Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTIPLE ORIENTATION ROTATABLE SPRINKLER
Document Type and Number:
WIPO Patent Application WO/2018/162982
Kind Code:
A1
Abstract:
A rotatable sprinkler including a water outlet nozzle providing a pressurized axial stream of water along a nozzle axis, and a rotatable water deflector assembly, downstream of the water outlet nozzle and receiving the pressurized axial stream of water therefrom, the rotatable water deflector assembly being rotated during sprinkler operation by the pressurized axial stream of water about a rotatable water path deflector assembly axis, the rotatable water deflector assembly including a first rotatable water path deflector portion and a second rotatable water path deflector portion, which is user rotatable relative to the first rotatable water path deflector portion about a second rotatable water path deflector axis, thereby enabling user selection of at least one water distribution parameter.

Inventors:
GLEZERMAN OLEG (IL)
KHATEB HASSAN (IL)
MARELI LIOR (IL)
Application Number:
PCT/IB2018/000307
Publication Date:
September 13, 2018
Filing Date:
March 07, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NAANDANJAIN IRRIGATION LTD (IL)
International Classes:
B05B3/04; B05B1/34
Foreign References:
US6085995A2000-07-11
US6834816B22004-12-28
US5031835A1991-07-16
US20160303582A12016-10-20
US9205435B12015-12-08
US5642861A1997-07-01
US5372307A1994-12-13
US9079202B22015-07-14
USRE33823E1992-02-18
US5544814A1996-08-13
Download PDF:
Claims:
CLAIMS

1. A rotatable sprinkler including:

a water outlet nozzle providing a pressurized axial stream of water along a nozzle axis; and

a rotatable water deflector assembly, downstream of said water outlet nozzle and receiving said pressurized axial stream of water therefrom, said rotatable water deflector assembly being rotated during sprinkler operation by said pressurized axial stream of water about a rotatable water path deflector assembly axis, said rotatable water deflector assembly including:

a first rotatable water path deflector portion; and

a second rotatable water path deflector portion, which is user rotatable relative to said first rotatable water path deflector portion about a second rotatable water path deflector axis, thereby enabling user selection of at least one water distribution parameter.

2. A rotatable sprinkler according to claim 1 and wherein said rotatable water path deflector assembly axis and said second rotatable water path deflector axis are coaxial.

3. A rotatable sprinkler according to claim 1 and wherein said nozzle axis, said rotatable water path deflector assembly axis and said second rotatable water path deflector axis are all coaxial.

4. A rotatable sprinkler according to claim 1 and also comprising a base portion, which includes a water inlet connector, and a nozzle defining portion which defines said water outlet nozzle.

5. A rotatable sprinkler according to claim 4 and also comprising a flow control membrane arranged upstream of said nozzle defining portion.

6. A rotatable sprinkler according to claim 4 and also comprising a body portion, which retains said nozzle defining portion, and a top portion, mounted onto said body portion, at least one of said nozzle defining portion and said top portion defining a low friction and low wear rotational mounting for said rotatable water deflector assembly, which receives said pressurized axial stream of water from said nozzle- defining portion.

7. A rotatable sprinkler according to claim 1 and wherein said first rotatable water path deflector portion includes a bottom, generally cylindrical portion, an upper axle-defining portion and a generally planar portion arranged between said generally cylindrical portion and said axle-defining portion.

8. A rotatable sprinkler according to claim 7 and wherein said bottom, generally cylindrical portion defines:

a first water pathway having mutually spaced planar side surfaces and a first water path deflector surface, which includes an initial generally vertical planar surface portion, which extends vertically to a curved surface portion, said curved surface portion extending vertically and radially outwardly to an upwardly and radially outwardly planar surface portion and

a generally circular cylindrical portion extending from a location vertically spaced from said planar surface portion to a surface of said generally planar portion.

9. A rotatable sprinkler according to claim 7 and wherein said planar portion is formed with a plurality of radially-extending protrusions and a pointer.

10. A rotatable sprinkler according to claim 9 and wherein said radially- extending protrusions are each formed on a top surface thereof with a pair of engagement protrusions for user-changeable, selectable azimuth engagement of said second rotatable water path deflector portions.

11. A rotatable sprinkler according to claim 10 and wherein said engagement protrusions limit the counterclockwise travel of said second rotatable water path deflector portions relative to said first rotatable water path deflector portion at each of a plurality of user selectable azimuthal relative orientations thereof.

12. A rotatable sprinkler according to claim 1 and wherein said second rotatable water path deflector portion includes a generally planar portion, defining a generally flat top surface and a generally flat bottom surface, and a plurality of depending portions, extending downwardly from said generally flat bottom surface, said generally planar portion being formed with a central aperture, centered about said second rotatable water path deflector axis.

13. A rotatable sprinkler according to claim 12 and wherein said second rotatable water path deflector portion also comprises a plurality of retaining protrusions, extending upwardly from said generally flat top surface and being operative for rotatably displaceable engagement with said first rotatable water path deflector portion.

14. A rotatable sprinkler according to claim 12 and wherein said generally planar portion includes a radially outwardly extending portion having a downwardly depending portion, which defines a curved inner surface, which defines a secondary azimuthal water deflection and reaction surface.

15. A rotatable sprinkler according to claim 14 and wherein said secondary azimuthal water deflection and reaction surface is slightly curved and is arranged to be tangent to an imaginary circle about said second rotatable water path deflector axis only along a small portion of the extent of said secondary azimuthal water deflection and reaction surface.

16. A rotatable sprinkler according to claim 1 and wherein said second rotatable water path deflector portion defines a plurality of user-selectable pressurized water flow pathways.

