Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
N3,N6-BIS(2-(5-METHOXY-1H-INDOLE-3-YL)ETHYL)-2,6-DIMETHYL-4-(2-NITROPHENYL)PYRIDINE-3,5-DICARBOXAMIDE AND USE THEREOF IN THE FIELD OF NEUROTOXICITY
Document Type and Number:
WIPO Patent Application WO/2017/131601
Kind Code:
A1
Abstract:
The invention relates to a molecule enabling removal of neurotoxicity observed in neuron cells due to various reasons.

Inventors:
HACIMUFTUOGLU AHMET (TR)
ATES ORHAN (TR)
SARACOGLU NURULLAH (TR)
TAGHIZADEHGHALEHJOUGHI ALI (TR)
LAFZI FARROKH (TR)
Application Number:
PCT/TR2017/050038
Publication Date:
August 03, 2017
Filing Date:
January 26, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ATATURK UNIV BILIMSEL ARASTIRMA PROJELERI BIRIMI (TR)
HACIMUFTUOGLU AHMET (TR)
ATES ORHAN (TR)
SARACOGLU NURULLAH (TR)
TAGHIZADEHGHALEHJOUGHI ALI (TR)
LAFZI FARROKH (TR)
International Classes:
C07D401/14; A61K31/4439; A61P25/00
Other References:
WEISS J H ET AL: "The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, vol. 247, 23 March 1990 (1990-03-23), pages 1474 - 1477, XP002091416, ISSN: 0036-8075, DOI: 10.1126/SCIENCE.2157282
ESPINAR, AUXILIADORA ET AL.: "Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo", JOURNAL OF PINEAL RESEARCH, vol. 28, no. 2, 11 February 2002 (2002-02-11), pages 81 - 88, XP002769768, DOI: 10.1034/j.1600-079X.2001.280203.x
CABRERA, JAVIER ET AL.: "Melatonin reduces oxidative neurotoxicity due to quinolinic acid: in vitro and in vivo findings", NEUROPHARMACOLOGY, vol. 39, no. 3, 28 January 2000 (2000-01-28), pages 507 - 514, XP002769769
SADANANDAM Y ET AL: "Synthesis and pharmacology of new 1,4-dihydropyridines. 2,6-Dimethyl-4-(substituted phenyl) or (2-furyl)-, (2-thienyl)- or (3-pyridyl)-3,5-di[(N-methyl) or (N-diethyl)]carbamoyl-1,4-dihydropyridines as potent calcium-channel blockers", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 29, no. 12, 1994, pages 975 - 979, XP023871223, ISSN: 0223-5234, [retrieved on 19940101], DOI: 10.1016/0223-5234(94)90198-8
Attorney, Agent or Firm:
DESTEK PATENT, INC (TR)
Download PDF:
Claims:
CLAIMS

1. The invention is Ι ,Ν5- bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide molecule with the below given formulation:

which eliminates neurotoxicity observed in neuron cells.

2. The production method of the molecule according to Claim 1 , characterized in comprising the operation steps of: a) synthesis of 5- methoxytryptamine,

b) synthesis of dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate, c) synthesis of 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylic acid, o dissolving the synthesized 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylic acid in THF, and stirring following addition of HOBt, o obtaining the 1 st mixture after addition of DCC to the resulting mixture and stirring,

o in another reaction vessel, dissolving the synthesized 5- methoxytryptamine in THF and then obtaining the 2nd mixture following addition of Et3N and mixing, e) adding the resulting 2nd mixture to the 1 st mixture and stirring.

3. The production method according to Claim 2, characterized in that; the synthesis of 5- methoxytryptamine according to operation step a comprises the operation steps of:

• boiling melatonin in a H2SO4 solution,

• after the reaction is brought to room temperature, adding NaOH until the medium becomes alkaline,

• subsequently, washing with ethyl acetate and drying the organic phase over NaS04, and • removing the solvent under vacuum.

4. The production method according to Claim 2, characterized in that; the synthesis dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate according to operation step b comprises the operation steps of:

• after dissolving nifepidine in CH2CI2, adding PIFA,

• stirring the resulting mixture at room temperature,

· washing the crude product with water and drying the organic phase over NaS04,

• removing the organic phase solvent under vacuum, and

• crystallizing the oxidation product over hexane.

5. The production method according to Claim 2, characterized in that; the synthesis of 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylic acid according to operation step c comprises the operation steps of:

• after dissolving dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate in ethanol and H20, adding KOH,

· boiling the reaction at 80 Ό for 16 hours,

• after the reaction is brought to room temperature, removing its solvent under vacuum,

• dissolving the remaining residue in water and adding HCI, and

• leaving the resulting crystals to drying following filtering.

