Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NETWORK DATA ANALYTICS FOR OAM
Document Type and Number:
WIPO Patent Application WO/2019/158737
Kind Code:
A1
Abstract:
Three solutions, namely 1) OAM NF(s) as a new service consumer(s) of NWDAF based on service-based architecture, 2) NWDAF provides OAM NF(s) with network data analytics information based on interface-based architecture, and 3) New NWDAF-like functionality, namely NWMDAF (Network Management Data Analytics function) as a part of the OAM system, have been proposed to provide network data analytics to OAM to enhance network management functionality and optimize the network performance and facilitate and improve automation.

Inventors:
AL-KANANI HASSAN (DE)
FAN LINGHANG (DE)
IANEV ISKREN (DE)
RAMANAN SIVASUBRAMANIAM (DE)
Application Number:
PCT/EP2019/053902
Publication Date:
August 22, 2019
Filing Date:
February 15, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NEC LABORATORIES EUROPE GMBH (DE)
International Classes:
H04W24/00
Foreign References:
US20150382209A12015-12-31
Other References:
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and Charging Control Framework for the 5G System; Stage 2 (Release 15)", 29 January 2018 (2018-01-29), XP051384055, Retrieved from the Internet [retrieved on 20180129]
Attorney, Agent or Firm:
SMITH, Jeremy (GB)
Download PDF:
Claims:
Claims

1. A method performed by an operations administration and management (OAM) apparatus, the method comprising: acting as a Management Data Analytics Function (MDAF) in a network comprising a plurality of network functions (NFs), wherein acting as the MDAF comprises: the MDAF collecting management data and network data from the network, the MDAF analysing the management data and the network data, and the MDAF providing a receiving entity with management data analytics service information based on the analysis. 2. The method according to claim 1 , wherein the management data analytics service information comprises fault and/or alarm, performance, configuration, capacity or resource usage.

3. The method according to claim 1 , wherein the MDAF is a producer of the management data analytics service and the receiving entity is a consumer of

management data analytics service.

4. The method according to claim 1 , wherein the management data analytics service information is provided to at least one of: a self-organising network (SON) Function; a network management system (NMS); a network Slice management function (NSMF); network slice subnet management function (NSSMF); network performance and service assurance management and orchestration entities; an operation support system (OSS); and/or or a business support system (BSS).

5. An operations administration and management (OAM) apparatus for a network comprising a plurality of network functions (NFs), the OAM comprising: a Management Data Analytics Function (MDAF) wherein the MDAF is configured to: collect management data and network data from the network, analyse the management data and the network data, and provide a receiving entity with management data analytics service information based on the analysis.

6. The OAM apparatus according to claim 5, wherein the MDAF is configured as a separate entity or as part of other functions including a network management system (NMS), a network slice management function (NSMF) or a network slice subnet management function (NSSMF).

7. The OAM apparatus according to claim 5, wherein the MDAF is configured as a distributed or centralised entity.

8. A method for operations administration and management (OAM) apparatus configured to communicate with a network data analytics function (NWDAF), the method comprising: acting as a Management Data Analytics Function (MDAF), wherein acting as the MDAF comprises: the MDAF receiving, from the NWDAF, a subscription message or request message; the MDAF performing processing associated with the subscription message or the request message; and the MDAF sending, from the OAM to NWDAF, management data analytics information based on the processing via a notification message or a response message; wherein the MDAF is a management service producer and the NWDAF is a management service consumer.

9. The method according to claim 8, wherein the processing comprises data collection and data analytics.

10. The method according to claim 8, wherein the management data analytics information comprises load information.

1 1. The method according to claim 10, wherein a second management data analytics information is sent at a predetermined period after sending the management data analytics information.

