Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NEW BACTERIAL STRAINS, PLASMIDS, METHOD OF PRODUCING BACTERIAL STRAINS CAPABLE OF CHEMOLITHOTROPHIC ARSENITES OXIDATION AND USES THEREOF
Document Type and Number:
WIPO Patent Application WO/2014/009867
Kind Code:
A1
Abstract:
The invention provides novel strains Agrobacterium tumefaciens KKP 2039p and Paracoccus alcaliphilus KKP 2040p, the plasmid pSinA and its functional derivative, method for producing bacterial strains capable of chemolithotrophic arsenite oxidation and novel bacterial strains produced by this method. The invention also relates to the composition, comprising the novel bacterial strain or the plasmid pSinA and the use of these novel strains, as well as the method of bioaugmentation of an arsenic contaminated environment, particularly the method for the removal of arsenic from waters.

Inventors:
DREWNIAK LUKASZ (PL)
SKLODOWSKA ALEKSANDRA (PL)
RADLINSKA MONIKA (PL)
CIEZKOWSKA MARTYNA (PL)
Application Number:
PCT/IB2013/055577
Publication Date:
January 16, 2014
Filing Date:
July 08, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV WARSZAWSKI (PL)
International Classes:
C12N1/00
Foreign References:
US20040072313A12004-04-15
Other References:
RHINE ET AL: "The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 354, no. 3, 3 February 2007 (2007-02-03), pages 662 - 667, XP005887874, ISSN: 0006-291X, DOI: 10.1016/J.BBRC.2007.01.004
DREWNIAK L ET AL: "Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria", HYDROMETALLURGY, ELSEVIER SCIENTIFIC PUBLISHING CY. AMSTERDAM, NL, vol. 104, no. 3-4, 1 October 2010 (2010-10-01), pages 437 - 442, XP027274510, ISSN: 0304-386X, [retrieved on 20100617]
MALIK A H ET AL: "Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 168, no. 1, 30 August 2009 (2009-08-30), pages 1 - 12, XP026161927, ISSN: 0304-3894, [retrieved on 20090220], DOI: 10.1016/J.JHAZMAT.2009.02.031
CAVALCA L ET AL: "Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics", SYSTEMATIC AND APPLIED MICROBIOLOGY, URBAN & FISCHER, AMSTERDAM, NL, vol. 33, no. 3, 1 April 2010 (2010-04-01), pages 154 - 164, XP026989202, ISSN: 0723-2020, [retrieved on 20100320]
SAMBROOK J.; D.W. RUSSELL: "Molecular cloning: A laboratory manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
BARTOSIK, D.; BAJ, J.; PIECHUCKA, E.; WAKER, E.; WLODARCZYK, M.: "Comparative characterization of repABC-type replicons of Paracoccus pantotrophus composite plasmids", PLASMID, vol. 48, 2002, pages 130 - 141
CHWIRKA J.D.; B.M. THOMSON; J.M. STOMP: "Removing arsenic from groundwater", I AM. WATER WORKS ASSOC., vol. 92, 2000, pages 79 - 88
DITTA G.; S. STANFIELD; D. CORBIN; D.R. HELINSKI.: "Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti", PROC. NATL. ACAD SCI. USA, vol. 77, 1980, pages 7347 - 51
DREWNIAK, L.: "Charakterystyka bakterii arsenowych wyizolowanych z koplani zlota w Zlotym Stoku", PRACA DOKTORSKA. PRACOWNIA ANALIZY SKAZEN SRODOWISKA, 2009
DREWNIAK, L.; MATLAKOWSKA, R.; SKLODOWSKA, A.: "Arsenite and arsenate metabolism of Sinorhizobium sp. M14 living in the extreme environment of the Zloty Stok gold mine", GEOMICROBIOLOGY JOURNAL, vol. 25, no. 7-8, 2008, pages 363 - 370
DREWNIAK, L.; MATLAKOWSKA, R.; REWERSKI, B.; SKLODOWSKA, A.: "Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria", HYDROMETALLURGY, vol. 104, 2010, pages 437 - 442, XP027274510
DRIEHAUS W.; R. SEITH; M.R. JEKEL.: "Oxidation of arsenic(III) with manganese oxides in water treatment", WATER RES., vol. 29, 1995, pages 297 - 305
HOOYKAAS, P.J.J.; DEN DULK-RAS, H.; SCHILPEROORT, R.A.: "Molecular mechanism of Ti plasmid mobilization by R plasmids: isolation of Ti plasmids with transposon-insertions in Agrobacterium tumefaciens", PLASMID, vol. 4, 1980, pages 64 - 75, XP024867986, DOI: doi:10.1016/0147-619X(80)90083-9
KOSTAL J.; R. YANG; C.H. WU; A. MULCHANDANI; W. CHEN: "Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR", APPL. ENVIRON. MICROBIOL., vol. 70, 2004, pages 4582 - 7
KOVACH M.E.; ELZER P.H.; HILL D. S.; ROBERTSON G. T.; FARRIS M. A.; ROOP R.M.; K.M. PETERSON: "Four new derivatives of the broad-host-range cloning vector pBBRIMCS, carrying different antibiotic-resistance cassettes", GENE, vol. 166, 1995, pages 175 - 176
LIEVREMONT D.; A. N'NEGUE M; P. BEHRA; M.C. LETT.: "Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite", CHEMOSPHERE, vol. 51, 2003, pages 419 - 28
MARX C.J.; LINDSTROM M.E.: "Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria", MICROBIOLOGY, vol. 147, pages 2065 - 2075, XP002232410
PATTANAYAK J.; K. MONDAL; S. MATHEW; S.B. LALVANI: "A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents", CARBON, vol. 38, 2000, pages 589 - 596, XP004189875, DOI: doi:10.1016/S0008-6223(99)00144-X
SAMBROOK, J.; RUSSELL, D.W.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SIMEONOVA D.D.; K. MICHEVA; D.A. MULLER; F. LAGARDE; M.C. LETT; V.I. GROUDEVA; D. LIEVREMONT: "Arsenite oxidation in batch reactors with alginate-immobilized ULPAsl strain", BIOTECHNOL. BIOENG., vol. 91, 2005, pages 441 - 6, XP001235891, DOI: doi:10.1002/bit.20530
TRIPATHI R.D.; S. SRIVASTAVA; S. MISHRA; N. SINGH; R. TULI; D.K. GUPTA; F.J. MAATHUIS: "Arsenic hazards: strategies for tolerance and remediation by plants", TRENDS BIOTECHNOL., vol. 25, 2007, pages 158 - 65, XP005932532, DOI: doi:10.1016/j.tibtech.2007.02.003
WILKIE J.A.; J.G. HERING: "Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada", SCI. TECHNOL., vol. 657-662, 1998
YANG C; XU L; YAN L; XU Y.: "Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability", J ENVIRON SCI HEALTH A TOX HAZARD SUBST ENVIRON ENG., vol. 45, no. 6, 2010, pages 732 - 7
Attorney, Agent or Firm:
GRZELAK, Anna (Witek Sniezko & Partnersul. Rudolfa Weigla 12, Wroclaw, PL)
Download PDF:
Claims:
CLAIMS

1. A novel strain Agrobacterium tumefaciens deposited in the IAFB Collection of Industrial Microorganisms of Institute of Agricultural and Food Industry under the number KKP 2039p.

2. A novel strain Paracoccus alcaliphilus deposited in the The IAFB Collection of Industrial Microorganisms of Institute of Agricultural and Food Industry under the number KKP 2040p.

3. A plasmid pSinA shown in SEQ ID NO: 1 and its functional derivative.

4. A method for producing bacterial strains capable of chemolithotrophic arsenite oxidation, comprising the following steps: a) obtaining the recipient strain; b) introduction of the plasmid pSinA, shown in SEQ ID NO: 1, or its functional derivative into the recipient strain.

5. The method according to claim 4, characterized in that, the step b) is carried out by:

(i) triparental mating with the use of a donor strain harbouring the plasmid pSinA, shown in SEQ ID NO: 1 or its functional derivative, and a helper strain harbouring a helper plasmid, or,

(ii) biparental mating with the use of a donor strain harbouring the plasmid pSinA shown in SEQ ID NO: 1 or its functional derivative.

6. The method according to claim 4 or 5, characterised in that the donor strain is Agrobacterium tumefaciens deposited under the number KKP 2039p or Paracoccus alcaliphilus deposited under the number KKP 2040p.

7. The method for producing bacterial strains according to claim 4, wherein in the step a) of the obtaining the recipient strain, a gene encoding a selection marker is additionally introduced into the recipient strain, preferably encoding antibiotic resistance.

8. The method for producing bacterial strains according to claim 7, wherein the gene encoding the additional selection marker is introduced on a plasmid, preferably by triparental mating with a bacterial strain harbouring the plasmid containing the gene encoding the additional selection marker and with a helper strain harbouring a helper plasmid.

9. The method according to claims 4-8, wherein the recipient strain is a bacterial strain isolated from natural environment, preferably from arsenic contaminated environment.

10. The method according to claims 4-9, wherein the recipient strain is a bacterial strain belonging to Alphaproteobacteria or Gammaproteobacteria.

11. A novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to claims 4-10.

12. A composition comprising the novel bacterial strain according to claims 1-2, the novel bacterial strain according to claim 11, the plasmid according to claim 3 or combination thereof.

13. Use of the novel bacterial strain according to claims 1-2, the novel bacterial strain according to claim 11, the plasmid according to claim 3, the composition according to claim 12, or combination thereof, for constructing bacterial strains capable of chemolithotrophic arsenite oxidation.

14. Use of the novel strain according to claims 1-2, the novel bacterial strain according to claim 11, the plasmid according to claim 3, the composition according to claim 12, or combination thereof, in the processes of biological removal of arsenic.

15. The use according to claim 14, characterised in that, the biological removal of arsenic comprises bioremediation, preferably bioaugmentation or biometallurgy of arsenic.

16. A method of bioaugmentation of arsenic contaminated environment, comprising the step of introducing the novel strain according to claims 1-2 or 11, the plasmid according to claim 3, the composition according to claim 12, or combination thereof, into an arsenic contaminated environment.

17. A method for the removal or recovery of arsenic by chemolithotrophic arsenite oxidation, wherein the step of chemolithotrophic arsenite oxidation is carried out by the novel strain defined in claims 1-2, the novel strain defined in claim 11, the composition defined in claim 12, or combination thereof.

18. The method for the removal or recovery of arsenic according to claim 17, wherein the step of chemolithotrophic arsenite oxidation is followed by precipitation of the resulting arsenates in the form of insoluble precipitate and/or adsorption of arsenates, wherein the precipitation or adsorption is preferably carried out using burnt lime (CaO), calcium hydroxide Ca(OH)2, bog iron ores or combination thereof.

19. A plasmid comprising the nucleotide sequence corresponding to nucleotides 24376-34453 in SEQ ID NO: 1 or a functional derivative thereof.

20. A bacterial strain comprising the plasmid defined in claim 19 or the nucleotide sequence comprising the fragment 24376-34453 of SEQ ID NO: 1 or a functional derivative thereof.

21. Use of the plasmid defined in claim 19 or the strain defined in claim 20 for arsenite oxidation.

22. A plasmid comprising the nucleotide sequence corresponding to nucleotides 43229-50772 in SEQ ID NO: 1 or a functional derivative thereof.

23. A bacterial strain comprising the plasmid defined in claim 22 or the nucleotide sequence comprising the fragment 43229-50772 of SEQ ID NO: 1 or a functional derivative thereof.

24. Use of the plasmid defined in claim 22 or the nucleotide sequence comprising the fragment 43229-50772 of SEQ ID NO: 1 or a functional derivative thereof for the production of a strain with increased resistance to arsenic.

Description:
New bacterial strains, plasmids, method of producing bacterial strains capable of chemolithotrophic arsenites oxidation and uses thereof

DESCRIPTION TECHNICAL FIELD

The invention provides novel strains Agrobacterium tumefaciens KKP 2039p and

Paracoccus alcaliphilus KKP 2040p, the plasmid pSinA and its functional derivative, a method for producing bacterial strains capable of chemolithotrophic arsenite oxidation, and novel bacterial strains produced by this method. The invention also provides a composition comprising a novel bacterial strain or plasmid pSinA or its functional derivative and the use of these novel strains as well as the method of bioaugmentation of an arsenic-contaminated environment, particularly the method for the removal of arsenic from waters.

BACKGROUND ART

Arsenic is among the elements which are widely distributed in the Earth's crust, where it is present in trace amounts, mainly in the soil and minerals. Under the influence of natural processes and human activities, arsenic is also released to waters and air. The presence of arsenic compounds in drinking water sources poses a threat to human and animal health. The most dramatic effects of the influence of arsenic are observed in Bangladesh and in Western Bengali in India, where, according to the World Health Organization (WHO), over 50 million inhabitants are exposed to the consumption of drinking water contaminated with this toxic element.

Biological removal of arsenic from contaminated areas seems to be a necessary complement to many traditional, chemical methods of remediation. The use of such methods as coagulation or filtration is associated with the removal of not only arsenic, but also other elements present in the treated environment. Current studies on biological systems for arsenic removal, mainly focus on the use of the potential of microorganisms and plants (Kostal et al., 2004, Tripathi et al., 2007).

Effective purification of an arsenic-contaminated waters is associated with the removal of both inorganic forms of arsenic (As III and As V). While arsenates can be efficiently and selectively precipitated on strong adsorbents (Pattanayak et al., 2000), in the case of arsenites there is no possibility of using selective oxidants without side effects to the environment. Microbial oxidation of As (III) becomes therefore an alternative to chemical oxidation. Lievermont et al. (2003) proposed an efficient, low input, two-step technology for arsenic removal from waters with the use of Herminiimonas arsenicoxidans ULPAsl bacteria. The authors have demonstrated that the strain ULPAsl, immobilised on alginate deposit, can efficiently oxidise even 100 mg/L of As (III) and may be applied in technologies for the removal of arsenic, where initial oxidation of contaminated waters is required.

The known applications of arsenite-oxidising bacteria in bioremediation processes are so far limited to laboratory studies and ex situ methods. The known ways of bioremediation of areas contaminated with arsenic by in situ methods do not fulfil their functions, because bacteria introduced into the„new" environment are not able to survive in the new conditions. This is mainly due to the existence of physico-chemical conditions other than laboratory and to the interspecific competition with the indigenous microflora. The proposed solution to this problem is the bio stimulation of indigenous microflora or the use of genetically modified organisms.

Yang et al. (2010) described a lab constructed vector, derivative of the plasmid pBBRlMCS-5, carrying genes for the large and small subunits of arsenite oxidase. This vector contains the gene for resistance to gentamicin and its use requires an application of selection pressure of gentamicin at concentration of 60 mg/L. Because of this, an introduction of bacteria harbouring such plasmid into the environment carries the risk of dissemination of genes for gentamicin resistance, and also involves the risk of instability of such strains in the environment. The vector described by Yang et al. (2010) is used for constructing strains useful in bioremediation of arsenic, but it only works when introduced into strains originally capable of arsenite oxidation, and it only increases the efficiency of the already existing process. This vector does not cause the acquisition of a new ability, which is the possibility of catalysing the oxidation reaction of As (III) to As (V).

The proposed use of genetically modified organisms involves the introduction of foreign genes carried by them, such as marker genes for antibiotic resistance or encoding the green fluorescent protein (Gfp) into the natural environment, which is unacceptable for social reasons and undesirable for environmental reasons, as well as causing the loss of plasmids in case of the absence of selection pressure for the chosen markers in the natural environment.

It is desirable for the microorganisms capable of arsenite oxidation to also show resistance to the presence of other heavy metals in the environment.

Sinorhizobium sp. M14 strain was isolated from microbial mats from a gold mine in Zloty Stok (Drewniak et al., 2008). This strain can grow chemolithoautotrophically using arsenites as the source of energy and can mobilise arsenic from arsenopyrite (Drewniak et al. 2010). Strain M14 carries two megaplasmids: 109 kbp plasmid named pSinA and about 300 kbp plasmid named pSinB (Drewniak, 2009). Partial sequence of the plasmid pSinA was revealed in the GenBank NCBI database under the accession number GU990088.1 (the revealed sequence corresponded only to nucleotides 21498 to 48497 of SEQ ID NO: 1 according to the present invention).

