Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MODIFIED POLYPEPTIDES WITH HIGH ACTIVITY AND REDUCED ALLERGENICITY
Document Type and Number:
WIPO Patent Application WO/1999/006071
Kind Code:
A1
Abstract:
The present invention relates to a modified polypeptide which has an enzymatic activity level of greater than about 70 % of the parent polypeptide and an allergenic response level of less than about 33 % of the parent polypeptide. Embodiments of the present invention relate to modified polypeptides with reduced allergenicity and high enzymatic activity comprising the formula: A-B¿n?, wherein A is an enzyme, and mixtures thereof; B is a twin polymer moiety, having a total molecular weight of from about 0.5 kilodaltons (KD) to about 40 KD, having formula (1), conjugated to the enzyme; wherein R¿1? and R?2¿ are essentially straight chain polymers, having a molecular weight ranging from about 0.25 KD to about 20 KD; wherein the ratio of the molecular weights of R¿1? and R¿2? is from about 1:10 to about 10:1, wherein X is a linking moiety which links the twin moeity to a single site on the enzyme; and n is the number of twin polymer moietis conjugated to the enzyme, and represents an integer from about 1 to about 15.

Inventors:
WEISGERGER DAVID
RUBINGH DONN NELTON
Application Number:
PCT/US1998/015282
Publication Date:
February 11, 1999
Filing Date:
July 23, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PROCTER & GAMBLE (US)
International Classes:
C12N11/08; A61K8/00; A61K8/02; A61K8/44; A61K8/64; A61K8/66; A61K8/72; A61K8/86; A61K47/48; A61Q1/02; A61Q1/14; A61Q5/02; A61Q11/00; A61Q19/00; A61Q19/10; C07K17/08; C11D3/386; (IPC1-7): A61K47/48; C11D3/386; A61K7/48; A61K7/28; A61K7/16
Domestic Patent References:
WO1996021469A11996-07-18
WO1997024427A11997-07-10
Foreign References:
US5643575A1997-07-01
Other References:
VERONESE F M ET AL: "IMPROVEMENT OF PHARMACOKINETIC, IMMUNOLOGICAL AND STABILITY PROPERTIES OF ASPARAGINASE BY CONJUGATION TO LINEAR AND BRANCHED MONOMETHOXY POLY(ETHYLENE GLYCOL)", JOURNAL OF CONTROLLED RELEASE, vol. 40, no. 3, 1 July 1996 (1996-07-01), pages 199 - 209, XP000592968
Y. INADA ET AL: "Biomedical and biotechnological applications of PEG- and PM-modified proteins", TIBTECH, vol. 13, March 1995 (1995-03-01), pages 86 - 90, XP002083036
PATENT ABSTRACTS OF JAPAN vol. 014, no. 294 (C - 0732) 26 June 1990 (1990-06-26)
Attorney, Agent or Firm:
Reed, David T. (OH, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS;
1. A modified polypeptide characterized in that it has an enzymatic activity level of greater than 70% of the parent polypeptide and an allergenic response level of less than 33% of the parent polypeptide.
2. A modified polypeptide with reduced allergenicity and high activity characterized in that it comprises the formula: ABn wherein: a.) Ais an enzyme; b.) B is a twin polymer moiety having a total molecular weight of from 0.5 KD to 40 KD, conjugated to the proteolytic enzyme, having the formula: wherein R1 and R2 are essentially straight chain polymers, having a molecular weight ranging from 0.25 KD to 20 KD; wherein the ratio of the molecular weights of R1 and R2 is from 1:10 to 10:1; and wherein X is a linking moiety which links the twin polymer moiety to a single site on the enzyme; and c) n is from 1 to 15.
3. A modified polypeptide according to Claim 2 wherein: the enzyme, A. is selected from the group consisting of lipase enzymes and protease enzymes, and mixtures thereof; and wherein the modified polypeptide has an enzymatic activity level of greater than 70% of the parent polypeptide and an allergenic response level of less than 33% of the parent polypeptide.
4. A modified polypeptide according to either of Claim 2 or Claim 3, wherein the enzyme, A, is selected from the group consisting of lipase enzymes and protease enzymes selected from the group consisting of subtilisin, chymotrypsin, and elastasetype enzymes, and mixtures thereof.
5. A modified polypeptide according to any of Claims 2 through 4, wherein the enzyme is a selected from the group consisting of Alcalase, BPN', Protease A, Protease B, Protease D, Protease F, and mixtures thereof.
6. A modified polypeptide according to any of Claims 2 through 5 wherein the total molecular weight of the twin polymer moiety is from 1 KD to 10 KD and the individual polymer moieties, R1 and R2, have a molecular weight ranging from 0.5 KD to 5 KD.
7. A modified polypeptide according to Claim 6 wherein the ratio of molecular weights ofR1 and R2, is from 1:5 to 5:1.
8. A modified polypeptide according to any of Claims 2 through 7 wherein the polymers, R1 and R2, comprise polyethylene glycol.
9. A modified polypeptide according to any of Claims 2 through 8 wherein n is from 1 to 10.
10. A modified polypeptide according to any of Claims 2 through 9 wherein X is an activated lysine succinimidyl ester.
11. A modified polypeptide according to any of the preceding claims, which exhibits enzymatic activity levels greater than 90% of the activity of Protease F and exhibits allergenic response levels of less than 5% of the allergenic response of Protease F.
12. A personal cleansing composition comprising greater than 0.001% and less than 20% of the modified polypeptide according to any of the preceding claims.
13. A laundry cleansing composition comprising greater than 0.001% and less than 20% of the modified polypeptide according to any of the preceding claims.
14. An oral cleansing composition comprising greater than 0.001% and less than 20% of the modified polypeptide according to any of the preceding claims 15. A topical skin care composition comprising greater than 0.
15. 001% and less than 20% of the modified polypeptide according to any of the preceding claims.
16. A shower gel comprising greater than 0.001% and less than 10% of the modified polypeptide according to any of the preceding claims.
17. A leaveon skin moisturiser composition comprising greater than 0.001% and less than 10% of the modified polypeptide according to any of the preceding claims.
18. A cosmetic composition comprising greater than 0.001% and less than 10% of the modified polypeptide according to any of the preceding claims.
19. A cleansing wipe composition comprising a cleansing composition comprising greater than 0.001% and less than 10% of the modified polypeptide according to any of the preceding claims.
Description:
MODIFIED POLYPEPTIDES WITH HIGH ACTIVITY AND REDUCED ALLERGENICITY TECHNICAL FIELD The present invention relates to modified polypeptides, specifically lipase and protease enzymes, with high activity and reduced allergenicity.

