Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTI-DIAMETER TUBE FITTING
Document Type and Number:
WIPO Patent Application WO/2007/002027
Kind Code:
A3
Abstract:
A method and apparatus for coupling ends of tubes, particularly tubes of different outer diametral sizes. The coupling includes resiliently deformable portions for retaining and sealing the tube within the coupling in a generally leak-proof manner, and an insert is provided for reception within the end of each tube. The insert imparts a greater level of stiffness to the tube for improving the sealing of the tube within the coupling. The insert provides a tight friction-fit between the insert and tube and retards or restricts withdrawal of the insert and tube from the coupling.

Inventors:
FEITH RAYMOND P (US)
Application Number:
PCT/US2006/023894
Publication Date:
June 26, 2008
Filing Date:
June 20, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RAIN BIRD CORP (US)
FEITH RAYMOND P (US)
International Classes:
F16L21/06; F16L37/091; F16L37/098; F16L47/32
Foreign References:
US5775742A1998-07-07
US6170887B12001-01-09
Attorney, Agent or Firm:
SAMPLES, Kenneth, H. et al. (Even Tabin & Flannery,120 South Lasalle Street, Suite 160, Chicago IL, US)
Download PDF:
Claims:
Patent Application Attorney Docket 83843

What is claimed is:

1. An insert for use with a fluid carrying tube to enhance attachment to

a coupling used to interconnect a plurality of fluid carrying tubes, the insert

comprising:

a cylindrical body having an inner surface and an outer surface;

the inner surface defining a fluid passage through the insert; and

the outer surface being configured such that it is capable of engaging

an inside surface of a tube wherein a predetermined threshold of force beyond that

of normal use conditions of the coupling is required to separate the insert from the

tube.

2. The insert of claim 1 wherein the outer surface is capable of forming a

friction engagement with an inside surface of the tube to restrain removal of the

insert from the tube.

3. The insert of claim 2 wherein the body is sufficiently rigid so as to be

capable of expanding the tube during insertion of the insert into the tube.

4. The insert of claim 2 wherein the outer surface has a generally constant

outer diameter and includes at least one projection extending beyond the outer

Patent Application Attorney Docket 83843

diameter to engage an inner surface of the tube to restrain removal of the insert from

the tube.

5. The insert of claim 4 wherein the at least one projection is sized to

compress at least a portion of the tube between the at least one projection and a

coupling to restrain removal of the tube from the insert and to restrain removal of the

insert and tube from the coupling.

6. The insert of claim 5 wherein the at least one projection includes an

edge that is capable of gripping the inner surface of the tube to restrain removal of

the insert from the tube.

7. The insert of claim 6 wherein the at least one projection includes a

surface that expands the tube to facilitate insertion of the insert into the tube.

8. The insert of claim 7 wherein the at least one projection is an annular

projection about the body.

9. The insert of claim 4 wherein the body includes a leading end and

trailing end, and the at least one projection is located between the leading end and

the trailing end.

Patent Application Attorney Docket 83843

10. The insert of claim 9 wherein the surface includes a second projection

at the leading end of the body and a third projection spaced from the second

projection forming a groove therebetween which is capable of further restraining

removal of the insert from the coupling.

11. The insert of claim 10 wherein the second projection is capable of

limiting insertion of the insert into the tube.

12. The insert of claim 10 wherein the first, second and third projections are

annular projections.

13. A coupling system for fluid carrying tubes having a first end portion

for insertion into the coupling system and having an inner surface and an outer

surface, the coupling system comprising:

an insert for reception within the first end portion of the tube, the insert

comprising a cylindrical body having an inner surface and an outer surface, the inner

surface defining a fluid passage through the insert, and the outer surface being

configured such that it is capable of engaging the inner surface of the tube wherein

a predetermined threshold of force beyond that of normal use conditions of the

coupling system is required to separate the insert from the tube; and

Patent Application Attorney Docket 83843

a coupling denning a socket for receiving the insert and first end

portion of the tube, the socket having gripping fingers and a seal, the gripping

fingers engaging the outer surface of the tube to restrain removal of the tube and

insert from the coupling, and the seal engaging the outer surface of the tube to

provide an at least substantially sealed interconnection therebetween.

