Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTILOCUS REPETITIVE DNA SEQUENCES FOR GENOTYPING BACILLUS ANTHRACIS AND RELATED BACTERIA
Document Type and Number:
WIPO Patent Application WO/2001/081543
Kind Code:
A2
Abstract:
Bacillus anthracis is one of the most molecularly homogenous pathogens described, which makes strain discrimination particularly difficult. The present invention includes a molecular-typing method based upon rapidly evolving variable number tandem repeat (VNTR) loci. Multi-locus VNTR analysis (MLVA) combines the information from multiple alleles at several marker loci. PCR amplification products from eight VNTR regions are detected and sized using fluorescently labeled primers. Five of these eight loci were discovered by characterization of AFLP markers (vvrC1, vrrC2, vrrB1, vrrB2 and CG3); two were discovered from complete plasmid nucleotide sequences (pXO1-aat, pXO2-at); and, one was previously known (vrrA). 425 isolates were characterized to identify 89 distinct genotypes. VNTR markers frequently had multiple alleles (from 2 to 8) and diversity (D) values between 0.3 and 0.8. UPGMA cluster analysis identified six genetically distinct groups that appear to represent genetic clones. Some of these clones show worldwide distribution, while others are restricted to particular geographic regions. The present method is also applicable to related bacteria. An additional 28 loci having variable repeat units have been identified by examining the B. anthracis DNA sequence, but these loci have not yet been utilized in the identification of B. anthracis strains.

Inventors:
KEIM PAUL STEPHEN
JACKSON PAUL J
Application Number:
PCT/US2001/013373
Publication Date:
November 01, 2001
Filing Date:
April 26, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV CALIFORNIA (US)
International Classes:
C07H21/04; C12Q1/68; C12Q1/689; (IPC1-7): C12N/
Other References:
ANDERSEN ET AL.: 'Identification of a region of genetic variability among bacillus anthracis strains and related species' JOURNAL OF BACTERIOLOGY vol. 178, no. 2, January 1996, pages 377 - 384, XP002906641
Attorney, Agent or Firm:
Freund, Samuel M. (MS D412 Los Alamos, NM, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS :
1. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 1.
2. The isolated nucleic acid as described in claim 1, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
3. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 2.
4. The isolated nucleic acid as described in claim 3, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
5. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 3.
6. The isolated nucleic acid as described in claim 5, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
7. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 4.
8. The isolated nucleic acid as described in claim 7, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
9. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 5.
10. The isolated nucleic acid as described in claim 9, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
11. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 6.
12. The isolated nucleic acid as described in claim 11, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
13. An isolated nucleic acid useful for identifying strains of Bacillus anthracis comprising the nucleotide sequence of SEQ ID NO : 7.
14. The isolated nucleic acid as described in claim 13, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
15. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 8.
16. The isolated nucleic acid as described in claim 15, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
17. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 9.
18. The isolated nucleic acid as described in claim 17, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
19. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 10.
20. The isolated nucleic acid as described in claim 19, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
21. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 11.
22. The isolated nucleic acid as described in claim 21, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
23. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 12.
24. The isolated nucleic acid as described in claim 23, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
25. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 13.
26. The isolated nucleic acid as described in claim 25, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
27. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 14.
28. The isolated nucleic acid as described in claim 27, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
29. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 15.
30. The isolated nucleic acid as described in claim 29, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
31. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 16.
32. The isolated nucleic acid as described in claim 31, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
33. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 17.
34. The isolated nucleic acid as described in claim 33, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
35. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 18.
36. The isolated nucleic acid as described in claim 35, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
37. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 19.
38. The isolated nucleic acid as described in claim 37, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
39. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 20.
40. The isolated nucleic acid as described in claim 39, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
41. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 21.
42. The isolated nucleic acid as described in claim 41, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
43. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO : 22.
44. The isolated nucleic acid as described in claim 43, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
45. An isolated nucleic acid comprising the nucleotide sequence selected from the group consisting of SEQ ID NO : 23 through SEQ ID NO : 77, and SEQ ID NO : 78.
46. The isolated nucleic acid as described in claim 45, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
47. An isolated nucleic acid comprising the nucleotide sequence selected from the group consisting of SEQ ID NO : 79 through SEQ ID NO : 105, and SEQ ID NO : 106.
48. The isolated nucleic acid as described in claim 47, wherein said nucleotide sequence is used for identifying strains of Bacillus anthracis and related bacteria.
Description:
MULTILOCUS REPETITIVE DNA SEQUENCES FOR GENOTYPING BACILLUS ANTHRACIS AND RELATED BACTERIA RELATED CASES The present non-provisional patent application claims the benefit of Provisional Application Serial No. 60/199, 911 which was filed on April 26, 2000.

STATEMENT REGARDING FEDERAL RIGHTS This invention was made with government support under Contract No.

W-7405-ENG-36 awarded by the U. S. Department of Energy to The Regents of The University of California. The government has certain rights in the invention.

FIELD OF THE INVENTION The present invention relates generally to molecular typing of Bacillus anthracis and, more particularly, to the utilization of variable number tandem repeat (VNTR) loci for the identification of genotypes of Bacillus anthracis and related bacteria.

BACKGROUND OF THE INVENTION Anthrax is a disease that has plagued mankind for millennia. While anthrax currently affects mostly livestock and wildlife around the world, it can and does kill humans. Current interest in anthrax is related to its potential as a bioterrorism agent with devastating impact ; the spores of Bacillus anthracis can remain stable for scores of years and can be readily packaged into biological weapons. This same longevity may greatly influence the ecology and evolution of this pathogen.

The initiating spores for an anthrax outbreak may emanate from a single long- deceased victim. Dormancy reduces the rate of evolutionary change and may contribute to the extremely homogeneous nature of B. anthracis.

Numerous studies have encountered the lack of molecular polymorphism within B. anthracis (See, e. g., L. J. Harrell et al.,"Genetic variability of Bacillus anthracis and related species"J. Clin. Microbiol. 33 : 1847-1850 (1995), I.

Henderson et al.,"Differentiation of Bacillus anthracis and other'Bacillus cereus

group'bacteria using IS231-derived sequences"FEMS Microbiol. Lett. 128 : 113-118 (1995), and P. Keim et al.,"Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers"J. Bacteriol.

179 : 818-824 (1997)).

Previous analyses using amplified fragment length polymorphisms (AFLP) observed only 30 differences among >1000 fragments (See Keim et al., supra).

Many of these AFLP markers had low diversity values and little discriminatory power. A comparative DNA sequencing study of the protective antigen gene found only five differences across 2500 nucleotides in 25 diverse strains (See, e. g., L. B.

Price et al.,"Natural Genetic Diversity in the Protective Antigen Gene of Bacillus anthracis"J. Bacteriol. 181 : 2358-2362 (1999)).

An exception to this trend may be found in G. L. Andersen et al., "identification of a region of genetic variability among Bacillus anthracis strains and related species"J. Bacteriol. 178 : 377-384 (1996) in which a previously identified AP-PCR marker (See Henderson et al., supra) was examined by DNA sequence analysis. A large ORF (vrrA) that contained a variable number tandemly repeated (VNTR) sequence was found. By contrast with the extreme monomorphic nature of the genome, five different attetic states were observed in the vrrA VNTR among diverse strains (See, e. g., P. E. Jackson et al.,"Characterization of the variable- number tandem repeats in vrrA from different Bacillus anthracis isolates"Appl.

Environ. Microbiol. 63 : 1400-1405 (1997)). This demonstrated that even highly similar B. anthracis strains could be differentiated if diverse genomic regions could be identified. Such discrimination is essential if molecular epidemiology is to aid in the understanding and control of anthrax.

Molecular typing of pathogens has long been a part of disease control and has recently been accelerating with new technologies. Traditionally, serotyping has been extremely valuable and was often able to identify important cellular

components associated with virulence. While serotyping will continue to be an important tool, it often has limited discriminatory power that resolves pathogens into only a few types. Multi-locus enzyme electrophoresis (MLEE) provides a multiple factor genetic analysis with as many as 40 genetic loci analyzed (See, e. g., E. F.

Boyd et al.,"Molecular genetic relationships of the salmonellae"Appl. Environ.

Microbiol. 62, 804 (1996)). In addition, enzyme loci frequently have greater than two alfeles providing increased genetic resolution per locus. However, DNA typing has an even greater capacity for genetic dissection of bacterial pathogens and is limited only by the genome size and the technology. With genome sizes being in the millions of nucleotides, technology is invariably limiting. Pulse-field gel electrophoresis (PFGE) can resolve very large DNA restriction fragments, which has proven generally applicable to many pathogens and has notable successes in the epidemiological tracking (See, e. g., M. K. Miettinen et al.,"Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout"J. Clin. Microbiol. 37, 2358 (1999)).

However, PFGE is a cumbersome technology, which cannot easily handle very large sample sets, nor are PFGE data sets easily standardized for transfer throughout the public health community. Ribotyping uses restriction fragment length polymorphisms associated with rRNA genes (See, e. g., T. C. Popovic et al., "Use of molecular subtyping to document long-term persistence of Corynebacterium diphtheriae in South Dakota"J. Clin. Microbiol. 37 : 1092-1099 (1999)) and is generally applicable to all bacteria but is limited by the number of ribosomal loci in the genome.

Recently, PCR-based methods have exploded onto the molecular typing effort. These approaches include AFLPs, REP-PCR, RADPs and AP-PCR (See, e. g., J. Welsh and M. McClelland"Fingerprinting genomes using PCR with arbitrary primers"Nucleic Acids Res. 18 : 7213-7218 (1990), P. R. Vos et al.,"AFLP : a new technique for DNA Fingerprinting"Nucleic Acids Res. 23 : 4407-4414 (1995.), and

J. G. Williams et al.,"DNA polymorphisms amplified by arbitrary primers are useful as genetic markers"Nucleic Acids Res. 18, 6531 (1990). The power of PCR- based methods is the ease in which they can be applied to many bacterial pathogens and their multi-locus discrimination. These methods have proven valuable for genetic dissection of pathogens where other approaches have failed.

However, a limitation of many PCR-based approaches is the biallelic (binary) nature of their data ; frequently the presence or absence of a marker fragment.

Comparative gene sequencing is becoming feasible for strain characterization and can be performed at multiple loci. Multiple locus sequence typing (MLST) can provide multiple alleles (haplotypes) per locus at well-defined and genomically dispersed locations (See, Maiden et al., supra). Nucleotide data are already standardized and very useful for phylogenetic analyses. If sufficient nucleotide diversity is present, MLST can distinguish among species and strains. While routine clinical MLST is still unfeasible, hybridization arrays (e. g., chip technology) could make single nucleotide polymorphisms (SNPs) a main stream approach to pathogen typing in the future (See, e. g., M. Vahey et al.,"Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of human immunodeficiency virus type 1 clades and viral isolates with length polymorphisms"J. Clin. Microbiol. 37 : 2533-2537 (1999).).

One of the most recent developments in molecular typing involves variable number tandemly repeated (VNTR) sequences (See, e. g., A. van Belkum et al., "Short-sequence DNA repeats in prokaryotic genomes"Microbiol. Mol. Biol. Rev.

62 : 275-93 (1998)). Short nucleotide sequences that are repeated multiple times often vary in copy number, creating length differences that can be detected by PCR using flanking primers. VNTRs appear to contain greater diversity and, hence, greater discriminatory capacity than any other type of molecular typing system (See van Belkum et al., supra). Many bacteria have VNTRs, though development of the PCR primers for these markers is specific to each pathogen. P. Keim et al. in

"Molecular diversity in Bacillus anthracis"J. Appl. Microbiol. 87 : 215-217 (1999) have identified eight novel variable number tandemly repeated loci from previously known amplified fragment length polymorphism markers or from the DNA sequence for Bacillus anthracis. The variable number tandem repeat (VNTR) loci are found in both gene coding (genic) and non-coding (non-genic) regions.

Accordingly, it is an object of the present invention to provide a method for molecular typing of Bacillus anthracis.

Another object of the present invention is to utilize rapidly evolving variable number tandem repeat (VNTR) loci for molecular typing of Bacillus anthracis.

Additional objects, advantages and novel features of the invention will be set forth, in part, in the description that follows, and, in part, will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

SUMMARY OF THE INVENTION To achieve the foregoing and other objects of the present invention, and in accordance with its purposes as embodied and broadly described herein, the method for discriminating among different B. anthracis isolates hereof includes a multiple-locus VNTR analysis (MLVA) procedure using eight marker loci. Five of these markers (vary, vrrC2, vary, vrrB2 and CG3) were identified by the nucleotide sequence characterization of B. anthracis AFLP markers (See,"Molecular Evolution And Diversity In Bacillus anthracis As Detected By Amplified Fragment Length Polymorphism Markers"by Paul S. Keim et al., J. Bacteriol. 179, 818. (1997)). One marker (vrrA) was identified previously (See,"Identification Of A Region Of Genetic Variability Among Bacillus anthracis Strains And Related Species"by, G. L.

Andersen et al., J. Bacteriol. 178, 377 (1996), and two were identified by analysis of the pX01 and pX02 plasmid sequences (pX01-aat and pX02-at) (See,"Molecular

Epidemiology Of An Outbreak Of Febrile Gastroenteritis Caused By Listeria Monocytogenes In Cold-Smoked Rainbow Trout"by M. K. Miettinen et al., J. Clin.

Microbiol. 37, 2358 (1999)). Because of the nearly monomorphic molecular nature of B. anthracis, MLVA may be the only reasonable method to study the diversity, evolution and molecular epidemiology of this pathogen. Analysis of a worldwide 8. anthracis collection reveals 89 distinct MLVA genotypes that cluster into approximately six major genetic groups that represent worldwide clones.

Benefits and advantages of the present invention include a robust and easily transferable approach to characterizing B. anthracis isolates. The protocols presented are rapid and require only crudely isolated DNA to provide high- resolution molecular typing analysis. The individual marker alleles are uniquely identified by a combination of size and fluorescent color. Therefore, automated gel analysis is routine, and instrumentation for performing MLVA are widely available.

BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings : FIGURE 1 is a fluorescent image of an AB1377 electrophoresis gel containing amplification products from the eight VNTR loci against 32 B. anthracis isolates, each marker allele having a unique size and color combination, thereby permitting exact identification.

FIGURE 2 is a Dendrogram showing genotype results using the MLVA method of the present invention.

DETAILED DESCRIPTION Briefly, the method of the present invention includes a multiple-locus VNTR analysis (MLVA) system which uses the combined power of multiple alleles at several marker loci. Eight marker loci effectively discriminate among different

isolates of B. anthracis. Five of these markers (vrrC"vrrCa vrrB1, vrrB2 and CG3) were identified through the nucleotide sequence characterization of B. anthracis AFLP markers (See Keim et al., supra). One was from a previous report (vrrA) (See Anderson et al., supra) and two were from the pX01 and pX02 plasmid sequences (pXO1-aat and pX02-at) (See, R. Okinaka et al.,"The Structure and Organization of pXO1, the toxin containing plasmid of Bacillus anthracis"J.

Bacteriol. 181, 6509 (1999)). The variable AFLP DNA fragments were sequenced, flanking regions characterized, and locus-specific PCR primers developed.

Likewise, locus-specific primers were designed around the variable plasmid regions. The locus-specific PCR primers were optimized for multiplexed analysis using primers from the previously described vrrA locus (See Andersen et al., supra). These loci also exist in the close relatives of B. anthracis such as B. thuringesis, B. mycoides, B. cereus, and have been shown to vary greatly in these species as well. Therefore, similar primers can be optimized for the analysis of those species.

TABLE 1 shows the primers used in DNA fingerprinting of B. anthracis.

TABLE 1 ,.. lVIarker Primer : naine. Primer s. eq. nc Dye. Tin Loc. us : :. : label. : °C.. : Vb VrrA-fl-fam CAC AAC TAC CAC CGA TGG CAC A fam 71. 0 (SEQ ID NO : 1) vrrA-rl GCG CGT TTC GTT TGA TTC ATA C none 69. 7 (SEQ ID NO : 2) VrrBf ; VrrBl-fl-fam ATA GGT GGT TTT CCG CAA GTT ATT fam 70. 0 (SEQ ID NO : 3) C vrrBl-rl GAT GAG TTT GAT AAA GAA TAG CCT none 69. 0 (SEQ ID NO : 4) GTG ijt ii VrrB2-fl-fam CAC AGG CTA TTC TTT ATC AAA CTC fam 72. 0 (SEQ ID NO : 5) ATC vrrB2-rl CCC AAG GTG AAG ATT GTT GTT GA none 68. 8 (SEQ ID ; i lZ = Z !. Zil b VrrCl-fl GAA GCA AGA AAG TGA TGT AGT GGA none 66. 8 it i ij. ;.. liZi.... Zi i.. s Z (SEQ ID NO : 7) C , :. jZ jjl 0 Zjij ; Zjj ji, iZiijij vrrCl-rl-fam CAT TTC CTC AAG TGC TAC AGG TTC fam 67. 5 (SEQ ID NO : 8) vYrrCi VrrC2-fl-hex CCA GAA GAA GTG GAA CCT GTA GCA hex 70. 9 (SEQ ID NO : 9) C vrrC2-rl GTC TTT CCA TTA ATC GCG CTC TAT none 70. 6 (SEQ ID NO : 10) C CG3-fl-ned TGT CGT TTT ACT TCT CTC TCC AAT ned 66. 2 (SEQ ID NO : 11) AC CG3-rl AGT CAT TGT TCT GTA TAA AGG GCA none 66. 2 (SEQ ID NO : 12) T PX01-AAT-f3-fam CAA TTT ATT AAC GAT CAG ATT AAG fam 66. 3 (SEQ ID NO : 13) TTC A -AAT-r3 TCT AGA ATT AGT TGC TTC ATA ATG none 66. 7 (SEQ ID NO : 14) GC pX02-atPX02-AT-fl-hexTCA TCC TCT TTT AAG TCT TGG GT hex 64. 4 (SEQ ID NO : 15) GTG TGA TGA ACT CCG ACG ACA none 65. 8 (SEQ ID NO : 16)

TABLE 2 shows the DNA sequence from the variable regions of Bacillus anthracis, the sequence regions corresponding to the PCR primers listed in Table 1 are blocked.

TABLE 2 a) The VrrB locus (SEQ ID NO : 17) : *Note that the vrrB,-r1 and the vrrB2-fl primer sequences overlap.

ACACAAACATCAAGAAAXAACAGAAGATATGCAGAGCTTCGCTTCAACA CAGCGATTTCTCAAATGATGGTGTTCATCAACGATGCATACAAAGCTGAAACAC TTCCGAAAGAATATGTAGAAGGTTTCGTAAAAATGATTGCACCAGTTGCACCTC <BR> ACATCGGGGAAGAGCTATGGAGCAAACTTGGATACAATGAAACAATCACATAT<BR& gt; GCAAGCTGGCCAACATTTGATGAGTCTAAACTTGTAGAAGATGAAGTTGAAATC<BR > GTTGTTCAAGTTATGGGTAAAGTTCGCGCAAAACTAACAATGAGTAAAGACGCA TCAAAAGACGAAATGGAAAAACTTGCACTTGAAGCAATTCAAGACCAAATCGA <BR> AGGAAAAACAGTTCGTAAAGTAATTGTAGTTCCTGGAAAACTTGTTAACGTTGT TGCAAACTAATTCATTCTAAATAAAAGCTCAGAGTATTTATGCTCTGAGCTTTTT <BR> TGTGTAGAAAATAATTTCTGGATCAGCTTCATCTAAATTTTCAACTATTCCACTA CGTATAAAACCGTTCGCGTTAAATACTTTCTGCATACTTTCATTCGATTCATTCG <BR> TTGAAGAAAAGAAGCGGAATTCCAATACAGACAAACACCTATTTTTTTATATGA<BR > AATATGATAAAAAAGGTAGGCTAAATTGAGTAGAAGAGGTGAAAGGAATGAAA GGGATGGACAATAATGCACCACACGGTTTTTTCGGAGGTGGATCGGATAGTTAT GAACAAATGATGTTAATGGGTGGAGCTGGTCAACAAGGATATGGCGGAATTCC GAGCTGGATGGGTGGATCACCTGGAGGGTTTTCAACATCAGTAGCTGGCGTACA AACAGGAATGCCTACATCAATGGGGGGCTTTTCGACATCAGGGGCTGGAATGCC TGCAGTAACAGGAGGCTTTCCAACGTCAGTAGCTGGCGTACAGACAGGATTTCC AGTACCAGGAGTAGGAGTTGTAGCTGGAG EATGGTCATCATGGACATCACCACCATCAAGGTCACCACGGTCATCATGGACA TCACCACCATCAAGGTCACCACGGTCATCATGGACATCACCACCATCAAGGTCA <BR> <BR> CCACGGTCATCAAGGCCACCATCATCACCAAGGTCACCACGGTCATCATGGGCA TCATCAACAACAAGTACATCACCACGGCCATCATCATATACATC CTTT-GGTCACCAAGGCCACCATGATCATCACGGTCACCA

CGGTCATCAAGGCCACCACGGTCAACACAGTCAACAGCACCAACAGCACCAAC AATATCAACAATATCAACAATATCAACAATATATCAACAA ICAGqGGAATTGGAGCAGGGGCAGCGGGGGCAGCGGCAGGAGCGGCTAGTATTA GTGGAGCAGCAGGGCACGCTGGACACGTGGGTCATTAATACACCACAGGAAAA AAGACATAATAAAAAACTGCTAGGAGTTCCTAGCAGTTTTTTTCAGCTTCTTGGC GTTGACGTTCGATTTCAGCACGAAGTTGTGGTTCTGGTGCTTGCCAGCCTTCAGG TTTTAGAATTTTCCCGTCACCTTCGCGGAATCGAGGTTTCCCGTCTGGGAATAGT <BR> TTTGCCATGTTTGCATTATTTACAATTTCGAATCCTTTATCAGGACGTACGCCCA TTTCGGCAAACGTGCCGAATGCAAAGTAAATAAGATCAATTAGTGCATCGTATT <BR> GATCTTCAACAGTCGTTGCTTCTAGAAATTCTTCTAGCTCTTCTTGCATAAAACT CGCACGGATTTTTGCACGTTCTTCTGTTAATTTTGTTGGAGTATTTGTCACAGGA TGTCCGAATACTTCATGCATTTTTGCAACAAGTTCGTACCCTTTATCTAAACCTTT TTCGTTTGTCATGTTGATTCATCCTTTCTCGCTTTGTGCCGAATCTCATTGTAACA TAAGCTGATTATGAAATGAAAAGGGACTGTTTAAAAGTTTCATCTTTTGGTTAAG GTAGGGAAATATTAT b) CG3 variable sequence (SEQ ID NO : 18) : .. GAATTCCGTAATCCGATACTAAATATAAAAGTTCTTCTTTCTTTATTTCA ATTACTTTTTCCAATTTCACTAATTCCATA AAATGTATGTATTTTAGTATAGCCTATTTACATAATTAGTAAAAGTAAAATATGC ATGTAAAATCTTACAAATATGAAAATAATATAATATCACCAAATAAATTT IA'l'(i (iAC'IICATCTCATATTCATAACAAATCGGAATTTC TCTAAAGTTATATCTTTATATTTTGGAGCCCTCTTACTTAA c) GG2 variable sequence (SEQ ID NO : 19) :

TGCTCCTGTAGCTGTTGCTGGTGGCGCTGGAGA AGCTGCTGCTGAGAAAACTGAATTTGATGTGGAACTAACTAGCGCTGGTGCACA AAAAATCAAAGTTATCAAAGTTGTTC TTAA d) AAT repeat from pX01 (SEQ ID NO : 20) : TAAAAAATTCATTGATATTTTTAAGGAAGAAGGGAGTAATTTAACTTCGT ATGGGAGAACAAATGAAGCGGAATTTTTTGCAGAAGCCTTTAGGTTAATGCATT<BR > CTACGGACCATGCTGAACGTTTAAAAGTTCAAAAAAATGCTCCGAAAACTTTCE [AATA. TTATTAACTCATAAGTAATGTATTAAAA ATTTTCAAATGGATTTAATAATAATAATAATAATAATAATAACGGGACCA m CTTGATAGTAATTCTTGGGAAGCACCAGATAG TGTAAAAGGTGGCATTGCCAGAATGATATTTTATGTGTTCGTTAGATATGAAGG CAAAAACAATGATCCTGACCTAGAACTTAATGAT e) AT repeat from pX02 (SEQ ID NO : 21) : CCTAAGTAATAAACCTCATAAATCTGTCGCCAGTTACAACGTAGCACCCA AAGATAGGCATGTCAATTGTACAAATTATAAATTTTAATATATGAATCACAAAT TATAAGGATATTTACTATACATTCTTTTGTATTGATATTTTTAAGCCCTCTTCTAA< BR> AAAACGGCTCTTTATTTTCGTTTTTAACGCTTTTTACAACTACCATTAATACATTT< BR> GCACCAAAAAGAGGAAAAATCATAAAAACGAATTAATAGCCCCCTTAAATGGA ATTCCTATAAAATCATTTCAAATTATTGTT A TATTTATCTACCTTTGCGGTATGTGAAATTATATATATATATATCAAAAGAAAAA AGGAAGGGGAATACCCCCCTCCTTTACTTGTACTTT E TTGGACAATATACAAAGACCCATTCCATTGTAATTGTACGTCGCCCTGTTGA AAGCCAGACAACACGCCATGCAGCGCCCCCACATTTATTGCAGCGGTACACCTC <BR> <BR> ATTGTGATTTACCTCAAAACCAATTTGTTTCTGTTTCATTTAAATCTCTCCTTTGC

D vrrC variable sequence (SEQ ID NO : 22) : *Note that the vrrC1-r1 and the vrrC2-1 primer sequences overlap.