17. A rotatable sprinkler according to claim 16 and wherein:

said second rotatable water path deflector portion includes a generally planar portion; and

said plurality of user-selectable pressurized water flow pathways include at least two of:

a first user-selectable pressurized water flow pathway defined by a first reaction surface and at least one additional pathway surface, wherein said first reaction surface defines an angle al in an X-Y plane, parallel to said generally planar portion, with respect to an X axis thereof, such that pressurized water engages a curved inner surface, which defines a downstream azimuthal water deflection and reaction surface and defines an angle al ' in said X-Y plane with respect to a line parallel to a Y axis of said X-Y plane;

a second user-selectable pressurized water flow pathway defined by a second reaction surface and at least one additional pathway surface, wherein said second reaction surface defines an angle a2 in said X-Y plane, different from said angle al, with respect to said Y axis;

a third user-selectable pressurized water flow pathway defined by a third reaction surface and at least one additional pathway surface, wherein said third reaction surface defines an angle a3 in said X-Y plane, different from said angle al and said angle a2, with respect to said X axis; and

a fourth user-selectable pressurized water flow pathway defined by a fourth reaction surface and at least one additional pathway surface, wherein said fourth reaction surface defines an angle a4, different from said angle al, said angle a2 and said angle a3, with respect to said Y axis.

18. A rotatable sprinkler according to claim 17 and wherein at least one of said first, second, third and fourth user-selectable pressurized water flow pathways also defines an elevation limiting surface.

19. A rotatable sprinkler according to claim 18 and wherein at least one of said first, second, third and fourth user-selectable pressurized water flow pathways also defines an elevation limiting surface in which: said first user-selectable pressurized water flow pathway is also defined by a first planar elevation limiting surface, which defines an angle βΐ, in an X-Z plane, perpendicular to said X-Y plane, with respect to a plane parallel to a Y-Z plane, perpendicular to said X-Y plane and to said X-Z plane, and a downstream azimuthal water deflection and reaction surface, which defines an angle β with respect to a plane parallel to said Y-Z plane in a plane parallel to said X-Z plane;

said second user-selectable pressurized water flow pathway is also defined by a second planar elevation limiting surface, which defines an angle β2, different from said angle pi,with respect to a plane parallel to said X-Y plane in a plane parallel to said Y-Z plane;

said third user-selectable pressurized water flow pathway is also defined by a third planar elevation limiting surface, which defines an angle β3, different from said angle β2 and said angle βΐ, with respect to a plane parallel to said X-Y plane in a plane parallel to said X-Z plane; and

said fourth user-selectable pressurized water flow pathway is also defined by a fourth planar elevation limiting surface, which defines an angle β4, different from said angle β3, said angle β2 and said angle βΐ, with respect to a plane parallel to the X- Y plane in a plane parallel to the Y-Z plane.

20. A rotatable sprinkler according to claim 1 and wherein:

said second rotatable water path deflector portion includes a generally planar portion defining an X-Y plane parallel thereto and an X-Z plane and a Y-Z plane perpendicular thereto; and

said sprinkler has at least two of first, second, third and fourth operative orientations in which:

in said first operative orientation a pointer is directed to a first azimuthal location on said second rotatable water path deflector portion, indicated by a first indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with:

a first reaction surface, which defines an angle al in said X-Y plane, with respect to an X axis thereof; a first planar elevation limiting surface, which defines an angle βΐ in a plane parallel to said X-Z plane, with respect to a plane parallel to said X-Y plane, and

a curved downstream azimuthal water deflection and reaction surface, which defines a water stream exit angle α , different from said angle al, in said X-Y plane, with respect to a line parallel to a Y axis, and a water stream exit angle β in a plane parallel to said X-Z plane, with respect to a plane parallel to said Y-Z plane;

in said second operative orientation a pointer is directed to a second azimuthal location on said second rotatable water path deflector portion, indicated by a second indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with:

a second reaction surface, which defines an angle a2, different from said angle al, in said X-Y plane, with respect to said Y axis; and

a second planar elevation limiting surface, which defines an angle β2, different from said angle βΐ, in a plane parallel to said Y-Z plane, with respect to a plane parallel to said X-Y plane;

in said third operative orientation a pointer is directed to a third azimuthal location on said second rotatable water path deflector portion, indicated by a third indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with:

a third reaction surface, which defines an angle a3, different from said angle al and said angle a2, in said X-Y plane, with respect to said X axis; and a third planar elevation limiting surface, which defines an angle β3, different from said angle βΐ and said angle β2, in a plane parallel to said X-Z plane, with respect to a plane parallel to said X-Y plane; and

in said fourth operative orientation a pointer is directed to an azimuthal location on said second rotatable water path deflector portion indicated by a fourth indicium and a pressurized water stream extends upwardly and radially outwardly into engagement with: a fourth reaction surface, which defines an angle a4, different from said angle al, said angle a2 and said angle a3, in said X-Y plane, with respect to said Y axis; and

a fourth planar elevation limiting surface, which defines an angle β4, different from said angle βΐ, said angle β2 and said angle β3, in a plane parallel to said Y-Z plane, with respect to a plane parallel to said X-Y plane.

Description:
MULTIPLE ORIENTATION ROTATABLE SPRINKLER

FIELD OF THE INVENTION

[0001] The present invention relates to sprinklers.

BACKGROUND OF THE INVENTION

[0002] Various types of sprinklers are known in the art.

SUMMARY OF THE INVENTION

[0003] The present invention seeks to provide an improved sprinkler. There is thus provided in accordance with a preferred embodiment of the present invention a rotatable sprinkler including a water outlet nozzle providing a pressurized axial stream of water along a nozzle axis, and a rotatable water deflector assembly, downstream of the water outlet nozzle and receiving the pressurized axial stream of water therefrom, the rotatable water deflector assembly being rotated during sprinkler operation by the pressurized axial stream of water about a rotatable water path deflector assembly axis, the rotatable water deflector assembly including a first rotatable water path deflector portion and a second rotatable water path deflector portion, which is user rotatable relative to the first rotatable water path deflector portion about a second rotatable water path deflector axis, thereby enabling user selection of at least one water distribution parameter.

