Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MOLTEN METAL TREATMENT
Document Type and Number:
WIPO Patent Application WO/1995/002707
Kind Code:
A1
Abstract:
There is provided an improved method for dispersing a treatment media in a body of molten metal using an impeller (6) to disperse the media in the body of molten metal (8), the method producing increased shear forces in the body of molten metal and reducing vortex formation. The method comprises the steps of providing a body of molten metal (8) and an impeller (6) on a shaft (4) in the body. A treatment media is added to the body and dispersed by rotating said impeller (6) in one direction and thereafter reversing the direction of rotation of the impeller to a counter direction. The direction of rotation of the impeller is reversed periodically to substantially reduce formation of a vortex around the shaft (4) of the impeller and to provide increased shear forces in the body for purposes of improving treatment of the molten metal by improved dispersion of the media therein.

Inventors:
,
Application Number:
PCT/US1994/007846
Publication Date:
January 26, 1995
Filing Date:
July 13, 1994
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ECKERT C EDWARD (US)
International Classes:
B01F3/04; B01F7/16; B01F7/18; B01F13/08; C22B9/00; C22B9/05; C22B9/10; C22B21/06; B01F5/00; B01F7/00; B01F15/00; (IPC1-7): C22B21/06
Foreign References:
SU247141A
US4784374A1988-11-15
US3982913A1976-09-28
Other References:
See also references of EP 0786015A4
Download PDF:
Claims:
C A I M S
1. An improved method for dispersing a treatment media in a body of molten metal using an impeller to disperse the media in the body of molten metal, the method producing increased shear forces in the body of molten metal and reducing vortex formation, the method comprising the steps of: (a) providing a body of molten metal; (b) providing an impeller on a shaft in said body; (c) adding treatment media to said body; (d) dispersing said media by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to substantially reduce formation of a vortex around the shaft of said impeller and to provide increased shear forces in said body for purposes of improving treatment of said molten metal by improved dispersion of said media therein.
2. The method in accordance with claim 1, wherein the treatment media is a fluxing gas.
3. The method in accordance with claim 1, wherein the treatment media is a salt.
4. The method in accordance with claim 1, wherein the treatment media is a fluxing gas introduced through said shaft and said impeller.
5. The method in accordance with claim 1, wherein the treatment media is a gas introduced to said body adjacent said impeller.
6. The method in accordance with claim 1, 17 wherein the molten metal is molten aluminum.
7. The method in accordance with claim 1, wherein the direction of rotation of said impeller is reversed at least every 10 minutes.
8. The method in accordance with claim 1, wherein the direction of rotation of said impeller is reversed at least every 3 minutes.
9. The method in accordance with claim 1, wherein the direction of rotation of said impeller is reversed in a time period in the range of 0.1 seconds to 4 minutes.
10. An improved method for dispersing a treatment media in a body of molten aluminum using an impeller to disperse the media in the body of molten aluminum, the method producing increased shear forces in the body of molten aluminum and reducing vortex formation, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a shaft in said body; (c) adding treatment media to said body; (d) dispersing said media by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to substantially reduce formation of a vortex around the shaft of said impeller and to provide increased shear forces in said body for purposes of improving treatment of said molten aluminum by improved dispersion of said media therein.
11. An improved method for dispersing a fluxing gas in a body of molten aluminum using an impeller to disperse the fluxing gas in the body of molten aluminum, the method producing increased shear forces in the body of molten aluminum and reducing vortex formation, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a shaft in said body; (c) adding fluxing gas to said body by one of passing said fluxing gas through said shaft and adding said fluxing gas adjacent said impeller; (d) dispersing said fluxing gas by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to substantially reduce formation of a vortex around the shaft of said impeller and to provide increased shear forces in said body for purposes of improving fluxing of said molten aluminum by improved dispersion of said fluxing gas therein.
12. The method in accordance with claim 10, wherein the treatment media is a fluxing gas.
13. The method in accordance with claim 10, wherein the treatment media is a salt selected from halide salts and mixtures thereof.
14. The method in accordance with claim10 wherein the treatment media is a fluxing gas introduced through said shaft and said impeller.
15. The method in accordance with claim 10, wherein the treatment media is a gas introduced to said body adjacent said impeller.
16. The method in accordance with claim 10, wherein the molten metal is molten aluminum.
17. The method in accordance with claim 10, wherein the direction of rotation of said impeller is reversed at least every 10 minutes.
18. The method in accordance with claim 10, wherein the direction of rotation of said impeller is reversed at least every 3 minutes.