GAGCGACAATATGAAGAGAGTAAAAAGGAAGAAAAGTCAGTTGTCGATC<BR> AATGGCTTGAGAAAAACGGTTATGAAATCGAACGCCAAGAGCCTATAGTAGAA<BR& gt; GAAAAAGAAGTGGTTCAAGAAATGAGTGCACCGCAGGAAGTTCCAGCGGCTGA ATTACTTCATGAAACAATTGCTGAGCGCATGGAAGGTGC AAAAACATTCTACAAGAGGAATTAGTAGATTCTAAAGTAGAG CACGAGGATACAATATTATCAGAAGAAATTAAACGTAGTACAGAAATAGAACA ACCTACTATTGAAGTAGAAAAACAAGCACCAGAAGAATCAGTGATTGTCAAAG <BR> <BR> CAGAAGAAAAACTTGAAGAAACAATTGTTGTAGAAATACCAGAAGAAGTGGAA<BR& gt; <BR> GTAATTGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGA<BR& gt; <BR> AGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGAAGAGTCAGAAGAAGTAG AAGTAATTGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCGGAAACA <BR> <BR> GAAGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGAAGAGTCAGAAGAAGT AGAAGTAATTGCAGAAACAGAAGAGTTAGAAGAAGTGGAAGTAACTGCAGAAA CAGAAGAATTAGAAGAAGTGGAAGTAGTTGCAGAAACAGAAGAGTTAGAAGAA <BR> <BR> GTGGAAGTAATTGCAGAAACAGAAAAATTAGAAGAATTAGAAGAAGTGGAAGT<BR& gt; <BR> AATTGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGAAG CACAAGAAATGGTGTT AAATGAAGCAATTGAACAAAAGAATGAATTCATACATGTTGCTGTGGCTGATGA<BR > <BR> ACAAACGAAAAAAGATGTTCAAAGCTTTGCGGATGTTTTAATTGCGGAGGAACA ATCAGTTGTAGAAGAAACACCGATTGTAGAAGAACAACCAGTTGCAGAAGAAG CACCGGTCGTAGAAGAACAATCAGTTGTAGAAGAAACACCGATTGTAGAAGAA <BR> <BR> CAACCAGCTGCAGAAGAAGCACCGGTCGTAGAAGAACAATCAGTTGTAGAAGA<BR& gt; <BR> AACACCGATTGTAGAAGAAGCACCGGTCGTAGAAGGACAATCAGTTGTAGAAG<BR& gt; <BR> AAGCACCGATTGCAGAAGAACAACCAGTTGCAGAGGAAACATCGGTCGTAGAA

GAACAACCAGTTGCAGAGGAAACATCGATCGTAGAAGAACAACCAGTTGCAGA GGAAGCACCAGTCGTAGAAGAACAACCAGTTGTACAAAAAGAAGAACCAAAAC GTGAGAAAAAGCGTCACGTACCATTTAATGTTGTTATGTTGAAACA ç Z ATGCGTCTAGAACGAATGGAATGCAATCTTCTATGA GTGAAAGAGTAGAGAATAAGCCTGTACATCAAGTAGAAGAACAACCACAAGTG <BR> GAAGAAAAGCCAATGCAACAAGTAGTAGTGGAGCCACAAGTGGAAGAGAAAC AAATGCAGCAAGTAGTGGAGCCACAAGTGGAAGAAAAACCAATGCAACAAGTA <BR> GTAGTGGAACCACAAGTGGAAGAAAAACCAATGCAACAAGTAGTAGTGGAGCC<BR& gt; ACAAGTGGAAGAAAAACCAATGCAGCAAGTAGTGGTAGAACCGCAAGTGGAAG<BR& gt; AAAAACCAATGCAACAAGTAGTAGTGGAGCCACAAGTGGAAGAAAAACCAATG<BR& gt; CAGCAAGTAGTGGTAGAACCGCAAGTGGAAGAAAAACCAATGCAGCAAGTAGT<BR& gt; GGTAGAACCGCAAGTGGAAGAAAAACCAGTGCAGCAAGTAGTAGAGCCACAAG<BR& gt; TGGAAGAAGTGCAGCCAGTACAACAAGTAGTGGCAGAGCAAGTACAAAAGCCA<BR& gt; ATTTCAAGTACGGAAGTAGAAGAGAAAGCATATGTTGTAAATCAAAGAGAGAA T PCR amplification products from the eight VNTR regions were detected and sized using fluorescently labeled primers on an automated DNA sequencer. A collection of 425 isolates were MLVA characterized to identify 89 distinct genotypes. VNTR markers frequently had multiple alleles (from 2 to 8) and diversity (D) values between 0. 3 and 0. 8. UPGMA cluster analysis identified six genetically distinct groups that appear to represent genetic clones. Some of these clones show worldwide distribution, while others are restricted to particular geographic regions. Human commerce has been involved in the dispersal of particular clones in ancient and modern times. Because of the nearly monomorphic molecular nature of B. anthracis, MLVA may be the only reasonable method for understanding the diversity, evolution and molecular epidemiology of this pathogen.

Although the function of these genetic sequences is unknown, the hypermutability of these genetic elements could have great biological importance to these bacteria. Thus, it is likely that gene products from these DNA sequences may be useful for therapeutic, diagnostic or industrial applications.

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying Figures.

A. DNA Preparation : 426 B. anthracis isolates from around the world (Table 3) were analyzed.

TABLE 3 Continent Country No. No. Isolates Genotypes Africa Mozambique 5 4 (MOZ) Namibia (NAM) South Africa 127 9 (SAF) Tanzania (TANZ) 5 Zambia (ZAM) 17 2 Zimbabwe (ZIM) 4 2 Totals = 181 18 Asia China 5 India 3 2 Indonesia (INDO) 5 4 Pakistan (PAK) 4 4 S. Korea (KOR) 4 2 Turkey (TURK) 41 12 Totals = 64 31 Australia (AUS) Totals= Europe (EUR) Croatia (CRO) 1 France (FRA) Germany (GER) Hungary (HUN) 3 2 Ireland (IRE) 1 1 Italy 3 2 Norway (NOR) 5 5 Poland (POL) 1 1 Slovakia (SLO) 3 2 Spain (SPA) 2 1 Switzerland (SWI) 2 2 United Kingdom 19 10 (UK) Totals = 57 32 North America Canada (CAN) 51 7 (NoA) Haiti 1 1 United States 32 16 (USA) Totals = 84 22 South America Argentina (ARG) 2 2 (SoA) Brazil (BRA) 1 1 Totals = 3 3 Overall Total = 419 89

These samples include previously described samples (See, "Characterization Of The Variable-Number Tandem Repeats In vrrA From Different Bacillus anthracis Isolates"by Paul J. Jackson et al., Appl. Environ. Microbiol. 63, 1400 (1997),"Molecular Evolution And Diversity In Bacillus anthracis As Detected By Amplified Fragment Length Polymorphism Markers"by Paul S. Keim, J.

Bacteriol. 179, 818 (1997)), plus more than 300 additional clinical or environmental isolates (Table 1). DNA from each isolate was obtained by either large batch

procedures (See, Jackson et al. 1997, supra, and Keim et al. 1997, supra.) or by a greatly simplified approach requiring only heat lysis of a single colony. In this abbreviated protocol, B. anthracis cells were streaked onto blood agar plates, and then incubated at 37° C overnight. A single colony from each plate was transferred into a microfuge tube containing 200 pl of TE (Tris HCI, pH = 8. 0, 1. 0 mM EDTA).

The colony was resuspended by vortexing or repetitive pipetting. The cellular suspension was heated to 95° C for 20 minutes, and then cooled to room temperature. Cellular debris was removed by centrifugation at 15, 000 X g for 1 minute. The supernatant was then transferred to a new tube for storage. 1 1ll of the lysate contained sufficient template to support a single PCR reaction, which means that this procedure can supply template for 200 reactions. Reactions were periodically optimized by titrating the heat lysate template concentrations using serial dilutions. Both DNA preparation protocols gave the same MLVA results ; however, the heat lysis procedure is much more rapid and easily adapted to large- scale processing of samples.

B. MLVA PCR : MLVA reaction primers (Table 1) were designed to provide uniquely labeled or sized amplicons for every allele at the eight VNTR loci.

PCR amplification of all eight VNTR loci was routinely accomplished using four reactions. Two of the amplicons (vrac, and vrrC2) are significantly larger than the others and, in addition, were amplified using partially complementary primers.

Likewise, verb, and vrrB2 were amplified using complementary primers. Limited unique sequences in these repeated regions necessitated the overlap of these primers and, thus, required these amplicons to be divided into separate PCR reactions. Large amplicons tend to be outcompeted by small amplicons and, thus, require separate PCR reactions. These restraints led to a four reaction design where : (1) verb, was grouped with CG3 and vrrA ; (2) vrrB2 was grouped with pX01- aat and pX02-at ; (3) vrrC, was amplified alone ; and (4) vrrC2 was amplified alone.

Reaction 1 contained : 1x PCR buffer (20 mM Tris-HCI pH = 8. 4, 50 mM KCI) ; 2 mM MgCl2 ; 0. 2 mM dNTPs ; 0. 04 U/pl PlatinumTM Taq DNA polymerase (Gibco- Life Technolgoies) ; 0. 1 uM CG3-F1 and CG3-R1 ; 0. 2 uM each of vrrA-F1 ; vrrA-R1, vrrB,-F1 and vrrB,-R1 ; 0. 04-0. 2 ng/pl of template DNA or simply 1 µl of the single colony lysate.

Reaction 2 contained : 1x PCR buffer ; 4 mM MgCI2 ; 0. 2 mM dNTPs ; 0. 04 U/µl Platinum Taq DNA polymerase ; 0. 4 uM each of vrrB2-F1, vrrB2-R1, pX01-aat-F1, pX01-aat-R1, pX02-at-F1 and pX02-at-R1 ; 0. 04-0. 2 ng/pl of template DNA or simply 1 pi of the single colony lysate.

Reaction 3 contained : 1x PCR buffer ; 2 mg MgCl2 ; 0. 2 mM dNTPs ; 0. 04 U/ul Platinum Taq DNA polymerase ; 0. 2 uM each of vrrC1-F1 and vrrC,-R1 ; 0. 04-0. 2 ng/µl of template DNA or simply 1 pi of the single colony lysat.

Reaction 4 contained : 1x PCR buffer ; 2 mM MgCl2 ; 0. 2 mM dNTPs ; 0. 04 U/pi Platinum Taq DNA polymerase ; 0. 2 uM each of vrrC2-F1 and vrrC2-R1 ; 0. 04-0. 2 ng/ul of template DNA or simply 1 pi of the single colony lysate.

The PCR thermocycling program for all four reactions was identical. Once the reactions were assembled, they were heated at 94°C for 5 min. to activate the DNA polymerase. Thereafter, each temperature cycle was 94°C for 20 s, 60°C for 20 s, and 65°C for 20 s. These three steps were repeated 34 times. The final step was at 65°C for 5 minutes.

C. Automated Genotype Analysis : The MLVA PCR reactions products were efectrophoretically analyzed using a Perkin-Elmer Applied Biosystems 377 automated fluorescent DNA sequencer. The results are shown in Fig. 1. Each lane contains a random strain chosen from the worldwide diversity set shown in Table 3.

The four reactions were mixed in equal amounts prior to electrophoretic analysis, which provides relatively equal fluorescent signal from each amplicon. Genescan and GenotyperTM software packages (Perkin Elmer, ABI) were used to analyze the

gel images. Custom macro programs (available upon request) associated with GenotyperT" allow the automated scoring of attetes.

The apparent electrophoretic size of DNA fragments was not always exactly the same as the size determined by DNA sequencing. This could be due to DNA conformational differences, 3'adenine addition by the polymerase, migrational deviations of the size standard, or mass asymmetry between the amplicon strands that affect the comparison with the single stranded standards. The actual nucleotide sequence of most marker alleles was determined by DNA sequencing and these values are reported in all cases. These differences are usually only one or two nucleotides, but the use of standard genotypes selected from Fig. 2 are recommended as references.

D. Data Analysis : Only genotypes generating data from all eight markers were included in these analyses. About 5% of the samples examined were missing one or both virulence plasmids, which precludes complete genotyping using the MLVA method of the present invention. This includes the commonly used vaccine strains that lack the pX02 plasmid. These strains are annotated on Fig. 2 next to their seven-marker genotypic matches. The eight VNTR marker loci were used to calculate a matching coefficient among all 89 unique MLVA genotypes, and UPGMA cluster analysis was performed to identify groups of similar genotypes from the worldwide collection. The genetic distance is presented as the absolute number differences in marker alleles between genotypes. The amplicon sizes presented are based upon nucleotide sequence determinations using the primers from TABLE 1. Country abbreviations are defined in Table 1. The vaccine strains, Sterne, STI-1 and V770-NP1 are lacking the pX02 plasmid marker and were not included in the cluster analysis ; however, the data set was annotated (see Geo.

Region column) to indicate where these strains match other genotypes based upon seven marker loci. STI-1 did not match any of the genotypes. Genotypes of the well-known strains, Ames and Vollum are labeled. Marker alleges are presented as

their sizes in nucleotides. VrrA aliele 313 corresponds to VNTR4 described previously (See,"Characterization Of The Variable-Number Tandem Repeats In vrrA from different Bacillus anthracis Isolates", by Paul J. Jackson et al., Appl.

Environ. Microbiol. 63, 1400 (1997)).

Analysis of the raw genotype scores was accomplished by using a phenetic approach : Unweighted Pair Group Method Arithmetic average (UPGMA) cluster analysis (See,"Genetic Data Analysis"by B. S. Weir Sinauer Associates, Inc.

Sunderland MA (1990)). UPGMA cluster analysis was performed using PAUP 4. 0 (See,"PAUP-Phylogenetic Analysis Using Parsimony And Other Methods, 4. 0 Beta Version"by D. Swofford, Sinauer Associates, Inc. Sunderland MA (1999)) with a simple matching coefficient to estimate genetic differences. Individual marker diversity (D) was calculated as equal to 1-z (allele frequency) 2 (B. S. Weir, supra) and based upon allele frequencies in the 89 distinct B. anthracis genotypes, not the complete 426 isolate collection.

E. Multiple-Locus VNTR Analysis (MLVA) : A multi-locus VNTR analysis (MLVA) approach for molecular typing of B. anthracis strains has been developed. The present invention utilizes eight genetic loci that provide high levels of discrimination among different isolates. These marker loci were identified by DNA sequencing of variable AFLP marker fragments (CG3, vrrB,, vrrB2, vrrC, and vrrC2), examination of virulence plasmid sequence (pX02-at and pXO1-aat) and from the previously described vrrA VNTR locus (See,"Identification Of A Region Of Genetic Variability Among Bacillus anthracis Strains And Related Species"by G. L.

Andersen, J. Bacteriol. 178, 377 (1996)). Five of the eight MLVA markers (vrrA, vrrB,, vrrB2, vrrC, and vrrC2) are found in ORFs and variation in repeat number does not affect the translational reading frame (data not shown). The pX01 and pX02 VNTR markers allow monitoring for the presence or absence of the plasmids, as well as for plasmid-based variation. This plus-minus assay provides important information about virulence because the lack of either plasmid attenuates a B.

anthracis strain (See,"Bacillus anthracis by C. B. Thorne, p. 113-132, In A. L.

Sonenshein et al. (eds.), Bacillus subtilis And Other Gram-Positive Bacteria : Biochemistry, Physiology, And Molecular Genetics, American Society for Microbiology, Washington, D. C. (1993)). Phylogenetic comparison of nucleotide variation did not detect natural horizontal transfer among strains (See,"Natural Genetic Diversity In The Protective Antigen Gene Of Bacillus anthracis"by L. B.

Price, J. Bacteriol. 181 : 2358 (1999)), suggesting that plasmid and chromosomal evolution in B. anthracis has been generally congruent.

While no effort was made to make the MLVA primers specific to B. anthracis templates, most sets will not support amplification from other bacterial species. A limited number of B. cereus and B. thuringiensis strains have been examined using the standard reaction conditions ; at most couple, and frequently none, of the markers amplified in reactions containing these templates (data not shown). The vrrA locus amplified most often in other species, but the resulting allele sizes did not correspond to any of the five alleles observed in B. anthracis isolates. These bacterial taxa are the most closely related bacilli to B. anthracis. Therefore, this MLVA system represents a credible method of identifying B. anthracis, as well as, determining what strain type is present.

F. B. anthracis Genotypes : MLVA was used to characterize 426 B. anthracis isolates from diverse geographic locations. This analysis divided them into 89 MLVA genotypes (Figure 2). It is clear that multiple isolates from the same anthrax outbreak frequently have identical genotypes. This reduces the number of distinguishable isolates relative to the total number of samples. I n addition, many genotypes are found at multiple locations especially within a restricted geographical region. The number of distinct genotypes collected from particular countries is reported in Table 3. The distribution may be more a function of isolate availability for this study than intrinsic diversity within a limited geopgraphic area, so it is difficult to draw conclusions from these numbers. However, multiple genotypes are

observed from all regions where a large collection of samples are available. The Australian collection is heavily biased by 28 samples from the short 1997 Victoria outbreak. All of these are one genotype. The restricted nature of the collection may, therefore, explain the lack of multiple genotypes discovered to date in Australia.

G. VNTR marker diversity : The discriminatory power of each MLVA marker can be estimated by the number of alleles it detects and by its diversity.

These two simple descriptive statistics were determined using only the 89 B. anthracis genotypes to minimize the affect of sampling on allele frequency (Table 4). The isolate collection is biased towards numerous samples from easily accessed B. anthracis collections. This could unduly influence allele frequencies.

MLVA markers average over five alleles per locus with a range from two to nine alleles. TABLE 4 shows VNTR marker loci attributes.

TABLE 4.

Marker Repeat size§ Array Size (repeats) Number of D# Name* (nucleotides) Smallest Largest Alleles (Diversity) VrrA 12 2 6 5 0. 50 VrrB1 9 15 23 5 0.32 VrrB2 9 11 15 3 0. 34 VrrC1 36 4 12 6 0. 55 VrrC2 18 17 19 3 0.50 CG3 5 1 2 2 0.35 pX01-aat 3 4 11 8 0. 81 pX02-at 2 6 15 9 0. 79 Average----5. 10. 52 *VNTR markers found in ORFs are shown in italics.

§VrrB repeats are not all identical as some contain single nucleotide differences.

§VrrC markers contain a degenerate 9-nucleotide sub-repeat structure that results in some alleles of fractional repeat size. tD is marker diversity. calculated as I-E (allele frequency) 2 and based upon the 89 unique B. anthracis genotypes.

The diversity index (D) is based on the number of alleles and the allele frequency. This provides a better measure of discriminatory power than allele number (See B. S. Weir, 1990, supra.). MLVA markers have an average diversity of 0. 54 with a range of 0. 30 to 0. 80. Note that verb, has the lowest diversity (0. 30) in spite of having five alleles ; whereas, CG3 detects only two alleles but has a diversity index of 0. 38. The two plasmid-based markers have the highest diversity

and greatest number of alleles, perhaps due the simple sequence nature of their repeats (Table 4).

While most of the observed B. anthracis allelic variation is consistent with the repeat unit size, some alleles contain fractions of a repeat. The nucleotide structures found in the vrrA, vrrB and vrrC have evolved from simpler trinucleotide repeats and remnants of these structures still exist within each repeat (See, G. L.

Andersen et al., 1996, supra, and unpublished data). No fractional-size alleles were observed for vrrA or vrrB among the different B. anthracis strains, but several were observed for the vrrC markers. Nucleotide sequencing determined that these were due to insertion/deletion events within the subrepeats (See the vrrC2 alleles in genotypes 8 and 9 of Fig. 2.).

H. BU anthracis Genetic Relationships : UPGMA cluster analysis reveals major genetic affiliations among the MLVA genotypes (Fig. 2). Six major clusters are apparent that may represent older clonal separations in the evolutionary history of this species. Similar major groups were identified using AFLP markers analysis (See, Paul S. Keim et al., 1997, supra.), most of which were independent of the MLVA markers.

The most obvious separation in the dendrogram is the split between the A and B genotypes (Fig. 2). The B cluster contains approximately 12% of the isolates and genotypes in this study. Cluster B is further subdivided into two groups, B1 and B2. Southern African isolates dominate (93%) group B1 and far outnumber samples found in group B2. Only two genotypes are present in the B2 group. These are rare and collected exclusively in Europe. The B2 group is only tentatively associated with the B1 subgroup as other analytical approaches (e. g. maximum parsimony) place B2 loosely with the A cluster (data not presented). All B genotypes are uncommon in much of the world, yet genotype 87 (Fig. 2) is an important contributor to the ongoing anthrax outbreak in Kruger National Park (See,"Bacillus

anthracis Diversity In The Kruger National Park"by K. L. Smith et al., J. Clinical Microbiol. 38, 3780 (2000)).

Members of the A cluster are found worldwide and can be subdivided into at least four groups (Fig. 2). Isolates in the A1 cluster are found throughout the world, but they dominate the western North America collection. The most common A1 genotypes are geographical distributed from the Canadian Wood Bison National Park (genotypes 3 and 5) to southern Texas in the United States (genotype 8). The CG3 marker locus represents a defining diagnostic marker for the A1. a group as the 153 bp allele is only found in this group. This marker locus consists of a five- nucleotide sequence present in two copies in most strains, but only once in isolates found in cluster A1. a. This difference may not be readily reversible and all allelic contrasts due to a single evolutionary event. While STI-1 was not included in the UPGMA analysis due to its lack of the pX01 plasmid, it most closely resembles members of the A1. a group. As the sole representative from Russia in this study, it did not exactly match any of the 89 genotypes with its seven markers. However, it is clearly related to isolates from the A1. a cluster. STI-1 marker alleles (Fig. 2 : 313, 229, 162, 13, 604, 153, 129,-) matched six of seven markers for 11 different genotypes in A1. a. In addition, STI-1 contains the CG3 153 allele that is only present in A1. a isolates. The close genetic relationship between the western North American isolates and this single Russian representative needs further research and would benefit significantly from examination of additional Russian isolates. The A1. b cluster isolates occur most commonly in Africa and only rarely in other parts of the world.

The A2 branch is represented by a single isolate from Pakistan. It is distinct from other genotypes and may represent a B. anthracis that is common in this under-sampled region.

The A3 cluster is perhaps the single most important B. anthracis group due to its wide distribution and prevalence. This highly diverse cluster contains 44% of

the genotypes (39 of 89) and 58% of the isolates (260 of 419) examined in this study (Fig. 2). Genotypes in this group are involved in some of the largest outbreaks that we have examined : Kruger National Park (genotype 67), Victoria Australia (genotype 66), Turkey (genotype 35) and southern Africa (genotypes 30 and 40). Genotypes matching the well-known vaccine strains V770-NPR (genotypes 45, 46 and 49) and Sterne (genotypes 59 and 61) are also found in this cluster. The well-known and highly virulent strain, Ames (genotype 62), is found in A2 and is similar to Sterne at most marker alleles. The Ames strain played a central role in the United States biological warfare program, before it was dismantled.

The A4 cluster is distinct and, yet, underrepresented in our current collection (Fig. 2). It is notable primarily for the well-known strain, Vollum (genotype 77), which was used in the British biological warfare program (pers. com. Peter Turnbull). Vollum has been studied in many laboratories and most of the fifteen isolates identical to genotype 77 are from laboratory archival collections. One sample of the Vollum 1B strain differed by at the vrrA markers by one repeat from other Vollum samples. This seemingly represents an"in laboratory"mutational event. A natural isolate matching the Vollum genotype was collected in Spain.

Other closely related isolates have been found in the USA, Norway, Europe and Asia, but not in Africa.

The MLVA typing method of the present invention represents a robust and easily transferable approach to characterizing B. anthracis isolates. The protocols presented are rapid and require only crudely isolated DNA to provide high- resolution molecular typing analysis. The individual marker alleles are uniquely identified by a combination of size and fluorescent color. Therefore, automated gel analysis is routine, and instrumentation for performing MLVA is widely available.

Standardized data have been presented in order to provide a uniform reference to

all anthrax research teams (Fig. 2). Future analyses by any laboratory in the world can be easily compared to these standardized data and particular strains (Table 4).

Molecular typing in many pathogenic bacterial species is accomplished without focusing on hypervariable VNTR loci. In B. anthracis, however, this has proven extremely difficult due to the homogeneous nature of all available strains (See, Paul S. Keim et al., 1997, supra.). In this pathogen, only the most rapidly evolving genomic regions are useful for strain discrimination. VNTR loci fall into this category and have successfully been used in this study to separate B. anthracis isolates into 89 distinct genotypes. As a first approximation, one can assume that the diversity of a particular VNTR is correlated with its evolutionary rate and, in the absence of selective constraints, this would be the mutation rate.

The simple di-and tri-nucleotide tandem repeats (pXO1-aat and pX02-at) are found to be the most diverse, while complex longer repeats have been found to have lower diversity (Table 4). Slip strand repair mutations by DNA polymerase are thought to occur more frequently on short repeats (See,"Short-Sequence DNA Repeats In Prokaryotic Genomes"by A. van Belkum et al., Microbiol. Mol. Biol.

Rev. 62, 275 (1998).) and the present data are consistent with this model. Markers of higher diversity obviously provide great discriminatory power among strains.

However, it is less obvious that highly diverse markers have less power for defining older evolutionarily relationships. The present MLVA markers have different diversity levels and contribute in different ways to the analysis of B. anthracis.

VNTR mutation rates are apparently fast on an evolutionary scale, but slow enough that mutations are very difficult to observe in the laboratory. A plasmid- cured strain of Ames was passaged for more than 100, 000 generations and only one VNTR mutation (313 to 301) in vrrA was observed (G. Zinser and P. Keim, unpublished observations). At least in the six chromosomal loci, marker alleles appear stable to routine and even long-term handling in the laboratory. As stated above, variation in different Vollum strain (Genotype 77) accessions illustrate the

stability of these markers. There are 15 different Vollum examples in this study from different sources in the USA and the UK. One of these was passaged three times through rats and three times through rabbit hosts, without MLVA changes.

The only difference was observed in the vrrA marker (301 instead of 289) for the substrain Vollum 1B. These anecdotal and preliminary results need additional confirmation but suggest that VNTR mutation rates are slower than 10-5 and that mutational changes occur in single repeat steps.

The existence of a limited number of B. anthracis clones can be hypothesized from the genetic similarities observed within each of the six major clusters in Fig. 2. The number and distribution of these hypothesized clones has doubtlessly been influenced by human activity. This may have started with domestication of animals, but continues through modern day international commerce. Note that not all of the putative clones are equally widespread. For example, the A3 cluster is very common and distributed across many continents, while the B1 cluster is restricted mostly to southern Africa. The A1 cluster splits into two distinctive groups, with one branch primarily North American (A1. a) and one mostly African (A1. b). These differences in cluster prevalence and distribution may be influenced by inherent biological properties or just due to stochastic historical events.

While the biological significance of B. anthracis VNTR variation is unknown, some VNTR variation examples have pronounced effects upon pathogen biology (See, A. van Belkum et al., 1998, supra.). Five of the eight MLVA loci in the MLVA system are found in ORFs (data not presented). Therefore, VNTR variation could easily affect the bacterial phenotype via altered translational products. Moreover, it has also been shown that extra-genic VNTRs can influence adjacent gene expression (See, A. van Belkum et al., 1998, supra.). This provides a possible genetic role for even intergenic VNTRs. Given the extreme homogeneity of B.

anthracis, VNTRs represent the only significant source for molecular variation among strains known at this time.

Tables 5 and 6 show additional loci having variable numbers of repeat units which were discovered by examining the B. anthracis DNA sequence. Alleles are detected by directly incorporating the dyes into the PCR amplicon rather than having dye labels on the associated primers. Although these loci have not yet been employed for strain identification, it is expected that they will be useful therefor.

Table 5 shows the additional primers expected to be useful for DNA fingerprinting of B. anthracis.