6. The production method according to Claim 2, characterized in comprising the operation steps of:

• filtering the resulting mixture from operation step e through a filter paper and removing its solvent under vacuum,

• washing the crude product first with NaHC03; and then with 5 % KHS04, and finally with water; and drying the organic phase over Na2S04,

• removing the organic phase solvent under vacuum, and

• purifying the resulting crude product through silica gel column via MeOH/CH2Cl2.

7. Use of the Λ^,Λ/5- bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide compound according to claim 1 for elimination of neurotoxicity observed in neuron cells due to various reasons.

Description:
DESCRIPTION

N3,N6-BIS(2-(5-METHOXY-1 H-INDOLE-3-YL)ETHYL)-2,6-DIMETHYL-4-(2-NITROPHENYL)

PYRIDINE-3,5-DICARBOXAMIDE AND USE THEREOF IN THE FIELD OF NEUROTOXICITY

The Related Art

The invention relates to a molecule enabling removal of neurotoxicity observed in neuron cells due to various reasons. The invention particularly relates to the Ι ,Ν 5 - bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide compound obtained by using two different Nifepidine and Melatonin molecules as the starting materials.

The Prior Art

Brain is an organ that is almost impossible to recover functionally following serious neuronal damages. Damaged neurons either die or heal slowly in a certain time depending on the developmental age of the organism, anatomic localization of the cell, and the type, severity, and time period of the damage. Normally, the glutamate concentration released to the synaptic gap can reach very high levels; but such a high concentration only lasts for a few milliseconds. When this period is extended, neurons are exposed to a killer excitation due to excessive stimulation of neuronal glutamate receptors. As a result of studies researching the effects of hypoxia and cerebral impacts, it was found out that exitotoxicity is responsible for the destruction encountered after cerebral damage. In experimental animal studies, ischemia- related neuronal damage can be prevented via microinjection of glutamate receptor antagonists. It is reported that glutamate antagonists are neuroprotective in stroke and head trauma in rodents and primates. All these results show that; intensive accumulation of glutamate during ischemia stimulates glutamate receptors, which triggers a series of reactions causing neuronal death. It is believed that the reduced oxygen concentration as a result of ischemia prevents energy dependent glutamate re- uptake and thus cause increase in glutamate.

Glaucoma is reported as the worldwide most common reason for irreversible vision loss. It is believed to effect more than fifty million people. While the reason for retina ganglion cell (RGH) loss cannot be understood completely; the major risk factor causing glaucoma is high intraocular pressure. The prior art treatments for glaucoma ensure reduction of intraocular pressure via medicine or surgical techniques. However, pressure- independent loss of field of vision continues in some patients even though the intraocular pressure is reduced. It is known that in glaucomatous optic neuropathy also the process of formation of pathology is multifactorial like in other neurodegenerative diseases, and variable cellular factors play a role in optic neuropathy in molecular level. Any treatment mechanism that delays, protects, or reverses neuron cell death is called as "neuron protection".

Two important situations that cause neuronal damage in case of energy deficiency are disruption of the reabsorption of excitatory amino acid glutamate that is released to the synaptic gap, and the function loss of the sodium- potassium pump required for increase of glutamate in the synaptic gap and maintenance of the membrane potential. Loss of cell membrane potential as well as stimulation of NMDA and AMPA receptors by the glutamate accumulated in the synaptic gap increase sodium and calcium permeability of the cell. As a result intracellular sodium and calcium concentration increase. It is known that permanent brain damage is reduced if the event is stopped at this stage. Most neuroprotective agents used in experimental studies are effective in techniques up to this stage.

The effects of the prior art treatments on glutamate toxicity are limited. Early treatment is essential for these diseases and the prior art treatments extend the treatment period. This negatively affects the progression of disease.

As a result, the above said drawbacks and the inadequacy of the prior art solutions about the subject have necessitated an improvement in the technical field related to compounds eliminating neurotoxicity observed in neuron cells due to various reasons. Purpose of the Invention

The invention relates to a molecule for eliminating neurotoxicity observed in neuron cells due to various reasons, which meets the above said requirements, eliminates all of the drawbacks, and brings some additional advantages. The primary purpose of the invention is to be a molecule which eliminates neurotoxicity observed in neuron cells due to various reasons.

A purpose of the invention is to be a specific glutamate blocker. Another purpose of the invention is to have anti- oxidant characteristics.

Another purpose of the invention is to be a T- type Ca channel blocker. In order to achieve the above said purposes, the invention comprises Ι ,Ν 5 - bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide molecule with the below given formulation:

which eliminates neurotoxicity observed in neuron cells. The structural and characteristic features of the invention and all of its advantages shall be understood better with the figures and the detailed description given below in reference to the figures, and therefore, the assessment should be made by taking into account the said figures and detailed explanations. Detailed Description of the Invention

In this detailed description, the preferred embodiments of a molecule for eliminating neurotoxicity observed in neuron cells due to various reasons, according to the invention are only disclosed for better understanding of the subject without forming any limiting effect. The invention is a molecule which eliminates neurotoxicity observed in neuron cells due to various reasons. The chemical compound according to the invention is: Ι ,Ν 5 - bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide. The molecule according to the invention defines two different functions, since it is formed of combination of two different molecules. Said molecules are: Nifepidine and Melatonin.