DISCLOSURE OF THE INVENTION

In the light of the described state of the art, the aim of the present invention is to overcome the indicated inconveniences and to provide novel bacterial strains, plasmids, and methods enabling the introduction of a plasmid into a bacterial strain, especially an indigenous strain, in order to produce stable, improved strains, capable of arsenite oxidation, which, are furthermore characterized by an increased resistance to other heavy metals. Such strains may be simultaneously deprived of undesirable marker genes, such as antibiotic resistance genes. The aim of the invention is also to provide novel bacterial strains capable of arsenite oxidation, but not accumulating arsenic, compositions comprising them, and their use.

The essence of this invention is thus based on an unexpected finding, that it is possible to use the natural plasmid pSinA of Sinorhizobium sp. M14 to produce stable bacterial strains of various species of bacteria, capable of arsenite oxidation, preferably not bearing any undesirable marker genes, as well as on the development of a method for producing novel bacterial strains, using strains comprising this plasmid or plasmid pSinA. Surprisingly, it has been found that plasmid pSinA introduced into bacterial strains and species other than Sinorhizobium sp. is fully functional and stably maintained in them and enables such bacteria to chemolithotrophically oxidize arsenites. Moreover, it was unexpectedly found that unlike the Sinorhizobium sp. M14 strain, the new obtained strains comprising the plasmid do not accumulate arsenic inside their cells, but allow it to be processed, leading to the obtaining of biomass free of harmful arsenic.

The present invention concerns the novel strains Agrobacterium tumefaciens (D10) deposited under the number KKP2039p on the 30 th March 2012 and Paracoccus alcaliphilus (CIO) deposited under the number KKP2040p on the 30 th March 2012 in the IAFB Collection of Industrial Microorganisms of the Institute of Agricultural and Food Biotechnology in Warsaw, Poland and functional derivatives (variants) thereof.

The term variant (derivative) of the novel strain or strains produced by the method according to the invention is to be understood a mutant strain or strain obtained by culturing the deposited strain or the strains produced by the method according to the invention as the starting material, which comprises the plasmid pSinA shown in SEQ ID NO: 1 and is capable of chemolitho trophic arsenite oxidation.

Furthermore, the invention relates to the isolated plasmid pSinA shown in SEQ ID NO: 1 or its functional derivative. The term 'derivative of the plasmid' or 'functional derivative of the plasmid' comprises plasmids having a nucleotide sequence coding for open reading frames, encoding products comprising an amino-acid or a nucleotide sequence identical or highly homologous to the sequences coded by the original plasmid e.g. pSinA, wherein the coding sequences or other plasmid sequences which have been modified e.g. by substitution, replacement, deletion or insertion, such that it does not essentially alter the activity of the products of these open reading frames, and enables the maintenance of functional features carried by the original plasmid e.g. pSinA, such as the ability to chemolithotrophic ally oxidize arsenites and the resistance to arsenates [As(V)] and arsenites [As(III)]. A highly homologous sequence means that the sequence is homologous, preferably identical in at least 70%, preferably 80%, more preferably 90%, the most preferably, in at least 95%.

The invention relates to the use of novel strains: Agrobacterium tumefaciens KKP 2039p and Paracoccus alcaliphilus KKP 2040p, harbouring the natural plasmid pSinA of Sinorhizobium sp. M14 and the use of the plasmid pSinA of Sinorhizobium sp. M14 alone or its functional derivative, carrying: (i) all the genes necessary for chemolithoautotrophic arsenite oxidation, (ii) heavy metal resistance genes, and (iii) genes coding for the replication- stabilization system (with partitioning - active separation), multimer resolution system, and addiction toxin-antitoxin system providing stable maintenance of the plasmid in bacterial cells, for constructing bacterial strains capable of chemolithotrophic oxidation of arsenites. Such strains or the plasmid are useful in bioremediation, including the direct application in the process of bioaugmentation of the microflora of an arsenic -contaminated environments. Such strains may also be used to produce other strains capable of chemolithoautotrophic oxidation of arsenites or to improve the strains that already possess such a characteristic. The complete sequence of the plasmid pSinA of Sinorhizobium sp. M14 has been shown in SEQ ID NO: 1. The presented solution enables the construction of strains useful for the removal of arsenic from the contaminated environments, without the use of genetic manipulations and introduction of common risk genes (e.g. resistance to antibiotics) into circulation in the environment. By the invention, it is possible to introduce the plasmid pSinA to the cells of indigenous strains isolated from given environment and to construct stable strains capable of arsenite oxidation. Moreover, the invention allows for the conduction of a method for selection and monitoring of the strains harbouring the pSinA plasmid.

The invention therefore relates to the method for producing bacterial strains capable of chemolithotrophic arsenite oxidation, comprising the following steps: a) obtaining the recipient strain, and b) introduction of the plasmid pSinA, shown in SEQ ID NO: 1 or its functional derivative into the recipient strain. In the preferred method, step b) is carried out by: (i) triparental mating using a donor strain, containing the plasmid pSinA shown in SEQ ID NO: 1 or its functional derivative and a helper strain carrying a helper plasmid, or,

(ii) biparental mating using a donor strain, containing the plasmid pSinA shown in SEQ ID NO: 1 or its functional derivative.

The preferred donor strain in this method is Agrobacterium tumefaciens (D10) deposited under the number KKP 2039p or Paracoccus alcaliphilus (CIO) deposited under the number KKP 2040p.

In the preferred method for producing bacterial strains capable of chemolithotrophic arsenite oxidation in step a) of obtaining the recipient strain, a gene encoding an additional selection marker, preferably, coding for resistance to antibiotics, is additionally introduced into the recipient strain. More preferably, the gene coding for an additional selection marker is introduced on a plasmid, preferably by triparental mating with a bacterial strain harbouring the plasmid containing a gene coding for the additional selection marker and the helper strain, containing a helper plasmid.

In the preferred method for producing bacterial strains capable of chemolithotrophic arsenite oxidation the recipient is a bacterial strain isolated from the natural environment, preferably from an arsenic-contaminated environment, a particularly preferred recipient strain being a bacterial strain belonging to Alphaproteobacteria and Gammaproteobacteria.

The invention relates to the construction of strains capable of chemolithotrophic oxidation of As(III). By the use of the pSinA plasmid, its derivative or the strains: Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, it is possible to construct bacterial strains capable of carrying out such reactions, starting from the strains which originally did not possess the entire gene apparatus, necessary for arsenite oxidation.

The invention provides for the construction of strains basing on bacteria isolated from various arsenic-contaminated environments, without limitation by the latitude. Due to the fact that the plasmid pSinA is capable of replication in bacterial cells belonging to Alphaproteobacteria and Gammaproteobacteria, it may be used in practically any environment. It is commonly known that the bacteria belonging to Alphaproteobacteria and Gammaproteobacteria are generally found in every environment studied.

The invention also relates to the composition, comprising the novel bacterial strain

Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, a novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to the invention or the plasmid pSinA shown in SEQ ID NO: 1, or its functional derivative.

In another aspect, the invention relates to the use of the novel bacterial strain Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, a novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to the invention or the plasmid pSinA shown in SEQ ID NO: 1, or its functional derivative or a combination thereof, for constructing bacterial strains capable of chemolithotrophic arsenite oxidation.

Furthermore, the invention relates to the use of the novel bacterial strain Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, a novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to the invention, the plasmid pSinA shown in SEQ ID NO: 1, or its functional derivative, the composition according to the invention, or a combination thereof, in the processes of biological removal of arsenic.

In the preferred embodiment, biological removal of arsenic comprises bioremediation or biometallurgy of arsenic.

By "bioremediation" it is to be understood the conversion of harmful substances present in the environment to less toxic or completely safe metabolites, using microorganisms or higher organisms.

According to the invention, "bioaugmentation" means the introduction into the natural or degraded environment, of selected strains/a composition of microorganisms in order to increase the performance and capabilities of the course of a given process.

By "biometallurgy" it is to be understood the technology for metal recovery from metal ores and metal industry wastes.

In another aspect, the invention relates to the method of bioaugmentaion of an arsenic- contaminated environment, which comprises the step of introducing the novel bacterial strain Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, a novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to the invention, or the plasmid pSinA, shown in SEQ ID NO: 1, or its functional derivative, the composition according to the invention or a combination thereof, into the arsenic contaminated environment.

The invention therefore relates to the method of introducing the plasmid pSinA directly into an environment as a part of bioaugmentation with the strain Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, Sinorhizobium sp. M14, a bacterial strain capable of chemolithotrophic arsenite oxidation, obtained by the method according to the invention, comprising the plasmid pSinA shown in SEQ ID NO: 1, or its functional derivative, the plasmid pSinA or the composition according to the invention.

In case there is no possibility of directly constructing arsenite oxidizing strains based on the indigenous microflora, the plasmid can be introduced into the environment through the methods of bioaugmentation. A strain harbouring the plasmid pSinA or its derivative, or the composition according to the invention, is introduced into the soil and/or water contaminated with arsenic compounds and as a result of natural conjugation, the plasmid is transferred to the cells of indigenous microorganisms (autochthonous microorganisms).

The advantage of the bacterial strains comprising the plasmid pSinA, shown in SEQ ID NO: 1, or its functional derivative produced by the method according to the invention, is their stable maintenance of the plasmid introduced. Such strains are unable to get rid of it even in the absence of selection pressure i.e. in the absence of arsenic in the medium, as a result of possession of genes encoding the toxin and antitoxin system on the plasmid, providing for stable maintenance of the plasmid in bacteria. Particularly preferred in bioaugmentation, is the use of the Agrobacterium tumefaciens KKP 2039p strain, a derivative of A. tumefaciens - a bacteria recognised as environmentally safe and approved for use in soil and water environments. Moreover, an advantage of newly produced bacterial strains comprising the plasmid pSinA, like Agrobacterium tumefaciens KKP 2039p (D10), Paracoccus alcaliphilus KKP 2040p (CIO), in contrast to the parental strain - Sinorhizobium sp. M14, is the ability to oxidize (up to -400 mg/L) arsenites to arsenates with 100% efficiency or close to 100%, as well as the lack of accumulation of arsenic inside the cells.

The invention also relates to the method of removing or recovering arsenic through chemolithotrophic arsenite oxidation, in which the chemolithotrophic arsenite oxidation step is carried out by the novel strain Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p, a novel bacterial strain capable of chemolithotrophic arsenite oxidation, produced by the method according to the invention, the composition according to the invention, containing strains capable of chemolithotrophic arsenite oxidation, or a combination thereof.

In the preferred method of removing or recovering arsenic, the step of chemolithotrophic arsenite oxidation is followed by the step of arsenate removal e.g. by precipitation of the resulting arsenates in the form of an insoluble, stable precipitant or by adsorption of arsenates. For the precipitation or adsorption and effective removal of arsenates, among others, burnt lime (CaO) (Twidwell et al. 1999), calcium hydroxide Ca(OH) 2 (Bothe, Brown 1999) or bog iron ores may be used.

The invention also relates to the method of selection and identification of transconjugants, obtained as the result of bi- and triparental mating, based on the phenotypic characteristics encoded by the plasmid pSinA.

In another aspect, the invention relates to a plasmid comprising the nucleotide sequence corresponding to nucleotides 24376-34453 of SEQ ID NO: 1 or its functional derivative.

Such plasmid is a derivative of the plasmid pSinA, which comprises the nucleotide sequence corresponding to nucleotides 24376-34453 of SEQ ID NO: 1, i.e. the aio module, comprising aioXSRABmoeA genes, and may be used as a plasmid or as a sequence fragment integrated into the bacterial genome for constructing strains capable of arsenite oxidation.

The invention also relates to a bacterial strain comprising a plasmid, which comprises the nucleotide sequence corresponding to nucleotides 24376-34453 of SEQ ID NO: 1 or its functional derivative, or a bacterial strain comprisisng such a nucleotide sequence, comprising the fragment 24376-34453 of SEQ ID NO: 1 or its functional derivative integrated into the bacterial genome of the strain. The strains containing the nucleotide sequence corresponding to nucleotides 24376-34453 of SEQ ID NO: 1 or its functional derivative will be capable of arsenite oxidation and/or arsenate production.

The invention also relates to the use of a plasmid comprising the nucleotide sequence corresponding to nucleotides 24376-34453 of SEQ ID NO: 1 or its functional derivative, or a bacterial strain, which comprises the nucleotide sequence corresponding to nucleotides 24376- 34453 of SEQ ID NO: 1 or its functional derivative, or a bacterial strain comprising such a nucleotide sequence, comprising the fragment 24376-34453 of SEQ ID NO: 1 or its functional derivative integrated into the bacterial genome, for arsenite oxidation and arsenate production.

In a further aspect, the invention relates to a plasmid comprising the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1 or its functional derivative.

Such plasmid is a derivative of the plasmid pSinA, which comprises the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1, i.e. the ars module, comprising arsRlClC2BtrkAmsfarsHarsR2 genes, and may be used as a plasmid or as a sequence fragment integrated into the bacterial genome, for constructing strains resistant to arsenic, both As (III) and As (V), and for increasing resistance to arsenic, particularly in relation to the original strain, into which such a sequence is to be introduced.

The invention also relates to a bacterial strain comprising a plasmid comprising the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1 or its functional derivative, or a bacterial strain comprising such a nucleotide sequence, comprising the fragment 43229-50772 of SEQ ID NO: 1 or its functional derivative integrated into the bacterial genome of the strain. The strains comprising the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1 or its functional derivative will have an increased resistance to arsenic and/or will acquire the resistance to arsenic, both As (III) and As (V), particularly in comparison with the original strain. The invention also relates to the use of a plasmid comprising the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1 or its functional derivative, or a strain comprising a plasmid, which comprises the nucleotide sequence corresponding to nucleotides 43229-50772 of SEQ ID NO: 1 or its functional derivative, or a bacterial strain comprising such a nucleotide sequence, comprising the fragment 43229-50772 of SEQ ID NO: 1 or its functional derivative integrated into the bacterial genome, for producing a strain with an increased resistance to arsenic, both As (III) and As (V), particularly in comparison with the original strain.

Publications cited in the description, and the references given therein, are in their entirety incorporated herein as references.

BIREF DECRIPTION OF DRAWINGS

For a better understanding of the invention, it has been illustrated in the embodiments and in the accompanying figures, in which:

Fig. 1. Shows the genetic organization of the plasmid pSinA. In the diagram, different modules of the plasmid backbone and phenotypic regions have been described: REP/STA and REP/STA2 - replication- stabilization modules, TRA/TRB - conjugation module, ARS - arsenic metabolism module, HMR - arsenic resistance module, and TOXIN/ANTITOXIN module. RepABC system (replication and partitioning system - active separation) MRS system (multimer resolution system) and PHD-DOC system (addiction system - toxin/antitoxin) are located within the REP/STA module.

Fig. 2. Shows a comparison of the ability to oxidise arsenites by wild-type strains (wt) Agrobacterium tumefaciens LBA288 and Paracoccus alcaliphilus JCM7364R and their derivatives Agrobacterium tumefaciens, deposited as KKP 2039p (D10), and Paracoccus alcaliphilus, deposited as KKP 2040p (CIO) harbouring the plasmid pSinA. In order to compare the abilities of the investigated strains to oxidise arsenites to arsenates, cultures were carried out in minimal MSM medium containing 5mM (375ppm) of sodium arsenite. (A) and (B) show the content of As(III) and As(V) in culture fluids collected from the cultures every 24 hours. (A) shows a comparison of kinetics of arsenite oxidation carried out by the A tumefaciens LBA288 strain and its derivative, the A tumefaciens (D10) strain with pSinA; (B) shows a comparison of kinetics of arsenite oxidation carried out by the P. alcaliphilus JCM7364R strain and its derivative P. alcaliphilus (CIO) with pSinA; (C) shows a comparison between the minimal inhibitory concentration (MIC) values for As(III) of the wild-type strains A tumefaciens LBA288 and P. alcaliphilus JCM7364R, and their respective derivatives harbouring the plasmid pSinA: A tumefaciens KKP 2039p (D10) and P. alcaliphilus KKP 2040p (CIO).

Fig. 3. Shows a graph illustrating the frequency of conjugative transfer of the plasmid pSinA from the cells of the Sinorhizobium sp. M14 strain to the cells of indigenous bacteria. In the experiment, two soil samples were used: (I) coming from the Zloty Potok area and designated as ZP and (II) coming from Potok Trujaca and designated as PT.■ - indicates the Sinorhizobium sp. M14 strain (donor of the plasmid pSinA); ^ - indigenous microflora, capable of arsenite oxidation, comprising bacteria of the genera: Brevundimonas sp., Stenotrophomonas sp., and Pseudomonas sp. for the soil I (ZP) and (ii) Achromobacter sp., Acidovorax sp., Acinetobacter sp. Brevundimonas sp., Microbacterium sp., Pseudomonas sp., and Stenotrophomonas sp. for the soil II (PT); :¾ - transconjugants harbouring the plasmid pSinA- derivatives of the indigenous bacteria, including bacteria of the genus Sinorhizobium sp. and Pseudomonas sp. for the soil I (ZP) and Brevundimonas sp., Sinorhizobium sp. and Pseudomonas sp. for the soil II (PT).