19. The method in accordance with claim10 wherein the direction of rotation of said impeller is reversed in a time period in the range of 0.1 seconds to 4 minutes.
20. The method in accordance with claim11 wherein flow of fluxing gas to the body of molten aluminum is interrupted when the impeller is reversing direction of rotation. 21. An improved method for dispersing a fluxing gas in a body of molten aluminum using an "impeller to disperse the fluxing gas in the body of molten aluminum, the method producing increased shear forces in the body of molten aluminum and reducing vortex formation, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a hollow shaft in said body; (c) adding treatment fluxing gas to said body by passing said fluxing gas through said shaft; (d) dispersing said fluxing gas by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed every 0.
21. 1 seconds to 5 minutes to substantially reduce formation of a vortex around the shaft of said impeller and to provide increased shear forces in said body for purposes of improving treatment of said molten aluminum by improved dispersion of said fluxing gas therein.
22. The method in accordance with claim 21, wherein rotational speed of said body of molten metal is maintained at 0.01 to 70 percent of the rotational speed of said impeller after reversing of rotation direction.
23. The method in accordance with claim 11, wherein the fluxing gas is selected from inert gases, nitrogen containing gases, carbon containing gases and halogen gases and combinations thereof.
24. The method in accordance with claim 11, wherein the fluxing gas is selected from nitrogen, argon, chlorine, sulfur hexafluoride, carbon monoxide and fluorine and combinations thereof.
25. A method for producing increased shear forces in a body of molten metal by movement of the molten metal within the body, the movement providing improved dispersion of a media within the body, the method comprising the steps of: (a) providing a body of molten metal; (b) providing a mixing means for applying movement to said body; (c) adding media to said body; (d) creating said shear forces by: (i) applying said mixing means in one direction; and thereafter (ii) reversing the direction of applying said mixing means to a counter direction; (iii) the direction of applying said mixing means being reversed periodically to provide said increased shear forces in said body for purposes of improving dispersion of said molten metal by improved dispersion of said media therein.
26. A method for producing increased shear forces in a body of molten metal by inducing movement of portions of the molten metal in different directions within the body, the movement providing improved dispersion of a media within the body, the method comprising the steps of: (a) providing a body of molten metal; (b) providing a mixing means for applying movement to said body; (c) adding media to said body; (d) creating shear forces by: (i) moving portions of said molten metal in one direction by applying said mixing means in one direction; and thereafter (ii) moving portions of said molten metal in another direction by changing the direction of applying said mixing means; (iii) the direction of applying said mixing means being changed periodically to provide said increased shear forces in said body for purposes of improving dispersion of said molten metal by improved dispersion of said media therein.
27. A method for producing increased shear forces in a body of molten metal for improved dispersion of a media in the body using mixing means, the method comprising the steps of: (a) providing a body of molten metal; (b) providing a mixing means within said body; (c) adding treatment media to said body; (d) creating said shear forces by: (i) applying said mixing means in one direction; and thereafter (ii) reversing the direction of applying said mixing means to a counter direction; (iii) the direction of applying said mixing means being reversed periodically to provide said increased shear forces in said body for purposes of improving dispersion of said molten metal by improved dispersion of said media therein.
28. The method in accordance with claim 25, wherein the treatment media is a fluxing gas.
29. The method in accordance with claim 25, wherein the treatment media is a salt.
30. The method in accordance with claim 25, wherein the treatment media is a fluxing gas introduced through said shaft and said impeller.
31. The method in accordance with claim 25, wherein the treatment media is a gas introduced to said body adjacent said impeller.
32. The method in accordance with claim 25, wherein the molten metal is molten aluminum.
33. The method in accordance with claim 25, wherein the direction of rotation of said impeller is reversed at least every 10 minutes.
34. The method in accordance with claim 25, wherein the direction of rotation of said impeller is reversed at least every 3 minutes.
35. The method in accordance with claim25 wherein the direction of rotation of said impeller is reversed in a time period in the range of 0.1 seconds to 4 minutes.
36. A method for producing increased shear forces in a body of molten aluminum for improved dispersion of a treatment media in the body using an impeller, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a shaft in said body; (c) adding treatment media to said body; (d) creating said shear forces by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to provide said increased shear forces in said body for purposes of improving treatment of said molten aluminum by improved dispersion of said media therein.
