Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTI-DIRECTIONAL DRIVER BIT
Document Type and Number:
WIPO Patent Application WO/2018/150360
Kind Code:
A1
Abstract:
A screw bit body which allows for efficient torque force application onto a socket fastener. The screw bit body includes a plurality of laterally-bracing sidewalls, a first base, and a second base. The laterally-bracing sidewalls are radially distributed about a rotation axis of the screw bit body with each further including a first lateral edge, a second lateral edge, a bracing surface, and an engagement cavity. The engagement cavity creates a gripping point to prevent slippage in between the screw bit body and the socket fastener. The engagement cavity traverses normal and into the concave surface and the convex surface. The engagement cavity includes an angled driving portion and a concave portion. The angled driving portion is positioned adjacent to the first lateral edge with the concave portion being positioned opposite to the first lateral edge, across the angled driving portion.

Inventors:
DOROSLOVAC, Robert, S. (10304 Bates Rd, Massilon, Ohio, 44647, US)
KUKUCKA, Paul (PO Box 2655, Brandon, Florida, 33510, US)
KUKUCKA, Thomas, Stefan (PO Box 2655, Brandon, Florida, 33510, US)
Application Number:
IB2018/050948
Publication Date:
August 23, 2018
Filing Date:
February 15, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GRIP TOOLING TECHNOLOGIES LLC (1202 Telfair Rd, Brandon, Florida, 33510, US)
International Classes:
B25B15/00; B25B23/08
Attorney, Agent or Firm:
CHOW, Ming (20251 Century Blvd Ste 140, Germantown, Maryland, 20874, US)
Download PDF:
Claims:
What is claimed is:

1. A multi-directional driver bit comprises:

an at least one screw bit body;

the screw bit body comprises a plurality of laterally-bracing sidewalls, a first base, and a second base;

each of the plurality of laterally-bracing sidewalls comprises a first lateral edge, a second lateral edge, a bracing surface, and an least one engagement cavity;

the plurality of laterally-bracing sidewalls being radially positioned about a rotation axis of the screw bit body;

the first lateral edge and the second lateral edge being positioned opposite to each other across the bracing surface;

the engagement cavity traversing normal and into the bracing surface; the engagement cavity traversing into the screw bit body from the first base towards the second base;

the engagement cavity comprises an angled driving portion and a concave portion;

the angled driving portion being positioned adjacent to the first lateral edge; and

the concave portion being positioned adjacent to the angled driving portion, opposite to the first lateral edge.

2. The multi-directional driver bit as claimed in claim 1 comprises:

an attachment body;

an engagement bore;

the attachment body being centrally positioned around and along the rotation axis;

the attachment body being connected adjacent to the second base; and the engagement bore traversing into the attachment body along the rotation axis, opposite the screw bit body.

3. The multi-directional driver bit as claimed in claim 1 comprises:

an attachment body;

the attachment body being centrally positioned around and along the rotation axis; and

the attachment body being connected adjacent to the second base.

4. The multi-directional driver bit as claimed in claim 1 comprises:

an attachment body;

the at least one screw bit body comprises a first screw bit body and a second screw bit body;

the attachment body being centrally positioned around and along the rotation axis of the first screw bit body;

the attachment body being connected adjacent to the second base of the first screw bit body;

the second screw bit body being concentrically positioned with the first screw bit body;

the second screw bit body being positioned adjacent to the attachment body, opposite the first screw bit body;

the attachment body being connected adjacent to the second base of the second screw bit body; and

the first screw bit body and the second screw bit body being image mirrors of each other about a central sagittal plane of the attachment body.

5. The multi-directional driver bit as claimed in claim 1 comprises:

the screw bit body further comprises a plurality of intermittent sidewalls; the plurality of intermittent sidewalls being radially positioned about the rotation axis; and

the plurality of intermittent sidewalls being interspersed amongst the plurality of laterally-bracing sidewalls.

6. The multi-directional driver bit as claimed in claim 1 comprises: a first end of the angled driving portion being positioned coincident with the first lateral edge; and

a second end of the angled driving portion being positioned adjacent to the concave portion.

The multi-directional driver bit as claimed in claim 1 , wherein the engagement cavity tapers from the first base to the second base.

Description:
Multi-Directional Driver Bit

The current application claims a priority to the U.S. Provisional Patent application serial number 62/459,371 filed on February 15, 2017.