Nifepidine is a substance having the structure of calcium- channel blocker dihydropyridine. It selectively inhibits entrance of calcium ions into the cell even at low doses, by being attached to calcium channels. Melatonin spreads extensively along the organism and enters cellular compartments easily due to its amphophilic and small molecular structure. This natural compound is a strong in vitro and in vivo cytostatic agent with strong antioxidant characteristics. The synthesis method of N 3 ,!^- bis(2- (5- methoxy- 1H- indole- 3- vDethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide molecule according to the invention:

1

Synthesis of 5- methoxytryptamine (2): Melatonin (1 ) is used as the starting material of said synthesis.

Melatonin is boiled at 90 Ό for 8 hours in a 1 g ( 4.3 mmol) 40 mL 10 % H 2 S0 4 (sulphuric acid) solution. After the reaction is brought to room temperature, 20 % of NaOH (sodium hydroxide) is added until the medium becomes alkaline. Afterwards, it is washed with ethyl acetate (3 x 20) and the organic phase is dried over Na 2 S0 4 . The solvent is removed under vacuum. 550 mg crude product is obtained (67 %) as a yellow solid.

Synthesis of dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate (4): Nifepidine (3) is used as the starting material of said synthesis. After nifepidine is dissolved in 1 g (2.89 mmol) 25 mL CH2CI2 (Dichloromethane), 1 .37 g (3.18 mmol) PIFA ((Bis(trifluoroacetoxy)iodo)benzene) is added. The mixture is stirred at room temperature for 1 2 hours. Crude product is washed with water (3 x 20) and the organic phase is dried over Na 2 S0 4 . The solvent of the organic phase is removed under vacuum. Oxidation product is crystallized over hexane. (900 mg, 90 %).

Synthesis of 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylic acid (5):

Dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate (4) obtained in the previous step is used as the starting material of said synthesis.

After dissolving dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate in 900 mg (2.61 mmol) 15 mL ethanol and 15 mL H 2 0, 733 mg (13.07 mmol) KOH is added. The reaction is boiled at 80 Ό for 16 hours. After the reaction is brought to room temperature, its solvent is removed under vacuum. Afterwards, it is dissolved in 30 mL water, and 0.1 M HCI is added to adjust the pH to 2, and it is kept at 2 Ό for 1 2 hours. Obtained crystals are left to drying after filtering. 50 mg (66 %) pure product is obtained.

Synthesis of , P- bis(2- (5- methoxy- 1 H- indole- 3- yl)ethyl)- 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxamide (6): Dimethyl 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylate (4) obtained in the previous step and 5- methoxytryptamine (2) obtained in the first step are used as the starting materials of said synthesis. After dissolving 2,6- dimethyl- 4- (2- nitrophenyl)pyridine- 3,5- dicarboxylic acid in 550 mg (1 .74 mmol) 1 0 mL THF (Tetrahydrofuran), HOBt (1 - Hydroxybenzotriazole hydrate) 470 mg (3.488 mmol) is added and mixed for 10 minutes. Subsequently, 661 mg (3.48 mmol) DCC is added to the reaction mixture and stirred for 30 minutes (1 st mixture). In another reaction balloon, after dissolving 5- methoxytryptamine (2) in 661 mg (3.48 mmol) 10 mL THF, EtsN (Triethylamine) 485 μΙ_ (3.48 mmol) is added and stirred for 30 minutes (2nd mixture).

The resulting 2nd mixture is added to the 1 st mixture, and stirred at room temperature for 12 hours. Afterwards, the DCU formed is filtered through filter paper, and the solvent is removed under vacuum. Crude product is firstly washed with NaHC0 3 (3x30 mL); and then with 5 % KHSO4 (3x30 mL) and finally with water (3x30 mL), and the organic phase is dried over Na 2 S0 4 . The solvent of the organic phase is removed under vacuum. The resulting crude product is purified through silica gel column with MeOH/CH 2 Cl2 (5 %) and 400 mg (35 %) yellow solid product is obtained.

The active regions of the compound of the invention are marked as shown below. A characteristic of the invention is blocking the Ca ++ channels together with the dihydropyridine group and by showing antioxidant effect with the help of the carbonyl group, providing protective effect against the glutamate toxicity of the cell.

The raw materials used during synthesis of the molecule of the invention with the above given operation steps and their % ratios;

The medicine according to the invention can be administered orally or in the form of an IV sustained release implant.