Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTILAYER STRUCTURE FOR TRANSPORTING OR STORING HYDROGEN
Document Type and Number:
WIPO Patent Application WO/2021/209718
Kind Code:
A1
Abstract:
The present invention relates to the use of a sealing layer (1) consisting of a composition comprising at least one polyamide for preparing a multicore structure intended for the transport, distribution or storage of hydrogen, in particular for the distribution or storage of hydrogen, especially for the storage of hydrogen, the sealing layer satisfying a test for contaminants present in the hydrogen and extracted from the sealing layer after contact of the hydrogen with same, the test been carried out as defined in the standard CSA/ANSI CHMC 2: 19, the total proportion of said contaminants extracted in the hydrogen being less than or equal to 3% by weight, in particular less than 2% by weight of the sum of the constituents of the composition.

Inventors:
DUFAURE NICOLAS (FR)
GOUPIL ANTOINE (KR)
MERLE OLIVIER (FR)
Application Number:
PCT/FR2021/050657
Publication Date:
October 21, 2021
Filing Date:
April 15, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARKEMA FRANCE (FR)
International Classes:
C09D177/02; B32B1/02; B32B17/04; B32B27/34; C08L77/02; C08L77/06; C09D177/06
Domestic Patent References:
WO2014076281A12014-05-22
Foreign References:
US20190375182A12019-12-12
EP1951789A12008-08-06
EP2851190A12015-03-25
US20060191588A12006-08-31
EP1505099A22005-02-09
EP0342066A11989-11-15
US20090149600A12009-06-11
EP0722961A11996-07-24
Other References:
SELON CHEN ET AL.: "A review of PEM hydrogen fuel cell contamination: impact, mechanisms and mitigation", JOURNAL OF POWER SOURCES, vol. 165, 2007, pages 739 - 756, XP005914524, DOI: 10.1016/j.jpowsour.2006.12.012
Attorney, Agent or Firm:
JEANPETIT, Christian (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Utilisation d’une couche d’étanchéité (1) constituée d’une composition comprenant au moins un polyamide pour la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité après contact de l’hydrogène avec celle-ci, ledit test étant effectué tel que défini dans la norme CSA/ANSI CHMC 2 : 19, la proportion totale desdits contaminants extraits dans l’hydrogène, étant inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.

2. Utilisation selon la revendication 1, dans laquelle les contaminants extraits sont choisis parmi les plastifiants, les stabilisants, les oligomères, de l’eau, un corps gras, des composés organiques volatils et un mélange de ceux-ci.

3. Utilisation selon la revendication 2, dans laquelle la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.

4. Utilisation selon la revendication 2 ou 3, dans laquelle la constitution des contaminants extraits est la suivante : jusqu’à 1% de plastifiants, jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’oligomères, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants extraits étant inférieure ou égale à 3%, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.

5. Utilisation selon l’une des revendications 1 à 4, dans laquelle ladite composition comprend en poids : au moins 63,5% de polyamide, de 0 à moins de 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

6. Utilisation selon la revendication 1 , dans laquelle les contaminants extraits sont choisis parmi les stabilisants, de l’eau, de l’huile, des composés organiques volatils et un mélange de ceux-ci.

7. Utilisation selon la revendication 6, dans laquelle la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.

8. Utilisation selon la revendication 6 ou 7, dans laquelle la constitution des contaminants extraits est la suivante : jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants étant inférieure ou égale à 2% en poids de la somme des constituants de ladite composition.

9. Utilisation selon l’une des revendications 6 à 8, dans laquelle ladite composition comprend en poids : au moins 63,5% de polyamide, de 0 à moins de 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

10. Utilisation selon l’une des revendications 1 à 9, dans laquelle le polyamide est choisi parmi un polyamide aliphatique, un polyamide semi-aromatique et un mélange des deux.

11. Utilisation selon la revendication 10, dans laquelle le polyamide est aliphatique et choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, PA1010, le PA1012 et le PA1212.

12. Utilisation selon la revendication 10, dans laquelle le polyamide est semi-aromatique et choisi parmi le polyamide 11/5T, 11/6T, le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.

13. Structure multicouche comprenant au moins une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12.

14. Structure multicouche selon la revendication 13, caractérisée en ce qu’elle correspond à un réservoir et comprend de plus au moins une couche de renfort composite (2), ladite couche d’étanchéité étant en contact avec l’hydrogène.