[0004] In accordance with a preferred embodiment of the present invention the rotatable water path deflector assembly axis and the second rotatable water path deflector axis are coaxial. Alternatively, the nozzle axis, the rotatable water path deflector assembly axis and the second rotatable water path deflector axis are all coaxial.

[0005] Preferably, the rotatable sprinkler also includes a base portion, which includes a water inlet connector, and a nozzle defining portion which defines the water outlet nozzle. Additionally, the rotatable sprinkler also includes a flow control membrane arranged upstream of the nozzle defining portion. Additionally or alternatively, the rotatable sprinkler also includes a body portion, which retains the nozzle defining portion, and a top portion, mounted onto the body portion, at least one of the nozzle defining portion and the top portion defining a low friction and low wear rotational mounting for the rotatable water deflector assembly, which receives the pressurized axial stream of water from the nozzle-defining portion.

[0006] In accordance with a preferred embodiment of the present invention the first rotatable water path deflector portion includes a bottom, generally cylindrical portion, an upper axle-defining portion and a generally planar portion arranged between the generally cylindrical portion and the axle-defining portion.

[0007] In accordance with a preferred embodiment of the present invention the bottom, generally cylindrical portion defines a first water pathway having mutually spaced planar side surfaces and a first water path deflector surface, which includes an initial generally vertical planar surface portion, which extends vertically to a curved surface portion, the curved surface portion extending vertically and radially outwardly to an upwardly and radially outwardly planar surface portion and a generally circular cylindrical portion extending from a location vertically spaced from the planar surface portion to a surface of the generally planar portion. Additionally or alternatively, the planar portion is formed with a plurality of radially-extending protrusions and a pointer.

[0008] Preferably, the radially-extending protrusions are each formed on a top surface thereof with a pair of engagement protrusions for user-changeable, selectable azimuth engagement of the second rotatable water path deflector portions. Additionally, the engagement protrusions limit the counterclockwise travel of the second rotatable water path deflector portions relative to the first rotatable water path deflector portion at each of a plurality of user selectable azimuthal relative orientations thereof.

[0009] In accordance with a preferred embodiment of the present invention the second rotatable water path deflector portion includes a generally planar portion, defining a generally flat top surface and a generally flat bottom surface, and a plurality of depending portions, extending downwardly from the generally flat bottom surface, the generally planar portion being formed with a central aperture, centered about the second rotatable water path deflector axis. Additionally, the second rotatable water path deflector portion also includes a plurality of retaining protrusions, extending upwardly from the generally flat top surface and being operative for rotatably displaceable engagement with the first rotatable water path deflector portion.

[0010] Preferably, the generally planar portion includes a radially outwardly extending portion having a downwardly depending portion, which defines a curved inner surface, which defines a secondary azimuthal water deflection and reaction surface. Additionally, the secondary azimuthal water deflection and reaction surface is slightly curved and is arranged to be tangent to an imaginary circle about the second rotatable water path deflector axis only along a small portion of the extent of the secondary azimuthal water deflection and reaction surface.

[0011] In accordance with a preferred embodiment of the present invention the second rotatable water path deflector portion defines a plurality of user-selectable pressurized water flow pathways.

[0012] Preferably, the second rotatable water path deflector portion includes a generally planar portion and the plurality of user-selectable pressurized water flow pathways include at least two of a first user-selectable pressurized water flow pathway defined by a first reaction surface and at least one additional pathway surface, wherein the first reaction surface defines an angle al in an X-Y plane, parallel to the generally planar portion, with respect to an X axis thereof, such that pressurized water engages a curved inner surface, which defines a downstream azimuthal water deflection and reaction surface and defines an angle al ' in the X-Y plane with respect to a line parallel to a Y axis of the X-Y plane, a second user-selectable pressurized water flow pathway defined by a second reaction surface and at least one additional pathway surface, wherein the second reaction surface defines an angle a2 in the X-Y plane, different from the angle al, with respect to the Y axis, a third user-selectable pressurized water flow pathway defined by a third reaction surface and at least one additional pathway surface, wherein the third reaction surface defines an angle a3 in the X-Y plane, different from the angle al and the angle a2, with respect to the X axis and a fourth user-selectable pressurized water flow pathway defined by a fourth reaction surface and at least one additional pathway surface, wherein the fourth reaction surface defines an angle a4, different from the angle al, the angle a2 and the angle a3, with respect to the Y axis.

[0013] Preferably, at least one of the first, second, third and fourth user- selectable pressurized water flow pathways also defines an elevation limiting surface. Additionally, at least one of the first, second, third and fourth user-selectable pressurized water flow pathways also defines an elevation limiting surface in which the first user-selectable pressurized water flow pathway is also defined by a first planar elevation limiting surface, which defines an angle βΐ, in an X-Z plane, perpendicular to the X-Y plane, with respect to a plane parallel to a Y-Z plane, perpendicular to the X-Y plane and to the X-Z plane, and a downstream azimuthal water deflection and reaction surface, which defines an angle β with respect to a plane parallel to the Y-Z plane in a plane parallel to the X-Z plane, the second user-selectable pressurized water flow pathway is also defined by a second planar elevation limiting surface, which defines an angle β2, different from the angle pi,with respect to a plane parallel to the X-Y plane in a plane parallel to the Y-Z plane, the third user-selectable pressurized water flow pathway is also defined by a third planar elevation limiting surface, which defines an angle β3, different from the angle β2 and the angle βΐ, with respect to a plane parallel to the X-Y plane in a plane parallel to the X-Z plane and the fourth user-selectable pressurized water flow pathway is also defined by a fourth planar elevation limiting surface, which defines an angle β4, different from the angle β3, the angle β2 and the angle βΐ, with respect to a plane parallel to the X-Y plane in a plane parallel to the Y-Z plane.

