Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AC/DC MULTI-FUNCTION MOTOR WITH MOLECULAR INTEGRATED CIRCUITS
Document Type and Number:
WIPO Patent Application WO/2012/028092
Kind Code:
A1
Abstract:
The invention relates to an AC/DC multi-function motor with molecular integrated circuits based on molecular electrical technical principles of molecular integrated circuits. A function processing system is composed of a stator (ST) with electromagnetic coils (L), a rotor (RT) mounted inside or outside the stator (ST), a rotation controller (RC) connected to the electromagnetic coils (L) and special molecular integrated circuits (MIC) of the motor with the AC/DC power supply processing function, the frequency control processing function, the power control processing function, the speed control processing function, the working state indicating function and the automatic phase input control processing function. Various special and general AC/DC multi-function motors with molecular integrated circuits are formed by adding various signals, circuit transformation and the combination thereof to the function processing system according to different application requirements, replacing power products with the traditional product structure and electrical technology such as DC motor, AC motor, AC/DC dual-purpose motor, etc.

Inventors:
DING WENNAN (CN)
Application Number:
PCT/CN2011/079139
Publication Date:
March 08, 2012
Filing Date:
August 31, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DING WENNAN (CN)
International Classes:
H02P29/00; H01L27/00
Domestic Patent References:
WO2010032608A12010-03-25
Foreign References:
CN101986525A2011-03-16
CN1120756A1996-04-17
CN1344027A2002-04-10
CN2277600Y1998-04-01
Attorney, Agent or Firm:
CHANGSHA ZONEKEY PATENTLAW FIRM (CN)
长沙正奇专利事务所有限责任公司 (CN)
Download PDF:
Claims:
权 利 要 求

1、 交直流多功能型分子集成电路电动机, 其特征是釆用一体化分子技术电 子器件——分子集成电路分子电器技术的基本电路 P/NMK系统的分子电路原理 电路结构方式和电气技术方式的交直流多功能型电动机功能处理系统, 由安装 有电磁线圈 (L)的定子(ST) , 以定子(ST) 内安装转子(RT)或由定子(ST) 外安装转子 (RT)形成旋转动能, 电磁线圈连接安装旋向控制器 (RC)和电动 机的交直流电源处理功能、 频率调控处理功能、 功率调控处理功能、 速度调控 处理功能、 工作状态指示功能、 自动相位输入控制处理功能的专用分子集成电 路(MIC)构成。

2、 根据权利要求 1所述的交直流多功能型分子集成电路电动机, 其特征是 它由交流电 (AC)经插接器(AC/CK)输入至交流电源选择功能开关 (KJ输入 为电动机分子电路提供交流电能, ( AC/CK)输入的一端经交流电源选择功能 开关 (KJ输入分子集成电路的 (11 )脚交流电输入端(INP〜) , (AC/CK) 输 入的另一端连接分子集成电路的 (12)脚交流电输入端(INP〜) ; 直流电 (DC) 经插接器(DC/CK)输入至直流电源选择功能开关 (K2)输入为电动机分子电路 提供直流电能, ( DC/CK)输入的一端正极经直流电源选择功能开关(Κ2)输入 分子集成电路的 (1 )脚电源正极 (Vcc) , ( DC/CK )输入的另一端负极连接分 子集成电路的 (2)脚负极 (GND) , 构成交直流多功能型分子集成电路电动机 供电电路(PS/AC、 DC) ; 分子集成电路(MIC) 的 (1 )脚电源正极 (Vcc) , 分 子集成电路的 (3)脚为电源正极端(Vee)和 (4)脚为负载端(OUT)其之间接 旋向控制器(RC' " )和电动机定子的电磁线圈(L)将电力能源转化为电磁能, 定子的电磁能与转子相互作用产生矩力驱动转子旋转形成旋转动能原理, 分子 集成电路的(5)脚和(6)脚为变频调控端1^其之间接变频调控器(W/R3) , 分 子集成电路的 (7)脚与 (8)脚为功率调控端1^其之间接功率调控器(W/R2) , 分子集成电路的 (9)脚与 (10)脚为电动机工作状态指示端(W)其之间接工 作状态指示灯( ZD ) ,分子集成电路的( 11 )脚与( 12 )脚为交流电输入端( INP— ) 其之间接交流电 (AC) , 分子集成电路的 (13)脚与 (14)脚为自动相位输入 控制处理端 PC)其之间接自动相位控制器(APC) , 分子集成电路的 (2)脚 为电源负极端(GND)接电源负极(GND)构成。

3、 根据权利要求 1所述的交直流多功能型分子集成电路电动机, 其特征是 分子电路由晶体管 (DJ 、 (D2) 、 (D3) 、 (D4)进行交流电整流工作其输出 直流电, 组成整流器, 交流电能由整流器处理输出的直流电和直流电源输出的 直流电的正极一路输入至分子控制电阻(MR) , 另一路输入至电动机定子的电磁 线圈 (L) 电源端(Vcc) , 交流电能由整流器处理输出的直流电和直流电源输出 的直流电的负极连接分子电路的负极(GND) , 构成交直流电源处理器; 交流电 能由整流器处理输出的直流电和直流电源输出的直流电的正极与分子控制电阻 (MR) 之间为自动相位输入控制处理端(APC)其之间接单相电、 三相电、 四相 电的相位程序处理器, 构成单相电、 单相电变换三相电、 单相电变换四相电、 三相电、 四相电等电流自动相位控制器 (APC) ; 由晶体管 (TR P) 型半导体 管, ( TR2、 N) 型半导体管, 电阻 R为整个分子电路的分子控制电阻(MR) , 分子控制电阻(MR)控制于晶体管 (TR P)型半导体器件的电源输入端即发射 极,多频调节控制器电阻(W/R3)、构成变频调控器(W/R3), 变频调控器(W/R3)、 频率振荡电容(d )相串联其一端连接晶体管 (TRJ信号输入端即基极, 另一 端连接晶体管 (TR2) 的电源输入端即集电极, 构成分子振荡器的选频器, 功率 调节控制器电阻(W/R2) , 其一端连接晶体管 (TRJ输入端即基极, 另一端连 接电源负极(GND) , 构成功率调控器(W/R2) , 组成双晶体管复合互补式低频 多频调节控制型分子振荡器; 低频多频调节控制型分子振荡器工作, 通过变频 调控器(W/R3) 的阻值大小调节而变化, 变频调控器(W/R3) 的变频调节控制状 态: 由变频调控器( W/R3 )的设定在该总电阻值中的中间电阻值为调节控制点时, 分子振荡器工作在一固定的中间频率点状态, 在调节控制点上增大其电阻值时, 则分子振荡器的振荡频率随着(W/R3)的阻值增大而振荡频率降低, 在调节控制 点上减小其电阻值时, 则分子振荡器的振荡频率随着(W/R3)的阻值减小而振荡 频率增高, 构成 (MF *W/R3 R1〜! ) 中频型变频调控器; 由变频调控器(W/R3) 的设定在该总电阻值中的最大电阻值为调节控制点时, 分子振荡器工作在一固 定的最低频率点状态, 在调节控制点上减小其电阻值时, 则分子振荡器的振荡 频率随着 ( W/R3 ) 的阻值减小而振荡频率增高, 构成 ( LF · W/R3 R1〜! )低频型 变频调控器; 由变频调控器(W/R3)的设定在该总电阻值中的最小电阻值为调节 控制点时, 分子振荡器工作在一固定的最高频率点状态, 在调节控制点上增大 其电阻值时,则分子振荡器的振荡频率随着( W/R3 )的阻值增大而振荡频率降低, 构成 ( HF · W/R3 R1〜! ) 高频型变频调控器; 变频调控器(W/R3) 的变频调节控 制方式: 变频调控器(W/R3、 R1〜! ) 中, 由小阻值电阻器为 (R1) 、 由大阻值 电阻器为 (RN) , 在 (R1〜! )之间由小至大顺序分级设置的工作方式, 变频调 控器 (W/R3) 由不同大小阻值电阻器 (W/R3、 R1〜! )其一端并联, 另一端选择 不同阻值大或小的电阻器连接工作时, 构成 ( MF · W/R3 R1〜! )有级中频型变频 调控器、 (LF * W/R3 R1〜! )有级低频型变频调控器、 (HF * W/R3 R1〜! )有级 高频型变频调控器; 变频调控器(W/R3)、 (R^R "中, 由小阻值电阻器为(R1) 由大阻值电阻器为 (RN) , 在(!?1〜!^)之间由小至大顺序无级设置的工作方式, 变频调控器(W/R3)由无级电位器电阻阻值的增加和减少工作时,构成(MF -W/R3 1^〜1^) 无级中频型变频调控器、 (LF * W/R3 R1〜! )无级低频型变频调控器、