14. The coupling system of claim 13 wherein the insert outer surface is

capable of forming a friction engagement with the inner surface of the tube to restrain

removal of the insert from the tube.

15. The coupling system of claim 14 wherein the body is sufficiently rigid

so as to be capable of expanding the tube during insertion of the insert into the tube.

16. The coupling system of claim 14 wherein the outer surface of the insert

has a generally constant outer diameter and includes at least one projection

extending beyond the outer diameter to engage the inner surface of the tube to

restrain removal of the insert from the tube.

17. The coupling system the claim 16 wherein the at least one projection is

sized to compress at least a portion of the tube between the at least one projection

Patent Application Attorney Docket 83843

and the coupling to restrain removal of the tube from the insert and to restrain

removal of the insert and tube from the coupling.

18. The coupling system of claim 17 wherein the at least one projection

includes an edge that is capable of gripping the inner surface of the tube to restrain

removal of the insert from the tube.

19. The coupling system of claim 18 wherein the at least one projection

includes a surface that expands the tube to facilitate insertion of the insert into the

tube.

20. The coupling system of claim 19 wherein the at least one projection is

an annular projection about the body.

21. The coupling system of claim 16 wherein the body includes a leading

end and trailing end and the at least one projection is located between the leading

end and the trailing end.

22. The coupling system of claim 21 wherein the insert outer surface

includes a second projection at the leading end of the body and a third projection

Patent Application Attorney Docket 83843

spaced from the second projection forming a groove therebetween which is capable

of further restraining removal of the insert from the coupling.

23. The coupling system of claim 22 wherein the second projection is

capable of limiting insertion of the insert into the tube.

24. The coupling system of claim 23 wherein the first, second and third

projections are annular projections.

25. The coupling system 13 wherein the coupling defines a second socket

for receiving a second insert and a first end portion of a second tube, the second

socket having gripping fingers and a seal, the gripping fingers engaging an outer

surface of the second tube to restrain removal of the second tube and second insert

from the coupling, and the second seal engaging the outer surface of the second tube

to provide an at least substantially sealed interconnection therebetween.

26. The coupling system of claim 13 wherein the coupling system is

adapted to received tubes of different outer diameters.

27. A method of coupling a tube including the steps of:

Patent Application Attorney Docket 83843

providing a coupling for receiving at least one tube within the coupling, the coupling including a resiliently deformable portion;

friction-fitting an insert into an end of the tube; and

inserting the tube end and insert into the coupling so that a portion of the

insert passes through the resiliently deformable portion.

28. The method of claim 27 including providing the insert with a body

having an outer surface with a first diameter, and providing the insert with a surface feature on the outer surface sized greater than the first diameter.

29. The method of claim 28 wherein the step of inserting the tube end and

insert includes the surface feature passing through the resiliently deformable portion.

30. The method of claim 29 wherein the step of inserting the tube end and

insert includes applying a first force to the tube and insert to pass the body with the

first diameter through the resiliently deformable portion, and includes applying a

second force greater than the first force to pass the surface feature of the body

through the resiliently deformable portion.

Description:

Patent Application Attorney Docket 83843

MULTI-DIAMETER TUBE FITTING

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of the United States Patent Application

Serial Number 11/157,658, filed June 21, 2005, which is a continuation-in-part of

United States Patent Application Serial Number 10/394,343, filed March 20, 2003,

entitled "Multi-Diameter Tube Coupling/' the specifications of which are

incorporated by reference in their entirety.

FIELD OF THE INVENTION

[0002] The invention relates to coupling of tubes and, in particular, to an insert

attached to a tube and a coupling device for receiving the insert and tube therein.