12. An operations administration and management (OAM) apparatus configured to communicate with a network data analytics function (NWDAF), the OAM apparatus comprising: a Management Data Analytics Function (MDAF), wherein the MDAF is configured to: receive, from the NWDAF, a subscription message or request message; perform processing associated with the subscription message or the request message; and send, from the OAM to NWDAF, management data analytics information based on the processing via a notification message or a response message; wherein the MDAF is a management service producer and the NWDAF is a management service consumer. 13. A method for a network in which operations administration and management

(OAM) apparatus communicates with NWDAF responsible for providing network data analytics for network, the method comprising: the OAM acting as a Management Data Analytics Function (MDAF); the NWDAF receiving, from the OAM apparatus, a subscription message or a request message; the NWDAF performing processing associated with the subscription message or the request message; the NWDAF sending to the OAM apparatus, network status data analytic information via processing of a response message or via processing of a notification message, either periodic or upon exceeding threshold; and the NWDAF sending to the OAM apparatus, network status data analytic information via an element management system (EMS) based on processing via a REpresentational State Transfer (REST)-Ful HTTP solution set; wherein the OAM apparatus is a service consumer and the NDWAF is a service producer of network data analytics.

14. The method according to claim 13, wherein the network data analytics information is sent to the OAM apparatus indicates an information type.

15. The method according to claim 13, wherein the network status data analytic information comprises load information.

16. The method according to claim 15, wherein the load level information is for a network slice instance identified by a network slice instance identifier.

17. The method according to claim 15, wherein the load level information is for a network slice subnet or a subnet identified by network a slice subnet identifier or a subnet identifier.

18. A network comprising an operations administration and management (OAM) apparatus which communicates with NWDAF responsible for providing network data analytics for network, wherein: the OAM comprises a Management Data Analytics Function (MDAF); the NWDAF is configured to receive, from the OAM apparatus, a subscription message or a request message; the NWDAF is configured to perform processing associated with the subscription message or the request message, the NWDAF is configured send, to the OAM apparatus, network status data analytic information via processing of a response message or via processing of a notification message, either periodic or upon exceeding threshold, and the NWDAF is configured to send, to the OAM apparatus, network status data analytic information via an element management system (EMS) based on processing via a REpresentational State Transfer (REST)-Ful HTTP solution set, wherein the OAM apparatus is a service consumer and the NDWAF is a service producer of network data analytics.

19. The network according to claim 18, wherein the OAM apparatus comprises at least one of: a network Slice management function (NSMF); a network slice subnet management function (NSSMF); a network management system (NMS); and/or an element management system (EMS).

Description:
Network Data Analytics for OAM

The present invention relates to a communication system. The invention has particular but not exclusive relevance to wireless communication systems and devices thereof operating according to the 3rd Generation Partnership Project (3GPP) standards or equivalents or derivatives thereof. The invention has particular although not exclusive relevance to network data analytics in the so-called‘5G’ (or‘Next Generation’) systems.

The 3GPP Working Groups (WGs) are currently defining the 5G system, and the 3GPP TSG SA WG2 is specifying the system architecture and procedures for 5G system while the 3GPP TSG SA WG5 is specifying the telecom management.

The huge advancements and complexity of communication systems along with the diversity of services and rising expectations from 5G system, all raise the need for a revolutionary transformation to the way networks and services are managed and operated. To facilitate delivery of the diversity of services to meet requirements of different categories of customers Network slicing is also expected to be a primary and an integrated feature of the future generation networks. The introduction of network slicing is also expected to add further impacts and complexities on management systems. To overcome all aforementioned challenges and in order to aim for an agile, fully automated and zero touch network management and operation, means that certain level of intelligence will have to be introduced into the management systems.

For example one of the biggest challenges with today's network management solutions, is to proactively identify overload and faults issues before it impacts end-users. An access to some kind of distributed or centralized collection of network data analytics such as load level status and network-resource utilization information (real time and/or historical data analytics), both at the network functions and services level (e.g. at a network slice level) will significantly enhance the function and agility of the management and operation system.

Currently, a new network function Network Data Analytics Function (NWDAF), representing operator managed network analytics logical function, is being specified by SA2 and CT working groups.

According to 3GPP Technical Specification (TS) 23.501 V15.0.0, TS 23.502 V15.0.0, and TS 23.503 V15.0.0, the so-called NWDAF (Network Data Analytics Function) provides slice-specific network data analytics (i.e., load level information) to PCF (Policy Control Function) and NSSF (Network Slice Selection Function) on a network slice level. The NWDAF notifies / publishes slice specific network status analytic information to the PCF(s) and NSSF that are subscribed to it. PCF(s) and NSSF can directly collect slice specific network status analytic information from the NWDAF.