[0014] In accordance with a preferred embodiment of the present invention the second rotatable water path deflector portion includes a generally planar portion defining an X-Y plane parallel thereto and an X-Z plane and a Y-Z plane perpendicular thereto and the sprinkler has at least two of first, second, third and fourth operative orientations in which in the first operative orientation a pointer is directed to a first azimuthal location on the second rotatable water path deflector portion, indicated by a first indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with a first reaction surface, which defines an angle al in the X-Y plane, with respect to an X axis thereof, a first planar elevation limiting surface, which defines an angle βΐ in a plane parallel to the X-Z plane, with respect to a plane parallel to the X-Y plane and a curved downstream azimuthal water deflection and reaction surface, which defines a water stream exit angle α , different from the angle al, in the X-Y plane, with respect to a line parallel to a Y axis, and a water stream exit angle β in a plane parallel to the X-Z plane, with respect to a plane parallel to the Y-Z plane, in the second operative orientation a pointer is directed to a second azimuthal location on the second rotatable water path deflector portion, indicated by a second indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with a second reaction surface, which defines an angle a2, different from the angle al, in the X-Y plane, with respect to the Y axis and a second planar elevation limiting surface, which defines an angle β2, different from the angle βΐ, in a plane parallel to the Y-Z plane, with respect to a plane parallel to the X-Y plane, in the third operative orientation a pointer is directed to a third azimuthal location on the second rotatable water path deflector portion, indicated by a third indicium, and a pressurized water stream extends upwardly and radially outwardly into engagement with a third reaction surface, which defines an angle a3, different from the angle al and the angle a2, in the X-Y plane, with respect to the X axis and a third planar elevation limiting surface, which defines an angle β3, different from the angle βΐ and the angle β2, in a plane parallel to the X-Z plane, with respect to a plane parallel to the X-Y plane and in the fourth operative orientation a pointer is directed to an azimuthal location on the second rotatable water path deflector portion indicated by a fourth indicium and a pressurized water stream extends upwardly and radially outwardly into engagement with a fourth reaction surface, which defines an angle a4, different from the angle al, the angle a2 and the angle a3, in the X-Y plane, with respect to the Y axis and a fourth planar elevation limiting surface, which defines an angle β4, different from the angle βΐ, the angle β2 and the angle β3, in a plane parallel to the Y-Z plane, with respect to a plane parallel to the X-Y plane.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The present invention will be understood more fully from the following detailed description, taken in conjunction with the drawings in which:

[0016] Figs. 1A and IB are, respectively, simplified pictorial assembled and exploded view illustrations of a sprinkler constructed and operative in accordance with a preferred embodiment of the present invention in an unpressurized operative orientation;

[0017] Figs. 2A and 2B are, respectively, a simplified side view illustration and a simplified sectional illustration, taken along lines B - B in Fig. 2A, of the sprinkler of Figs. 1A & IB in an unpressurized operative orientation;

[0018] Figs. 3A and 3B are, respectively, a simplified side view illustration and a simplified sectional illustration, taken along lines B - B in Fig. 3A, of the sprinkler of Figs. 1 A - 2B in a pressurized operative orientation;

[0019] Figs. 4A, 4B and 4C are, respectively, simplified top-down and bottom- up pictorial assembled view illustrations and an exploded view illustration of a rotatable deflector assembly forming part of the sprinkler of Figs. 1A - 3B;

[0020] Figs. 5A, 5B, 5C, 5D, 5E, 5F, 5G and 5H are, respectively, simplified pictorial, top plan view, bottom plan view, a sectional illustration taken along lines D - D in Fig. 5B, a sectional illustration taken along lines E - E in Fig. 5B and first, second and third side plan view illustrations of a first rotatable water deflector portion of the rotatable deflector assembly of Figs. 4A - 4C, Figs. 5F, 5G and 5H being taken along respective arrows F, G and H in Fig. 5B;

[0021] Figs. 6A, 6B, 6C, 6D, 6E, 6F, 6G, 6H, 61, 6J, 6K and 6L are, respectively, simplified pictorial, top plan view, bottom plan view, a sectional illustration taken along lines D - D in Fig. 6B, a sectional illustration taken along lines E - E in Fig. 6B, a sectional illustration taken along lines F - F in Fig. 6C, a sectional illustration taken along lines G - G in Fig. 6C, a sectional illustration taken along lines H - H in Fig. 6C, a sectional illustration taken along lines I - I in Fig. 6C and first, second and third side plan view illustrations of a second rotatable water deflector portion of the rotatable deflector assembly of Figs. 4A - 4C, Figs. 6J, 6K and 6L being taken along respective arrows J, K and L in Fig. 6B;

[0022] Figs. 7A, 7B, 7C and 7D are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a first operative orientation, Fig. 7D being taken along lines D - D in Fig. 7C;

[0023] Figs. 8A, 8B and 8C are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the first operative orientation seen in Figs. 7A - 7D, Figs. 8B and 8C being taken along respective lines B - B and C - C in Fig. 8A;

[0024] Figs. 9A, 9B, 9C and 9D are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a second operative orientation, Fig. 9D being taken along lines D - D in Fig. 9C;

[0025] Figs. 10A, 10B and IOC are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the second operative orientation seen in Figs. 9A - 9D, Figs. 10B and IOC being taken along respective lines B - B and C - C in Fig. 10A;

[0026] Figs. 11A, 11B, 11C and 11D are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a third operative orientation, Fig. 11D being taken along lines D - D in Fig. 11C;

[0027] Figs. 12A, 12B and 12C are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4 A - 6L is in the third operative orientation seen in Figs. 11A - 11D, Figs. 12B and 12C being taken along respective lines B - B and C - C in Fig. 12 A;

[0028] Figs. 13A, 13B, 13C and 13D are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a fourth operative orientation, Fig. 13D being taken along lines D - D in Fig. 13C; and

[0029] Figs. 14A, 14B and 14C are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the fourth operative orientation seen in Figs. 13A - 13D, Figs. 14B and 14C being taken along respective lines B - B and C - C in Fig. 14 A.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0030] Reference is now made to Figs. 1A and IB, which are, respectively, simplified pictorial assembled and exploded view illustrations of a sprinkler constructed and operative in accordance with a preferred embodiment of the present invention in an unpressurized operative orientation. As seen in Figs. 1A & IB, there is provided a sprinkler 100 including a base portion 102, formed with a water inlet connector 104, and a nozzle defining portion 106, supported on base portion 102. Optionally, disposed interiorly of base portion 102 and below nozzle-defining portion 106 is a flow control membrane 108 and a membrane-retaining ring 110.