BACKGROUND OF THE INVENTION

[0003] Tubes or pipes are utilized in many environments for providing a conduit

which may be used to deliver fluid flow or carry cables or wires, for instance. As an

example, an irrigation network or system typically has a water source such as a

water main or a well source with a pump for delivering water. Connected to the

water source is one or more pipes for delivering water through the network, which

may consist of a series of fluid-delivering arteries. Throughout the network, there

Patent Application Attorney Docket 83843

is a number of pipes or tubes delivering water to sprinklers or other types of

irrigation devices. Each of these tubes is coupled to each other, preferably with a

generally leak-free connection.

[0004] Some of these connections are made by connecting threaded ends of the

pipes to each other or to threaded couplings. Threaded joints present a number of

deficiencies in use, such as being labor-intensive to connect. Threaded couplings also require full mating or seating of one member within another. This seating requires

a certain degree of precision in sizing of pipes so that they span the proper distance.

Nonetheless, threaded joints are prone to leaking, particularly as a result of

deflection of one tube relative to the other which applies stress at the threads

between the tubes. In order to improve the seal through threaded joints, the joints may be treated with pipe cement, or otherwise permanently joined, such as by

welding. These methods tend to be messy, or labor-intensive, or both. Additionally,

these methods are unreliable, and replacing a pipe or leaking coupling that has been

welded or glued requires cutting out the joint and replacing the removed section,

which itself may require re-threading fresh ends of the pipes and/or adding an

additional pipe and coupling.

[0005] Frequently, the various tubes throughout the system lack a uniform

diameter. That is, one tube may have a diameter of one size, while the tube to which

it is to be joined has a diameter of a different size. This occurs for a number of

Patent Application Attorney Docket 83843

reasons, such as consumers not recognizing the diametral difference when

purchasing tubing, various manufacturers being partial to different tube gauges, or

intentional variance to account for various flow rates through the fluid delivery

system. Many couplings for joining pipes of different diameters merely make a step

so that the coupling accommodates two specific tube sizes, thereby requiring a

different coupling for each combination of possible tube sizes.

I [0006] One concept for joining pipes or tubes that alleviates some of these issues

is by using a joint coupling that includes at least two openings, each opening

corresponding to a tube to be joined, wherein each opening includes a radial array

of flexible or resiliently deformable members, such as a ring of fingers, for either

sealing with or retaining a tube end within the coupling. One example of this

concept is described in U.S. Patent No. 6,231,909, to Fukao et al.

[0007] One problem with the fingered ring is the stiffness required. If the fingers

are relatively soft, a tube may be easily inserted therein, and its position may easily

be adjusted. However, a pressure surge through the tube and coupling may cause

the tube to be expelled from the coupling. Alternatively, if the fingers are relatively

stiff, such as if a metal ring is used with a radial array of barbed fingers, a pressure

surge typically causes the fingers to bite into the tube. Unfortunately, these stiff

fingers require greater work for receiving the tube and make adjusting the tube

therein more difficult. Additionally, a coupling with stiffer materials does not tend

Patent Application Attorney Docket 83843

to seal as well as a coupling where the fingered ring deforms more easily to compress

against a seal.

[0008] Accordingly, there has been a need for an improved coupling device for

connecting tubes, including tubes of different diametral sizes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FlG. 1 is an exploded side elevation view of a coupling, tubes to be

connected by the coupling, and inserts for promoting the connection between the

coupling and the tubes;

[0010] FlG. 2 is a cross-sectional view of the coupling, tubes, and inserts taken

through the line 2-2 of Fig. 1;

[0011] FlG. 3 is a perspective view of the insert;

[0012] FlG. 4 is a cross-sectional view of the insert; and

[0013] FiG.5 is a partial cross-sectional perspective view of the coupling showing

a tube received therein, and showing the insert received in the tube and the coupling.