In SA5, 3GPP Technical Report (TR) 28.800 V15.0.0, TR 28.801 V15.1.0, and TR 28.802 V15.0.0 define a number of logical functions to manage NW slices, both at slice and slice’s constituent subnet/functions level. A number of management functions are being specified by SA5 for supporting the management of the next generation networks and services. There are two types of management functions in these categories: 1 ) Network slice related management functions (e.g. Communication service management function (CSMF), Network slice management functions (NSMF) and Network slice subnet management functions (NSSMF)); and 2) 5G Network function related management functions.

TR 28.800, Section 5.3.2 also describes a logical management entity with a role to collect PM and FM data. The contents of the above 3GPP documents are incorporated herein by reference.

SA5 has also started recently to define a service based network and service management architecture.

Network data analytics could provide a crucial tool for the 5G OAM system. For example, the management functions (e.g. 5G Network function related, and Network slice related management functions) need load level information on existing network slice(s) before creating a new slice, modifying or terminating an existing network slice. The management functions need load level information on network slice(s) for provisioning, maintenance and performance monitoring.

An access to data analytics, such as those collected and maintained by the NWDAF and/or by a newly defined entity (as part of the management system) could significantly enhance the OAM system functionality and facilitate automation/zero touch operations.

In one aspect the invention provides a method performed by an operations administration and management (OAM) apparatus, the method comprising: acting as a Management Data Analytics Function (MDAF) in a network comprising a plurality of network functions (NFs), wherein acting as the MDAF comprises: the MDAF collecting management data and network data from the network, the MDAF analysing the management data and the network data, and the MDAF providing a receiving entity with management data analytics service information based on the analysis. The management data analytics service information may comprise fault and/or alarm, performance, configuration, capacity or resource usage.

The MDAF may be a producer of the management data analytics service and the receiving entity may be a consumer of management data analytics service.

The management data analytics service information may be provided to at least one of: a self-organising network (SON) Function; a network management system (NMS); a network Slice management function (NSMF); network slice subnet management function (NSSMF); network performance and service assurance management and orchestration entities; an operation support system (OSS); and/or or s business support system (BSS).

In one aspect the invention provides an operations administration and management (OAM) apparatus for a network comprising a plurality of network functions (NFs), the OAM comprising: a Management Data Analytics Function (MDAF) wherein the MDAF is configured to: collect management data and network data from the network, analyse the management data and the network data, and provide a receiving entity with management data analytics service information based on the analysis.

The MDAF may be configured as a separate entity or as part of other functions including network management system (NMS), network slice management function (NSMF) or network slice subnet management function (NSSMF). The MDAF may be configured as a distributed or centralised entity.

In one aspect the invention provides a method for operations administration and management (OAM) apparatus configured to communicate with a network data analytics function (NWDAF), the method comprising: acting as a Management Data Analytics Function (MDAF), wherein acting as the MDAF comprises: the MDAF receiving, from the NWDAF, a subscription message or request message; the MDAF performing processing associated with the subscription message or the request message; and the MDAF sending, from the OAM to NWDAF, management data analytics information based on the processing via a notification message or a response message; wherein the MDAF is a management service producer and the NWDAF is a management service consumer.

The processing may comprise data collection and data analytics. The management data analytics information may comprise load information. The second management data analytics information may be sent at a predetermined period after sending the management data analytics information. In one aspect the invention provides an operations administration and management (OAM) apparatus configured to communicate with a network data analytics function (NWDAF), the OAM apparatus comprising: a Management Data Analytics Function (MDAF), wherein the MDAF is configured to: receive, from the NWDAF, a subscription message or request message; perform processing associated with the subscription message or the request message; and send, from the OAM to NWDAF, management data analytics information based on the processing via a notification message or a response message; wherein the MDAF is a management service producer and the NWDAF is a management service consumer.

In one aspect the invention provides a method for a network in which operations administration and management (OAM) apparatus communicates with NWDAF responsible for providing network data analytics for network, the method comprising: the OAM acting as a Management Data Analytics Function (MDAF); the NWDAF receiving, from the OAM apparatus, a subscription message or a request message; the NWDAF performing processing associated with the subscription message or the request message; the NWDAF sending to the OAM apparatus, network status data analytic information via processing of a response message or via processing of a notification message, either periodic or upon exceeding threshold; and the NWDAF sending to the OAM apparatus, network status data analytic information via an element management system (EMS) based on processing via a REpresentational State Transfer (REST)-Ful HTTP solution set; wherein the OAM apparatus is a service consumer and the NDWAF is a service producer of network data analytics.