Fig. 4. Shows a comparison of the efficiency of arsenite removal out of the cell carried out by the wild-type strain Sinorhizobium sp. M14 and the newly created strains harbouring pSinA plasmid: Agrobacterium tumefaciens KKP 2039p (D10) and Paracoccus alcaliphilus KKP 2040p (CIO). In order to compare the efficiency of the investigated strains to oxidize As(III) to As(V) and to remove the resulting arsenates, cultures were carried out in minimal MSM medium containing 5mM (375ppm) of sodium arsenite. As(V) content in culture fluids collected from the cultures every 24 hours is shown on the graph.

Fig. 5. Photograph from the observations and analysis of granules of high electron density in the cells of Sinorhizobium sp. M14. A - Transmission Electron Microscopy. B - X-ray analysis.

Fig. 6. Shows a graph illustrating the frequency of conjugative transfer of the plasmid pSinA from the produced strains harbouring this plasmid: Agrobacterium tumefaciens KKP 2039p (D10) and Paracoccus alcaliphilus KKP 2040p (CIO) to the cells of indigenous bacteria. In the experiment, a soil sample from the Zloty Potok area was used. The frequency of conjugal transfer was assessed after 15 days of incubation at room temperature.■ - indicates the rate of conjugal transfer of the plasmid pSinA when Agrobacterium tumefaciens KKP 2039p (D10) was used as the donor; is - indicates the rate of conjugal transfer of the plasmid pSinA when

Paracoccus alcaliphilus KKP 2040p (CIO) was used as the donor; Fig. 7. Shows a comparison of the efficiency of arsenite removal out of the cell carried out by wild-type strains (wt) Escherichia coli TOP10, Agrobacterium tumefaciens LBA288 and Paracoccus aminovorans JCM7685, and their derivatives Escherichia coli AIO, Agrobacterium tumefaciens AIOl and Paracoccus aminovorans AI02 harbouring the plasmid pAIOl. In order to compare the efficiency of the investigated strains to oxidize As(III) to As(V) and to remove the resulting arsenates, cultures were carried out in minimal MSM medium containing 2mM (150ppm) of sodium arsenite.

Fig. 8. Shows a comparison of MICs - minimal concentration of As(III), inhibiting the growth of the wild-type strains, and their derivatives harbouring the plasmid pARS l. In order to compare the MICs for As(III), cultures were carried out in LB medium, with various concentrations of sodium arsenite (up to 20mM). After 48h of cultivation at 30°C, optical density of the cultures (OD 6 oonm measurements of absorbance at 600nm) was monitored. DESCRIPTION OF EMBODIMENTS

The following examples are presented merely to illustrate the invention and to clarify its various aspects, but are not intended to be limitative, and should not be equated with all its scope, which is defined in the appended claims.

In the following examples, unless it was otherwise indicated, standard materials and methods described in Sambrook and Russell. 2001. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, were used, or the manufacturers' instructions for specific materials and methods were followed.

EXAMPLES

Example 1. Characteristics of plasmid pSinA and determination of its complete sequence

Plasmid pSinA, of the size of 109 kbp, was isolated from the Sinorhizobium sp. M14 strain (Drewniak et al., 2008, Drewniak et al. 2010). In order to sequence the plasmid, plasmid pSinA was isolated from 200 ml of overnight culture of Sinorhizobium sp. M14 by alkaline lysis method. Plasmid pSinA was sequenced by pyrosequencing method, using "shotgun" strategy on the GS FLX Titanium (454) sequencer (in the Oligo PI. centre). For the construction of DNA library, approx. 5 μg of pSinA DNA was used and reagent kits provided by the manufacturer were applied (GS FLX Titanium Library Preparation Kit, Roche). The constructed library was sequenced and assembled using the software from the Newbler de novo assembler package (Roche). The obtained sequences were then assembled into contigs using Seqman software from Lasergene package (DNAStar). Annotation of the plasmid (identification of the open reading frames and determination of their potential functions) were performed using Artemis program and BLAST programs (from the NCBI database).

Sequencing of the plasmid pSinA showed that it is a DNA particle of the size of 108 938 bp and the GC-content of 59.5%. It comprises 103 open reading frames (ORF), which constitute 89% of the sequence of the plasmid. Table 1, below, features a detailed description of the identified ORFs within SEQ ID NO: 1.

Table 1. Determination of the potential coding sequences of the plasmid pSinA in reference to SEQ ID NO: 1. * The numbers in the coding sequence correspond to the nucleotide numbers in SEQ ID NO: 1.

ORF Coding Protein Predicted protein function The greatest similarity (BLASTP program) No sequence size (aa)

GenBank (start-stop Identity Organism

number codon) (%)

189-1463 424 Replication initiation protein 90 (380/424) Agrobacterium rhizogenes NP_066713

(RepA) (pRil724)

1567-2571 334 Replication initiation protein 71 (236/335) Agrobacterium rhizogenes NP_066714

(RepB) (pRil724)

2740-3951 403 Replication initiation protein 73 (288/399) Rhizobium etli CFN 42 YP_471771

(RepC) (p42a)

4297-5457c 386 Integrase family protein (Cre-like 82 (305/372) Rhizobium leguminosarum YP_770909 recombinases) bv. trifolii WSM2304(pRL8)

5535-5813 92 Prevent-host-death family protein 84 (77/92) Rhizobium leguminosarum YP_002279 bv. trifolii WSM2304(pRL8) 248

5800-6231 143 Hypothetical protein (PemK-like 75 (107/143) Brucella ovis ATCC 25840 YP_001257 protein) 527

6467-7597 376 Protein of unknown function 67 (253/380) Agrobacterium radiobacter YP_002546

(DUF1612) K84 559

7688-8281 197 Hypothetical protein 97 (179/185) Agrobacterium tumefaciens NP_053264

(pTi)

8345-8731 128 Predicted nucleic acid-binding 91 (100/111) Agrobacterium tumefaciens NP_053265 protein (PUT protein-like protein) (pTi)

10 8768-12582c 1271 Putative protein involved in cell 28 (326/1181) Rhizobium etli CIAT 652 YP_001984 division and chromosome 284 partitioning

11 12767-13393 208 Hypothetical protein 85 (177/209) Rhodopseudomonas palustris YP_532912

BisB IS

12 13414-14253 279 Hypothetical protein 34 (87/256) Bacillus thuringiensis ZP_040871 serovar huazhongensis 11 BGSC 4BD1

13 14474-16219 581 Predicted ATPase (COG5293) 45 (258/585) Nostoc sp. PCC 7120 NP_485895 14 16235-17032 265 Hypothetical protein (transposon) 80 (211/265) Pseudomonas aeruginosa ACD39332 15 17092-17913 273 Hypothetical protein 49 (97/202) Agrobacterium tumefaciens NP_059784

(pTi)

16 18097-21072 991 Hypothetical protein (ATPase 86 (837/978) Labrenzia alexandrii DFL- ZP_051144 involved in DNA repair) 11 52

17 21082-21768 228 Putative siderophore 72 (131/182) Methylobacterium YPJX 066 biosynthesis-associated protein extorquens DM4 102

18 21761-22699 312 Hypothetical protein 84 (244/293) Methylobacterium YPJX 066 extorquens DM4 101

22735-23241 168 Hypothetical protein 68 (108/161) Xanthobacter autotrophicus YP 001415

Py2 141

23283-23777 164 Hypothetical protein 92 (150/164) Oceanicola granulosus ZP_011575

HTCC2516 50

23783-24139c 118 Hypothetical protein 96 (113/118) Rhizobium etli CIAT 894 ZPJ 5262

52

24660-25877c 405 Molybdenum-biosynthesis 84 (338/404) arsenite-oxidising bacterium ABC 18312 protein (MoeA) NT-26

26035-26418c 127 c-type cytochrome c552 97 (122/127) Agrobacterium tumefaciens ABB51926

26508-29045c 845 large subunit of Arsenite oxidase 99 (831/845) Agrobacterium tumefaciens ABB51928

AioB (previously AoxB))

29058-29585c 175 Small subunit of Arsenite oxidase 98 (171/175) Agrobacterium tumefaciens ABB51929

(AioA (previously AoxA)))

29723-31051c 442 Putative transcriptional regulator 97 (428/442) Agrobacterium tumefaciens ABB51925

(AioR (previously AoxR)))

31041-32507c 488 Putative sensor histidine kinase 97 (470/488) Agrobacterium tumefaciens ABB51924

(AioS(previously AoxS)))

32504-33424c 306 Phosphate/phosphonate ABC 57 (167/295) Xanthobacter autotrophicus YP_001418 transporter (AioX (previously Py2 827

PhnD)

33604-34296c 230 Phosphate regulon transcriptional 83 (187/227) Agrobacterium vitis S4 YP_002548 regulatory protein (PhoB) 344

34661-35698 345 Phosphate-binding protein (PstS) 75 (229/306) Alcaligenes faecali AAQ19844

35756-36679 307 Phosphate ABC transporter, inner 75 (227/305) Alcaligenes faecali AAQ19845 membrane subunit (PstC)

36679-37626 315 Phosphate ABC transporter, inner 70 (212/303) Alcaligenes faecali AAS45094 membrane subunit (PstA)

37644-38486 280 phosphate ABC transporter, 75 (195/262) Alcaligenes faecali AAS45095

ATPase subunit (PstB)

38502-39179 231 Phosphate transport system 49 (108/224) Pseudovibrio sp. JE062 ZP_050852 regulatory protein (PhoU) 95

39203-39865 220 Phosphate regulon transcriptional 40 (88/225) Pseudovibrio sp. JE062 ZP_050853 regulatory protein (PhoB) 50

39872^10963c 273 Bifunctional protein: N-terminal 47 (130/280) Nitrobacter hamburgensis YP 571847 transcriptional regulator (ArsR) X14 (pPB12)

and C-terminal arsenate reductase

(ArsC)

40850^11803 317 Phosphate/phosphonate ABC 78 (232/300) Xanthobacter autotrophicus YP_001418 transporter (PhnD) Py2 843

41877^12716 279 Phosphonate ABC transporter, 76 (190/251) Roseobacter sp. AzwK-3b ZP_019049

ATP-binding protein (PhnC) 69

42716^13531 271 Phosphonate uptake ABC type 75 (197/266) Fulvimarina pelagi ZPJH4384 transporter (PhnE) HTCC2506 81

43531^14349 272 Phosphonate uptake ABC type 70 (187/268) Vibrio metschnikovii ZP_058813 transporter (PhnE) CIP 69.14 11

44496^14855 119 ArsR family transcriptional 72 (80/112) Rhizobium etli CIAT 894 ZPJ 5303 regulator 66

45085^15612 175 Tyrosine arsenate reductase 89 (147/166) Rhizobium etli CIAT 894 ZPJ 5303

(ArsC) 68

45717^6151 144 Arsenate reductase (ArsC) 80 (114/143) Sinorhizobium medicae YP_001313

WSM419 767 46237^7307 356 Arsenite efflux transporter (AsrB) 89 (314/356) Sinorhizobium medicae YP_001313

WSM419 766

47324^8367 347 FAD-dependent pyridine 62 (206/336) Burkholderia YP_001114 nucleotide-disulphide vietnamiensis G4 753 oxidoreductase (TrkA)

48317^9537c 406 Major facilitator superfamily 68 (272/404) Rhizobium leguminosarum YP_002976

(MFS_1) protein bv. trifolii WSM1325 231

49534-5024 lc 235 NADPH-dependent FMN 84 (196/235) Rhizobium leguminosarum YP 768473 reductase (ArsH) bv. viciae 3841

50290-50622c 110 ArsR family transcriptional 65 (63/97) Agrobacterium vitis S4 YP_002547 regulator 788

50781-51596c 271 Putative universal stress response 34 (92/271) Rhizobium etli CFN 42 YP_472650 protein (UpsA)

51610-52875c 421 Putative phosphopyruvate 70 (291/421) Methylococcus capsulatus YP_114366 hydratase (enolase) str. Bath

52931-53116C 61 Hypothetical protein 51 (30/59) Rhizobium leguminosarum YP_002279 bv. trifolii WSM2304 234

53176-53514c 112 Hypothetical protein 92 (94/103) Rhizobium etli IE4771 ZPJ 5174

89

53752-55569c 605 CIC sycA-like chloride channel 80 (343/433) Agrobacterium vitis S4 YP_002548 protein 815

55761-56153c 130 Hypothetical protein 48 (30/63) Burkholderia phytofirmans YP_001893

PsJN 937

56215-56706 163 Putative Co/Zn/Cd efflux system 71 (109/155) Methylobacterium nodulans YP_002497 component (CzcD) ORS 2060 120

56763-5755 lc 262 Predicted permease (DUF81) 76 (177/233) Methylobacterium YPJX 068 extorquens DM4 171

57710-58918c 402 pH-dependent sodium proton 74 (287/392) Rhizobium etli CFN 42 YP_468132 antiporter

59238-59546 102 Hypothetical protein (probable 50 (38/77) Agrobacterium vitis S4 YP_002542 helicase) 648

59529-59969c 146 MerR family transcriptional 100 (146/146) Ochrobactrum anthropi YP_001371 regulator ATCC 49188 693

60055-60480 141 Mercuric transporter (MerT) 100 (141/141) Ochrobactrum anthropi YP_001371

ATCC 49188 694

60501-60794 97 Mercuric transport protein 100 (97/97) Ochrobactrum anthropi YP_001371 periplasmic component (MerP) ATCC 49188 695

61040-63277 745 Mercuric reductase (MerA) 100 (745/745) Ochrobactrum anthropi YP_001371

ATCC 49188 697

63661-65805c 714 Hypothetical protein (putative 99 (713/714) Ochrobactrum anthropi YP_001371 phage integrase) ATCC 49188 699

65802-67610c 602 Hypothetical protein (putative 100 (602/602) Ochrobactrum anthropi YP_001371 phage integrase) ATCC 49188 700

67610-69049c 479 Putative XerD integrase 100 (479/479) Ochrobactrum anthropi YP_001371

ATCC 49188 701

69480-70514 344 Putative RecA relaxase 62 (209/341) Rhizobium etli CFN 42 YP_471728

70577-71182 201 Protein of unknown function 73 (145/201) Agrobacterium rhizogenes NP 066672

(DUF1419)

71278-71571c 97 Hypothetical protein 37 (35/95) Agrobacterium tumefaciens NP 053284

71747-76921 1724 S-adenosylmethionine-dependent 86 Rhizobium leguminosarum YP 770997 methyltransferase (1445/1687) bv. viciae 3841 77344-79101 Partitioning protein ParBC 71 (408/578) Agrobacterium rhizogenes YP_001961

038

71 79098-79991 297 Hypothetical protein 61 (171/282) Agrobacterium rhizogenes YP_001961

040

72 79998-80299 103 Hypothetical protein 43 (38/89) Ochrobactrum anthropi YP 001373

ATCC 49188 171

73 80356-80589 77 Hypothetical protein 68 (27/40) Rhizobium etli IE4771 ZPJ 5141

74

74 80683-81270 195 Hypothetical protein 83 (161/194) Agrobacterium rhizogenes YP_001961

043

75 81548-82471 307 Conjugal transfer antirestriction 82 (244/300) Rhizobium leguminosarum YP_771003 protein (ArdC) bv. viciae 3841

82799-83125 108 Hypothetical protein No significant similarities found

83142-83450 102 Protein of unknown function 99 (100/102) Sinorhizobium meliloti YP_001965

(DUF736) 632

78 83600-83938 112 Hypothetical protein 61 (69/114) Agrobacterium vitis S4 YP_002551

439

84033-84302 Hypothetical protein No significant similarities found

84441 -84893c Putative nuclease 64 (96/150) Rhizobium leguminosarum YP_771010 bv. viciae 3841

81 85731 -87668c 645 Conjugal transfer coupling 82 (508/627) Rhizobium etli CFN 42 YP_471745 protein (TraG)

82 87655-87870c 71 Conjugal transfer protein (TraD) 80 (56/70) Rhizobium leguminosarum YP_771013 bv. viciae 3841