( HF · W/R3 R1〜! )无级高频型变频调控器; 由变频调控器(W/R3) 的中频型变 频调控器、 低频型变频调控器、 高频型变频调控器、 有级变频调控器、 无级变 频调控器,构成多功能型变频调速调控器;由晶体管(TR P)型半导体管, ( TR2、 N) 型半导体管, 电阻 R为整个分子电路的分子控制电阻(MR) , 分子控制电阻

(MR)控制于晶体管 (TR P)型半导体器件的电源输入端即发射极, 功率调节 控制器电阻(W/R2) , 其一端连接晶体管 (TRJ输入端即基极, 另一端连接电 源负极(GND) , 构成功率调控器(W/R2) , 组成的双晶体管复合互补式功率调 节控制型分子功率放大器; 功率调节控制型分子功率放大器工作, 通过功率调 控器(W/R2)的阻值大小调节而变化, 功率调控器(W/R2)的功率调节控制状态: 由功率调控器(W/R2)的设定在该总电阻值中的中间电阻值为调节控制点时, 分 子功率放大器工作在一固定的中间功率点状态, 在调节控制点上增大其电阻值 时, 则分子功率放大器的放大功率随着(W/R2)的阻值增大而放大功率减小, 在 调节控制点上减小其电阻值时, 则分子功率放大器的放大功率随着(W/R2)的阻 值减小而放大功率增大, 构成 ( MP · W/R2 R1〜! ) 中端型功率调控器; 由功率调 控器(W/R2)的设定在该总电阻值中的最大电阻值为调节控制点时, 分子功率放 大器工作在一固定的最小功率点状态, 在调节控制点上减小其电阻值时, 则分 子功率放大器的放大功率随着(W/R2)的阻值减小而放大功率增大,构成(LP .W/R2 1^〜1^)低端型功率调控器; 由功率调控器(W/R2) 的设定在该总电阻值中的最 小电阻值为调节控制点时, 分子功率放大器工作在一固定的最大功率点状态, 在调节控制点上增大其电阻值时, 则分子功率放大器的放大功率随着(W/R2)的 阻值增大而放大功率减小, 构成 ( HP · W/R2 R1〜! )高端型功率调控器; 功率调 控器 (W/R2) 的功率调节控制方式: 功率调控器(W/R2、 R1〜! ) 中, 由小阻值 电阻器为 (R1) 、 由大阻值电阻器为 (RN) , 在 (R1〜! )之间由小至大顺序分 级设置的工作方式, 功率调控器(W/R2) 由不同大小阻值电阻器(W/R2、 R1-^ ) 其一端并联, 另一端选择不同阻值大或小的电阻器连接工作时, 构成(MP *W/R2 1^〜1^) 有级中端型功率调控器、 (LP · W/R2 R1〜! )有级低端型功率调控器、

( HP - W/R2 R1〜! ) 有级高端型功率调控器; 功率调控器(W/R2、 R1〜! ) 中, 由小阻值电阻器为 (R1) 、 由大阻值电阻器为 (RN) , 在 (R1〜! ) 之间由小至 大顺序无级设置的工作方式, 功率调控器(W/R2)由无级电位器电阻阻值的增加 和减少工作时, 构成 (MP .W/R2 R1〜! )无级中端型功率调控器、 (LP - W/R2 R1- RN)无级低端型功率调控器、 (HP.W/R2 R1〜! )无级高端型功率调控器; 由功 率调控器(W/R2)的中端型功率调控器、低端型功率调控器、高端型功率调控器、 有级功率调控器、 无级功率调控器, 构成多功能型功率调速调控器, 该低频多 频调节控制型分子振荡器的振荡信号由功率调节控制型分子功率放大器将信号 分子倍率放大后, 其输出接至旋向控制器 (RC' " ) 和电动机定子的电磁线圈

(D将电力能源转化为电磁能, 定子的电磁能与转子相互作用产生矩力驱动转 子旋转形成旋转动能原理转化为电磁动能, 其分子集成电路的电源输入端有分 子控制电阻(MR)连接晶体管 (D5)、 晶体管 (D5)另一端连接电源负极(GND) , 组成稳恒器和抗干扰器, 由晶体管 (D6) 、 电阻(R4)组成分子振荡器和分子功 率放大器的保护器,由指示灯(ZD)、电阻(R5)相串联,一端连接电源正极(Vcc)、 另一端连接电源负极(GND) , 组成交直流多功能型分子集成电路电动机工作状 态指示器。 4、 根据权利要求 1所述的交直流多功能型分子集成电路电动机, 其特征是 由安装有电磁线圈 (L) 的定子 (ST) , 定子(ST) 内安装转子(RT)形成旋转 动能, 电磁线圈 (L)连接安装旋向控制器(RC)和电动机的交直流电源处理功 能、 频率调控处理功能、 功率调控处理功能、 速度调控处理功能、 工作状态指 示功能、 自动相位输入控制处理功能的专用分子集成电路(MIC)构成。