TABLE 5 Amplicon Repeat Array Size Size Locus Primer Sequences (Forward primer on top) Size (bp) Range Range Ileles D hex-gacatgcgtctagaacgaatggaatgcaatcttc (SEQ ID NO : 23) cftccgtactfgaaattggcttttgtacttgctct * vrrC3 (SEQ ID NO : 24) COMPLEX ** 320-528 3 0. 15 agtatagcaaaggcaataatgaat (SEQ ID NO : 25) Bavntr-cgcaaggaaatatgaaatcag 11 (SEQ ID NO : 26) COMPLEX ** 609-854 4 0. 28 gaaaaagtacggagtggattttgatacgctgaaac (SEQ ID NO : 27) Bavntr-ggtggctgtggtaacacatttaccgaaaac 22 (SEQ ID NO : 28) COMPLEX 515-540 3 0. 07 gaaatcaatgacgaaaattttcattttagcatcaactc (SEQ ID NO : 29) Bavntr-gccttgttttttcgcattatcttttacattaccacc 31 (SEQ ID NO : 30) COMPLEX ** 553-821 8 0. 47 gagccagcataacgctagctctgttttg (SEQ ID NO : 31) gatatgacgggtggtatgaattggaaaggtac Bavntr- (SEQ ID NO : 32) 14 2 5 to 7 246-250 3 0. 11 gagttaaaccataaggaatacacc (SEQ ID NO : 33) gagatataaaagtgccaatagtagc Bavntr- (SEQ ID NO : 34) 17 COMPLEX ** 501-584 6 0. 69 gatgacaaaagagccagatacaactccaatcgc (SEQ ID NO : 35) Bavntr-gcttgtggcttacggctatgatgttttctttc 28 (SEQ ID NO : 36) COMPLEX ** 281-348 4 0. 21 Bavntr- gatgttcaatttaattgcacatgctcacgc 29 (SEQ ID NO : 37) 3 4 TO 5 280-283 2 0. 07 gtcactcctaacaccgagtatttttattggttttgtc (SEQ ID NO : 38) gattttgtaggccgcgttggtgtagagac (SEQ ID NO : 39) Bavntr-gccatcttaaatgccttttcttcactttcagc 27 (SEQ ID NO : 40) 3 5 TO 6 180-183 2 0. 18 gattttttctatgcaaaccaatctcctccttc (SEQ ID NO : 41) Bavntr-gatctttttctggtttcgaaaaatcataaatactattacc 18 (SEQ ID NO : 42) COMPLEX ** 796-1000 5 0. 49 gattttttgttgttgtttcatacgtctatccccttc (SEQ ID NO : 43) Bavntr-gcctctctttttattttgtcatcttttgtcggtaagtc 21 (SEQ ID NO : 44) COMPLEX ** 296-424 5 0. 52 gcaaagaacggatttaggtatattgtattagcgattttac (SEQ ID NO : 45) Bavntr-gacgtattgttcctaatatttctttctcttcaatggcttc 20 (SEQ ID NO : 46) 2 5 TO 6 347-349 2 0. 27 gcaatccctagctctgctgcttttgctttc (SEQ ID NO : 47) Bavntr- gattgctgcgagtgaaggggcgaataatac 23 (SEQ ID NO : 48) 12 2 TO 5 292-329 4 0. 43 gcacagttgtatattgaaatagaaaagctatatgtaaagaaaatg (SEQ ID NO : 49) Bavntr-ggaactccagacgcgaagaaagcc 25 (SEQ ID NO : 50) COMPLEX ** 439-509 6 0. 33 gcagtcaatatgtttccaaataaataagaagccac (SEQ ID NO : 51) Bavntr-gatgcaagctggaaatgaattaggaaggattac 452-468 35 (SEQ ID NO : 52) 5 6 TO 9 PE 4 0. 39 gcctttactcatgaaacgataagaaggagcctac (SEQ ID NO : 53) Bavntr-gtatttgtttcgtaaatataaagccgaaaacacttgc 24 (SEQ ID NO : 54) 5 3 TO 5 131-141 3 0. 49 gcggcttatcattgcgtacagtggataacac (SEQ ID NO : 55) Bavntr-gctctccccataaaacccgctaatgc 19 (SEQ ID NO : 56) 3 4 TO 6 406-412 3 0. 52 gctatgcaaagcftggaffatgggaaaaggc (SEQ ID NO : 57) Bavntr-gtgtagctagctggactgtgaaatggactctc 13 (SEQ ID NO : 58) 2 5 to 6 206-208 2 0. 04 gctggatacttggatgaagaaattaactcctgaacaac (SEQ ID NO : 59) Bavntr-gcaaatagcgcgaaaaatccaagagcaagc 496-556 16 (SEQ ID NO : 60) 8 8 to 15 PE 5 0. 55 ggatccaggagattatattaaaggaagttcaagc (SEQ ID NO : 61) Bavntr- gtcataaatcttaagcgtatccctaataaaacaagagcaaac 32 (SEQ ID NO : 62) COMPLEX ** 434-606 9 0. 76 ggatcgcagcttcaaaagatagt (SEQ ID NO : 63) Bavntr-ggtaatagtaaacgctctaatgttcc 15 (SEQ ID NO : 64) COMPLEX ** 74-81 2 0. 07 ggtcaagtggttaagacaccgccctttc (SEQ ID NO : 65) Bavntr-gattcttctttcatctttacagcagcctcatatacattatc 315-323 36 (SEQ ID NO : 66) 4 4 TO 6 PE 3 0. 04 gtataacggaatccatatgaccaacctgtgtgaaatc (SEQ ID NO : 67) Bavntr-ggtatcagccataagcttaggccggctattc 347-355 33 (SEQ ID NO : 68) 4 3 TO 5 PE 3 0.11 gtcaagtggttaagacaccgccctttcac (SEQ ID NO : 69) Bavntr-ggtccgtaacaagcccaacaacttgctc 34 (SEQ ID NO : 70) 4 3 TO 6 347-359 4 0. 07 gtctatctaactacctcttattggctaaataaaataagcaagacac (SEQ ID NO : 71) Bavntr-gtagatgaaacagcaaaacaagtgagtgaggc 309-377 26 (SEQ ID NO : 72) COMPLEX ** PE 2 0. 02 gttcatataattgcacctcatctagttttatttaaaaggaagc (SEQ ID NO : 73) Bavntr-gattggaagatttcattacttacaggtgaagttcaaaaac 12 (SEQ ID NO : 74) 2 5 to 7 175-179 3 0. 32 gttgcatctaacaatgcagaacaaaaagatagc (SEQ ID NO : 75) Bavntr- gttgtgtttgagttgctgtgattttttctgttc 413-509 30 (SEQ ID NO : 76) COMPLEX ** PE 4 0. 36 tgtttgtgaccctgatttcat (SEQ ID NO : 77) Bavntr-gtcaagctgaaggtaaacagaag 483-664 10 (SEQ ID NO : 78) COMPLEX ** PE 3 0. 22 *Arrays marked"COMPLEX"have mixed sequences that are tandemly repeated ; that is, repeated regions are not exact repeats but mixtures of partially identical repeats.

Table 6 shows the DNA sequence from the additional variable regions of Bacillus anthracis ; the sequence regions corresponding to the PCR primers listed in Table 5 are blocked.

TABLE 6 (i) The VrrC3 locus (SEQ ID NO : 79) : <BR> <BR> <BR> GAGCGACAATATGAAGAGAGTAAAAAGGAAGAAAAGTCAGTTGTCGATCAATG<BR& gt; <BR> <BR> <BR> <BR> GCTTGAGAAAAACGGTTATGAAATCGAACGCCAAGAGCCTATAGTAGAAGAAA<BR& gt; <BR> <BR> <BR> <BR> AAGAAGTGGTTCAAGAAATGAGTGCACCGCAGGAAGTTCCAGCGGCTGAATTA<BR& gt; <BR> <BR> <BR> <BR> CTTCATGAAACAATTGCTGAGCGCATGGAAGGTGCGAAGCAAGAAAGTGATGT<BR& gt; <BR> <BR> <BR> <BR> AGTGGACAAAAACATTCTACAAGAGGAATTAGTAGATTCTAAAGTAGAGCACGA<BR > <BR> <BR> <BR> <BR> GGATACAATATTATCAGAAGAAATTAAACGTAGTACAGAAATAGAACAACCTAC<BR > <BR> <BR> <BR> <BR> TATTGAAGTAGAAAAACAAGCACCAGAAGAATCAGTGATTGTCAAAGCAGAAG<BR& gt; <BR> <BR> <BR> <BR> AAAAACTTGAAGAAACAATTGTTGTAGAAATACCAGAAGAAGTGGAAGTAATTG<BR > <BR> <BR> <BR> <BR> CAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGAAGAGTCA<BR& gt; <BR> <BR> <BR> <BR> GAAGAAGTAGAAGTAATTGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAAT<BR& gt; <BR> <BR> <BR> <BR> TGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCGGAAACAGAAGAGT<BR& gt; <BR> <BR> <BR> <BR> CAGAAGAAGTAGAAGTAATTGCAGAAACAGAAGAGTCAGAAGAAGTAGAAGTA<BR& gt; <BR> <BR> <BR> <BR> ATTGCAGAAACAGAAGAGTTAGAAGAAGTGGAAGTAACTGCAGAAACAGAAGA<BR& gt; <BR> <BR> <BR> <BR> ATTAGAAGAAGTGGAAGTAGTTGCAGAAACAGAAGAGTTAGAAGAAGTGGAAG<BR& gt; <BR> <BR> <BR> <BR> TAATTGCAGAAACAGAAAAATTAGAAGAATTAGAAGAAGTGGAAGTAATTGCAG<BR > <BR> <BR> <BR> <BR> AAACAGAAGAGTCAGAAGAAGTAGAAGTAATTGCAGAAACAGAAGCACCAGAA<BR& gt; <BR> <BR> <BR> <BR> GAAGTGGAACCTGTAGCACTTGAGGAAATGCAACAAGAAATGGTGTTAAATGA<BR& gt; <BR> <BR> <BR> <BR> AGCAATTGAACAAAAGAATGAATTCATACATGTTGCTGTGGCTGATGAACAAAC<BR > <BR> <BR> <BR> <BR> GAAAAAAGATGTTCAAAGCTTTGCGGATGTTTTAATTGCGGAGGAACAATCAGT<BR > <BR> <BR> <BR> <BR> TGTAGAAGAACACCGATTGTAGAAGAACAACCAGTTGCAGAAGAAGCACCGGT<BR& gt; <BR> <BR> <BR> <BR> CGTAGAAGAACAATCAGTTGTAGAAGAAACACCGATTGTAGAAGAACAACCAG<BR& gt; <BR> <BR> <BR> <BR> CTGCAGAAGAAGCACCGGTCGTAGAAGAACAATCAGTTGTAGAAGAAACACCG<BR& gt; <BR> <BR> <BR> <BR> ATTGTAGAAGAAGCACCGGTCGTAGAAGGACAATCAGTTGTAGAAGAAGCACC<BR& gt; <BR> <BR> <BR> <BR> GATTGCAGAAGAACAACCAGTTGCAGAGGAAACATCGGTCGTAGAAGAACAAC<BR& gt; <BR> <BR> <BR> <BR> CAGTTGCAGAGGAAACATCGATCGTAGAAGAACAACCAGTTGCAGAGGAAGC<BR&g t; <BR> <BR> <BR> <BR> ACCAGTCGTAGAAGAACAACCAGTTGTACAAAAAGAAGAACCAAAACGTGAGA<BR& gt; <BR> <BR> <BR> <BR> AAAAGCGTCACGTACCATTTAATGTTGTTATGTTGAAACAAGATAGAGCGCGAT<BR > <BR> <BR> <BR> <BR> TAATGGAAA [GACATGCGTCTAGAACGAATGGAATGCAATCtTCTrATGAGTGAA<BR> <BR> <BR> <BR> <BR> AGAGTAGAGAATAAGCCTGTACATCAAGTAGAAGAACAACCACAAGTGGAAGA<BR& gt; <BR> <BR> <BR> <BR> AAAGCCAATGCAACAAGTAGTAGTGGAGCCACAAGTGGAAGAGAAACAAATGC<BR& gt; <BR> <BR> <BR> <BR> AGCAAGTAGTGGAGCCACAAGTGGAAGAAAAACCAATGCAACAAGTAGTAGTG<BR& gt; <BR> <BR> <BR> <BR> GAACCACAAGTGGAAGAAAAACCAATGCAACAAGTAGTAGTGGAGCCACAAGT<BR& gt; <BR> <BR> <BR> <BR> GGAAGAAAAACCAATGCAGCAAGTAGTGGTAGAACCGCAAGTGGAAGAAAAA

CCAATGCAACAAGTAGTAGTGGAGCCACAAGTGGAAGAAAAACCAATGCAGCA<BR& gt; <BR> <BR> AGTAGTGGTAGAACCGCAAGTGGAAGAAAAACCAATGCAGCAAGTAGTGGTA<BR&g t; <BR> <BR> GAACCGCAAGTGGAAGAAAAACCAGTGCAGCAAGTAGTAGAGCCACAAGTGG<BR&g t; <BR> <BR> AAGAAGTGCAGCCAGTACAACAAGTAGTGGC [AGAGCAAGTACAAAAGCGAAT<BR> <BR> <BR> TTCAAGTACGGAAG] TAGAAGAGAAAGCATATGTTGTAAATCAAAGAGAGAAT (ii) The Bavntr-11 locus (SEQ ID NO : 80) : <BR> <BR> <BR> <BR> <BR> TAATTGATTCATAAATCGTTTTAAATCATCTTGGTTCATAGAAAGTAAGTCTGTA<B R> <BR> <BR> GTTTTCACTTTTAAATACACCTGCAAATTATTTCTATGATCGACTAAGATTCCTG<B R> <BR> <BR> TTTTTTGTTCCAGTCGTTTATACGGAGCAATATCAACAATTGATGCATCCGTATT<B R> <BR> <BR> TTTAAAAGAAGCAAAGATCGTTGAAATAAAACTTTGTTTTCCATTACTTTTCTCT<B R> <BR> <BR> GACTCAATTTGTCTCTTTCGGTTTACCTTTTTAGCTTCAGCTGTCGCAACTTTCA<B R> <BR> <BR> TCTTCATCTTTCCTTTCGTGAGATATAAAAAGGAGAGCGCTATATCTGCACTCT<BR > <BR> <BR> CCTTTCATTCCTATTTCCTTTTTGTTTCGCTGCTGATGGTATTTACTTCGATTGG<B R> <BR> <BR> ATGATAATTTTTATTGTCCATCTTCAACATATCCAAAATCACAAATATATTTCTGT< BR> <BR> <BR> TTGTAGGGCTGTTATGTGGTTTAATACATAGGAACAATCCAAACGTCCCAAACA<BR > <BR> <BR> GCACATAAAACATAATCCTTCCAAACCCACCAACTGGAACTACCTTCGGCATAT<BR > <BR> <BR> AACTTGCTAGAACTAACATTAGAGCTATAATCGCTCCATCTATGATATAGAAAA<BR > <BR> <BR> AGGCTAACTTAATTTCTTGTTTTGTATTTTTAGGATTACGCATCATTTCCATAATT< BR> <BR> <BR> AATCATGCTCCTTCTTATCTTTCTGTTCCTTGCCCTTCCAAAAATCTCTGTCTAG<B R> <BR> <BR> ATATTCAGCGTTTGTTACCGTTACCCACACAGGCTCTTTTTTCTTTCTTCTTTTA<B R> <BR> <BR> AAAATCGTAAAAATCTGTTTAAAAAAAGTTGCGATTATGCTTAACACAATCGCAA<B R> <BR> <BR> CTCCTAACATCAAGATAGCAAATATCCAGTTATTCATTTTAATATCCCTGCTGCT<B R> <BR> <BR> TCTTCTCTATTTTTCTTGCTAACTTATTGTTCGAGTACAGATGGAGAGAAAGATA<B R> <BR> <BR> AGTTAGAAAGGCAAAAGTAACAATGTAATGATATAAGTGACCTAACTCAAAACT TATTTGAAAAACC [AGTATAGCAAAGGCAATAATGAAT] CCTGCTACCGTCATTA GGATACTAGCTCGTAATTCTTGTTGCTTCATTTCAAAGTAAATTCTTCTTCGATT<B R> <BR> <BR> <BR> CGCAATATCAATTACTTTCATGATTACCCCTCCTAATCTTATCTTCTACGCAATT<B R> <BR> <BR> GATCTGTCCGATTTTGTGTACTTCCTCTTGGTCTTAATCTTGATTTTCTAACTTC<B R> <BR> <BR> TTTCACATTATCTTGAACATTTACATCTCTTTGTACTGTAGTTGTCCCTACCCTT<B R> <BR> <BR> ACATCCGCAGTTACTTCACTACTACCTCGAACGTTATTTTGAACATTTACATCAC<B R> <BR> <BR> GCTGTACTGTCGTTGCTCCTGCTCTTACAGTATGATTTACTGCTTCACTTCCTC<BR > <BR> <BR> TTACATTGTTCTGCACATTTACATCACGCTGCACTGTTGTTGAACCTGCTCTTA<BR > <BR> <BR> CACTACTTTCTACTGCTTCGCTTCCTCTTACATTGTTTTGCACATTTACGTCACG<B R> <BR> <BR> CTGTACTGTTGTTGAACCCGCTCTTACAGCACTTTCTACCGCTTCACTTCCCCT<BR > <BR> <BR> TACATTGTTTTGTACATTTACATCACGCTGTACTGTTGTTGAACCTGCTCTTACA<B R> <BR> <BR> TTACTTTCTACCGCTTCACTTCCCCTTACATTGTTTTGCACATTTACATCACGCT<B R> <BR> <BR> GTACTGTTGTTGAACCTGCTCTTACATTGCTATCTACCGCTTCGCTTCCTCTTAT<B R> <BR> <BR> ATTATTTTGTACATTTACGTCTCTCTGTATCGTTGCTACCCCTGCTTTTGCATCA<B R> <BR> <BR> CTATTGATTGTTCCTGTCCCACCTGTACTTCTTAATGTATCTAGAACGTTCACTT CACGCTGTACTGTTTGTGACC [CTGATTTCATATTTCCTTGCG] ATGCTTCAGTA

CCTCCCGTATTTCTTAATTTATTTTGTATTTCAATTTCTCTTTCCGCTGTTTGTCT< BR> <BR> <BR> TTCGCCTTTTACATTGCCTTGCTGCCCTTCAGTACTTCCTGTATTTCTTAGTTTG<B R> <BR> <BR> TTTTGTAATTCGATTTCTCGCTCTGCTGTTTGTCTTTCGCTTTTCACATTACCCT<B R> <BR> <BR> GTTGCCCTTCTTCTTTTCCTGTATTTCTTAGTTTGTTTTGTAATTCAATTTCTCGT< BR> <BR> <BR> TCTGCTGTTTGTCTTTCGCCTTTTATATTGCCCTGCTGCCTTTCATTAGAAATAG<B R> <BR> <BR> AAGCTACATTCGGACGATTAGCTATTTTAGGGCTAGCAGATGGCTCTATACCA<BR& gt; <BR> <BR> GCATTTGCGTTATTTTGAATACCTTTACCTATTGTATTTAACGTTTGACGATCAG<B R> <BR> <BR> CGTTTTCTTGCGCCTTCTGTTTACCTTCAGCTTGACCGCCCTTAAATTCTGATA<BR > <BR> <BR> CAGTTCCTTTCACACTGTCTGATACACCTTTTGCAACGCCTGATACTTTTTCTTT<B R> <BR> <BR> TCCTTTATCAACTGCGCCGCCAACAGTCTCAGCCACCTTGTTTCCCGCATCGTT<BR > <BR> <BR> CATCATGCCGCCAACTCCACGATTCGCAGCGTAACTCATGGCAGCACCCGTAT<BR& gt; <BR> <BR> TTCTAGCAAATTTCTTCGCCTGCATACCGCCGCCTTTGGCAGTATTCTTTTGTT<BR > <BR> <BR> CGCCTTGTGATTCCGCACTCTCATGATTCGAATCCATTTCAGAGCGTTTAGGC<BR& gt; <BR> <BR> GTGTCTTCACGTGTTTGTCCACTTCCACCACTCATTAAGTTCTTCGCACCGCTA<BR > <BR> <BR> AACATACGACCAGCGCCCTTTATAGCTCCTTTCGCTGCCATAGCTCCGCCAAC<BR& gt; <BR> <BR> CATACCCGTTAAGTGATTCTTTCCTTCTTTTAATCCAACATCAACACCAAAATAT<B R> <BR> <BR> TTTAAGATAGATTCTGAACCATTAATTAATGCTACTGTTAAACAAACCATTGCTA<B R> <BR> <BR> CGATATATAAAAATGCATTGATGTCTTTTTCTGCTAAATAATTAACGATAATCGT<B R> <BR> <BR> GTAGACTCGTAAATTTAAACCCGTAAAAGCAAATACTAAAAATCCTTTAAAGATA<B R> <BR> <BR> TCCTGTATAACCATTTTTGTTTTTTCGCCCGTTTCAATATCCGTAACGAACACAA<B R> <BR> <BR> TTGGAGCAATAATTTTCTTCATGGCAATTTCAAAGATCGTCATAACAAATACAAA<B R> <BR> <BR> AACAGTAAATAAATAGGCAACTCCTAGAGCTAATAACCCCCAAAATATAGTACC<BR > <BR> <BR> GAAGTTCATTGGGTATCGAACATAGCCCCCTGGGAACTTATCTTTAAATGGATT<BR > <BR> <BR> AAACACACTATCATTTATTTTTTCTACCGTTTCTTTGTCCCCATCGTTCGTAATTT< BR> <BR> <BR> TATAAACCAAATATTCGGTTTCTTTAGGTATATCTTTTTGCGATGTCAACATTTC<B R> <BR> <BR> TATAACTTTAGGTGTTACTACATCACCTAGTTGTGCTTTCAAGAAAATATCCTTA C (iii) The Bavntr-22 locus (SEQ ID NO : 81) : <BR> <BR> <BR> TCCACAATCTTCCTCTCCTTGCACGAGCGGTGGCATATTATTATCCATCGGCAT<BR > <BR> <BR> CATATTTGGATTTGGCATAGACGTATATTGCGGTCCAAACGGTGCTCCTTGCTG<BR > <BR> <BR> ATATGGCATTTGATATGGATGTTGTTGTTGATAATACGGATTCGGCGGCATCAT<BR > <BR> <BR> AGGCTGTTGATACGGCATTTGATATGGCACCATATTCGGTGGTTGATTGTTATC<BR > <BR> <BR> CATAATTGGCATCATATTCGGCATTTGGTTGTTATCCATAATCGGCATCATATTT<B R> <BR> <BR> GGCATTTGATTATTATCCATAATCGGCATCATATTTGGCATTTGATTATTATCCA<B R> <BR> <BR> TAATTGGCATGATGTTTGGTGGTTGATTATTATCCATGATTGGCATAATGTTTG<BR > <BR> <BR> GTGGTTGATTGTTATCCATGATTGGCATAATGTTTGGTGGTTGATTGTTATCCA<BR > <BR> <BR> TGATTGGCATAATGTTTGGTGGTTGATTGTTATCCATGATTGGCATAATGTTTG<BR > <BR> <BR> GTGGTTGATTATTGTCCATGATTGGCATAATGTTTGGCACTTGAATATTTGGCG<BR > <BR> <BR> GTATTACTTGCGGAATCACTACATTTTCTTTCGATACATTTGGCGACACTATATT<B R> <BR> <BR> TCCTACATTTTCTTTCTTCACTTGCGGTGATACTATATTCCCTACATTTTCTTTCT

TTACTTGCGGTGATACTATATTTCCTACGTTTTCTTTCTTTACTTGCGGTGATAC<B R> <BR> <BR> TATATTTCCTACGTTTTCTTTCTTCACTTGCGGTGATACTATATTTCCTACGTTTT< BR> <BR> <BR> CTTTCTTCACTTGCGGTGATACTATGTTTCCTACATTTTCTTTCTTCACTTGTGG<B R> <BR> <BR> TGATACTATATTCCCTACATTTTCTTTCTTTACTTGCGGTGATACTATATTATCTT< BR> <BR> <BR> TTTTCGTTTGCGGAGAAATGATGTTATTAGGTTTCATTTTAGTAATTTGAGGAGC<B R> <BR> <BR> AATTAATTCGCTTCCTTTTTTAATTACATCTGAAATTTTATATTCTTTTTTCGCTTT TATTGGTGGTTGC [GGTGGCTGTGGTAACACATTTACCGAAAAC] TTCGTGTTTT CTTTCTCTGCTGGTTTTTGCTTTTCTATAACAGGTGGTTTTTGGATAACAGACG GTTTTTCAACTGGTTTTTCAACTGGTTTTTCTATTTGAATTAGCTTTTCTTTTTGC ACTTCTTTTTGCGGTTTCACCTGCATTTCCTTCTGCGGTTTTACCTGTACTTCTT <BR> <BR> TTTGTGGTTTCACTTGCATTTCCTTCTGTGGTTTTACTTGCACTTCTTTTTGTGTT< BR> <BR> <BR> TGTTGCATAGCAGGCTGCTGTGTAATTGGCGCTGATTGATACGTAACTTCTTCT<BR > <BR> <BR> TCATCTTCTATTCCAAGTGGAGTTGGAGTTGCTGCAAATTCTTTTTGTTGCACTT<B R> <BR> <BR> CTTTTACGTATTGTTTTGGAGGTGCTGAGCCTGCACCAGCATGTTGTTTCACCT<BR > <BR> <BR> GAACGCCGTTTGATGGTACTTTAATTTTCATACCTGGCATGATGAGATCCGGAT<BR > <BR> <BR> TACTAAGTTGTGTATTTGTTT [GTTTCAGCGTATCAAAATCCACTCCGTACTT1- T<BR> <BR> <BR> CjGCAATTTTCCAAAGGGTATCCCCTTTTTGCACGATATGAATTTTCAAATTTTC<B R> <BR> <BR> CCCCTCCTGTATAACTTATCTATAAGTAACAAATCTCATGAAGTAACTCTTTCTA<B R> <BR> <BR> CATAACGTTAACTTCTTTTCACTTTCATCACTTCTTCGATTTTCAATATCATTTGA< BR> <BR> <BR> AGTGGAATAAGCATAAAGTGAAACTTTAATCAGTGGGGAGATTCATCCCCCAC<BR& gt; <BR> <BR> TGATTATTAGTTGAACCAATCGGACGTTTACGGGCAGTTGATCTCCGCCTAACT<BR > <BR> <BR> TCTTTGTTCCAATCCAACTTTGAAGTATGAGATTTACTGCCCGTTAACGCGGGA<BR > <BR> <BR> TAAAAAAATCACAATGATTTCTTCAAAACAATGTATGCCCATTTCGTTCTCGTTA<B R> <BR> <BR> TGATTACATGTATGAAAAAAAGCAACGGGAATCCCGCTGCTTCACACACGCTC<BR& gt; <BR> <BR> TAACATACGATTTAATGCAAGAACCGCTTCTTCAGTTACTTGTTTATCTACGCTA<B R> <BR> <BR> ATAACGTTAATTTCTTCTCCTCTTTCTATCGTTTCAAGTGCCCATAATAAGTGCG<B R> <BR> <BR> GCAAATCAATTCGGTTCATCGTTAAACATGGACACATAAACGGATTAAGTGAAA<BR > <BR> <BR> CAATTTCTTTATCTGGGTGTTGTTGAATAATTCGGTTCACTAAATTCATTTCTGT<B R> <BR> <BR> ACCAATCGCCCATTTACTTCCGGATGGAGCCGATTCAATCATATCAATAATGTA<BR > <BR> <BR> TTTCGTTGAACCTGCATAATCCGAAGCAGCTACAACTTCATAGCAACATTCCGG<BR > <BR> <BR> ATGTACAATAATATTCATATCTGGATGATTTTTCCGTACATTCTCTATATTTTTCA< BR> <BR> <BR> CTGTAAAGTTTTGGTGAACTGAACAATGCCCTTTCCATAAAATCACTTGAATTTC<B R> <BR> <BR> TTCTATATCTCCATCGTACTCTAATGAATCAGTATGTGGATCCCATACTGCCATT<B R> <BR> <BR> TTATCTAACGGGATACCTAAGTCGTACGCTGTATTTCTCCCTAAATGTTGATCC GGTAAAAAGACGAGACGCTCTT (iv) The Bavntr-31 locus (SEQ ID NO : 82) : <BR> <BR> <BR> TATACGATTGAAAGCTTAATGCATGATGGAAAAGCACTTCAAACAGGAACATCC<BR > <BR> <BR> CATAACTTTGGAACGAATTTCTCTGAAGCATTTGATATTAAATTTTTAGATCGTA<B R> <BR> <BR> ACGGTAAGTGGCAATATGTACACCAAACATCTTGGGGCGTATCAACAAGGATG<BR& gt; <BR> <BR> ATAGGTGGACTGATTATGGTTCATAGTGATAATAATGGGCTTGTAATGCCTCCT