FIELD OF THE INVENTION

The present invention generally relates to various tools designed for tightening or loosening fasteners, in particular bolts and nuts. More specifically, the present invention is an anti-slip multidirectional driver bit, designed to prevent damaging or stripping fasteners during the extraction or tightening process.

BACKGROUND OF THE INVENTION

Hex bolts, nuts, screws, and other similar threaded devices are used to secure and hold multiple components together by being engaged to a complimentary thread, known as a female thread. The general structure of these types of fasteners is a cylindrical shaft with an external thread and a head at one end of the shaft. The external thread engages a complimentary female thread tapped into a hole or a nut and secures the fastener in place, fastening the associated components together. The head receives an external torque force and is the means by which the fastener is turned, or driven, into the female threading. The head is shaped specifically to allow an external tool like a wrench to apply a torque to the fastener in order to rotate the fastener and engage the complimentary female threading to a certain degree. This type of fastener is simple, extremely effective, cheap, and highly popular in modern construction.

One of the most common problems in using these types of fasteners, whether male or female, is the tool slipping in the head portion, or slipping on the head portion. This is generally caused by either a worn fastener or tool, corrosion, overtightening, or damage to the head portion of the fastener. The present invention is a driving bit design that virtually eliminates slippage. The design uses a series of segmented portions that bite into the head of the fastener and allow for efficient torque transfer between the driving bit and the head portion of the fastener. The present invention eliminates the need for the common bolt extractors as they require unnecessary drilling and tools. With the development of electric screwdrivers, and drills, people have been using, power tools to apply the required torsional forces and remove various fasteners. The present invention provides a double-sided driver end bit, thus allowing for torque to applied to the fastener in both clockwise and counterclockwise directions, thus tightening or loosening the fastener. Most driver end bits have a standardized one fourth inch hex holder, and come in various configurations including but not limited to, square end, hex end, or star end.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of the present invention.

FIG. 2 is a perspective view of an alternative embodiment of the present invention.

FIG. 3 is a side view of the alternative embodiment of the present invention.

FIG. 4 is a cross-sectional view taken about line A-A in FIG. 3.

FIG. 5 is a cross-sectional view taken about line B-B in FIG. 3.

FIG. 6 is a detailed view of taken about the oval C in FIG. 3.

FIG. 7 is a bottom perspective view of a further alternative embodiment of the present invention.

FIG. 8 is a perspective view of a further alternative embodiment of the present invention.

DETAIL DESCRIPTIONS OF THE INVENTION

All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention. The present invention generally related to torque tool accessories. More specifically, the present invention is a multi-grip socket bit, also known as a screw bit or driver. The present invention allows for a higher torque to be applied to a socket fastener than a similarly sized conventional driver bit without damaging the head of the socket fastener or the bit tool. This is achieved through the use of a multitude of engagement features which effectively grip the head of the socket fastener. The present invention is a socket bit that is compatible with a variety of torque tools including, but not limited to, traditional drills, bit-receiving screwdrivers, socket wrenches, and socket drivers.

In its simplest embodiment, referring to FIG. 1, the present invention comprises an at least one screw bit body 1. The screw bit body 1 is a shank which engages the socket fastener, such as a socket screw or a socket bolt, in order to apply a torque force onto the socket faster. The screw bit body 1 comprises a plurality of laterally-bracing sidewalls 2, a first base 11, and a second base 12. In general, the screw bit body 1 is a prism composed of a strong metal. Each of the plurality of laterally-bracing sidewalls 2 engage within and grip the socket fastener in order to efficiently transfer torque from a torque tool to the socket fastener. The first base 11 and the second base 12 are positioned opposite to each other along the plurality of laterally-bracing sidewalls 2. Additionally, the first base 11 and the second base 12 are each a flat surface that are oriented perpendicular to each of the plurality of laterally-bracing sidewalls 2, thus

enclosing/completing the prism shape of the screw bit body 1.

