCCAGGGTTGGACGTAAACCCC AGTTTGTGATCCTGGCCGCCATGTGTGTGGCAGCCTTCGTGTCCATGTTCATCAGCAATG TAGCTGCGCCTGTACTCACGTAC TCTATTGTCATGCCCATCTTGAAGACCTTGGATACAGGCTGTCCCTTTGGTAAGGCCTTA GTGATGGGTATTGCCCTGGCATC GAATGTCGGAGGGATGACTTCCCCCATCAGCTCTCCTCAGAACATATTTGCGATCCAGCT CATGTCAAACGACAGCAACCCGC CCAGCTGGCTGGCCTGGTTTGCCATCTCCCTGCCAGTATCGGCTCTTTGTGTCTTGATGT GCTGGTCCCTGATCTTGATTGTG TATCAGCCTTGGCGCCGCGTGGCCGAGGTGCGTCCCCTAAAGCCCAGCACTGATCCCATC AACGGCACCCAGGTCTATGTCAT CATCATCTCCCTGGCTACAGTGGCTTTGTGGTGTGCCAACACCGTCCTCACACCGTACAC TGGGGAGATGGGGGTTGTAGCAG TGTTGCCGCTGGTTGCCTTCTTTGGTTTCGGGGTGTTGAGCAAAGAGGACTTCAATGGGT TCTTGTGGAATGTTATCATGCTG GCCATGGGAGGCATGGCTGTGGGAGAAGCTGTAAAAAGCAGTGGCCTCCTCCACTCCATT GCGCTGGGCATACAGGATCTGAC CTCAGGTCTTGATCTCTTCCAGGTCATGATCATCTTCTGCCTCCTGGTTCTCATTTGCAC AACCTTCATCAGCCACACGGTGG GTGCCATGGTCATCCTGCCTATCGTCCAGAGTGTGGGAGAGTCCATGCCGGGCACAGCGC ACCCCAAATTACTGGTTATGGCA ACCGTCCTCATGTGCTCTGGAGCTATGGGCTTGCCAATCAGTGGTTTTCCAAACATGCAA GCTGTTTCCCTGGATGATGGCAT GGGGCAGAACTATGTCAGCACCATAGACTTCCTTATGGTGGGAGTCCCCAGCTCTGTGCT AGCTTACTTCGTCATAGTCTCAG TGGGATACTCTCTAATGCTCCTAGTGCGCTTTTGA

>Chlamydomonas_ince rt a . PTCI ATGAAGTTCACTCACCAACTTAAGTTTAATAGTGTGCCGGAATGGCGAGAACACTATATA CAGTATGGACACCTAAAGAAATA

TATTTATGCGCTTGCAAAGAGGGAAGCAGACCTTCAAGCTGGCGGCCAGGAAGAGGA GGCGCTTCTCGCCCCGCTGCTGCTGG AAGCGGGGCGCGATCAGGGCCCCACGGAGGAGGGCTTCCAGCAGGAGCTGGATGCGCAGC TCGCAGCCACGTTGAGCTTCTTC GCGGTGAAGGAGGCTGACCTGCTCGCCAAGGTGTCGGCGCTGGAGCTGGACATCCAGAGC CTGGAGAAGATCCCCAACCGCGC

CGAGGCCTCCACCCTGGCGCGCATGGGCATGGGCATGGGCGGCAGCGCCAGCCCCGG CGGCCCCATGAGCAGCCCGCGCGCCG

CCGCCGCCGCCGCCATGTCGGCCGTGGCCTCGCTGGTCAGCCACAGCCCCTCCACAC TGGACCTGGCGCGCATGGTCAACAGC

ACGCCGCCCGAGGACCACCGCAAGGTGCGGGTCAAGTTCTGGGAGAACCCGCCGCGG CACCTGTTCAGCACCAACCTCAGCGC GCGCCGTGCCAAGCTGCAGGCGCGCTTCCAGGACCTGTACATCTCGCTACACGACCTGCG CGAGTTCCTGCACATCAACAAGG AGGGCTTCCGCAAGATCATCAAGAAGCACGACAAGCTGACGCGCGCCGTGGACCTGCGCG CGCGCTGGTGGCCCAACGTGGAG

GCGCACCTGGCGCCCGCCGCCAAGCAGGCGGAGCTGGACGGTGCCATAGCCGCGCTG ACCGACCACTACGCCGTGCTGTACAC

GCGCGGCGACGTGGCCCAGGCGGAGGAGCAGCTGTCGCGCGGGCTGCGGGAGCACAT CACCGTGGAGCGAAACACCGTGTGGC

GCGACATGGCGGCCATGGAGCGCAAGTACGCGGCGGTGTCGGTGAAGCAGGCGGCGG CGCCCGGGGCGCGAGTCACGTGGCTG

CGCACGCACGCGCGCTGGCTGAAGCTAGCGCTGAGCGTGGCGGTGCTGGTGGTGCTG GCCAACGTGGAGGTGTGGCCGGGGCC

CGAGAACGAGCCGCGCAACAACTGCCTGGCGCTGCTGGTGTTCGCGTCGCTGCTGTG GAGCCTGGAGGCCGTGCCGCTGTTCG

TGACCAGCATGGCGCTGCCGCTGCTGATCGTGGCCATGGGCGTGCTGGTGGACCGCA GCAAGGACCCGCCGCAGCGCATGAGC

CCGCAGCAGGCGGCGCCAGCCATCTTCCACGCCATGTTCTCGCAGACCATCATGCTG CTGCTGGGCGGCTTCTCCATCGCCGC

CGCGCTGTCCAAGCACGCCATCGCCAAGCAGGTGGCTGTGGCCATCCTGTCGCGTGT GGGCCGCAAGCCGCGCCACGTGCTGC

TGGCGGCCATGTTCACCGCCACCTTCGCCAGCATGTGGATCAGCAACGTGGCCGCGC CCGTGCTGTGCTTCGGCCTCATACAG

CCCATCCTCAGGACGCTGGACCCCGGCCACCCCTTTGCCAAGGCGCTGGTGATGGGC ATCGCGCTGGCCTCCAACGTGGGCGG

CATGACCTCGCCCATCAGCAGCCCGCAGAACATCTTCGCCATCGAGCGCATGAGCCT GGACGGCAGCCCGCCCTCCTGGCTAG

CCTGGTTCGCGGTGGCGCTGCCCGTGGCCGTGGCGGCCAACTTCGTGTGCTGGGGGC TGCTGCTGCTGTGCTACCAGCCCGAC

AAGGCCATCGCCGAGGTGCGCCCCATCAAGCCCAACACCGACCCCATCAACGGCACC CAGGTGTACATCATCGTGGTGTCGCT

GCTGACGGTGGCGGCCTGGTGCGCCAACACCTTCCTGCAGCGCTACACGGGCGAGAT GGGCGTGATCGCGGTGGTGCCGCTGG

TGGCGTTCTTCGGCTTCGACGTGCTCAACAAGGACGATTTCAACAGCTTCCTGTGGA ACGTGGTCATGCTGGCCATGGGCGGC

CTCAGCCTGGGCGAGGCCGTCAAGAGCAGCGGCCTGCTGGCGGCGCTGGCGCTCACC ATCAGCGACCTGGTCACGGGGCTCAG

CCTGTGGCAGGTGGCCACCATATTCTGCGGCATGGTGCTCGTGGCCACCACCTTCAT CAGCCACACCGTGGGCGCCATGGTCA

TCCTGCCCATCGTGCAGAGCGTGGGCGAGGCCATGCCCGGCACGCCGCACCCCAAGC TGCTGGTCATGGCGGCGGCGCTCATG

TGCTCCGGCGCCATGGGCCTGCCGGTGAGCGGCTTCCCCAACATGAACGCGGTCAGC CTGGAGGACAGCACCGGCAACGCCAT CGTGGGCACCGGCGACTTCCTGGCGGTGGGCGTGCCCAGCTCCGTGTTCGCGTACGGCAT CATCGTCTCGCTCGGCTACCTGC TCATGCTGGCGGTGGGCTTCTAG

>Chlamydomonas_schloess eri . PTCI

ATGAAGTTCACACACCAACTCAAGTTTAATAGTGTGCCGGAATGGCGAGAACACTAT ATACAATATGGGCATTTGAAAAAATA

CATTTATGCGCTTGCTAAGAAGGAAGCGGACCTGCAAGCTGGCGGCCACGATGACGA GGAGGCGCTGCTTGCTCCGCTGCTGG

AAGCAGGACGTGATCAGGGCCCCACGGAGGAGGGCTTCCAGCGTGAGCTGGATGCGC AGCTCGCGGCCACGCTGAGCTTCTTC GCGGTGAAGGAGGCCGACCTGCTGGCCAAGGTGTCCGCGCTGGAGCTGGACATCCAGAGC CTGGAGAAGATCCCCAACCGCGC CGAGGCCTCCACCCTGGCGCGCATGGGCGGCCCCGGCAGCGCCATGGCCAGCCCCGGCGG CGGCGGCCCCATGGCCAGCCCGC