AAAGTCGCACCAGTGCAAGTTGTTATTGTACCGATTGCGCAGCATAAAGAAGG<BR& gt; <BR> <BR> CGTTTTAGCGAAAGCAACAGAGTTACAAGGACATATTCAAAAGGTTGCACGAG<BR& gt; <BR> <BR> TAAAAATAGATGCTAGTAATAAAACACCAGGTTGGAAATTTAATGAGTATGAAA<BR > <BR> <BR> TGAAAGGTATTCCAATTCGATTAGAAGTTGGTCCTAAAGATATTGAAAAGAATC<BR > <BR> <BR> AAGTTGTACTCGTAAGAAGAGATACGAAAGAAAAAGAGTTTATATCAATGGATC<BR > <BR> <BR> AATTAGAAGAACGCATTCCAGCACTACTTGAGGAAATTCATAACTCTTTATTTAA<B R> <BR> <BR> TAAAGCAAAAGTATTTCGTGATGAAAATACGTATAGTGTGACGAATTTTGAAGA<BR > <BR> <BR> GATGAAAAAATTGGCTGATGAAAAGCAAGGGTTTATTAAAGCAATGTGGTGTG<BR& gt; <BR> <BR> GAGAATTAGCTTGTGAAGAGAAACTAAAAGAAGAAGTTGCTTCTCGCTGTATG<BR& gt; <BR> <BR> CCTTTTGAACAAGAACATTTAGCAGAAGAATGTGTTTGTTGTGTAAACAAATGG<BR > <BR> <BR> TGTATTGGGGAAAAGCGTATTAATGCTCTTTTGGATAGGAAGGATGAAAAGGA<BR& gt; <BR> <BR> CTTTGGGCTGCATAATAAATGCAATCCAAAGTCCTTTTTAGTTTTACAATTTGTT<B R> <BR> <BR> TCATGTATTTTTAAGATGGAAGGATGAG i i i i TATTTTGCGTTTTTACGGCGAAT<BR> <BR> <BR> AAATAGTAACATACCAATTAGGAATGTTGAAAGTCCCATTAAAATAGATGCAGG<BR > <BR> <BR> ATAATGTGTTGCAGTATTCGGTAACTTATC [GCCTTGTTTT'fTCGCATTATCTTTT<BR> <BR> <BR> AGATTACCACC] TTGAGAGCCATTTCCTCCCTGAGAACTGCTATCACCTTTAACA<BR> <BR> <BR> CGATTTCCGCCTTGAGAGCCACTGCCACCAGAACCACTGCCACCAGAACTGTT<BR& gt; <BR> <BR> GCCACCCGAGCCATTGCCACCAGAACCGTTGCCGCCAGAACCATTTTCGCCC<BR&g t; <BR> <BR> GAGCCGCTGCTACCAGAACCGTTGCCGCCAGAACCATTTTCGCCCGAGCCGC<BR&g t; <BR> <BR> TGCTACCAGAACCGTTGCCGCCAGAACCATTTTCGCCCGAGCCGCTGCTACCA<BR& gt; <BR> <BR> GAACCGTTGCCACCAGAACCGTTGCCACCGGAACCATTGTCACCCGAGCCGC<BR&g t; <BR> <BR> TGCTACCAGAACCGTTGCCGCCAGAACCATTTTCGCCAGAACCGTTGCCACCA<BR& gt; <BR> <BR> GAACCGTTGCCACCGGAACCATTGTCACCCGAGCCATTGTCACCAGAACCGCT<BR& gt; <BR> <BR> ACCATCGGAACCATTGCCATCAGAACCACTATCGTCCTGAGAGCCACCGTTTC<BR& gt; <BR> <BR> CTGGTGGTTTATTATTATCTTTTGAGTTACCTTCTACGAAATAATCGTTATTTTGT< BR> <BR> <BR> ACAATCGCGTTTGTTATTGGAGAGAAGTTTTCTGTTGCTGCATTACCGATATTT<BR > <BR> <BR> AATCCACTAAAGAAAGATAAAGAAA [GAGTTGATGCTAAAATGAAAATTTTCGTC<BR> <BR> <BR> ATTGATTTC] CTCCTGAAAAATTAATATTCCATCTAAAATACATCCCTTTGTAATA<BR> <BR> <BR> TTTCATAGGAAAAAGAGTTTTATGCAAAAAAACTATATATAGAAAAAGGTGGTG<BR > <BR> <BR> TATTTCTAAAGAGAGAAAAGTGTTAGTGTAAATTGTTTATGAATAGTAGAGTGG<BR > <BR> <BR> TGAGAATTTTACACTCATTACAGTAGAGGAAGTGAAAGCAGATGAAAGAATATA<BR > <BR> <BR> TTGCATTTGATATTGGTGGTACACAAATTAAATATGGAATTGTTTCAGAAACAG<BR > <BR> <BR> GAATAGTACTAAAGCACAAAACAGTTCCAACAGAAATTCATTTGGGCGGGGAA<BR& gt; <BR> <BR> CAAATTATTCAAAAACTCATTCTTTTATCAAAAAAATTAATGAGTGAACATACGA<B R> <BR> <BR> TTTCGGGAATTGGTATTAGTACTGCGGGAATTGTTGACGTTAATAGAGGGGTT<BR& gt; <BR> <BR> GTGACGGGAGGGGCGGATCATATTCCGGGCTATAGTACGATTCCTATTATTAA<BR& gt; <BR> <BR> TAGATTGCAAGAGGTATTAAAAGTTCCCGTATCTATTGAAAATGATGTGAATTG<BR > <BR> <BR> TGCTGCGCTGGGAGAAAAGTGGAATGGTATTGGAAGAGAGAAAGAAAATTTCA<BR& gt; <BR> <BR> TTATGCTCACCCTTGGAACTGGTATTGGAGGAGCGATTTTTATAGATAGAGAGT<BR > <BR> <BR> TATATAGAGGGCATTCATATAGTGCTGGTGAATGGGGAAACATGTTAATAGAA<BR& gt; <BR> <BR> GGAAAAACGTTTGAAGAGGTCGCTTCCATTTCAGGGTTAATTCATCTTGTACGA<BR > <BR> <BR> AATTATAAAGGAAAAGGTAATTGGAATGGGAAAACGATTTTCGAACTGTATGAT

AAAGGCGACAGGGAAGTTACGCAAGCAGTTGAGGTTTTCTTTAAACATTTAGC<BR& gt; <BR> <BR> GATTGGAATTAGTAACCTTGCTTATATTTTTAATCCAGAAACAATTATTATTGGT<B R> <BR> <BR> GGAGGAATTACTGATAGAGGAAATCAGTTI IfTAAAAGAAGTAAAAGAAGAGGT<BR> <BR> <BR> AGGAAGATACTTAAATAAAGAGAT (v) The Bavntr-14 locus (SEQ ID NO : 83) : <BR> <BR> <BR> <BR> <BR> GCTATCATTTTTTTCATCTTCTGCACCTCCACCACTGAATATACAAGGGCTTTGT TACAGGAATGTGGCAAAAAATA [GAGCCAGCATAACGCTAGCTCTGTTTTG] GAT ATTAAAAATAAATATATATATATGGACAACTATAGTCTACTTAATATATATGTAGT ACAATAACCGTGTTTTTCATCCTCATTAATTATAAAACCAAATCATTCAAAGCT <BR> <BR> TTAACATGCATTTTTCAACTAAAAAAATAAGTGTATATAATATACGCTAAAACTA<B R> <BR> <BR> GCACTAAAATTACTAGCGCT [GTACCTTTCCAATTCATACCACCCGTCATATC] A<BR> <BR> <BR> ACTGGACTACCCGTTTCAGCTCTGTTGAGCCCATCATGTAAAGAACCGGTAGG<BR& gt; <BR> <BR> ATTGTTTTTCAATTCACTTTGCCTTATACGTTCTCTTTTTTCTTCCGGTGACTCTT< BR> <BR> <BR> TCTTCATATGATCCGTTCACCTCCAAATTAATACACTCTTTACTAAATTATACATT< BR> <BR> <BR> CATATTTTTCTTTTATATGCAAACTTAAAAATATTTACAACATAAAGAAAGCTAGC< BR> <BR> <BR> GATGCTAGCTCTCTTTATAATCCAATATGTTCTTTCTTATTTACAGTAATCCCTC<B R> <BR> <BR> TATGATCAATTTCTAGCTCACACACTTTCATAGACGTAAATACTCTCGCTAATTG<B R> <BR> <BR> CTCAGCAATTTCTTGACGTTTCTCATACGGCGTTAATATAAAAATAGATGGTCC<BR > <BR> <BR> TGCACCGCTTAGCGCTGTACCGTATGCACCGAATTCTTTTGCACATTTACGAAT<BR > <BR> <BR> AGATGGTAATAACGGTACAAGCTCTAAACGATACGGTTCGTGAAAATGATCCC<BR& gt; <BR> <BR> TTTCCATCATTTCCCCTACAACTTTCCATTTCTTTTGACATAAAGCAGCTACTAA<B R> <BR> <BR> TACATTACTTATTGCACTAGCCTTAACAGCTTCATGAAACGGAAATACATCTGG<BR > <BR> <BR> TAATACAGAACGACTTTCATCTGTATTTAGCTCTTCATTTGGAATAAGTGAAATT<B R> <BR> <BR> ACACCTAATTCCTTACTTTCAATTCTCACAACCGATACATTTIT CCATCAAGTG<BR> <BR> <BR> CTCCGATTACAGTTCCTCCTAATATAGAAGCAGCAACATTATCAGGATGACCTT<BR > <BR> <BR> CAAAATTTGTAGCAATTTGAACTTTTTGATCAATCGTTAAGTTCAATTTGCCTAG<B R> <BR> <BR> TTGATTCGCAAGCTCTATCCCAGCTACAATTGCTGATGCACTACTTCCTAGACC<BR > <BR> <BR> TCTTGTTAGCGGGATGTTACTAGTAACTTCTATTATATGGGGTGATAAAGAAGG<BR > <BR> <BR> ACATACTTTACATGCCGTGCTAACAATTAAATTTTTATCGTCTGTCGGAATTGAA<B R> <BR> <BR> TCTTCAAAGGAATGGATCACTTGCCATTTATCAGACTTCTCTTTTACTACTACAT<B R> <BR> <BR> GTAAATACAATGACAAAGCTATTCCTACTGAATCAAATCCAGGTCCAACATTCG<BR > <BR> <BR> CTGTACTAGCAGGAACACGAATACTTAATGGTATCACGACATAATCACCCCTTT<BR > <BR> <BR> AATATGCTCTTTAATTTGTTCTATATT (vi) The Bavntr-17 locus (SEQ fD NO : 84) : <BR> <BR> <BR> TCATTTCGAGAACAATACACTATCAATACCTGAAGATACAATAATCAATCGTACA<B R> <BR> <BR> ATCCAGTTAAAAGAAGAAGATAAACTACACTTATATAATTACTACAAAACGATTC<B R> <BR> <BR> CTAAACCTGTACGTCCTAGATATCACAGTGATGATCCACTCTTTGTCGCTTTTC<BR > <BR> <BR> ACTTTAGGTTGGGGACTTATGTTTGGAGTTATGACGATGATGCACCAAAATTTC

TAACGGAAATCTCCGTTCAAAAAATGATTCGTTTAGAGATAAAACGTGCTAATC<BR > <BR> <BR> TTCGAAAGGGAATTTCAGCACAACACTTTCGAAATACTTTTATATTGCGGATGT<BR > <BR> <BR> TCCAGCAGCTATGTAAGGATGAACATATTATGAAGCAAGTCGGGTTTAAAACTC<BR > <BR> <BR> ACGAATCACTGAAAAGATATCGTAAGTATTATTATGCAAACTCTAACGAGAACA<BR > <BR> <BR> AAGGTTAAAACTCTGTACTTGCTATATAAAAATTATATACCTACAGTTTTTTAGA<B R> <BR> <BR> TAAATGTAAGATGGAGCTGTTAAGATGAAGAAAAATAAGGAGTCATATTCCATA<BR > <BR> <BR> CACGTATACACTTTGCGAGACAAGACTACTAAATCTATTAAAATCGAGTCGTGG<BR > <BR> <BR> CGTTCATTAAGGGAAGAAATGCAAGTATTAGGCATAACGGATAGTGACATTTTC<BR > <BR> <BR> CAAATCCAAATGATTGAAATAACCCCAAATAAAAAAGCGCCATAACGGTTGTTA<BR > <BR> <BR> TAGTGCTTTTTTAACTTCGCTCTCTACTTATAAGAACAAACCGAGGGGAGCGGT<BR > <BR> <BR> ATGATAATATCTTATTCTCTTGCATTACTTAATTATGAATTATTTTTACTATTTCTA< ;BR> <BR> <BR> GTTAAATTATCTCTAATTTGCTCAAAACGTTCCTTACAAGAACCTACAAATATAT<B R> <BR> <BR> CCATACCTATATATTTCTTATCGTCAGAATTTATAACTTTCTCCATTTCATTTTCA< BR> <BR> <BR> CACTCTTTAATAGCCTGTTCAAGGTATTTTAAAGCTAATTCTGGGTTGTGTTTTA<B R> <BR> <BR> AATACTCCGAACCCGATG [GAGTTAAACCATAAGGAATACACC] TTACTATATCT<BR> <BR> <BR> TTAATTTCTTGTTCTTTCTCATATATTTTACCTTTTATTCTCTCTACCTGTTCTTCT< ;BR> <BR> <BR> GTCCACCCTTTGTATGCACCTATATAATACGCTGGCGCTTCAATTCTCCCTGCT<BR > <BR> <BR> TTCACTGCTTGATTCATCCCTTGCTTTGTCATCTCTAATTCCTCTGCTAAATCAG<B R> <BR> <BR> CAGTTGAATATAATTTTTCCGTGCTCATATTAGCGCCTCCTTGTATTTTAGGTAA<B R> <BR> <BR> ACAAATTTTCGTAATCCGTTTACCTTCGTTAAGTTAAATTTATTGTACCACTACA<B R> <BR> <BR> TTTTACATAAGTAAACAGTTTTCGAATTTATATTTCATATCGTAAACTAAAATCAG< BR> <BR> <BR> AATTTTTAAATTAAAATCGAATTTATTTACACATTTGCACATGTGTAAATGTGTAA ATGTGTAAATGTGTACATTTTTAATACAGACTTGTAGCCAAAAATACAAAAGAAT TAAATGTGACATGT [GCTACTATTGGCACTTTTATA'fCTC] TAGTCTTTTCGTAAC TCCATGCATATAAACAACCATTTACAAAGTACGGGAAGAAGAACCAATCAAAAT<BR > <BR> <BR> GCACGGCTGCAAAGATACCATTAGCTATGATAATTGCTGTTGTACGATTAATCC<BR > <BR> <BR> GCTCAAATAGTGTTCCTATTCCTAAAGGCAGAAACTTTCTAAAAATACATTCCTC<B R> <BR> <BR> AATTACAGGCGCTATTAATAGCGGGACAATTAAATAGAAGATATTCAACTCTAC<BR > <BR> <BR> TTTTGCATTCACTTGTTCTGCATTGCCTGTATCAATTCCAAAATAGCCCTTTATA<B R> <BR> <BR> TAGAAAAAAAAGAGACTGGACACGATAGCAAGTCCAGTCGTCATTAACACCCA<BR& gt; <BR> <BR> TTTCCCCTTTTGTACTACTCTfTfTACATTCAACTTTCTTCTCCCCTTACTATGAT< BR> <BR> <BR> TCTTGTTTATTTTTTAGCAAATTCAAATGTGATCTTTCCGCTAGAATCAAGCTTC AGATACGCATCAAATTCTTTCCCTGATTTTCCTTTCATCCCTTTAATCAATCCTG <BR> <BR> TTTTCTTACCTGCTAGTAATTTCTTAACGTTTGTTTCGCTAATTTTTTTGTTAAAA< BR> <BR> <BR> ATTCGCTTGGAAGCGAAAACTTGCAACCTTCCTTATAGCCTGTACAACCGTAAA<BR > <BR> <BR> ACGTTTTGCGATTCGCTATGTCTTTGCCACATTTCGGGCATTTCCCTACGGAAT<BR > <BR> <BR> CCTTTGTTTTCATTTCTTGTACTTTGCTATCTATCTGAAGCTCACCAATTGACTT<B R> <BR> <BR> CGTAGCATTTACGATCAGCTGCTTGGTGAATTCTCCTGTCTTCGCAACAAATAC<BR > <BR> <BR> CTCTTTAGAGCCTTGTTTCTTCCCGATTTTACGCAAATACCCTTCCCATTGCGC<BR > <BR> <BR> TGTCATTTCGGGCTTCGCTAATAATGTGCCGCCCACGGCTTCGCAAAGAATTT CACCTTTCGGTGTAACTGTCACTTTATTCTTTTTCACTTCTATATATTCTTGTTTT TTGAGTGTTTCAA

(vii) The Bavntr-28 locus (SEQ ID NO : 85) : <BR> <BR> <BR> <BR> <BR> AAGAGCTATACAAAATTGGTAAACATAAACGTGTTCGTATCTTACCAATTTACG<BR > <BR> <BR> GTGGTCAAGATATTAACCGCCAAATTCGTGCTCTAAAAAAACACCCACACATTA<BR > <BR> <BR> TTGTTGGTACGCCGGGTCGTATTTTAGATCATATTAACCGTAAAACACTTCGCT<BR > <BR> <BR> TACAAAACGTAGAGACAGTTGTTCTTGACGAAGCGGATGAAATGTTAAACATG<BR& gt; <BR> <BR> GGCTTCATTGAAGATATTGAAGCAATTTTAACAGATGTGCCAGAAACACATCAA<BR > <BR> <BR> ACATTACTATTCTCAGCGACAATGCCGGACCCAATTCGTCGTATTGCTGAGCG<BR& gt; <BR> <BR> TTTCATGACTGAGCCTCAACACATTAAAGTAAAAGCAAAAGAAGTAACAATGCC<BR > <BR> <BR> AAACATTCAGCAGTTCTATTTAGAAGTGCAAGAAAAGAAAAAGTTTGACGTGTT<BR > <BR> <BR> AACACGCTTACTAGATATTCAATCTCCAGAGCTTGCGATTGTGTTCGGTCGTAC<BR > <BR> <BR> AAAGCGTCGTGTTGATGAATTATCAGAGGCATTAAACTTACGTGGTTATGCTGC<BR > <BR> <BR> AGAAGGTATCCATGGTGATTTAACTCAGGCGAAACGTATGTCTGTATTACGTAA<BR > <BR> <BR> ATTCAAAGAAGGTTCTATTGAAGTTCTTGTTGCAACAGACGTTGCTGCACGTGG<BR > <BR> <BR> TCTTGATATTTCAGGCGTAACACACGTATATAACTTCGATATTCCACAAGATCC<BR > <BR> <BR> AGAATCATATGTTCACCGTATTGGCCGTACTGGTCGTGCAGGTAAAAAAGGTA<BR& gt; <BR> <BR> TTGCAATGCTATTTGTAACACCACGTGAATCTGGACAATTAAAAAATATCGAGC<BR > <BR> <BR> GTACAACAAAACGTAAAATGGACCGCATGGATGCACCGACACTTGACGAGGCA<BR& gt; <BR> <BR> CTAGAAGGTCAACAACGTTTAATCGCTGAAAAACTTCAAAGCACAATTGAAAAT<BR > <BR> <BR> GAAAACTTAGCATACTACAAGCGTATTGCAGAAGAAATGTTAGAAGAGAACGA<BR& gt; <BR> <BR> CTCTGTAACAGTAGTAGCTGCTGCTTTAAAAAT [GATGACAAAAGAGCCAGATA CAACTCCAATCGC] TTTAACATCAGAACCACCAGTTGTTTCAAGAGGTGGCGGT <BR> <BR> TCTAAAAAACGCGGCGGTAACGGAGGCGGATACCGTGATGGTAATCGTAATC<BR&g t; <BR> <BR> GTAGTCGTGATGGACGCGGTGGCGATGGTCGTAACCGTGACCGCAATCGTGA<BR&g t; <BR> <BR> TGGTCGTAATCGTGACGGTAACCGTGATCGCAATCGTGAAGGTAGCCGTGAT<BR&g t; <BR> <BR> GGTAACCGTGGTCGTCGTGGCGAAGGTCAAGGACGCCCAGGATCTTCAAACG GACGCGGC [GAAAGAAAAGATCATAGCCGTAAGCCACAAG. C] TTAATAATAAAA <BR> <BR> AAAGAGAATGCCCTTTGCCGGCATTCTCTTTTTTTATTTCTGTAATTGTACATAC<B R> <BR> <BR> TACATAATAACTTGTGTAGAAATGAGGTGCCACATGCTTGTAAGGCTTGGGCAT<BR > <BR> <BR> GTCGCGATGAGTGTACATTTGAAAAATGCATCTCCATCTCAAACGATGACGTAC<BR > <BR> <BR> GCACAGTTTCAAAAAATAGATGATCGGGAAGCGGCAATTCGTAAACTTGAAAG<BR& gt; <BR> <BR> AATTGCTAATTCGAATTTGGAAAATTGCTTACGGTTATTAAAACATAATAAAGGC<B R> <BR> <BR> CATGATATATCC) H ! H CGACTTAGTTCTAAGTTGATTCCTTTAGCGAATCATG<BR> <BR> <BR> AGGAGTTGTTAGAGTGGAATTATATTCGCCCTTTAAAAGAAAATTTAAAAGTGC<BR > <BR> <BR> TAGGTGATTACGCTATTCGAATGAATATGCGTATTGATTTTCATCCAGATCATTT<B R> <BR> <BR> TGTTGTACTCAATTCACCTGAGGAGAATATTTTTAAACAATCTGTAAAGACGTTA<B R> <BR> <BR> CAGATGCATAGAAAATTATTAAAAGGTATGGGGATTGAACATAAGCAACGATGT<BR > <BR> <BR> GTAATGCATGTTGGGGGCGGATATAAAGATAAAGAGCTTGCATTAGAGCGTTT<BR& gt; <BR> <BR> TATAGAGAATTGGTCTAATGTCCCAAGAGGTATTCAGGAAATGATTATGTTAGA<BR > <BR> <BR> AAATGATGATACAACTTTTACGCTCGAGGATACATTATATTTAGGAGAAAAACT<BR > <BR> <BR> GGACATTCCCGTTGTATTTGATTTACATCACCATATGATGAATCATGATCGAGA

AGATTGGCATGAAGATTGGGCGCGTGTTGTACATACGTGGGAATCGTCTTTGT<BR& gt; <BR> <BR> TACCAGTGAAAATGCACATTTCTAGTCCTAGAGAGGGAAAAGACCCGAGAGCA<BR& gt; <BR> <BR> CATGCGGACTTTATTGATGTAGATACTTTTTTATCTTTTTTAAAAAAGATAAAGG<B R> <BR> <BR> GAAGTGTTCCGCAAATTGATTGTATGATTGAAGCGAAGAT (viii) The Bavntr-29 locus (SEQ ID NO : 86) : <BR> <BR> <BR> <BR> <BR> TAGAGCCGCAAAACTTCCTCGTATTGAAATTACAAAACCAAGCAGTGTAGTTGG<BR > <BR> <BR> GAAGAATACGGTAAGTGCGATGCAATCTGGTATTCTTTATGGTTATGTTGGACA<BR > <BR> <BR> AGTGGAAGGTATTGTTAAGCGCATGAAAGAGGAAGCTAAACAAGAACCGAAAG<BR& gt; <BR> <BR> TTATTGCAACAGGTGGATTGGCGAAATTAATTTCAGAAGAATCGAATGTGATTG<BR > <BR> <BR> ATGTTGTAGATCCATTTTTAACATTAAAAGGTTTGTATATGTTATACGAGCGGAA<B R> <BR> <BR> TGCAAATTTACAGCATGAGAAAGGTGAATAAATAAGTATGAAAGATTATTTAGT<BR > <BR> <BR> AAAAGCGTTAGCGTTTGATGGAGAAGTGCGTGCGTATAGTGTACGTACTACAA<BR& gt; <BR> <BR> ACACGGTAAGTGAGGCGCAAAGACGTCATGATACATGGAGAACAGCTTCAGC<BR&g t; <BR> <BR> GGCGCTTGGTCGTTCTTTAACTGCAGGTACAATGATGGGGGCAATGTTAAAAG<BR& gt; <BR> <BR> GTGACCAAAAGCTAACAATTAAGGTAGAAGGAAATGGTCCGATTGGTCCTATC<BR& gt; <BR> <BR> TTAGTAGATGCTCATGCAAATGGAGATGTACGTGGTTATGTAACGAATCCACAT<BR > <BR> <BR> GTTGACTTTGAAGGAACAGAACAAGGGAAATTACGTGTATATCAAGCGGTAGG<BR& gt; <BR> <BR> TACTGAAGGATTTGTAACGGTAATTAAAGATATTGGTATGCGTGAGCCGTTTAT<BR > <BR> <BR> TGGTCAATCTCCAATTGTTTCAGGAGAATTAGGAGAAGACTTCACGTATTATTT<BR > <BR> <BR> TGCAGTTTCTGAGCAGACGCCGTCTTCTGTTGGTGTTGGTGTCCTTGTAAATG<BR& gt; <BR> <BR> GAGACGATAGCATATTAGCAGCAGGTGGATTTATCCTTCAAATTATGCCGGGT<BR& gt; <BR> <BR> GCACAGGAAGAGACAATTTCATTCATTGAAGAGCGTTTGCAGAAGATTCCTCC<BR& gt; <BR> <BR> TGTATCAACATTGATCGAACAAGGGCTTTCTCCAGAAGAGTTACTGTATGCAGT<BR > <BR> <BR> CCTTGGAGAAGACAAGGTAAAAGTATTAGAAACGATG [GA1'GTTCAATTTAATT<BR> <BR> <BR> GCACATGCTCACGC] GAACGTATCGAGAGTGTGTTAATTAGTTTAGGTAAAACG<BR> <BR> <BR> GAGTTAGAGCAAGTTCGAGAAGAAGAAGAAGAAACAGAAGTTCATTGTCATTT<BR& gt; <BR> <BR> CTGTAATGAGCGATACAAGTTCTCTAAAGAAGATATTACAAATTTAATTGAGAAT<B R> <BR> <BR> TTGTAATAAGGGAATTTACCCTCTAAATACATTGACAAACAGGGAATTTTCTGA CAAAATCTAAATATA [GACAAAACCAATAAAAATACT'CGGTGTTAGGAGTGAC] A GGAATGCGAGTGGCACAATCAGTTTCAGAATTAATCGGGAAAACGCCGATCGT<BR& gt; <BR> <BR> <BR> TAAGTTGAACCGCATCGTAGAATCAGACAGCGCAGATATATACTTAAAATTAGA<BR > <BR> <BR> ATTTATGAATCCGGGGAGCAGCGTTAAAGATCGTATCGCATTAGCTATGATTGA<BR > <BR> <BR> AGATGCTGAGAAAAAAGGATTATTAAAAGAAGGCGATACAATCATTGAGCCGA<BR& gt; <BR> <BR> CAAGTGGTAACACAGGAATTGGCTTAGCGATGGTAGCAGCTGCTAAAGGATAT<BR& gt; <BR> <BR> AAGGCAATTTTAGTAATGCCAGAAACAATGAGCGTTGAGCGTCGCAATTTATTA<BR > <BR> <BR> CGTGCTTATGGCGCTGAATTAGTATTGACTCCAGGGCCTGAAGGAATGGGCG<BR&g t; <BR> <BR> GAGCAATTCGTCAAGCGACTGAATTAGCAAAAGAACATGGCTACTTTATACCG<BR& gt; <BR> <BR> CAACAGTTCAAAAATCAATCAAATCCAGAAATTCATCGTTTAACAACAGGTCCA<BR > <BR> <BR> GAAATTGTTGAGCAAATGGGTGATCAATTAGATGCATTTATTGCAGGTATTGGT<BR > <BR> <BR> ACAGGTGGAACGATTACTGGTGCTGGTGAAGTGCTGAAGGAAGCATATAAAGA