37. A method for producing increased shear forces in a body of molten aluminum for improved dispersion of fluxing gas in the body using an impeller, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providirg an impeller on a shaft in said body; (σ) adding fluxing gas to said body by one of passing said fluxing gas through said shaft and adding said fluxing gas adjacent said impeller; (d) creating said shear forces and dispersing said fluxing gas by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to provide increased shear forces in said body for purposes of improving fluxing of said molten aluminum by improved dispersion of said fluxing gas therein.
38. The method in accordance with claim 35, wherein the direction of rotation of said impeller is reversed at least every 10 minutes.
39. The method in accordance with claim 35, wherein the direction of rotation of said impeller is reversed at least every 3 minutes.
40. The method in accordance with claim 35, wherein the direction of rotation of said impeller is reversed in a time period in the range of 0.1 seconds to 4 minutes. 41. The method in accordance with claim 35, wherein flow of fluxing gas to the body of molten aluminum is interrupted when the impeller is reversing direction of rotation. 42. A method for producing increased shear forces in a body of molten aluminum for improved dispersion of fluxing gas in the body using an impeller, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a shaft in said body; (c) adding fluxing gas to said body by one of passing said fluxing gas through said shaft and adding said fluxing gas adjacent said impeller (d) creating said shear forces and dispersing said fluxing gas by: (i) rotating said impeller in one direction; and thereafter (ii) periodically reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed aft^.r a time period in the range of 0.1 seconds co 5 minutes to provide increased shear forces in said body for purposes of improving fluxing of said molten aluminum by improved dispersion of said fluxing gas therein.
41. 43 An improved method for dispersing a treatment media in a body of molten metal using an impeller to disperse the media in the body of molten metal, the body having a top surface, the method producing subsurface turbulent mixing and increased shear forces in the body of molten metal while maintaining the top surface substantially free of vorticity, the method comprising the steps of: (a) providing a body of molten metal; (b) providing an impeller on a shaft in said body; (c) adding treatment media to said body; (d) dispersing said media by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to produce subsurface turbulent mixing and to increase shear forces in said body while maintaining the top surface substantially free of vorticity for purposes of minimizing skim ingestion during treatment of said molten metal with said media.
42. 44 The method in accordance with claim 43, wherein a layer of skim is maintained on the surface of said body.
43. 45 An improved method for dispersing a treatment media in a body of molten aluminum using an impeller to disperse the media in the body of molten aluminum, the body having a top surface, the method producing subsurface turbulent mixing and increased shear forces in the body of molten aluminum while maintaining the top surface substantially free of vorticity, the method comprising the steps of: (a) providing a body of molten aluminum; (b) providing an impeller on a shaft in said body; (c) adding treatment media to said body; (d) dispersing said media by: (i) rotating said impeller in one direction; and thereafter (ii) reversing the direction of rotation of said impeller to a counter direction; (iii) the direction of rotation of said impeller being reversed periodically to produce subsurface turbulent mixing and to increase shear forces in said body while maintaining the top surface substantially free of vorticity for purposes of minimizing skim ingestion during treatment of said molten aluminum with said media.
44. 46 The method in accordance with claim 45, wherein said media is a fluxing media selected from a fluxing gas and a fluxing salt.
45. 47 An improved method for dispersing a treatment media in a body of molten metal using an agitator to disperse the media in the body of molten metal, the body having a top surface, the method producing subsurface turbulent mixing and increased shear forces in the body of molten metal while maintaining the top surface substantially free of vorticity, the method comprising the steps of: (a) providing a body of molten metal; (b) providing an agitator in said body; (c) adding treatment media to said body; (d) dispersing said media by: (i) rotating said agitator in one direction; and thereafter (ii) reversing the direction of rotation of said agitator to a counter direction; (iii) the direction of rotation of said agitator being reversed periodically to produce subsurface turbulent mixing and to increase shear forces in said body while maintaining the top surface substantially free of vorticity for purposes of minimizing skim ingestion during treatment of said molten metal with said media.
Description:
MOLTEN METAL TREATMENT This invention relates to molten metal such as molten aluminum, and more particularly, it relates to an improved method for dispersing treatment media such a fluxing gas or salts in molten metal.