15. Structure multicouche selon la revendication 13 ou 14, caractérisée en ce qu’au moins l’une des dites couches de renfort composite (2) est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.

16. Structure multicouche selon l’une des revendications 13 à 15, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide.

17. Structure multicouche selon l’une des revendications 13 à 16, caractérisée en ce que chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.

18. Structure multicouche selon l’une des revendications 13 à 17, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.

19. Structure multicouche selon l’une des revendications 13 à 18, caractérisée en ce qu’elle présente une seule couche d’étanchéité et une seule couche de renfort.

20. Structure multicouche selon l’une des revendications 13 à 19, caractérisée en ce que ladite structure comprend de plus au moins une couche externe (3) constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.

21. Structure multicouche selon la revendication 13, caractérisée en ce qu’elle correspond à un tuyau et comprend de plus au moins une tresse métallique extérieure (2’), ladite couche d’étanchéité étant en contact avec l’hydrogène.

22. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 13 à 20, caractérisé en ce qu’il comprend une étape de fabrication d’une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12, par injection, extrusion, extrusion-soufflage ou rotomoulage.

23. Procédé de fabrication d’une structure multicouche selon la revendication 22, caractérisé en ce qu’il comprend une étape préalable de lavage du polyamide de la composition au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci, avant l’étape de fabrication de ladite couche d’étanchéité (1) par injection, extrusion ou rotomoulage.

24. Procédé de fabrication d’une structure multicouche selon la revendication 22 ou 23, caractérisé en ce qu’il comprend une étape d’enroulement filamentaire d’une couche de renfort (2), telle que définie dans l’une des revendications 14 à 20, autour de la couche d’étanchéité (1).

Description:
DESCRIPTION

TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE

L’HYDROGENE

[Domaine technique]

La présente demande de brevet concerne des structures multicouches destinées au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, comprenant une couche d’étanchéité constituée d’une composition de polyamide et l’utilisation de ladite couche d’étanchéité satisfaire un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité par l’hydrogène, et leur procédé de fabrication.

[Technique antérieure]

Les réservoirs d’hydrogène représentent un sujet qui attire actuellement beaucoup d’intérêt de la part de nombreux industriels, notamment dans le domaine automobile. L’un des buts recherché est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.

De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.

Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables, des temps de recharge beaucoup plus long que les durées de remplissage de réservoir, ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.

L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.

L’alimentation en hydrogène de la pile à combustible nécessite donc la présence aussi bien d’un réservoir de stockage de l’hydrogène dans le véhicule qu’un tuyau de transport de l’hydrogène du réservoir vers le pile à combustible.

Les réservoirs à hydrogène ou tuyaux de transport de l’hydrogène sont généralement constitués d'une enveloppe (liner ou couche d’étanchéité) métallique ou thermoplastique qui doit empêcher la perméation de l'hydrogène. L’un des types de réservoirs envisagés, appelé Type IV, est basé sur un liner thermoplastique autour duquel est enroulé un composite.

Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une indépendamment de l'autre. Dans ce type de réservoir on associe liner (ou gaine d’étanchéité) en résine thermoplastique à une structure de renforcement constituée de fibres (verre, aramide, carbone) encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères.

La problématique est identique pour le tuyau de transport.

Les liners doivent présenter certaines caractéristiques de base :

La possibilité d’être transformé par extrusion soufflage, rotomoulage, injection, ou extrusion Une faible perméabilité à l’hydrogène, la perméabilité du liner est en effet un facteur clé pour limiter les pertes d’hydrogène du réservoir ;

De bonnes propriétés mécaniques (fatigue) à basses températures (-40 à -70°C) ;

Une tenue thermique à 120°C.

Néanmoins, la pile à combustible est très sensible à différents contaminants qui dégradent sa performance et sa durabilité.

Ces contaminants peuvent provenir de plusieurs sources : de l’hydrogène lui-même en raison de son procédé de fabrication, de la fabrication du réservoir et/ou du tuyau de transport d’hydrogène où différents constituants naturels tels que des composés organiques volatils ou de l’eau se retrouvent piégés notamment dans le polymère thermoplastique de la couche d’étanchéité, et qui seront par la suite extraits par l’hydrogène au contact de la dite couche d’étanchéité, de la présence dans le polymère thermoplastique de constituants qui sont susceptible d’être extraits par la suite par l’hydrogène au contact de la dite couche d’étanchéité.