TATTAAAATTTATGCAGTAGAACCTGCGGATTCACCGGTGTTATCTGGTGGAAA<BR > <BR> <BR> ACCGGGTCCACATAAAATCCAAGGAATTGGGGCTGGATTTGTTCCAGAAACAT<BR& gt; <BR> <BR> TGGATGTAGAAGTATATGATGAAATCATTCAAGTGAAAACAGAGCAAGCGTTC<BR& gt; <BR> <BR> GAATACGCAAGAAGAGTGGCTAAAGAGGAAGGTATTTTAGTTGGTATCTCTTC<BR& gt; <BR> <BR> AGGAGCGGTTATTTATGCAGCGACAGAAGTTGCGAAAAAGTTAGGTAAAGGGA<BR& gt; <BR> <BR> AAAAGGTACTTGTTATTATCCCAAGTAATGGTGAACGTTATTTAAGTACACCAC<BR > <BR> <BR> TTTATCAATTTGAGTCTTAATTACATGTGATTGAAAAAGCATCCTTGA (ix) The Bavntr-27 locus (SEQ ID NO : 87) : <BR> <BR> <BR> ATGACATATATATAAGATGGCTTTCATTTTATAACACTCCACTTACTTGATACGT<B R> <BR> <BR> ACTTTCTGTCTGCTTTTCAAACCAATGGATTTTTTCTCTAAAACGGACGACTTCT<B R> <BR> <BR> CCAATTACAATCATGCTCGGATTTTGAATTTGTTCTTTTTTCGCAACATCTACAA<B R> <BR> <BR> TTGTCCCTAACGTCCCAACAACTGTGCGCTGCATAGATGTAGTTCCCCGCTCA<BR& gt; <BR> <BR> ATAATAGCGGCAGGCGTACTTTTATCTTTTCCATGCTTCATCAGTTGTTCACATA<B R> <BR> <BR> TATAGGGTAAATTGCTAACCCCCATATATACTGCTAAAGTCTCTACACCTTTCG<BR > <BR> <BR> CTAAATTTCCCCATTTCACTTCCTCTGCAGCATCTTCTTTTCGATGCCCTGTCAC<B R> <BR> <BR> AATAGCAAAGCTTGCACTTGCATCACGATGTGTCACTGGAATACCCGCATAAG<BR& gt; <BR> <BR> CTGGTGCAGCTATTCCAGCTGAAATACCAGGAACAATTTCAAATGGTACACCTT<BR > <BR> <BR> GCTTTGCTAACGCTTCGGCCTCTTCTCCCCCTCTACCAAATACAAATGGATCCC<BR > <BR> <BR> CACCCTTAAGTCTCGTTACAATTTTTCCTTTTTTCGCATATTTAATAAGAAACGT<B R> <BR> <BR> GTTAATTGTCTCTTGCTTCATCGTGTGATAATTTGGTAGTTTTCCGCAATAAATT<B R> <BR> <BR> AAATCCGCTTCAGGCTTTGCATAGGAAAGCAATTCTTTATTTACAAGACGGTCG<BR > <BR> <BR> TACAAAATAACATCTGCCTTCTCAATACATTTCAATCCTTTCACAGTAATTAAAT<B R> <BR> <BR> CTGGATCCCCAGGGCCCGCCCCAACGATATATACTTTTCCCATCATTTCTCCTC<BR > <BR> <BR> ATTTCTACTATTAAAGTGAAACTTCCATCCTTATATATGAATGGAAGTTTTCATTT< BR> <BR> <BR> CTTCATATTTCAATGTTCCTTACTCATGAATAACAAAGGCCGCGCTTTTTCGAAT<B R> <BR> <BR> CTTCTTTTTTTCAAATAAAGCAATCTCCTTTACCTCTGGTAACGGTAAAAAATGT<B R> <BR> <BR> TTTTCAAGCTCAATCTCC [GCCATCTTAAATGCCTTTTCTTCACTTTCAGC] AACA<BR> <BR> <BR> ACAACAACAATTGGAACAATACTATTCTCTAATACAGCTTCAAATCGATATAAAT<B R> <BR> <BR> CCATATTGCCCCTCCTAAGACGCTATTACTTCTTCTAACACGTTATTTAACGCTA<B R> <BR> <BR> TTTGTAAT [GTCTCTACACCAACGCGGCCTACAAAATC] ATAAAACGTTTCAGCC<BR> <BR> <BR> GGTAATTTATTTTCTTTGAAATAACTTATAAATGATGCGAGTACATCAGGTAGAT<B R> <BR> <BR> CCTCACCATCTATTTTTCCTTTTAACTTTTGATTATAAGCACCACCATCTAACAA<B R> <BR> <BR> CGTTCCACCTACATATATTTCAAATGCTTCAACAATCCCTTTTTCCTTCGTTTTC<B R> <BR> <BR> ATTTTCACACCTTGTAATCCAATGTCCGCAATTTGACGTTGACCACACGAATTC<BR > <BR> <BR> GGACATCCTACCATATGAATACGAACCGGAACATCGAGTGCAATTTGTGTATCT<BR > <BR> <BR> AAGTATTCGGCAATTTTTCGTAATCTTTCTTTCGTTTCTACTAAAGCAAGATTAC<B R> <BR> <BR> AATATTCAATACCAGTACAAGAAACCGCGTGACCAATAAACGATTTCGGATTCG<BR > <BR> <BR> CTGATATCGCTTCAAACAACGGCTCAGTTAGTAAGCCCGTTACATTTTCCGGC<BR& gt; <BR> <BR> GGAACATTCGGAATAATGAAGTTTTGCGAATTACATGTACGAATTTGTCCATTT<BR > <BR> <BR> CCATATTGTTTTGCAATTCTTGCAATCTCAAACATTTCTTCTGCATGTAGGCGCC

CTACCGGCACATTAAAACCTACATATTTTAGTCCCTCTTGTTfTTGATCTTGGAC<B R> <BR> <BR> ACCATAAAAGTATCCCGCATTCCAGCCTTTGAGAGCACTTTCCCCTTTACTTTG<BR > <BR> <BR> TAATGGTCCTGTATACTCTATTAGTTTCTCTTTAAACTTCTCTGCTCCCCAGTCT<B R> <BR> <BR> GCAACAAGAAATTTCAAACGAGCTAAATGACGTTTTTCGCGATATCCAAAATCA<BR > <BR> <BR> CGGAATATCGTAGCAATCGCAATCGCTACCGCCTTCACTTCTTCTGGTAAAAC<BR& gt; <BR> <BR> GAATACATCTAATTCATCAGCTAAATATGGACGAGCTGATAACCCACCACCTAC<BR > <BR> <BR> TTTTATATGAAAACCAACTTTTfTCTCACCATCTATCTCTTTCTTAGCAGGTGTA<B R> <BR> <BR> AATGCAACACAGTTAATCTCTGC (x) The Bavntr-18 locus (SEQ ID NO : 88) : <BR> <BR> <BR> GCTTCTCTCAATAAGTCGATTGCGAGTTCTAAAAAGAGAGCTTCAATTAAAGGT<BR > <BR> <BR> GGGAATGGTACTTGTGCCCTTGATAAAATTAAAGTTTCAAGTAAATCACTTGGA<BR > <BR> <BR> ATGAGTTCATAATGATAATTTAAAACTGCAACGTATAACGGTGTAGCGCATATC<BR > <BR> <BR> GAGAATAGAACGGCGATAAGGCGTAAAATCCTTGAAAATGTAGCGTATAGCCA<BR& gt; <BR> <BR> AGAGACGTTGTAGTCTTCTGGTGAAATGAAAAAATCGAAATAGGATACAGGTG<BR& gt; <BR> <BR> TTAATAAAACACTTGGAGAACCGTCCACAAAAATAGCGATTTTTCCATCGATTA<BR > <BR> <BR> ATGCTTTTGTAACTCTATCAGTGCGTTCTGTATTGATATAAAGAGGAAAAATCG<BR > <BR> <BR> ACTTTTCTCCCATCAATTCTTGTATATAAGCACTATCATTAATTTGATCATATTCA< BR> <BR> <BR> AGAGCACGTAATGATTCCTCGAGAAAATCTACATTATCTTTTTCAGCGAGATTG<BR > <BR> <BR> TCTAAATACATCATGACAACTTTTGTTTTGGAAAACTCACCGACAATCATTTCTT<B R> <BR> <BR> TTGTTTGTAAATCTAAAACAGGAAGACGTTTTCGAACTAAATTAATATTTGTGTC<B R> <BR> <BR> AATGTCCTCTACAAAACCTTCTTGCGGACCAATAACAGTCGATTCGTTTAAAGG<BR > <BR> <BR> TGGAGTTGGTGCACGATAATTATCAATTGCAATATTTGCGAGCATACATTTTTG<BR > <BR> <BR> ATCTTGTTGATTTACTTGAACAATCGCATGTCCCTTTAAAACCATGTCCTCAATT<B R> <BR> <BR> TTTTGTAAATCGTTTGTAATTGTAATGCCGCTCATTGGAATATGTTCCTTCAGCT<B R> <BR> <BR> CTTCTAGTGATGCGTTAGGTCGTTCTAAAAGAGTAGGCATTAAATACTTTTGCA<BR > <BR> <BR> ATTTCTCACCATCAAGTGAAGGACGATAGTAAGAAATCCAATAAGGCATCGTTT<BR > <BR> <BR> CATCGTCAGATGTATGATAATTCACAAAATCACTAGACTTTTTCAGTTTCTCTAT<B R> <BR> <BR> TAAATCTTGTAAAGAATGAATAC [GATCTTTTTCTGGTTTGGAAAAATCATAAATA<BR> <BR> <BR> CTATTACC] TTTAGAATTTTGTTGCTTATCCTGATCTGAGTTGTCTTGTTTAGAGT<BR> <BR> <BR> GTTGCTGTTTATCTTGTGCTAAATCATCTTGCTTGGAGCTTTGCTGCGTATCCT<BR > <BR> <BR> GGAATGAATCATCCTGATCGGAGTCGTCTTGCTTAGAATGATTCTGTTGCTCTT<BR > <BR> <BR> GAGAAGATTCATCTTGTTTAGAGTGTTGCTGTTGCCCCTGATCGGAGTCGTCTT<BR > <BR> <BR> GCTTAGAATGATTCTGTTGCTCTTGAGAAGATTCATCTTGTTTAGAGTGTTGCT<BR > <BR> <BR> GTTGCCCCTGATCGGAGTCGTCTTGCTTAGAATGATTCTGTTGCTCTTGAGAA<BR& gt; <BR> <BR> GATTCATCTTGTTTAGAGTGTTGCTGTTGCCCCTGATCGGAGTCGTTCTGCTTA<BR > <BR> <BR> GAATGATTCTGTTGCCCTTGATTCGAGTCGCCTTGCTTAGAGTGTTGCTGTTGC<BR > <BR> <BR> CCCTGATCGGAGTTGCCTTGCTTAGAGTGTTGCTGTTGCCCCTGATCGGAGTC<BR& gt; <BR> <BR> GTCTTGCTTAGAATGATTCTGTTGCCCCTGAGAAGATTCATCTTGTTTAGCACT<BR > <BR> <BR> TTGTTGCTGATTTTGATTCGATTGATTTTGCTGCTTATCTTGAGAAGATTCCTTG<B R> <BR> <BR> TGTTCCTCTTTTTTTTGCTCGCTATTGTTACTTTTATTATGTTTCGTACTTCTAGT

CTGTTCTTTGTTGTCATCCTCTTGATTGTTAGGTTTTTGCTCCGAATTATCTGTT<B R> TCGTTTTTCTCTGTTGTATTTAATTTTTTTTTCTTACGTAGCCAATTCCAAATCAT< BR> ATGTATGCCCTCTTTGATTGTGTAATATAGTGCTATTTTGTGGCTAATTTTGTAT<B R> ATTATTCATTTATTTATGAAAA [GAAGGAGGAGATTGGTTTGCATAGAAAAAATC]<BR> TTTTAGTAAGCAGTTCATACTATGACGAGAAGAGGGCGAGTCTGTGCAAATTG<BR& gt; TAAAAAAGGAGAAGTTTATTTTAAAGGAGTATACATTTGAAAATGGTAGGACAA<BR > TTCCTGTTCAAATGGGGTATGAGACGTATGGTACTTTAAATAGAGAGAGATCCA<BR > ATGTGATTTTGATTTGTCATTATTTTAGTGCAACTAGTCACGCGGCAGGAAAAT<BR > ATACAGCGCATGATGAGGAGTCTGGCTGGTGGGATGGTTTAATTGGACCGGG<BR&g t; AAAAGCAATTGATACAAATCAATACTTTGTTATATGCACTGATAATCTTTGTAAT<B R> GTGCAGGTGAAGAACCCTCATGTAATTACAACGGGGCCGAAATCAATTAATCC<BR& gt; GAAAACTGGAGATGAATATGCGATGGATTTTCCGGTTTTTACATTTCTTGATGT<BR > AGCTCGTATGCAATGCGAGTTAATAAAAGATATGGGAATCGCAAGGTTACACG<BR& gt; CTGTAATGGGACCATCAGCTGGCGGGATGATTGCGCAGCAATGGGCTGTTCA<BR&g t; TTACCCTCATATGGTAGAGCGGATGATTGGTGTTATTACGAACCCACAAAATCC<BR > AATTATTACGTCGGTAAATGTAGCGCAAAATGCAATTGAGGCTATCCGGCTGG<BR& gt; ATCCGAGTTGGAAGGGCGGGAAATATGGAGAAGAGCAGCCAATGAAGGGGCT<BR&g t; TCAGTTAGCAAATAGAATGATGTTTATGAACGCGTTTGATGAGCATTTTTATGA<BR > AACAACCTACCCTCGTAATAGTATAGAAGTGGAACCGTATGAAAAGGTTTCTTC<BR > ATTAACATCATTTGAGAAAGAGATAAACAAATTGACATATAGAAGTATAGAGTTA<B R> GTAGATGCAAATTCGTGGATGTACACTGCGAAAGCAGTTTTATTACATGACATT<BR > GCGCATGGATTTTCGTCTTTAGAAGAGGCGCTGTCTAATGTAGAAGCAAATGT<BR& gt; ACTTATGATTCCGTGTAAACAAGATTTGCTTCAGCCGTCACGTTA (xi) The Bavntr-21 locus (SEQ ID NO : 89) : TCATTAGGTTATGAATTTAAACAAGACACAGTGGCAGGTAATACATTCTACTTTT<B R> TAAACACAAATGATGGATATGATGCGACTCGTATTTTAAACGAATCGTTACTAC<BR > AATCGATGCGTGAAAAGATTTCTGGTGACATGGTTGTTGCTGTTCCTCACCAAG<BR > ATGTATTAATTATTGCTGATATCGTCAACGAAATCGGTTATGATATTATTGCACA<B R> AATGACAATGAAATTTTTTGCCGAAGGGCATGTTCCGATTACATCACTTTCATT<BR > CGTATATGAAGATGGGGACTTTGAACCAATCTTTATTTTAGCGAAGAATCGGAA<BR > GAAGACAGATGGAAAAGAGAAAGGATGAACGAAGTGAACGTTTTTTACAACCT<BR& gt; TGAAGGAATTGGTGACACTCTAATTGTTGCCTTACAAGATATTACTTTAGAGAA<BR > CCGTACTTTTGATCGCAAAGGAGATGTTGCTCGCGTATACGATCGTGAAAGCA<BR& gt; ACGAAACAGCAGGATTCAACATCTTTAATGCATCTTCTTATTTAGAAGTAAAAG<BR > AAACAGGTAACCTTACGTTAACGAAAGAACTTGTAGAAAAAATTAACGAAATTT<BR > TAGCGAAGAACGGCTTTGAAGAAACAGTAGAAGCAGATCTTTCTCCAAAATTTG<BR > TTGTAGGCTATGTAGCTGAAAAAGAAAAACATCCAAATGCTGATAAGCTAAACA<BR > TCTGTAAAGTAGAAATCGGTACAGAAACATTACAAATCGTATGTGGCGCACCAA<BR > ACGTTGATGCAGGACAAAAAGTTGTCGTTGCAAAAATCGGCGCTGTAATGCCA<BR& gt; AGCGGTATGTTAATCAAGCCAGCTGAGCTTCGCGGAGTTCCTTCTGCTGGAAT

GATTTGTTCAGCACGTGAATTAGAGCTTCCAGATGCTCCACAAGAAAAAGGTAT<BR > <BR> <BR> TCTTGTATTAGAAGATAGCTTTGAAGTTGGACAAGAGTTTAAATTTTAATTGATA<B R> <BR> <BR> TAAGAAAAGAGAGGGTGTCCTTTTGGACA [GCCTCTCTTTTTATTTTGTCATCTT<BR> <BR> <BR> TTGTCGGTAAGTCGATA] TTCATTGTCGAATCGTTGATATATTGAGAGTTACGGT<BR> <BR> <BR> AGATATATTTGAAAAATCGTTGATATATTGAGAGTTACGATAGATATATTTGAAA<B R> <BR> <BR> AATCGTTGATATATTGAGAGTTACGGTAGATATATTTGAAAAATCGTTGATATAT<B R> <BR> <BR> TGAGAGTTACGATAGATATATTTGAAAAATCGTTGATATATTGAGAGTTACGATA<B R> <BR> <BR> GATATATTTGAAAAATCGTTGATATATTGCGAGTTGTGACAGATATATTCAAAAA<B R> <BR> <BR> ATCATTCATATTATAAGGATGTCACCTTTTTTCACAAAATCTATATTGTATTTTAT< BR> <BR> <BR> AAACAATCTAGTTAAAATTTAGAAAAATA [GAAGGGGATAGACGTATGAAACAAC<BR> <BR> <BR> AACAAAAAATC] GCAGAACTTCTGAAACGAATTGAAACTTCAAAACAGCAAGATA<BR> <BR> <BR> TCGAGTTAGGTACTTATGAGATATATTTGTTTAGTCAAAATGAATTAGAAAAAGG<B R> <BR> <BR> ACAAATTGGTTATCGATATGATAAACATAAAAATTCATTAATAAGTAAAGAACAC<B R> <BR> <BR> GGAAAATGGAAAGATGAATGGATTGTTATTGGATATGAAACAGATATGGGAGA<BR& gt; <BR> <BR> CCCAGTTTTCGTGAATATCGATGATGATGCGTATCCAGTGTATACGGCAGAGC<BR& gt; <BR> <BR> GTGGTACAGAAGTGTGGCAACCCGTTCATATTGGAAATATAGATGAGATTATAA<BR > <BR> <BR> AACAATTATAAAAAACTTTGAGACCGGTGCAAAGTGTAACGGATAGTGTAGATG<BR > <BR> <BR> AATATTGGAAGAGTAAAGCTTAAACGCAGTCTTACGTGTAAGGCTGCGTTTTTC<BR > <BR> <BR> TATATGAAAACACTCGTAAATTAGAATATTATGGATAAATATGACATGCTTAATT<B R> <BR> <BR> TTACCTGCACTTTTTGCCGAATGCTGATACAATAAAGGATGTTACTATTTAGTAG<B R> <BR> <BR> AAAGAGTGGTAAGCATGTTAGATTGGATGAAAAAGCTGTTTAACAAAGAGGAA<BR& gt; <BR> <BR> GAACAAACAGCGATGAATAAAGAAGTACCAAAGCAAGTTGAAAGTCAGCCGAA<BR& gt; <BR> <BR> AATTCCTCGTGTAAACCACCACACTGAAGCAAGAGAAGCACAAATGGCAAGTA<BR& gt; <BR> <BR> GGAATGCAGGTAAATGCCGTTTTCCATTAGTACCGGATAATGGGTTCGATGAA<BR& gt; <BR> <BR> GAGGATGTTATAGAAACAGGGCATTTTGAAGAACAACCTGTTCAAGCTGTAAC<BR& gt; <BR> <BR> ATATGAAAATGAGCCTATTCAAAGAGGAATCAAAGTGGAAAGAAGTAGACGAC<BR& gt; <BR> <BR> AGTATGTGGAGAAGGTAGTTTCTACATATGAAGAACCGGAAATGCAATATGAA<BR& gt; <BR> <BR> CCGGAGCGAGAACCTGTCGTAAAGAAAGCATCTACACCAGCACAAGAAAGTAA<BR& gt; <BR> <BR> CCGTAGACCATTTCGTCCAACAGAAATGATTTCGCCAATTTACGG (xii) The Bavntr-20 locus (SEQ ID NO : 90) : <BR> <BR> <BR> CTTTCGGAAGAATTTCATCAGGATGTTTCCAGCCGCCGTGAATTAACGTAAATT<BR > <BR> <BR> CTGTTTTATTATCCCCTAAGTCTTTCAAATGAAATGAAACAACCCAGCCATCTGT<B R> <BR> <BR> ATCCCATGAGAAAGATAAATGATTTGGCTCATCGATTTCTAACACTTTACATGG<BR > <BR> <BR> TGATGGTCCAAATGGTGATTGCACATGAAATTCATGTCCTACCTCTAATACAAA<BR > <BR> <BR> ATCATTTGGCATAAACCATGAGGCAATCCCTTCTGCAGTGGATACTACATTCCA<BR > <BR> <BR> CACCTTTTGAATAGACGCGTTAAAAACGATCGTTTGTTTAATATCAGTTAATGTA<B R> <BR> <BR> TGTTGTTGTTCCATTTTCATTCTCCTTTATTCGGTCTCAAATATAACACCTTTTG<B R> <BR> <BR> GTTTCATTTAGATAATATAACACCTTTTAGTTTCATGTCAACGCTAACTCTTTTTT< BR> <BR> <BR> ACTGTTGAGAAATTCTCAACATTTTTTCAACAGGACAAACACCCTCTGCGCATT<BR > <BR> <BR> TCCTCATAATATACTCACAAAGGCAACAAAAAATAAAAACTTCTCTCAACATGAA

ACTCCATCATTCATCTTGAAAGAAGCGCCTTACGTATATCATGCGTATTTCGTC<BR > <BR> <BR> TCTCCTCCTTCCCTCAGGGACACTACGCGAGATATAAAAAATCAGAAGGAATAT<BR > <BR> <BR> GCCCACCATTTGAGTCGGTAGTTATTTCTCTTCTCCTCAACATTTCCTTAGGAG<BR > <BR> <BR> CGAAATGACTGCCGACTCACTTTTTTCAAACAAAAATAAAAAGGGGATGAAAGC<BR > <BR> <BR> TATGTTCTATTGCATTAACTGCTCTGATATTCACCATGAAAAACATCCGAATGAT<B R> <BR> <BR> AAAGTATTCAAAAACGGTTTTTATATTGATCCATTTTTAGGTGATCGTTATCACC<B R> <BR> <BR> TTGGTATGTGTAAAGATGCCCAAAATCATGAGACAGGGGATCCTCTTTTAACGA<BR > <BR> <BR> CAAAGAAATTAGGCGCAACCCAATCTATTATGAACGTATTACCGACACATGTTG<BR > <BR> <BR> TCCCAACATAAAGCATAAAAAAGAGCTGGCTCATCCAGCTCTTTTTTATGCTTT<BR > <BR> <BR> ATAAACGATCATTGCTGAAAAACAATAAATTTGATTTTCGTCATCGTTAATAGAA<B R> <BR> <BR> ACACCGACTTGGTACTTAATGTCTACAAAGTTACTATCATCAATCTTTTTCAAAA<B R> <BR> <BR> AAACATTTACAGCGTCTTCTAAGTCTTTTTCGTGACTTTCATCAAATACTTTTAC<B R> <BR> <BR> ACGAATCATGTTAACACCATCCTAGATCGCAGCCCTCCGCCGCTTGATTATTG<BR& gt; <BR> <BR> CCACGGTGCGTATCTATGATGCGATAAAACTTTCCGTCTTCATATATATATCCG<BR > <BR> <BR> TCTTCTAACACATATTGTTTACCTTCAGTATAGACATAAAACTTACCTATCATAA<B R> <BR> <BR> ATTTACTCGTATACAATTCCAAATAATCTGGTCTAAATTTAGCTACCACTTTATTT< BR> <BR> <BR> GTAATATCAATTTTTATTGTGCGCCCCACCTTCTCTCCCTCCTTT [GCAAAGAAC<BR> <BR> <BR> GGATTTAGGTATATTGTATTAGCGATTTTAC,] ATTTTATGCTTAAAAATAAGTGGA<BR> <BR> <BR> TATGCCTCCTTTCTCCACCTGTACTATTTTTCTAAAAAAATCATCCATAAATAAA<B R> <BR> <BR> AGCAAAAAATATATATATAAAAAGAGTTTTTACTTATTGACTCAAATATAATTATT< BR> <BR> <BR> ATGGTATTATATAAAATTTGACATTTTCATTCACTTATGCTATCATTAAAGATGGT< BR> <BR> <BR> TACCACATATGGAGGTGGATGATTTGTTTCAAATTGGTGATAAAATCGTTTATC<BR > <BR> <BR> CAATGAACGGCGCAGGAGTCATC [GAAGCCATTGAAGAGAAAGAAATATTAGG<BR> <BR> <BR> AACAATACGTC] AATATTGTGTAATACGTATCATTAGTAAAGATATGCAAGTAAT<BR> <BR> <BR> GCTTCCGATGGATCAATTACAAAAATCAGGTATTCGTTATATCGTAGATAAAGG<BR > <BR> <BR> TACGTTAGATGATATACTTCTTGAATTTCAAAACGGGGAATCAGATACATCACT<BR > <BR> <BR> TTCCTGGAAACAAAGATATACAATGAATATGGAAAAAATGAAAAACGGCAATCT<BR > <BR> <BR> ACAAGATAGTGCAGAAGTTGTTCGGGATTTACTTCGCCGCAATAAAGAGAGAG<BR& gt; <BR> <BR> CTTTAAATGCGAGCGAAAAACAAATGCTAGATAACGCCCGAAAAATGATGTTCA<BR > <BR> <BR> GAATATCTTCAAGATACAATGAATCACTAAATTTAAAATAGCTGGCCGCTATTTT<B R> <BR> <BR> TTTTGTAAAAAAAGACGAAGAGTTTTATCTCTTCGTCCTTTTCTATTACCCACGT<B R> <BR> <BR> CCAGCTTGAAACGATGGATATAACGTCATTCCGCCATCTGCAAATAGCGTAATT<BR > <BR> <BR> CCAGTTACATAACTAGCCTCTGACGAAGCGAGCCAAGTTGCTACTGCTGCAAT<BR& gt; <BR> <BR> TTCTTCTGGTTTTCCAATGTAGCCCATCGGTATCATACTTTCTACGTCAGCACG<BR > <BR> <BR> TTTTTTAGGATCAGCAAACTTTTCTGCATTTATCGGCGTATTAATTGCACCTGGT<B R> <BR> <BR> CCAATATTATTTACTCGAATACCTTTTGGTGCATATTCCATCGCTAACGTTTCTG<B R> <BR> <BR> TCATTAGTTTCACACCGCCCTTGCTGGCTGCATAATGCACGAATAGCGGCCAC<BR& gt; <BR> <BR> GGAATTTTCTCATGAACACTCGACATGTTAATGATAGATCCTTTAATATCGTGTT<B R> <BR> <BR> CTACAAAATATTTAATCGCTTCACGGCTTCCTAAAAAAGCACCTGTTAAATTTGT<B R> <BR> <BR> ATTAATTACTTTATTCCAATCTTCAAGCGGCATTTCATGCGACGGTACCGCATTT<B R> <BR> <BR> TCTATCCCTGCATTATTAATCATAACGTCAAGCGTACCAAACTCTTTCACAGCA