GCGCCGCCGCCGCCGCCGCCATGTCGGCGGTGGCGTCGCTGGTCAGCCACAGCCCCT CCACCCTGGACCTGGCGCGCCTGGTC

AACAACACGCCGCCGGAGGACCACCGCAAGATCCGCGTCAAGTTCTGGGAGAACCCG CCGCGCCACCTGTTCAGCACCAACCT

CAGCACGCGTAGGGCTAAGCTGCAGGCGCGCTTCCAGGACCTGTACATCTCGCTGCA CGACCTGCGCGAGTTCCTGCACATTA

ACAAGGAGGGCTTCAGGAAGATCATCAAGAAGCACGACAAGCTGACGCGCGCCGTGG ACCTGCGCGCGCGCTGGTGGCCCAAC GTCGAGGCGCACCTGGCGCCCGCCGCAAAGCAGGCGGAGCTGGACGGAGCCATCGCGCAG CTGACGGACCACTACGCGGTGCT GTACACGCGCGGCGACGTGGCGCAGGCGGAGGAGCAGCTGTCGCGCGGGCTGCGTGAGCA CATCACCGTGGAGCGAAACACCG

TGTGGCGCGACATGGCGGCCATGGAGCGCAAGTACGCGGCCGTGTCGGTGAAGCAGG CGGCGGCGCCAGGGGCCAGGGTCACG

TGGCTGCGCACGCACGCGCGCTGGCTCAAGCTGGCGGGCGCCGTGCTTGTGTTCCTG GTGCTGGCCAACGTGCAGGTGTGGCC

GGGCGCCGAGAACGAGCCGCGCAACAACTGCCTGGCGCTGCTGGTGTTCGCGTCGCT GCTGTGGAGCCTGGAGGCCGTGCCCC

TGTTCGTGACCAGCATGGCCCTGCCGCTGCTGATCGTGGCTCTGGGCGTGTTGGTGG ACCACACCAAGGACCCGCCGCAGCGC

ATGACGCCGCAGCAGGCCGCGCCCGCCATATTCCACGCCATGTTCTCGCAGACCATC ATGCTGCTGCTGGGCGGCTTCTCCAT

CGCCGCCGCGCTGTCCAAACACGCCATCGCCAAGCAGGTGGCTGTGGCCATCCTCTC GCGTGTGGGCCGCAAGCCGCGCAACG

TGCTGCTTGCGGCCATGTTCACTGCCACCTTCGCCAGCATGTGGATCAGCAACGTGG CAGCGCCCGTGCTGTGCTTCGGGCTC

ATCCAGCCCATCCTCAGGACGCTGGACCCGGGCCACCCCTTTGCCAAGGCGCTGGTG ATGGGCATCGCGCTGGCCTCCAACGT GGGCGGCATGACCTCGCCCATCAGCAGCCCGCAGAACATCTTCGCCATCGAGCGCATGAG CCTGGACGGCCGCCCGCCCTCCT GGCTGGCCTGGTTCGCGGTGGCACTGCCCGTGGCGGTGGCGTGCAATTTCGTGTGCTGGG GCCTGCTGCTGCTGTGCTACCAG

CCCGGCAAGGCCATCGCCGAGGTGCGGCCCATCAAGCCCAACACCGACCCCATCAAC GGCACGCAGGTGTACATCATTGTGGT

GTCGCTGCTGACGGTGGCGGCATGGTGCGCCAACACCTTCCTGCAGCGAGAAGTGCA CAAATCCATTTATGCTACAACGGGCG

AGATGGGCGTGATCGCGGTGGTGCCGCTGGTGGCGTTCTTCGGGTTCGACGTGCTTA ACAAGGACGACTTCAACAGCTTCCTG

TGGAACGTGGTCATGCTGGCCATGGGCGGCCTCAGCCTGGGCGAGGCCGTCAAGAGC AGCGGGCTGCTGGCGGCGCTGGCGCT

GTCCATCAGCGACCTGGTCACCGGCCTCAGCCTGTGGCAGGTGGCCACCATCTTCTG CGGCATGAGCGCAGCCAAGCTCTGGA GTCCACCGGGGGGACGCTCCAACCAACCTGGACCACGCCAGCAACCTCAGAAGGGTTACT GCTGGTACAACAACGCAGGGCCC AGC GGGC T C AC CAAC CAC T AG

>Chromochloris_zof ingiens is . PTCI

ATGAAGTTCAGTCAGACGTTGAAGTTCAATAGGAGACCCGATTGGGAGATCCACTAC ATCAACTATGCCCATTTGAAAAGGCT

AATCACGAAGGTGCAGCAGGCTGAATTTGCGGAGCAGAACAACCTGCCATTGCACTT CGGGGATGAGGAAGCAGGTGTCAGAT CCCCTTTGCTCAGCCAGACGTCCTTCAACCGTCAGCAGTCTGTGTCAGCAGCTCTTACTC GCCAGCAGTCTTTCACCATATCA GCAGCACAGTGCGATGAAGCATTCATCAAAGCGCTGGACAGCGAATTGGCCAGAATCATC CAGTTCTACATGCGCAAGGAGAG

TGAGTTGCTGGCAAGGTTTGAGTCTGCGGCTCTAAGGATCCACAGCATTGAAGGGCC AGCACTGCCAGGACCAGCTGCCTTGG ATACAGCACAAAGGATCCAGTTTTGGTCACAGGACACAAAGGAGATTGCACTGGAGCGTG AGAAGCTTCGCTCTGAGATGACC GACCTGTATGAGCAGCTGCATGCGCTCAGCAAATACTTAGAACTGAACTTCACAGGCTTC AGGAAGATCTTGAAAAAGCATGA CAAAATGACATCCCAGAATCAGTACAAGGACTCCTACATGCCGATTGTGGAAGCCAAACT CCCATTGAAGAACCGTGAAATGA TTTCTGGTGTCATCAACAACCTGGTGGAGATGTATGCGGTCGTGTGTACACGCGGTGATG TCAATCGTGCGCAAGCTGAGCTC AAGCGCAAGTTGAAAGATGAGGTCGCGTTTGAACGGTCTACTGTGTGGAGAGACATGGTG GCTATGGAACGAAGGGGTGCTTC TGTGGCTGTACATGAAGCTTCTAGTTTGGCTGATCAGCCAAAGAAGCCCCGTTGGTGGCA AGCACATAGACAACTACTGCTGG TGACATTGTGCGTTACTGTGTTCGCTGTCCTGCTGTCTGTACCCATTTTCCAGCAGCCGG AGAAACAGAATTGCTTAGCTCTG CTGGCGTTTGTGTCATTACTGTGGTGTACGGAGGCCATCCCCTTGTTTGTGACATCCATA TTGGTGCCCTTGTTGATTGTGGT GCTGCGTGTGTTGGTAGATCGCAGCGCAGATCCTCCCAGACGCCTACCGCCTCAGGAGGC TGCCCCAGCGGTGTTTCATGTCA TGTTCTCACAGGTCATCATGCTCCTGCTGGGTGGCTTTGCTATAGCTGCAGCCCTCAGCA AGCACTTTATTGCCAAGCAGCTG GCTGTAGCAATCCTCAGTCGGGTGGGCAGGAAGCCGCAGTATGTGCTGCTTGCCAACATG TTGGTGGCAACCTTTGCTAGTAT GTGGATCAGTAATGTGGCTGCACCAGTATTATGCTTCTCACTTGTACAGCCCATTCTAAG GACCCTGTCCCCAAGTCACGCGT TTGCTAAGAGCTTAGTCATAGGCATCGCATTGGCATCGAATCTGGGGGGAATGACGAGCC CTATCTCCAGCCCCCAAAACATT TTTGCAATTGAGCGGATGAGCATGGATGGCAACCCTCCAAGTTGGTTGAGCTGGTTTGCT GTCGCACTGCCTGTGTCTGTGCT GGGCAATCTGCTGTGCTGGGGCTTGATTCTGTTGGTGTATAACCCAGGAGCTACCATCAA AGAGGTTCGCCCCGTGAAACCGC CAGAAGATCCGCTCAACGGCACCCAAATCTACGTCATCCTCGTCAGCGTGGCTACTGTTG GTCTATGGTGCTTCAATTCCTTC ATACAACATGTGACAGGAGAGATGGGTGTGCTGGCGATCCTGCCATTGGTAGCATTCTTT GGCTTTGGAGTGCTGGATAAGGA CGACTTTAATGGATTCCTTTGGAATGTGGTCATGCTGGCTATGGGGGGCTTGGCACTGGG TGAAGCTGTGAAGAGTTCAGGAC TGCTGCTAACAATAGCAACGGGTATTCAGGACTTTGTGGCTGGTCTTGGCCTATGGTCCG TGCTGGCTGTGTTCTGCTTCCTG GTGCTCATCTGCACCACCTTCATCTCACATACAGTAGGCGCCATGATCATACTGCCTATC GTGCAATCTGTGGGAGAAACAAT GAGCGGCACGCCCCATCCCAAGCTATTAGTTATGGGCTCTGCGCTCATGTGCTCAGGGGC TATGGGGCTGCCAGTTAGTGGCT TCCCTAACATGAATGCTGTGGCTTTAGAAGACCCCACCGGCCAAAACTACGTCAACACCA TTGATTTCTTGAAGGTGGGTGTA CCTGGTTCCATCATGGCGTATGGAGTGATTGTCAGTTTGGGGTATGTGCTGATGATAGCT GTTGGCATGTAA