Patent Application Attorney Docket-83843

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0014] Referring initially to FlGS. 1 and 2, a coupling device 10 is depicted for

receiving and interconnecting tubes 12, and an insert 60 is provided for connecting

the tubes 12 to the coupling 10. The tubes 12 may include a first tube 12a having a

first outer diameter 14a, and a second tube 12b having a second outer diameter 14b.

In use, the coupling 10, the tubes 12a, 12b, and the inserts 60a, 60b are joined to

provide a generally leak-free connection defining a flow path therethrough. In a

preferred embodiment, the tubes 12 are formed from polyethylene, more preferably

with low-density polyethylene, or vinyl. Additionally, the preferred material for the

insert is acrylonitrile butadiene styrene (ABS) or Delrin.

[0015] The preferred coupling 10 is generally cylindrical, defines a cavity 22 (Fig.

2), and is straight such that it has a central axis X generally parallel to the direction

of fluid flow therethrough. More specifically, the coupling 10 has a first coupling

portion 24a and a second coupling portion 24b for receiving and connecting, socket-

like, with the tubes 12a, 12b respectively. Either of the coupling portions 24a, 24b

may be an inlet or outlet portion, and the central axis of each coupling portion 24a,

24b is aligned with the central axis X. In other embodiments, the coupling 10 may

be angled, such as in an elbow pipe, such that the first coupling portion 24a is set at

an angle with respect to the second coupling portion 24b, and each coupling portion

24 has its own central axis parallel to fluid flow therethrough. In other

Patent Application Attorney Docket 83843

configurations, the coupling 10 may provide for connection of more than two tubes,

such as to form a T-shaped coupling having three coupling portions. Each coupling

portion 24a, 24b attaches to a central body portion 30 and includes an annular

retainer collet 40 for receiving and retaining a respective tube 12a, 24b, and an

annular seal 50 for receiving a portion of the collet 40 and tube 12a, 12b and for

sealing around the tube 12.

[0016] To promote and enhance retention and sealing, each tube 12a, 12b is fitted

with the insert 60. The insert 60 restricts the ability of a pressure surge to eject the

tube 12 from the coupling 10 while also allowing an installer to adjust easily the

amount of tube 12 located within the coupling 10.

[0017] As noted above, the first and second tubes 12a and 12b are depicted having

first and second respective outer diameters 14a and 14b (Fig.1). The outer diameters

14a, 14b may be substantially identical or may be significantly different in size.

Additionally, the tubes 12a, 12b have respective inner diameters 74a and 74b, which

may be substantially identical or may be significantly different in size (Fig.2). Each

coupling portion 24a, 24b is designed to accommodate tubes of varying sizes such

that particular couplings 10 are not required for particular size tubes or combination

of tube sizes.

[0018] Each tube 12a, 12b includes a respective end 72 for insertion into the

coupling 10. The end 72 is defined by its respective outer diameter 14a, 14b and

Patent Application Attorney Docket 83843

inner diameter 74a, 74b, and the difference between the outer and inner diameters

14a, 14b and 74a, 74b determines a wall thickness 80. As discussed, the coupling 10

accommodates tubes having a range of external diameters. Each end 72 terminates

with an end surface 84.

[0019] The insert 60 is slide or force-fitted into each end 72.. The preferred insert

60 has a generally cylindrical body 61 having an inner surface 63 with a generally uniform inner diameter 64 for allowing fluid flow therethrough. It is preferred that

the insert 60 is relatively secure within the tube 12 so that a pressure surge does not

allow the tube 12 to separate from the insert 60. It is also preferred that the insert 60

is easily push-fit within the tube end 72 by an installer.

[0020] Typically made of polymeric or plastic material, the tubes 12 have at least

some amount of elasticity. Accordingly, the insert 60 may utilize this elasticity to

assist in forming a tight friction fit between the insert 60 and the tube 12. As can be

seen in Fig. 4, the insert body 60 has an outer surface 65 with a generally uniform

outer diameter 62 interrupted by several surface features, which will be described

below. To assist with the friction fit between the insert 60 and the tube 12, the outer

diameter 62 may be slightly greater than the inner diameter 14 of the tube 12. The

elastic deformation provides a tight fit between the insert 60 and the tube 12.