Referring to FIG. 1 and FIG. 4, each of the plurality of laterally-bracing sidewalls 2 comprises a first lateral edge 3, a second lateral edge 4, a bracing surface 5, and an at least one engagement cavity 6. The plurality of laterally-bracing sidewalls 2 is radially positioned about a rotation axis 13 of the screw bit body 1 in order to yield a geometric profile complimentary to that of the socket fastener. The number within the plurality of laterally-bracing sidewalls 2 is subject to change to compliment the shape and profile of a variety of socket fasteners. In one embodiment of the present invention, the number within the plurality of laterally-bracing sidewalls 2 is six and the resulting geometric profile of the screw bit body 1 is a hexagon. In an alternative embodiment of the present invention, the number within the plurality of laterally-bracing sidewall is four and the resulting geometric profile of the screw bit body 1 is a square. The bracing surface 5 physically presses against the socket fastener, in particular the lateral sidewall of a head portion from the socket fastener. The first lateral edge 3 and the second lateral edge 4 are positioned opposite to each other across the bracing surface 5. When viewed from either the top perspective or the bottom perspective, the first lateral edge 3 and the second lateral edge 4 from each of the plurality of laterally-bracing sidewalls 2 make up the corners of the screw bit body 1. The engagement cavity 6 traverses normal and into the bracing surface 5 and creates an additional gripping point/tooth on the bracing surface 5. This gripping point is created with the engagement cavity 6 and an adjacent edge, wherein the adjacent edge is either the first lateral edge 3 or the second lateral edge 4; in particular, the adjacent edge is the edge closest to the engagement cavity 6. Additionally, the engagement cavity 6 traverses into the screw bit body 1 from the first base 11 towards the second base 12. This ensures that the additional gripping point extends along the length of the screw bit body 1 for maximum grip engagement between the screw bit body 1 and the socket fastener. In one embodiment, the engagement cavity 6 also tapers from the first base 11 to the second base 12.

Referring to FIG. 6, the engagement cavity 6 comprises an angled driving portion 7 and a concave portion 10. The angled driving portion 7 is a straight line which, in conjunction with the adjacent edge, makes up the profile of the additional gripping tooth that makes direct contact with the internal sidewalls of the socket fastener. In the preferred embodiment of the present invention, the angled driving portion 7 is positioned adjacent to the first lateral edge 3. The additional gripping tooth digs into the internal sidewalls of the socket fastener in order to efficiently transfer torque to the socket fastener. The concave portion 10 is a semi-circular cut which provides clearance for the internal sidewalls of the socket fastener, thus ensuring that the additional gripping tooth is the only portion of the screw bit body 1 which presses against and engages the socket fastener. For this, the concave portion 10 is positioned adjacent to the angled driving portion 7, opposite to the first lateral edge 3. Alternative profiles may be used for the concave portion 10 including, but not limited to, a semi-square profile, a semi-rectangular profile, and a semi-oval profile. In the preferred embodiment, as seen in FIG. 6, a first end 8 of the angled driving portion 7 is positioned coincident with the first lateral edge 3 to yield a sharp corner. Furthermore, a second end 9 of the angled driving portion 7 is positioned adjacent to the concave portion 10. The portion between the bracing surface 5 and the concave porion 10 acts as a pivot point which defines when the additional gripping tooth engages the socket fastener. When the internal sidewalls slide past the junction in between the concave portion 10 and the bracing surface 5, that is when the angled driving portion 7 is engaged and pressed against the internal sidewalls of the socket fastener.

The present invention offers the ability to be used as a normal bit and a bit which provides additional gripping force. When the present invention is rotated with the additional gripping teeth engaging the socket fastener, slippage is prevented.

Alternatively, when the present invention is rotated in the opposite direction, the bracing surface 5 provides enough grip to rotate the socket fastener. Resultantly, the present invention is a mult-directional driver bit.

Referring to FIG. 8, the present invention may also further comprise a plurality of intermittent sidewalls 19. Each of the plurality of intermittent sidewalls 19 is a flat surface which engages the socket fastener like a traditional screw bit design. The plurality of intermittent sidewalls 19 is radially positioned about the rotation axis 13 of the screw bit body 1. Additionally, the plurality of intermittent sidewalls 19 is interspersed amongst the plurality of laterally-bracing sidewalls 2. Resultantly, the plurality of intermittent sidewalls 19 and the plurality of laterally-bracing sidewalls 2 radially alternate between each other about the rotation axis 13 of the screw bit body 1.