In the prior methods of dispersing fluxing gas, for example, in a molten aluminum body, the fluxing gas is introduced down a shaft into the body and dispersed by a rotating impeller mounted on the shaft. However, this method is not without problems. The rotating impeller creates a vortex about the shaft that indicates that a large portion of the molten metal is swirling or circulating about the impeller shaft at a rate approaching the rotation speed of the impeller. Fluxing media added to the molten metal tends to circulate with the molten metal with only minimal dispersion. Further, the vortex has the effect of increasing the surface area of the molten body exposed to air. The increased exposure of the molten metal to air results in an increase in dross formation, subsequent entrainment of the dross and its detrimental collateral effects. When the fluxing material is a gas, the vortex creates a problem in yet another way.

Fluxing gas is displaced towards the center of the vortex by body force separation with the result that other parts of the molten body are not adequately treated with fluxing gas. Thus, the effectiveness of the process is reduced because portions of the molten body do not get treated with fluxing material. In addition, fluxing gas entrained in the molten metal flow pattern tends to coalesce, resulting in larger bubbles of fluxing gas developing in the melt. The larger bubbles lower the effectiveness of the fluxing process because less molten metal gets treated.

Common methods employed to suppress vortex formation include the insertion of baffles or rods into the melt. However, baffles are undesirable because a dead volume develops behind the trailing edges of the baffle. Another method used to suppress vortex formation is to limit power input to the impeller. However, this severely limits efficiency.

These problems continue to plague the industry as indicated in U. S. Patent 5,160,693, for example, which discloses that with rotating impellers a surface vortex forms, the vortex rotating about and flowing downwardly along the impeller shaft, thereby agitating surface dross and drawing impurities back into the melt. The patent also indicates that an ideal system would minimize disturbances to the surface dross to prevent recontamination of the treated melt.

Thus, there is a great need for a more effective fluxing process which suppresses ingestion of dross from the surface back into the melt by vortex formation, for example, maintains the fluxing material finely dispersed throughout the molten body, and intensifies the

contact of molten metal with fluxing material for improved fluxing of the melt.

In accordance with the invention, there is provided an improved method for dispersing a treatment media in a body of molten metal using an impeller, nozzles, and other mixing means to disperse the media in the body of molten metal, the method producing increased shear forces in the body of molten metal and preferably reducing vortex formation. In one embodiment, the method comprises the steps of providing a body of molten metal and an impeller on a shaft in the body. A treatment media is added to the body and dispersed by rotating said impeller in one direction and thereafter reversing the direction of rotation of the xmpeller to a counter direction. The direction of rotation of the impeller is reversed periodically to substantially reduce formation of a vortex around the shaft of the impeller and to provide increased shear forces in the body for purposes of improving treatment of the molten metal by improved dispersion of the media therein. Further, the reversal of direction of the impeller increases the radial velocity gradient of the molten metal thereby increasing shear forces. This creates numerous subsurface streams which has the effect of dispersing small gas bubbles throughout the melt. This substantially improves dispersion of fluxing material throughout the melt.

Figure 1 is an elevational view in cross section illustrating the lack of vortex formation, molten metal flow characteristics and fluxing gas dispersion in the present invention utilizing a single impeller.

Figure 2 is an elevational view in

cross-section illustrating the invention using a double impeller.

Figure 3 is another cross-sectional view of twin impellers operating in accordance with the invention.

Figure 4 shows a cross-sectional view of a further embodiment of the invention.

Figure 5 is a top view of an impeller useful in the invention. Figure 6 is an elevational view of an impeller useful in the invention.

Figure 7 is a perspective view of the impeller useful in the invention.

Figures 8 and 9 are embodiments illustrating impellers or paddles which may be used in accordance with the invention.

Figure 10 is a cross section of a molten metal vessel employing tuyeres in the invention. Figure 11 is a cross section of the vessel of Figure 10.

Figure 12 is a top view of a molten metal vessel illustrating the use of molten metal conduits in the invention. Referring more specifically to Figure

1, there is shown a schematic of a gas fluxing bay 2 having a hollow shaft 4 and impeller 6 located in body of molten metal, e. g. aluminum, 8. Shaft 4 is carried by structure 10 and rotates on bearing 12. Further, shaft 4 is rotated by motor 14 through gears 16. Direction of rotation and revolution speed of motor 14 is controlled by control panel 18. Fluxing gas is added through tube 20 and down hollow shaft 4 before being dispersed through tubes or conduits in impeller 6 into molten aluminum 8. Instead of passing fluxing gas down hollow shaft 4, the

- 5 fluxing gas may be added to the molten metal through a tube or other means. The fluxing gas may be injected adjacent impeller 6 for dispersing throughout the melt. Fluxing gases that can be used for molten aluminum in the present invention include nitrogen containing gases, carbon containing gases, e. g. fluorocarbons, halogen gases and the so-called inert gases; namely, helium, neon, argon, krypton, xenon, along with nitrogen, carbon dioxide and mixtures of these gases. In addition, chlorinaceous gases such as chlorine may be used individually or combined with the above gases. Gas fluxing can be performed in batch or on a continuous basis. On a continuous basis, molten metal enters along conduit 22 and leaves by channel 24 after fluxing has taken place.