>Coccomyxa_subellipsoidea . PTCI

ATGAAGTTTGGCGCGGAGAGGGCAGGCCACGCGCTGCTGAGCTGGCTGACTGCTGCC TGGCTGTGGCTTCTGCAAGCCTGGGA GGTGGTCGCAGAGTGGGGCCGCCAGTGCTGGGGGGCTCTTTTGCATGCCTGGCATTATAT CGCCAGCGCTGTCATGCAGGCAG TGCACTGGCAAACAGAGAATCGAATCGCAGATCTTGGACGTATTCCAGAGGAGGTAGGAG GTGACCTGGACAGGACAATATCC CTGGCTCTTGAAGAGGGCGGGGACGATATCAAGGGCGCATTTGACAGCGAGCTTAACCGC ATTACTACTTTCCACAAAAAGAA GGAAGAGGAGCTTCTGGGTGCAGTGGACAAGCTTGGGGAGGAGGTGAGCAGTGCTGTGGA GCCAAGTGCACAGCAGAGCGCTC CTGATGCGAGCTCGCCGCTGCTTGGGACTTCCAGGAATGCGGAGGCACTGTACTGGGGCC AGGACACTGTTGCTGTGCGCATT GCGCGGGAGCAGCTAAGGGAGACCTTTCAGGAGCTGTATGTGGAGATCCAGGGGCTGATA GATTTTGTGGAGGTGAATCGTAC AGGCTTCAGGAAGGCCCTGAAGAAGCACGACAAGGTGTTGGGCGCGCTTGGGCACCCAAA GATGCAGCCAACGTACATGCCTA ATGTCGAGGCTGCCTTCCCTGAGAAGAACCGCCTGCGTGTGTCAGAAGCTCAGAAGCAGC TGGTGGAGCTGTACGCTGTGGTG TGCTGCCACAACAACCTGCTGCTGGCCCAGCTGGAGCTCAAGGCACAGCTGCGCTCCCAG CTCAAGCTTGAGAGGACGACAGT CTGGAAGGACATGGTGGAGAAGGAGCGAAAGGAGAACGCTGCCACGGTCGACGACAGCGG CGCTGAGTCCAAGCCCTGGTACC GCAGCAGCCTCTTCATGATCGCTCTCTCTTGCGTCGTCTTTGCCGTGCTCCTCAGCGTGC CGATCTTCGAGGAGCGAGCGAAG CAGAATTGCCTGGCGCTGCTGGGATTTGCCTCCATGCTGTGGTGCACGGAGGCCCTGCCA CTCTACGTCACCTCCATGCTAGT GCCCCTGCTGGCTGTTGTGCTCAGAGTGATGGTGGACGACAGCGGGAAGCACCCGGTCAG GAAGAGCGCACCCGACGCTGCGG ACGCCATCTTCAAAGCCATGTTCTCACAGGCGAGTTCACAGCTCTTCATCTCCCCTCATT GCACAATTGAGAGGCACGTTGAC GGCCTGCCCTCATACCCCACTACAATCATGCTGCTGCTGGGGGGATTCGCGATAGCTAGC GCCTTCACAAAGCACTTCATCGC CAAGCGCGTGGCCGTCTGGGTGCTGGGGAAAGTCAGCGCCAAGCCGCACGCGGTGCTGAT AGCCAACATGTTCGTGGCCACCT TCGCATCCATGTGGATCACCAATGTGGCCGCCCCCGTGCTGTGCTTCTCCGTGCTGGACC CAATCCTGCGCACGCTGCCCTCC GGCCATTCTTTTGGCAAAGCTCTGGTCCTGGGCATCGCGCTGGCGTCCAACCTGGGAGGC ATGACAAGCCCGATCTCATCGCC GCAGAACATCTTCGCGATCCAGGAGATGGGCCGAGATGGCGAGCCGCCCTCCTGGCTTGC CTGGTTTGCGGTGGCGCTGCCCG TGGCGTGCGTGGGTAACTTTGCCTGCTGGGGATTTCTGCTGCTGGCCTACCGGCCCGGCC GCACCCTCAAGGAAGTCCGCCGT ATGCCCTTCAGCTCGGACCCGTTCACGTGGAAGCAGATCTACGTGGTGGTGATCAGCCTG GGCACGGTGGGGCTGTGGTGCGC CAACACCGCGCTCTCCAAGTTCACCGGCCAGATGGGCATCGTGGCCATCGTCCCCATGGT CGCCTTCTTTGGCTTCGGCCTCC TCTCCAAGGATGACTTCAACAACCAGCTGTGGAACGTGGTGATGCTGGCGATGGGCGGCT CCGCGCTCGGCGAGGCCGTCAAG TCCAGCGGACTTCTCTCCTCCATTGCGCACTCCATCGAGGACGTGGTTGCCGGCATGGGC GTCTGGGCCGTCTTCGCCATCTT CTGCGCGCTTGTGCTCGTGGCCACAACCTTCATCTCCCACACCGTGGGCGCCATGGTCAT CCTGCCCATTGTCAGCGCTGTTG GCGCGCAAATGGAGGAGCCCCACCCGCGGCTGCTGGTGATGGGGGCAGCTTTGATGTGCA GCGGAGCCATGGGCCTGCCGGTG TCAGGCTTCCCCAACATGACAGCCTACGCCAAGGAGGACCCCACCGGCAACCCCTGGCTA TCCACCATCGACTTCTTCAAGGT GGGCGTGCCATGCTCACTGGCCACGTATGGCCTCATCGTGACAGTAGGCTATGGCATCAT GAAGTTCGTTCTGGGCTGGTGA

>Coccomyxa_subellipsoidea . PTC 2 /homologue

ATGAAGTTTGGCGCGGAGAGGGCAGGCCACGCGCTGCTGAGCTGGCTGACTGCTGCC TGGCTGTGGCTTCTGCAAGCCTGGGA GGTGGTCGCAGAGTGGGGCCGCCAGTGCTGGGGGGCTCTTTTGCATGCCTGGCATTATAT CGCCAGCGCTGTCATGCAGGCAG TGCACTGGGTGAGGGGGCTCGAGGAGGTAGGAGGTGACCTGGACAGGACAATATCCCTGG CTCTTGAAGAGGGCGGGGACGAT ATCAAGGGCGCATTTGACAGCGAGCTTAACCGCATTACTACTTTCCACAAAAAGAAGGAA GAGGAGCTTCTGGGTGCAGTGGA CAAGCTTGGGGAGGAGGTGAGCAGTGCTGTGGAGCCAAGTGCACAGCAGAGCGCTCCTGA TGCGAGCTCGCCGCTGCTTGGGA CTTCCAGGAATGCGGAGGCACTGTACTGGGGCCAGGACACTGTTGCTGTGCGCATTGCGC GGGAGCAGCTAAGGGAGACCTTT CAGGAGCTGTATGTGGAGATCCAGGGGCTGATAGATTTTGTGGAGGTGAATCGTACAGGC TTCAGGAAGGCCCTGAAGAAGCA CGACAAGGTGTTGGGCGCGCTTGGGCACCCAAAGATGCAGCCAACGTACATGCCTAATGT CGAGGCTGCCTTCCCTGAGAAGA ACCGCCTGCGTGTGTCAGAAGCTCAGAAGCAGCTGGTGGAGCTGTACGCTGTGGTGTGCT GCCACAACAACCTGCTGCTGGCC CAGCTGGAGCTCAAGGCACAGCTGCGCTCCCAGCTCAAGCTTGAGAGGACGACAGTCTGG AAGGACATGGTGGAGAAGGAGCG AAAGGAGAACGCTGCCACGGTCGACGACAGCGGCGCTGAGTCCAAGCCCTGGTACCGCAG CAGCCTCTTCATGATCGCTCTCT CTTGCGTCGTCTTTGCCGTGCTCCTCAGCGTGCCGATCTTCGAGGAGCGAGCGAAGCAGA ATTGCCTGGCGCTGCTGGGATTT GCCTCCATGCTGTGGTGCACGGAGGCCCTGCCACTCTACGTCACCTCCATGCTAGTGCCC CTGCTGGCTGTTGTGCTCAGAGT GATGGTGGACGACAGCGGGAAGCACCCGGTCAGGAAGAGCGCACCCGACGCTGCGGACGC CATCTTCAAAGCCATGTTCTCAC