BACKGROUND OF THE INVENTION An increasing number of commercial products containing active polypeptides are becoming available. The majority of these products utilize an enzyme as the polypeptide. Enzymes are polypeptides which react with a compound, or substrate, to break down that compound. Enzymes are divided into numerous classes based on the class of substrate they react upon. Each class of enzyme generally catalyzes the severing of different of chemical bonds resulting in the specific selection of activity.

The lipase class of enzymes are known for their ability to hydrolyze ester bonds created between, but not limited to, hydrocarbons and polyalcohol backbone substrates. Examples of these substrates are mono-, di-, and triglyceride - polyglycerol esters. The protease class of enzymes are known for their ability to hydrolyze proteins. Naturally occurring and bio-engineered protease enzymes are incorporated into household cleaning detergents to hydrolyze proteinaceous dirt and stains, into personal care products to remove dirt and dead skin, into oral cleansing products to facilitate plaque removal in the mouth, and medicines to affect undesired proteins in the body.

It is known that current commercial cleansing products are made more effective by the incorporation of protease polypeptides. U.S. Patent Number 4,261,868 (Hora et al.), U.S. Patent Number 4,404,115 (Tai), U.S. Patent Number 4,318,818 (Letton et al.), European Patent Application 130,756 (published Jan. 9, 1985) and U.S. Patent 5,030,378 (Venegas) all disclose the use of protease polypeptides in cleansing or detergent products.

It is also realized, however, that polypeptides are potential antigens, and may cause allergic reactions in humans, under certain conditions. The human immune system can produce specific antibodies upon exposure to polypeptides. This process of producing specific antibodies is referred to as "immunization" when a clinically beneficial response is obtained. When the response leads to hypersensitivity,

however, it is referred to as "sensitization". Allergenic sensitization to polypeptides has been observed in environments where humans are regularly exposed to the polypeptide. Such environments include manufacturing facilities, where workers can be exposed to uncontrolled dust or aerosol containing a polypeptide, or the marketplace, where consumers' repeated use of products containing polypeptides has, on occasion, caused an allergic reaction.

Presently, allergic responses to polypeptides can be minimized by immobilizing, granulating, coating or dissolving the polypeptides to avoid their becoming airborne. These methods, while addressing consumer exposure to airborne polypeptides, still leave the risks associated with extended tissue contact with the finished product and exposure to enzyme-containing dust or aerosol during manufacturing.

Another way of diminishing allergic response has been to select polypeptides of human origin. While this approach minimizes allergenicity problems, it is not a complete solution since it is often not possible to find such a polypeptide which also has the activity properties desired.

A third proposition for decreasing allergenicity has been to reduce the size of the polypeptide molecules (see JP Patent Publication Number 4,112,753). However, size reduction can cause a significant reduction in enzyme activity.

A fourth approach to reduce the allergenicity of polypeptides is through epitope mapping and alteration of the polypeptide amino acid sequence to deliver a polypeptide with reduced allergenicity. This approach usually requires a large investment of development time and money.

In the medical field, suggestions have been made to diminish the immunogenicity of polypeptides through yet another method. This method involves attaching unreactive polymers to the polypeptide. U.S. Patent No. 4,179,337 (Davis, et al.) relates to polypeptides coupled to substantially straight chain polyethylene glycol (PEG) or polypropylene glycol (PPG) polymer moieties. While PEG/PPG coupling was found to mitigate the allergenicity of the polypeptide, only 15% of the physiological activity was maintained. PCT Application WO 96/17929 (Olsen, et al., published June 13, 1996) relates to the modification of polypeptides by conjugating them with suitable polymers. The Olsen application describes modified polypeptides which demonstrate a reduction in allergenicity of from 25% to 66% compared to the parent polypeptide, while maintaining from 39% to 100% of the activity of the parent.

Monfardini, et al, "A Branched Monomethoxypoly(ethylene glycol) for Protein Modification", American Chemical Society, 1995) describes efforts to increase the

activity of native polypeptides by conjugating branched monomethoxypolyethylene glycol (mPEG) polymers to the reactive enzyme group. Monfardini, et al. teaches conjugation of enzymes with linear mPEG polymers having molecular weight 5000 KD and branched mPEG polymers having a molecular weight of 5000 KD per branch. Conjugation to ribonuclease, catalase, trypsin and asparaginase is shown.

Enzymatic activity levels of conjugated enzyme are shown to range from 86% to 133% of the activity of the respective parent enzyme. No allergenicity data is presented.

It would be highly desirable to develop an enzyme-based compound which would virtually eliminate allergenic responses while maintaining the desired high levels of enzymatic activity. If this were accomplished it would provide manufacturers and consumers with safer ways to utilize the benefits of enzyme technology.

It is an object of the present invention to provide a modified enzyme compound which delivers this high activity and yet shows reduced stimulation of and resulting activation of the immune system. It is also an object to provide compositions of use of this modified enzyme compound.

SUMMARY OF THE INVENTION The present invention relates to a modified polypeptide which has an enzymatic activity level of greater than about 70% of the parent polypeptide and an allergenic response level of less than about 33% of the parent polypeptide.

Embodiments of the present invention relate to modified polypeptides with reduced allergenicity and high enzymatic activity comprising the formula: A-Bn wherein A is an enzyme selected from the group consisting of lipase enzymes and protease enzymes, and mixtures thereof; B is a twin polymer moiety, having a total molecular weight of from about 0.5 kilodaltons (KD) to about 40 KD, having the formula conjugated to the enzyme; wherein R1 and R2 are essentially straight chain polymers, having a molecular weight ranging from about 0.25 KD to about 20 KD; wherein the ratio of the molecular weights of R1 and R2 is from about 1:10 to about 10:1; wherein X is a linking moiety which links the twin moiety to a single site on the enzyme; and n is the number of twin polymer moieties conjugated to the enzyme, and represents an integer from about 1 to about 15.

DETAILED DESCRIPTION OF THE INVENTION The modified polypeptide of the present invention is represented by the formula: A-Bn containing, as essential components, a enzyme, A, and a plurality, n, of twin polymer moieties, B. While not intending to be limited by theory, it is believed that the conjugation of the twin polymer moieties to the enzyme provides a balanced stearic hindrance of the activated surface of the enzyme as to allow for high activity but simultaneously prevent stimulation of the immune system and subsequent antibody formation responsible for allergic reaction.