Selon Chen et al. (A review of PEM hydrogen fuel cell contamination: impact, mechanisms and mitigation, Journal of Power Sources, 165 (2007), 739-756), l’hydrogène utilisé comme combustible dans les piles à combustible en recherche, développement et démonstrateur provient principalement de sources commercialement disponibles. Les procédés de production de l’hydrogène se font principalement par reformage à partir d’hydrocarbures ou d’hydrocarbures oxygénés, incluant le méthane du gaz naturel et le méthanol de la biomasse, mais aussi par électrolyse, oxydation partielle de petites molécules organiques et hydrolyse du borohydrure de sodium.

Par conséquent, un réservoir ou un tuyau de transport d’hydrogène utilisé avec une pile à combustible doit non seulement présenter les caractéristiques de base énumérées ci-dessus mais encore l’hydrogène après contact avec la couche d’étanchéité dudit réservoir et/ou tuyau ne doit contenir qu’un minimum de contaminants extraits de ladite couche d’étanchéité. Cette double problématique est résolue par la fourniture d’une structure multicouche de la présente invention destinée au transport, à la distribution ou au stockage de l’hydrogène Dans toute cette description, les termes « liner » et « gaine d’étanchéité » ont la même signification.

La présente invention concerne donc l’utilisation d’une couche d’étanchéité (1) constituée d’une composition comprenant au moins un polyamide pour la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité après contact de l’hydrogène avec celle-ci, ledit test étant effectué tel que défini dans la norme CSA/ANSI CHMC 2 :19, la proportion totale desdits contaminants extraits dans l’hydrogène, étant inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.

Les Inventeurs ont donc trouvé qu’une couche d’étanchéité (1 ) constituée d’une composition comprenant au moins un polyamide permettait la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, présentant les caractéristiques de base énumérées ci-dessus mais qu’elle permettait également de limiter la proportion de contaminants présents dans l’hydrogène et extraits après contact de l’hydrogène avec ladite couche d’étanchéité.

Par « structure multicouche » il faut entendre un réservoir comprenant ou constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches de renfort, ou une couche d’étanchéité et plusieurs couches de renfort, ou plusieurs couches d’étanchéité et une couche de renfort ou une couche d’étanchéité et une couche de renfort.

La structure multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l’hydrogène du réservoir vers la pile à combustible et qui comprend ou est constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches extérieures, ou une couche d’étanchéité et plusieurs couches extérieures, ou plusieurs couches d’étanchéité et une couche extérieure ou une couche d’étanchéité et une couche extérieure. L’expression « ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité par l’hydrogène » signifie que la proportion de contaminants présent dans l’hydrogène et issus de la couche d’étanchéité après contact avec l’hydrogène, qu’il s’agisse d’un réservoir ou d’un tuyau ne dépasse pas les valeurs limites empêchant le bon fonctionnement de la pile à combustible.

La norme CSA/ANSI CHMC 2 :19 donne des détails sur la procédure utilisée pour déterminer les composants volatils dans l'espace de tête d'un polymère lors d'une exposition à l'hydrogène pendant le service. L’expression « après contact de l’hydrogène avec celle-ci » signifie tout comme ci-dessus une exposition à l’hydrogène pendant le service.

Appareillage

L'équipement d'essai doit comprendre les éléments suivants: a) un cryofocus pour pré-concentrer les échantillons de gaz; b) un chromatographe en phase gazeuse utilisant une colonne appropriée, connectée en série avec un détecteur sélectif de masse approprié; c) flacons d'espace de tête (40 ml), septums, fermetures d'anneaux et scellant pour flacon; d) une balance analytique pouvant peser jusqu'à 60,0001 g; et e) un four à convection capable de maintenir une température de 70 ± 5 ° C.