AGGCGAGTTCACAGCTCTTCATCTCCCCTCATTGCACAATTGAGAGGCACGTTGACG GCCTGCCCTCATACCCCACTACAATC

ATGCTGCTGCTGGGGGGATTCGCGATAGCTAGCGCCTTCACAAAGCACTTCATCGCC AAGCGCGTGGCCGTCTGGGTGCTGGG

GAAAGTCAGCGCCAAGCCGCACGCGGTGCTGATAGCCAACATGTTCGTGGCCACCTT CGCATCCATGTGGATCACCAATGTGG

CCGCCCCCGTGCTGTGCTTCTCCGTGCTGGACCCAATCCTGCGCACGCTGCCCTCCG GCCATTCTTTTGGCAAAGCTCTGGTC

CTGGGCATCGCGCTGGCGTCCAACCTGGGAGGCATGACAAGCCCGATCTCATCGCCG CAGAACATCTTCGCGATCCAGGAGAT

GGGCCGAGATGGCGAGCCGCCCTCCTGGCTTGCCTGGTTTGCGGTGGCGCTGCCCGT GGCGTGCGTGGGTAACTTTGCCTGCT

GGGGATTTCTGCTGCTGGCCTACCGGCCCGGCCGCACCCTCAAGGAAGTCCGCCGTA TGCCCTTCAGCTCGGACCCGTTCACG

TGGAAGCAGATCTACGTGGTGGTGATCAGCCTGGGCACGGTGGGGCTGTGGTGCGCC AACACCGCGCTCTCCAAGTTCACCGG

CCAGATGGGCATCGTGGCCATCGTCCCCATGGTCGCCTTCTTTGGCTTCGGCCTCCT CTCCAAGGATGACTTCAACAACCAGC

TGTGGAACGTGGTGATGCTGGCGATGGGCGGCTCCGCGCTCGGCGAGGCCGTCAAGT CCAGCGGACTTCTCTCCTCCATTGCG

CACTCCATCGAGGACGTGGTTGCCGGCATGGGCGTCTGGGCCGTCTTCGCCATCTTC TGCGCGCTTGTGCTCGTGGCCACAAC

CTTCATCTCCCACACCGTGGGCGCCATGGTCATCCTGCCCATTGTCAGCGCTGTTGG CGCGCAAATGGAGGAGCCCCACCCGC

GGCTGCTGGTGATGGGGGCAGCTTTGATGTGCAGCGGAGCCATGGGCCTGCCGGTGT CAGGCTTCCCCAACATGACAGCCTAC

GCCAAGGAGGACCCCACCGGCAACCCCTGGCTATCCACCATCGACTTCTTCAAGGTG GGCGTGCCATGCTCACTGGCCACGTA TGGCCTCATCGTGACAGTAGGCTATGGCATCATGAAGTTCGTTCTGGGCTGGTGA

>Symbiochloris_reticulata . PTCI

ATGCAATTGGGCCTGGGCAGGGACGACATGCAGAGGCTGTTTGTCCTGCTGACGGGG CTGGAGCGTTACATCGATTTGAACAT

TGCCGGCTTCCGCAAGGCCCTGAAAAAGCACGACAAGGTTCTGGCAGATGCAGAGAG CGGCAAGCTGAAGGAGACCTACATGC

CCACTGTGCACCGCCAGTGCTGCCTCAACAAGAAGCCCATCCTGGAGACATTGTATG CCATCGTGTGCTGCGATGGGAACAAT

GAGATGGCTTTGATAGATCTCAAGCGCCGTCTCGGCGAGACTGTGCAATTTGAAAGA AACACAGTGTGGAAGGATATGGTGCA

AAAGGACCGCAAAAGGGGCACGCTGAAGGTCGACGATGGGCTGATCGGATCGTGGTG GCATCGCGCGCGGCAGCCGGCAGCAA

TCGCCATGTCACTGGCGGTCTTTGTTGTGCTTTTATATACGCCCACGTTCAGAGAGC CGGAGAAGCGAAACTGCCTGGCGCTA

CTGGCCTTCACCTCGCTGCTGTGGTGCACGGAGGCGCTGCCGCTGTACGTGACGAGC ATGCTGGTGCCCCTGCTGGTGGTGGT

GCTGCGGGTGTTGGTGGACGGCAGCCAGCACCCGCCTCAGCGCCTGTCCTGCAAGCA GGCCGCGCCCCACATCTTCCATGCGA

TGAACTCCCAGGTGATCATGCTGCTGCTGGGAGGCTTCACCATTGCGGCTGCCCTGA GCAAGCACGCGATTGCCAAGATCCTG

GCCAGCTGGGTGCTGAGCAAGGTGGGGCAGCGGCCGGGCGCGGTGCTCATGGCCAAC ATGCTGGTGGCCACCTTTGCCAGCAT

GTGGATCTCCAATGTGGCCGCCCCCGTGCTGTGCTTCTCGCTTGTGCAGCCCGTTCT GCGCACGTTGGATGCCACCCACAGCT

TTGCAAAAAGCCTGGTCATGGGCATTGCGCTGGCATCCAATCTGGGGGGCATGACCA GCCCAATCAGCAGCCCACAAAACCTG

TTTGCCATTGAGCGCATGTCCATGGCAGGCCTTCCGCCCTCATGGCTGTCCTGGTTT GCAGTCGCACTGCCTGTGGCTTTTCT

GGGTAACTTTCTGGTCTGCGGCTTGTTGCTCCTTGTCTATCAGGACCCTCATTTCAC CGAGGTCCGGCCAATGCAGCCCATCA

AGGATCCGATCAACGGCAAGCAGATGTACATCATTGCAGTATCTGTCGGCTCGGTCA CAATGTGGTGCTTCAACAGCGTGCTC

CAGCAATGGTTTGGGGAGATGGGTATCATCGCTATACTGCCCATGATAGCATTTTAC GGCTTTGGCATACTAGACAAGGACGA

TTTTAACAGCATGCTGTGGAATGTCGTGATGCTGGCTATGGGCGGGCTGGCGCTGGG GGAGGCGGTCACATCCTCTGGCCTGC

TGCTGTCCATTGCGGAGCAGCTGCAGCACCTGGTTCAGGGCGCCTCGGTGTGGCGCG TGCTGGTCATCTTCTGCGGCCTGGTG

CTCGTGGCCACCACCTTTGTCTCCCACACTGTCGGCGCCATGGTCGTCCTGCCCATC ATTCAGTCTGTCGGCTCCCAGCTGTC

GGATCCCCATCCAAAGCTGCTGGTCATGGGCGCAGCATTGATGTGCTCAGGTGCCAT GGGCCTGCCTGTCAGTGGCTTTCCAA

ACATGAATGCTGTGGCCTTGGAGGACTCCAAAGGCATCAACTATCTCACCACAATAG ACTTCTTCAAGGTTGGCCTGCTGAGT TCCTTGATAGCCTATGGACTTATCGTCACCCTGGGCTATGGCATCATGTACTATGGCATT GGCTGGTAA