5、 根据权利要求 1所述的交直流多功能型分子集成电路电动机, 其特征是 由安装有电磁线圈 (L) 的定子 (ST) , 定子(ST) 外安装转子(RT)形成旋转 动能, 电磁线圈 (L)连接安装旋向控制器(RC)和电动机的交直流电源处理功 能、 频率调控处理功能、 功率调控处理功能、 速度调控处理功能、 工作状态指 示功能、 自动相位输入控制处理功能的专用分子集成电路(MIC)构成。

Description:
交直流多功能型分子集成电路电动机 技术领域:

本发明涉及一种广泛应用于人类的工业生产、 农业生产、 国防建设、 曰常 生活等各种领域中将电力能源转化为机械能的 电动机工业发展继直流电动机、 交流电动机、 交直流两用电动机等之后新一代电动机——一 体化分子技术电子 器件——分子集成电路分子电器 (IEM— MIC/MEA) 技术——交直流多功能型分 子集成电路电动机 ( AC-DC MULTI-TYPE MOTOR OF MOLECULAR INTEGRATED CIRCUIT ) 简称 (AC-DC/M-T/MICM) 。

背景技术:

现代, 随着人类的科学技术的曰新月异的飞速发展, 机械化、 电气化的应 用开发, 把人类从繁重的体力劳动中解放出来, 为人类的文明进步和社会经济 发展产生了巨大的推动性作用。 机械能动力是解决人类的工业生产、 农业生产、 国防建设、 曰常生活中的许许多多的应用领域的必须的动 力设备, 人类所使用 的机械能动力有自然能动力、 热机动力、 电动机动力等。 电动机是现代人类的 主要机械能动力之一, 电动机动力是享有"零污染"的美誉机械能动力 通常所使 用的电动机动力有以下几种技术形式的电动机 。

一种是直流电动机。 直流电动机分为直流有刷电动机和直流无刷电 动机电 气技术工作方式两大类。 直流有刷电动机, 它利用通电导体在磁场里受力作用 的原理, 它釆用依靠电流换向器和滑动装置传输电能的 电磁线圈的转子, 固定 电磁线圈的定子, 调速器, 旋向控制器等构成。 直流无刷电动机, 它利用定子 电磁线圈的电子开关电路的功率元件控制某一 定子电磁线圈通电时, 其磁场与 转子磁场相互作用产生矩力驱动转子旋转原理 , 它釆用由多相电磁线圈的定子, 永久磁铁的转子, 位置传感器, 电子开关控制电路, 调速器, 旋向控制器等构 成。 直流电动机的调速技术: 一种是釆用串联电阻调速或改变磁场线圈匝数 实 现, 它是一种有级调速控制技术方式。 另一种是釆用斩波器通过均匀改变电机 端电压控制电动机电流实现, 它是一种无级调速控制技术方式。 直流电动机的 旋向控制技术: 直流电动机的旋向控制器, 它依靠改变电枢或磁场方向, 实现 电动机的旋转方向变换。

直流电动机的优点: 直流有刷电动机具有转速容易控制, 启动时能克服很 大阻障作用等优点。 直流无刷电动机具有运行可靠、 维护方便、 运行效率高、 无励磁损耗, 调速性好等优点。

直流电动机的缺点: 直流有刷电动机存在换向器火花、 机械磨损度大, 调 速器和旋向控制器的电气技术复杂, 电路结构复杂, 电路元器件多, 生产工艺 繁锁, 成本高, 维护保养工作量大, 动力比功率小, 效率低等缺点; 直流无刷 电动机存在电子开关电路、 调速器、 旋向控制器、 位置传感器等电气技术复杂、 电路结构复杂、 电路元器件多, 生产工艺繁锁, 稳定、 可靠性差, 故障率高等 缺点和直流电动机存在工作能源的局限性, 使用直流电进行工作运行不能使用 交流电进行工作运行; 当将交流电变换形成直流电使用时, 存在需要釆用电气 技术复杂, 电路结构复杂, 电路元器件多, 生产工艺繁锁, 成本高, 稳定、 可 靠性差, 效率低, 高耗材料, 高耗能源的整流稳压器处理的缺点。

二种是交流电动机。 交流电动机它利用定子线圈流过交流电时, 产生旋转 磁场, 旋转磁场在转子线圈 (导体) 中产生感应电流, 感应电流的磁场与定子 旋转磁场相互作用, 产生电磁力推动转子旋转原理。 它釆用装置着产生交变磁 场线圈的定子, 装置着产生感生电流线圈的转子、 调速器、 旋向控制器等构成。 交流电动机的调速技术: 一种是釆用改变磁场线圈匝数来实现, 它是一种有级 调速控制技术方式。 另一种是釆用变频器, 通过变频器改变电动机线圈中的电 流频率来实现, 它是一种无级调速控制技术方式。 交流电动机的旋向控制技术: 交流电动机的旋向控制器, 它依靠变换定子磁场线圈的电能输入方向或磁 场圈 的三相序, 实现电动机的旋转方向变换。

交流电动机优点: 交流电动机具有机械磨损小, 运行可靠, 使用维护方便 等优点。

交流电动机的缺点: 交流电动机存在调速器, 旋向控制器的电气技术复杂, 电路结构复杂, 电路元器件多, 生产工艺繁锁, 成本高, 稳定可靠性差, 效率 低等缺点和交流电动机存在工作能源的局限性 , 使用交流电进行工作运行不能 使用直流电进行工作运行; 当将直流电变换形成交流电使用时, 存在需要釆用 电气技术复杂, 电路结构复杂, 电路元器件多, 生产工艺繁锁, 成本高, 稳定、 可靠性差, 效率低, 高耗材料, 高耗能源的逆变器处理的缺点。

三种是交直流两用电动机, 交直流两用电动机分为双组二级交直流电动机 和电源整流式交直流两用电动机两类。 一类是双组二级交直流电动机, 它釆用 依靠两个单组的二级电动机融合成的一个双组 二级电动机的原理, 由定子和转 子组成, 它在转子转动轴上安装双铁芯的双组二级线圈 绕组或安装单铁芯的双 组二级线圈绕组和电流换向器及连接器, 在定子上安装磁性材料或安装单铁芯 定子线圈绕组或安装双铁芯定子线圈绕组。 另一类是电源整流式交直流两用电 动机, 它釆用依靠在该定子轭铁上的磁极部分的绕装 励磁线圈; 绕装电枢的电 枢线圈的转子; 电枢线圈连接的整流器及与该整流器接触的电 刷构成的原理, 由定子和转子组成, 它由电枢垂直、 相向的两金属板和从该两金属板分别剪切 弯起, 与电枢平行的剪切弯起部构成定子轭铁, 用在剪切弯起部的外围以完全 包围该剪切弯起部的方式配置的一个环状绕组 线圈构成励磁线圈。