Additionally, the elastic deformation allows an insert 60 with a particular outer

diameter 62 to be used with tubes 12 having a narrow range of inner diameters 14.

Patent Application Attorney Docket 83843

Furthermore, a series of inserts 60 may be provided corresponding to individual

inner diameter tubes or to ranges of inner diameter tubes. For instance, an insert

may have an outer diameter 62 of 16.2 millimeters for use either with a tube of 16

millimeters, or for use with tubes ranging in size from 14.5 to 16 millimeters.

[0021] The tight fit between the tube 12 and the insert 60 also may be provided

and/or enhanced by surface features on the insert 60. For instance, the surface 65 of the insert 60 may include an annular ramp 90 leading during fitting within the tube

12 and an annular barb 94 formed by a trailing edge 96 and an annular shoulder 98.

The ramp 90 is positioned approximately midway along the exterior of the insert 60.

The insert 60 has a leading terminal end 60a which is inserted first into the tube 12.

The insert 60 is forced into the tube 12 such that the terminal end 84 of the tube 12 passes over and beyond the ramp 90, as can be seen in Fig. 5.

[0022] The resilient elasticity of the preferred tube 12 allows it to expand in a

localized region as the region passes over the ramp 90, and the elasticity causes the

localized region of the tube 12 to contract inwardly once it has passed the barb 94.

Once the tube 12 is mounted on the insert 60 to a desirable depth, an inner surface

98 of the tube 12 presses against and generally conforms to the barb 94 in a localized

region, and the force required to pull and separate the tube 12 from the insert 60 is

significantly increased. The barb 94 may be sized so that the insert 60 forms a tight

Patent Application Attorney Docket 83843

friction fit with tubes having a range of inner diameters and elasticity, or for a

particular tube size and material.

[0023] The insert 60 also includes two annular rings at a coupling insertion end

60b and to one side of the ramp 90. The insertion end 60b is a leading end when the

insert 60 and tube 12 are received in the coupling 10, as will be discussed below. The

first of the annular rings is an annular stop ring 102 for the tube 12 to catch the tube

end 84 to prevent further insertion of the insert 60 into the tube 12. That is, the insert

60 is forced into the tube 12 until the end surface 84 abuts the stop ring 102.

[0024] The second of the annular rings is an annular end ring 104 positioned at a terminal end 60c of the insert coupling insertion end 60b. When the tube 12 and the

insert 60 are received at a maximum insertion depth within the coupling 10, the end

ring 104 abuts the stop tabs 110 within the coupling body 30. More specifically, the

coupling body 30 includes a plurality of stop tabs 110, which project inwardly and

are sized to minimize impedance of water flow through the body 30. It should be

noted that, alternatively, an annular ring (not shown) may be formed on the interior

of the body 30 to form a circular stop shoulder against which the ring 104 may abut

when fully inserted into the coupling 10.

[0025] Leading up to each of the stop tabs 110 is a ramp 112 and a plateau 114

joining the stop tab 110 with the ramp 112. In this manner, the insert 60 is guided

along the ramps 112 and against the stop tabs 110 so that the central axis of the insert

Patent Application Attorney Docket 83843

60, when located within the coupling 10, is aligned with the central axis X of the

coupling portion 24 within which it is located. The plateaus 114 allow the insert 60

be positioned either against the stop tab 110 at a maximum insertion, or within a

short distance thereof so that an installer can adjust the depth of insertion. By

allowing adjustment of the depth, the coupling 10 requires less precision in selecting

tube length for spanning various distances.

[0026] In the preferred embodiment, the body 30 includes three projecting stop

tabs 110 at equally spaced angular intervals of 120 degrees, and a radially inwardly

tapering ramp 112 for each stop tab 110. The stop tabs 110 and ramps 112 are

provided for each coupling portion 24 for cooperating with an insert 60 positioned

therewithin. The insert end ring 104 may be provided with an outer diameter 104a

sized to loosely engage each of the plateaus 114.