>Edaphochlamys_debaryana . PTCI

ATGAAGTTCACTCACCAGCTCAAGTTCAATTCGGTTCCCGAGTGGCGGGAACATTAC ATACAGTATGCGCACCTTAAGAAATA

CATTTACGCGCTTGCGAAGAAGGAGGCTGACCACCAAGCGGACGGCGCCGGGACTGG TGATGTAGAGGGCCTGATCGCCCCAC

TGCTGCAGGATGGCGGTCGCGCATCGGGCCCCACCGAGGAGGGCTTCCAGCGCGAGC TGGACTCCCAGCTGGCCGCGCTGCTG

GGTTTCTTCGCGGTCAAGGAGGCGGACCTGCTGGCCAAGGTGTCGGAGCTGGAGCTG GAGGTGCAGAGCATGGAGAAGATCCC

CAACCGCAACGAGGCCTCCAACCTGGTCCGGGCGAGGGGGGGCGGCAGCGCCGCCAG CGGCACGCCCTCCCCGGGCGCCTCCC

CGCGCGCCTCCGCCGCTGGCGCCGCGCTGTCCGCCCTCAGCGGCCTGCTGGCGGCCT CGCCCTCCACCATGGACCTGGCGCGC

ATGGTGGCCGCCTCGCCGCCAGAGGACCACCGCTCCGTGCGCGTGGCCTTCTGGAAG AACCCCCCGCGTCACCTCTTCTCCTC

CAGCCTGCAGTCCCGCGCGGCCAAGCTGCAGAGCAGGTTCCAGGACCTGTACATTGC GCTCCACGACCTGCGCGAGTTCCTGC

ACATCAACAAGGAGGGCTTCCGCAAGATCATCAAGAAGCACGACAAGCTGACCCGCT CCGTGGACCTGCGCGCCCGCTGGTGG

CCCAACGTGGAGGCGCACCTGGCCCCCGCCGCCAAGCAGGCGGAGCTGGACGGGGCC ATAGCGGGGCTCACGGACACGTACGC

GGTGGTGTACTGCCGCGGCGACGCCTCCTCCGCCGAGGAGCTGCTCAGCCGCGGCCT GCGCGAGCACATCACGGTGGAGCGCA

ACACCGTGTGGCGGGACATGGCGGCGCTGGAGCGCAAGTACGCGGCGGTCAGCGTCA AGCAGGCGGCGGGGGCGGCCAAGCCC

AGCTGGCTGTGGCGCCACGCCCGCTGGCTGAAGCTGGGCTTTGCGCTGGCGGTGTTT GGGATCATGCTGCAGTACGAGGTGTG

GCCCGGCCCCGAGAACGCCCCCCGCAACGGCTGCCTGGCGCTGCTGGTGTTCGCGTC GCTGCTGTGGTCGCTGGAGGCCGTGC

CCCTGTTCGTGACCTCCATGCTGCTGCCCCTGCTCATCGTGCTGCTGGGCGTGCTGG TGGACCGCACCAAGGACCCCCCGCAG

CGCATGACCCCGCAGCAGGCCGCACCCGCCATATTCCACGCCATGTTCTCGCAGACC ATCATGCTGCTGCTGGGCGGCTTCGC

CATCGCCGCGGCGCTGTCCAAGCACGCAATCGCCAAGCAGTTCGCTGTGGCCATCCT GTCCCGCGTGGGCCGCCGCCCCCGCA

ACGTGCTCCTGGCCTCCATGTTCACCGCCACGTTCGCCAGCATGTGGATCAGCAACG TGGCGGCGCCGGTGCTGTGCTTCGGG

CTCATACAGCCCATCCTGCGCACGTTGGACCCCGGCCACCCCTTCGCCAAGGCGCTG GTGATGGGCATCGCCCTGGCCTCCAA

CGTGGGGGGCATGACCAGCCCCATCAGCAGCCCGCAGAACATCTTCGCCATTGAGCG CATGTCCCTGGACGGCCGCCCCCCCT

CCTGGCTGGCCTGGTTCGCGGTGGCGCTGCCCGTGTCCATAGCCTGCAACTTTGTGT GCTGGGGCCTGCTGCTGGCCGTGTAC

CGCCCCGAGCGGGTCATCGCCGAGGTGCGCCCCATCAAGCCCAACACGGACCCCATC AACGGAACGCAGGTGTACATCTGCGC

CGTGTCGCTGCTGACGGTGGGCGCCTGGTGCGCCAACACCTTCCTGCAGAAGTTCAC GGGCGAGATGGGGGTGGTGGCGGTGG

TGCCGCTGGTGGCCTTCTTCGGCTTCGATGTGCTCAACAAGGACGACTTCAACTCCT TCCTGTGGAACGTGGTCATGCTGGCC

ATGGGCGGGCTGTGCCTGGGCGAGGCCGTCAAGAGCAGCGGGCTGCTGGCGGCGCTG GCGCTGGGCATCAGCGACCTGGTCAC GGGGCTGAGCCTGTGGCAGGTGGCGGTGGTGTTCTGCGGAATGGTCCTGGTGGCCACCAC CTTCATCTCGCACACCGTGGGCG CCATGGTGATCCTGCCCATCGTGCAGTCCGTGGGCGAGGCCATGCCCGGCACGCCCCACC CCAAGCTGCTCGTCATGGCGGCG

GCGCTCATGTGCTCGGGTGCCATGGGCCTGCCCGTGTCCGGCTTCCCCAACATGAAC GCCGTCAGCCTGGAGGACGCCACGGG

CAACGCCATCGTGGCCACGCAGGACTTCCTGTTGAGCGGTGTGCCCGGCAGCATTGC GGCGTACGGCATCATCGTGACGCTGG GTCACCACACCATGGCACTGCTGGCAGCCCCCTGA

>Enallax_costatus . PTCI

ATGAAGTTCACGCATGTGCTGAAGTTCAACTCCGTGCCCGAGTGGCGGGAGTCGTAC ATCAACTACCCGCTGCTGAAGAAGCT

TATCCTTGCTGCAAGTACCGCTGAATATCATGAAGCGTACGAGGGCCTGGCGCTCAC GCAAGATGAGGAGGCAGGGCCACGGT

CTCCTCTGCTGTCAGCCCAGCCCAGCCTCAGCCGTTCGTTATCCGTTACGATGACAC GCGAGCAGCGCGAGAAGGAGTTCCTC

GAGGCCCTCGACAACGAGCTTGCGAAGATCATACGCTTCTATCTGAAGAAGGAGGCA GAGATCAGTGCCAAGTTTGAGGAGCT

CAGCATGATGGTCCATCATGCGGAGGGGATACCTTCTCCTACCCCAGAGCAAATGGC AGATGGCCACGACGTGACGACAGCAG

CGCGTGTAGCATTCTGGTCCCAGGGGGGCCGAGCAGTAGCAGCTCAGCGTGAAAAGC TTAAAACATCGCTCGAAGAGCTTTAT

GCCACAACGTTCAGCCTCGCTAACTATGTAGAACAGAACAGGACTGGCTTTCGCAAG ATTCTCAAGAAACATGATAAGCTAGT

CTCGCACACAATGTCGAGCAACTATCTACCCATTGTAGACCAGAAGTTCCCAGCCAG CCACGCAGCCACCCTTCATCACCAGC

TAGAGGCAATCACAGCACTGTATGCAGTAGTATGCTGCAACGGTAACTTGGAGCATG CCAACAGCATACTACGTAAGCAGCAG

CAGGAGCAGGTGTCGTTCCAGCGTAACAGCATCTGGAAAGATATGGTGGGCCAGGAG CGACGAGCAGCAACAGTACGAGTGCA

GGACGGCAAAGAGGTAGAGCCAGAGTCCTGGTTCACAGCCCACCGGCAAGCAGTCAT CCTGGCAATCGCACTAGCAGTGTTTG

TCGTGCTACTCACAGTACCCATATTCAAGCAGCCTGAGAAGCAGAATTGCTTGGCAT TGCTGGCCTTTGCAAGTATGTTATGG

TGCACGGAGGCCATTCCGCTGTTTGTCACCAGCATGTTAGTGCCTTTCCTGGTGGTG GTGTTGCAAGTGCTTGATGATGTGAC

TCAAGAGCCCCCTGAGAGGCTGACACCCAAACAGGCGGCACCCAGGGTTTTCCACAC CATGTTCTCACAGACCATCATGTTGC

TACTAGGAGGCTTTGCCATTGCAGCAGCCCTCAGTAAACACTTCATTGCCAAGCAGC TCGCAGTAGCAATACTCTCTAGAGTA

GGCCGCAAGCCACATCACGTACTCCTGGCCAATATGCTCGTGGCAACATTTGCCAGC ATGTGGATATCCAATGTAGCAGCGCC

TGTTCTGTGTTTCAGCTTGGTACAGCCCATACTTCGAACCCTGCCGACTACGCATGC TTTCTGCAAGAGCTTGGTCATTGGGA

TTGCACTGGCGAGCAACTTAGGCGGAATGACGAGTCCTATCGCCAGCCCCCAGAATA TATTTGCAGTCGAGAGGATGGGAATG

GGTGGTACACCACCTAGTTGGCTGGAGTGGTTTGCTATAGCTCTGCCTGTCAGCTTT CTGGGCAACCTGCTGTGCTGGGGGCT

GCTACTGTTGGTGTACAAGCCTGGGAAAGATATAAAGGAGGTTCGTCCTCTGAAGCC CACTGAGGATCCTTTGACTGGCACAC

AGATATATGTCATCGTCATCAGCTTGGCTACAGTCACACTGTGGTGCTGTAACAGCT TCCTACAGGAATATACCGGAGAGATG

GGTGTTCTCGCCATCTTCCCTCTGGTTGCGTTCTTTGGCTTTGGTGTTTTGAACAAG GATGACTTCAACGGCTTTCTTTGGAA

CGTTGTGATGCTGGCTATGGGTGGACTGGCACTGGGAGAAGCTGTGCAGAGCAGTGG GTTACTGCTGGAGATATCAAATAGCA

TCAGTCACCTTGTTGCTGGTCAGAGCCTGTGGGCAGTCCTTGCCATCTTCTGTGGAC TAGTGCTTGTGGGCACAACATTCATC

AGCCACACAGTTGGAGCCATGGTGATCTTGCCCATTGTGCAAGCAGTGGGGCAGCAG ATGCCGGGTGGAGATCATTCAAAGCT

GCTGGTTATGGGTGCAGCTCTTATGTGTTCAGGTGCCATGGGCTTACCCGTAAGTGG CTTCCCCAACATGAATGCCGTTGCAT

TAGAAGATCCCACTGGGGCAAACTATGTCTACACAAAGGACTTCCTATTGGTTGGGG TGCCTGGCAGTATCATGGCATATGGC ATCATCATCAGCGTAGGGTATCTGCTGATGTTGGCAGTAGGCTTTTAG