The fluxing process removes both dissolved and suspended impurities, including oxides, nitrides, carbides, and carbonates of the molten metal and alloying elements. The dissolved impurities include both dissolved gases and dissolved solids. Dissolved gases in molten aluminum, for example, include hydrogen and dissolved solid particles include alkali elements such as sodium and calcium. When chlorine gas is added, for example, it forms the chloride salt of the impurity which rises to the surface and is removed. Suspended solids are transported to the melt surface by attachment to rising gas bubbles. Hydrogen is removed by desorption into the gas bubbles and is removed. Thus, it is important to keep a fine dispersion of fluxing gas or fluxing salt distributed throughout the melt in order to provide many sites for collection and removal of both

dissolved and suspended impurities.

For purposes of fluxing in accordance with the present invention, shaft 4 and impeller 6 are rotated in either clockwise or counter- clockwise direction followed by reversing direction of rotation periodically. This has the effect of substantially eliminating formation of a vortex in the body of molten metal and the problems attendant therewith. Minimizing or eliminating the vortex greatly reduces the ingestion of dross from the surface into the body of melt being treated. More importantly, periodically reversing direction of rotation of impeller 6 has the effect of considerably increasing shear force developed in the molten metal, resulting in a more uniform, fine dispersion of fluxing material throughout fluxing bay. Adding fluxing material and reversing impeller rotation direction periodically increases fluid velocity gradients in the molten metal, particularly in the radial direction. It will be appreciated that adding fluxing gas and reversing direction of rotation of impeller 6 periodically has the effect of increasing the energy of mixing applied to the body of molten metal. However, the large increase in energy of mixing is obtained with substantially no vortex and the attendant problems of dross ingestion. For example, in prior gas fluxing methods, the impeller was rotated unidirectionally and the body of molten metal would be accelerated in the direction of rotation of the impeller resulting in formation of a vortex, and only minimal energy of mixing was applied during dispersing of fluxing gas. Further, metal in the body can be used as a reaction force, opposing the rotation of the

impeller, thereby maximizing the energy input. As the body is accelerated in the direction of impeller rotation, the magnitude of the reaction force is proportional to difference in relative velocity between molten metal and impeller. In the present invention, reversing direction of rotation of impeller 6 periodically greatly intensifies the energy of mixing applied during dispersing of fluxing gas. This results in molten metal flow direction being directionless or random in the body of molten aluminum and without formation of a vortex.

By shear forces are meant the forces generated by a stream of molten metal in a body moving in one direction on a stream or portion of molten metal moving in another direction, for example, an opposite direction. For instance, when an impeller is rotated, the melt flows in the same direction as the impeller at a speed less than the speed of rotation of the impeller. However, both speeds are usually not very different. The greater the difference in these two speeds the greater is the capability for dividing fluxing gas into fine bubbles by the shear force. When the direction of rotation of the impeller is reversed, a stream of metal works on or creates a shear force on an adjacent stream or portion of molten metal until the whole body reverses direction. That is, the body is moving or rotating in one direction and when the impeller is reversed, a small portion of molten metal rotates in an opposite direction, the portion increases until the whole body rotates in a generally opposite direction. It is this period of reversing or changing direction of the molten metal which induces the greatest shear forces on adjacent portion or

streams of molten metal to change directions. By inducing movement of portions of the molten metal in different directions is meant that while first portions or streams of the molten metal are moving in one direction, for example, in a circular direction, other portions or streams are forced to move in another direction, for example, generally counter to the first portions or streams. The inducing of movement may also be performed by mixing means such as impellers, electromagnetic pumps, gas nozzles or tuyeres, and streams of molten metal introduced or applied to a body of the molten metal or a combination these mixing means. Further, moving portions of the molten metal in another direction by changing directions of applying the mixing means, for example, means that the direction of the impeller may be reversed or merely stopped periodically so as to induce shear stresses into the body of molten metal by having streams or portions of the molten metal going in one direction and then having streams or portions going in other directions. Another mixing means may be applied in another direction simultaneously or alternating with the first mixing means. For example, an impeller may be used to induce movement of a portion of the molten metal in one direction and an electromagnetic pump may be used to induce movement of a second portion in another direction to provide shear forces in the body. By fluid velocity gradient is meant the velocity profile described by the quotient of the change in radial fluid velocity,dy r , and change in radial distance, dr. The velocity gradient is therefore, dγ r /dr, by Newton's law