83 87875-88171c 98 Conjugal transfer protein (TraC) 69 (67/98) Agrobacterium tumefaciens BAB47248 84 88422-91745 1107 Dtr system oriT relaxase (TraA) 78 (855/1109) Agrobacterium tumefaciens BAB47249 85 91742-92308 188 Conjugal transfer pilin processing 55 (102/188) Rhizobium leguminosarum YP_771016 protease (TraF) bv. viciae 3841

86 92298-93464 388 Conjugal transfer protein (TraB) 62 (239/388) Rhizobium sp. NGR234 NP_443826 87 93482-94093 203 Conjugal transfer protein (TraH) 71 (144/205) Rhizobium leguminosarum YP_770822 bv. viciae 3841

88 94126-94746c 206 Hypothetical protein 71 (144/205) Rhizobium leguminosarum YP_770822 bv. viciae 3841

89 94747-95502c 251 Hypothetical protein 65 (165/255) Rhodopseudomonas palustris ZP_063576

DX-1 67

90 96193-96897 234 Putative LuxR-type 51 (119/234) Sinorhizobium meliloti YP_001965 transcriptional regulator protein 652 (TraR)

96912-9721 lc TraR antiactivator (TraM) 52 (51/99) Agrobacterium tumefaciens NP_053353 97764-98483 AHL-dependent transcriptional 59 (134/231) Rhizobium leguminosarum AF210630_ regulator similar to LuxR 2

93 98601-99263 220 Conjugation factor synthetase 62 (136/221) Rhizobium etli Brasil 5 ZPJ 5047

(Tral) 72

94 99303-100598c 431 Conjugal transfer protein (Trbl) 76 (328/432) Sinorhizobium meliloti YP_001965

SM11 654

95 100611- 147 Conjugal transfer protein (TrbH) 70 (100/143) Rhizobium leguminosarum YP_771025 101054c bv. viciae 3841

96 101058- 276 Conjugal transfer protein (TrbG) 86 (237/276) Sinorhizobium meliloti YP_001965 101888c SM11 656

97 101904- 220 Conjugal transfer protein (TrbF) 92 (201/220) Rhizobium leguminosarum YP_771027 102566c bv. viciae 3841

98 102588- 393 Conjugal transfer protein (TrbL) 87 (327/380) Rhizobium etli IE4771 ZPJ 5195 103769c 61

99 103944- 267 Conjugal transfer/entry exclusion 87 (205/238) Rhizobium leguminosarum AAO21104 104747c protein (TrbJ) bv. viciae

100 104740- 811 Conjugal transfer protein (TrbE) 89 (719/809) Rhizobium leguminosarum YP_771030 107175c bv. viciae 3841

101 107186- 99 Conjugal transfer protein (TrbD) 78 (77/99) Rhizobium etli CFN 42 YP_471765 107485c

102 107478- 130 Conjugal transfer protein (TrbC) 74 (97/132) Rhizobium leguminosarum YP_771032 107870c bv. viciae 3841

103 107860- 321 Conjugal transfer protein (TrbB) 90 (288/321) Sinorhizobium meliloti YP_001965 108825c SM11 665

The determined genetic organization of the plasmid pSinA has been presented in Fig. 1. The obtained, complete sequence of plasmid pSinA has been shown in SEQ ID NO: 1.

Example 2. Construction of the Agrobacterium tumefaciens and Paracoccus alcaliphilus strains capable of chemolithotrophic arsenite oxidation

In order to demonstrate that the plasmid pSinA can be used for constructing strains capable of arsenite oxidation, the plasmid pSinA was introduced into two strains belonging to Alphaproteobacteria. For the construction, two strains have been selected: Agrobacterium tumefaciens LBA288 and Paracoccus alcaliphilus JCM7364R, incapable of arsenite oxidation and susceptible to As (III) (ImM of sodium arsenite inhibits the growth of both strains). As a method for introducing plasmid DNA, bi- and u n iparental mating, described in Sambrook and Russel (2001), was used.

In order to allow the introduction of the pSinA plasmid into the selected strains, one must know their phenotypic characteristics that can be used as markers for selection, enabling the elimination of the cells of the plasmid donor. In case none of the phenotypic traits encoded by the recipient strain can be used, it should be appropriately modified (example 2A) or an appropriate method for identification of transconjugants should be applied (example 2B).

Example 2A.

Construction of strains resistant to tetracycline The A tumefaciens LBA288 strain does not carry any phenotypic characteristics that enable the use of an appropriate selection pressure to eliminate the cells of the plasmid donor. In accordance with the above, in order to establish an adequate method for selection, plasmid pBBRlMCS3 (Kovach et al., 1995), carrying a gene for tetracycline resistance, was introduced into its cells. The Sinorhizobium sp. M14 strain is susceptible to tetracycline, which allows for the removal of the cells of the donor strain in conjugation. The plasmid pBBRlMCS3 (introduced into Escherichia coli TGI cells beforehand) was introduced into the cells of the A tumefaciens LBA288 strain, by triparental mating, in which the pRK2013 helper plasmid (Ditta et al. 1980) (introduced into Escherichia coli TGI cells beforehand) was used. The helper plasmid facilitates conjugation in case of strains, carrying genes responsible for the transfer only, and not for mobilization to the transfer. The conjugation was carried out according to Sambrook and Russel (2001), and for the selection of transconjugants, LB medium supplemented with tetracycline (20μ§/ηύ) (eliminating the cells of the recipient) and rifampicin (50μ§/ηύ) (eliminating the cells of the donor strain and of the strain harbouring the helper plasmid - in both cases Escherichia coli TGI) was used. The prepared donor cultures (E. coli TGI with the plasmid pBBRlMCS3), the helper strain (E. coli TGI with the plasmid pRK2013) and the recipient (A tumefaciens LBA288) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB medium. After 24-hour incubation at 30°C, bacterial colonies were washed

0 -3 off the surface of the petri dish with 2 ml of saline solution, and appropriate dilutions (10 - 10 " ) were plated on selective LB medium, supplemented with tetracycline and rifampicin, and then incubated for 48h at 30°C. As a result of conjugation, transconjugants, derivatives of A tumefaciens LBA288 harbouring the plasmid pBBRlMCS3, were obtained. For further analysis, one strain, named A tumefaciens PBBR-Tc, was selected. The obtained strain was then used as the recipient strain in conjugation with Sinorhizobium sp. M14 strain.

Introduction of the plasmid pSinA into the cells of strains resistant to tetracycline. Production of A. tumefaciens D10 strain (deposited as KKP2039p) In order to introduce the plasmid pSinA into the cells of the A tumefaciens PBBR-Tc strain, triparental mating was applied again (with the use of the pRK2013 helper plasmid, introduced into E. coli TGI cells) and additionally, biparental mating. In both of these types of conjugation, the Sinorhizobium sp. M14 strain was used as the donor, capable of arsenite oxidation and resistant to As (III) (up to 20mM) and susceptible to tetracycline. For the selection of transconjugants, LB medium (Sambrook and Russel, 2001), supplemented with 2.5 mM As(III) and tetracycline (20μ§/ιη1) was used. The prepared cultures of the donor (Sinorhizobium sp. M14 with the plasmid pSinA), the helper strain (E. coli TGI with the plasmid pRK2013) (in case of triparental mating) and the recipient (A tumefaciens PBBR-Tc) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB medium (Sambrook and Russel, 2001). After 24- hour incubation at 30°C, bacterial colonies were washed off the surface of the petri dish with 2

0 -3

ml of saline solution, and dilutions (10 -10 " ) were plated on selective LB medium, supplemented with tetracycline and sodium arsenite, and then incubated for 48h at 30°C. Potential transconjugants were subjected to the following analyses: 1. physiological analysis to determine the ability to oxidize As (III) in modified MSM medium (Drewniak et al., 2008) - in order to determine the ability to oxidize As (III), potential transconjugant strains were cultivated in MSM medium supplemented with arsenites (the sole energy source) at 30°C. After 5 days of incubation under aerobic conditions, 500 μΐ of the culture were collected and added to 500 μΐ of 0,1 M solution of silver nitrate. The result of the reaction between AgN0 3 and As (III) or As (V) is the formation of a coloured precipitate. A brown precipitate indicates the presence of Ag 3 As0 4 (silver orthoarsenate), while a yellow precipitate indicates the presence of Ag 3 As0 3 (silver arsenite). In case of testing for the ability to oxidise arsenites, the presence of a brown precipitate indicates that As (III) was oxidised to As (V).

2. DNA-DNA hybridization (Southern blot) - in order to identify plasmid pSinA genes in the genomes of potential transconjugants. Fragments of the genes located on the plasmid pSinA, amplified by PCR (using the primers shown in Table 2) and labelled with digoxigenin were used as probes. Hybridization was carried out against the plasmid DNA isolated from transconjugants, obtained by alkaline lysis and visualised by DNA electrophoresis.

3. PCR analyses - in order to identify plasmid pSinA genes in the genomes of potential transconjugants, PCR was performed using primers, described in Table 2.

4. visualization of plasmids of potential transconjugants obtained by alkaline lysis and visualized by DNA electrophoresis.

For the hybridization analysis and PCR analysis, genes and primers presented in Table 2 were used.

Table 2. Sequences of the primers used in PCR amplification of plasmid pSinA g chromosomal 16S rRNA genes

In both types of conjugation (bi- and tri- parental), transconjugants harbouring the plasmid pSinA were obtained. For further analysis, the A. tumefaciens D10 strain from biparental mating (deposited as KKP2039p) was chosen. This strain was capable of arsenite oxidation and of using them as an electron donor (energy source) (Fig. 2A). In addition, this strain has increased its tolerance to As(III) (Fig. 2C). To verify whether the constructed strain stably maintains the plasmid, a series of passages (4-6 times) in media without selection pressure was performed. The obtained results showed that the constructed A. tumefaciens D10 strain stably maintains the plasmid pSinA. After about 60 generations of growth in conditions without selection pressure (without arsenic) no plasmid-less cells were observed.

Example 2B.

In case we do not want to apply selection pressure associated with the use of antibiotics, there is a possibility of indirect selection of transconjugants harbouring plasmid pSinA or its derivative. For this purpose, bi- or triparental mating is carried out using minimal MSM medium as the selection medium, and sodium arsenite as the sole compound for the selection of potential transconjugants. Subsequently, an identification of approx. 100-200 randomly selected colonies of potential transconjugants is performed. Identification of the appropriate strains is performed using the analyses described in Example 2A. Example 3. Construction of the Paracoccus alcaliphilus strain, capable of chemolithotrophic arsenite oxidation

The strains into which the plasmid pSinA was introduced (e.g. A. tumefaciens deposited as KKP2039p (D10)) can also be used to construct further strains capable of arsenite oxidation. In order to confirm this assumption, the A. tumefaciens D10 strain was used for the transfer of the plasmid pSinA to the Paracoccus alcaliphilus JCM7364R strain (Bartosik et al., 2002). This strain is incapable of arsenite oxidation and is susceptible to As (III) (ImM of sodium arsenite inhibits its growth). As the method for introducing plasmid DNA, biparental mating, described in Sambrook and Russel (2001) was used. Construction of the P. alcaliphilus strain, resistant to kanamycin

Because the P. alcaliphilus JCM7364R strain carries no phenotypic characteristics that allow for the application of an adequate selection pressure to eliminate the cells of the plasmid donor, genetic manipulations were performed, involving introduction of the plasmid pBBRlMCS2 (Kovach et al., 1995), carrying resistance to kanamycin, into the cells of the P. alcaliphilus JCM7364R strain. The A. tumefaciens KKP2039p (D10) strain that was used as the donor in conjugation, is susceptible to kanamycin, which allowed for the removal of the cells of the donor strain in conjugation.

The plasmid pBBRlMCS2 introduced beforehand, into Escherichia coli TGI cells was introduced into the cells of the P. alcaliphilus JCM7364 strain using triparental mating, in which the pRK2013 helper plasmid (Ditta et al. 1980) (introduced into Escherichia coli TGI cells, beforehand) was used. Conjugation was carried out according to Sambrook and Russel (2001), and LB medium supplemented with kanamycin (50μ§/ιη1), which eliminates the cells of the recipient, and with rifampicin (50μ§/ηύ), which allows for the elimination of the cells of the donor strain and of the strain harbouring the helper plasmid - in both cases Escherichia coli TGI, was used for the selection of transconjugants. The prepared donor cultures (E. coli TGI with the pBBRlMCS2 plasmid), the helper strain (E. coli TGI with the pRK2013 plasmid) and the recipient (P. alcaliphilus JCM7364R) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB medium (Sambrook and Russel, 2001). After 24-hour incubation at 30°C, bacterial colonies were washed off the surface of the petri dish with 2 ml of saline

0 -3

solution, and appropriate dilutions (10 -10 " ) were plated on selective LB medium, supplemented with kanamycin and rifampicin, and then incubated for 48h at 30°C. As a result of conjugation, transconjugants, derivatives of P. alcaliphilus JCM7364R harbouring the plasmid pBBRlMCS2, were obtained. For further analysis, one strain, named P. alcaliphilus PBBR-Km, was selected. The obtained strain was then used as the recipient strain in conjugation with A tumefaciens D10 (deposited as KKP 2039p).

Introduction of the plasmid pSinA of A. tumefaciens KKP 2039p (D10) to P. alcaliphilus PBBR-Km. Production of the Paracoccus alcaliphilus KKP 2040p (CIO) strain.

In order to introduce the pSinA plasmid into the cells of the constructed P. alcaliphilus PBBR- Km strain, triparental mating was applied (using the pRK2013 helper plasmid, introduced into E. coli TGI cells). The A tumefaciens D10 strain, capable of arsenite oxidation and resistant to As (III) (up to 15mM) and susceptible to kanamycin was used as the donor. For the selection of transconjugants, LB medium supplemented with 2.5 mM As(III) and kanamycin (50μ§/ιη1) was used. The prepared cultures of the donor (A tumefaciens D 10 with the plasmid pSinA), the helper strain (E. coli TGI with the pRK2013 plasmid), and the recipient (P. alcaliphilus PBBR- Km) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB medium. After 24-hour incubation at 30°C, bacterial colonies were washed off the surface of the petri dish

0 -3

with 2 ml of saline solution, and dilutions (10 -10 " ) were plated on selective LB medium, supplemented with kanamycin and sodium arsenite, and then incubated for 48h at 30°C. Potential transconjugants were subjected to analyses analogous to those in Example 2A.

As a result of conjugation, P. alcaliphilus transconjugants harbouring the plasmid pSinA were obtained. For further analysis, the P. alcaliphilus CIO strain was chosen. This strain acquired the ability to oxidise arsenites and to use them as an electron donor (energy source) (Fig. 2B). In addition, this strain has increased its tolerance to As(III) (Fig. 2C). To verify whether the constructed strain stably maintains the plasmid, a series of passages (4-6 times) in media without selection pressure was performed. The obtained results showed that the constructed P. alcaliphilus CIO strain stably maintains the plasmid pSinA. After about 60 generations of growth in conditions without selection pressure (without arsenic) no plasmid-less cells were observed.

Example 4. Introduction of the plasmid to the cells of indigenous microflora of arsenic contaminated environments by means of bioaugmentation with Sinorhizobium sp. M14 strain

In order to demonstrate that the plasmid pSinA can be used in bioaugmentation of indigenous microflora of arsenic contaminated environments, an experiment was conducted on two different soil samples coming from the gold mine area in Zloty Stok. The soil designated as ZP (I) came from the vicinity of the Zloty Potok and contained from 1149,3 to 1241 mg of As/kg of soil. The soil designated as PT (II) came from the vicinity of the Potok Trujaca and contained from 528 to 532 mg of As/kg of soil. The experiment was carried out for 60 days in microcosms, supplemented with 100 g of non-sterile soil, to which the Sinorhizobium sp. M14 strain was added. The soil not enriched with the M14 strain was used as the control. At the beginning of the experiment, and every 15 days, samples of soil were collected, and the bacteria were plated on solid MSM medium (Drewniak et al., 2008) with 5mM sodium arsenite. The grown cultures were passaged to LB medium with 5mM As(III) and to liquid MSM medium with 5mM of As(III). In order to verify whether the grown colonies (potential transconjugants) harbour the plasmid pSinA, the following analyses were performed: (i) physiological analysis to determine the ability to oxidize As(III) on the modified MSM medium; (ii) DNA-DNA hybridization (Southern blot) in order to identify pSinA plasmid genes in the genomes of potential transconjugants; (iii) PCR analyses, in order to identify plasmid pSinA genes in the genomes of potential transconjugants; (iv) visualization of plasmids and megaplasmids of potential transconjugants. For the hybridization analysis and PCR analysis, genes and primers presented in Table 2 were used. After 60 days of cultivation, in both soil samples, transconjugants harbouring the plasmid pSinA were identified. Depending on the type of soil, transconjugants constituted for 25-40% of all arsenite-oxidising bacteria isolated from microcosms (Fig. 3). In Table 3 below, a list of identified strains, to which the plasmid pSinA has been introduced, has been presented.