>Mesostigma_viride . PTCI

ATGAAGTTCGGGAAGGTCCTGAAGGACGATGCCGTCCCTGATTGGATTCCGAAATAC GTGGCATACAAGAAGTTGAAGCGTGT

CGTTCAACGGATGGAGTTAACAGTAGAGCAGGAACTGCAACAAGCCGCGAGCAAACG GGGAGCAGCAGGCTCGTCAGACGTAA

CCTCCCCTCTTGCCACCAAGGAGACGTTGCTGCAGAGGAAGAGTGATGAGTTTATGG AAGGGGTGGAGGAGGAGGTGGCCAAA

GTGAACCACTTTTACGACGAGATGGTCTCGGCGCTCCGCTGCGACCTGGAGGCCTAC GAGAAGCAGCTCGCGGCGCAGCTCGC

GGGCGGCAACAAGAAGGCGTTCCAGAAGATGTTTGTGCTGGCGTCCGACCTGAATGC GTACATCACGCTCAACAGCACGGCGT

TCCGCAAGATCATGAAGAAGCACGACAAGTTGACGGGCCTGCACCGCATGGACGCGT TTGTGGCGCGCATCAAGCATGAGGGG

TTCATGGAGGCAAAGGCGCTGAGGGAGCTATCCGCACGCCTCGAGGCGATGATGTCG CCCGACGCGCTCGACAGCCTCAAGCA

GCAGTACCACCTGGAGCGCCAGAAGCGGTCCGAGTCCGCAGGGGGCTCCACCGGATC CCCAGCCAAGCCCACGCGCATCCTCT

TCTCCATCGCTGTCTTCTTCCTCATCCTGGCGCTGCCCCCCTTTTGGAGCGCGCGCC CGGCGAGCGGCGGCAACGATGACGGG

ATCGCTGACGTCAGCGACGGTGCCGGCGTCAGCGGTGGTGTTGCGTTTGGGGTTGAT TATGGGTATGAGGGTGAGCCGGCGTC

GTTGGGCGCCCAGGGAGGCGTCGGGGAGGCCGCGGTGGCGGCGCGTGACCGGCTCAT GCGTGTACTGTGGGAGCGGCACTATG

CGAGGGATGAGGCGGCCTCCTCGAGCATCGGCGACTACGTCTCTGGCAACAGTGCGT TTGGCCCCACTCAGGAGGAGCGCGCG

CACCGGTGCTTTGCGCTGCTCATCTTCATCGCGTGCATGTGGGTGCTGGAGGCGCTG CCGTACTTCGTCACCTCCCTCATGAT

CCCGCCCCTGGTGGTCATGCTGAACATCATGGCGGACCCGACGGACAAGGACAAGGC ACTGTCCGCGCCCGACAGCTCGCGCC

TCGTCCTCTCGTCCATGTTCGACCACGTGCTCATCCTGCTGCTGGGCGGGTTCACGC TCTCCGCCGCGTTCGGGCAGTGCGCG

TTTGAGCTGCGCATCGCAGGCGCGCTGCAGCGGGCGCTCGGCCACCGCCCCTGGCTC TTCATGCTCGCCATCATGCTCCTCTC

GCTGTTCCTCTGCATGTGGCTGTCCAACGTGACCGCGCCCGTCCTCATGCTCTCGGT GCTGCTGCCCATCCTGCGCGACTTCG

ACCACGGCGGGCGGTACCCTAAGGCCCTGCTGCTCGGCCTCGCGTTTGCCTGTAACC TGGGCGGCATGGTCACCCCGATCGCG

TCGCCTCAGAACGCGGTCGCCCTGGTGGCGCTCGACGCGCAGCACTTTACCATCACC TTCTTCGAGTGGATGGCGGTCGCGCT

GCCCTTCTGCGTGCTCCTCGTCGTCGTCGTCTGGGCCTACCTCATCTTCGCGCTGCG GCCAGACGACGTGGTGTCCATCCCGC

CGGTCATGTACAAGACGACCCCCCTGAGCAGCAAGCACATCTGGGTGCTCCTCTTCT CGCTGGCCACCATCGGCCTGTGGTCC

ACCCTCTCCCTCACCGTGAGCGTGCTGGGGGACCTGGGCATCATCGCGCTTCTCTTC ATGGTGTTTGCGTTCGGCACGGGCGT

GCTGTCCAAGCACGACCTGAACTCCTTCTCCTGGCACCTGCTGCTGCTGATCGCCGG TGGCAACGTCCTGGGCCGCGCGGTGC

AGTCCTCCGGGCTGATCCAGATCGTAGCGCAGATCGTGACGCCCTACCTGCACGACA TCCTGTGGGTTGCGGCGCTCGAGCTG

CTCGCCTTCATGATCATCATCACCACGTTTGTCTCCCACTCGGTCGCGGCCATCATC ATGATGCCTCTCATCGTGGCGATCGG

GAAGGAGATATCACCTCTCTCCGCCGAGGTGCTGGTCCTCCTGTGCACGCTCGCGGA CAGTGCCGCGATGGCGCTCCCGATGA CATCCTTCCCCAACGTGAACTCGCTGCTCGTGGAGGATGACTATGGCGTTCCCTACCTCC GAGTCGTCGACTTCATCAAAGTG GGTGCCCCCGTGTCGATCATGGTGGTGACCGCCATCGCCACCCTGGGATACTCCCTGGCT GTGTTTGTGCTGCGCCCATGA

>Raphidocelis_subcapitata . PTCI atgaAGTTCACCCACCAGCTCAAGTTCAACGCGGTGCCGGAGTGGAAGGAGCATTACATA AACTACCCCCTCCTGAAAAAGAT CATCTACGCgacccgcgcggccgagtgCCAGGACGCGTacgacggcgtcggcggggacga ggaggcggccggcccct ccgcct ccggcggct cgct gctgcgct ccccccgcaccagcct cagcggcggctcgctgcgcgcgccgctgct gcagggcgtgggcggg ctgtcgctgtcgcggtcgggcagcgtcggcgcgcgcgcgggggactCTGAATTCATTAAG GCGCTGGACCAGGAGCTGGCCCG CATCATAAGCTTCTACCTGCGGAAGGAGGGGGAGCTGACCTCGGCGTTCGAGTCCCTCAa cct gcagct gcacagCCGCGATG GCTgcgacgcggctgcgcccgccgcgggcggcgccggcggcggcggcggcggagccgcgg ggttt ggcaccgcgccggcggcg cccgcggcgggcgccgt ggacggcgcggcggccgcagaggcgggggaggccgccgccgccgcggcggtcccgCAGTC GCaggc ggagcggcagcggcgcgccgagttccagcggcgcaccgcctACTGGGCTGCCAACgaccg cggcgtggcggcggagcgggagc ggTTCCGGCAGAAGCTGGTCGGGCTGTTTGTGCAGCTGGACGgcctCAAGAAGTACTTGG AGATGAACCACACCGGGTTCAGG AAGATCCTCAAAAAGCACGACAAGGAGACCACgcagCACCAGTACAAGGACAGCTACATG GCCATAGTGGACGccaagctgcc gct gcgcagcctcgAGGGGCTCAACCGCCTGATAGAGCGGCTCAGGGAGATGCACGCGGCGGT GTGCTGcaagggcAATCTGG AAAAGGCGGAGCGGGAGCTGAGGAGCGAGTTGCgggaggagGTCGGTTTCGAGCGCAACA CCGTTTGGCGCGACATGGTGGCC ATGGAGCGGCGCACGGGGGCGgt ggtgct gcaggAGCCCGCCCACGGCATCGCCGATGAGTCGCGCCAGGAGccgtggctgcg ccgccactggcagccgctggcgctgtgcgTCTCGGGGCTCGCgtttgccgcgctgct ggcggcgccgct gttcgagggcgcgc cggagaAGCGGAACTGCCTCGCCATGCTCGCGTTTGTGAGCCTCCTGTGGTGcaccgagg cgctgccgctgtttgTCACGTCC atgct ggtgccgctgct ggtggt ggtgct gcgcgt gctggt ggacagGACCGTGgagccgccggt gcggct gGAACCCCAGCA GGCCGCACCCGCAATTTTCAGAGTCATGTTcgggcagGTCAtcat gctgct gctcggcggctttgccat cgccgcggcgct gt cgaaGCATTTCATCGCAAAGCAGCTGGCGGTCGCCATCCTCTCCCGCgt gggacggcggccgcgggacgtgct gctggcgaAC ATGCTGGTGGCCACGTTTGCGAGCATGTGGATATCAaacgt ggcggcgccggt gctgtGCTTCAGCCTGGTGCAGCCCATcct gcgcacgct gccgccgagccaCCCCTTTGCCAAGTCGCTCGTGATCGGCATCGCCCTCGCTTCGAAcct cggcggcatgACCT CCCCCAt ct cctccccccaaaacat cTTTGCCATCGAGCGCATGAGCATGGACGGCCACCCGCCCAGCTGGCTGGCCTGGttc gcggt ggcgct gccggt cGCGTTTGCGGGCAACGTGCTGTGCTGGGGGCTGATCCTGGCAGTCTACCGCCCTGGGCA GAAGAT CCGGGAGgt ccgcCCCCTGAAGCCCCCAGAGGACCCCCTGTCACCCACCCAGGTTTACGTCGTCGTCGT GTCACTCGCCACCG TGGCGCTGTGGTGCTGCAACAGCCTGGTGGCGGGGGTGACGGGGGAGATGGGGGTGCTGG CCATCCTGCCGCTGGttGCGTTC TTCGGCTTTGGCGTGCTGTCCAAGGACGACTTCAACGGCTTCCTGTGGAACGTGGTGATG CTGGCaatgggggggct ggcgct ggggga ggcggtcaagagcagcgggct gctgct gacgattgcgcagTccgt cggccagcagct gcccggcccgccgcacgaCA AGCTGCTCGtcat gggcgcggcgct catgtgcagcggcgcgat ggGGCTGCCTGTCTCGGGGTTTCCAAACATGAACGCCGTC GCGCTGGAGGACCCAACGGGGGTGAATTACGTGGACACGATCGATTTTTTGAAGGTCGGC GTGCCGGGCAGCGTGCTCGCGTA CTGGATCATAGTGACCGTGGGGTATGGGATCATGAGGGCCGTGGGGATGtga