[0031] A body portion 120 is threadably attached to base portion 102 and retains nozzle defining portion 106, as well as optional flow control membrane 108 and membrane-supporting ring 110, within base portion 102. A top portion 122 is preferably bayonet mounted onto a top central aperture 124 of body portion 120. Preferably, nozzle-defining portion 106 and top portion 122 define respective bottom and top low friction and low wear rotational mounting for a rotatable water deflector assembly 130, which receives a pressurized axial stream of water from nozzle-defining portion 106. Alternatively, the low friction and low wear rotational mounting for rotatable water deflector assembly 130 is provided by one, but not both, of nozzle-defining portion 106 and top portion 122. All of the above-described elements with the exception of rotatable water deflector assembly 130, are known and commercially available in an existing sprinkler, Sprinkler Model No. 2002, commercially available from NaanDanJain Irrigation Ltd. of Kibbutz Naan, Israel.

[0032] It is appreciated that terms such as "top", "bottom", "upper" and "lower" refer to relative locations in the sense of Figs. 1A and IB and do not necessarily refer to relative locations on a sprinkler in use.

[0033] Rotatable water deflector assembly 130 is preferably arranged for rotation about an axis 133, which is preferably selected to be vertical and in the orientation shown in Figs. 1A - 3B. It is appreciated that the entire sprinkler may be operated up-side down with respect to the orientation shown in Figs. 1A - 3B, preferably with a differently designed deflector assembly 130 and a deflector assembly 130 retaining spring (not shown) for retaining the rotatable water deflector assembly 130 in its orientation as shown in Figs. 2A and 2B even when the sprinkler is not receiving a pressurized flow of water.

[0034] Reference is now made to Figs. 2A and 2B, which are, respectively, a simplified side view illustration and a simplified sectional illustration, taken along lines B - B in Fig. 2A, of the sprinkler of Figs. 1A & IB in an unpressurized operative orientation. It is seen that the rotatable water deflector assembly 130 is in a relatively lowered orientation relative to body portion 120 and nozzle-defining portion 106.

[0035] Reference is now made to Figs. 3A and 3B, which are, respectively, a simplified side view illustration and a simplified sectional illustration, taken along lines B - B in Fig. 3A of the sprinkler of Figs. 1A - 2B in a pressurized operative orientation. It is seen that the rotatable water deflector assembly 130 is in a relatively raised orientation relative to body portion 120 and nozzle-defining portion 106.

[0036] Reference is now made to Figs. 4A, 4B and 4C, which are, respectively, simplified top-down and bottom-up pictorial assembled view illustrations and an exploded view illustration of rotatable deflector assembly 130, forming part of the sprinkler of Figs. 1A - 3B. As seen in Figs. 4A - 4C, it is a particular feature of the present invention that the rotatable deflector assembly 130 includes a first rotatable water path deflector portion 140, which is rotatable about axis 133, and a second rotatable water path deflector portion 150, which is also rotatable about axis 133 together with first rotatable water path deflector portion 140 and is also user rotatable about axis 133, relative to first rotatable water path deflector portion 140, thereby enabling user selection of at least one water distribution parameter.

[0037] Reference is now made to Figs. 5A, 5B, 5C, 5D, 5E, 5F, 5G and 5H, which are, respectively, simplified pictorial, top plan view, bottom plan view, a sectional illustration taken along lines D - D in Fig. 5B, a sectional illustration taken along lines E - E in Fig. 5B and first, second and third side plan view illustrations of first rotatable water path deflector portion 140 of the rotatable deflector assembly 130 of Figs. 4A - 4C, Figs. 5F, 5G and 5H being taken along respective arrows E, F and G in Fig. 5B.

[0038] As seen in Figs. 5A - 5H, the first rotatable water path deflector portion

140 is preferably integrally formed by injection molding of low friction, low wear plastic and includes a bottom, generally cylindrical portion 200, an upper axle-defining portion 202 and a generally planar portion 204 arranged between the generally cylindrical portion 200 and the axle-defining portion 202.

[0039] The bottom, generally cylindrical portion 200 preferably defines a first water pathway 210 having mutually spaced planar side surfaces 212 and 214 and a first water path deflector surface 220, which preferably includes an initial generally vertical planar surface portion 222 which extends upwardly to a curved surface portion 224. Curved surface portion 224 extends upwardly and radially outwardly to an upwardly and radially outwardly planar surface portion 226. Bottom, generally cylindrical portion 200 also comprises a generally circular cylindrical portion 228 extending from a location above planar surface portion 226 to an underside surface 230 of generally planar portion 204.

[0040] Generally planar portion 204 preferably is formed with a plurality of, typically four, radially-extending protrusions 240 as well as a pointer 242. Each of protrusions 240 is preferably formed on a top surface thereof with a pair of bayonet engagement protrusions 244 and 246 for user-changeable, selectable azimuth engagement of second rotatable water deflector portion 150 therewith. Bayonet engagement protrusions 244 are each preferably a "bump" protrusion and each preferably include first and second opposite directed and mutually azimuthally separated inclined planar surfaces 252 and 254, separated by a flat surface 256. Bayonet engagement protrusions 246 are preferably "stop" protrusions, which limit the counterclockwise travel of second water rotatable water deflector portion 150 relative to first rotatable water path deflector portion 140 at each of the user selectable azimuthal relative orientations thereof.