Table 3. Taxonomic classification of the obtained soil transconjugants harbouring the plasmid pSinA

Name of Taxonomic group Similarity to the sequences deposited in the the strain GenBank database (GenBank no) and identity[%]

Soil transconjugants harbouring the plasmid pSinA, isolated from the soil ZP (I)

SZP1 Alphaproteobacteria Ensifer adhaerens strain REG34

(EU647697.1) [100%]

SZP2 Alphaproteobacteria Sinorhizobium sp. S1-2B

(AY505137.1) [99%]

SZP3 Alphaproteobacteria Sinorhizobium sp. TB8-2

(AY505141.1) [99%]

SZP4 Gammaproteobacteria Pseudomonas marginalis strain LMG 2238

(HE586396.1) [97%]

Soil transconjugants harbouring the plasmid pSinA, isolated from the soil PT (II)

SPT1 Gammaproteobacteria Pseudomonas sp. PSA A4(4)

(DQ628969.1) [97%]

SPT2 Gammaproteobacteria Pseudomonas jessenii strain Gd4F

(GU391474.1) [99%]

SPT3 Gammaproteobacteria Pseudomonas sp. BIHB 813

(EF437218.1) [99%]

SPT4 Alphaproteobacteria Brevundimonas sp. sp. CCBAU

(JF772569.1) [99%]

SPT5 Gammaproteobacteria Pseudomonas sp. OS8

(EF491958.1) [99%]

Among the transconjugants harbouring the pSinA plasmid, there are strains classified as Alpha- and Gammaproteobacteria. All the constructed strains were capable of arsenite oxidation and of using them as an electron donor (energy source), and stably maintained the plasmid pSinA (after about 60 generations of growth in a medium without selection pressure).

The obtained results indicate the possibilities of a horizontal transfer of arsenic metabolism genes using the plasmid pSinA. This plasmid can be transferred between species belonging to Alphaproteobacteria and Gammaproteobacteria due to the presence of a broad host range replication system and conjugational transfer system. Due to the presence of a set of genes responsible for the arsenite metabolism, the strains harbouring the plasmid pSinA characterised by high tolerance to arsenic compounds and are capable of arsenite oxidation.

Example 5. Analysis of the accumulation of arsenic by the strains harbouring the plasmid pSinA and oxidation performance analysis

Oxidation performance analysis was carried out for the Sinorhizobium sp. M14, A tumefaciens KKP 2039p (D10) and P. alcaliphilus KKP 2040p (CIO) strains. Growth experiment and the performance analysis were carried out in MSM medium, enriched with arsenites as the sole source of energy, at 22°C for 120 hours. From culture fluids, initially containing 5mM (375ppm) of sodium arsenite, samples were collected every 24 hours, and As(III) and As(V) content was determined (Drewniak et al., 2008).

The performance analysis of arsenite oxidation to arsenates revealed, that the initial Sinorhizobium sp. M14 strain completely oxidizes arsenites to arsenates, which are partially removed out of the cell, and partially accumulated inside the cell. Of the initial concentration of 388 mg/L of As(III), after 120 hours of incubation, 155 mg/L of As (V) remained (Fig. 4), which, as the As (III) content was zero, indicates that part of arsenic is accumulated in/on the Sinorhizobium sp. M14 cells. In order to verify whether the Sinorhizobium sp. M14 strain accumulates arsenic, cells cultured in MSM medium supplemented with arsenites were observed under transmission electron microscope (TEM) and were subjected to X-ray analysis. It was observed that, in the M14 cells, circular granules of high electron density are present (Fig. 5). All the cells cultured in medium supplemented with arsenic contained at least two„granules" each, and more than 90% contained three to five of them. No granules were observed in the cells cultured in medium without the addition of arsenic. The conducted analysis showed that the granules present in the Sinorhizobium sp. M14 cells contain mainly arsenic, iron and molybdenum (Fig. 5).

Oxidation performance analysis of the A tumefaciens KKP 2039p and P. alcaliphilus KKP 2040p strains showed, that both strains, after 120 hours of cultivation, completely oxidize arsenites to arsenates, all of which are removed out of the cell (Fig. 4). On the basis of the data obtained, it has been found that, unlike the Sinorhizobium sp. M14 strain, from which the plasmid pSinA originates, the Agrobacterium tumefaciens KKP 2039p, and Paracoccus alcaliphilus KKP 2040p strains, do not accumulate arsenic in their produced biomass and they show increased efficiency of oxidation of As (III) to As (V). Example 6. Introduction of the plasmid to the cells of indigenous microflora of arsenic contaminated environments by means of bioaugmentation with the A. tumefaciens KKP 2039p (D10) strain

In order to demonstrate that the newly constructed A tumefaciens KKP 2039p strain and the plasmid pSinA introduced into its cells can be used in bioaugmentation of the indigenous microflora of arsenic contaminated environments, an experiment was conducted on soil samples coming from the gold mine area in Zloty Stok, designated as ZP (I). The experiment was carried out for 15 days in 100 ml of liquid MSM medium (Drewniak et al., 2008), supplemented with 10 g of non-sterile soil, to which A tumefaciens KKP 2039p was added. After 15 days of incubation at room temperature, samples of soil were collected and the bacteria were plated on solid MSM medium with 5mM sodium arsenite. The grown cultures were passaged to LB medium with 5mM As(III) and to liquid MSM medium with 5mM of As(III). In order to verify whether the grown colonies (potential transconjugants) harbour the plasmid pSinA, their ability to oxidize As(III) was tested in modified MSM medium. All strains [the donor (A tumefaciens KKP 2039p) and potential transconjugants] capable of arsenite oxidation were then subjected to detailed analyses: (i) verification of the presence of the plasmid pSinA through the identification of plasmid pSinA genes (aoxB, rep A tral, orfl2) in the genomes of potential transconjugants using PCR; (ii) identification of the donor strain (A tumefaciens KKP 2039p) and transconjugants, by analysis of restriction fragments of 16S rRNA genes (iii) visualization of plasmids and megaplasmids of potential transconjugants. For PCR analysis, genes and primers presented in Table 2 were used. The frequency of plasmid pSinA transfer from the cells of A tumefaciens KKP 2039p to the cells of indigenous bacteria is shown in Fig. 6.

Example 7. Introduction of the plasmid to the cells of indigenous microflora of arsenic contaminated environments by means of bioaugmentation with P. alcaliphilus KKP 2040p

In order to demonstrate that the newly constructed P. alcaliphilus KKP 2040p strain and the plasmid pSinA introduced into its cells can be used in bioaugmentation of the indigenous microflora of arsenic contaminated environments, an experiment was conducted on soil samples coming from the gold mine area in Zloty Stok, designated as ZP (I). The experiment was carried out for 15 days in 100 ml of liquid MSM medium (Drewniak et al., 2008), supplemented with 10 g of non-sterile soil, to which P. alcaliphilus KKP 2040p was added. After 15 days of incubation at room temperature, samples of soil were collected and the bacteria were plated on solid MSM medium with 5mM sodium arsenite. The grown cultures were passaged to LB medium with 5mM As(III) and to liquid MSM medium with 5mM of As(III). In order to verify whether the grown colonies (potential transconjugants) harbour the plasmid pSinA, analyses were carried out as in Example 6. The frequency of plasmid pSinA transfer from the cells of P. alcaliphilus KKP 2040p to the cells of indigenous bacteria is shown in Fig. 6.

Example 8. Construction of the vector carrying a gene module coding for the proteins involved in arsenite oxidation and its use for the production of strains capable of oxidizing arsenites

In order to demonstrate, which genes located on plasmid pSinA (SEQ ID NO: 1) encode proteins responsible for arsenite oxidation, the aio module, comprising aioXSRABmoeA genes, was cloned in the vector pBBRl-MCS2 (Km 1 ), in the Escherichia coli TOP10 strain, and then its functionality was tested.

In order to clone the aio module, amplification of a DNA fragment of the size 10077 bp (comprising the region from position 24376 to 34453 in the genome of pSinA) was performed on a DNA template of the plasmid pSinA, isolated by alkaline lysis. For PCR reaction, the following oligonucleotides were used as primers:

AIOf_XbaI: ggtggctetagaCAGCGGCTTCACACATAGTCCCCAG [position in the genome of plasmid pSinA: 24376-24400; the underlined sequence is the restriction site recognized by the enzyme Xbal (TCTAGA)], and

AIOr_Bsul5: ggtaTCGATGCACCCACGATGGCGAGAG [position in the genome of plasmid pSinA: 34430-34453; the underlined sequence is the restriction site recognized by the enzyme BsuRI (Clal) (ATCGAT)] For the amplification, Phusion® High-Fidelity DNA Polymerase (Thermo Scientific) was used.

The obtained PCR product (10077 bp) was cloned into a plasmid vector: pBBRlMCS-2 (Km 1 ) (Kovach et al., 1995) digested (linearized) with Smal. The ligation mixture of the PCR product and the vector pBBRlMCS2 digested with the enzyme Smal (CCC^GGG) was introduced, by means of chemical transformation, using the calcium-rubidium method according to Kushner (1978), into the cells of Escherichia coli ToplO strain [mcrA A(mrr-hsdRMS- mcrBC) (p801acZAM15 AlacX74 recAl araD139 A(ara-leu)7697 galU galK rpsL endAl nupG]. As the selection medium, complete LB medium with kanamycin (30 μ§/ιη1), IPTG (0,5 μg), and X-gal (40 μ§/ιη1) was used.

From the pool of the obtained transformants (white colonies resistant to kanamycin) strains that were harbouring a plasmid of the appropriate size: 15221 bp [pBBRlMCS2 (5144 bp) + aio module - (10077 bp)] were selected. The presence of the constructed plasmid was confirmed by electrophoretic analysis and sequencing. The Escherichia coli AIO strain (derivative of the E.coli TOP10 strain), harbouring the plasmid pAIOl (derivative of pBBRlMCS2 with cloned aio module), was selected for further analysis.

In order to demonstrate that the constructed plasmid pAIOl can be used for constructing strains capable of arsenite oxidation, the plasmid pAIOl was introduced into 5 strains belonging to Alphaproteobacteria, Betatproteobacteria and Gammaproteobacteria. For the construction, the following strains were selected:

(i) Agrobacterium tumefaciens LBA288 and Paracoccus aminovorans JCM7685 (Alphaproteobacteria) as well as Stenotrophomonas sp. LM24R (Gammaproteobacteria) incapable of arsenite oxidation and susceptible to As (III) (lmM of sodium arsenite inhibits the growth of these strains),

(ii) Brevundimonas sp. OS24R (Alphaproteobacteria) and Pseudomonas sp. OS29R (Gammaproteobacteria) incapable of arsenite oxidation, but resistant to As (III).

As the method for introducing plasmid DNA, triparental mating, described in Sambrook and Russel, 2001, was used. The E. coli AIO strain, harbouring the plasmid pAIOl, carrying the genes for arsenite oxidase and determining kanamycin resistance, was used as the donor. The prepared cultures of the donor (E. coli AIO with the plasmid pAIOl), the helper strain (E. coli TGI with the plasmid pRK2013) and the recipient (A tumefaciens LBA288, P. aminovorans JCM7685, Stenotrophomonas sp. LM24R, Brevundimonas sp. OS24R, and Pseudomonas sp. OS29R) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB. After 24- hour incubation at 30°C, bacterial colonies were washed off the surface of the petri dish with 2

0 -3

ml of saline solution, and appropriate dilutions (10 - 10 " ) were plated on selective LB medium, supplemented with kanamycin (50μ§/ηύ), which eliminates the cells of the recipient, and rifampicin (50μ§/ιη1), which allows for the elimination of the cells of the donor strain and of the strain harbouring the helper plasmid. They were subsequently incubated for 48h at 30°C. Potential transconjugants were subjected to the following analyses:

(i) verification of the restriction pattern of 16S rRNA genes [isolation of DNA, amplification of 16S rRNA genes using primers 27F and 1492R (Lane, 1991), digestion with the restriction enzyme Haelll, DNA electrophoresis],

(ii) analysis for the presence of the plasmid pAIOl in the transconugant cells (alkaline lysis and visualization during DNA electrophoresis),

(iii) PCR analysis for the presence of arsenite oxidase genes (DNA amplification using primers aoxBF and aoxBR, and electrophoretic analysis of DNA), (iv) physiological analysis to determine the ability to oxidize As (III) in modified MSM medium (Drewniak et al., 2008) according to the description presented in Example 2A.

In all the conjugations, transconjugants harbouring the plasmid pAIOl were obtained. Physiological analysis with the AgN0 3 test revealed that all derivatives of the wild-type strains, previously incapable of arsenite oxidation, acquired the ability to oxidize arsenites with the introduction of the plasmid pAIOl [all strains oxidized As(III) to As(V) and a brown precipitate formed in the reaction with AgN0 3 ] .

In order to confirm that the newly constructed strains, harbouring the plasmid pAIOl, are capable of arsenite oxidation, an analysis of As(III) oxidation efficiency was carried out, on the example of Agrobacterium tumefaciens AIOl (derivative of A tumefaciens LBA288 harbouring the plasmid pAIOl) and Paracoccus aminovorans AI02 (derivative of P. aminovorans JCM7685 harbouring the plasmid pAIOl). Wild-type strains were used as the control. The growth experiment and the performance analysis were carried out in MSM medium, enriched with arsenites as the sole source of energy, and with 0,004% yeast extract as the source of vitamins, at 30°C for 96 hours. From culture fluids, initially containing 2mM (150ppm) of sodium arsenite, samples were collected every 24 hours, and As(III) and As(V) content was determined (Drewniak et al., 2008).

The performance analysis of oxidation of As(III) to As(V) (Fig. 7) revealed, that the strains harbouring the plasmid pAIOl are capable of complete arsenite oxidation and production of arsenates already within 72 hours from the beginning of the culture. On the other hand, wild- type strains deprived of the plasmid pAIOl are not capable of growth and arsenite oxidation, and thus, of producing arsenates.

The conducted experiments made it possible to confirm that the derivative of the plasmid pSinA, comprising the aio module (sequence from 24376 to 34453) can be used for constructing strains capable of arsenite oxidation.

Example 9. Construction of a vector carrying the gene module coding for the proteins involved in resistance to As (III) and its use for the production of strains resistant to arsenic

In order to demonstrate, which genes located on the plasmid pSinA (SEQ ID NO: 1) encode proteins responsible for the resistance to arsenites, the ars module, comprising arsRlClC2BtrkAmsfarsHarsR2 genes, was cloned in the vector pBBRl-MCS2 (Km 1 ), in the Escherichia coli TOP10 strain, and then its functionality was tested. In order to clone the ars module, amplification of a DNA fragment of the size 7544 bp (comprising the region from position 43229 to 50772 in the genome of pSinA) was performed on a DNA template of the plasmid pSinA, isolated by alkaline lysis. For PCR reaction, the following oligonucleotides were used as primers:

ArsF_Bsul5: ggtggtATCGATGAAAAGCAGGCAGAGGCC [position in the genome of the plasmid pSinA: 43229 - 43523; the underlined sequence is the restriction site recognized by BsuRI (Clal) (ATCGAT), that is present in the sequence of plasmid pSinA, while the sequence not present in plasmid pSinA was indicated by lower-case letters], and

ArsR_Xba: gtttetgag ACACTTCTTGACGTAGCCGCAACTAACTC [position in the genome of plasmid pSinA: 50744 - 50772; the underlined sequence is the restriction site recognized by the enzyme Xbal (TCTAGA)] For the amplification, Phusion® High-Fidelity DNA Polymerase (Thermo Scientific) was used.