>Symbiochlori s_reti culata_Af rica . PTCI

ATGAAGTTCACGAAGGAGTTGAAATATAACGCCGTGGAAGAGTGGCGCGCCCACTAC ATCAACTATGCCGCTTTCAAGCGGCT CATATACGGCGAAGAGAAGCGCAAATTTGGCGATAACGAACGCATGGTGCCGGGAACGCC ACAGGAAGATGACCATCCCACTC AGGAGCCACTGCTACACCAGACAGATGACAAAGCTTTCATGAGCCTTTTGGACAGCGAAC TGGCTCGTGTGCACGAATTTTAC CTTGAAAGGGAGCGAGAGCTTGGTGGCCAGCTTGACAGCTTGCTGAGCCATGCGCGCACT GTGGAAGTCAATGAACGGCCTGC CACCCCTTCAACAGAGCACGGCCGCAGATCTTCTGAGGGCAGATTACACCTTGCGAGGCG GAGCAGTTCCAGAATGCAGGGAG CGCTGGCAGATTTGCAGGCAGAAGCCGTATCCTCAGAGTTCTGGTCCCAGAACCAGGACT TTGCTGTCCAGGCTGCACGCGAG CAACTCAGGGACGACATGCAGAGGCTGTTTGTCCTGCTGACGGGGCTGGAGCGTTACATC GATTTGAACATTGCCGGCTTCCG CAAGGCCCTGAAAAAGCACGACAAGGTTCTGGCAGATGCAGAGAGCGGCAAGCTGAAGGA GACCTACATGCCCACTGTGCACC GCCAGTGCTGCCTCAACAAGAAGCCCATCCTGGAGGGGGCGCTGCGGAAGCTGCAGACAT TGTATGCCATCGTGTGCTGCGAT GGGAACAATGAGATGGCTTTGATAGATCTCAAGCGCCGTCTCGGCGAGACTGTGCAATTT GAAAGAAACACAGTGTGGAAGGA TATGGTGCAAAAGGACCGCAAAAGGGGCACGCTGAAGGTCGACGATGGGCTGATCGGATC GTGGTGGCATCGCGCGCGGCAGC CGGCAGCAATCGCCATGTCACTGGCGGTCTTTGTTGTGCTTTTATATACGCCCACGTTCA GAGAGCCGGAGAAGCGAAACTGC CTGGCGCTACTGGCCTTCACCTCGCTGCTGTGGTGCACGGAGGCGCTGCCGCTGTACGTG ACGAGCATGCTGGTGCCCCTGCT GGTGGTGGTGCTGCGGGTGTTGGTGGACGGCAGCCAGCACCCGCCTCAGCGCCTGTCCTG CAAGCAGGCCGCGCCCCACATCT TCCATGCGATGAACTCCCAGGTGATCATGCTGCTGCTGGGAGGCTTCACCATTGCGGCTG CCCTGAGCAAGCACGCGATTGCC AAGATCCTGGCCAGCTGGGTGCTGAGCAAGGTGGGGCAGCGGCCGGGCGCGGTGCTCATG GCCAACATGCTGGTGGCCACCTT TGCCAGCATGTGGATCTCCAATGTGGCCGCCCCCGTGCTGTGCTTCTCGCTTGTGCAGCC CGTTCTGCGCACGTTGGATGCCA CCCACAGCTTTGCAAAAAGCCTGGTCATGGTCGCACTGCCTGTGGCTTTTCTGGGTAACT TTCTGGTCTGCGGCTTGTTGCTC CTTGTCTATCAGGACCCTCATTTCACCGAGGTCCGGCCAATGCAGCCCATCAAGGATCCG ATCAACGGCAAGCAGATGTACAT CATTGCAGTATCTGTCGGCTCGGTCACAATGTGGTGCTTCAACAGCGTGCTCCAGCAATG GTTTGGGGAGATGGGTATCATCG CTATACTGCCCATGATAGCATTTTACGGCTTTGGCATACTAGACAAGGACGATTTTAACA GCATGCTGTGGAATGTCGTGATG CTGGCTATGGGCGGGCTGGCGCTGGGGGAGGCGGTCACATCCTCTGGCCTGCTGCTGTCC ATTGCGGAGCAGCTGCAGCACCT GGTTCAGGGCGCCTCGGTGTGGCGCGTGCTGGTCATCTTCTGCGGCCTGGTGCTCGTGGC CACCACCTTTGTCTCCCACACTG TCGGCGCCATGGTCGTCCTGCCCATCATTCAGTCTGTCGGCTCCCAGCTGTCGGATCCCC ATCCAAAGCTGCTGGTCATGGGC GCAGCATTGATGTGCTCAGGTGCCATGGGCCTGCCTGTCAGTGGCTTTCCAAACATGAAT GCTGTGGCCTTGGAGGACTCCAA AGGCATCAACTATCTCACCACAATAGACTTCTTCAAGGTTGGCCTGCTGAGTTCCTTGAT AGCCTATGGACTTATCGTCACCC TGGGCTATGGCATCATGTACTATGGCATTGGCTGGTAA

>Tetradesmus_de se rt icol a . PTCI

ATGAAGTTCACCCACACCCTCAAGTACAATTCCGTGCCTGAGTGGCGCGAGTCCTAC ATCAACTATAGCCTGCTGAAAAAGCT TATCTTAGCGGCCAGTACTGCAGAATATCATGAGGCGTACGAAGGCGTGCATCCTGCAGC AGACCTGGAGGATGCTGGGCCCA GGTCACCCCTGCTATCTAGGCAGGCAAGTCTGCAGGCAAGTCTTTCCAGGAGTCTCTCAG TCACGATGACGCGCGAGCAGCGC GAAAAGGAGTTCCTTGAGACATTGGACAACGAGCTGGCCAAGATCATCCGCTTTTACTTG AAGAAGGAGGCAGAGATCACAGC CAAGTATGAAGAAGTCAGCATGATGGTGCAGCATGCCGAGGGCATTGCATCGCCAACACC AGGGCAGGCAGCAGAAGTCTCGG GGTTGCAGGCAGCACAGCGCACAGCGTTCTGGTCTCAGAGCAGCAGGCCAGTAGCAGCGC AGCGCGAAAAGCTGCGAGCCGCA CTGGAGGACCTGTACGCGACCTGCTGCAACCTTGCCAGCTATGTAGAGCAGAACCGGACT GGCTTCAGGAAGATATTGAAGAA GCATGACAAGCTGGTGTCGCACCCGATGTCAGCCATATACCTGCCCATCGTAGACCAGAA GTTCCCGGAAAGCCACGCAGCGC ACCTGCGCGCACAGATGGACGCCATCGCGTCTCTGTACAGCATGGTGTGCTGCAACGGCA ACGCAGACAAGGCGGCAGCCATC CTGCGCAAGCAGCAGCAGGAGCAGGTGTTCTTTGAGCGCAACAGCATCTGGAAGGACATG GTGGGCCAGGAGCGGCGGGCTGC CACGCTGCACCTGCAGGATGGCAAGGAGGCTGTGCAGGAGTCCTGGCTGAGCACGCACCG CCAGGCGATGCTGGTCACCCTCG CACTGGCAGTGTTTGCCTTCTTACTCTACTACCCAATCTTCAAGGAGCCAGAGAAGCAGA ACTGCTTAGCGCTGCTGGCATTT GCCAGCATCCTGTGGTGCACGGAGGCCATCCCGCTGTTTGTGACCAGCATGCTGGTGCCC TTCCTCATCGTGCTGCTGCGGGT GCTGGATGATGTGGACCAGGAGCCGCCAGCTCGCCTGACACCTCAGCAGGCGGCACCGCG CGTCTTCCACACCATGTTTTCGC AGACTATCATGCTGCTGCTTGGCGGCTTTGCCATTGCAGCAGCGCTGTCTAAGCACTTTA TCGCAAAGCAGCTGGCTGTGGCC ATCCTGTCGCGTGTTGGCCGCAAGCCGCACCACGTGCTGTTGGCAAACATGCTCGTCGCC ACCTTTGCAAGCATGTGGATCTC AAACGTAGCAGCACCCGTGCTCTGCTTTAGCTTGGTGCAACCCATCTTGCGGACCCTGCC CACAAACCATGCGTTCTGCAAAA GCCTTGTCCTCGGCATCGCACTTGCCAGCAACCTGGGTGGCATGACGAGCCCAATCAGCA GCCCGCAGAACATCTTTGCGATT GAGCGCATGAGCATGGGTGGCAGCCCGCCCAGCTGGCTGCAGTGGTTTGCGATCGCGCTG CCTGTCAGCTTCCTTGGCAATGT GCTGTGCTGGGCGGTCATCCTGGCGGTGTACAAGCCAGGGCAAAACATCAAGGAGGTGCG CCCGCTCAAGCCTAATGAGGACC CCATGAGTGGCACGCAAATCTACACCATCATCGTCAGCTTGGCAACTGTCACAGCCTGGT GCTGCAACTCGTTCCTACAGGCG TACACTGGTGAGATGGGTGTGCTGGCAATCATCCCGTTGGTGGCCTTTTTTGGCTTTGGT GTGCTGTCCAAGGATGACTTCAA TGGCTTCCTGTGGAATGTGGTCATGCTGGCCATGGGAGGGCTGGCGTTGGGGGAGGCAGT GCAGAGCAGTGGACTGCTGGCAA CCATCTCAAACTTGATAAGCGATCTTGTGGGTGGTCAGTCGCTGTGGGCAGTGCTTGCCA TCTTCTGTGCCCTGGTGCTGGTC GGCACAACCTTCATCAGCCACACCGTTGGGGCTATGGTCATACTGCCTATCGTGCAGTCA GTGGGAGATAAGATGCCTGGGGG CCATTCCAAGCTGTTGGTGATGGGAGCAGCACTCATGTGCTCAGGTGCTATGGGCCTGCC AGTGAGTGGCTTCCCAAACATGA ACGCGGTGTCGCTGGAGGACTCGACCGGCCAGAACTACATCGGCACGGCAGACTTCCTCA AGGTCGGCGTGCTGGGCAGCGTG CTGGCATACGGCATCATCATCAGCATAGGCTACGGGCTCATGCTGGCGGTTGGCTTCTAG