[0041] Reference is now made to Figs. 6A, 6B, 6C, 6D, 6E, 6F, 6G, 6H, 61, 6J,

6K and 6L, which are, respectively, simplified pictorial, top plan view, bottom plan view, a sectional illustration taken along lines D - D in Fig. 6B, a sectional illustration taken along lines E - E in Fig. 6B, a sectional illustration taken along lines F - F in Fig. 6C, a sectional illustration taken along lines G - G in Fig. 6C, a sectional illustration taken along lines H - H in Fig. 6C, a sectional illustration taken along lines I - 1 in Fig. 6C and first, second and third side plan view illustrations of second rotatable water deflector portion 150 of the rotatable deflector assembly of Figs. 4A - 4C, Figs. 6J, 6K and 6L being taken along respective arrows J, K and L in Fig. 6B.

[0042] As seen in Figs. 6A - 6L, second rotatable water deflector portion 150 includes a generally planar portion 300, defining a generally flat top surface 302 and a generally flat bottom surface 304, as well as a plurality of depending portions 306, extending downwardly from generally flat bottom surface 304. Generally planar portion is preferably formed with a central aperture 308, centered about axis 133.

[0043] Extending upwardly from generally flat top surface 302 are, preferably, a plurality of retaining protrusions 310, which are typically four in number and are equally azimuthally distributed about axis 133. Retaining protrusions 310, each preferably include an upstanding portion 312 and a radially inwardly extending portion 314 and are designed to rotatably retain first rotatable water path deflector portion 140 in engagement therewith in one of four equally azimuthally distributed operative orientations. It is noted that, as seen particularly clearly in Fig. 6E, an underside surface 316 of radially inwardly extending portion 314 defines a protrusion 318 for rotatably displaceable engagement with the first rotatable water path deflector portion 140.

[0044] Generally planar portion 300 preferably includes a radially outwardly extending portion 320 having a downwardly depending portion 322, which defines a curved inner surface 324 which defines a secondary azimuthal water deflection and reaction surface. Surface 324 is slightly curved and is arranged to be tangent to an imaginary circle about axis 133 only along a small portion of the extent of surface 324.

[0045] As seen particularly in Fig. 6C, depending portions 306 together define four user- selectable pressurized water flow pathways therebetween.

[0046] Fig. 6C defines an X axis and a Y axis, perpendicular to each other, in an

X-Y plane, which is parallel to generally planar portion 300 and perpendicular to a Z axis, which is coaxial with axis 133, and also defines an X-Z plane and a Y-Z plane.

[0047] A first user-selectable pressurized water flow pathway 330 is defined by a reaction surface 332 and additional pathway surfaces 334, 336 and 338. Reaction surface 332 preferably defines an angle al, in the X-Y plane, with respect to the X axis. Pressurized water flowing along first user-selectable pressurized water flow pathway 330 subsequently engages curved inner surface 324 which defines a downstream azimuthal water deflection and reaction surface and defines an angle α , in the X-Y plane, with respect to a line parallel to the Y axis.

[0048] A second user-selectable pressurized water flow pathway 340 is defined by a reaction surface 342 and additional curved pathway surface 344. Reaction surface 342 preferably defines an angle a2, in the X-Y plane, with respect to the Y axis. Preferably, angle a2 is not equal to angle al.

[0049] A third user-selectable pressurized water flow pathway 350 is defined by a reaction surface 352 and additional pathway surfaces 354 and 356. Reaction surface 352 preferably defines an angle a3, in the X-Y plane, with respect to the X axis. Preferably, angle a3 is not equal to angle a2 and is not equal to angle al .

[0050] A fourth user-selectable pressurized water flow pathway 360 is defined by a reaction surface 362 and additional curved pathway surface 364. Reaction surface 362 preferably defines an angle a4, in the X-Y plane, with respect to the Y axis. Preferably, angle a4 is not equal to angle a3, is not equal to angle a2 and is not equal to angle al.

[0051] As seen particularly in Figs. 6F, 6G, 6H and 61, each of the four user- selectable pressurized water flow pathways 330, 340, 350 and 360 also defines an elevation limiting surface.

[0052] As seen in Fig. 6C and in Fig. 6F, water flow pathway 330 is also defined by a planar elevation limiting surface 370, which defines, with respect to a plane parallel to the X-Y plane, an angle βΐ, in a plane parallel to the X-Z plane, and by downstream azimuthal water deflection and reaction surface 324, which defines, with respect to a plane parallel to the Y-Z plane, an angle β , in a plane parallel to the X-Z plane.

[0053] As seen in Fig. 6C and in Fig. 6G, water flow pathway 340 is also defined by a planar elevation limiting surface 372, which defines an angle β2, with respect to a plane parallel to the X-Y plane, in a plane parallel to the Y-Z plane.

[0054] As seen in Fig. 6C and in Fig. 6H, water flow pathway 350 is also defined by a planar elevation limiting surface 374, which defines an angle β3, with respect to a plane parallel to the X-Y plane, in a plane parallel to the X-Z plane. [0055] As seen in Fig. 6C and in Fig. 61, water flow pathway 360 is also defined by a planar elevation limiting surface 376, which defines an angle β4 with respect to a plane parallel to the X-Y plane in a plane parallel to the Y-Z plane.

[0056] Reference is now made to Figs. 7A, 7B, 7C and 7D, which are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a first operative orientation, Fig. 7D being taken along lines D - D in Fig. 7C. For the sake of clarity and conciseness, Figs. 7A - 7D are described hereinbelow with respect to a mutually orthogonal Cartesian coordinate system, as defined above with reference to Fig. 6C, fixed with respect to the second rotatable water path deflector portion 150, wherein the Z axis is coaxial with axis 133 and the X and Y axes extend mutually perpendicularly and perpendicularly to the Z axis.