As used herein, the phrase "amino acid sequence" refers to a specific configuration of the amino acids comprising a polypeptide. The following is a list of abbreviations used herein to describe amino acids: Amino Acid Three-letter Abbreviation One-letter Svmbol Alanine Ala A Arginine Arg R Asparagine Asn N Aspartic Acid Asp D Cysteine Cys C Glutamine Gln Q Glutamic Acid Glu Q Glycine Gly G Histidine His H Isoleucine Ile I Leucine Leu L Lysine Lys K Methionine Met M Phenylalanine Phe F Proline Pro P Serine Ser S Threonine Thr T Tryptophan Trp W Tyrosine Tyr Y Valine Val V No amino acid at position Xaa * As used herein, the term "mutation" refers to the genetic alteration of an organism, which in turn alters the amino acid sequence of the enzyme produced by that organism. The mutation of an enzyme has been often found to alter the properties of the enzyme.

As used herein, the term "wild-type" refers to an enzyme produced by unmutated hosts.

As used herein, the term "variant", means an enzyme having an amino acid sequence which differs from that of the wild-type enzyme due to the genetic mutation of the host producing that enzyme.

As used herein, the term "parent polypeptide" is defined as the enzyme, wild- type or variant, with no additional conjugation of polymer moieties. The activity and allergenicity of the parent polypeptide are usually well known from their development and use in medical and/or consumer products.

The essential components of the present invention, as well as a non-exclusive list of preferred and optional ingredients, are described in detail below.

ENZYME An essential component of the present invention is an active enzyme. Any enzyme can be used in the modified polypeptide herein. Preferred enzymes are selected from the group consisting of protease enzymes and lipase enzymes.

Mixtures of proteases and lipases are also included.

Lipase enzymes are classified under the Enzyme Classification number E.C.

3.1.1 (Carboxylic Ester Hydrolases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB).

Examples of lipases include lipases derived from the following microorganisms.

The indicated patent publications are incorporated herein by reference: Humicola, (U.S. 4,810,414) Pseudonomas (WO 89/04361, U.S. 4,950,417, EP 218 272, WO 88/09367, U.S. 5,389,536) Fusarium (EP 130 064, WO 90/09446) Mucor (EP 238 023) Chromobacterium Aspergillus Candida (WO 88/02775, WO 94/01541, WO 89/02916) Geotricum Penicillium Rhizopus Bacillus (WO 91/16422) Specific examples of commercial lipases include Lipolaset, LipolaseTM Ultra, Lipozymet, Palatase(g, Novozym435, LecitaseB (all available from Novo Nordisk A/S); LumafastTM and Lipomax (available from Genencor Int., Inc.).

Protease enzymes are classified under the Enzyme Classification number E.C.

3.4 (Carboxylic Ester Hydrolases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB).

Useful proteases are also described in PCT publications: WO 95/30010 published November 9, 1995 by The Procter & Gamble Company; WO 95/30011 published November 9, 1995 by The Procter & Gamble Company; WO 95/29979 published November 9, 1995 by The Procter & Gamble Company. Preferred protease enzymes for use in the modified polypeptides herein are subtilisin, chymotrypsin and elastase- type protease enzymes.

Especially preferred for use herein are subtilisin-type protease enzymes.

Subtilisin enzymes are naturally produced by Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylosaccharicus, Bacillus licheniformis, Bacillus lentus and Bacillus subtilis microorganisms.

A particularly preferred substilisin-type enzyme is bacterial serine protease enzyme, and variants thereof, obtained from Bacillus amyloliquefaciens, Bacillus licheniformis and/or Bacillus subtilis, including Novo Industries A/S Alcalase, Esperase(g), Savinase(8) (Copenhagen, Denmark), Gist-brocades' Maxataset, <BR> <BR> <BR> MaxacalB and Maxapem 1 15t) (protein engineered MaxacalB) (Delft, Netherlands), and subtilisin BPN and BPN', which are commercially available.

Especially preferred are protease enzymes, and variants thereof, obtained from Bacillus amyloliquefaciens. One known enzyme is BPN'. The wild-type BPN' from Bacillus amyloliquefaciens is characterized by the amino acid sequence: 1 10 20 AlaGln Ser ValPro TyrGlyVal Ser Gln Ile LysAlaPro AlaLeuHis SerGlnGly 30 40 TyrThrGly SerAsnValLysValAlaVal Ile AspSerGly Ile Asp Ser Ser His Pro 50 60 AspLeuLysValAlaGlyGlyAlaSerMetValPro S er GluThrAsnProPheGlnAsp 70 80 AsnAsnS erHis GlyThrHis Val AlaGlyThrValAlaAlaLeuAsnAsnSer Ile Gly 90 100 ValLeuGlyVal Ala Pro S er Ala S erLeuTyrAlaValLysValLeuGlyAlaAspGly 110 120 SerGlyGlnTyrSerTrp Ile IleAsnGlyIle GluTrpAla Ile AlaAsnAsnMetAsp 130 140 Val Ile AsnMetS erLeuGlyGlyPro S er Gly Ser AlaAlaLeuLysAlaAlaValAsp 150 160 LysAlaValAla S er GlyVal Val Val ValAlaAlaAlaGlyAsnGluGlyThrS er Gly 170 180 Ser Ser SerThrValGlyTyrProGlyLysTyrPro SerVal Ile AlaValGlyAlaVal 190 200

Asp Ser SerAsnGlnArgAlaSerPhe Ser Ser ValGlyPro GluLeuAspValMetAla 210 220 Pro GlyValSer Ile GlnSerThrLeuPro GlyAsnLysTyrGlyAlaTyrAsnGlyThr 230 240 SerMetAla S er Pro His ValAlaGlyAlaAlaAlaLeu Ile Leu SerLysHis ProAsn 250 260 TrpThrAsnThrGlnValArgSer SerLeuGluAsnThrThrThrLysLeuGlyAspSer 270 275 PheTyrTyrGlyLysLysGlyLeu Ile AsnAsnValGlnAlaAlaAlaGln Variants of BPN', hereafter referred to as "Protease A", are disclosed in U.S.

Patent 5,030,378 (issued to Venegas, July 9, 1991) as characterized by the BPN' amino acid sequence with the following mutations: a.) the Gly at position Glyl66 is replaced with Asn, Ser, Lys, Arg, His, Gln, Ala or Glu; the Gly at position Glyl69 is replaced with Ser; the Met at position Met222 is replaced with Gln, Phe, Cys, His, Asn, Glu, Ala or Thr; or b.) the Gly at position Glyl66 is replaced with Lys and the Met at position Met222 is replaced with Cys; or c.) the Gly at position Gly160 is replaced with Ala and the Met at position Met222 is replaced with Ala.