The network data analytics information may be sent to the OAM apparatus indicates an information type. The network status data analytic information may comprise load information. The load level information may be for a network slice instance identified by a network slice instance identifier. The load level information may be for a network slice subnet or a subnet identified by a network slice subnet identifier or a subnet identifier.

In one aspect the invention provides a network comprising an operations administration and management (OAM) apparatus which communicates with NWDAF responsible for providing network data analytics for network, wherein: the OAM comprises a Management Data Analytics Function (MDAF); the NWDAF is configured to receive, from the OAM apparatus, a subscription message or a request message; the NWDAF is configured to perform processing associated with the subscription message or the request message, the NWDAF is configured send, to the OAM apparatus, network status data analytic information via processing of a response message or via processing of a notification message, either periodic or upon exceeding threshold, and the NWDAF is configured to send, to the OAM apparatus, network status data analytic information via an element management system (EMS) based on processing via a REpresentational State Transfer (REST)-Ful HTTP solution set, wherein the OAM apparatus is a service consumer and the NDWAF is a service producer of network data analytics.

The OAM apparatus may comprise at least one of: a network Slice management function (NSMF); a network slice subnet management function (NSSMF); a network management system (NMS); and/or an element management system (EMS).

The invention will now be described, by way of example only, with reference to the attached drawings in which:

Figure 1 illustrates schematically an exemplary procedure for service based interaction between NWDAF and OAM NF(s), in case of the service subscription option;

Figure 2 illustrates schematically an exemplary procedure for service based interaction between NWDAF and OAM NF, in case of the on demand option; Figure 3 illustrates schematically an exemplary interface-based option for NWDAF and OAM NFs;

Figure 4 illustrates schematically an NWMDAF as a sub-function of the OAM function (e.g. Network Management System (NMS));

Figure 5 schematically illustrates a mobile (cellular or wireless) telecommunication system 1 to which the described embodiments are applicable;

Figure 6 is a block diagram illustrating the main components of the UE shown in Figure 5;

Figure 7 is a block diagram illustrating the main components of an exemplary (R)AN node shown in Figure 5; and

Figure 8 is a block diagram illustrating the main components of a network node, for example a core network node such as NWDAF, PCF, or NSSF or a network node configured as an OAM NF such as an NSMF, NSSMF, or NWMDAF.

In order to address the problem of lack of network data analytics function for OAM, a number of possible solutions are described in the following exemplary embodiments. These embodiments are targeting different OAM architecture approaches/options. Embodiment 1 : QAM Network Functions (NF(s)) as a new service consumer(s) of NWDAF based on service-based architecture

The main idea of this embodiment is as follow: Since the NWDAF is responsible for providing network data analytics for the network, OAM NF(s) (e.g. NMS (Network Management System) and/or Network Slices Management Functions) are proposed to be a new service consumer(s) of the NWDAF service. Two new procedures have been proposed; a service subscription and on demand service type. These are described below:

1. service subscription: OAM NFs subscribe to the NWDAF service to receive data analytic information (e.g. load level information) periodically or at a threshold exceeding value. The NWDAF notifies / publishes network status data analytic information (e.g. load level information) to the OAM NF(s) that are subscribed to it.

2. on demand: OAM NFs can collect directly network status data analytic information (e.g. load level information) from the NWDAF whenever required.

1.1 Procedure for Service based interaction between the NWDAF and OAM NF(s)

- service subscription

Figure 1 illustrates schematically an exemplary procedure for service based interaction between NWDAF and OAM NF(s), in case of the service subscription option.

This procedure is used by OAM NF(s) to subscribe/unsubscribe to the NWDAF service to be notified on network status data analytic information (e.g. load level information) of a network slice instance or identifier for related subnet. Periodic notification and notification upon exceeding a threshold can be subscribed.