交直流两用电动机的优点: 双组二级交直流电动机、 电源整流式交直流两 用电动机具有交直流电源两用优点。

交直流两用电动机的缺点: 双组二级交直流电动机存在电气技术复杂, 结 构复杂, 元器件多, 生产工艺繁锁, 成本高, 维护保养工作量大等缺点。 电源 整流式交直流两用电动机存在电刷火花、 机械磨损度大, 结构复杂, 元器件多, 生产工艺繁锁, 成本高, 维护保养工作量大, 效率低等缺点。

发明内容:

本发明的目的是: 现在, 全人类所面临的全球性的生态平衡发展遭到破 坏, 环境污染使生态环境在不断恶化, 地球的资源形成枯竭等三个重大问题。 如何 解决有利于生态平衡发展, 如何促进减少和避免环境污染, 如何解决人类的能 源枯竭成为世界各国首要课题。

电动机是将电力能源转化为机械能的动力产品 之一, 以消耗传统水力、 火 力发电能源的直流电动机、 交流电动机、 交直流两用电动机, 每一台每一年需 要从电网上消耗大量的电力能源, 电力能源的来源, 一种是需要运用火力发电 机组的工作, 它需要消耗大量的煤炭、 石油等原料, 它的大量开釆应用造成整 个世界性的能源枯竭; 同时产生惊人的 S0 2 、 co、 粉尘等有害气体、 物质的形成 和排放, 对生态环境造成巨大的污染; 另外, 有害气体、 物质的形成和排放, 对生态环境造成巨大的污染, 破坏了全球的生态平衡发展; 危害人类的生存与 发展。 二种是需要建设运用水力资源的水力发电站、 运用核能资源的核电站等, 它需要投入大量的物力和财力进行建设和维护 , 它存在着给人类带来一定性的 危险性的隐患。

环境安全, 人类生存和发展的保护器; 能源, 人类生存和发展的生命液, 人类生存环境安全保障与人类生存发展能源安 全保障, 它既是必须迫切解决也 是必须长远解决的涉及人类生死存亡课题。 釆用新型能源、 绿色能源、 传统化 石类能源相结合使用的技术, 实现新型能源、 绿色能源、 传统化石类能源的开 发应用转化为绿色电能, 蓄电储能、 用户供电相结合高效利用的生产方式、 工 作方式、 生活方式的目的, 是改变人类现代落后的生产方式、 工作方式、 生活 方式人类生存和发展大计。

绿色能源 -—自然界中的太阳能等自然能无废水 、 废气、 废物渣、 噪声、 辐射等五害, 可持续利用, 无偿使用, 是理想的能源。 釆用了自然界中的太阳 能等自然能转化为电能的技术方式, 当用户需要电能时; 将自然界中的太阳能 等自然能转化为电能并对蓄电池组进行充电储 能, 为用户提供绿色能源 -—绿 色电能。 当用户需要动能时; 将自然界中的太阳能等自然能转为电能并将电 能 转化为动能, 为用户提供绿色能源动能 -—绿色动力。

根据全球电力能源转化为机械能的电动机工业 发展的直流电动机、 交流电 动机、 交直流两用电动机等各种的技术现状、 水平程度、 技术规范、 发展趋势、 巿场需求等情况和世界各国科技界、 产业界纷纷在探索新一代升级换代电动机 技术, 争先恐后抢占电力能源转化为机械能的电动机 工业发展制高点世界性重 大课题背景。 研究设计一种具有多种应用功能, 使用方便, 电气技术简单, 电 路结构简单, 生产工艺简单, 抗干扰能力强, 使用寿命长, 稳定、 可靠性高, 成本低等特点的分子集成电路分子电器技术的 绿色动力——交直流多功能型分 子集成电路电动机。 它釆用一体化分子技术电子器件——分子集成 电路分子电 器技术而将交直流多功能型分子集成电路电动 机的各种电气、 电子器件和各种 应用功能性质的电路组合形成免外围电路的一 体化分子技术和集成技术结构方 式, 专用分子集成电路将直流电零频率或交流电固 定频率的电能变换形成频率 可调和功率可调的电能, 推动电磁线圈转化为动能的工作功能, 构成一种既可 使用交流电也可使用直流电进行工作运行; 既可实现变频调速也可以实现功率 调速进行工作运行; 既可以实现有级调速也可以实现无级调速进行 工作运行; 既可以实现单向旋转也可以双向旋转进行工作 运行; 既可以实现单相电、 三相 电、 四相电也可以实现单相电变换三相电、 单相电变换四相电等电流磁动力功 能方式进行工作运行; 既可以实现单相电、 单相电变换三相电、 单相电变换四 相电、 三相电、 四相电等电流磁动力速度调速进行工作运行也 可以实现单相电、 单相电变换三相电、 单相电变换四相电、 三相电、 四相电等电流磁动力速度固 定进行工作运行; 既可以实现外定子内转子形成旋转动能也可以 实现外转子内 定子形成旋转动能进行工作运行的交直流多功 能型分子集成电路电动机功能处 理系统, 实现(达到)在电气技术、 电路结构、 生产工艺、 性能指标、 使用效 果、 节约材料、 节约能源、 生态环保等各方面的创新, 克服了传统电气、 电子 信息技术与产业发展的电器产品中所应用的电 子管电路结构的电器产品、 晶体 管 (单电子晶体管) 电路结构的电器产品, 集成电路(单电子晶体管集成电路) 结构电器产品的传统技术结构方式和运用模拟 技术、 数字技术、 传统电气技术 方式所存在的电气技术复杂繁锁, 电路结构复杂, 生产工艺繁锁, 生产中环境 污染大, 材料消耗量多, 生产环节的能源消耗大, 成本高, 稳定性差, 可靠性 低, 抗干扰能力弱, 寿命短等缺点, 改变了电力能源动力技术与产业发展所应 用的直流电动机、 交流电动机、 交直流两用电动机等产品传统结构方式和传统 电气技术方式, 实现了传统的直流电动机、 交流电动机、 交直流两用电动机等 产品无法达到的技术特性和技术效应, 可取代传统电力能源动力工具的直流电 动机、 交流电动机、 交直流两用电动机等传统产品结构方式和电气 技术方式的 动力产品 -—绿色动力。

交直流多功能型分子集成电路电动机的生产开 发: 利用国际上公众所公知 公用的微米级技术、 纳米级技术等集成技术生产制造设备与生产工 艺方法进行 分子集成电路生产开发实施, 釆用传统电力能源动力工具的电动机的定子、 转 子、 旋向控制器的生产制造设备与生产工艺方法等 技术进行生产开发实施, 按 照交直流多功能型分子集成电路电动机的特定 性能和功能处理要求而实现。