Additional variants of BPN', heretoforth referred to as "Protease B", are disclosed by Genencor International, Inc. (San Francisco, California) European Patent EP-B-251,446 (granted December 28, 1994 and published January 7, 1988) as characterized by the wild-type BPN' amino acid with the mutations in one or more of the following amino acids: Tyr21, Thr22, Ser24, Asp36, Ala 45, Ala48, Ser49, MetSO, His67, Ser87, Lys94, Va195, Gly97, SerlOl, GlyI02, Glyl03, I1e107, Gly110, Met 124, Gly127, Gly128, Pro129, Leu135, Lysl70, Tyr171, Prol72, Asp197, Met 199, Ser 204, Lys213, Tyr214, Gly215, and Ser221; or two or more of the amino acids listed above and Asp32, Ser33, Tyr104, Ala152, Asn155, Glu156, Gly166, Gly169, Phe189, Tyr217, and Met222 wherein both mutations cannot be made on the Asp32, Ser33, Tyr104, Ala152, Asn155, Glu156, Gly166, Glyl69, Phe189, Tyr217, and Met222 amino acids.

Another preferred BPN' variant protease, hereafter referred to as "Protease D", is described in WO 95/10615 published April 20, 1995 by Genencor International as characterized by the wild-type BPN' amino acid with mutation to position Asn76, in combination with mutations in one or more other amino acid positions selected from the group consisting of Asp99, SerlOl, Glnl03, Tyrl04, SerlOS, Ile107, Asn109, Asn123, Leu126, Gly127, Gly128, Leu135, Glu156, Glyl66, Glu195, Asp197, Ser204, Gln206, Pro210, Ala216, Tyr217, Asn218, Met222, Ser260, Lys265, and/or Ala274.

Another preferred BPN' variant protease, hereafter referred to as "Protease F", is described in U.S. Patent Number 4,760,025, issued to Estell, et al. on July 26, 1988 as characterized by the wild-type BPN' amino acid with mutation to one or more amino acid positions selected from the group consisting of Asp32, Ser33, His64, Tyr104, Asnl55, Glu156, Gly166, Glyl69, Phel89, Tyr217, and Met222.

Preferred proteolytic enzymes, then, are selected from the group consisting of Alcalase(g), BPN', Protease A, Protease B, Protease D, and Protease F, and mixtures thereof. Protease F is most preferred.

TWIN POLYMER MOIETIES The enzyme employed in the present invention is modified by conjugation of a plurality, n, of twin polymer moieties to the enzyme, wherein n is the average number of moieties conjugated to a polypeptide. The average number of moieties per polypeptide can range from about 1 to about 15, preferably from about 2 to about 10, and more preferably from about 3 to about 5.

The twin polymer moiety has a total molecular weight of from about 0.5 KD to about 40 KD, preferably from about 0.5 KD to about 20 KD, and more preferably from about 1.0 KD to about 10 KD.

The twin polymer moiety of the present invention has the following structure wherein R1 and R2 are essentially straight chain polymers having a molecular weight of from about 0.5 kilodaltons (KD) to about 20 KD, preferably from about 1.0 KD to about 10 KD and more preferably from about 2 KD to about 5 KD, and X is a linking moiety which connects the twin polymer moiety to a single site on the enzyme. The ratio of the molecular weights of R1 and R2 can range from 1:10 to about 10:1, preferably from 1:5 to about 5:1 and more preferably from 1:3 to about 3:1.

Examples of the suitable polymers which comprise the twin polymer moiety include polyethylene glycols, methoxypolyethylene glycols, polypropylene glycols, polyvinyl alcohols, poly-carboxylates, poly-vinylpyrolidones, poly-D,L-amino acids, dextrans including carboxymethyldextrans, celluloses including methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethyl cellulose, carboxyethyl cellulose and hydroxypropylcellulose, hydrolysates of chitosan, starches including hydroxyethyl-starches and hydroxypropyl-starches, glycogen, agaroses and derivatives thereof, guar gum, pullulan, inulin, xanthan gum, carrageenin, pectin, alginic acid hydrolysates and bio-polymers. Mixtures of

polymers can also be used to form the twin polymer moiety. The preferred polymer is polyethylene glycol.

Suitable linking moieties can be taken from the class of materials capable of being functionalized appropriately to link two polymer chains, while maintaining functionality to reactive groups on desired peptide groups within the enzyme.

Examples of linking moieties and related chemistry are disclosed in U.S. Patent 5,446,090, Harris, issued August 29, 1995; U.S. Patent Number 5,171,264, Merrill, issued December 15, 1992; U.S. Patent 5,162,430, Rhee et al., issued November 10, 1992; U.S. Patent Number 5,153,265, Shadle et al., issued October 6, 1992; and U.S.

Patent 5,122,614, Zalipsky, issued June 16, 1992, all herein incorporated by reference.

Preferable examples of these linking moieties are: a) Twin-polymer-succinimide to couple to Lysine, Tyrosine, Histidine, etc., where an amide or ester linkage is formed: b) Twin-polymer-carbodiimidecoupling to Lysine, Tyrosine, Histidine. etc., where an amide or ester linkage is formed c) Twin-polymer-CH20H coupling to Glutamic or Aspartic acid forming an ester linkage o NH 0 NH0 MPEG Gz XO H z N H X MP E Gz ° HNPEGM HN PEGM HNPEGM

d) Twin-polymer-aldehyde coupling to Lysine forming an imine or amine linkage depending on whether reducing agent (e.g. NaCNBH3) is used.

The preferred linking moiety, X, is an activated lysine succinimidyl ester of the form This activated lysine succinidyl ester reacts with the amino acid group of lysine, arginine and histidine peptides of the enzyme. Therefore, the most preferred structure of the twin polymer moiety of the present invention is The polypeptide of the present invention can also comprise combinations of twin polymer moieties to achieve the activity and reduced allergenicity required.

ENZYMATIC ACTIVITY AND ALLERGENICITY The modified polypeptides of the present invention provides both high enzymatic activity and significantly reduced allergenicity when compared to their respective parent polypeptides. The particular modified polypeptides of the present inventions have an enzymatic activity level of greater than about 70%, preferably greater than about 80%, and more preferably greater than about 90%, of the parent polypeptide as measure by the Enzymatic Activity Method set forth hereinafter in the Analytical Methods Section. Moreover, the particular modified polypeptides of the present inventions have an allergenic response level of less than about 33%, preferably less than about 20%, more preferably less than about 10% and most preferably less than about 5%, of the parent polypeptide as measure by the Allergenic Response Method set forth hereinafter in the Analytical Methods Section.