[0027] As noted above, the coupling 10 includes the annular collet 40 and the

annular seal 50, which cooperate with the tube 12 and insert 60 to retain the tube 12

therein with a generally leak-proof connection. Each coupling portion 24a and 24b

includes a corresponding end 120a and 120b, respectively, of the body 30. The ends

120a, 120b each form a shoulder 124a, 124b at their terminal edge against which one

of the collets 40 seats. Each collet 40 includes an outer annular ring 130 having a

receiving end 132 into which the tube 12 and insert 60 are received and a securing

end 134 for attaching to the body 30. The securing end 134 includes an annular skirt

Patent Application Attorney Docket 83843

portion 136 that extends over the body end 120 and forms a shoulder 138 that abuts

the body shoulder 124. Preferably, each collet 40 is fixedly attached to the body 30,

such as by snap-fit cooperating structure, glue, or electronic welding. Alternatively,

the collet 40 may be formed integrally with the body 30.

[0028] The collet receiving end 132 includes an annular array of fingers 140

extending within the collet 40 with an inward angle. The fingers 140 are resiliently

deflectable so that, when the tube 12 and insert 60 are inserted therein, the fingers 140

deflect outwardly to permit the entrance of the tube 12 and insert 60, while also

biasing inward with sufficient force to compress against the tube 12 and the insert 60

to inhibit relative motion therebetween and to retain the tube 12 within the coupling

10.

[0029] As best viewed in Fig. 2, each finger 140 has a terminal end portion 142

forming a barb 144 with a slight inward angle. The end portion 142 has a surface 143

at an inward angle greater than the general angle of the end portion 142. As such,

the end portion 142 is dimensioned to permit the tube 12 and insert 60 to be forced

within the fingers 140, while the array of corresponding end portions 142 provide

less clearance for the tube 12 and insert 60. Therefore, the largest compressive force

on the tube 12 and insert 60 is experienced at the barb 144. Each barb 144 forms a

shoulder 145 generally transversely oriented relative to the central axis X.

Patent Application Attorney Docket 83843

[0030] As can be seen in Fig. 5, the barb 144 deforms the tube 12 inwardly in a

localized region. When the insert 60 and tube 12 are forced into the coupling 10, the

fingers 140 spread outward to allow the rings 102 and 104 to pass therethrough, as

well as the ramp 90. In contrast to a tube 12 without an insert forced into the

coupling 10, the insert 60 increases the stiffness of the tube 12 portion in which the

insert 60 is located, thereby increasing the pressure of the barb 144 against the tube

12. That is, a tube 12 alone is relatively compressible or deformable by the barb 144,

allowing the tube 12 to slip somewhat against the barb 144. The insert 60 limits the

ability of the tube 12 to collapse in order to slip across the barb 144.

[0031] Once the ramp 90 has passed by, a certain amount of force is required to

adjust the depth of insertion of the tube 12. More precisely, a first force is required

to increase insertion of the tube 12 due to the friction between the barb 144 and the

tube 12. During insertion, the tube 12 contacts and slides against the surface 143 to

cause the barb 144 to deflect outward. A second force is required to withdraw a

portion of the tube 12, the second force being greater than the first force as the

shoulder 145 of the barb 144 will tend to bit into the tube 12. Additionally, retraction

of the tube 12 sufficient to align the ramp 90 within the barbs 144 causes the angle of

the tube 12 covering the ramp 90 to be at a sharper angle relative to the barb shoulder

145, thereby significantly increasing the force required to continue withdrawal of the

tube 12.

Patent Application Attorney Docket 83843

[0032] Should the tube 12 be withdrawn to a degree that the ramp 90 has passed

by the barbs 144, the rings 102, 104 provide additional retention against separation.