本发明的技术方案是, 釆用一体化分子技术电子器件——分子集成电 路分 子电器技术的基本电路 P/N Mrc 系统电路结构方式和电气技术方式的分子 电路原 理, 研究设计一种交直流多功能型分子集成电路电 动机。 其设计特点是, 该交 直流多功能型分子集成电路电动机由安装有电 磁线圈 L的定子 ST,以定子 ST内 安装转子 RT或由定子 ST外安装转子 RT形成旋转动能, 电磁线圈连接安装旋向 控制器 RC和电动机的交直流电源处理功能、 频率调控处理功能、 功率调控处理 功能、 速度调控处理功能、 工作状态指示功能、 自动相位输入控制处理功能的 专用分子集成电路等四部分组成, 它由交流电 AC经插接器 AC/CK输入至交流电 源选择功能开关 输入为电动机分子电路提供交流电能; AC/CK输入的一端经交 流电源选择功能开关 输入分子集成电路的 11脚交流电输入端 INP〜, AC/CK输 入的另一端连接分子集成电路的 12脚交流电输入端 INP 直流电 DC经插接器 DC/CK输入至直流电源选择功能开关 K 2 输入为电动机分子电路提供直流电能; DC/CK输入的一端正极经直流电源选择功能开关 Κ 2 输入分子集成电路的 1脚电源 正极 DC/CK输入的另一端负极连接分子集成电路的 2脚负极 GND。

分子集成电路 MIC的 1脚为电源正极 V ee , MIC的 3脚为电源正极端 Vcc和 4 脚为负载端 OUT其之间接旋向控制器 RC ' " 和电动机定子的电磁线圈 L将电力 能源转化为电磁能, 定子的电磁能与转子相互作用产生矩力驱动转 子旋转形成 旋转动能原理, MIC的 5脚和 6脚为变频调控端1^其之间接变频调控器 W/R 3 , MIC 的 7脚与 8脚为功率调控端1^其之间接功率调控器 W/R 2 , MIC的 9脚与 10脚为 电动机工作状态指示端 W其之间接工作状态指示灯 ZD, MIC的 11脚与 12脚为 交流电输入端 INP〜其之间接交流电 AC, MIC的 13脚与 14脚为自动相位输入控 制处理端 APC其之间接自动相位控制器 APC, MIC的 2脚为电源负极端 GND接电 源负极 GND,构成 MEA分子电器交直流多功能型分子集成电路电动 机功能处理系 统, 釆用交直流多功能型分子集成电路电动机功能 处理系统原理, 根据不同的 应用要求, 可以设计制造各种不同功率要求的交直流多功 能型分子集成电路电 动机; 可以设计制造既可以使用交流电也可以使用直 流电供电工作的交直流多 功能型分子集成电路电动机; 可以设计制造实现有级调速也可以实现无级调 速 控制方式的交直流多功能型分子集成电路电动 机; 可以设计制造变频调速也可 以功率调速控制方式的交直流多功能型分子集 成电路电动机; 可以设计制造单 相电、 单相电变换三相电、 单相电变换四相电、 三相电、 四相电等电流磁动力 功能方式的交直流多功能型分子集成电路电动 机; 可以设计制造单相电、 单相 电变换三相电、 单相电变换四相电、 三相电、 四相电等电流磁动力速度固定的 交直流多功能型分子集成电路电动机; 可以设计制造外定子内转子形成旋转动 能的工作功能也可以外转子内定子形成旋转动 能的工作功能的交直流多功能型 分子集成电路电动机; 可以设计制造单向旋转工作也可以双向旋转工 作的交直 流多功能型分子集成电路电动机等各式各样专 用和通用的电动机。

本交直流多功能型分子集成电路电动机技术发 明了集合交直流电源处理 器、 低频多频调节控制型分子振荡器、 功率调节控制型分子功率放大器、 稳恒 器、 抗干扰器、 保护器、 工作状态监测指示器、 自动相位控制处理器于一体, 而且具有交直流电源处理功能, 低频多频调节控制工作功能, 功率放大调节控 制工作功能, 稳压、 恒流、 过压、 过流、 过热、 反峰、 反通保护功能, 抗干扰 抑制吸收功能, 工作状态指示功能、 自动相位输入控制处理功能的高集成度一 体化多功能化分子集成电路将直流电零频率或 交流电固定频率的电能变换形成 频率可调和功率可调的电能, 推动电动机定子的电磁线圈 L将电力能源转化为 电磁能, 定子的电磁能与转子相互作用产生矩力驱动转 子旋转形成旋转动能原 理, 完成电能转化为动能处理的分子电器。

附图说明:

附图 1为交直流多功能型分子集成电路电动机(AC-DC MULTI-TYPE MOTOR OF MOLECULAR INTEGRATED CIRCUIT ) 电路结构图。

附图 2为交直流多功能型分子集成电路电动机(AC-DC MULTI-TYPE MOTOR OF MOLECULAR INTEGRATED CIRCUIT ) 的内部电路结构图。

附图 3为交直流多功能型分子集成电路电动机的 '†,、 ' MF / 1^〜 R N 中频型变频调控器, , LF•W/Rs R 1 !^低频型变频调控器, '†, HF * W/R 3 R 1 !^高频型变频调控器的有级变频调控器 W/R 3 电路结构图。 附图 4为交直流多功能型分子集成电路电动机的 '一,、 '一, MF / 1^〜 R N 中频型变频调控器, '一, LF * ¾7 1^〜1^低频型变频调控器, '一, HF - W/R 3 R 1 !^高频型变频调控器的无级变频调控器 W/R 3 电路结构图。

附图 5为交直流多功能型分子集成电路电动机的 '†,、 ' MP / 1^〜 R N 中端型功率调控器, , LP * ¾7 1^〜1^低端型功率调控器, , HP . W/R 2 R 1 !^高端型功率调控器的有级功率调控器 W/R 2 电路结构图。

附图 6为交直流多功能型分子集成电路电动机的 '一,、 MP / 1^〜 R N 中端型功率调控器, '一, LP ^/I^ R 1 !^低端型功率调控器, '一, HP *W/R 2 R 1 !^高端型功率调控器的无级功率调控器 W/R 2 电路结构图。

附图 7为交直流多功能型分子集成电路电动机(AC-DC MULTI-TYPE MOTOR OF MOLECULAR INTEGRATED CIRCUIT ) 内转子 RT式产品结构图。

附图 8为的交直流多功能型分子集成电路电动机( AC-DC MULTI-TYPE MOTOR OF MOLECULAR INTEGRATED CIRCUIT ) 外转子 RT式产品结构图。

具体实施方式:

下面结合附图及实施例做出进一步的说明。

交直流多功能型分子集成电路电动机, 釆用一体化分子技术电子器件—— 分子集成电路分子电器技术的基本电路 Ρ/Ν ΜΚ 系统的分子电路原理, 由安装有电 磁线圈 L的定子 ST, 以定子 ST内安装转子 RT或由定子 ST外安装转子 RT形成 旋转动能, 电磁线圈连接安装旋向控制器 RC和电动机的交直流电源处理功能、 频率调控处理功能、 功率调控处理功能、 速度调控处理功能、 工作状态指示功 能、 自动相位输入控制处理功能的专用分子集成电 路等四部分构成功能处理系 统, 根据不同的应用要求, 将功能处理系统加以各种信号及电路变换和组 合, 可以设计制造各式各样专用和通用的交直流多 功能型分子集成电路电动机。

由图 1 可知, 本交直流多功能型分子集成电路电动机, 其技术特点是, 该 交直流多功能型分子集成电路电动机由安装有 电磁线圈 L的定子 ST, 以定子 ST 内安装转子 RT或由定子 ST外安装转子 RT形成旋转动能, 电磁线圈连接安装旋 向控制器 RC和电动机的交直流电源处理功能、 频率调控处理功能、 功率调控处 理功能、 速度调控处理功能、 工作状态指示功能、 自动相位输入控制处理功能 的专用分子集成电路等四部分组成, 它由交流电 AC经插接器 AC/CK输入至交流 电源选择功能开关 输入为电动机分子电路提供交流电能; AC/CK输入的一端经 交流电源选择功能开关 输入分子集成电路的 11脚交流电输入端 INP〜, AC/CK 输入的另一端连接分子集成电路的 12脚交流电输入端 INP 直流电 DC经插接 器 DC/CK输入至直流电源选择功能开关 K 2 输入为电动机分子电路提供直流电能; DC/CK输入的一端正极经直流电源选择功能开关 Κ 2 输入分子集成电路的 1脚电源 正极 DC/CK输入的另一端负极连接分子集成电路的 2脚负极 GND。 分子集成 电路 MIC的 1脚为电源正极 UIC的 3脚为电源正极端 Vcc和 4脚为负载端 OUT 其之间接旋向控制器 RC ' " 和电动机定子的电磁线圈 L将电力能源转化为电磁 能, 定子的电磁能与转子相互作用产生矩力驱动转 子旋转形成旋转动能原理, MIC的 5脚和 6脚为变频调控端1^其之间接变频调控器 W/R 3 , MIC的 7脚与 8脚 为功率调控端 P e 其之间接功率调控器 W/R 2 , MIC的 9脚与 10脚为电动机工作状 态指示端 W其之间接工作状态指示灯 ZD, MIC的 11脚与 12脚为交流电输入端 INP〜其之间接交流电 AC, MIC的 13脚与 14脚为自动相位输入控制处理端 APC 其之间接自动相位控制器 APC, MIC的 2脚为电源负极端 GND接电源负极 GND。

参见图 1 , 本交直流多功能型分子集成电路电动机其工作 过程是, 操作电源 功能选择开关确定工作电源, 当闭合开关 AC时, 则工作电源为交流电 AC; 当闭合关 K 2 DC时, 则工作电源为直流电 DC; 而接通电源则多功能型分子集成 电路式电动机得电工作, 工作状态指示灯 ZD发光指示。 电动机的调速状态: 当 操作变频调控器 W/R 3 时, 功率调控器 W/R 2 处于固定值位时, 电动机处于变频调 速工作状态; 当操作功率调控器 W/R 2 时, 变频调控器 W/R 3 处于固定值位时, 电 动机处于功率调速工作状态。 电动机的调速方式: 操作变频调控器 W/R 3 时, 功 率调控器 W/R 2 处于固定值位时, 当 W/R 3 釆用无级调控方式时, 电动机处于无级 变频调速方式; 操作变频调控器 W/R 3 时, 功率调控器 W/R 2 处于固定值位时, 当 W/R 3 釆用有级调控方式时, 电动机处于有级变频调速方式;操作功率调控 器 W/R 2 时, 变频调控器 W/R 3 处于固定值位时, 当 W/R 2 釆用无级调控方式时, 电动机处 于无级功率调速方式; 操作功率调控器 W/R 2 时, 变频调控器 W/R 3 处于固定值位 时, 当 W/R 2 釆用有级调控方式时, 电动机处于有级功率调速方式, 电动机的旋 向变换; 当操作旋向控制器 RC ' 〃 正向时, 电动机按顺时针方向运转工作; 当 操作旋向控制器 RC ' 〃 反向时, 电动机按逆时针方向运转工作。

由图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7、 图 8可知, 本交直流多功能 型分子集成电路电动机的分子电路结构原理和 电气工作原理, 图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7、 图 8指出了釆用一体化分子技术电子器件——分 集 成电路分子电器技术的基本电路 Ρ/Ν ΜΚ 系统的分子电路原理电路结构方式和电 气技术方式的交直流多功能型分子集成电路电 动机分子电路结构原理、 电气工 作原理, 由交流电 AC经插接器 AC/CK输入至交流电源选择功能开关 1^输入为电 动机分子电路提供交流电能; AC/CK输入的一端经交流电源选择功能开关 输入 分子集成电路的 11脚交流电输入端 INP〜, AC/CK输入的另一端连接分子集成电 路的 12脚交流电输入端 INP 直流电 DC经插接器 DC/CK输入至直流电源选择 功能开关 K 2 输入为电动机分子电路提供直流电能; DC/CK输入的一端正极经直流 电源选择功能开关 Κ 2 输入分子集成电路的 1脚电源正极 V ee , DC/CK输入的另一 端负极连接分子集成电路的 2脚负极 GND,构成交直流多功能型分子集成电路电 动机供电电路 PS/AC、 DC, 完成交直流电源供电处理功能。

分子电路由晶体管 、 D 2 、 D 3 、 D 4 进行交流电整流工作其输出直流电, 组 成整流器, 交流电能由整流器处理输出的直流电和直流电 源输出的直流电的正 极一路输入至分子控制电阻 M R , 另一路输入至电动机定子的电磁线圈 L电源端

Vcc, 交流电能由整流器处理输出的直流电和直流电 源输出的直流电的负极连接 分子电路的负极 GND, 构成交直流电源处理器, 完成交直流电源处理功能。 交流 电能由整流器处理输出的直流电和直流电源输 出的直流电的正极与分子控制电 阻^之间为自动相位输入控制处理端 APC其之间接单相电、 三相电、 四相电的 相位程序处理器, 构成单相电、 单相电变换三相电、 单相电变换四相电、 三相 电、 四相电等电流自动相位控制器 APC, 完成自动相位输入控制处理功能。 由晶 体管 TR P型半导体管, TR 2 、 N型半导体管, 电阻 R为整个分子电路的分子控 制电阻 M R , 分子控制电阻 M R 控制于晶体管 TR P型半导体器件的电源输入端即 发射极, 多频调节控制器电阻 W/R 3 、 构成变频调控器 W/R 3 , 变频调控器 W/R 3 、 频率振荡电容 相串联其一端连接晶体管 信号输入端即基极,另一端连接晶 体管 TR 2 的电源输入端即集电极, 构成分子振荡器的选频器, 功率调节控制器电 阻 W/R 2 , 其一端连接晶体管丁!^输入端即基极, 另一端连接电源负极 GND, 构成 功率调控器 W/R 2 , 组成双晶体管复合互补式低频多频调节控制型 分子振荡器。