As shown in Figure 1 , there are two steps in this procedure:

1. OAM NF subscribes or unsubscribes to cancel an existing subscription to a network status data analytic information by invoking the Nnwdaf_Events_Subscription_Subscribe/ Nnwdaf_Events_Subscription_Unsubscribe service or any other suitable service or message for the purpose of subscription for OAM NF related data analytics which includes an identifier of the network slice instance (e.g. NSI ID), or identifier for related subnet and information type.

2. If OAM NF subscribe to network status data analytic information, the NWDAF provides the OAM NF with network status data analytic information by invoking Nnwdaf_Events_Subscription_Notify service or any other suitable service or message for the purpose of providing network status data analytics information to the OAM NF. The network status data analytic information may be provided with at least one of the identifier of the network slice instance, the identifier for related subnet, and the information type.

1.2 Procedure for Service based interaction between NWDAF and OAM NF

- on demand

Figure 2 illustrates schematically an exemplary procedure for service based interaction between NWDAF and OAM NF, in case of the on demand option.

In this procedure, OAM NF should be able to request and get from the NWDAF the required network status data analytic information (e.g. load level information) as and whenever required based on the on-demand service.

As shown in Figure 2, there are two steps in this procedure.

1. OAM NF requests network status data analytic information for a network slice instance or identifier for related subnet by invoking Nnwdaf_Analytics_lnfo_Request service or any other suitable service or message for the purpose of requesting network status data analytics information which includes an identifier of the network slice instance (e.g. NSI ID), or identifier for related subnet, and information type.

2. The NWDAF responds with network status data analytic information for a network slice instance and/or identifier for related subnet or NF by invoking Nnwdaf_Analytics_lnfo_Response service or any other suitable service or message for the purpose of providing network status data analytics information related to network slice instance or network slice subnet. The network status data analytic information may be provided with at least one of the identifier of the network slice instance, the identifier for related subnet, and the information type.

Embodiment 2: NWDAF provides OAM NF(s) network data analytics information based on interface-based architecture

Figure 3 illustrates schematically an exemplary interface-based option for NWDAF and OAM NFs.

The OAM function, e.g. NMS (Network Management system) manages the 3GPP Network Functions (NFs) and/or Network Elements (NEs) (including NFs and NEs of both Core and Access networks) via an EMS (Element Management System) or directly (where EMS function is integrated within the NE itself), through itf-N management interface. For itf-N, the 3GPP SA5 have specified a number of Integration Reference Points (IRPs) defining the information in the agent (i.e. NE/EMS) that is visible for the manager (i.e. NMS), the operations that the manager may perform on this information and the notifications that are sent from the agent to the manager.

In this embodiment, as shown in Figure 3, OAM NF(s) (e.g. NMS, NSMF and/or NSSMF) are proposed to obtain (consume) network status data analytic information (e.g. load level information) from the NWDAF via EMS (e.g., Itf-N) or via other dedicated interface.

Solution sets such as those based on REST (REpresentational State Transfer)-ful HTTP can be adopted to facilitate collection of information from the NWDAF to the OAM functional entity/entities.

Embodiment 3: New NWDAF-like functionality as a part of the OAM system

Figure 4 illustrates schematically an NWMDAF as a sub-function of the OAM function (e.g. Network Management System (NMS)).

In this embodiment, a new functionality (NWMDAF: Network Management Data Analytics Function) is proposed to be part of the management reference model/architecture to support the OAM system for networks, network slice and service management and orchestration.

NWMDAF as a distributed or centralised entity can have various management-specific functionalities, in addition to slice-specific network data analytics functions, it can also be for example used to assist management functions for fault/alarm, configuration, network performance and service assurance management, SON-like and automation data collection and analysis.

NWMDAF can be integrated as part of a service based and/or interface (reference point) based management architecture.

The NWMDAF is a logical function that can be introduced at the network management layer, i.e., be for example either part of the NMS functionality and/or the slice management functions (e.g. NSMF, NSSMF).

As shown in Figure 4, an integration example where the new function NWMDAF is introduced as a sub-function of the Network Management System (NMS) to aid and support management of network slicing and potentially other aspect of the OAM functionalities including for example SON/automation related functionalities. The NWMDAF is a logical function representing a group of sub functions or micro services, each of which will have a dedicated role as follows:

• Data collection and repository of management information, and

• Analytic and reporting entities or micro services - each dedicated to a certain role (e.g. alarm, performance, configuration, capacity/resource usage management, etc.).