Environnement de test Pureté de l'hydrogène gazeux

L'hydrogène gazeux de conditionnement doit être de composition et de pureté connues, comme décrit ci-dessous. La pureté de l'hydrogène gazeux utilisé pour remplir la chambre d'essai doit être, au minimum, conforme à la norme ISO 14687 :2019, parties 1 à 3, ou SAE J2719 (2015). ISO 14687-2 définit la spécification de qualité de l'hydrogène la plus stricte, avec les valeurs de seuil les plus basses pour chaque impureté parmi ces normes ISO (voir tableaux 1). SAE J2719 s'applique également aux véhicules à pile à combustible à membrane échangeuse de protons (PEM) et est harmonisée avec ISO 14687-2.

[Tableaux 1]

* toutes les valeurs sont données en ppm (v/v) sauf précision contraire

quand les valeurs données dans ce tableau 1 diffèrent de l’édition actuelle de la norme ISO 14687-2 :2019, les valeurs actuelles s’appliquent.

Mesure et instrumentation La température à laquelle les mesures de la vitesse de transmission de l'hydrogène sont effectuées doit être contrôlée à ± 1 ° C près. La pression d'essai doit rester constante à 1% près de la valeur d'essai.

Procédure d'essai

La procédure d'essai est décrite dans la norme ISO 14687 :2019 au paragraphe 5.6.

S’agissant des contaminants

Le terme contaminant s’entend au sens large du terme à partir du moment où ledit contaminant est extrait de ladite couche d’étanchéité par l’hydrogène et n’est pas déjà présent dans l’hydrogène qui est introduit dans ladite structure multicouche pour faire fonctionner la pile à combustible du véhicule, par exemple en raison du procédé d’obtention de l’hydrogène.

Par exemple, le terme contaminant recouvre les cations métalliques tels que K + , Cu 2+ , Ni 2+ et Fe 3+ qui peuvent être produits par les stabilisants utilisés dans les polyamides, les stabilisants organiques ou métalliques en tant que tels, les plastifiants, les oligomères, en particulier le caprolactame et son dimère cyclique le 1 ,8-diazacyclotetradecane-2,7-dione (DCDD), les composés organiques volatils tels que NH3, NOx, SOx, N2, les composés benzoiques, 03, l’eau absorbée par le polyamide après fabrication de la couche d’étanchéité, les corps gras tels que de l’huile.

Les composés organiques volatils excluent donc tous les autres matériaux cités dans la liste ci- dessus. La proportion totale desdits contaminants extraits dans l’hydrogène, est inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition. Par conséquent, cette proportion totale desdits contaminants extraits ne prend pas en compte la proportion de contaminants qui proviendrait du procédé de préparation de l’hydrogène ou de tout autre source.

Avantageusement, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 3%, en particulier de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.

Dans une première variante, les contaminants extraits sont choisis parmi les plastifiants, les stabilisants, les oligomères, de l’eau, un corps gras, des composés organiques volatils et un mélange de ceux-ci.

Avantageusement, dans cette première variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.

Dans un mode de réalisation de cette première variante, la constitution des contaminants extraits est la suivante : jusqu’à 1% de plastifiants, jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’oligomères, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants extraits étant inférieure ou égale à 3%, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.

Avantageusement, dans ce mode de réalisation de cette première variante, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 3%, en particulier de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.

Plus avantageusement, dans ce mode de réalisation de cette première variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.

Dans une seconde variante, les contaminants extraits sont choisis parmi les stabilisants, de l’eau, de l’huile, des composés organiques volatils et un mélange de ceux-ci.

Avantageusement, dans cette seconde variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.

Dans un mode de réalisation de cette seconde variante, la constitution des contaminants extraits est la suivante : jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants étant inférieure ou égale à 2% en poids de la somme des constituants de ladite composition. Avantageusement, dans ce mode de réalisation de cette seconde variante, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.

Plus avantageusement, dans ce mode de réalisation de cette seconde variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.

S’agissant de la composition

Dans un premier mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la première variante définie ci-dessus, comprend en poids : au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant.

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 5% en poids d’additifs

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 1,5% de plastifiant.

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs

Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc, de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.

Dans un second mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la première variante définie ci-dessus, est constituée en poids : d'au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 1 ,5% de plastifiant.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc, de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.

Dans un troisième mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la seconde variante définie ci-dessus, comprend en poids : au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.

Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs. Dans un quatrième mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1 ), notamment dans la seconde variante définie ci-dessus, est constituée en poids : d’au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.

Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.

Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 0,1 à 5% en poids d’additifs.

Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.

S’agissant du polyamide

La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.

Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci.

Le polyamide est un polyamide semi-cristallin, c’est-à-dire un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.

La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.

La masse moléculaire moyenne en nombre Mn dudit polyamide semi-cristallin est de préférence dans une plage allant de de 10000 à 85000, notamment de 10000 à 60000, préférentiellement de 10000 à 50000, encore plus préférentiellement de 12000 à 50000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).

Dans un mode de réalisation, le polyamide est choisi parmi un polyamide aliphatique, un polyamide semi-aromatique et un mélange des deux, avantageusement un polyamide aliphatique.

Ledit polyamide aliphatique peut être issu de la polycondensation : d’au moins un aminoacide en C6 à Cie, préférentiellement en Cg à Cie, plus préférentiellement en Cio à Cie, encore plus préférentiellement en Cio à C 12 , notamment en Cn ; ou d’au moins un lactame en Ce à Cie, préférentiellement en Cg à C 18 , plus préférentiellement en C 10 à Cie, encore plus préférentiellement en C10 à C12, notamment en C12; ou d’au moins une diamine aliphatique Ca en C4-C36, notamment en C6-C36, préférentiellement O Q - Ci 8 , préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide aliphatique Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C10-C18, plus préférentiellement C10-C12.

Un aminoacide en Ceà C12 est notamment l'acide 6-aminohexanoïque, l'acide 9-aminononanoïque, l'acide 10-aminodécanoïque, l'acide 10-aminoundécanoïque, l'acide 12-aminododécanoïque et l'acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l'acide N-heptyl-11- aminoundécanoïque.

Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’au moins un aminoacide il peut donc comprendre un seul aminoacide ou plusieurs aminoacides.

Avantageusement, ledit polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’un seul aminoacide et ledit aminoacide est choisi parmi l'acide 11- aminoundécanoïque et l'acide 12- aminododécanoïque, avantageusement l'acide 11- aminoundécanoïque.

Le lactame en O Q à C12 est notamment le caprolactame, le décanolactame, l’undécanolactame, et le lauryllactame.

Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’au moins un lactame, il peut donc comprendre un seul lactame ou plusieurs lactames.

Avantageusement, ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’un seul lactame et ledit lactame est choisi parmi le lauryllactame et l’undécanolactame, avantageusement le lauryllactame.

La diamine en Ca peut être linéaire ou ramifiée. Avantageusement, elle est linéaire.

Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la butaneméthylènediamine, la 1,5-pentaméthylènedimaine, la 1,6-hexaméthylènediamine la 1,7- heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1 ,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1 ,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16- hexadécaméthylènediamine et la 1 ,18-octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras. Avantageusement, ladite au moins une diamine Ca est en C6-C36 et choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1 ,10-décaméthylènediamine, 1 ,11-undécaméthylènediamine, la 1 ,12- dodécaméthylènediamine, la 1 ,13-tridécaméthylènediamine, la 1 ,14-tétradécaméthylènediamine, la 1 ,16-hexadécaméthylènediamine et la 1 ,18-octadécaméthylènediamine, roctadécènediamine, reicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras.

Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l’acide butanedioïque, l’acide pentanedioïque, l’acide l’acide adipique, l’acide subérique, l’acide azélaïque, l’acide sébacique, l’acide undécanedioïque, l’acide dodécanedioïque, l’acide brassylique, l’acide tétradécanedioïque, l’acide pentadécanedioïque, l’acide hexadécanedioïque, l’acide octadécanedioïque, et les diacides obtenus à partir d'acides gras.

Le diacide peut être linéaire ou ramifié. Avantageusement, il est linéaire.

Avantageusement, le polyamide aliphatique est choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, le PA1010, le PA1012 et le PA1212.

Ledit polyamide semi-aromatique peut être, notamment, un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide tel que défini ci- dessus, un motif obtenu à partir d’un lactame tel que défini ci-dessus et un motif répondant à la formule (diamine en Ce). (diacide en Cd), avec c représentant le nombre d’atomes de carbone de la diamine et d représentant le nombre d’atome de carbone du diacide, c et d étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ce) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, telle que définies ci-dessus, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cd) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, tels que définis ci-dessus, les diacides cycloaliphatiques et les diacides aromatiques;

X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.