低频多频调节控制型分子振荡器工作, 通过变频调控器 W/R 3 的阻值大小调 节而变化。

变频调控器 W/R 3 的变频调节控制状态:

由变频调控器 W/R 3 的设定在该总电阻值中的中间电阻值为调 节控制点时, 分子振荡器工作在一固定的中间频率点状态, 在调节控制点上增大其电阻值时, 则分子振荡器的振荡频率随着 W/R 3 的阻值增大而振荡频率降低; 在调节控制点 上减小其电阻值时, 则分子振荡器的振荡频率随着 W/R 3 的阻值减小而振荡频率 增高; 构成 " '个 , 、 ' 丄 , ; '一, 、 '一, ,, MF · W/RS R^RN中频型变频调 控器, 完成中频调制低频和中频调制高频处理功能。

由变频调控器 W/R 3 的设定在该总电阻值中的最大电阻值为调 节控制点时, 分子振荡器工作在一固定的最低频率点状态, 在调节控制点上减小其电阻值时, 则分子振荡器的振荡频率随着 W/R 3 的阻值减小而振荡频率增高; 构成 " ' i , 、 ,, LF * W/R 3 R^l 低频型变频调控器, 完成低频调制高频处理功能。 由变频调控器 W/R 3 的设定在该总电阻值中的最小电阻值为调 节控制点时, 分子振荡器工作在一固定的最高频率点状态, 在调节控制点上增大其电阻值时, 则分子振荡器的振荡频率随着 W/R 3 的阻值增大而振荡频率降低; 构成 " '†, 、 , ,, HF * W/R 3 1^〜 高频型变频调控器, 完成高频调制低频处理功能。 变频调控器 W/R 3 的变频调节控制方式:

变频调控器 W/R 3 、 R^l 中, 由小阻值电阻器为 R 由大阻值电阻器为 R N , 在!? 1 〜!^之间由小至大顺序分级设置的工作方 , 变频调控器 W/R 3 由不同大小 阻值电阻器 W/R 3 、 !? 1 〜!^其一端并联, 另一端选择不同阻值大或小的电阻器连接 工作时, 构成 " ' 卞 , 、 '丄 , " MF ' W/Rs R^RN有级中频型变频调控器; '丄 , LF · W/R 3 R 1 !^有级低频型变频调控器; '†, HF · W/R 3 1^〜1^有级高频型变频 调控器, 完成有级变频调控处理功能。

变频调控器 W/R 3 、 R^l 中, 由小阻值电阻器为 R 由大阻值电阻器为 R N , 在!? 1 〜!^之间由小至大顺序无级设置的工作方 , 变频调控器 W/R 3 由无级电位 器电阻阻值的增加和减少工作时, 构成 '一, 、 i→? MF · W/Rs l^^l 无级中频 型变频调控器; '一, LF ' W/Rs I^^l 无级低频型变频调控器; '一, HF - W/R 3 1^〜1^无级高频型变频调控器, 完成无级变频调控处理功能。

由变频调控器 W/R 3 的中频型变频调控器、 低频型变频调控器、 高频型变频 调控器、 有级变频调控器、 无级变频调控器, 构成多功能型变频调控器, 完成 交直流多功能型分子集成电路电动机的变频调 速处理功能。

由晶体管 TR P型半导体管, TR 2 、 N型半导体管, 电阻 R为整个分子电路 的分子控制电阻 M R , 分子控制电阻 M R 控制于晶体管 TR P型半导体器件的电源 输入端即发射极, 功率调节控制器电阻 W/R 2 , 其一端连接晶体管 TIU输入端即基 极, 另一端连接电源负极 GND , 构成功率调控器 W/R 2 , 组成的双晶体管复合互补 式功率调节控制型分子功率放大器。

功率调节控制型分子功率放大器工作, 通过功率调控器 W/R 2 的阻值大小调 节而变化。

功率调控器 W/R 2 的功率调节控制状态:

由功率调控器 W/R 2 的设定在该总电阻值中的中间电阻值为调 节控制点时, 分子功率放大器工作在一固定的中间功率点状 态, 在调节控制点上增大其电阻 值时, 则分子功率放大器的放大功率随着 W/R 2 的阻值增大而放大功率减小; 在 调节控制点上减小其电阻值时, 则分子功率放大器的放大功率随着 W/R 2 的阻值 减小而放大功率增大; 构成 " '†, 、 ' i ' ; '―, 、 '一, " MP ' W/I^ R 1 R N 中端型功率调控器, 完成中端调制输出小功率和调制输出大功率处 理功能。

由功率调控器 W/ R 2 的设定在该总电阻值中的最大电阻值为调 节控制点时, 分子功率放大器工作在一固定的最小功率点状 态, 在调节控制点上减小其电阻 值时, 则分子功率放大器的放大功率随着 W/R 2 的阻值减小而放大功率增大; 构 成 " '丄, 、 '一, " LP ' ^!^ !? 1 〜!^低端型功率调控器, 完成小功率调制输出 大功率处理功能。

由功率调控器 W/R 2 的设定在该总电阻值中的最小电阻值为调 节控制点时, 分子功率放大器工作在一固定的最大功率点状 态, 在调节控制点上增大其电阻 值时, 则分子功率放大器的放大功率随着 W/R 2 的阻值增大而放大功率减小; 构 成 " '†, 、 '一, " , !^ !? 1 〜!^高端型功率调控器, 完成大功率调制输出 小功率处理功能。

功率调控器 W/R 2 的功率调节控制方式:

功率调控器 W/R 2 、 R^l 中, 由小阻值电阻器为 R 由大阻值电阻器为 R N , 在!? 1 〜!^之间由小至大顺序分级设置的工作方 , 功率调控器 W/R 2 由不同大小 阻值电阻器 W/R 2 、 !? 1 〜!^其一端并联, 另一端选择不同阻值大或小的电阻器连接 工作时, 构成 " '†, 、 ' i ' " MP ' W/I^ I^ 有级中端型功率调控器; '丄, LP · W/R 2 !? 1 〜!^有级低端型功率调控器; '†, HP · W/R 2 !? 1 〜!^有级高端型功 率调控器, 完成有级功率调控处理功能。