- 9 - of viscosity, the magnitude of the shear force, T , is related to the velocity gradient by the flow viscosity, n, as follows:

_ d /dr 7 ~ Vr

With respect to the length of time before reversing the direction of rotation, this can extend to 10 minutes or more with a typical time period before reversing being less than 5 minutes with a suitable period being in the range of 0.1 seconds to 3 minutes. Or, the period for reversing can vary. For example, the reversing period may start at 5 minutes and then work down to 1 minute. Figure 2 illustrates another embodiment wherein a second impeller 26 is fixed to a single impeller shaft 4. Impeller 6, fixed to the free end of shaft 4, can have a gas diffuser or nozzle or the gas can be supplied adjacent impeller 6 at a remote site in vessel 2 preferably below impeller 6. Additionally, impeller 26 may have a gas diffuser and can have the same configuration as impeller 6 or a different configuration which will aid in creating increased shear forces in molten metal when rotated in conjunction with impeller 6. Impeller 26 has the advantage of providing additional shear forces in the molten metal body when the rotation of the impeller is reversed. Thus, fluxing material is dispersed throughout the molten body with a higher level of intensity for a more efficient fluxing process. The times used for reversing can be similar to that used for the single impeller. With reference to Figure 3, there is shown another embodiment of the present invention including a containment vessel 30 having shafts 4 and impellers 6 containing

molten aluminum 5. Shafts 4 and impellers 6 can be set to rotate in the same direction or opposite direction during the same time period. Thereafter, the rotation of each impeller is reversed periodically, usually in synchroniza¬ tion with the other impeller to provide for a high level of shear forces for dispersing of the media in the molten metal. Fluxing gas can be added in the same manner as referred to for the single impeller in Figure 1. In this embodiment, the reversing cycle or period can be the same for each impeller or the reversing cycle can be shorter for one impeller and longer for the other and then these reversing cycles can be reversed in synchronization to obtain the most desirable combination of shear forces for dispersion. While two motors are shown driving the impellers in Figure 3, one motor can be employed with the appropriate gears. The time periods for reversing direction of rotation can be similar to that described for Figure 1.

With respect to Figure 4, there is shown a further embodiment of the present invention which includes a molten metal containment vessel 40 having two impellers on concentric shafts 42 and 44 which carry impellers 46 and 48. Fluxing gas may be supplied for fluxing purposes in the same way as referred to for Figure 1. Additionally, for improved fluxing, the impellers 46 and 48 may rotate in the same direction for the same period of time. Further, impellers 46 and 48 may reverse direction at the same time for the same period. Or, impellers 46 and 48 may rotate in opposite directions for the same period, and both may reverse direction for the same period of time. Further, the rate of rotation for each

- 11 - impeller may be the same or one impeller may be set so as to rotate faster than the other in order to maximize shear force or the fluid velocity gradients in the molten metal. In the embodiment shown in Figure 4, a single motor, which can be electric or air driven, is shown driving shafts 42 and 44 in the same direction of rotation through gears 50, 52, 54 and 56. In addition, the period or reversing cycle may be longer for one impeller than for the other impeller. Thus, it will be seen that various combinations of rates of rotation, direction of rotation, and periods of rotation may be utilized, all of which are intended to be encompassed within the scope of the invention because the specific details set forth are by way of illustration and not of limitation. The impeller used in the present invention is any impeller which may be useful in creating shear forces in the melt for homogenization of the melt or for dispersing materials throughout the melt in accordance with the invention. Thus, the impeller may have canted vanes, and combinations of vanes may be used when two or more impellers are used. A suitable impeller 60, shown in Figures 5, 6 and 7, has vanes 62 substantially vertical to the plane of rotation. Such impeller is disclosed in U. S. Patent 5,160,693 incorporated herein by reference.