METHOD OF MANUFACTURE

In reaction vessel, add polypeptide, in solution of 0.2M Borate buffer at 8.5 pH. Add one-fourth of the activated twin-polymer, maintaining the reaction temperature at approximately 25 C and let react 30 minutes. Repeat the addition of activated twin-polymer every 30 minutes over a 2 hour period. Buffer exchange through YM30 Amicon setup at 40C with 0.01M KH2P04, 5.5 pH buffer. Remove excess reactants via filtration.

COMPOSITIONS OF USE The modified polypeptides herein can be used in any application which is suitable for the respective parent polypeptide. The modified polypeptides are used at levels of greater than about 0.001%, preferably greater than about 0.01%, and most preferably greater than about 0.1% and at levels less than about 20%, preferably less than about 10%, and most preferably less than 5%.

For example the modified polypeptides herein can be incorporated into laundry compositions, hard surface cleansing products, light duty cleansing compositions, automatic dishwasher detergent compositions, leave-on and rinse-off hair conditioners, hair shampoos, leave-on and rinse-off facial acne preparations, facial milks and conditioners, shower gels, foaming and non-foaming facial cleansers, cosmetics, hand and body lotions, leave-on facial moisturizers, cosmetic and cleansing wipes, oral cleansing compositions and enzymatic contact lens cleansing solutions. These products are all manufactured using standard procedures using standard materials known in the respective arts.

Examples of each type of composition are shown in the references below, all herein incorporated by reference.

Personal cleansing compositions Skin cleansers - U.S. Patent 5,641,479, Linares et al, issued June 24, 1997; U.S.

Patent Number 5,599,549, Wivell et al., issued February 4, 1997; U.S. Patent Number 5,585,104, Ha et al., issued December 17, 1996; U.S. Patent 5,540,852, Kefauver et al., issued July 30, 1996; and U.S. Patent 5,510,050, Dunbar et al., issued April 23, 1996.

Facial acne preparations - U.S. Patent 5,612,324, Guang Lin et al., issued March 18, 1997; U.S. Patent 5,587,176, Warren et al., issued December 24, 1996; U.S.

Patent 5,549,888, Venkateswaran, issued August 27, 1996; and U.S. Patent 5,470,884, Corless et al., issued November 28, 1995.

Shower gels - U.S. Patent Number 5,650,384, Gordon et al., issued July 22, 1997; and U.S. Patent 5,607,678, Moore et al., issued March 4, 1997.

Hair conditioners and shampoos - U.S. Patent 5,624,666, Coffindaffer et al., issued April 29, 1997; U.S. Patent 5,618,524, Bolich, Jr. et al., issued April 8, 1997; U.S.

Patent 5,612,301, Inman, issued March 18, 1997; U.S. Patent 5,573,709, Wells, issued November 12, 1996; U.S. Patent 5,482,703, Pings, issued January 9, 1996; and U.S. Patent Number Re. 34,584, Grote et al., Reissued April 12, 1994.

Topical skin care compositions Cosmetics - U.S. Patent 5,641,493, Date et al., issued June 24, 1997; U.S. Patent 5,605,894, Blank et al., issued February 25, 1997; U.S. Patent 5,585,090, Yoshioka et al., issued December 17, 1996.

Hand, face, and body lotions - U.S. Patent 4,939,179, Cheney et al., issued July 3, 1990; and U.S. Patent 5,607,980, McAtee et al., issued March 4, 1997.

Cosmetic and cleansing wipes - U.S. Patent Number 4,045,364, Richter et al., issued August 30, 1977; European Patent Application, EP 0 619 074, Touchet et al., published October 12, 1994; and U.S. Patent Number 4,975,217, Brown-Skrobot et al., issued December 4, 1990 Laundrv cleansing compositions Liquid fabric detergents - U.S. Patent 4,261,868, Hora et al., issued April 14, 1981; U.S. Patent 4,404,115, Tai, issued September 13, 1983, U.S. Patent 4,318,818, Letton et al., issued March 9, 1982.

Granular fabric detergents - U.S. Patent 5,569,645, Dinnewell et al., issued October 29, 1996; U.S. Patent 5,554,587, Scott, issued September 10, 1996; U.S. Patent 5,458,810, Fredj et al., issued October 17, 1995; U.S. Patent 4,379,080, Murphy, issued April 5, 1983; U.S. Patent 4,412,934, Chung et al., issued November 1, 1983.

Other cleansing compositions Oral cleaning compositions (including dentifrice compositions, mouthwashes, lozenges, chewing gum, and denture cleansing tablets) - U.S. Patent 5,096,700, Seibel, issued March 17, 1992; U.S. Patent 5,028,414, Sampathkumar, issued July 2, 1991 and U.S. Patent 5,028,415, Benedict, et al., issued July 2, 1991.

Enzymatice contact lens cleaning solution - U.S. Patent 4,863,627, Davies, et al., September 5, 1989; U.S. Patent Re. 32,672, Huth, et al., reissued May 24, 1988; and U.S. Patent 4,609,493, Schafer, issued September 2, 1986.

Hard surface cleansing products - U.S. Patent 4,943,392, Hastedt et al., issued July 24, 1990.

Light duty dish cleansing compositions - U.S. Patent Number 5,599,400, Mao et al., issued February 4, 1997; U.S. Patent Number 5,545,354, Ofosu-Asante, issued August 13, 1996; and U.S. Patent Number 5,635,466, Burdon et al., issued June 3, 1997.

Automatic dishwasher detergent compositions - U.S. Patent Number 5,616,277, Raleigh et al., issued April 1, 1997; U.S. Patent Number 5,614,485, Painter, issued March 25, 1997; U.S. Patent Number 5,578,136, Taylor et al., issued November 26, 1996; and U.S. Patent Number 5,559,089, Hartman et al., issued September 24, 1996.

ANALYTICAL METHODS ENZYMATIC ACTIVITY METHOD The enzymatic activity of a polypeptide or a modified polypeptide is assayed by measuring the rate of reaction of the polypeptide or modified polypeptide with a substrate.

Substrates For proteases: Enzymatic activity of proteases is measured using the substrate succiny-Ala-Ala-Pro-Phep-Nitroaniline (PNA). Proteases cleave the bond between the peptide and p-nitroaniline to give a visible yellow color absorbing at 410 nm.