The NWMDAF can make the data analytics available for the management entities at the network management layer as well as for a higher-level correlation at the business and operations activities, including business support systems (BSS) and operational support systems (OSS).

The newly introduced management entity, NWMDAF can also be a service consumer of NWDAF or vice versa.

Summary

Beneficially, the above described exemplary embodiments include, although they are not limited to, one or more of the following functionalities:

1 ) Based on service-based architecture, OAM NF(s) are proposed as a new service consumer of the NWDAF.

2) Both, a network subscription and on demand service procedures have been proposed. 3) Based on interface-based architecture, NWDAF provides OAM NF(s) with network data analytics information.

4) New NWDAF-like functionality, referred to as NWMDAF is proposed as a part of the OAM system.

It can be seen that in the above embodiments: 1 ) A network function provides network data analytics to OAM based on service-based architecture,

2) A network function provides network data analytics to OAM via Itf-N or a dedicated interface,

3) A network function, who is a part of NMS, provides network data analytics. Benefits

It can be seen that the above embodiments beneficially provide a number of benefits, including (but not limited to):

The proposed exemplary embodiments can provide network data analytics to OAM to optimise the network performance.

System overview

Figure 5 schematically illustrates a mobile (cellular or wireless) telecommunication system 1 to which the above embodiments are applicable.

In this network, users of mobile devices 3 (UEs) can communicate with each other and other users via respective base stations 5 and a core network 7 using an appropriate 3GPP radio access technology (RAT), for example, an E-UTRA and/or 5G RAT. It will be appreciated that a number of base stations 5 form a (radio) access network or (R)AN. As those skilled in the art will appreciate, whilst one mobile device 3 and one base station 5 are shown in Figure 5 for illustration purposes, the system, when implemented, will typically include other base stations and mobile devices (UEs).

Each base station 5 controls one or more associated cells (either directly or via other nodes such as home base stations, relays, remote radio heads, and/or the like). A base station 5 that supports E-UTRA/4G protocols may be referred to as an‘eNB’ and a base station 5 that supports NextGeneration/5G protocols may be referred to as a‘gNBs’. It will be appreciated that some base stations 5 may be configured to support both 4G and 5G, and/or any other 3GPP or non-3GPP communication protocols.

The mobile device 3 and its serving base station 5 are connected via an appropriate air interface (for example the so-called ‘Uu’ interface and/or the like). Neighbouring base stations 5 are connected to each other via an appropriate base station to base station interface (such as the so-called‘X2’ interface,‘Xn’ interface and/or the like). The base station 5 is also connected to the core network nodes via an appropriate interface (such as the so-called‘ST,‘NT,‘N2’,‘N3’ interface, and/or the like).

The core network 7 typically includes logical nodes (or ‘functions’) for supporting communication in the telecommunication system 1. Typically, for example, the core network 7 of a‘Next Generation’ / 5G system will include, amongst other functions, control plane functions and user plane functions. In this example, the core network 7 includes, amongst others, a Network Data Analytics Function (NWDAF) 10, a Policy Control Function (PCF) 11 , and a Network Slice Selection Function (NSSF) 12. The core network 7 is coupled to one or more OAM network function (NF) 15 which may be provided in a so-called Network Management System (NMS). Although shown separately in Figure 5, it will be appreciated that the NMS / OAM NF 15 may form part of the core network 7. An OAM NF 15 may be configured as any one (or more) of the following network functions: a Network Slice Management Function (NSMF), a Network Slice Subnet Management Function (NSSMF), a Network Management Data Analytic Function (NWMDAF), and/or the like.

From the core network 7, connection to an external IP network 20 (such as the Internet) is also provided.