T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane.

Ledit polyamide semi-aromatique peut être également un polyamide de formule ZAr dans laquelle Z est un motif issu de la polycondensation d’au moins une diamine aliphatique en Ca telle que définie ci-dessus et Ar est un acide dicarboxylique aromatique, en particulier l’acide térépthalique, l’acide isophtalique et l’acide naphtalénique. Dans un mode de réalisation, le polyamide est aliphatique et choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, le PA1010, le PA1012 et le PA1212.

Dans un autre mode de réalisation, le polyamide est semi-aromatique et choisi parmi le polyamide 11/5T, 11/6T, le 11/1 OT, la MXDT/10T, la MPMDT/10T et la BACT/10T.

Dans un mode de réalisation, ledit polyamide de ladite composition est préalablement lavé au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.

S’agissant du modifiant choc

Le modifiant choc peut être tout modifiant choc à partir du moment où un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l’énergie de fissuration.

Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d’inflexion du thermogramme DSC), en particulier une polyoléfine.

Dans un mode de réalisation, les PEBA sont exclus de la définition des modifiants choc.

La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d'au moins une fonctionnalisée et/ou d'au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (B1) et des polyoléfines non fonctionnalisées (B2).

Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1 , octène- 1 , butadiène. A titre d'exemple, on peut citer :

- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE(linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE(very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .

-les homopolymères ou copolymères du propylène.

- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).

- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).

- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids.

La polyoléfine fonctionnalisée (B1) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui- ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids.

La polyoléfine fonctionnalisée (B1) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :

- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;

- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).

- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).

- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;

- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;

- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères.

La polyoléfine fonctionnalisée (B1) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A- 0342066).

La polyoléfine fonctionnalisée (B1) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.

A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère :

- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ; - les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;

- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.

Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.

Le terme "(méth)acrylate d'alkyle" dans (B1) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en C1 à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.

Par ailleurs, les polyoléfines précitées (B1 ) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.

Les copolymères mentionnés ci-dessus, (B1) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.

Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238.

Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l’éthylène ou copolymère de l’éthylène et d’un comonomère de type alpha oléfinique supérieur tel que le butène, l’hexène, l’octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l’Homme de l’Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».

Avantageusement les polyoléfines fonctionnalisées (B1) sont choisies parmi tout polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d’acide carboxylique. A titre d’exemples de tels polymères, on peut citer les ter polymères de l’éthylène, d’acrylate d’alkyle et d’anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfines greffées par de l’anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l’éthylène, d’acrylate d’alkyle et d’acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d'acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide. Avantageusement, ladite composition constitutive de ladite ou desdites couches d’étanchéité est dépourvue de polyéther block amide (PEBA). Dans ce mode de réalisation, les PEBA sont donc exclus des modifiants choc.

Avantageusement, ladite composition transparente est dépourvue de particules cœur-écorce ou polymères cœur-écorce « core-shell ».

Par particule cœur-écorce, il faut comprendre une particule dont la première couche forme le cœur et la deuxième ou toutes les couches suivantes forment les écorces respectives.

La particule cœur-écorce « core-shell » peut-être obtenu par un procédé à plusieurs étapes comprenant au moins deux étapes. Un tel procédé est décrit par exemple dans les documents US2009/0149600 ou EP0722961.

Dans un mode de réalisation, lorsque le polyamide de la composition est un polyamide semi- aromatique, la proportion de modifiant choc est alors de 0 à moins de 10% en poids, notamment de 0 à 8% en poids, en particulier de 1 à moins de 10% en poids, notamment de 1 à 8% en poids. Avantageusement, dans ce dernier mode de réalisation, ladite composition comprend également de 0,1 à 5% en poids d’additifs.

S’agissant du plastifiant

Le plastifiant peut être un plastifiant couramment utilisé dans les compositions à base de polyamide(s).

Avantageusement, on utilise un plastifiant qui présente une bonne stabilité thermique afin qu'il ne se forme pas de fumées lors des étapes de mélange des différents polymères et de transformation de la composition obtenue.