GATTGAATGAGGTTCACAACATCAGATTCAACCGTCACATCACCTTTTACAGCA<BR > <BR> <BR> ATCGCTTCTCCGCCTACTTTTTTAATTTCTTCTAATACATCAT (xiii) The Bavntr-23 locus (SEQ ID NO : 91) : <BR> <BR> <BR> <BR> <BR> ATAATTTGTTAAACCAGACTTACGTTCCGCTTCTGTAAACTTCGATTTAAAGAAT<B R> <BR> <BR> GTAGTTGCGAATGCAATTGCAAGCGGCGGTACCATACCACCAGCCATAACCGC<BR& gt; <BR> <BR> TGAGTGCACCCCAAAGTTCTGTGCTTCTATTGCAGCAATACCAAATGTAAATGC<BR > <BR> <BR> TGCTTTATTAATTGGACCACCCATATCAATTGCCATCATCGCACCTAAAATAAG<BR > <BR> <BR> ACCTAGTAATATAGCATTTGTACCGTTCAAACCATTTAACCATCCTGTTAACATT<B R> <BR> <BR> TCATTCAATGCTACTACAGGCGGAATTACTAC H) H GCATAACAACTCCTGTAA<BR> <BR> <BR> TCAATAATCCAAAGACTGGATATAACAAAACAGGTTTAATACCTTCTAACTGTAC<B R> <BR> <BR> TGGTAATCCTGAAAATAGTCTTTTTAGCCCTAAGACAACATATCCAGCTAAGAA<BR > <BR> <BR> ACCAGCAATTAATCCACCTAAAAAGCCAGCATTCGCATGTGCCGCTAAAAATCC<BR > <BR> <BR> CCCGACAACACCAGGCATAAAACCAGGACGATCAGCAATAGAACTCGCAATAA<BR& gt; <BR> <BR> ATCCTGCTAAAATTGGTACAAGGAATAAAAATGCCCCTGTTCCCCCTCCTCCAA<BR > <BR> <BR> TAGACATGAACAATTCAGCTAAAGGGCCTTCTGCTTTTATACCACCAAACGAAA<BR > <BR> <BR> ACGCTAGCGCAATTAAAATCCCACCACCAACAACGAATGGAAGCATATTACTTA<BR > <BR> <BR> CGCCGTTCATTAAATGCTTATAAATTCCTAATCCTTTTTCTTTCTCTGTACTTTCT< BR> <BR> <BR> GTCTTTCCATCTTCTTTTATTCCTTTAAAGATCGGTGCATCCTGTTTTACAGCAC<B R> <BR> <BR> GATTAAGAAGTTTTTCAGTTTTTCTAATCCCGTCAGCGACTGGCACTTGAATGA<BR > <BR> <BR> CATGTTTACCAGCAAAACGATTCATTTCTACTTGTTTATCTGCCGCAACAATTAT<B R> <BR> <BR> AGCTGTTGCGCGTTCAATATCCTCTTTCGTTAAACCGTTTTTTATACCTGTTGAT CCATTCGTTTCAACTTTAATT [GGAATGCCTAGCTCTGCTGCTTTTGCTTTC] AAA CTATCCGCAGCCATATATGTGTGAGCGATTCCAGTTGGACAAGCTGTAACAGC TAATACGTATGGTTCATTCCCTTCTGGTTGTGCAACTTCTACCTCTTCTTCTTTT TCATTTTCTTTTTCATTTTCTTTTTCATTTTCTTTTTCATCAAATAGACGAAGAAG <BR> <BR> TTCCTCTTCATCCTTTGCTTCTAACAATTGCTTACGAAATCCTTCATCCATTAAT<B R> <BR> <BR> AGTGTAGATAAGCGTGATAACGTTTCTAAATGC ç...<BR> <BR> <BR> <P>GCAGCAATG ATAAAGAATAAATGCGCAGGCTGTCCGTCAAGCGATTCATAGTT<BR> <BR> <BR> GATACCGCTTACACTTCTACCAAAACAAATCGCTGGTTGCTTAACAGCTTTTGT<BR > <BR> <BR> TTTCGCATGAGGTATAGCAATCCCTTCACCAATGCCAGTTGTACTTTGTGACTC<BR > <BR> <BR> CCGCTTTAAAATAGCTTCTTTAAATTCAGCTTTACTATTTAAACGATTTGCCCCG<B R> <BR> <BR> TTTAATTTCTCAACTAATTCATCTATGACAGCTTCTTTATTTGAAGCTGTCAAATT< BR> <BR> <BR> CATAATAACTGTATCCCTTTTTAATAGTTCTGTAATTTTCATATGCTGCTTCCCC<B R> <BR> <BR> CTATCGCTTAGTTACAATTACTTGCGACAATAATTCTTCTAC TTTCCTTTTCAC<BR> <BR> <BR> ATAAATCAGCTGAAAATGCTGTTGCACTCCCCGTTGCAACGCCATATTGAAATG<BR > <BR> <BR> CCTTTTCAATATCTTTTGTCTGTTCATATTTACCTACAAATCCAGCAACGAGAGA<B R> <BR> <BR> ATCTCCAGCCCCAACCGAATTAATTACAACACCTTTTGGAACTGTTGCTTCATA<BR > <BR> <BR> TATACCTTCTGCCGTAAACAATAAAGCTCCATCTCCGGCCATTGATACGATAAC<BR > <BR> <BR> GTGCTCTACACCTTGTTCAATTAATTTTCTTCCATACGGTAAAATATCTTCTGCT<B R> <BR> <BR> GTTGAAATTTCTACTCCAAATAACTCACCAAGTTCATGATGATTTGGCTTTATTA

AAAATGGTTTATTTTTAACTACATGCTGCAAAGCACTACCACTTGCATCTACTAC<B R> <BR> <BR> TACACGAATACCTTTTTCAGCTCCGAACGCTGCGATTGATTCATAAAAAGTAGT<BR > <BR> <BR> TGGAATAGACGCCGGTACACTTCCAGCTAGTACAACATAATCTCCCTTTTGCAT<BR > <BR> <BR> ACTTTCAATTTGTTTCATTAATTGTTCAAATTGTTCATTTGTCACACTAGGTCCTT< BR> <BR> <BR> GCCCATTTAATTCTGTTTCTTCTTGCCCTfTTATTTTCACATTAA (xiv) The Bavntr-25 locus (SEQ ID NO : 92) : <BR> <BR> <BR> <BR> <BR> ACTAGTAATCGCGGTAGCATTATCTGCGCAATGTACAGATGCACTTGTAAATAA<BR > <BR> <BR> AGTGACGAAAAATTTATTTCAAAAATATAAAACACCAGAAGATTATTTAAGTGTT<B R> <BR> <BR> TCTCTAGAAGAATTACAACAAGATATACGTTCTATTGGATTGTATAGAAATAAAG<B R> <BR> <BR> CAAAAAATATTCAAAAATTGTGCAGAATGTTATTAGATGATTACAATGGGGAAG<BR > <BR> <BR> TGCCGAAAGATCGAGATGAGCTTACGAAGTTACCAGGTGTAGGTCGGAAAACA<BR& gt; <BR> <BR> GCAAACGTAGTTGTTTCGGTAGCGTTTGGTATTCCGGCAATTGCTGTGGATAC<BR& gt; <BR> <BR> GCATGTAGAGAGAGTGAGTAAACGGTTAGCGATTTGTAGATGGAAAGATTCAG<BR& gt; <BR> <BR> TGTTAGAAGTAGAAAAGACATTAATGAAGAAAATTCCGATGGATGAATGGAGC<BR& gt; <BR> <BR> GTTACACATCACCGTATGATTTTCTTTGGACGTTATCACTGCAAGGCACAGCGA<BR > <BR> <BR> CCACAATGCGAAGAGTGCCCTTTACTAGAAGTATGCCGAGAAGGAAAGAAGC<BR&g t; <BR> <BR> GAATGAAGGGGAAATAAAGGATGGAGCGAGTTATAGAAATACCGAGAGAATTT<BR& gt; <BR> <BR> CGGTGCTTACCATTTTTTAAAGAAAGTGTAAATTCGATTGCGTATTATGCAGAA<BR > <BR> <BR> CAGTCTTTCGAAGAAACAATACAAAAGACTTATTTTATATATGATATTGAAAAAC<B R> <BR> <BR> AATATGAGCCATGGAATGAAATTGAAAACAGTATTCCGGTAATGTTGAATGTAT<BR > <BR> <BR> GGAAAAATAAGCATGGGGACATTGCTACTTTATTTCGAAACAGAAAGAAACAAG<BR > <BR> <BR> AAGCTGAAGGTCCGATGATTCTTTTTGCAGCACATTTATTATCAATTGTATATTG<B R> <BR> <BR> GCTAAATGAGCAACCTGTTCATAGTTTGAATAAAATAGAAGATTTTACGAGTGA<BR > <BR> <BR> ATTGGAAGTGCAACCAGTTAATTTTATAGAGCGATATTCGTTCATTATAAAGAAA<B R> <BR> <BR> CCGAATAATTATCATTCTTATATTCAGTTA [. GCACAGTTGTATATTGAAATAGAAA<BR> <BR> <BR> AGCTATATGTAAAGAAAATG] ATAACAAAAAAGAAGTCCTGTTCTCGTTAAGAGA<BR> <BR> <BR> AAGGACTTCTTTTTTTGTATTAAGACTCTGTTGTAACAAAATTTCCGTCTGCGTG<B R> <BR> <BR> AGGTGTATTTCCTCCGGTATTTTGTTGTTGTTCTTGCTGCTGTTGCTCTTGTTGT TTTTTAGCTTCTTCTTCAGCTTTTTTTCTAGCTTCCTCTTCAGCTTTCTTTTGAGC <BR> <BR> CTCTTCTTGCTGTTTCTTAGCTTCTTCTTCAGCTTTTTTTCTAGCTTCCTCTTCAG< BR> <BR> <BR> CTTTCTTTTGAGCTTCTTCTTGCTGTTTACGTTGTTGTTCTTGTTGTTTCTTAGCT< BR> <BR> <BR> TCTTCTTCAGCTTTTTTAGTAGCTTCTTCTTGTTTTAGTTTATCTTCATTGGCCTT TTTCTGAGCTTCCTCATCAGCTTTTTTCTTAGCTTCTTCTTCAGCCTTCTTCTTA GCTTCTTCCTC [GGCTTTCTTCGCGTCTGGAGTTCC] GCCAGGCGCAGTGAAGG ATGCTCCAACTGCAGGGCTTGTTCCAGTACCTTTTTTCGCTACTACAGAGAAGC<BR > <BR> <BR> TGTAAGTAACGCCTGGTTTAATACCACCAAGAGTAGCTGTTGTACCTTTTACTG<BR > <BR> <BR> ATAAACTACCACTTGAACCGTCAGTTGCTTTATAGCTTGCTGCATACGCATCAA<BR > <BR> <BR> CTTCTGTTGGTCCAGACCAGTTTAGTGTAACTGTGCTAGCGCCATCGAAAGTG<BR& gt; <BR> <BR> ACATTAAGACCACTAGGTGCATCTACTTTAATTTGTTTAATTGCATCTTTCTTCG<B R> <BR> <BR> CACCTTTTACATATAACTCTCCGTTTATTTCTTGTACAGAAGAAGGGCGTTCGA

AACGAGTTTTATCTGTAGCGAATTTGCTCATCATTACTTGGAACATTTGCTGTG<BR > <BR> <BR> CAATTCTAGTATAACGATCACTAATGTAGTTTTCTGGGCCATTTTTTTCGTACCC<B R> <BR> <BR> AGTCCATACTGCCATTGTATATTGCGGTGTATATCCAGCGAACCAGCTATCTCT<BR > <BR> <BR> GTTTGCATCAGCTGGAATACCATATTCTTTTATAACGTCTGCATCAAAGTTTTGT<B R> <BR> <BR> GTTCCTGTTTTACCGGCAACATCAACACCTGAAACGTATGCTGTTGGACCAGTA<BR > <BR> <BR> CCGCCAGAACCAGGTTTTACGACATCACGAAGAACGTCAGTCACCATGTAAGC<BR& gt; <BR> <BR> TGTGTAGTCTTGCATCGCACGTTGTTCTTTCGGTTTAAAACTTTTCTTTTTCCCA<B R> <BR> <BR> TCTGGGAAGGTAACTTCTTTTACGAAGTGCGGTTTATTGTAGTTCCCACCATTA<BR > <BR> <BR> CCAAAGGCTGCATATGCACCCGCTAATTGTAATGGTGAACTATCGTTACTACCA<BR > <BR> <BR> ATTGCTGTTGATTCAAATGTTTTGCCATCTTTAAATGTCATACCTAAACCTTCAG<B R> <BR> <BR> CAAACGCTTGTGACTTAGGAAGACCAACCGCTTGGGCTGTTTTTAAAGCTGGG<BR& gt; <BR> <BR> ATGTTTAATGACTTTTTCAAAGCTTCACGTAGTGAAACGTCACCTTTGTAACTAT TTGT (xv) The Bavntr-35 locus (SEQ ID NO : 93) : <BR> <BR> <BR> <BR> <BR> TATACGCGCCCCATGTTTCTTGCACCAGGATTACCACTTCCTTCATCCCGAATA<BR > <BR> <BR> TCAACGTTATGTCTCCATTTCGTTACTATATAA [GCAGTCAATATGTTTCCAAATA<BR> <BR> <BR> AATAAGAAGCCAC] TAAATATAAAAACTGCATACTATTAATCATATAATCATTCAC<BR> <BR> <BR> TTTCTGCATAGGAGTACTTATACAATATTCAATGACTATGTATATTGTACTTTTTT< BR> <BR> <BR> ATCTACATCCCTTTATATATTTTAACATCATATTTTTACAAATCATACAAAAATTC< BR> <BR> <BR> TCATGCTTCTATTTTTTAAAATATATATCCTTCATTAAATAATATGTTCCTTTTGC< BR> <BR> <BR> TGCTGATTGTGATTGTGATTGTGATTGTGATACAAATGTAACTTCTCCTATACTC<B R> <BR> <BR> TTCTCACAGTATTTCTTAAATTCAGCATTTATTTCAGGAACGAAACGTAATATGC<B R> <BR> <BR> TGCCACTTACTGCAATTGAAGTTGATAAATCAAACTGCATCTTGTTATAAACATT TACC [GTAATGCTTCCTAATTCATTTCCAGCTTGCATC] ATAATTTCATGTGCAGC <BR> <BR> ATCATTCCCATTTCTAGCTTCCCGAATAACTAATGGTGCGATTGcTGCAACtTTA<B R> <BR> <BR> TCTTTTGAAGAACTATAAACTAGTCTTTTTATATGAGACGATGTTAATAATTGAA<B R> <BR> <BR> ACTCATCTTGAATCCTTA (xvi) The Bavntr-24 locus (SEQ fD NO : 94) : CTTGCCAGTGTGCTGGAAAGGGAATTGAAAATTCATCCATCTGTACTAGAGATA <BR> <BR> ATATTTTTACTACTTAAGTATCATCATACAATAAAAAAATTCGGTTTGTTAAAATT< BR> <BR> <BR> CTAAGT [GCCTTTACTCATGAAACGATAAGAAGGAGCCTAC] AATCAGTAGGCTC CTTCTTATGTTAATTTACTTCACTTCACTTCACTTCAACTCGCTGCCCTACA [GC AAGTGTTTTCGGCTTTATATTTACGAAACAAATAC] TCACTACAATAAATAATAGT<BR> <BR> <BR> CCGATGAATAAGCTAATAGTAATGGCTTCATGTAAGAAAATTGAACTTACAATA<BR > <BR> <BR> ATAGCGATTAGAGGAATGAGAAATGTATAAGCCCCAACTTTACTTGCTTCACCA<BR > <BR> <BR> GCTCCAACGAGTGTGAAGTATGCAAGCCACCCCATTGCAATAACAAAGAATGA<BR& gt; <BR> <BR> AATAAAGAGTAGTACACTAACAAACGGCATGCTCCAAGCGATACTAGACCAAC<BR& gt; <BR> <BR> TTTCAAACTCTGATCCAAATCCAATTAAGCAAAGTCCGCCAATAATAAGTTGCA

GTGTTACCATCCAAATGGAATTAACGCGGTGCCCAGTCTTCTTAATAAATACGG<BR > TTCCAAGTGCCCAGCCAATAGCGCATCCTATCGCGAGAAGAATCCCGATAATA<BR& gt; GAAATATGTCCAGTTAAACTGCTAGAGCTAATAACACCTACGCCAATAAATCCG<BR > AGTATAAGCCCGAAAATTTTTAACCCGTACATTGATTCTTCAAGCCATATCCAC<BR > GAGAAAATACCAAGTAAAACGGGTTGTAGAAATACGATGGCGGAAAATAGACC<BR& gt; AGCAGGCATATATTGAAGGCCGACAGTTTGTAATCCGTAAAATATAATGATGTT<BR > AAGTAAAGAAGAAATAACGTATAAATGCCAAGTTTCTTTTAAGTGTAACTCTTTG<B R> TATTTCGGTAATGCGAACAGGAGTAAAATGAATCCTCCAATTAAAGTTCGAACG<BR > CCTGCAAATAAAACGGGTGGTGTATAATGCAGGGCT (xvii) The Bavntr-19 locus (SEQ ID NO : 95) : <BR> <BR> GAGTAACCAGCGTTTTAGGCTATTATTCCAAAACTTGTTTTTTAATGTGGAGTCT<B R> TCCTCGATGGAGGCTAAGCCTTCTACTTCGATATAATCTTCATCTAATTTTTTTC<B R> CTTCACGCCCAAGTAGTACATGTACATTTGGATTGTTTTCGATATCTGTTATCTT<B R> TTTGGATTGTCGATCTGTTGCAACATACAGTACAAAATCTTCGTGGAAAAACAT CATAAAGGCACTGT [GCGGCTTATCATTGCGTACAGTGGATAACAC] ACCGGTT CTTTGGCCTTGAATAATTGTTGTGATTTTTTCTTTTAAGTGCATATTTTTTTACCT< BR> CTTTTCTTAATTTACATTTCCTCTATTTAAACAAGATGATTTAAACATCTTTCATA< BR> CTGTTTTCTTCAATTCAATTTTTTAAACGTAATTGTGATGAAATCGGACAAGTTA<B R> GGAGAAGAATAATAATAATATCGAGGAGAAATACATACGATGGAAGGATGGAA<BR& gt; AGCATGTTTAATAAAATATTTCTTATCGTGGCGCTTATAGGTGTACCACTGTCT<BR > GTACTTGGGAAAACACTTCATTGGCCTCAAACAATTATGTTTGCTGTGTATTGT ATTACGATTATC [GCATTAGCGGGTTTTATGGGGAGAGC] GACAGAAAGTTTGG CAATTGTATCTGGTCCTAGAATAGGTGGATTATTAAATGCTACTTTCGGTAATG<BR > CTGTTGAACTAATCATTTCAATTTTTGCACTTCAGGCAGGATTAATTGAGGTGG<BR > TATTAGCTTCTTTAACGGGTTCTGTACTTGGAAATTTATTATTAGTAGGAGGGCT<B R> ATCCTTCTTTATAGGAGGGCTTAAATACAAAAGACAAAGTTTTAATGTGTATGAT<B R> GCAAGGCATAATTCAGCTTTATTAATCTTTGCTGTAGTAGTAGCATTCGTTATTC<B R> CAGAGATTTTTTCAATGAAGATGGACGCGGGAAAGACGTATCAATTAAGTATC<BR& gt; GGTGTCTCGATTATTATGATTAT (xviii) The Bavntr-13 locus (SEQ ID NO : 96) : TCCAGTAGTACCAGTGTCTCCAGTTGGCCCAGTTGGTCCAGTTGGTCCAGTTG GCCCAGTTGGTCCAGTAGTACCAGTGTCTCCAGTTGGCCCAGTTGGTCCAGTT GGCCCAGTCGGCCCAGTTGGTCCAGTTGGCCCAGTTGGTCCAGTAGTACCAG TGTCTCCAGTTGGCCCAGTTGGTCCAGTTGGCCCAGTCGGCCCAGTTGGTCC AGTAGTACCAGTGTCTCCAGTTGGCCCAGTTGGTCCAGTTGGCCCAGTCGGC CCAGTTGGTCCAGTTGGCCCAGTCGGCCCAGTCGGTCCAGTCGGCCCAGTTG GTCCGGTAGGAAGGGTAAATGGTGGTATCGGTGGTAATGTAGGTCCTACAAG<BR&g t; ATTAGGGTCAAATGCACTAGCTGATAAAGATTCATCGGGGTTTAATCCATTTGA

ATAATTATTATTTGACATAAATTCACCTCCATAAAGCGTTCATTATATAGTAGAT<B R> <BR> <BR> GCAAAACCGAAAGAAAATGACACGGACATTTGAATTATTGAAAAGAAATCTTAA<BR > <BR> <BR> ACTACTTGAACAATTTAAAAAAATGGAAAGTTTAGTATATGTATAACATATGATT<B R> <BR> <BR> GATTTGGAAGAGGGTGATTATGTTGAACAAGCAAGGAATTACAATTAGTTTATG<BR > <BR> <BR> TATGATTGTTCGAGATGAGGAGAAGACAATAGCCCGTTGTTTAGACTCAGTTG<BR& gt; <BR> <BR> AAAAAATTGTGGATGAAATTATAGTGGTTGATACAGGTTCCATCGATCGAACGA<BR > <BR> <BR> AAGAAATCGTAGAGAAATACACTTCTAACATATATGATTTCCAGTGGATTGATG<BR > <BR> <BR> ATTTTGCAGCAGCAAGAAATTTTTCTTTTTCAAAAGCGACGCAAGAGTATATATT<B R> <BR> <BR> GTGGCTAGATGCAGATGACGTATTATTAGAAGATGCTCAAGAAGCATTGAAAC<BR& gt; <BR> <BR> TGTTAAAAAGAGAATTGGATCCTAAAATTGATGCTGTTTCGATGCCTTATCATCT<B R> <BR> <BR> TGCAATGGATTCTAACGGGAAACCTTTATATTGTACAAAAAGAAATCGACTTGT<BR > <BR> <BR> AAAGCGTGAAAAACAATTTCAATGGTTTGGAAAGGTCCATGAATATTTAGCTAT<BR > <BR> <BR> TTCTGGTGAAACTTTTAGTAGTAATGTTGCTATTACACATAAAAAAGAAAAAAAG<B R> <BR> <BR> GTAACAAATCGTAATTTGAAAATTTTTCAAGATGCTGTAGCAGCTGGAGAAGAA<BR > <BR> <BR> TTGAGTCCGAGAGATTTATTTTATTACGCAAATGAATGTATGGATAACCAAAAAT<B R> <BR> <BR> ATGATGATGCAGTTCTTCTATATGAAACATTTCTTAATCAAGACGAAGGATGGT<BR > <BR> <BR> ATGAAGAGAAAATTTATGCGTGTGGTAAATTAGGAGATT [GCTATGCAAAGCTT<BR> <BR> <BR> GGATTATGGGAAAAGGC] AGTTGAATCTTGTGTGAAGTCGTTTCGGTATGCTAT<BR> <BR> <BR> TCCTAGAGGAGAGAATTGTACAAGAATAGGATATATATATATGGAACAACAAAA<BR > <BR> <BR> ATATAATGAAGCGATATTTTGGTTTAAACTTGCAACGGAAGTACCAATGGCTAC G [GAGAGTCCATTTCACAGTCCAGCTAGCTACAC] ATGGCTTCCCTATTTACAAA TGTGCATTTGTTATAGCAAGTTAGGAGAACAAGACAAGGCTTATTATTACAACG<BR > <BR> <BR> <BR> AATTAGCAGCTTCTTACGTTCCAAATAATGCTGCAATTGAATATAACCGCAAAT<BR > <BR> <BR> ATTTTCGGAGCATTTTTGATCAACAAAAAAATCGTTATAGGTTGTTTTTTTAGAA<B R> <BR> <BR> ATAGCTTATCAAGATTCTAACTCTAATAGATTGACTATATAGTAAAGTATCGGTA<B R> <BR> <BR> ATGTAACCAGCAATGGTTATATTTATAGACTTCATATGAGGTTTATATTTCAAAT<B R> <BR> <BR> TCAATTTGCATAAGGAGTGTGTGAAATGAATTCCCCAAAAAATTCTTTATATGAA<B R> <BR> <BR> GAAAAATCTGGTCATTATTATAATGCAGTGAATCCGAATTTATTAAAGCATATAA<B R> <BR> <BR> AAAAGGAATGGAAAGAAGTTCTTGATATCGGTTGCTCGAGCGGTGCGTTGGGA<BR& gt; <BR> <BR> GCAGCAATAAAAGAAAATGGCACACGTGTATCAGGAATCGAGGCATTCCCAGA<BR& gt; <BR> <BR> GGCAGCAGAACAAGCAAAAGAAAAATTAGATCATGTTGTTTTAGGTGATATAGA<BR > <BR> <BR> AACAATGGAGATGCCATATGAGGAAGAGCAATTTGATTGTGTTATATTTGGTGA<BR > <BR> <BR> CGTATTAGAGCATTTATTTGATCCATGGGCTGTAATAGAAAAAGTAAAACCGTA<BR > <BR> <BR> TATAAAGCATAATGGTGTAATTTTGGCTAGTATACCGAACGTTGCTCACATCTC<BR > <BR> <BR> AGTATTAGCTCCCTTACTTGCTGGAAATTGGTCGTATACAGAATATGGTTTATTA<B R> <BR> <BR> GATAAAACGCATATTCGTTTTTTTACATTTAATGAAATGCTTCGAATGTTTTTAAA AGCAGGATATTCTATTAGTAAAGTAGATCGTGTATATATTGATCATAAAATGTAT <BR> <BR> GAACCGTTAATTGAGGAGTTATATGGAGTTTGTAAAAAATATCGTCTTGGAAGT<BR > <BR> <BR> GGCTTCATGGCTGAAACGGTAGTATTTCAGTATATTATTGAAGCAGAAAAATCA<BR > <BR> <BR> TCGTTATGAGCGCTGCTGAGAAAACGATATTATTTGTTACATGTATAAATGATT CGAAAATGTATGCACAGTGTGTACGACATATATTGAGATTGGCAGTGCCACC