That is, the ramps 90 in the depicted orientation allow for a linear increase in force

required to force the barbs 144 inward as the barb 144 follows the ramp 90. However,

when the barbs 144 reach rings 102, 104, a third force, greater than both the first and

second, is required to separate the insert 60 from the coupling 10.

[0033] More specifically, the third force is required to pull both rings 102, 104 past

the barb 144 as the barb shoulder 145 comes in contact with a portion of the tube 12

abutting the ring 102. Although the tube 12 itself lessens the sharpness of the

interface between the barb shoulder 145 and the first ring 102, such is not the case

for the second ring 104.

[0034] The rings 102 and 104 are separated by a gap 106 (Fig. 4). When the tube

12 is withdrawn to an extent sufficient for the barb 144 to pass by the first ring 102,

the barb 144 will bias itself into the gap 106. Further extraction brings the barb

shoulder 145 into a confronting relationship with a radially oriented (i.e., generally

flat) shoulder 105 formed on the ring 104. Accordingly, a significantly greater force

is required to force the barb 144 over the ring 104 to separate the insert 60 from the

coupling 10. The preferred amount of force for the third force is that which would

not be exceeded in normal use for the specific system in which the coupling is being

Patent Application Attorney Docket 83843

employed. Indeed, it is preferred that is accomplished by the second force, and the

threshold of the third is a last resort.

[0035] In this manner, the surface features of the insert 60 resist separation of the

tube 12 from the coupling. The ramp barb 94 cooperates with the deformable tube

12 to resist separation or relative motion therebetween. The ramp 90 and rings 102

and 104 serve to resist the insert 60 and tube 12 from passing by the collet barbs 144.

[0036] The inward elastic bias of the fingers 140 is promoted by the seal 50. As can

be seen in Figs. 2 and 5, the seal 50 has an annular ring 150 with an outer surface 152

generally abutting an interior surface 154 of the collet ring 130. The seal ring 150 has

a first end 156 abutting the coupling body shoulders 124, and has a second end 158

abutting a shoulder 160 formed on the collet ring interior surface 154. As such, the

body 30 and collet 40 define the position of the seal 50.

[0037] To promote the bias of the fingers 140, the seal ring 150 has a base portion

162 proximate the second end 158 located between the collet ring 130 and the fingers

140. In this manner, deflection of the fingers 140 radially outwardly compresses the

fingers 140 into the resilient material of the seal ring 150. The seal ring 150 reacts by

biasing the fingers 140 radially inwardly, thereby increasing the compressive force

of the barbs 144 against a tube 12 located therein.

[0038] The seal 50 and tube 12 cooperate to seal, in a generally leak-proof manner,

the tube 12 with the coupling 10. To this end, the seal 50 includes a seal lip 170

Patent Application Attorney Docket 83843

preferably formed integral with the seal ring 150 of a resiliency deformable material.

When a tube 12 is inserted, the seal lip 170 contacts the tube 12 and may deform

outwardly to permit reception of the tube 12 therethrough.

[0039] The seal lip 170 has a shaped that is somewhat frusto-conical or arcuately

sloped and annular, and the seal lip 170 extends radially inwardly from the seal ring

150 and angled away from the collet receiving end 132. The seal lip 170 has a

pressure-receiving surface 172 which, along with the seal ring 150, defines an open

cavity or annular recess 173 (see Figs.2 and 5) exposed to the interior of the coupling

10. As fluid flows through the coupling 10, flow pressure will generally be

experienced within the coupling including on the pressure-receiving surface 172 of

the seal lip 170. This internal pressure will tend to push the seal lip 170 toward the

central axis X and toward the receiving end 132 of the collet 40. Accordingly, the

pressure therein will force the seal lip 170 against the tube 12 to enhance the sealing

therewith.

[0040] While the invention has been described with respect to specific examples

including presently preferred modes of carrying out the invention, those skilled in

the art will appreciate that there are numerous variations and permutations of the

above described systems and techniques that fall within the spirit and scope of the

invention as set forth in the appended claims.