For lipases: Enzymatic activity of lipases is measured using the substrate p- nitrophenyl carbrilate. Lipases cleave the bond between the caprilate and the p- nitrophenyl to give a visible yellow color absorbing at 410 nm.

Equipment: Any calibrated spectrophotometer with the capability to measure the rate of change of absorbance at 410 nm. can be used.

Materials: Buffer Solution: 0.1M Tris (Tris Hydroxy Methyl Amino Methane), 0.01M Cask, pH 8.6.

(For example mix 21.7 g.Tris (Tris Hydroxy Methyl Amino Methane), 2.6 g. CaCl2- 2H20 and 1.8 L distilled deionized filtered H20).

Substrate Solution: 20 mg of the appropriate substrate is dissolved into lml dimethyl sulfoxide (DMSO).

Polypeptide Solutions: A solution of modified polypeptide and a solution of parent polypeptide having equal polypeptide concentrations as measured by spectrophotometric absorbance at 280 nm.

Working solution: 252.5 pl of substrate solution is diluted up to 25 ml with buffer solution.

Procedure: 1. Mix 10 pl of test polypeptide solution and 990 pl. buffer solution in flask.

2. In separate vessel add 50 pl of solution from step 1. to 950 pl buffer solution.

3. In spectrophotometer flask, add 990 pl of working solution.

4. Add 10 pl of solution from step 2 to spectrophotometer flask. Record the absorbance at 410 nm as a function of the time and ABS/min. The temperature should be controlled (20 - 25C depending on the protease).

Data and Results The Enzymatice Activity Level is the ratio of the slope of absorbance versus time (Abs/min) of the modified polypeptide to the slope of absorbance versus time of the parent polypeptide and multiplied by 100 to present the activity as a percent of the parent.

ALLERGENIC RESPONSE METHOD The allergenic response of polypeptides is measured utilizing ELISA (Enzyme Linked Immunosorbant Assay) technique. Antibody binding is quantitated for both parent and modified polypeptide with the amount bound for the modified polypeptide, at equal polypeptide concentrations, expressed as a percentage of the amount bound to the parent. Reductions in the percentage of antibody bound to the modified polypeptide is predictive of reduced in-vivo immune response.

Procedure: 1. A microtiter plate is coated with 100 ,uL/well rabbit anti-Enzyme-base antibody (2 pg/mL in 1 5mM sodium carbonate, 35mM sodium bicarbonate buffer, pH 9.6) overnight. Unbound coating antibody is washed out with wash buffer (0.5M NaCl, 13mM Trizma-base, 0.2% BSA, 0.5% Tween 20, pH 8.0), then blocked one hour with 100 pL/well 2% BSA in water.

2. A series of Enzyme standards ranging from 0.2 - 20 ng/mL are prepared in sample prep buffer (6.6mM Trizma-base, 0.5M NaCl, lmM CaCl2p2H20, 30mM Na2S203, 0.1% BSA, 0.1% Tween 20, pH 8.0).

3. For each modified Enzyme sample, the parent material (unmodified Enzyme) is required at the same concentration (by protein level) as a reference, as measured by spectrophotometry at 280 nm. The sample and its reference are then diluted equally into sample prep buffer to bring them into the range of the standard curve.

4. Standards, samples and references are added to the coated, blocked and washed plate at 50 pL/well. Sample prep buffer is used for the blank. Then 50 ,uL/well of a dilute solution of rabbit anti-Enzyme antibody, alkaline phosphatase conjugate in assay buffer (0.5M NaCl, 50mM Trizma-base, 1.5% BSA, 0.15% Tween 20, pH 8.4) is added. The plate is incubated for 2 hrs. at 370C, then emptied and washed.

5. P-nitrophenylphosphate substrate solution (1 mg/mL in diethanolamine buffer) is added to the wells at 100 pL/well. The

plate is incubated at 370C until sufficient color has developed, about 30 minutes. Absorbances are read in a microtiter plate reader in the dual wavelength mode at 405 nm with reference wavelength of 620 nm.

6. The net absorbances of the standards are plotted against their concentrations to generate a standard curve. The concentrations of the samples and their references are calculated from the curve. The "percent antibody binding retained" is calculated by dividing the concentration of the sample by the concentration of its reference and multiplying by 100.

EXAMPLES The following are nonlimiting examples of the modified polypeptides of the present invention.

EXAMPLE 1 Protease B is conjugated with an average of three (n = 3) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 5000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease B and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 °C. Approximately 240 mg Twin PEG 10K Succinimide (Shearwater Polymers, Inc.) is added to the reaction vessel and reacted for 30 minutes. Three more additions 240 mg Twin PEG Succinimide is made every 30 minutes for a total added of 960 mg. of Twin PEG 10K Succinimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 2 Protease F is conjugated with an average of eight (n = 8) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 2000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease F and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 240 mg Twin PEG 4K Succinimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 240 mg Twin PEG 4K Succinimide is made every 30 minutes for a total added of 960 mg. of Twin PEG 4K Succinimide added over a 2 hour period. The solution buffers are

exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 3 Protease F is conjugated with an average of five (n = 5) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 2000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease F and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 150 mg Twin PEG 4K Succinimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 150 mg Twin PEG 4K Succinimide is made every 30 minutes for a total added of 600 mg. of Twin PEG 4K Succinimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 4 Protease A is conjugated with an average of five (n = 5) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 4000 KD and an activated carbodiimide. The modified polypeptide is prepared by adding of 20 mg Protease A and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C.

Approximately 300 mg Twin PEG 8K Carbodiimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 300 mg Twin PEG Succinimide is made every 30 minutes for a total added of 1200 mg. of Twin PEG 8K Carbodiimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 5 Protease F is conjugated with an average of eight (n = 8) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 5000 KD and an activated carbodiimide. The modified polypeptide is prepared by adding of 20 mg Protease F and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C.