(xix) The Bavntr-16 locus (SEQ ID NO : 97) : <BR> <BR> <BR> <BR> <BR> TAGAAAACTTAGACTTATTACCTTCTCATAGTGATTTTGAAAACTTTGAAAGTCT<B R> <BR> <BR> TCTAACTTCAAAGTTCGGTCATGCTGAAACATCTGATCCTAACTATCATGAAATA<B R> <BR> <BR> GAGACTAATAAAATTAACTATTTTAGAAACTTACTTGAACCCTTAAAACAAAATT<B R> <BR> <BR> ACGACTTCATTATTATTGATAGCCCACCAACAGCATCTTACTATACAAAAAGTTC<B R> <BR> <BR> TGCAATGGCTAGCGATTATGTTCTTGTTGCTTTTCAGACACAAAGTGATAGCCT<BR > <BR> <BR> AGATGGTGCTAATGATTACATCACACGCTTTTTAGCAAGATTAGTAGAAGAATA<BR > <BR> <BR> TAATGCTCAACTTGATGTTGTTGGAATTCTTCCAAATCAATTACATAGTGCAGGT<B R> <BR> <BR> AAAATTGATACTACAGTATTACAAGATGCTAAAGATATTTTTGGTGAAAACAATT<B R> <BR> <BR> TATTTAAAAACTTAATCCCTTACGCAAAACGAATCCAAAGCGTACCACGTATTG<BR > <BR> <BR> GTTTAAATGTGGATCAGTATTGGGATAAAAAATTATTCAATGAAGTTTTCGAACC<B R> <BR> <BR> ATTTACTGATGAATTTTTAGAACGAATTAATAAAATGGAGGAATTAAGAAATGAG<B R> <BR> <BR> TAATGAACAAGGAAAAGGGATGGGATTTTTCGGGAACAAAGGAAAACCCGCCT CTGAAAAGAAAGATGAGAAAAAGACGAAACTTGACCTTGACTATAAACCTGATC <BR> <BR> TCAATCCAAGTACTCCTTACGATCCAACCCTACCTGTAAAAGCAACACTAGTAA<BR > <BR> <BR> ATGGTGATAAACGTGGCACACTGCGTATTCCCTTAGAAACAAAACACGAGTTT<BR& gt; <BR> <BR> GATGCCCTTCTTGAAATTTCTGAATACCAATACACTTATGAATTGCTTGGTGAAA T [GCTGGATACTTGGATGAAGAMTTAACtCCTGAAAAC] TTAGATTGTTCCAT GCATCTCTTGAAAATATAAAACGCAAGGCAGCTATTAAGGAAGCTAAAAAGAAA<BR > <BR> <BR> AAATAATTATATAATGTGTAAATGTGTACATTTACACATTTACACATTTACACATT< BR> <BR> <BR> TACACATTTTTTATTCGAATCAACTTCAAAAAAACGAAATGACCCCCTGATATAA<B R> <BR> <BR> CAACAAAACCCACTTAACTTTAATTTTTTTGTTTTTAATTTGTGTAAATGTGTACA< BR> <BR> <BR> TTTACACATTTACACATTTACACAAATATGAAAAGGAGATATACCATGAGAACC<BR > <BR> <BR> CTTATTATTATTACCTTAGTTGTCATAGGTTTAGTATTTTTTAACGTAATATCTTT< BR> <BR> <BR> ACATACAATTGGGACATTAGCTGCCATAATCGGAGTTATAATAGCAATTGCGCT<BR > <BR> <BR> TGGTGCTTATTTTTTATATCG [GCTTGCTCTTGGATTTTTCGCGCTATTTGC] AAC<BR> <BR> <BR> TTTCATTGGCGTTATTTTAGTGATTTGCTTAATTACATACGCTGTAACTAATCTA<B R> <BR> <BR> GTTTAAAAAGAGAAGTTAATTATGAATGCCCTAGAAGAAAATAAAAAACAAGTG<BR > <BR> <BR> GGGAACAATGGGCTACAAAAACAGGCCGGATAGTCAATCTATTTAGAGTAAAA<BR& gt; <BR> <BR> GAAAATGGGTGCTGATACCTAACAGTGAACAAGAAGTTATATAGCGACACTCC<BR& gt; <BR> <BR> TCTTTGAATAGCCGCTGTTGATATTGTAAGACATAAAAGTAGAAACTTGATTTCA<B R> <BR> <BR> AGAAAGAAATGCATATTCAAATTAAAAAATATTACATGCAGTAAGTAGGACAAG<BR > <BR> <BR> AGCAACAGTATTGGAAAGTTCAAAAATAGAAGCTTCGAAAAGAAAATAAAAGGT<BR > <BR> <BR> TATTGATTTCTTTAGAACCATACTTATATGAAAGCTTAGAGCAAATTGCATTAGA<B R> <BR> <BR> GTTAATAACAGAAGGTCTAGACTATATTTATACGGAGGATTTGCCTGTTCAGCA<BR > <BR> <BR> TTTTATCGAATTTAAATTAACATCATCCTATTGTAAGCCCTTATAATGATTAGCG<B R> <BR> <BR> CTCAAACGGGGGTATTTAGAAAGAAAAATGGCATTACGTTTTATACTCAAAACA<BR > <BR> <BR> AAGTAAAAGAATCCAACTATAAAAGAAGGATTCTTTCACCGGGTATTCGTTGAT<BR > <BR> <BR> AAATGACTTCACTAAAGGAATTGAGTTTGATACACTCAGTTCCTAATTTTAGATT<B R> <BR> <BR> ATAAAAAAGAAGATTATTTGTCAAAAAAATTTGCTATAGAATAATAAATGCTTTTT

ATTGAACTTAAATGAACACTCTCAGGAAGTATTTATATTTTTAATTTGCCTTTTTC TCTTGAAAATTTCACCCTTACTTG (xx) The Bavntr-32 locus (SEQ ID NO : 98) : <BR> <BR> <BR> <BR> <BR> CGAAAAAATTAGAAAATGGTCAATTAAAATTATTGAAAAAAGATAGTGAATCTG<BR > <BR> <BR> GTCAACTTCTACCAGGTGCAAAATTTGATGTTATCGATAAAGATGGGAAAGTTG<BR > <BR> <BR> TGGAAACAATTGTTACAGATGATAAAGGTGAAGCTTTATCGAAACAACTTCCAG<BR > <BR> <BR> TTGGAAGCTATACATTAAAAGAAGTAGAAGCACCGAAAGGATATGAATTATCAT<BR > <BR> <BR> CTAGTTCAGTTTCTGTTGATGTAGAGGCTAATAAAGTAGTGACTGTAGATGTGG<BR > <BR> <BR> TGAATAAAAAGATCCCCGAAAAAGTAACAGGTCAATTTGAAGTGGTGAAAGTA<BR& gt; <BR> <BR> GATGCAAATGATAAAACGAAATTGTTATCAGGTGCAGAATTCGAAGTGTATAAA<BR > <BR> <BR> GATGGCAAAAAGGTAGCAGAACTGAAAACAGGTGAGAGTGGAAAAGTGATGT<BR&g t; <BR> <BR> CACCGAAATTACCGCTAGGTGAATACACAGTGAAAGAAACGAAAGCACCAGCG<BR& gt; <BR> <BR> GGCTACAAGCTTTCAGATAAAGAATGGAAAGTAACAATTCAAAACGAGAAAGAA<BR > <BR> <BR> GTAGTAAAAGTAGAGGCAGAAAACGAAAAAATCTTAGGTTCTCTACAAATTATT<BR > <BR> <BR> AAAATGGATGATAAAGATCAAACGAAACGCTTAGCAGGCGCAGAATTTACATT<BR& gt; <BR> <BR> GAAAGATGTGAAAGGCAATGTTGTAAAAGAAGGAATTACAACAGATAAGTCTG<BR& gt; <BR> <BR> GAACTGTTAAAGTAGACGGACTTGTGCCGGGTGAATATACGTTAGAAGAAACA<BR& gt; <BR> <BR> AAAGCGCCAGAAGGTTATAAGGCATTAGAAGTAACAATCGAAGTAAACGTAGT<BR& gt; <BR> <BR> AGCAAACGAAGTAGTAAAACAAGACGTGTTGAATGAAAAAGTGAAAGAAGAAA<BR& gt; <BR> <BR> TTACAGGGCAATTAGAAATTACAAAGGTAGATGCTAATGATATAAATAAAAAATT<B R> <BR> <BR> AGCAGGCGCAGTGTTTGAAATTTGGAAAGACGGAACAAAAATCGATACATTAA<BR& gt; <BR> <BR> CATCAGATGAAAATGGTAAAGCAATTTCGAAAGAACT [GGATCCAGGAGATTAT<BR> <BR> <BR> ATTTTAAAGGAAGTTCAAGCJGCCAGAAGGTTATGAGTTATCTGATAAGGAAAT<BR > <BR> <BR> CGAATTTACGATTTCTAATCAAAAATTTGAAGTTGTAAAACTTCAAATTACAAAT<B R> <BR> <BR> AAAAAAGAAACAAGCAAAGGTCCAGAGAATCCAGGCGAAGAAACAGAAAAGC<BR&g t; <BR> <BR> CAGGTGAAGAAACAGAAAAGCCGGGTGAAGAAACAGAAAAGCCAGGCGAAGA<BR&g t; <BR> <BR> AACAGAAAAGCCAGGTGAAGAAACAGAAAAGCCAGGTGAAGAAACAGAAAAG<BR&g t; <BR> <BR> CCAGGCGAAGAAACAGAAAAGCCAGGTGAAGAAACAGAAAAGCCAGGTGAAG<BR&g t; <BR> <BR> AAACAGAAAAGCCAGGCGAAGAAACAGAAAAGCCAGGTGAAGAAACAGAAAA<BR&g t; <BR> <BR> GCCAGGCGGAGAGACAGAAAAACCGGGTAAAGAAACAGAGAAACCAGGTGAA<BR&g t; <BR> <BR> GGAATGGAAAACCCAGATAAAGAAAAAGAAAATCCTACTTTACCAGAAAAAGG<BR& gt; <BR> <BR> ACAAGGTACCTCTCATGCTCAACAGCTTCCAGCCACAGGACATGATATGAATTA<BR > <BR> <BR> TCTTCCATTCATTGG [GTTTGCTCTTGTTTTATTAGGGATACGCTTAAGATTTATG AC] TAAAAATAACTAATATGTI TATAAAAGGCATAAGAGAAATATTATCTCTTAT GCCTTTTGTTTTTTTATTTAAGCTTCAATAACTTTAAGCATTCGATTTAAAAATGC< BR> <BR> <BR> GGCGGATTCAGCGCGTGTTGCTGTGCCTTTTGGTACGAATTCATTTCGTTCGT<BR& gt; <BR> <BR> TCCCTTTTACAATTCCATATGCATAAACGTTTTGTAATGCTTTTTTATCGTATGCT< BR> <BR> <BR> AAGTGTTGGTCAGTGAATGGTAATTTCACTTCTTTTCTATAAATCCAGTTATATT<B R> <BR> <BR> CTAGTGCACGGTCAATCATAATAACAGCTTCATCACGTGTTATTGTAGCATTAG<BR > <BR> <BR> GATCAAATTTATTATTCCCACGACCATTAATGATACCTGCGCTAGCGGCGCGGT

TAATTCCATCTACTAAAGATGGATGTGCTTCGTTTAAATCTGTAAATTTAGCGTT<B R> <BR> <BR> TCCAGCAGGTAAATTTAAAGCTCTCGACATTAAATTTGCAAACTCAGCTCTTGT<BR > <BR> <BR> TACAAGACGGTTTGGCCAGTAAGAACCATTGCCGTCACCGAACATGATTTTTCT<BR > <BR> <BR> AGCAGCCAATTGACGAATGTCTTGTTCATACCATCCACCTGTAATGTCGTCTTT<BR > <BR> <BR> TTCATGAGGGACTTCTGGCGGCGGAATAACATCTTTATGATGTTCATTATAGTA<BR > <BR> <BR> AGCGTTCGTACCTTTTAAGAAAGCATCCCATTGTCCGCGTTGAATCATAAATGC<BR > <BR> <BR> AGGGCAGTTTTTTCCGCTCCAAAATTGATGCTTTTGCACGTGATCTAGAGATAT<BR > <BR> <BR> GTTTAATTCATTCATTAAATAAGCAGCTAAC TTTT GCGTTTTCTACCGCTTTC<BR> <BR> <BR> GTATAATTCCCATCACTATTCACAGCAATTTCAATTCCGATAGATTCATAGTTTC<B R> <BR> <BR> CAGTTTTATTTCCGGCATGCCAACCAACTTCATTTAATGGTAAATGTTGATA (xxi) The Bavntr-15 locus (SEQ ID NO : 99) : <BR> <BR> <BR> <BR> <BR> TCCTCTACTGTGAAAATTATCGGCAATGGTACACAAACAGGTTGGGCATCTATT<BR > <BR> <BR> ATGGTTGCTATTACATTCTTTAGCGGTATTCAATTACTTGGTCTTGGAATCGTTG<B R> <BR> <BR> GTCAGTATATCGCTCGTATTTATGACGAAAGTAAAAACCGTCCGATTTATATCG<BR > <BR> <BR> TAAAAGAAACAATCAACATTGACCAAGAAGAGACTGCACTGAAAAAAGAAAAA<BR& gt; <BR> <BR> GTGAATGCATAATAAAAAAGGTAACAATGAAAACTATCATTGTTACCTTTTTATA<B R> <BR> <BR> TTGTAATAGCCCATAAGTCTCAAACGAAATTCTTTTAAATTTGGATATACTTCTA<B R> <BR> <BR> AATTAGACATTATGTTGTTATAAATAAAGGGGAGGAAGAACAGATGAAAATTAC<BR > <BR> <BR> GTCTTTTGATTTTTGGCAAAAGTTCGGGAAAGCATTATTAGTTGTTGTAGCTGT<BR > <BR> <BR> AATGCCAGCAGTTGGTTTAATGATTTCTATCGGTAAGTTAATTGGAATGTCTGC<BR > <BR> <BR> TGGGGATATTAACGCAGTTCATACAATCGCTCGCGTAATGGAAGACATCGGTT<BR& gt; <BR> <BR> GGGCAATTATTACAAATCTACACATCTTATTCGCAGTAGCAATTGGGGGATCTT<BR > <BR> <BR> GGGCGAAAGATCGCGCAGGTGGTGCATTTGCAGCGCTATTAGCATTCGTCTTA<BR& gt; <BR> <BR> ACGAATAGAATTACAGGAGCTATATTTGGCGTAAACGCTGAAATGTTAGCGGA<BR& gt; <BR> <BR> TTCAAAAGCGAAAGTTTCTTCAGTATTAGCAGGAGATTTAATTGTAAAAGATTAC<B R> <BR> <BR> TTTACTTCTGTACTTGGTGCACCAGCATTAAACATGGGAGTTTTCGTAGGGATC<BR > <BR> <BR> ATCACAGGTTTCTTAGGAGCTACTTTATATAACAAATATTATAACTATAACAAAC<B R> <BR> <BR> TGCCACAGGCATTAGCATTCTTTAACGGAAAACGATTCGTACCATTCGTTGTAA<BR > <BR> <BR> TTGTTTGGTCTACAGTAACTGCAATTGTATTATCACTTTTATGGCCATTCATCCA AAGTGGATTAAATGAATTCGGTCGCT [GGATCGCAGCTTCAAAAGATAGT] GCA CCAGTTGTTGCACCATTTGTATAT [GGAACATTAGAGCGTTTACTATTACC] ATTC<BR> <BR> <BR> GGTTTACACCATATGTTAACGATTCCGATGAACTATACAGAGCTAGGTGGAACA<BR > <BR> <BR> TATACGATGTTAACTGGCTCGAAAATTGGACAAGTTGTAGCAGGACAGGATCC<BR& gt; <BR> <BR> TTTATGGCTTGCATGGATTACAGATTTAAACAACTTATTAGCAAATGGAGATAC<BR > <BR> <BR> AAAAGCATATAACGATCTATTAAATAATGTTGTACCAGCTCGTTTCAAAGCGGG<BR > <BR> <BR> ACAAGTTATCGGTTCAACAGCAGCATTAATGGGTATTGCTTTCGCGATGTTCCG<BR > <BR> <BR> TAATGTTGATAAAGAAAAACGTGCAAAATATAAACCAATGTTCTTATCAGCAGC<BR > <BR> <BR> ATTAGCAGTATTCTTAACAGGTGTAACAGAACCAATTGAATTCATGTTCATGTTT<B R> <BR> <BR> ATTGCTCCAGTATTATATGTTGTATATGCAATTACAACAGGACTTGCATTCGCAT<B R> <BR> <BR> TAGCAGATTTAATTAACTTGCGTGTTCACGCATTTGGATTTATTGAGTTAATTAC

TCGTACACCGATGATGGTGAATGCAGGACTAACTAGAGATTTAATCAATTTCGT<BR > <BR> <BR> TATCGTTTCATTAGTATTCTTCGGTCTGAACTTTACATTATTCAATTTCTTAATTA< BR> <BR> <BR> AAAAGTTCAACTTACCAACACCAGGACGTGCAGGTAACTATATTGATAACGAAG<BR > <BR> <BR> ATGAGGCATCAGAAGGAACAGGAAATGTACAAGAGGGTTCTTTAGCAACAAAG<BR& gt; <BR> <BR> GTTATTGATTTATTAGGTGGAAAAGAAAATATTGCTGACGTAGATGCTTGTATG<BR > <BR> <BR> ACACGTTTACGTGTAACAGTAAAAGATTTAGATGTTGTTGCACCAGAAGCACAG<BR > <BR> <BR> TGGAAACAAAATGGTGCTTTAGGACTTATCGTAAAAGATAAAGGTGTACAAGCA<BR > <BR> <BR> GTATATGGTCCGAAAGCTGACGTATTAAAGTCAGACATTCAAGATATGTTAGGT<BR > <BR> <BR> GCGTAATAATATGAAATTGCTAACTTTAAACTGTCACTCTTGGCAAGAAGAAAA<BR > <BR> <BR> TCAAATAGAAAAGATAAAATATCTTGCTAAAGTCATTCAAGAAGAAGAG (xxii) The Bavntr-36 locus (SEQ ID NO : 100) : <BR> <BR> <BR> <BR> <BR> CTCCTCCATTTTTTAAATTTTATATTGTCGCGGGGTGGAGCAGCACGGTAGCTC<BR > <BR> <BR> GTCGGGCTCATAACCCGAAGGTCGCAGGTTCAAATCCTGTCCCCGCAACCAAA<BR& gt; <BR> <BR> ATGGTCCCGTGGTGTAGTGGTTAACATGCCTGCCTGTCACGCAGGAGATCGC<BR&g t; <BR> <BR> CGGTTCGACCCCGGTCGGGACCGCCATTTATGTTGGCTCGGTAGCTCAGTCG<BR&g t; <BR> <BR> GTAGAGCAGAGGACTGAAAATCCTCGTGTCGGCGGTTCGATTCCGTCCCGAG<BR&g t; <BR> <BR> CCACCATTTTTTTATGCCGGCTTAGCTCAATTGGTAGAGCAACTGACTTGTAAT<BR > <BR> <BR> CAGTAGGTTGGGGGTTCAAGTCCTCTAGCCGGCATCCTTTAGGGGCATAGTTT<BR& gt; <BR> <BR> AAAGGTAGAACTGAGGTCTCCAAAACCTCCAGTGTGGGTTCGATTCCTACTGC CCCTGTAAAGTATATGGGCCTATAGCTCAGCTGGTTAGAGCGCACGCCTGATA <BR> <BR> AGCGTGAGGTCGATGGTTCGAGTCCATTTAGACCCACCATATATTATTCCGCA<BR& gt; <BR> <BR> GTAGCTCAGTGGTAGAGCTATCGGCTGTTAACCGATCGGTCGTAGGTTCGAGT CCTACCTGCGGAGCCATGGCCCGTT [GGTCAAGTGGTTAAGACACCGCCCTTT C] ACGGCGGTAACACGGGTTCGAATCCCGTACGGGTCATAAAAAAAAGAGTCA GCAATGTGCTGACTCT ' fTTATTGTGCGTGAATCCTCCTTTATCAACTGATTTT<BR> <BR> <BR> CTTGAAATAAATAAATAAATAAAGGGATTTAGGAAAAGCTATGGTATGTATAAAA AGGAGGAGACAAAATGACACGAGTGAGAGACGTTATGAGTACTCATATTGTAC AGTGTACACCGCTA [GATAATGTATATGAGGCTGCTGTAAAGATGAAAGAAGAA TC] AATTGGATTGATTCCGGTTGTTGAAAATGAGCAAGTTGTTGGGCTTGTTAC GGACCGAGATTTAGTTGTTCGAGGAATCTTTCCAGCACACTGCA (xxiii) The Bavntr-33 locus (SEQ ID NO : 101) : <BR> <BR> <BR> <BR> <BR> AACTGTCGTATCTAAGTTACTTAAAAATCCAATAATAAAACCATTCGCTTTATAA<B R> <BR> <BR> TTTGCAGCTTGATTCCATGCACGAATATCTACTCCACCTTTTATAAATAAATCAT<B R> <BR> <BR> TCATAAAGGTAGTAGGATAGTTACTATATCCATACAACATAAACCCAGATCCAC<BR > <BR> <BR> ATATTAAAATAATCCTCATAATAATATGTGATTTTATAACTGGAATATACTTTCGT< BR> <BR> <BR> ATATACGTAACTACAAGCACAATCAAAACAATGCCAACGATTGTCAGGAACATA<BR > <BR> <BR> TTCCAAAAACTGAAATAATCCATAACCATCG [GTATAACGGAATCCATATGACCA ACCTGTGTGAAATC] AGACGGATAGAATGGTTCTCCTCTAAAAATAAGCTTAAAA

TGGTTCACCATCATAAAAATAATTAAAACTAAGCTAGTTATCGTTGTACTTAAGA<B R> <BR> <BR> <BR> <BR> AAACTCTTCCAAACAAATTATATGCAAAAACGTATACCATATAAATAAATAAATA<B R> <BR> <BR> <BR> <BR> <BR> ACAGACTTAATATATACTGCCCATATTGTAAATACACCCATGTATTTACTACTAT<B R> <BR> <BR> <BR> <BR> AAGATTCATATCCTCCTGCACGATGATATACATCCAATTCATTGTATGAGCGAT<BR > <BR> <BR> <BR> <BR> <BR> TAAAAATAATACGACATACACTC [GAATAGCCGGCCTAAGCTTATGGCTGATAC<BR> <BR> <BR> <BR> <BR> C] Tl-fATTCAAATGAATGATGTATAGTAGTGCACTCCACAAAACAATAATGAGTA<BR > <BR> <BR> <BR> <BR> <BR> TACTTAGCGGTATTTTCTCATTAAAAAAATCTTTCGTTTTCTCAAATTCGAAAGA<B R> <BR> <BR> <BR> <BR> CCTTAATATAACAAAGAATAGCGTTTCTAAACAGATCGACCACATTCCACTAAG<BR > <BR> <BR> <BR> <BR> <BR> AATGATAGAAATTAATAGATTCTTTCTCGGTTGCTGAGTAGAGAAACTAAAATG<BR > <BR> <BR> <BR> <BR> AAATTCATCTCTTCTTCGTTGCTGTGTAAAAACATTAAAACGCAATTTATTCCCT<B R> <BR> <BR> <BR> <BR> CTTTCCTTTACCCCTTCGTCTCGCATCAACAAACATATTGTCATATACAAAATAA<B R> <BR> <BR> <BR> <BR> <BR> CATATTTGTATACAGTTAGTCTCCCTATGTGTTTGTATT (xxiv) The Bavntr-34 locus (SEQ ID NO : 102) : <BR> <BR> <BR> <BR> <BR> <BR> <BR> AGCACCTGGTTTGGGACCAGGGGGTCGCAGGTTCAAATCCTGTCTTCCCGATA<BR& gt; <BR> <BR> <BR> <BR> TTACCAAAAAACATGGGGCCTTAGCTCAGCTGGGAGAGCGCCTGCCTTGCAC<BR&g t; <BR> <BR> <BR> <BR> <BR> GCAGGAGGTCAGCGGTTCGATCCCGCTAGGCTCCACTTTATTTATTATATGTCT<BR > <BR> <BR> <BR> <BR> CGGAGGTATACCCAAGTTCGGCTGAAGGGATCGGTCTTGAAAACCGACAGGC<BR&g t; <BR> <BR> <BR> <BR> GGTGAGAATCGCGCGGGGGTTCGAATCCCTCTACCTCCTCCATTTTCTTTTTAA<BR > <BR> <BR> <BR> <BR> <BR> GTGGTTTAGACATAAATAATAAAATATTTCTTTTTCCTTCATGGAGGTATACCCA<B R> <BR> <BR> <BR> <BR> AGCTCGGCTGAAGGGATCGGTCTTGAAAACCGACAGGCGGCGAGAGTCGCG<BR> ; <BR> <BR> <BR> <BR> <BR> CGAGGGTTCGAATCCCTCTACCTCCTCCATTTTTTAAATTTTATATTGTCGCGG<BR > <BR> <BR> <BR> <BR> GGTGGAGCAGCACGGTAGCTCGTCGGGCTCATAACCCGAAGGTCGCAGGTTC<BR&g t; <BR> <BR> <BR> <BR> <BR> AAATCCTGTCCCCGCAACCAAAATGGTCCCGTGGTGTAGTGGTTAACATGCCT<BR& gt; <BR> <BR> <BR> <BR> GCCTGTCACGCAGGAGATCGCCGGTTCGACCCCGGTCGGGACCGCCATTTAT GTTGGCTCGGTAGCTCAGTCGGTAGAGCAGAGGACTGAAAATCCTCGTGTCG <BR> <BR> <BR> GCGGTTCGATTCCGTCCCGAGCCACCATTTTTTTATGCCGGCTTAGCTCAATT<BR& gt; <BR> <BR> <BR> <BR> GGTAGAGCAACTGACTTGTAATCAGTAGGTTGGGGGTTCAAGTCCTCTAGCCG<BR& gt; <BR> <BR> <BR> <BR> <BR> GCATCCTTTAGGGGCATAGTTTAAAGGTAGAACTGAGGTCTCCAAAACCTCCA GTGTGGGTTCGATTCCTACTGCCCCTGTAAAGTATATGGGCCTATAGCTCAGC <BR> <BR> <BR> TGGTTAGAGCGCACGCCTGATAAGCGTGAGGTCGATGGTTCGAGTCCATTTAG<BR& gt; <BR> <BR> <BR> <BR> ACCCACCATATATTATTCCGCAGTAGCTCAGTGGTAGAGCTATCGGCTGTTAAC CGATCGGTCGTAGGTTCGAGTCCTACCTGCGGAGCCATGGCCCGTTG [GTCAA GTGGT., TAAGACACCOtCCTTTCAqGGCGGTAACACGGGTTCGAATCCCGTAC<BR> <BR> <BR> <BR> <BR> GGGTCATAAAAAAAAGAGTCAGCAATGTGCTGACTCTTTTTTATTGTGCGTGAA<BR > <BR> <BR> <BR> <BR> <BR> TCCTCCTTTATCAACTGATTTTCTTGAAATAAATAAATAAATAAAGGGATTTAGG<B R> <BR> <BR> <BR> <BR> AAAAGCTATGGTATGTATAAAAAGGAGGAGACAAAATGACACGAGTGAGAGAC<BR& gt; <BR> <BR> <BR> <BR> <BR> GTTATGAGTACTCATATTGTACAGTGTACACCGCTAGATAATGTATATGAGGCT GCTGTAAAGATGAAAGAAGAATCAATTGGATTGATTCCGGTTGTTGAAAAT [GA GCAAGTTGTTGGGCTTGTTACGGACC] GAGATTTAGTTGTTCGAGGAATTGCTG<BR> <BR> <BR> <BR> <BR> AGAAACATCCTGGATCTAATAAAATTACAAATGTAATGACAACAAACATTATTTC