The shaft and impeller may be made from graphite, silicon carbide or ceramic or such material which is compatible with molten metal such as molten aluminum. The impellers of the present invention can rotate at an rpm in the range of 15 to 450 or combinations of such revolutions. The rate

of rotation need not be constant. For example, the rate of rotation can be less at the beginning of the reversing period and can be higher at the end of the reversing period for purposes of inducing more constant shear stresses in to the melt.

In addition, the impeller can have a flat paddle configuration as shown in Figure 8 where shaft 4 terminates in flat plate 66. Fluxing gas may be added either remotely or through shaft 4 as disclosed earlier. Further, several flat plates 66 may be disposed along shaft 4 or shaft 4 may constitute a continuous plate at least to the extent that it is emerged in the melt. Plates 66 may be arranged as shown in Figure 9, example, or any combination of plates may be used and such are intended to be encompassed within the scope of the invention. The plates or paddles generate very high shear forces in the melt in accordance with the invention and accordingly are very useful in the invention.

While generation of shear forces in melts such as molten metal having been demonstrated herein using impellers other mixing means or means for generating shear forces are contemplated. For example, shear forces may be generated by means of tuyeres 70, Figure 10, in container 68 containing molten metal 5. In the configuration in Figure 10, tuyeres 70 can be spaced apart up the side of container 68. One set of tuyeres 72 are arranged so as to direct gas or liquid such as molten salts therefrom in a clockwise direction and another set of tuyeres 74 can be positioned to direct gas or liquid therefrom in a counter current direction. One set of tuyeres are directed so as to move the

melt in one direction and thereafter the second set of tuyeres are operated against the direction of the melt to generate shear forces therein to improve dispersion of fluxing material in the melt by reversing direction of melt flow.

In another embodiment the melt may be stirred in one direction by an electromagnet stirrer preferably in a circular direction. Afterwards, the electromagnet stirrer can be reversed periodically by reversing the electromagnetic field to generate shear forces in the melt and to promote intimate mixing or dispersing of media in the melt. In Figure 12, molten metal may be introduced to vessel 74 along conduit 76 to induce circular movement to the melt contained therein. Thereafter, the flow of molten metal along conduit 76 can be stopped and molten metal introduced through conduit 78 to generate shear forces in accordance with the invention. The flow of molten metal into vessel 74 can be alternated between conduits 76 and 78 to maintain a predetermined level of shear forces in the melt. It will be appreciated that combinations of these methods for generating shear forces are contemplated within the purview of the invention.

To facilitate fluxing efficiently, means is provided to interrupt gas flow to the body of molten metal at the time of rotation direction change of the impeller. This may be accomplished by use of a solenoid. In the preferred embodiment, and electric motor may be used to drove the impeller gearbox If a DC motor (direct current) is employed, the direction of rotation can be accomplished by

reversing the direction of the applied current. Current reversal is facilitated by a set of timers to control the duration of rotation in either direction. This may be coupled to a double throw relay. An important element of the current reversing circuit is a means for ramping the applied current at a rate that does not mechanically shock the system immediately upon reversal. Also required is a mechanical device capable of bi-directional rotation that attaches the impeller to the drive shaft and the drive shaft to a gearbox.

The process in accordance with the invention has the advantage that it requires less processing time. Thus, there is considerable savings in the energy requirement to maintain the body of molten metal at temperature to perform the fluxing operation. Further, the process and system has the advantage that the equipment used for performing the fluxing can be downsized resulting in further savings. Because the subject system is more efficient in dispersing gas, considerably less gas is needed for the fluxing operation. In addition, because the present system is essentially vortex free when compared to conventional systems, less skim is generated and further only minimal skim is ingested into the melt. Thus, a protective layer of skim or salt or other material can be maintained on the surface of the body with substantially no ingestion. The system is generally more efficient in removing both dissolved and suspended impurities. It should be understood that the shear forces and dispersion of media in the molten metal can be accomplished by a phase contactor

or agitator provided in the body of molten metal. By phase contactor or agitator as used herein is meant to include a propeller, impeller, nozzles, rotating plates, counterflow of molten metal and the like. Also, it will be understood that the shear forces and dispersion may be created by a rotating molten metal container or insert whose direction of rotation is reversed periodically in accordance with the teachings of this invention.

While the invention has been described in terms of preferred embodiments, the claims appended hereto are intended to encompass other embodiments which fall within the spirit of the invention.