En particulier, ce plastifiant peut être choisi parmi : les dérivés du benzène sulfonamide tels que le n-butyl benzène sulfonamide (BBSA), les isomères ortho et para de l’éthyl toluène sulfonamide (ETSA), le N-cyclohexyl toluène sulfonamide et le N-(2-hydroxypropyl) benzène sulfonamide (HP-BSA), les esters d’acides hydroxybenzoïques tels que le para-hydroxybenzoate d'éthyl-2 hexyle (EHPB) et le para-hydroxybenzoate de décyl-2 hexyle (HDPB), les esters ou éthers du tétrahydrofurfuryl alcool comme l’oligoéthylèneoxy- tétrahydrofurfurylalcool, et les esters de l’acide citrique ou de l’acide hydroxymalonique, tels que l’oligoéthylèneoxymalonate.

Un plastifiant préféré est le n-butyl benzène sulfonamide (BBSA).

Un autre plastifiant plus particulièrement préféré est le N-(2-hydroxy-propyl) benzène sulfonamide (HP-BSA). Ce dernier présente en effet l'avantage d'éviter la formation de dépôts au niveau de la vis et/ou de la filière d'extrusion ("larmes de filières"), lors d'une étape de transformation par extrusion.

On peut bien évidemment utiliser un mélange de plastifiants. S’agissant des additifs

Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un agent nucléant et un colorant.

S’agissant de la structure

Selon un autre aspect, la présente invention concerne une structure multicouche comprenant au moins une couche d’étanchéité (1) telle que définie ci-dessus.

Lors du contact de l’hydrogène avec ladite couche d’étanchéité, la proportion totale desdits contaminants extraits et présents dans l’hydrogène est inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de la composition constituant ladite couche d’étanchéité, déterminée selon le test défini dans la norme CSA/ANSI CHMC 2 :19.

Dans un premier mode de réalisation, ladite structure multicouche correspond à un réservoir et comprend de plus au moins une couche de renfort composite (2), ladite couche d’étanchéité étant en contact avec l’hydrogène.

Premier mode de réalisation : réservoir

Ladite structure multicouche peut donc comprendre au moins une couche d’étanchéité et au moins une couche de renfort composite qui est enroulée autour de la couche d’étanchéité et qui peuvent adhérer ou non entre elles.

Dans un mode de réalisation, au moins l’une des dites couches de renfort composite (2) est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.

Avantageusement, lesdites couches d’étanchéité et de renfort n’adhèrent pas entre elles et sont constituées de compositions qui comprennent respectivement des polymères différents. Néanmoins, lesdits polymères différents peuvent être du même type.

Ainsi, si l’une des deux couches d’étanchéité et de renfort composite est constituée d’une composition comprenant un polyamide aliphatique, alors l’autre couche est constituée d’une composition comprenant un polyamide qui n’est pas aliphatique et qui est par exemple un polyamide semi-aromatique de façon à disposer d’un polymère de haute tg comme matrice du renfort composite.

Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à 10 couches de renfort composite de natures différentes. Il est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa mais il ne peut y avoir alternance de couches et de couche de renfort.

Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite.

Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite.

Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche de renfort adjacente étant enroulée autour de ladite couche d’étanchéité et les autres couches de renfort étant enroulées autour de la couche de renfort directement adjacente.

Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant enroulée à ladite couche d’étanchéité adjacente.

Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite, ladite couche de renfort étant enroulée autour de ladite couche d’étanchéité.

Toutes les combinaisons de ces deux couches sont donc dans la portée de l’invention, à la condition qu’au moins ladite couche de renfort composite la plus interne soit enroulée autour de ladite couche d’étanchéité adjacente la plus externe, les autres couches adhérant ou non entre elles ou non.

Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polyamide.

Par l’expression même type de polymère, il faut entendre par exemple un polyamide qui peut être un polyamide identique ou différent en fonction des couches.

Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde.

Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde.

Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, ledit polymère P2j est une résine époxyde ou à base d’époxyde. Avantageusement, le polyamide est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polyamide de la couche d’étanchéité est un polyamide aliphatique, en particulier PA6, PA66, PA610, PA612, PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA et 11/MXDT/10T. Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi- aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.

Un polyamide à longue chaîne est un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8.

Dans un autre mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, notamment PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA11/10T, un PA 11/BACT, un PA 5T/10T un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.