功率调控器 W/R 2 、 R^l 中, 由小阻值电阻器为 R 由大阻值电阻器为 R N , 在!? 1 〜!^之间由小至大顺序无级设置的工作方 , 功率调控器 W/R 2 由无级电位 器电阻阻值的增加和减少工作时, 构成 '一, 、 '―, MP . W/I^ I^^l 无级中端 型功率调控器; '―, LP . W/I^ I^^l 无级低端型功率调控器; '一, HP - W/R 2 1^〜1^无级高端型功率调控器, 完成无级功率调控处理功能。

由功率调控器 W/R 2 的中端型功率调控器、 低端型功率调控器、 高端型功率 调控器、 有级功率调控器、 无级功率调控器, 构成多功能型功率调控器, 完成 交直流多功能型分子集成电路电动机的功率调 速处理功能。

该低频多频调节控制型分子振荡器的振荡信号 由功率调节控制型分子功率 放大器将信号分子倍率放大后, 其输出接至旋向控制器 RC ' 〃 和电动机定子的 电磁线圈 L将电力能源转化为电磁能, 定子的电磁能与转子相互作用产生矩力 驱动转子旋转形成旋转动能原理转化为电磁动 能, 完成电能转化为动能处理。 其分子集成电路的电源输入端有分子控制电阻 M R 连接晶体管 D 5 、 晶体管 D 5 另一 端连接电源负极 GND, 组成稳恒器和抗干扰器, 完成稳压、 恒流、 过压、 过流、 过热保护处理和完成抗干扰抑制吸收处理。 由晶体管 D 6 、 电阻 R 4 组成分子振荡 器和分子功率放大器的保护器, 完成反峰、 反通保护处理。 由指示灯 ZD、 电阻 R 5 相串联, 一端连接电源正极 V cc 、 另一端连接电源负极 GND, 组成交直流多功能 型分子集成电路电动机工作状态指示器, 完成交直流多功能型分子集成电路电 动机的工作状态指示处理。

由图 7可知, 本交直流多功能型分子集成电路电动机内转子 RT式产品结构 原理、 电气工作原理, 图 7 指出了交直流多功能型分子集成电路电动机内 转子 RT式产品电路结构原理、 电气工作原理, 它由安装有电磁线圈 L的定子 ST, 定 子 ST内安装转子 RT形成旋转动能, 电磁线圈连接安装旋向控制器 RC和电动机 的交直流电源处理功能、 频率调控处理功能、 功率调控处理功能、 速度调控处 理功能、 工作状态指示功能、 自动相位输入控制处理功能的专用分子集成电 路 MIC等四部分构成交直流多功能型分子集成电路 电动机内转子 RT式产品, 完成 交直流多功能型分子集成电路电动机内转子 RT式产品处理功能。

由图 8可知, 本交直流多功能型分子集成电路电动机外转子 RT式产品结构 原理、 电气工作原理, 图 8 指出了交直流多功能型分子集成电路电动机外 转子 RT式产品电路结构原理、 电气工作原理, 它由安装有电磁线圈 L的定子 ST , 定 子 ST外安装转子 RT形成旋转动能, 电磁线圈连接安装旋向控制器 RC和电动机 的交直流电源处理功能、 频率调控处理功能、 功率调控处理功能、 速度调控处 理功能、 工作状态指示功能、 自动相位输入控制处理功能的专用分子集成电 路 MIC等四部分构成交直流多功能型分子集成电路 电动机外转子 RT式产品, 完成 交直流多功能型分子集成电路电动机外转子 RT式产品处理功能。

由上述所知, 本发明它釆用分子集成电路分子电器技术的电 路结构方式和 电气技术方式的分子电路原理, 构成 MEA分子电器交直流多功能型分子集成电 路电动机功能处理系统, 釆用交直流多功能型分子集成电路电动机功能 处理系 统原理, 就实现了根据不同的应用要求, 可以设计制造各种不同功率要求的交 直流多功能型分子集成电路电动机; 可以设计制造既可以使用交流电也可以使 用直流电供电工作的交直流多功能型分子集成 电路电动机; 可以设计制造实现 有级调速也可以实现无级调速控制方式的交直 流多功能型分子集成电路电动 机; 可以设计制造变频调速也可以功率调速控制方 式的交直流多功能型分子集 成电路电动机; 可以设计制造单相电、 单相电变换三相电、 单相电变换四相电、 三相电、 四相电等电流磁动力功能方式的交直流多功能 型分子集成电路电动机; 可以设计制造单相电、 单相电变换三相电、 单相电变换四相电、 三相电、 四相 电等电流磁动力速度固定的交直流多功能型分 子集成电路电动机; 可以设计制 造外定子内转子形成旋转动能的工作功能也可 以外转子内定子形成旋转动能的 工作功能的交直流多功能型分子集成电路电动 机; 可以设计制造单向旋转工作 也可以双向旋转工作的交直流多功能型分子集 成电路电动机等各式各样专用和 通用的电动机。 由于釆用了分子集成电路分子电器技术将交直 流多功能型分子 集成电路电动机的各种电气、 电子器件和各种应用功能性质的电路组合形成 免 外围电路的一体化分子技术和集成技术结构方 式, 它完成 (达到) 多功能型分 子集成电路电动机的特定性能与特定功能处理 , 使多功能型分子集成电路电动 机技术实现(达到)在电气技术, 电路结构, 生产工艺, 性能指标, 使用效果, 节约材料, 节约能源, 生态环保等各方面的创新, 使技术产品实现多功能, 使 用方便, 电气技术简化, 产品结构简单, 生产工艺简单, 节约能源, 节约材料, 生态环保, 稳定、 可靠性高, 抗干扰能力强, 寿命长, 成本低等特点。 改变传 统电气、 电子信息技术与产业发展的电器产品中所应用 电子管电子电路结构电 器产品, 晶体管 (单电子晶体管) 电子电路结构电器产品, 集成电路(单电子 晶体管集成电路) 结构电器产品传统技术结构方式和运用模拟技 术、 数字技术 传统电气技术方式, 实现了传统技术产品无法达到的技术特性和技 术效应。

交直流多功能型分子集成电路电动机,它利用 安装有电磁线圈 L的定子 ST , 以定子 ST内安装转子 RT或由定子 ST外安装转子 RT形成旋转动能, 电磁线圈 连接安装旋向控制器 RC和电动机的交直流电源处理功能、 频率调控处理功能、 功率调控处理功能、 速度调控处理功能、 工作状态指示功能、 自动相位输入控 制处理功能的专用分子集成电路等四部分组成 的技术方式, 它是改变人类普遍 使用的传统电力能源动力 ---直流电动机、 交流电动机、 交直流两用电动机等传 统技术产品的生产方式、 工作方式、 生活方式 -—绿色动力, 实现了传统的直 流电动机、 交流电动机、 交直流两用电动机等产品无法达到的技术特性 和技术 效应, 可取代传统电力能源动力工具的直流电动机、 交流电动机、 交直流两用 电动机等传统产品结构方式和电气技术方式动 力产品的绿色动力。