The present invention also incorporates an attachment feature which allows an external torque tool to attach to the screw bit body 1 and transfer torque force onto the socket fastener through the screw bit body 1. Referring to FIG. 1, the present invention comprises an attachment body 14. The attachment body 14 is centrally positioned around and along the rotation axis 13 such that the rotation axis 13 of the attachment body 14 and the rotation axis 13 of the screw bit body 1 are coincidentally aligned. Additionally, the attachment body 14 is connected adjacent to the second base 12. The attachment body 14 preferably has a hexagonal cross-section in order to fit within a female attachment member of the external torque tool. External torque tools include, but are not limited to, electric drills, torque wrenches, pneumatic drills, socket screw drivers, and other similar torque tools. In another embodiment, referring to FIG. 7, the present invention further comprises an engagement bore 16. The engagement bore 16 allows the present invention to be attached to a male attachment member of an external torque tool, such as a socket wrench or a screw driver. The engagement bore 16 traverses into the attachment body 14 along the rotation axis 13, opposite the screw bit body 1. The engagement bore 16 is shaped to receive a male attachment member of a socket wrench; the preferred shape is square as the majority of socket wrenches utilize a square attachment member. In this embodiment, the preferred attachment body 14 is cylindrical shaped. In alternative embodiments, the shape and design of the engagement bore 16, and the attachment body 14 may vary to be adaptable to different torque tool designs and different attachment means.

In one embodiment, referring to FIG. 2 and FIG. 3, the present invention is implemented as a dual-sided screw bit, thus providing both a clockwise and a counterclockwise screw bit body 1 simultaneously. In this embodiment, the at least one screw bit body 1 comprises a first screw bit body 17 and a second screw bit body 18. The attachment body 14 preferably has a hexagonal cross-section. The attachment body 14 is centrally positioned around and along the rotation axis 13 of the first screw bit body 17 such that the rotation axis 13 of the attachment body 14 and the rotation axis 13 of the first screw bit body 17 are coincidentally aligned. Additionally, the attachment body 14 is connected adjacent to the second base 12 of the first screw bit body 17. The second screw bit body 18 shares the attachment body 14 with the first screw bit body 17. Thus, the second screw bit body 18 is concentrically positioned with the first screw bit body 17. Additionally, the second screw bit body 18 is positioned adjacent to the attachment body 14, opposite the first screw bit body 17, similar to traditional double-sided screw bit designs. Similar to the first screw bit body 17, the attachment body 14 is connected to the second base 12 of the second screw bit body 18. This embodiment yields the screw bit body 1 on either side of the attachment body 14. Referring to FIG. 4, the first screw bit body 17 is designed to screw in a socket fastener, the clockwise version. Referring to FIG. 5, the second screw bit body 18 is designed to unscrew the socket fastener, the counter-clockwise version. For this, the first screw bit body 17 and the second screw bit body 18 are mirror images of each other about a central sagittal plane 15 of the attachment body 14. The central sagittal plane 15 divides the attachment body 14 into two identical segments, along the length of the attachment body 14. Resultantly, the additional gripping tooth of the first screw bit body 17 engages when the first screw bit body 17 is rotated clockwise within the socket fastener as seen in FIG. 4. Similarly, the additional gripping tooth of the second screw bit body 18 engages when the second screw bit body 18 is rotated counter-clockwise within the socket fastener as seen in FIG. 5.

In an alternative embodiment of the present invention, the screw bit body 1 is tapered from the second base 12 to the first base 11 forming a shaper end, similar to traditional screw driver heads. In an alternative embodiment, the present invention is implemented as a ball-end screw bit. In this embodiment, the bracing surface 5 of each of the plurality of laterally-bracing sidewalls 2 comprises a concave surface and a convex surface. The convex surface is positioned adjacent to the first base 11 such that the convex surface from each of the plurality of laterally-bracing sidewalls 2 forms a balllike shape. The concave surface is positioned adjacent to the convex surface, opposite to the first base 11 such that the convex surface from each of the plurality of laterally- bracing sidewalls 2 further forms the ball-like shape and provides clearance for when the screw bit body 1 is engaged to the socket fastener at an angle. The convex surface and the concave surface are oriented along the rotation axis 13 of the screw bit body 1 to position the ball-like shape terminally on the screw bit body 1. It is preferred that the curvature, length, and height of the concave surface and the convex surface is identical. As a result, the screw bit body 1 overall has a ball-like shape. This allows the user to engage the socket fastener at an angle, an especially useful feature for fasteners located in hard to reach areas.

In yet another embodiment of the present invention, the at least one engagement cavity 6 comprises a first cavity and a second cavity. The first cavity and the second cavity are positioned opposite to each other across the bracing surface 5. Additionally, the first cavity and the second cavity are oriented towards each other, thus creating two additional gripping points on each of the plurality of laterally-bracing sidewalls 2.

Resultantly, the screw bit body 1 engages the socket fastener regardless of the rotation.

Although the invention has been explained in relation to its preferred

embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.