The obtained PCR product (7544 bp) was digested with the enzymes Bsul5I and Xbal, and subsequently, was cloned into the vector pBluescriptKSII(+) (Stratagene) previously cleaved with the restriction enzymes Bsul5I and Xbal. The ligation mixture of the PCR product and the vector pBluescriptKSII(+) was introduced, by means of chemical transformation, using the calcium-rubidium method according to Kushner (1978), into the cells of Escherichia coli TOPlOF'strain: F'{lacIqTnlO(TetR)} mcrA A(mrr-hsdRMS-mcrBC) <D801acZAM15 AlacX74 recAl araD139 A(ara-leu)7697 galU galK rpsL endAl nupG. As the selection medium, complete LB medium with ampicillin (150 μ§/ιη1), IPTG (0,5 μg), X-gal (40 μ§/πι1) was used. From the pool of the obtained transformants (white colonies resistant to ampicillin), the strains that were harbouring a plasmid of the appropriate size: 10456 bp (pBlue scrip tKSII(+) - 2912 + ars module - 7544 bp) were selected. The presence of the constructed plasmid was confirmed by electrophoretic analysis and sequencing. The Escherichia coli ARS l strain (derivative of E.coli TOPI OF' strain) harbouring the plasmid pKS_Ars (derivative of pBluescriptKSII with cloned ars module), was selected for further analysis.

As the use of the plasmid pBluescriptKSII is limited to the strains of Escherichia coli as the only host, ars module was cloned into the broad-host-range plasmid pCM62, carrying resistance to tetracycline (Marx and Lindstrom, 2001). For this purpose, the plasmid pKS_Ars (isolated from Escherichia coli ARS l by alkaline lysis) was digested with the restriction enzymes Vspl, Xbal. Subsequently, the obtained DNA fragment of the size of 7742 bp, containing the module ars, was cloned into the vector pCM62 previously digested with the enzymes Vspl and Xbal. The ligation mixture of the DNA fragment of the plasmid pKS-Ars (containing the ars module) and the vector pCM62 was introduced, by means of chemical transformation, into the cells of Escherichia coli TOP10F strain [F- mcrA A(mrr-hsdRMS- mcrBC) cp801acZAM15 AlacX74 nupG recAl araD139 A(ara-leu)7697 galE15 galK16 rpsL(Str R ) endAl λ ~ ]. As the selection medium, complete LB medium with tetracycline (10 μ§/ιη1) was used. From the pool of the obtained transformants (colonies resistant to tetracycline), the strains that were harbouring a plasmid of the appropriate size: 14407 bp (pCM62 - 6863 bp + ars module - 7544 bp) were selected. The presence of the constructed plasmid was confirmed by electrophoretic analysis and sequencing. The Escherichia coli ARS2 strain (derivative of E.coli TOP10F strain) harbouring the plasmid pARS l (derivative of pCM62 with cloned ars module), was selected for further analysis.

In order to demonstrate that the constructed plasmid pARS l can be used for constructing strains with increased resistance to arsenic, the plasmid pARS l was introduced into Agrobacterium tumefaciens LBA288, susceptible to As (III) (ImM of sodium arsenite inhibits the growth of LBA2888 cells), Paracoccus aminophilus JCM7686 showing low resistance to As(III) (5mM of sodium arsenite inhibits the growth of the cells of the JCM7686 strain), and Brevundimonas sp. OS24R showing high resistance to As (III) (lOmM of sodium arsenite inhibits the growth of OS24R cells). As the method for introducing plasmid DNA, triparental mating, described in Sambrook and Russel, 2001, was used. The E. coli ARS 1 strain, which harbours the plasmid pARS l, carrying the genes for arsenite oxidase and determining resistance to tetracycline, was used as the donor. The prepared cultures of the donor (E. coli ARS 1 with the plasmid pARS l), the helper strain (E. coli TGI with the plasmid pRK2013) and the recipient (Agrobacterium tumefaciens LBA288, Brevundimonas sp. OS24R, P. aminophilus JCM7686) were mixed in a ratio 1 : 1 :2, and then 100 μΐ of the mixture were plated on LB. After 24-hour incubation at 30°C, bacterial colonies were washed off the surface of the petri dish with 2 ml of saline solution, and appropriate dilutions (10 0 -10 - " 3 ) were plated on selective LB medium, supplemented with tetracycline (10 μ§/ιη1), which eliminates the cells of the recipient, and rifampicin (50μ§/ιη1), which allows for the elimination of the cells of the donor strain and of the strain harbouring the helper plasmid. They were subsequently incubated for 48h at 30°C. Potential transconjugants were subjected to the following analyses:

(i) verification of the restriction pattern of 16S rRNA genes [isolation of DNA, amplification of 16S rRNA genes using primers 27F and 1492R (Lane, 1991), digestion with the restriction enzyme Haelll, DNA electrophoresis],

(ii) analysis for the presence of the plasmid pARS 1 in the transconjugant cells (alkaline lysis and visualization during DNA electrophoresis), (iii) PCR analysis for the presence of cytoplasmic arsenate reductase genes [DNA amplification using primers ParsH-L (TGACGTAGCCGCAACTAACT - position in the genome of pSinA: 50745-50764) and ParsH-P (TGGCTTGTGCTGCGAATAAG - position in the genome of pSinA: 50155-50174) and electrophoretic analysis of DNA]. In all the conjugations, transconjugants harbouring the plasmid pARS l were obtained. To confirm that the newly constructed strains, harbouring the plasmid pARS l, have an increased resistance to arsenic, analysis of MIC - minimal concentration of As(III), inhibiting the growth of the following strains: Agrobacterium tumefaciens ARS3 (derivative of tumefaciens LBA288 harbouring the plasmid pARS l), Brevundimonas sp. ARS4 (derivative of Brevundimonas sp. sp. OS24R harbouring the plasmid pARS l), P. aminophilus ARS5 (derivative of P. aminophilus JCM7686 harbouring the plasmid pARS l) was carried out. Wild- type strains were used as the control. Growth experiment and MIC analysis for As(III) was carried out in LB medium, with various concentrations of sodium arsenite (up to 20mM). After 48h of cultivation at 30°C, optical density of cultures at OD 6 oonm was monitored. The conducted analysis revealed that all the investigated strains harbouring the plasmid pARS l increased their tolerance to the presence of sodium arsenite, in relation to their related wild-type strains (Fig. 8). MIC for As(III) for A tumefaciens LBA288 strain was ImM, while for its derivative, comprising the plasmid pARS l, 20mM; for P. aminophilus JCM7686R strain 5mM, while for its derivative, containing the plasmid pARS l, 20mM. In turn Brevundimonas sp. OS24R could tolerate the maximum of lOmM of As(III), and its derivative harbouring the plasmid pARS l was resistant to 20mM of As(III). The conducted analyses allowed to confirm that the derivative of the plasmid pSinA, comprising the ars module (sequence from 43229 to 50772) can be used for constructing strains with increased resistance to arsenic.

In the presented embodiments, the inventors have demonstrated the possibility of using a natural, genetically unmodified plasmid pSinA of its functional derivatives for constructing strains capable of arsenite oxidation, particularly preferably strains not accumulating arsenic compounds. Novel strains were produced: Agrobacterium tumefaciens (D10), deposited under the number KKP 2039p and Paracoccus alcaliphilus (CIO) deposited under the number KKP 2040p, which do not accumulate arsenic, and do not store it in their produced biomass, and are characterized by an increased efficiency of oxidation of As (III) to As (V). It was unexpectedly found, that the use of the pSinA plasmid or its functional derivatives is not limited to strains originally capable of arsenite oxidation. Strains that are completely incapable of arsenite oxidation, acquire this ability with the acquisition of the pSinA plasmid. Introduction of the plasmid pSinA into the cells of the host, ensures their acquisition of resistance to arsenites and arsenates, as well as to other heavy metals.

Moreover, it was demonstrated, that the application of the Agrobacterium tumefaciens KKP 2039p, Paracoccus alcaliphilus KKP 2040p or Sinorhizobium sp. M14 strains, and other strains harbouring the plasmid pSinA, in the removal of arsenic by in situ methods and based on oxidation of As (III) to As (V), ensures the stability of this process. If the introduced strains will not be able to survive in the new conditions, then through the horizontal gene transfer they will pass the plasmid to the cells of indigenous microflora, and this, in turn, will ensure their capability of arsenite oxidation in a specific environment. It was also demonstrated that the nucleotide sequence corresponding to nucleotides

24376-34453 in SEQ ID NO: 1 or its functional derivative, which contains the aio module of pSinA, gives the bacterial strains, to which it was introduced, the ability to oxidize arsenites and/or produce arsenates, and therefore this derivative of the plasmid pSinA can be used for producing bacterial strains, which after the introduction of such a sequence acquire the ability to oxidize arsenites and/or produce arsenates and can be used in applications that require such strains.

It was also demonstrated that the nucleotide sequence corresponding to nucleotides 43229-50772 in SEQ ID NO: 1 or its functional derivative, which contains the ars module of pSinA, gives the bacterial strains, to which it was introduced, an increased resistance to arsenic, and therefore this derivative of the plasmid pSinA can be used for producing bacterial strains, which after the introduction of such a sequence increase their resistance to arsenic and can be used in applications that require such strains.

Literature cited in the description, included herein as references:

- Bartosik, D., Baj, J., Piechucka, E., Waker, E., and Wlodarczyk, M. 2002. Comparative characterization of repABC-type replicons of Paracoccus pantotrophus composite plasmids. Plasmid 48: 130-141

- Chwirka J.D., B.M. Thomson and J.M. Stomp. 2000. Removing arsenic from groundwater. J. Am. Water Works Assoc. 92:79-88.

- Ditta G., S. Stanfield, D. Corbin i D.R. Helinski. 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77:7347-51.

- Drewniak, L., 2009. Characterization of arsenic bacteria isolated from Zloty Stok gold mine. PhD thesis. Laboratory of Environmental Pollution Analysis, University of Warsaw. Warsaw - Drewniak, L., Matlakowska, R., Sklodowska, A., 2008. Arsenite and arsenate metabolism of Sinorhizobium sp. M14 living in the extreme environment of the Zloty Stok gold mine. Geomicrobiology Journal 25 (7-8), 363-370. - Drewniak, L., Matlakowska, R., Rewerski, B., Sklodowska, A., 2010. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 104, 437-442. -Driehaus W., R. Seith and M.R. Jekel. 1995. Oxidation of arsenic(III) with manganese oxides in water treatment. Water Res. 29:297-305.

- Hooykaas, P.J.J. , den Dulk-Ras, H., Schilperoort, R.A. 1980. Molecular mechanism of Ti plasmid mobilization by R plasmids: isolation of Ti plasmids with transposon-insertions in Agrobacterium tumefaciens. Plasmid 4: 64-75.

- Kostal J., R. Yang, C.H. Wu, A. Mulchandani and W. Chen. 2004. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl. Environ. Microbiol. 70:4582- 7.

- Kovach M.E., Elzer P.H., Hill D. S., Robertson G. T.,. Farris M. A., Roop R.M. and K.M. Peterson. 1995. Four new derivatives of the broad-host-range cloning vector pBBRlMCS, carrying different antibiotic -resistance cassettes. Gene 166: 175-176

- Lievremont D., A. N'Negue M, P. Behra and M.C. Lett. 2003. Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite. Chemosphere 51:419-28.

- Pattanayak J., K. Mondal, S. Mathew and S.B. Lalvani. 2000. A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38:589-596.

- Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

- Simeonova D.D., K. Micheva, D.A. Muller, F. Lagarde, M.C. Lett, V.I. Groudeva and D. Lievremont. 2005. Arsenite oxidation in batch reactors with alginate-immobilized ULPAsl strain. Biotechnol. Bioeng. 91:441-6.

- Tripathi R.D., S. Srivastava, S. Mishra, N. Singh, R. Tuli, D.K. Gupta and F.J. Maathuis. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25: 158- 65.

- Wilkie J. A. and J.G. Hering. 1998. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Sci. Technol. 657-662.

- Yang C, Xu L, Yan L, Xu Y. (2010) Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability. J Environ Sci Health A Tox Hazard Subst Environ Eng.;45(6):732-7.

In the following sequence listing:

- SEQ ID NO: 1 corresponds to the complete nucleotide sequence of the plasmid pSinA

SEQUENCE LISTING

<110> University of Warsaw

<120> New bacterial strains, plasmids , method for producing bacterial strains capable of chemolithotrophic arsenites oxidation and uses thereof.

<130> PK/1609/AGR/PCT

<160> 1

<170> Patentln version 3.3

<210> 1

<211> 108938

<212> DNA

<213> Sinorhizobium sp.