[0057] It is appreciated that the X and Y axes shown in Fig. 7C correspond to the X and Y axes shown in Fig. 6C.

[0058] In the first operative orientation shown in Figs. 7A - 7D, pointer 242, as seen particularly in Figs. 7A& 7B, is directed to an azimuthal location on second rotatable water path deflector portion 150 indicated by the numeral "1". As seen particularly in Figs. 7C and 7D, the first water path deflector surface 220, which preferably includes initial generally vertical planar surface portion 222, which extends upwardly to curved surface portion 224 and in turn extends upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226, is azimuthally aligned about axis 133 (Z axis) with:

[0059] reaction surface 332, which defines an angle al in the X-Y plane, as shown in Fig. 7C, with respect to the X axis;

[0060] with planar elevation limiting surface 370,which defines angle βΐ in a plane parallel to the X-Z plane, as shown in Fig.7D, with respect to a plane parallel the X-Y plane, and

[0061] with curved downstream azimuthal water deflection and reaction surface 324, which defines a water stream exit angle al ' in the X-Y plane, with respect to a line parallel to the Y axis, as shown in Fig. 7C, and a water stream exit angle β in a plane parallel to the X-Z plane, with respect to a plane parallel to the Y-Z plane, as shown in Fig. 7D. [0062] Reference is now made to Figs. 8A, 8B and 8C, which are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the first operative orientation as seen in Figs. 7A - 7D, Figs. 8B and 8C being taken along respective lines B - B and C - C in Fig. 8A.

[0063] As seen in Figs. 8 A - 8C, a pressurized water stream 400 flows generally vertically though water inlet connector 104 (Fig. IB) and nozzle defining portion 106 (Fig. IB), optionally including flow control membrane 108 (Fig. IB). The pressurized water stream 400 then engages the first water path deflector surface 220 of the first rotatable water path deflector portion 140. The pressurized water stream 400 flows along initial generally vertical planar surface portion 222 thereof, which extends upwardly to curved surface portion 224 and in turn flows upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226. The pressurized water stream 400 then engages reaction surface 332 of the second water path deflector 150, which surface 332 defines an angle al in the X-Y plane, as shown in Fig. 8C, with respect to the X axis and planar elevation limiting surface 370 of the second water path deflector 150, which defines angle βΐ in a plane parallel to the X-Z plane, as shown in Fig.8B, with respect to a plane parallel to the X-Y plane. Part of the pressurized water stream 400 subsequently engages curved downstream azimuthal water deflection and reaction surface 324 of the second water path deflector 150, which defines a water stream exit angle α in the X-Y plane, as shown in Fig. 8C, and a water stream exit angle β in a plane parallel to the X-Z plane, as shown in Fig. 8B.

[0064] Reference is now made to Figs. 9A, 9B, 9C and 9D, which are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a second operative orientation, Fig. 9D being taken along lines D - D in Fig. 9C. For the sake of clarity and conciseness, Figs. 9A - 9D are described hereinbelow with respect to a mutually orthogonal Cartesian coordinate system fixed with respect to the second rotatable water path deflector portion 150, wherein the Z axis is coaxial with axis 133 and the X and Y axes extend mutually perpendicularly and perpendicularly to the Z axis.

[0065] It is appreciated that the X and Y axes shown in Fig. 9C correspond to the X and Y axes shown in Figs. 6C and 7C and that second rotatable water path deflector portion 150 has been rotated 90° counter-clockwise from the orientation shown in Fig. 6C, from the perspective of Fig. 9C.

[0066] In the second operative orientation shown in Figs. 9A - 9D, pointer 242, as seen particularly in Figs. 9A & 9B, is directed to an azimuthal location on second rotatable water path deflector portion 150 indicated by the numeral "2". As seen particularly in Figs. 9C and 9D, the first water path deflector surface 220, which preferably includes initial generally vertical planar surface portion 222, which extends upwardly to curved surface portion 224 and in turn extends upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226, is azimuthally aligned about axis 133 (Z axis) with:

[0067] reaction surface 342, which defines an angle a2 in the X-Y plane, as shown in Fig. 9C, with respect to the Y axis; and

[0068] with planar elevation limiting surface 372, which defines angle β2 in a plane parallel to the Y-Z plane, as shown in Fig.9D, with respect to a plane parallel to the X-Y plane.

[0069] Reference is now made to Figs. 10A, 10B and IOC, which are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the second operative orientation as seen in Figs. 9A - 9D, Figs. 10B and IOC being taken along respective lines B - B and C - C in Fig. 10A.

[0070] As seen in Figs. 10A - IOC, a pressurized water stream 500 flows generally vertically though water inlet connector 104 (Fig. IB) and nozzle defining portion 106 (Fig. IB), optionally including flow control membrane 108 (Fig. IB). The pressurized water stream 500 then engages the first water path deflector surface 220 of the first rotatable water path deflector portion 140. The pressurized water stream 500 flows along initial generally vertical planar surface portion 222 thereof, which extends upwardly to curved surface portion 224 and in turn flows upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226. The pressurized water stream 500 then engages reaction surface 342 of the second water path deflector 150, which surface 342 defines angle a2 in the X-Y plane, as shown in Fig. IOC, with respect to the Y axis and planar elevation limiting surface 372 of the second water path deflector 150, which defines angle β2 in a plane parallel to the Y-Z plane, as shown in Fig.1 OB, with respect to a plane parallel to the X-Y plane.

[0071] Reference is now made to Figs. 11A, 11B, 11C and 11D, which are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a third operative orientation, Fig. 11D being taken along lines D - D in Fig. 11C. For the sake of clarity and conciseness, Figs. 11A - 11D are described hereinbelow with respect to a mutually orthogonal Cartesian coordinate system fixed with respect to the second rotatable water path deflector portion 150, wherein the Z axis is coaxial with axis 133 and the X and Y axes extend mutually perpendicularly and perpendicularly to the Z axis.