Approximately 640 mg Twin PEG 10K Carbodiimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 640 mg Twin PEG Succinimide is made every 30 minutes for a total added of 2560 mg. of Twin PEG 8K Carbodiimide

added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 6 Protease F is conjugated with an average of eight (n = 8) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 5000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease F and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 640 mg Twin PEG 10K Succinimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 640 mg Twin PEG Succinimide is made every 30 minutes for a total added of 2560 mg. of Twin PEG 10K Succinimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 7 Protease B is conjugated with an average of three (n = 3) twin polymer moieties consisting of two polyethylene glycol moieties, each with a molecular weight of 10,000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease B and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 480 mg Twin PEG 20K Succinimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 480 mg Twin PEG 20K Succinimide is made every 30 minutes for a total added of 19200 mg. of Twin PEG 10K Succinimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 8

Protease A is conjugated with an average of three (n = 3) twin polymer moieties consisting of two polyvinyl alcohol moieties, each with a molecular weight of 20,000 KD and an activated lysine succinimidyl ester. The modified polypeptide is prepared by adding of 20 mg Protease A and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 960 mg Twin PVA 40K Succinimide is added to the reaction vessel and reacted for 30 minutes. Three more additions 960 mg Twin PVA Succinimide is made every 30 minutes for a total added of 3840 mg. of Twin PVA 40K Succinimide added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

EXAMPLE 9 Protease B is conjugated with an average of four (n = 4) twin polymer moieties, where the moieties are a equal molar mixture of two polyethylene glycol moieties.

One moiety has twin polyethylene glycol moieties, each with a molecular weight of 1000 KD and the other has twin polyethylene glycol moieties, each with a molecular weight of 5000 KD. Both contain an activated lysine succinimidyl ester linking agent. The modified polypeptide is prepared by adding of 20 mg Protease B and 15 ml of 0.2M Borate, pH 8.5, buffer solution to a reaction vessel. The reaction temperature is maintained at approximately 25 "C. Approximately 320 mg of an equal molar mixture of Twin PEG 2K Succinimide and Twin PEG 10K Succinimide (both from Shearwater Polymers, Inc.) is added to the reaction vessel and reacted for 30 minutes. Three more additions of 320 mg of the Twin PEG mixture is made every 30 minutes for a total added of 1280 mg. of Twin PEG mixture added over a 2 hour period. The solution buffers are exchanged with 0.01M KH2P04, 5.5 pH buffer and filtered to remove excess reactants.

The following examples further describe and demonstrate embodiments within the scope of the present invention. In the following examples, all ingredients are listed at an active level. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.

Ingredients are identified by chemical or CTFA name.

EXAMPLES 10-13 - Bodvwash Products Ex. 10 Ex. 11 Ex. 12 Ex. 13

(Wgt %) Water 55.00 55.00 55.00 55.00 Disodium EDTA 0.20 0.20 0.20 0.20 Glycerine 3.00 3.00 3.00 3.00 Polyquaternium 10 0.40 0.40 0.40 0.40 Sodium/Magnesium Laureth-3-3.6 Sulphate 12.00 12.00 12.00 12.00 Cocamide MEA 2.80 2.80 2.80 2.80 Sodium Lauraphoacetate 6.00 6.00 6.00 6.00 Myristic Acid 1.60 1.60 1.60 1.60 Magnesium Sulphate Hepta Hydrate 0.30 0.30 0.30 0.30 Trihydroxystearin 0.50 0.50 0.50 0.50 PEG-6 Caprylic/Capric Triglycerides 3.00 0.00 0.00 0.00 Sucrose Polyesters of Cottonate Fatty Acid 3.00 0.00 0.00 0.00 Sucrose Polyesters of Behenate Fatty Acid 3.00 0.00 4.00 0.00 Petrolatum 0.00 4.00 8.00 0.00 Mineral Oil 0.00 0.00 0.00 6.00 DMDM Hydantoin 0.08 0.08 0.08 0.08 Modified Polypeptides of Example 1 - 9 0.10 2.00 2.00 5.00 Citric Acid 1.40 1.40 1.40 1.40 Water q.s. q.s. q.s. q.s.

100.00 100.00 100.00 100.00 EXAMPLES 14-17 - Facewash Products Ex. 14 Ex. 15 Ex. 16 Ex. 17 (Wgt %) Water 50.00 50.00 50.00 50.00 Disodium EDTA 0.10 0.10 0.20 0.20 Citric Acid 0.00 0.00 1.40 1.40 Sodium Laureth-3 Sulfate 3.00 3.50 0.00 0.00 Sodium Laureth-4 Carboxylate 3.00 3.50 0.00 0.00 Laureth-12 1.00 1.20 0.00 0.00 Polyquaternium 10 0.00 0.00 0.40 0.40 Polyquaternium 25 0.30 0.30 0.00 0.00 Glycerine 3.00 3.00 3.00 3.00 Sodium Lauroamphoacetate 0.00 0.00 6.00 6.00 Lauric Acid 6.00 6.00 3.00 3.00 Myristic Acid 0.00 0.00 3.00 3.00

Magnesium Sulphate Hepta Hydrate 2.30 2.00 2.00 2.00 Triethanol Amine 4.00 4.00 4.00 4.00 Trihydroxystearin 0.50 0.50 0.50 0.50 Sucrose Polyesters of Behenate Fatty Acid 2.00 2.00 0.00 0.00 Sucrose Polyesters of Cottonate Fatty Acid 3.00 2.00 0.00 0.00 PEG-6 Caprylic/Capric Triglycerides 0.00 0.00 0.00 2.00 Petrolatum 0.00 0.00 4.00 0.00 Mineral Oil 0.00 0.00 0.00 2.00 Cocamidopropyl Betaine 2.00 3.00 1.80 1.80 Lauryl Dimethyl Amine Oxide 1.00 1.20 1.20 1.20 Dex Panthenol 1.00 0.25 0.25 0.00 DMDM Hydantoin 0.08 0.08 0.08 0.08 Modified Polypeptide of Examples 1 - 9 1.00 2.00 0.50 0.50 Fragrance 0.20 0.20 0.20 0.20 Water p.s. p.s p.s. p.s.

100.00 100.00 100.00 100.00 EXAMPLE 18-19 - Leave-on Skin Moisturizing Composition Ex. 18 Ex. 19 (Wgt %) Glycerine 5.00 0.00 Stearic Acid 3.00 0.00 Cl l -13 Isoparaffin 2.00 0.00 Glycol Stearate 1.50 0.00 Propylene Glycol 0.00 3.00 Mineral Oil 1.00 10.00 Sesame Oil 0.00 7.00 Petrolatum 0.00 1.80 Triethanolamine 0.70 0.00 Cetyl Acetate 0.65 0.00 Glyceryl Stearate 0.48 2.00 TEA Stearate 0.00 2.50 Cetyl Alcohol 0.47 0.00 Lanolin Alcohol 0.00 1.80 DEA-Cetyl Phosphate 0.25 0.00 Methylparaben 0.20 0.20 Propylparaben 0.12 0.10