<400> 1

aagtcggaga gacggcctgt cggcgtcttg aatatttgcg aacagattgt aagggaagga 60 gattttggac gggaatttat accaggctaa atctctggaa acgttgaaaa aaaaggcggc 120 acagtttgtt gcatcaaaat gcgttaaggt tttgttaacc ctatttctct tgcggacaga 180 cgggaatcgt gcgctatctt cagacggtaa tagcgcgtct gacgctgata aaccgtcttg 240 aacctgaggc taaagtgaac gtgatcgaca ggcacatcag tagggcagca acgtccgcac 300 atattacgca gcgcgcggaa gctctatccg cgagactccg tgcggtcggt gaacgcgcct 360 ttcccccgac cgcgcagaag tcgcttcggt cgttcacctc tggggaggta gccgagatcg 420 ttggtgtttc ggatggctac ctgcgtcaac tctccctgga tggcctcggc ccggcacctg 480 atatcgggac cggtggccga cgctcctata cacttgaaca aatcaatggc ttgcggcagt 540 acctcgccga ggcacgcccc aaggaagcag tgcgtttctg gccccgtcgc cgggagggtg 600 aaaaacttca aatcatcact gtcgccaatt ttaagggtgg ctcggccaag accacgacat 660 ctctatatct cgcgcagggt ctggcgctcc agggttatcg agtccttgcc atagatcttg 720 atccccaggc ctcgctctcc gcgatgtttg gttatcagcc ggaattcgat gttgcggaga 780 ataccacgat atacggcgcc atcaggtatg atgaccagcg tgtggcgatg aaagatgtga 840 tccgcaagac ctacttcacg ggcattagca tcgttcccgg caatcttgag ctgatggagt 900 ttgagcatca gaccccgcga tttatgcttc agaaccgagg acggccagaa gatttgtttt 960 tcaggcgtgt cgcaagcgcc attgatcagg tcaaagacga gtacgacatt gtcgttgttg 1020 actgccctcc tcagcttggc ttcctcacca tgggtgctct gaatgcagcg acaggaatga 1080 ttgtcaccgt ccacccacaa atggtggacg tagcttccat gagccaattt ctcctaatga 1140 cgtccgatct tgtctccgta atcgaagagg cgggaggtaa gctcgactat gattttctga 1200 ggttccttgt gacccgccat gatccccgag atgtacctga acaggaaatc gtcggtttac 1260 ttcgggacgt attcggtacc gatgtgatgg ctgcggcagc atggaaatcg accgcgattg 1320 ctaatgccgg tttgaccaag caatctcttt acgagttgtc gcgtggcgcg gtcggtcgat 1380 cgacctatga tcgagcgatg gaatccatca gtgccgtgaa tcacgaagct gtcggcctaa 1440 tcaatgaagt gtggggtaga tgatggtgct ccactctcaa aagaatcaat cgcttaactt 1500 gttgtcagct gacgacgtga tgtcgtcggg gctagtagtt aaacgttctg attggggaaa 1560 tgatagatga gcaaacggac tcaatcagtt cgcaatctct ttgccgcagg gcctgatgag 1620 gcgccgaccg tggacacacg tcaaccaatg cagcgcgtag cttcaggagc ggttcggtcg 1680 ttgaaggaca ctttttcgga agttgagagg gactacgaag aactcaagca aaaagttgct 1740 gacggcgctc ttccgattga cctcgatccg tctcttatcg acccatcccc cttcgccgat 1800 cgttttgcgg atcaggatgc ttcggctgtc gaagctctca aagcctcttt ccttgagcac 1860 gggcaagaaa taccaattct agtacgggct catccgactg agattggccg ttatcagatt 1920 tcttatggcc atcgtcgcgt acgagctgcc actgagcttg gtcttaaggt caaggcttac 1980 gtgcgcgaac ttagtgacga tcgccttgct gtcgcccaag gcattgaaaa ttcagctcgt 2040 gaagatctta cttttataga gcgttcaatg ttcgcgctga aactcgagga aggcgggttt 2100 gagaggactc tcattcaaac cgcgttgtcg gttgatcggc aggaagcatc caagctcatc 2160 agcgtaggcc gcgcagttcc tggttggctg gccgaagcga taggccgggc tccgaagata 2220 ggtcgcccgc ggtggcagga gcttgctgac ggtctgaaaa atgcaggagc ggaaagcaaa 2280 gcgcgcaagg ctacaactga caagtctttt ggtcacaaga cttccgatga tcgctttatc 2340 gcggttcttc gcgcgataaa ggcgatagat agaccgagcg cggaaaagac gccggtactt 2400 tccgcaaagt ctgccgaggg tactaagatc gctaccctcg cggtctccgg cagggtttgt 2460 aaaattgaga ttgatagaga tcgggacgag gcgtttgcca agttcgtgat ggatcgaatt 2520 cctgatcttt acgagaaatt ccggcagacc gagcccggat ccgaaggtta gagaaggaag 2580 aaaccgcaaa agaaaaaggc ccccaaacgt tgccgtcgtg gaagcctctc tcattggtct 2640 aagcagcctg agaatcgcat ttccatgaat cccagtcaat agtctttggc accgatttgg 2700 tgagctgatt ccttttgccg atcgaaaggt gaaagaaaaa tgcgaagtgg aagtgtaacg 2760 acgccattcg ggcggcggcc gatgacgctt gcgttggtca ggacccaatt ccaggcagcg 2820 gacatccgta agggaaaagt tgcggacaaa tggaaagtat accgcgatgc ctgcgaagca 2880 cgcgcgctac ttggcctgcg cgatagagcg cttgctgtgc tcaacgctct cctgtcgttt 2940 tatccagaga cggacctcag cgaagatgcg aaccttgtgg tctttccgtc taatgctcaa 3000 ctgagcgcac gagcgaacgg catcgcgggc acgactctga gagagaactt ggctgtattg 3060 gtgggtgccg gactgataaa tcgtaacgac agtcccaatg gtaaacgcta cgtgagacgt 3120 ggcaaggacg gcgaggtgga gacagcatat gggttcagtc ttgccccatt gcttgcgagg 3180 gcggaagaac ttgctctcat ggcgcagcgg gtggccgagg aggcacgacg cttcaaggta 3240 gttaaggagc ggacgactat tgcgcgcagg gacgtgcgta agcttatcac ggctgctgtt 3300 gaagatggtg cgcctggcga ctgggcgacg atggagacaa tctacatagg ggccgtagca 3360 aggcttcgga ccgccaagtc gattgaggcc cttgaatcga tcctggacga actagaacta 3420 ttgcgcgaag gtgtactcag cgtattggaa agcaacatct tttcacaaaa aaccgctacc 3480 aatgacaacg aaatccgtca gcacatacag aattcaaata ccgaatctat aaatgaattt 3540 gaacctagct cagaaaaaga gcagggtggg aaaccgatgt tgaagtcaga ccgactggcc 3600 gagccgctaa agagtttccc tattggtttg gtgatgcgag catgccctga aattgcggcc 3660 tatgcgcctg gaggccaggt ccagagttgg agggacttga tgtccgcggc agtcgtggtt 3720 cggtcgacct tgggagtaag cgcttcagct tatcaggatg cttgcgaggc aatgggcgca 3780 gagaatgcgg ccgtcgcgat ggcggcgata cttgagcgag ctgggcacat caattccgct 3840 ggtggctatc tccgcgatct tacctccaga acgcgccgcg gtgaattttc gctcggcccg 3900 atgataatgg cgcttttgaa agtgaactct ggcggggcta taagtgcgtg atgttcccga 3960 taccaggagc tttcggaagc cgtcgattgt agtcagctga ctacaaacta accccctgtt 4020 gcagctaagg tttcttaatc acctgcgacg tccatattca ggagtcaaaa cagacgtttg 4080 caactgaaat agacgaacgt atttcgaaag tggtaccagc ggtccttttt tccgccgcgc 4140 ggtagggtag atagaagctt cagattgctt tgggaaacag agcggcgaaa tgcgcgttga 4200 gcatgacctt cgtttatcag ctcgtttttc ccaacgccac ggaaatacgg tttcagtgaa 4260 catgctgcca ttgccgtccg gaggacgacg gttcccttat aacaatcgcg tagcccggcc 4320 gctccgacgg gtcgcgttgt tgtagtagct tgacgcctgc tgcaccgatc ggtggcgcga 4380 ctgctccatc gcctccggca aaggaacgcc ccggtttgcg gcttcggtca aatagcccga 4440 ccgcaacccg tgcgcggaaa actcccccgc ctccagcccg gccatcgtcg cccgctgttt 4500 gacaatatcg ttgatcgcct tcggatcgag cgcccgacgg gaaacattcc cccagcgatc 4560 aatcgcccga aacacactgc cactttcaat cttggcggca acaagccagg cgctcagggc 4620 atcaaccggc cggccggtca gaaagacaac ttcatcgctg tcgccgctgc tggtctttgt 4680 gcggccgaga tggattgaca gcgagggcag gggagccccg ccctcaacgg cgatcggcgg 4740 ctcagtcgtc aactgttccc tgcgcagccc ggcaatctcg ctgcgacggc gcccacccga 4800 cgcaaagcca accatcagga tggcgcgatc gcggatgtca cgaaggctct cgctggcaca 4860 agtggctagc atttttgcca tgatgtctcc agtgaccgcc ttggcgctct tgcggcggcg 4920 ttggcgtggc acggcacgaa cggcgagccg gattgcggac ttaagggcag gggaggcaaa 4980 agcgccgtcg aaaccgcgcc acttggtcag tgtcgaccag ttggccagac gccggcgcac 5040 ggtatcgggc gcgtgcggcc cggttgatct gagaaagccg ccatctcgaa gggcctggtc 5100 aacctcagcc ggcatgccat ggtccggatc ggtttcgcgc ctcgctgggt cccagaggtg 5160 atgggcgaca aacttaagga gcagcgcctc gggcgccggc cagggaaggg cgccgccagt 5220 cgcggcgtgc gaccaggctt cgagatagcc gagatcggag gtcaacgccc gcagcgtatt 5280 ctcacccata ccttcgttga tcaggtgacg cagggtctcg acgtcctggt cggtcaggat 5340 ttcggcaagc ttgtcacgtc ggtcgatcgg cagcaccgac gcgatggtgt cgagctgttc 5400 ggcgcggttt aaaacattct gggtgacaga cgataccgac aaggtctttt tcgtcatagg 5460 acctgtccaa tgctaaatgt gcgtttgcaa aagttacgga aagcccgtat attccggaac 5520 aaaggagttc tgccatgacc tcgaccgtga cagcagcagc cgtttccaag aattttggcg 5580 cctatcagga tgccgcagtc cgcgagccgg tgattatcac caagaacggc cggccgcgca 5640 cggttctgat cgcctatgag gactatctgc gtctggccag acgcgaccgt cgcgtagatc 5700 tcaccacggc gatgagtgac gatgaacttg ccgccattga agcgtctcag atggagtcgg 5760 gtctcgatca tctcaacgcc gaactgctga cgggcaaaca tgctgccgac tgaaccaaaa 5820 gtcggttggg tctttcgtta ttcctatctc tggcactggc agcatctcga aggccgggag 5880 gagggcgaca aggaccgccc ggcgctggtg ttggcgattg ttgcgacctt ggacgatggc 5940 acgcccgcag tccgtgtcct gccgatcacg cactcgccgc cctctgatcc gagtgacgcg 6000 atcgaaatcc cgccggcgac aaaacggcgt cttggactgg acgacgaacg atcctggatt 6060 atcctgacgg aaagcaaccg gtttgtctgg ccgggaccgg atgtccggcc cgttgacagc 6120 gaaaccggct accttggccc tttgccaccg gcattgttca acgagatcaa gcgccgcttt 6180 gtcgaactgg cgcgcggcca gcgtcatcgc gccacgggcc gcagcgaata gcggcttagc 6240 tgtggtcgcg gatcttggct ggccgcgtct ttgatctgca atatcgagca aaatgggtcc 6300 tttgtgacca tcctagcgcc caattttacc gatttgcggt ctcaaatcaa tcacttccga 6360 taagggttac ttatcggggg tcagaagccg caggcccatt tgtcagaagt atagaactct 6420 aacaggtata tagatttccc ttaacgaatc atttaccata atttcaatgg tttacgatct 6480 cgcgaaattg cccctccaga gcctgttgag gccggtctca gaaacaggcg tcgcacttgc 6540 tcgtcttgac gagcgcatcg cccgttctcc cgttggcggg ggctttctcg agcgttccca 6600 tttcctcgag gcccatgcct cgctctgggt cgacggtgaa cttgtccatt tggaggacct 6660 cgttctgcac gacgcccttc gcgacatccg cgcacccacc cacgaactca ccatcgcccg 6720 cgacatcctg aaaacccgcc gtcgcatcgc cgcccatccc ccggcctggg cgctctctgc 6780 tcaaggcctc gcctccctct gcgggcaggc gtggcctgca gcatcgtcgg gtgtcgacgg 6840 agagagtttg ccggatggca atgttgtcag cgacactcgg ggtggggtag gggaggccga 6900 agatcctgat gccgacggtc ttagtgatgc gtttgccgcg atcgatgcgg ttcttgcccg 6960 ctcggacgcc gcgattgaag aagcgaagaa gccggggggc gcgaaaaacg cttcggacaa 7020 ggatccgttc gtctacgacc tcgactggga tgaggacgag cggctggcgg agtggcaggc 7080 cgtgctgacg cggtcccagg atctgccgcc ggtcctgcaa tccatcgtgg cgctcgacgc 7140 ctggaatgaa atcgccgtgc tccagcatgc gccgtggctc ggtcggctgc tggctgcctc 7200 gatcctgcgc gagagcggcg tcaccaccgg tggccatctc gcagcgatca atgtcgggct 7260 caaggctatt cccgtcgatc ggcgccggca tcgtgatcgc gagacgcggt tgctggcgat 7320 ttcaagggcg ttggtgattg ccgccgagac ggggctgaag gagcatgatc gcctggtgct 7380 ggcgcggcag atgatgatgc gcaaacttga gggacgccgg acgtcatcga ggctgccgga 7440 gcttgtcgag ctcgttatgg cgcggccgct gatctcggcc ggcatggtgg caaagacgct 7500 tgaggtcaca ccgcagggag cgcgccggat cgttcaggag cttggtttga gggagatgac 7560 cgggagaggg aggtttcggg cgtgggggat tgtctagaat gggtcagaac gagatgaaat 7620 cgaacgacag gccttgcgct atctataatt cggtcctatc tttcggggtg aattaggagg 7680 cgttcggatg gaacatctga caacggcaca ggcggctttt gtggtgggcg cgccgctgga 7740 catcttcaag aaggttgtcg agcgcgcgcc gattaagccg caactcgtga agcgaggtgg 7800 tcgaagcatt cggcagttcg gtcaagctga gctggtgttt ctccatgcct atgacgaact 7860 caaactggcg ctgacgccca agagccaatc cgagttctat gaggcgttgc ggacgacatc 7920 cctgaagcgc agtctcgcga aggaagtcgt gttcggcaaa cagcgctacg acatcggtca 7980 gcacctagtc ttcgtcgagc gcaagctgaa ggaactcgag aagctcaccg atcaggtcga 8040 cctatccggg aaggagccgg tcatccgagg cacgcacatc gaggcgcatc ggatcgctgc 8100 tcttctcaac gccggcgcca cggtcgaaga gattcttcgc gactatccct ccttgaagga 8160 acaacaggtc gtggcggcgc gcgtctatgc ggaggcgcat ccgaaggcgg gccggccgta 8220 cccgaagcaa acggcaaaag ccgccatgcg cgcagccgat cttagcgcgc tggatgactg 8280 agcttgaaat acctgctcga tacaaatgtc ctgaaagaga ttggtcgacc cgaaccgcac 8340 gagaatgtcg cggcttggct cgatactatc gatgattacc gatctcgcca tcagcgtgat 8400 ctcggttcga gagatttcga aaggcatcga gaagaagcgt acgaccgatg acgtcgtggc 8460 gaacgcgatc gccaaggctg ccgacgcaat cttcgcggct tatcaaggtc gtattctccc 8520 cgtcgacgag cctgtcgcac gccgttgggg tcagatgctc ggtcaatcag ataagaatat 8580 cgacgatacc ggcttggccg cgacagcgca ggtgaatgat cttatcatgg tgtcacgcaa 8640 cgtcgcggat tttcagggcc ggggcgtcac ggtccttgat ccgttcaaga agcctgccag 8700 atctgtgccc tcccaagatg tggcacgatg agcttcgacc ggatcggata agatatctaa 8760 attatctcag ccatccacaa ttctgcggaa cggatcacca aacacgtgca gggctaggaa 8820 gcgtgcagga tcatatcccg ttgcttttcc tacgtcctga ttggctttga agaccgcgtc 8880 tattacctga tctccagcat cccaacgttc caggaaggcc ggaaaccacc tcggtgtaat 8940 cgacgaagcg aggggccacg gtgacgccac aaccgtggag catcctcggt ccaacaactg 9000 acgcgtaagc ccaattgtca tgtttgccgc agggtgcttg tcgctacggc cgccgctgca 9060 gacaaacaaa accacgactc ctacattgcg aagagcgtct gccaagtcag acgcaagaat 9120 tcgcaaattg ccttcatcgg aaacctggtg aaaaaacggt tctccatccg ctacgctgcc 9180 gtgggcggct atcaccacaa gctgcgagcc ggcgaggtcc tccgggagcg ccgcagcggt 9240 attgagggat atattgctcg cctcgaaagt tggctgtaac caacgcccta tgctgctcag 9300 cgtgccttct tgattcagat ccgcggaaat ccatgccttt ctggttccat tcgattgcag 9360 cggctgtgtg cgggcgcttt ccaaccaaga gagcgatggc gcggaagcga tggcacggct 9420 tcgccccgcg aagtcgttgt cgacccagag caaattgaag gccagctgct ggagcttgct 9480 gtcggtgaca aagacaacct tgtccggcag cggtgtcgat aggccaagcc tttccgtcga 9540 cgtgtaaaac aggttcgctg ttttctcatc gacgccgtat cgatacggga attctttgct 9600 ccactgtcgg taatctgaca cggaaaacgt gtttgagggt tcgacacctg gcgtggatgc 9660 ggccccattc tccgcatcga gccggatcaa ccggtctttc gcatcgatac cgatcatgac 9720 gaaaccagct cccgccgaat gtctttccag catcgaaagt ggttcctctg gccctttgag 9780 ggccgaaacc ggttcggatg tggcctgcca gccaggtttg ggcaacgccc tgtcggaaag 9840 gagttcaatt gcgagtgcaa cgccgagact