AGTTGCTCCAGATGATTCTCTTGAAAAAGCTACAGAGTTAATGGCCCAGCATCA<BR > <BR> <BR> AATTAGACGATTACCAGTCGTTGAGAGTGATCAACTTGTTGGGATGTTAGCGC<BR& gt; <BR> <BR> TAGGTGATTTAGCTATAAGAGAATCAGCAGATGATCAAGCTGGATTTGCTTTAA<BR > <BR> <BR> GTGAAATCTCGGAGCATACGGAATAAAGCAAGACTTTAATTAGTGGGATAAGTT<BR > <BR> <BR> ACGTATAAAAATCAGATGCATTATACTAGTATATAGAATTAAGCTAATATGTTAG<B R> <BR> <BR> CATGATGTATCTGAGACATTATATAATAAGTATACAGTTAGTAATTTCGACAGTT<B R> <BR> <BR> TATTTAAATTTGTCATTCCTAATTTTAAATAAGAGAAAAAATGATATACTGATAGA< BR> <BR> <BR> TATAAGTATTATGTTAGATTTCGAATATAACAATATTTATTATTAATGATGTAATG< BR> <BR> <BR> ATGGATTAATATCTCCTATGTAGACAAAAGGGAAGGGGAATTATATGAAGGCT<BR& gt; <BR> <BR> GTACAGCGCGATCCAAATTGGAATTTGGTTACAGATACATATATAGAGCCAAAT<BR > <BR> <BR> AATTTCGCTGAATTATTTTCTTTGCTTGTACCTTGTCACCCAAAAGGTGAAGGG<BR > <BR> <BR> AAAGAACGAACTATATTAGTGTGGAAAGAAAAAGAATTTTATAAAGAAGAAAAT<BR > <BR> <BR> TTAGCGGCATTTATCGTATATGGAATGAATAAAGCAAAGAATTTACCGCAGTTT<BR > <BR> <BR> CATAAAGATGAAATTCCAACTTTAGTACGTATTCTTCGCTTATGCCAAGAGATT<BR > <BR> <BR> GGTTGGTATGAAGAAGCAAATACTTTTATGGTAAATCAAGGACTAGCTGAGTTT<BR > <BR> <BR> GTTCACACTTCATTGGAATATGAAACGTGGGATCTTTTGACGCAGGCGGTTGC<BR& gt; <BR> <BR> TTTAAACTATTTAATTATTAAATATCGTATTGGTG (xxv) The Bavntr-26 locus (SEQ ID NO : 103) : <BR> <BR> <BR> AGAAAGATAATAAAGATGATTTTGGTAAACATATTAAAGTAACATTCTTAAAAAA<B R> <BR> <BR> TGTAGACAAGCATGAAACAATCGTAAAAGAAACAGCGCTTGATAAATTGAAGG<BR& gt; <BR> <BR> GTGACACACTTACTGCGGTAAATAACGATTTAGCTGCTTGGTTCTGGGATGAA<BR& gt; <BR> <BR> AAAGGTATTTCAGCAGGTAAATCTGATAAATTCAAAGTGAAATTTGAATTCGTT<BR > <BR> <BR> GATAATAAAAAAGATCAAAATGAATTCCAAGGCGATAAGTTACAATTAACTTGG<BR > <BR> <BR> ACGTTTGATGCACAGCAAGGCGATGGTGAAACAAAATAATAAGGACAACAAAA<BR& gt; <BR> <BR> AGAGACTATCAAAAACGATAGTCTC H))) CTGCTAAAAGTGAAATGTAAAAAG<BR> <BR> <BR> AAACATAATTTTTATATCATTTTGTAATTCACTTTATTATAATAAAGATATAGTTCT< ;BR> <BR> <BR> TGATAAAGAACGAGTTGTTCGATAGGAGAGATTAAAATGCTGAAGCCACCTCG<BR& gt; <BR> <BR> TAAATTCAAAAAGATGCTTATATTGCCATGTTTGTGTTCTATTACTTTTTATTTAG< BR> <BR> <BR> GCTCTCAAATGATGACTTATACAGAAGCAGCTTTCATTCATGAAACGAAAGTAG<BR > <BR> <BR> CGGCTACTATTTCTACAGCAAGTATTTTTCCAAAAACAGTTGATCAATTAATAGA<B R> <BR> <BR> ACAAGCTAAGCAGCATAAGGAAGTTATTTTGCATGAGTATAAAGAGATGAAATC<BR > <BR> <BR> AAAATTAAATGTTAGATCCACTCAGGAGATAGAACAGGCGCTTGTTATATGGAA<BR > <BR> <BR> GCAAGGACGTGAGAAGATAGCTGCTGAGAGAGAATCGTTACAAAAAGTATATA<BR& gt; <BR> <BR> AATCAATAGAAGAACCTTATAATCAAGTACAAGAAGAGTTAAAAGGAAATACAA<BR > <BR> <BR> CTGAATCGAATAAGCAAGTATTCTCGTATGTGAATGCTGGCTTCCATATAGTAA<BR > <BR> <BR> AAGAAAACTGTCAGTATGTTGATAAAGAAGTGAATTTACAGGCGATCGATAAAC<BR > <BR> <BR> AAATTCAAGATTTTGAGAAGTTACTA [GTAGATGAAACAGCAAAACAAGTGAGT<BR> <BR> <BR> GAGGC] TGAGAAGCAAAAGGAACTAGAAGAGAAGAAACAAGAGGAAGTAAAGA<BR> <BR> <BR> AACTAGAAGAGAAGAAACAAGAAGAAGCAAAAAAACTAGAAGAGAAGAAACAA<BR& gt; <BR> <BR> GAGGAAGCGAAAAAATTAGAAGAGAAGAAGAAACAAGAGGAAGCAAAAAATCA

AGAAGAGAGTAAGAAACAAGAAGAACAAAAAAATAAAGATAGCAAGTAAATTAT<BR > <BR> <BR> AGTAACGTTCCAAGCAGATAGAGATTATAAAACAAAAAGGAGAGAGAGCACTA<BR& gt; <BR> <BR> TCACTCACCTTCTTTTC [GTGTCTTGCTTATTTTATTTAGCCAATAAGAGGTAGTT<BR> <BR> <BR> AGATAGAC] GAAGTTTATTAATTAGTGAAGATAGGTCAAAAATCAAAAATTTTTT<BR> <BR> <BR> CTTTATTTTTCAATAATTTACTGAAATTTCTAAATAATATTGAGAAATAAAAATAA< BR> <BR> <BR> CTGAAAGTATTAATAAATATGTGTTGTATTTATATAGGTATGTTCGTTATAATGA<B R> <BR> <BR> ACATAAGGTTTTTAAAAAAGAACAAATATTAGCTAAGCTAATATAGCTTTAGTTA<B R> <BR> <BR> TATCTCTTATTTTAAATAAGAGATAGTAATAAAAAATATAAAAAACAGCTAGGGG<B R> <BR> <BR> GAATTGATTGTGAGTCTGAAAAAGAAATTAGGTATGGGAGTTGCATCAGCAGC<BR& gt; <BR> <BR> ATTGGGGTTATCTTTAATTGGTGGAGGAACATTTGCTTACTTTAGCGATAAAGA<BR > <BR> <BR> AGTATCGAACAATACATTTGCAGCTGGGACGTTAGATCTTACATTAGACCCTAA<BR > <BR> <BR> AACGCTTGTAGATATTAAAGATTTAAAACCAGGGGATTCTGTTAAGAAAGAGTT<BR > <BR> <BR> CTTATTAAAGAATAGCGGTTCATTAACAATTAAAGACGTTAAACTAGCAACAAA<BR > <BR> <BR> GTATACTGTGAAAGATGTAAAAGGTGATAATGCTGGTGAAGACTTTGGTAAGC<BR& gt; <BR> <BR> ACGTTAAAGTGAAATTCCTTTGGAACTGGGATAAACAAAGTGAGCCTGTATATG<BR > <BR> <BR> AAACAACTTTAGCAGACTTACAAAAAACTGATCCAGATCTTTTAGCTCAAGACA<BR > <BR> <BR> TTTTTGCTCCTGAGTGGGGGGAAAAGGGTGGATTAGAAGCTGGTACCGAGGA<BR&g t; <BR> <BR> TTATTTATGGGTACAATTTGAATTTGTAGATGATGGAAAAGACCAAAATATCTTC<B R> <BR> <BR> CAAGGTGATTCATTGAATTTAGAATGGACATTCAATGCTAACCAAGAAGCTGGA<BR > <BR> <BR> GAAGAAAAATAATAAAAAAAGCGGGTATCCCCCGCTTTTTTTTATAAAGAAAAA AGAAGTGCGGTTTGTAAGCACTTCTTTCTATTATTATTTTTGATTTTGCTTCCAT TTTG (xxvi) The Bavntr-12 locus (SEQ ID NO : 104) : <BR> <BR> <BR> TAAACAGTTGTATCGGAAGAGAACTTTGCTTCTTTACTTAGTAGCCCATATTGC<BR > <BR> <BR> ATAAGTTTTTCTTGAGTGGCAACGTTCATGTGTTGTAGCTCTGCCTGTAAGGAA<BR > <BR> <BR> CGAATATCTTTCTTGTATTTACTACATGATTGCATCAAAATTTCTACACTTTCAG<B R> <BR> <BR> CTGAACAAAAAACAAGGCGATTAACGTTAAAAATTTCAATGATTTGTTCAAGTG<BR > <BR> <BR> TTAATGTATATTCTTCCTTTTTGAAAGTTGGAATTTGATATATTTCTGCACCAGC<B R> <BR> <BR> TTCTTGTAACTTTTGCTTCATTACACTTGTTTTATTTGTTGCGGATGTAAATAAAA< BR> <BR> <BR> CTTTTTTACCATGTAATGGTTTATGTTCTTTCCAAGCGATTTGATCTCGTAATGA<B R> <BR> <BR> AACGACATCACCAACAATTGTCATAGATGGATTAGAAATATTTTCGTTTTTGAC<BR > <BR> <BR> GATAGAAACAATGGTAGATAGTGTCCCTGTAACAACGCGCTGTTTACCAGTTG<BR& gt; <BR> <BR> TACCCCATTCAATGACTGCTACTGGCGTATCTTCTTTTTTTCCTGCTTGTCGTA<BR > <BR> <BR> GGTTTTTACAAATTGTAGGTAAGTTTTTTATACCCATGTAGTAGGCGATCGTATC<B R> <BR> <BR> GCTATTGTGAGATGAATTATATTTTCCATGATCGGTTAAAGAACCTTTTGCATGT<B R> <BR> <BR> CCGGTTAGTAAAGTAACGCTATTACTGTAGTTACGGTGGGTAAGGGGGATACC<BR& gt; <BR> <BR> TGCATAGCTACTAGCGGCGGTGCTAGATGTAATGCCTGGTACAATTTCATATG<BR& gt; <BR> <BR> GAATATTTGCTGCTGCTAAAGTTTCTGCTTCTTCACCAACACGGCCAAAAATAG<BR > <BR> <BR> ATGGATCTCCGCCTTTTAATCGGACAACAATTTTTCCCTCTTGCGCAAATTGAA<BR > <BR> <BR> GAAGGTGTGCGTTAATCATTTCTTGTCGCATAATATGATTCTTTGGCATTTTTCC

GCAATACATAAGTTCACATGTTTGTTTTGTATAGCTAAGAAAGAAAGGGTTTAG<BR > TAAACGGTCATATAAAACAATATCTGCACGCTTTAAACACTCTATCGCTTTCTTT GTAATAAGCCCTTCATCACCTGGTCCTGCACCAACTAAATATACATATCC [, GTTC ATATAATTGCACCTCATCTAGTTTTATTTAAAAGGAAGCjCAGGGGGGAGGCTT<BR > CCTTTTGTAAATTACATATATATATATAAATGTCACCATTAATGACTTCTACTTCG< BR> TACGTTTGAATACAACCGTCATCAG [GTTTTTGAACTTCACCTGTAAGTAATGAA<BR> ATCTTCCAATC] ATGTAGCGGACAAAAGACGAATTCACCAGATACAATTCCTTC<BR> GGCTAATGGTCCGTTTTTATGAGGACAACGATTTTCTACAGCTCGAATATCACC<BR > ATTTGAAAGGCGGAATAGGGCGATAGACATACCTTTCATTTGGACCTCTTTACC<BR > GATTTGAATAGGAAGATCTTCTGCACGCATAACTTTTATTTTATCTTTCGTTTGT<B R> ATCATATAGATCACAGCTCCTTATTTCACAGTTTCTACTTCATACATCGCTTTTA<B R> ATGATTTCGTTTCTAGTGCTTGTCCCCAAGCTTCTTTATATGTGCCACGGGCCG<BR > TTTGGAAACGTTCATTTAACTTAGTGACCATATTTGCATCTTGCAGTATTTCTTT<B R> TATGTGATCGAAGTCTAATCGTTCTGTCCAGTAGGCAGTACGCTCTCCGTAAAT<BR > ACCAGTTTCACGATAATATTGCATGTAAGCTGTAGCGATGTGAAGAACATCATC<BR > TTCAGTAGGGACAATCATTACAAAATCAGCTTCACGTACTTCTGTACCACCATT<BR > TCCACCAATATAAAGTTGGTATCCATTTTCGACACAAACAACGCCAAAATCTTT<BR > CGTAAGTACTTCCGCACAGTTACGCGGACAGCCCGTTACACCCATCTTCATTTT<BR > ATGAGGTGTATCTACCATTTCTAATGATTGTTCAAGGAGCATACCAAGTCCTAA<BR > TGAATCTTTCGTACCGAAACGGCAGAAACGAGAGCCAACACATGATTTTACATT<BR > ACGAAGAGATTTTGAATACGCATATCCAGAAGTCATATTTAAGTCAGCCCATAC<BR > GTTAGGTAAATCTTGTTTCTTAACACCGTATAAGCCAATTCGACTTGCACCGGT<BR > AATTTTCACAAGTGGAACATCATACTTTTTCGCAACTTCAGCAATTTTCATTAAA<B R> TCATCTGCTGTTGTAACGCCTCCGTACATACGTGGAATAACAGAGAATGTACCA<BR > TCGTGCTGGATGTTACCATTCATTCTTTCATTAACGAAACGGGAGGCTTTATCA<BR > TCTTCATATTCTTCTGGAATCGCCATACGTAAATAGTAGTTCAAAGCAGGACGA<BR > CATTTTGAACAGCCATCTTCATGTACAAAACCAAGAACATTTCGTACTTCTTTTG<B R> GTGATTTTAAGCCTTTTTCATGAATTGCCGCTACGACTTCATCACGTGATAAAG GTGTACATCCGCACATACCAGCAGACTGGGCTGAGGCATCAAAAGCATCTCCG AGTGTATGAGATAAAACTTGTTCTAC (xxvii) The Bavntr-30 locus (SEQ ID NO : 105) : TGGTATTTAACAGAGGACATTATAGAGCAGATGGCGAAGAATTTTTTGAGTAGG<BR > AAATTATCCACAGGGAATTATTATGATTTAGATAGTATACAAATTTATATTCTATC< BR> AATCTAAGTTCGCTTTTGAGTAGTTGGAAGTATATCTTTTATAGGAGGTTTTTAT<B R> GGAATATGTTTATCATATGGTACCAGAAAAACTAAAAGGAGAATATTTAATCCC<BR > ATTAAATGAGTTGAAAAGATTATATCCTAATTTATACGGTGATTACATACAAAAA<B R> TATAAAGACCATCCTCAAAGAGAGAACTTATTAACACGTAAAATACCGAAACTA<BR > GAATGTTTATGGAATGATGTTGTGCATTTTTTACCACTGCATCCTTATGAGATTT<B R> ATAAAGCATTATTGGAAATAGGAGTAAACATCCATACAAATAAGCTATTTTATAA<B R> AATTCCTATTAGCGCACTGAAGGGTCAGTGTATGGCAATATACAAGTACTCAAA

GCACAATTGGGGTGGACCAAATAGCGAATTAAAAGAATGTGAAATAGAATTCAT<BR > <BR> <BR> CAATTTTAATGAATATAAAGAATTAAAGCAATTAAATACCTACACAAGAGAATAT<B R> <BR> <BR> TATAGAGATGAATACAAAAATGGTAGGAGATTCGGGATGTTTCACTTAATTCCA CATGTTCTTGTCAAAGGGAAAGTGGAGGTGAAACATATTGAAATCATAAATTGG <BR> <BR> AGTATTGATCCAGTTACTGATTAATGTTACAAGCATTCAAAAATAAGATGCCATT<B R> <BR> <BR> TTGAATTGATATTTGACTTAAAAGAATGGAAGAGTAATTAGATCTTATATGTAAC<B R> <BR> <BR> AGTAAAAAAGAAGCTTACTAGAAGCTTCTTTTTTACTACTATTTTTCACATGCAA<B R> <BR> <BR> CTCCATCGCCATCACGATCAAGATGTGAGTCATAACCTGGTTGTCCTTTATATA GAGGAGCTTTCCCGGCAGCTCTAACTGCGGCACAATTTTTGTAATATGCACTA CTAGTATTTCCTGAAGCAG [GTTGTGTTTGAGTTTGCTGTGATTTTTTCTGTTC] C <BR> <BR> TCTTGTTGTTTGCGAGCTTGTTCATCAGCCAGACGTTTTTGCTCTTCTTGTTGTT<B R> <BR> <BR> TACGAGCTTGTTCATCAGCCTGGCGTTTTTGCTCTTCTTGTTGTTTACGAGCTT<BR > <BR> <BR> GTTCATCAGCCTGGCGTTTTTGTTCTTCTTGTTGTTTACGAGCCTGTTCATCAG<BR > <BR> <BR> CCTGGCGTTTTTGTTCTTCTTGTTGTTTACGAGCCTGTTCATCAGCCTGGCGTT<BR > <BR> <BR> TTTGTTCCTCTTGTTGTTTACGAGTTTGTTCATCAGCAAGACGTTTTTGTTCTTC<B R> <BR> <BR> TTGTTGTTTACGAGCTTGTTCATCAGCCTGGCGTTTTTCATCCTCTTGCTTACG<BR > <BR> <BR> AGCTTGTTCATCGGCTTGACGTTTCTCATCTTCTTGCTTTTGAGCTTTTTCGTCC<B R> <BR> <BR> GCTTCTTTCTTTTCTAGTTCTTTTTTCTTCTC [GCTATCTTTTTGTTCTGCATTGTT<BR> <BR> <BR> AGATGCAAC] TTGTTTACTAGTTGCTGTCGTTTTTTCAGAAGTAGGGTTTGAAAT<BR> <BR> <BR> ACTTGATAACGCACCAAAAATAACAAATAAAATAGCAGTGATAATAAATTGTTTT<B R> <BR> <BR> TTTGCTACACCTGTCTTTTTAATTACAGATAAGATTGCTAGTACGAGGAAGAAA<BR > <BR> <BR> ACAAATAAAACAAAACTTAAAATAGAAAAAAATTCAACAATTGGGTTATTAGCAG<B R> <BR> <BR> TCTCAGCACTAGTTATTATTAATACAATCGAAATCATAAAAAGAATAACGGCAG<BR > <BR> <BR> GACGACCATACTGTTTTGCTTTTCCATTTTTCTTAAAGAATGAAATGATACATAG<B R> <BR> <BR> AATTAAAAGAATAAAAGCAATTAAAAATAAAGCTGTACCAATATTACTCAAAATC<B R> <BR> <BR> GCCATTTCTATACCTCCATTTGTAAGATTTTCATTGCTAATTATATAGGAATTTAT< BR> <BR> <BR> TGGGTATTACACGATTTATATAAAATTAGTAGTTCTAATAGACTGATAAACATTT<B R> <BR> <BR> ATTCGAATATATGAGAAAATGGATGTATTTCCTATTACATTTTTGAATAAAATCC<B R> <BR> <BR> ATAAAGTATAATATACGGATTGAAAAGAGGAGATTTGAATGGAATTCCAATTGT<BR > <BR> <BR> TGGTGACTTGTATATTACAAGAAGGTAATGCTTTCTTTTTAGTAACGAAAGTAG<BR > <BR> <BR> ACGATGTTATTACATTGAAAGTACCAATTACAGCGGGAGTAGCAGGTTTATTCT<BR > <BR> <BR> TAGCTTTAGGTGTACCAAGATGTTCTTAATTTAAATCTCTAGAGTAGAAAGAGG<BR > <BR> <BR> AGGACAAGCCTCTTTCTACTAATACATAATTATTTTATGTAAACTAAAGTATTCTT< BR> <BR> <BR> TTTGTAATAGCACGTTTAAAATGGACATGCATATACTATAATGTTTCATTGGATG<B R> <BR> <BR> TTTGTGATAAAAGGTAGTTTTAAATAGTACATTCAGTGATATTTTTTTAGCTATG<B R> <BR> <BR> AAAATAAAAGAGGTGCTATTATATATGAAAAGAA (xxviii) The Bavntr-10 locus (SEQ ID NO : 106) : <BR> <BR> <BR> TCGCAACTCCTAACATCAAGATAGCAAATATCCAGTTATTCATTTTAATAT<BR> ; <BR> <BR> CCCTGCTGCTTCTTCTCTATT TTCTTGCTAACTTATTGTTCGAGTACAGATGGA<BR> <BR> <BR> GAGAAAGATAAGTTAGAAAGGCAAAAGTAACAATGTAATGATATAAGTGACCTA

ACTCAAAACTTATTTGAAAAACCAGTATAGCAAAGGCAATAATGAATCCTGCTA<BR > <BR> CCGTCATTAGGATACTAGCTCGTAATTCTTGTTGCTTCATTTCAAAGTAAATTCT<B R> <BR> TCTTCGATTCGCAATATCAATTACTTTCATGATTACCCCTCCTAATCTTATCTTC<B R> <BR> TACGCAATTGATCTGTCCGATTTTGTGTACTTCCTCTTGGTCTTAATCTTGATTT<B R> <BR> TCTAACTTCTTTCACATTATCTTGAACATTTACATCTCTTTGTACTGTAGTTGTCC< BR> <BR> CTACCCTTACATCCGCAGTTACTTCACTACTACCTCGAACGTTATTTTGAACATT<B R> <BR> TACATCACGCTGTACTGTCGTTGCTCCTGCTCTTACAGTATGATTTACTGCTTC<BR > <BR> ACTTCCTCTTACATTGTTCTGCACATTTACATCACGCTGCACTGTTGTTGAACCT<B R> <BR> GCTCTTACACTACTTTCTACTGCTTCGCTTCCTCTTACATTGTTTTGCACATTTA<B R> <BR> CGTCACGCTGTACTGTTGTTGAACCCGCTCTTACAGCACTTTCTACCGCTTCAC<BR > <BR> TTCCCCTTACATTGTTTTGTACATTTACATCACGCTGTACTGTTGTTGAACCTGC<B R> <BR> TCTTACATTACTTTCTACCGCTTCACTTCCCCTTACATTGTTTTGCACATTTACAT< BR> <BR> CACGCTGTACTGTTGTTGAACCTGCTCTTACATTGCTATCTACCGCTTCGCTTC<BR > <BR> CTCTTATATTATTTTGTACATTTACGTCTCTCTGTATCGTTGCTACCCCTGCTTTT< BR> <BR> GCATCACTATTGATTGTTCCTGTCCCACCTGTACTTCTTAATGTATCTAGAACGT TCACTTCACGCTGTAC [TGTTTGTGACCCTGATTTCAT] ATTTCCTTGCGATGCTT CAGTACCTCCCGTATTTCTTAATTTATTTTGTATTTCAATTTCTCTTTCCGCTGTT< BR> <BR> TGTCTTTCGCCTTTTACATTGCCTTGCTGCCCTTCAGTACTTCCTGTATTTCTTA<B R> <BR> GTTTGTTTTGTAATTCGATTTCTCGCTCTGCTGTTTGTCTTTCGCTTTTCACATT<B R> <BR> ACCCTGTTGCCCTTCTTCTTTTCCTGTATTTCTTAGTTTGTTTTGTAATTCAATTT< BR> <BR> CTCGTTCTGCTGTTTGTCTTTCGCCTTTTATATTGCCCTGCTGCCTTTCATTAGA<B R> <BR> AATAGAAGCTACATTCGGACGATTAGCTATTTTAGGGCTAGCAGATGGCTCTAT<BR > <BR> ACCAGCATTTGCGTTATTTTGAATACCTTTACCTATTGTATTTAACGTTTGACGA<B R> <BR> TCAGCGTTTTCTTGCGC [CTTCTGTTTACCTTCAGCTTGAC] CGCCCTTAAATTCT<BR> GATACAGTTCCTTTCACACTGTCTGATACACCTTTTGCAACGCCTGATACTTTTT<B R> <BR> <BR> CTTTTCCTTTATCAACTGCGCCGCCAACAGTCTCAGCCACCTTGTTTCCCGCAT<BR > <BR> CGTTCATCATGCCGCCAACTCCACGATTCGCAGCGTAACTCATGGCAGCACCC<BR& gt; <BR> GTATTTCTAGCAAATTTCTTCGCCTGCATACCGCCGCCTTTGGCAGTATTCTTT<BR > <BR> TGTTCGCCTTGTGATTCCGCACTCTCATGATTCGAATCCATTTCAGAGCGTTTA<BR > <BR> GGCGTGTCTTCACGTGTTTGTCCACTTCCACCACTCATTAAGTTCTTCGCACCG<BR > <BR> CTAAACATACGACCAGCGCCCTTTATAGCTCCTTTCGCTGCCATAGCTCCGCC<BR& gt; <BR> AACCATACCCGTTAAGTGATTCTTTCCTTCTTTTAATCCAACATCAACACCAAAA<B R> <BR> TATTTTAAGATAGATTCTGAACCATTAATTAATGCTACTGTTAAACAAACCATTG<B R> <BR> CTACGATATATAAAAATGCATTGATGTCTTTTTCTGCTAAATAATTAACGATAAT<B R> <BR> CGTGTAGACTCGTAAATTTAAACCCGTAAAAGCAAATACTAAAAATCCTTTAAA<BR > <BR> GATATCCTGTATAACCATTTTTGTTTTT CGCCCGTTTCAATATCCGTAACGAAC<BR> <BR> ACAATTGGAGCAATAATTTTCTTCATGGCAATTTCAAAGATCGTCATAACAAATA<B R> <BR> CAAAAACAGTAAATAAATAGGCAACTCCTAGAGCTAATAACCCCCAAAATATAG<BR > <BR> TACCGAAGTTCATTGGGTATCGAACATAGCCCCCTGGGAACTTATCTTTAAATG<BR > <BR> GATTAAACACACTATCATTTATTTTTTCTACCGTTTCTTTGTCCCCATCGTTCGT<B R> <BR> AATTTTATAAACCAAATATTCGGTTTCTTTAGGTATATCTTTTTGCGATGTCAAC

ATTTCTATAACTTTAGGTGTTACTACATCACCTAGTTGTGCTTTCAAGAAAATAT<B R> <BR> CCTTAC The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.