Carbomer 934 0.11 0.00 Disodium EDTA 0.10 0.00 Modified Polypeptide of Examples 1 - 9 0.10 0.5 Water q.s. q.s EXAMPLE 20 - Cleansing Wipe Composition Cleansing composition (Wgt %) Propylene Glycol 1.00% Ammonium Lauryl Sulfate 0.60% Succinic Acid 4.00% Sodium Succinate 3.20% Triclosan(D 0.15% Modified Polypeptide of Examples 1 - 9 0.05% Water q.s. to 100% The cleansing composition above is impregnated onto a woven absorbent sheet comprised cellulose and/or polyester at about 250% by weight of the absorbent sheet EXAMPLES 21-24- Shampoo Ex.21 Ex.22 Ex.23 Ex.24 (Wgt %) Water 50.00 50.00 50.00 50.00 Ammonium Lauryl Sulfate 10.00 10.00 8.00 6.00 Ammonium Laureth Sulfate 4.00 3.00 2.00 2.00 Cocamide MEA 2.00 2.00 2.00 2.00 Ethylene Glycol Distearate 2.00 2.00 2.00 2.00 Cetyl Alcohol 2.00 2.00 2.00 2.00 Stearyl Alcohol 1.20 1.20 1.20 1.20 Glycerin 1.00 1.00 1.00 1.00 Polyquaternium 10 0.50 0.25 0.00 0.00 Polyquaternium 24 0.00 0.00 0.50 0.25 Ammonium Lauryl Sulfate 1.50 1.50 1.50 1.50 Sodium Chloride 0.10 0.10 0.10 0.10 Sucrose Polyesters of Cottonate Fatty Acid 3.00 3.00 0.00 0.00 Sucrose Polyesters of Behenate Fatty Acid 2.00 3.00 0.00 0.00 Polydimethyl Siloxane 0.00 0.00 3.00 2.00 Cocaminopropyl Betaine 0.00 1.00 3.00 3.00

Lauryl Dimethyl Amine Oxide 1.50 1.50 1.50 1.50 Decyl Polyglucose 0.00 0.00 1.00 1.00 DMDM Hydantoin 0.15 0.15 0.15 0.15 Modofied Polypeptides of Examples 1 - 9 2.00 5.00 0.10 5.00 Phenoxyethanol 0.50 0.50 0.50 0.50 Fragrance 0.50 0.50 0.50 0.50 <BR> <BR> <BR> Water liqff. p.s. q.s. q.s.

100.00 100.00 100.00 100.00 EXAMPLE 25 - Liquid Dish Detergent (Wgt. %) C12 Ethoxy (1) Sulfate 12.00 2-methoxy Undecanoic Acid 4.50 C12 Ethoxy (2) Carboxylate 4.50 C12 Alcohol Ethoxylate (4) 3.00 C12 Amine Oxide 3.00 Sodium Cumene Sulfonate 2.00 Ethanol 4.00 Mg++ (as MgC12) 0.20 Ca++ (as CaC12) 0.40 Modified Polypeptide of Example 1 - 9 1.00 Water 100.00 EXAMPLE 26-27 - Laundrv Detergent Powders Ex. 26 Ex. 27 (Wgt %) C13 Linear Alkylbenzene Sulfonate 22.0 12.0 Phosphate (as sodium tripolyphosphates) 23.0 0.0 Sodium Carbonate 23.0 0.0 Sodium Silicate 14.0 0.0 Zeolite 8.2 26.0 2-butyl Octanoic Acid 0.0 4.0 Sodium C12-14 Secondary (2,3) Alkyl Sulfate 0.0 5.0 Sodium Citrate 0.0 5.0 Optical Brighter 0.0 0.1 Diethyaenetriaminepentaacetic acid 0.4 0.0 Sodium Sulfate 5.5 17.0

Modified Polypeptide of Examples 1 - 9 3.0 0.2 Water q.s. q.s.

100.0 100.0 EXAMPLE 28 - Liquid Laundry Detergent (Wt.%) C13-C17 Sodium Paraffin Sulfonate 10.00 Laureth-8 5.00 Sodium Lauroamphodipropionate 5.00 Enzyme 1.00 Ethanol 4.00 Propylene Glycol 6.00 Polyquaternium-1 0 0.50 Citric Acid 2.00 Triethanolamine to pH 4.0 Perfume 1.00 Modified Polypeptide of Examples 1 - 9 2.00 Water q.s.

100.00

EXAMPLE 29-30 - Hard Surface Cleaners Ex. 29 Ex. 30 (Wt.%) Sodium C12 Alkylbenzene Sulfonate 1.95 0.00 Sodium C12 Alkyl Sulfate 0.00 2.20 Sodium C12 Disthyleneglycol Monohexyl Ether Sulfate 0.00 2.20 C12 Dimethylamine Oxide 0.00 0.50 Sodium Cumene Sulfonate 1.30 0.00 Hexyl Carbitol 6.30 6.30 Modified Polypeptide of Examples 1 - 9 0.10 5.00 Water q s q.s.

100.00 100.00 EXAMPLE 31 - Dentifrice Composition (Wgt %) Sorbitol (70% aqueous solution) 35.0 Polyethylene Glycol (MW=600) 1.0 Silica dental abrasive 20.0 Sodium Flouride 0.243 Titanium Dioxide 0.5 Sodium Saccharin 0.286 Sodium Alkyl Sulfate (27.9% aqueous sol.) 4.0 Flavor 1.0 Carboxyvinyl Polymer 0.3 Carrageenan 0.8 Modified Polypeptide of Examples 1 - 9 5.0 Water q.s.

100.0 EXAMPLE 32 - Mouthwash Composition (Wgt %) SDA 40 Alcohol 8.00 Flavor 0.08 Sodium Fluoride 0.05 Glycerine 10.00 Sweetener 0.02 Benzoic acid 0.05

Sodium hydroxide 0.20 Modified Polypeptide of Examples 1 - 910.00 Water 100.00 EXAMPLE 33 - Lozenge Composition (Wgt %) Sorbitol 17.50 Mannitol 17.50 Starch 13.60 Sweetener 1.20 Flavor 11.70 Color 0.10 Modified Polypeptide of Examples 1 - 9 0.05 Corn syrup 100.00 EXAMPLE 34 - Enzymatic Contact Lens Cleaning Solution (Wgt %) Glucoes 50.00 Nonionic Surfactant 2.00 (Polyoxyethylene-polyoxypropylene copolymer Anionic Surfactant 1.00 (Polyoxyethlene-alkylphenylether sodium sulfricester) Sodium Chloride 1.00 Borax 0.30 Modified Polypeptide of Examples 1 - 9 1.00 Water p.s.

100.00