>Tetraselmis_striata . PTCI

ATGAAGTTTGAGCACGCGCTCGAGTTCAACAGCGTGCCGGAATGGCGCGGGCACTAC CTCAACTACGAGCAGCTCAAGCGCCT GGTGTATGCCGTGGAGGCCCAGCAGAGCGCAGCGCAGCGCGCTAGCCTGGACCTGTCCCG GCGGCCCTCCGGGGTGCAAGAGG ATCCGGAGGCCGGGTCGCCGCTACTGCCGGGCGGCTCGGAGGTGGAGGGCGGCCAGGAGG CGGAGGCGGAGTTTGTGAGCTGC GCGGAGGGGGAGCTCAAGCGGGTGCACGCCTTCCTGACTGCACGGGAGGCGGGCCTGCTG GGGCAGTGGGAGGAGGCGGCGCT TGCGGCCCACAGCGCGGAGGCCAGCTACGTGCCAGCGCGCACCACTCGCGGAGGGGCGTT CACGCGCTCCCACTGGTGGCAGC AGCCAACGATGCAGGCGCAGCGGCGCACGCTGGTGGCCACCCTGGGCAGCCTCTTTGTGA GCCTGCACGACCTGTCCAGCTAC GCGGAGCTCAACGAGACGGGTTTCCGCAAGATCCTGAAGAAGCACGACAAGGTGACGGGC GGCGCGCTCAAGGGGGCGCTGCT GCCGGTGGTGCAGGCCCGGCTGGGCGCCAAGCGCGCGCGGCTGGATCAGGCGCTCGAGGA GGTGACGAGCCTCTACGCCACGC TCGCCTTTGACGGCGATGCGGACGTCGCCGCGGCGCACCTGAGGGAGGGGCTGCGCGAGC AGGTTGTGTTTGAGCGCAGTGCG GTGTGGAAGGACCGCATGGAGGAGGAGCGTCGGGTTGCGACCGCGCACGTCGTGGGCCCC AAGGCCGCCGCCGCCAAGCCGTG GCTGCTGTCCGGCAAGGCGATTGCAGGCCTGGCGGCGCTGGCGCTGGCGGGCGCTGTGCT GGGCAGCAGCGCGTTTGGGGCCG ACGACGCTGGGGCCACCAAGCGCGCATGCCTTGCCATCCTGCTGGCCAGCGCGGTGCTGT GGTGCACCGAGGCGGTGCCGCTC TACGTGACCAGCATGGCGCTCATCTTTGCGGTCGTCACGCTGCGCGCAATGCTGGACGGC GACGGGGCGCGCCTGAGCGCGCC CGACGCCATGAAGCGCGTGTTCTCCAAGATCTTCAGCCAGACGGTCATGCTGCTGCTGGG CGGCTTCACCATGGCGGCTGCGC TCTCTAAGCACCTCATCGCCAAGCGGCTCGCCATTGGCGTGATGGCGCAGGTGGGGCGGC GCCCGGCCTCGGTGCTCCTGGCG GCGATGGGCATCGCGCTGTTCAGCAGCATGTGGATCTCCAACGTCGCGGCGCCCGTCCTG TGCTTCAGCATCGTGGCGCCCAT CCTGCGCACGCTGCCCACGGACGACCCGCTGGGCGCCGCCATGGTCATCGGCATCGCGAT GGCCTCCAACATCGGCGGCATGA CGTCACCCATCGCGAGCCCGCAGAACATCTTTGCCATCGAGCGCATGTCCATGGACGGAC ACCCGCCCAGCTGGCTCGCGTGG TTTGCGGTCTCCATGCCGGTCTCCATCACCTGCCTGCTGCTGGTGTGGCGCCTCCTGCTC ATCATCTACCCGATCGACAGGGA TCAGGAGGTGCGCCCGCTGCGGCAGCTGGACGACCCCTTCACGCTGCACCACGCCTTCGT CATCGCGGTGTGCCTGGCCACGA TGGGCCTCTGGTGCGCCAACACGTGGCTGCTGCACCTGCTGGGCGGCATGGGGGTGACGG CGCTCATCCCCATGGTGGCGTTC TTTGGCTTCGGGACCCTCGGCAAGGACGACTTTGAGAGCTTCCCGTGGAGCGTGGTCATG CTTGCCATGGGCGGCATCATCCT GGGCGACGCCGCCACCGAGAGCGGGCTGCTGGCCGCCATGACAGAGCAGATTGTGGGCGT CGTGGGCAGCCTCACCGTCTGCG AGGTGCTCGTCATCTTCACCGGCGTCATCGCCGTCGTCACCAGCTTCATCTCGCACACCG TGGGCGCCATGGTCATCCTGCCC GTGGTGCAGAGCATCGGCGCGGAGCTCGCCAAGAGCACCGGGGTGGACCACAGCAAGCTC CTGGTGATGGGCGGAGCGCTGAT GTGCTCGGGCGGCATGGCGCTGCCCGTCAGCGGGTTCCCCAACATGTCCGCGTCGTCCAT CCAGGACCCCACGGGACGGAACT ACGTCCACGTGGGCGACTTCCTCAAGACCGGCATCCCCTCCACTGCCATCACCTGGCTGT GCGTCATCGCCATCGGCTACCCC ATCATGTCAGCCATCAACCTCTGA

>Trebouxia_sp . . PTCI

ATGAAGTTTTCGCAGGCCTTGAAGGCCAATAGCGTTCCGGACTGGAAGCATCACTAC ATTCACTACTCACGCCTAAAGAAAAT GATATTTCGACTGGAGCAGCTGCAAGGCAACGCCCCTCTGAGTCCTGTGCCTGAGCATAG GCAATCCTTGGATTTCACCAATC CTTCAGCGCCCCTGCTGTCCAGACAGAGCTCTTCCATGCTGCAAAGGACCAGTTCAGGCC TTGAGCACGCTCATATCGACGAG CTGATGTTTGAACGGGAAATTCACGATGAGCTAGCAAGAGTCAAAGCATTTTATGTTGAA AAGCATGATGAACTGGACGCAGA GGTGTTGGCAGTCTTGGCAAAGGTTGCAGCAGCAGAGAGACGGGGCATCTCTGGTCCCGG TCATCAGGATGTTGAGGGCGGTC AGTCTTTGCCAGAGGAGCAGCGAATAGCGTTCTGGACTGATGTGAATGTGCCTAGGAACA TCAAGGAGCGCCTCAGTGGGGCC CTGACAGACGTGTACATCCAGCTTGACAATCTATCCAAGTTTGTTGAGCTGAACTATGAT GGATTCAGGAAGATCCTGAAGAA GCATGACAAAATGACCAACACAGAGCTGTCAGGGCGGCTCATGCCCACAGTCTCAGACAT GCTGGCCAAGGAGCAACGCAAAG GGGCTCTGGAGGGCTTGAAGAACAGCGTGGTGCATGAGTACGCCCTCATAGCACACAGCG GCGGCGAGCGTGAGGCCGAGCAA GAGCTGGGGCGGCACCGGCGGGATCAGCTTGACTTTTGA