Dans un encore autre mode de réalisation, la structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA 11 ou PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde.

Dans un autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde. Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.

Ladite couche externe est une seconde couche de renfort mais transparente qui permet de pouvoir mettre une inscription sur la structure.

Dans un second mode de réalisation, ladite structure multicouche correspond à un tuyau et comprend de plus au moins une tresse métallique extérieure (2’), ladite couche d’étanchéité étant en contact avec l’hydrogène.

Il n’y a donc pas de couche de renfort composite dans ce dernier mode de réalisation.

Ce tuyau est notamment destiné à relier le réservoir ci-dessus défini à la pile à combustible.

Les caractéristiques de la couche d’étanchéité sont identiques à ci-dessus.

S’agissant du matériau fibreux

Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.

Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.

Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.

Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi-cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final.

Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.

Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.

Il peut également correspondre à des fibres avec des fils de maintien.

Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.

Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.

De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.

Il est utilisé sous forme d’une mèche ou de plusieurs mèches.

Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape de fabrication d’une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12, par injection, extrusion, extrusion-soufflage ou rotomoulage.

Dans un mode de réalisation, ledit procédé comprend une étape préalable de lavage du polyamide de la composition au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.

Avantageusement, ledit procédé de fabrication d’une structure multicouche qui correspond à un réservoir et telle que définie ci-dessus, est caractérisé en ce qu’il comprend une étape d’enroulement filamentaire d’une couche de renfort (2), telle que définie ci-dessus, autour de la couche d’étanchéité (1).

Avantageusement, ladite structure multicouche peut être lavée après fabrication au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.

Dans le cas d’un lavage après fabrication avec un solvant polaire, en particulier du méthanol ou avec un mélange eau-solvant polaire, il est nécessaire de rincer la structure pour bien enlever toute trace de méthanol.

Avantageusement, la structure est séchée pendant 2 jours sous courant d’air sec, notamment à une température comprise de 40°C à 80°C, en particulier de 50°C à 70°C, notamment à 60°C après fabrication ou après fabrication et lavage.

Toutes les caractéristiques détaillée ci-dessus s’appliquent également au procédé. Exemples :

Les compositions suivantes ont été préparées selon les techniques bien connues de l'homme du métier pour la constitution de la couche d'étanchéité (1) des structures de l'invention (tableau 2). [Tableaux 2]

C1 à C2 : compositions comparatives

PA11 : Le PA11 est un polyamide 11 de Mn (masse moléculaire en nombre) 45000. La température de fusion est de 190°C, son enthalpie de fusion est 56 J/g.

PA11/10T : Rilsan HT (Arkema)

Plastifiant : BBSA (n-butyl benzène sulfonamide)

Modifiant choc : lotader® 4700 (50%) + lotader® AX8900 (25%) + lucalène® 3110 (25%) Additifs : stabilisants

Les couches d'étanchéité (liner) de l’invention comprenant une couche d’étanchéité (1) sont obtenues par rotomoulage de la couche d’étanchéité (liner) avec les différentes compositions ci- dessus à une température adaptée à la nature de la résine thermoplastique utilisée.

Les structures multicouches comprenant un renfort composite en résine époxyde ou à base d’époxyde sont obtenues par un procédé d’enroulement filamentaire voie humide qui consiste à enrouler des fibres de carbone autour du liner, lesquelles fibres étant préalablement pré imprégnée dans un bain d’époxyde liquide ou un bain à base d’époxyde liquide. Le réservoir est ensuite polymérisé en étuve pendant 2h.

Les contaminants extraits dans l’hydrogène des différentes couches d'étanchéité des structures multicouches fabriquées à partir des compositions ci-dessus ont été quantifiés selon la norme CSA/ANSI CHMC 2 :19 :

Structure multicouche avec couche d’étanchéité à base de composition-11 : <0,5%

Structure multicouche avec couche d’étanchéité à base de composition-12 : <0,5%

Structure multicouche avec couche d’étanchéité à base de composition-13 : <0,5%

Structure multicouche avec couche d’étanchéité à base de composition-14 : <0,5%

Structure multicouche avec couche d’étanchéité à base de composition-15 : <0,5%

Structure multicouche avec couche d’étanchéité à base de composition-CI : >3%

Structure multicouche avec couche d’étanchéité à base de composition-C2 : >3%