[0072] It is appreciated that the X and Y axes shown in Fig. 11C correspond to the X and Y axes shown in Figs. 6C, 7C and 9C and that second rotatable water path deflector portion 150 has been rotated 180° from the orientation shown in Fig. 6C, from the perspective of Fig. 11C.

[0073] In the third operative orientation shown in Figs. 11 A - 1 ID, pointer 242, as seen particularly in Figs. 11A & 11B, is directed to an azimuthal location on second rotatable water path deflector portion 150 indicated by the numeral "3". As seen particularly in Figs. 11C and 11D, the first water path deflector surface 220, which preferably includes initial generally vertical planar surface portion 222, which extends upwardly to curved surface portion 224 and in turn extends upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226, is azimuthally aligned about axis 133 (Z axis) with:

[0074] reaction surface 352, which defines an angle a3 in the X-Y plane, as shown in Fig. 11C, with respect to the X axis; and

[0075] with planar elevation limiting surface 374, which defines angle β3 in a plane parallel to the X-Z plane, as shown in Fig.1 ID, with respect to a plane parallel to the X-Y plane.

[0076] Reference is now made to Figs. 12A, 12B and 12C, which are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the third operative orientation as seen in Figs. 11A - 11D, Figs. 12B and 12C being taken along respective lines B - B and C - C in Fig. 12A.

[0077] As seen in Figs. 12A - 12C, a pressurized water stream 600 flows generally vertically though water inlet connector 104 (Fig. IB) and nozzle defining portion 106 (Fig. IB), optionally including flow control membrane 108 (Fig. IB). The pressurized water stream 600 then engages the first water path deflector surface 220 of the first rotatable water path deflector portion 140. The pressurized water stream 600 flows along initial generally vertical planar surface portion 222 thereof, which extends upwardly to curved surface portion 224 and in turn flows upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226. The pressurized water stream 600 then engages reaction surface 352 of the second water path deflector 150, which surface 352 defines angle a3 in the X-Y plane, as shown in Fig. 12C, with respect to the X axis and planar elevation limiting surface 374 of the second water path deflector 150, which defines angle β3 in a plane parallel to the X-Z plane, as shown in Fig. l2B, with respect to a plane parallel to the X-Y plane.

[0078] Reference is now made to Figs. 13A, 13B, 13C and 13D, which are respective simplified pictorial, top planar view, bottom planar view and sectional illustrations of the rotatable water deflector assembly of Figs. 4A - 6L in a fourth operative orientation, Fig. 13D being taken along lines D - D in Fig. 13C. For the sake of clarity and conciseness, Figs. 13 A - 13D are described hereinbelow with respect to a mutually orthogonal Cartesian coordinate system fixed with respect to the second rotatable water path deflector portion 150, wherein the Z axis is coaxial with axis 133 and the X and Y axes extend mutually perpendicularly and perpendicularly to the Z axis.

[0079] It is appreciated that the X and Y axes shown in Fig. 13C correspond to the X and Y axes shown in Figs. 6C, 7C, 9C and 11C and that second rotatable water path deflector portion 150 has been rotated 90° clockwise from the orientation shown in Fig. 6C, from the perspective of Fig. 13C.

[0080] In the fourth operative orientation shown in Figs. 13A - 13D, pointer

242, as seen particularly in Figs. 13A & 13B, is directed to an azimuthal location on second rotatable water path deflector portion 150 indicated by the numeral "4". As seen particularly in Figs. 13C and 13D, the first water path deflector surface 220, which preferably includes initial generally vertical planar surface portion 222, which extends upwardly to curved surface portion 224 and in turn extends upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226, is azimuthally aligned about axis 133 (Z axis) with:

[0081] reaction surface 362, which defines an angle a4 in the X-Y plane, as shown in Fig. 13C, with respect to the Y axis; and

[0082] with planar elevation limiting surface 376, which defines angle β4 in a plane parallel to the Y-Z plane, as shown in Fig. 13D, with respect to a plane parallel to the X-Y plane.

[0083] Reference is now made to Figs. 14 A, 14B and 14C, which are respective simplified side view, first sectional view and second sectional view illustrations of the sprinkler of Figs. 1A - 6L when the rotatable water deflector assembly of Figs. 4A - 6L is in the fourth operative orientation as seen in Figs. 13A - 13D, Figs. 14B and 14C being taken along respective lines B - B and C - C in Fig. 14A.

[0084] As seen in Figs. 14A - 14C, a pressurized water stream 700 flows generally vertically though water inlet connector 104 (Fig. IB) and nozzle defining portion 106 (Fig. IB), optionally including flow control membrane 108 (Fig. IB). The pressurized water stream 700 then engages the first water path deflector surface 220 of the first rotatable water path deflector portion 140. The pressurized water stream 700 flows along initial generally vertical planar surface portion 222 thereof, which extends upwardly to curved surface portion 224 and in turn flows upwardly and radially outwardly to upwardly and radially outwardly planar surface portion 226. The pressurized water stream 700 then engages reaction surface 362 of the second water path deflector 150, which surface 362 defines angle a4 in the X-Y plane, as shown in Fig. 14C, with respect to the X axis and planar elevation limiting surface 376 of the second water path deflector 150, which defines angle β4 in a plane parallel to the Y-Z plane, as shown in Fig. 14B, with respect to a plane parallel to the X-Y plane.

[0085] It is appreciated that angles al, α , a2, a3, a4 and angles βΐ, β , β2, β3, β4 may be any suitable angles and are selected based on a specific water distribution pattern/profile/throw range desired. The combination of angles selected for each of the four operative orientations preferably defines a set of water distribution patterns/profiles/throw ranges selected for a specific irrigation application. [0086] It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the present invention includes combinations and sub-combinations of features described and shown above as well as modifications and variations thereof which are not in the prior art.