User equipment (UE)

Figure 6 is a block diagram illustrating the main components of the UE (mobile device 3) shown in Figure 5. As shown, the UE includes a transceiver circuit 31 which is operable to transmit signals to and to receive signals from the connected node(s) via one or more antenna 33. Although not necessarily shown in Figure 6, the UE will of course have all the usual functionality of a conventional mobile device (such as a user interface 35) and this may be provided by any one or any combination of hardware, software and firmware, as appropriate. A controller 37 controls the operation of the UE in accordance with software stored in a memory 39. The software may be pre-installed in the memory 39 and/or may be downloaded via the telecommunication network 1 or from a removable data storage device (RMD), for example. The software includes, among other things, an operating system 41 and a communications control module 43. The communications control module 43 is responsible for handling (generating/sending/receiving) signalling messages and uplink/downlink data packets between the UE 3 and other nodes, including (R)AN nodes 5 and core network nodes.

(R)AN node

Figure 7 is a block diagram illustrating the main components of an exemplary (R)AN node 5 (base station) shown in Figure 5. As shown, the (R)AN node 5 includes a transceiver circuit 51 which is operable to transmit signals to and to receive signals from connected UE(s) 3 via one or more antenna 53 and to transmit signals to and to receive signals from other network nodes (either directly or indirectly) via a network interface 55. The network interface 55 typically includes an appropriate base station - base station interface (such as X2/Xn) and an appropriate base station - core network interface (such as S1/N1/N2/N3). A controller 57 controls the operation of the (R)AN node 5 in accordance with software stored in a memory 59. The software may be pre-installed in the memory 59 and/or may be downloaded via the telecommunication network 1 or from a removable data storage device (RMD), for example. The software includes, among other things, an operating system 61 and a communications control module 63. The communications control module 63 is responsible for handling (generating/sending/receiving) signalling between the (R)AN node 5 and other nodes, such as the UE 3 and the core network nodes. The communications control module 63 is also responsible for communicating data packets for each UE using a network slice that is appropriate for that UE.

Network node

Figure 8 is a block diagram illustrating the main components of a generic network node, for example, a core network node (e.g. NWDAF 10, PCF 1 1 , NSSF 12) or a network node configured as an OAM NF 15 (e.g. NSMF, NSSMF, NWMDAF). As shown, the network node includes a transceiver circuit 71 which is operable to transmit signals to and to receive signals from other nodes (including the UE 3 and the (R)AN node 5) via a network interface 75. A controller 77 controls the operation of the network node in accordance with software stored in a memory 79. The software may be pre-installed in the memory 79 and/or may be downloaded via the telecommunication network 1 or from a removable data storage device (RMD), for example. The software includes, among other things, an operating system 81 and a communications control module 83. The communications control module 83 is responsible for handling (generating/sending/ receiving) signaling between the network node and other nodes, such as the UE 3, (R)AN node 5, and other network nodes.

Modifications and Alternatives

Detailed embodiments have been described above. As those skilled in the art will appreciate, a number of modifications and alternatives can be made to the above embodiments whilst still benefiting from the inventions embodied therein. By way of illustration only a number of these alternatives and modifications will now be described.

In the above description, the UE, the (R)AN node, and the network node are described for ease of understanding as having a number of discrete modules (such as the communication control modules). Whilst these modules may be provided in this way for certain applications, for example where an existing system has been modified to implement the invention, in other applications, for example in systems designed with the inventive features in mind from the outset, these modules may be built into the overall operating system or code and so these modules may not be discernible as discrete entities. These modules may also be implemented in software, hardware, firmware or a mix of these. Each controller may comprise any suitable form of processing circuitry including (but not limited to), for example: one or more hardware implemented computer processors; microprocessors; central processing units (CPUs); arithmetic logic units (ALUs); input/output (IO) circuits; internal memories / caches (program and/or data); processing registers; communication buses (e.g. control, data and/or address buses); direct memory access (DMA) functions; hardware or software implemented counters, pointers and/or timers; and/or the like.

In the above embodiments, a number of software modules were described. As those skilled in the art will appreciate, the software modules may be provided in compiled or un- compiled form and may be supplied to the UE, the (R)AN node, and the network node as a signal over a computer network, or on a recording medium. Further, the functionality performed by part or all of this software may be performed using one or more dedicated hardware circuits. However, the use of software modules is preferred as it facilitates the updating of the UE, the (R)AN node, and the network node in order to update their functionalities.

The above embodiments are also applicable to‘non-mobile’ or generally stationary user equipment.

Various other modifications will be apparent to those skilled in the art and will not be described in further detail here.