cgacgaagcg tcggcttcgt ggccaagaag 9900 ctttttgacc accggcacca tcttgcccga atcaaagccg gaatcctccg aatgtcggga 9960 tagttctatg cgctcgtgaa ccgcaaaaat ctggtcggcc gtcggtcttg cggaggctgc 10020 cgcacgggtc aactgttcga tcggaccctt aagccgctcg acaagggtgt caaagagcgc 10080 ctcgtcgtca ggatcgacgt ctatcccggc ctcgcgcgcc caagccaaaa tttgaccgag 10140 tatcaatgtt acaggtgcat ggtcgccggc gtacgatgcc gcgcgtcttc ctaggtctac 10200 ggcgtcctgc aggagggccg gcaacctcgc acgaaattcg ttcgcgtcgc gaaatccccc 10260 tttcagtttc agctggagcg caagcaaatc gagttgaatg tcgtttccgt cagaaagccc 10320 gagttcatcg agaaccatgc gggcatgttc ggccatgtgc tctgctgctt tgatgagccc 10380 aacgtcccgg aacgtcccgg caagaccgta catctcaatc caaagctggt gcagcgaaac 10440 cggtccggcg agcttggccg cacacgcaaa cgcgactaaa gcttcgatag cattacccga 10500 gcgccgatag acgtcaccga atacccccca tgcaatacgt tggcgtacgg ggtccaagcc 10560 agagcagaga agagcgtgct cggcataatc tcgcgcctcc tggactttgc cgcgccgcga 10620 aagctggatg gcgccgacac ccataagttc caggtcagct ggacctagtg attccgacat 10680 ggcgatgctg acaccgatgc ttaaccaggc tttgaattcc gccaaatcgt catcggtttc 10740 tgcgtcctcc gccagctgag gtagcatggc cttgaacgta gccaccaatc gatcgccact 10800 gcacgggaga tcttcgctcg gaaacctcgt tttgccgagt gtaatgggcg cttcccgttc 10860 gagccacgcg aacgcggcgc ggtgaaacgc ctcaaacgtc ttgaactctt cagggctgat 10920 tgcgtcgacg tcgtcagcct gctggaagtc tatctcgccg gcataagaag acagaatgat 10980 gctggcgatt agcgcaattc cgctttgccc agcgacttgc agatcgagaa tccgagctat 11040 taacaacctc aatctgcctt ccgcagggtg tgtcgcggcg tagcggaggg gaatctcgac 11100 tgcctccgtc aatcgttctg gctcgacgag cgctccgatg ttcccccgtg attgcagtag 11160 tatttgttcc ataacgtcga cggtaagaaa cgccttccaa cgcggcggcg acggattttt 11220 atgcgccgta acgaggtcga acgcatggag gatcaatccc cgccggagtg cgtcttgcac 11280 caatgtctgc tcgatcgtct ccgctcgttg cggataggcg agcgtcagat gtcgcccaac 11340 ggtcggatag tcggggggag ttggcgagct caattcgccg gcaaatgcat catagagcgc 11400 ggtcagttcg ggttctgcct tacgcgatgc gaggatagcc gacgcatcgg caaacctccc 11460 cgccgatttg tgttcggcga atgtgcgatc ggcgaggact ggtgcatttg ggtggtgctg 11520 cctgagccgt gcttcaatcg tttgttccaa atccgccgca tctaaacggc ttgccgtgcg 11580 aagagcggtc tggaggttct ccatggttga aaggcttggt gcgcaaaggc gcagcaaccg 11640 caccgcaaga gcgcccgcgc cagcctcctc ggcgatcttc gccatcgcga gtacgaccgg 11700 aggattcgat ttctcatcaa gaggcaggtt ttccagttca tgcagagtct ggccggtgag 11760 gcctgcaaga tgtagcaact ggattctgag atttggcttc tcatcatcga agttggcggg 11820 gagcgtatcg acttcctgca gcgcaacgcc cagacggcct tcccgtacta agctgctcca 11880 ctgcaaagcc cgtacggaga gttcactctg gagatcgttt tcagctgttg ccaggtagac 11940 gtctacgtca tcgtggacat cgtgcaacat gtcttgaaga gctgtttgca cgggagcgaa 12000 gtgcccgaca tcgatcaaaa aatagctgct gagcctctcg cgcaagcacg acgcgaggtg 12060 agcgatttgc ggtacccaga agttctcctc cagagaggat gcagagccta tttcatcggg 12120 tgcaatcggt ctcacaagag gggagcggaa aagagccgca ttcagtatga tcatcgcgct 12180 gtacggttgc cgtgctgaca tgctctccac gagggctagg gtatcgtggt tttcaagttc 12240 gatgatctgg ctctcagcgg gatcgacgcg tccgggatat ctcgctattg ctgctttcat 12300 agccttgtcg agggtggcct tcccgccagc ctgatcgcac gacactgccg gagccagcac 12360 gagaaatccg gagaacgggt gttcacgatc ggacgtcagc caagacaaaa ttccatcgat 12420 gtacagatat aagcgagacg gaagatcgtc gttgcccagg cacattatat cgctaccggt 12480 gctcgacgtc cgactagcga atatcggtcg tagatcgtta gagaccggtc gcggcgcggc 12540 ctcgtttgta ttttctgacg acgctttgcc attggcatcc atgtggtaac tccggcgatc 12600 agcttccaag gttgggccaa ccagattggt tggacgaaaa agtgacccag ttccaacgct 12660 cgaatagggg cgtcaggagc caattgcgcg attgtatttg cttgaatagg taatgaaagt 12720 cacatcaacc ttgaacgtca gaaaaatgtg tattattttc tgacgcatga aaaccatcac 12780 gtctgtcccg gatcagatca tgaagcgcgc ccgcgcgcgc gggcgcggcg tcgtcttcac 12840 gccaagtgat tttctggacg tggccgggcg cgcggcagtc gaccaagccc tctcccgatt 12900 ggtcaagatc gggaaactcc gtcgcctggc gcgaggcctt tacgacttcc cgaaggttca 12960 tccacagctt ggcccgctat cgccggcccc tgatgatgtc gcccacgcat tggcgcgcga 13020 gaccgggtcg cagctgcaga ttgcgggcgc gcgggcggcg aatgccctcg gtctctccac 13080 gcaggtcccg agcaaaagca cctatctgac caacggtccc tcgcgccggg tcgtgttggg 13140 caagcgggtg gtcgatctgc gtcatgcctc gccgaagcat ctgattgctc caggcagtga 13200 tgtcggcacc gtcgtgcagg ctcttcgtca tgtcggggcg gtgcgtgcgg ccgatgttgc 13260 acaaatcgcg gcgcgccgtc tgtcggccaa tgacaagaaa aagcttgcct caactgcagt 13320 ccaggctccc gcttggatgc ggccgacgct cgtctcgatc gccaatgcag catccggtga 13380 gctcgatgga tgaggtcccc ctccttccgg cagatgacag ggcacccaat agcttgcgca 13440 gtttggtggg cgccgcgggt cagcaagcga ccctacggtc gcgcgggagt atacaaactg 13500 gcggtcccta tgggcgctag ttacccgacc aggatcatcc tcgctttccg gagcggtggc 13560 gtctgcgcct ttccgaaatg cgacaagcac ctcacctacg acgcgaaggt cggcgatgac 13620 acctatgtcg gcgaggcggc ccacattcgc ggcgagaagg cgaccgccgc acgctacgat 13680 gcctcgatga ccgatgagga gcgcgacaac gtgcgaaacc tcatctatct ctgcacggat 13740 catcatacga tcatcgacaa ggtcgaggcc gattggccga ctccgacgct tctggctctg 13800 aaggaaagtc acgagaagca ggttcgtcag gcgatggagg aagccttcgc tgacgtcgcc 13860 tttccggaac tgcaaaacgc cgtgtcctgg gtctccaagc aggcgcccgc catcaacggg 13920 tcgttcgacc tgatcgcgcc ggacgagaag atcaagaaga acgcgctctc gaacggggcg 13980 cggcacatta tcgccgccgg cctgaccgca cgcgtgaccg tcggtgagta tatcgaggcc 14040 gaagcacagc ttgattccga tttcccagag cgactgaagg ccggcttcct cgaagaatat 14100 tatgcgcggc gaaaggaagg ccataagggc gacgaactat tcgagctgat gtgcgccttc 14160 gcccagcgcg gtctgaaacg tcaggcggac aagaccgcag ggatcgcggt gctggtctac 14220 ttgttcgaaa tctgcgatgt gttcgagaaa tgatccttcc aaccaaacac atcccgcaga 14280 aagaggcgct gatcggagtc ggcgcaaccc ttctggcgca cctaggcggg ccaatgacgg 14340 tctccggcct gtgggagcgt ctccgctcag agcctaacgt cggtacgttc gagcgcttcg 14400 tcctagcctc caacctgctc tatctcatcg gcgccatcga catcaaagac ggtctgatcg 14460 tcaggaccgc atcatgatcc gagccgtacg cgccaaccag aagggctttc acgctgccgc 14520 gtttaaggct ggcatcaatc ttgttcttgc cgaccgctcc tcggcagccg gggacaagga 14580 cacgacgaac gcccttggga agtcgacgct gatcgaaatc atcgacttct gtctggcgag 14640 caacccctcg cccggaaagg gcctgcgcat cgaagccttg cagggctggg ccttcaccct 14700 ggagctgacc atcggtggca atgacgtcgc cgtaacgcgg tctcccgacg cgcccgggtt 14760 cttcgccgtc gaaggatcga ccgtggggtg gcctgtgcag ccggccccaa acaaggacgg 14820 catgccaggg ctcgacacga aaaagtggcg agcagtgctc gcctgggcgt tgttcgggat 14880 tagcgacctc gcatctgagt ccggatacaa gccgtctgcc cggtcgttgc tatcctattt 14940 cgcgcgaaac caggctgttg cctacaacac cccgttcaaa catttcgaca atcagaagac 15000 ctgggacatt caggtccaca atgccttcct gcttgggctc aactgggaga aggcggccgc 15060 ctggcagcag ctgaaggatc agaagaacgc gcttgatgcg ctgaagcagg cgatcaagac 15120 aggcgcggtc gatggtgagc ttgcttccct cggtgagctt gaggccgaac gcctgcgtct 15180 caccacgcag cttgagcggg aacgcgaagc cctgtccacc tttcgcgttt tgccgcagta 15240 tcgcgagatc gaggcacagg cgaacattct cacaagcgag atccacggct tggtaaacgc 15300 taatatcgtg gataagcgcc gacttgagcg ttatcgcgag tcagtggtga acgaggatgc 15360 accgacggcg gatcgtctcg aagctctgta taacgaagcc ggaatcgcgt taccgggcgc 15420 cgttaggaaa actctcgctg atgctcgcgc attcaacgag aagatcgtcg ccaaccgccg 15480 cgagttcatt gccagcgaga ttaccgcgct cgaagctgcg gtggtaaatc gcgatgctca 15540 ggttgtcact ctgaccgatc gacgcgccgg ttatctcggc gccctggccg gacaaggcgc 15600 cctggaggaa ctcacccacc tgcaggaact ccacgctgcg acgcgtctca aggtggatga 15660 gctgaccaac aggattaccc agctccgcca gatgaccacc aagtcggaca cgatcaaggt 15720 tgaaaccgtt gcgctcaaac gggctgcaat actggattat gaagaacggc gcgcggtgtg 15780 gtcccaggca ctgagcctgt tctcggaatt ctccgaggcc ctgtacaatg ctgccgggag 15840 actggtgatc gatatcgacg acaccggata caaattcgac gtcgagatag ctggcagtcc 15900 cagcgagggt atcagcaaga tgaagatctt ctgctacgac ctcatgctca tctcgttcgc 15960 gcgccagcgt ggcctgggca tcgacttcct tattcacgac agcaccatct tcgacggtgt 16020 cgacccgcga cagcgcgccc acgcgctcga actggcggcg gcaatgtctg ccaaatatgg 16080 cttccaatac atttgcacgc tgaacaccga catggttccg atcaacgatt tttcggcaga 16140 cttcgatttc gcatccgtgg tccgcatgcg cctaaccgac accgacccaa gcggtagtct 16200 gcttgggttt aggtactgat cggaggcgga gtggatggcg ctattctcgc aagaccaact 16260 ggaggccatc gctggcgcgc tcggcgatac ggaggcgggt ttgaccggcc ccgagatcca 16320 gcacctgatc gcatcgacca aaatgtccga tccgggggca atgacgaaga gggtccgaat 16380 ctacaacgcg tttgctgaaa gtcagaatac caaacgcaac cgaaccaaca ttttgcaatt 16440 cattcgtctg gcgatgaagc cagcgcgcta cagccgctct cccgagcgtt atgagccgat 16500 gcgcgcactg cttaaccagg cgctcgcatt cgccggcctg gttgtcgatc agactgggga 16560 actcaaaaaa gccgagattg cacaaaccct ccccgaagcc cagcgacggg cgcgcgagct 16620 gcgggccgat ctggaaggcc gcggcgtcca ccccgatgta ctcaggtttt gccgagccga 16680 acttctggca gacaactatt ttcacgccgt ccaggaagca gtgaagagcg tcgccgacaa 16740 gatgcgcacg cgcaccgggc tttccgacga cggcgccggg ctggtcgatc gcactcttgg 16800 tggcgagcct ccgctcctcg cgatcaatcc gcgcagcacg gtaagcgaac ggagcgagca 16860 gagcggcttt gcaaatctcg tgcgcgggac attcgggatg ttccgcaatc ctacagcgca 16920 cgatgctcga attcattggg tgatgtcgaa agaggacgca gaagatctgc tgacaatcgt 16980 ctcgctcatt catcgtcgcc tcgacagcgc gcatatgccc ccacgagttt aagtgagacc 17040 caatgtgaac acgacaattt ggcgaaggag attgtaagat tgggtctaac gatgccgacc 17100 acctggcgct acggttctcc gggagcgatg ccgcccttcg ctgcgaacgc ctttaactcg 17160 ctgatccaca cgatcgccgg ccaatcggaa tcgtcatggt cgatcttcga gctcttcaag 17220 gcgaagttca gcggcggctc gtcttggagt tcgagcgaaa gctgggcgat cagcgatttg 17280 cataccgcaa tgatgagggc cgctgacaac gcccccgtat tcatcagcgc gttctgggac 17340 ggttgcaccc aagtgcaggc gtcccatccg gaagtcggct tgccggatgc cgatgtcgtc 17400 aatcaaatcc tctacgaaca cgaggtccct tacgaggtta ggccgcccgc actgctggcg 17460 cgccaccccc agacgccaat cgtcgtacaa gcaccggaga agtctcttgg tgagcgcgcc 17520 ttcgccctga tccacgcctc gctggaccag gccgatcgtc tgttgctcga gcagcgtcct 17580 cgccaggccg ttcaggagat tctgtggctg ctcgaaaccg tttcgacggc tttccagggc 17640 catgaaagcg gagctggcac gatcgaaggg aaatatttca atgagatcat tcgaaccatg 17700 cgcaataata atcgcggcag tgcccttgct gaagccctcg gatggatgac gaagatgcac 17760 ggatacctat cctccccagg gggcggcggc gttcgccacg gcacccagct tgcggccgat 17820 gtctccccta cgctcaggga ggcacacctc tactgcaacc tgacccggag ctatatcaac 17880 tacctcctgg ccgaactggc ggaacagaac taatcgcagg agtcagcgat tcgtgttgtt 17940 tttcgtacac aagagagtgg acggcgaacc acactatatt gcgccgcgct agtttccgga 18000 aatattccta agatggaatg caaggcgctg cgctatcgtg cggttgcatc gcgggcgaca 18060 gagcggacaa cagaaggaag tataccaggt gggcgtatga tcagtcgcgg ttcggaatgg 18120 catcgttggg agccccatat tcatgcgcct ggcaccgtcc tcaacaatca gttcggtgcg 18180 gccgatccct ggggtgcata tctcacatcg ctcgaagggc tgacgccgaa gatcgaagta 18240 atcgccgtca cggactatta cgtcaccgat acctacgaac agttccttac ccataaggcc 18300 gctggccggt tgccagacgt gaagctgctc tttccgaaca tcgaactgcg cctcgatgtg 18360 gcggcaaaga cggggttcgt gaacatccat ctgttggtga gccccgagga cccagatcat 18420 gttggcgagg tcaagcggat cctcaagcgc ctgcaattcg gcgcccataa cgatcgcttc 18480 gactgcacgc gcgaggagct gatcaagctc ggcaagcgct ccgacaccac gatcaccgaa 18540 gacggcgcgg cgctccgcca cggcgcgacc caggtgaagg taaacttcga ccaattgcgc 18600 aaagtcatcc atgagagcga atgggcgaaa aagaacgtcc tgatcgctgt cgcgggcggc 18660 gctggagacg gcacgtctgg gctgcggcag gctgccgacg cgacgatgcg tcaggaaatc 18720 gaaaagttcg ctcacatcat cttttcgagc agcccggcgc agcgcgagtt ctggctcggc 18780 cagcgcggtg tgccgatcga ggagctgcgt tcgcgctatg acggctgcaa gccttgcctc 18840 catggcagcg attcccacga ccagaaatcg gtgggccagc ctgtcgacag tcgcttttcg 18900 tggatcaagg gcgctttaga gttcgatgcc cttcggcagg cctgcatcga ccccgagggt 18960 cgtgcctatg tcggcgagca gccgccgcgc tcggcgatgc catcgcaagt gatctcgcat 19020 gtcaggatcg acgatgcgga ttgggcgtcc acaccggata tcccgctcaa ccctggcctc 19080 gtcgccatca ttggtgctcg ggggtccggc aagaccgcct tggcagacgt catcgcggcg 19140 gggtgcgatg caattccccc atccggatgg gacgcggacg agaacaacag tccgtccttc 19200 ctggcgcgtg cgcgcaggct tatcagcgat gcgacgacga cgctgacctg gggcggcggc 19260 gcaacggtca cccgcgcgct cgacgggagc gatgccaacg gccatatgtc ctttccacgg 19320 gcccgctacc tgtcgcagca gtttgtcgag gagctttgct ccgccaaagg cgtctccgac 19380 ggtctggtcg aggagatcga gcgcgtgata tacgaatcgc attcgcccga tgatcgcgaa 19440 tgggcgctcg acttcgccga gctgcgcgag cagcagacct cccgtttcca acaagcgcgc 19500 gagcgcgagg cccaggcgat cgccgacatc tccgaccgta ttgccaccga gttcgagaag 19560 gagagcctcg tcgcctcgct gaccaagcag gtcggggaga agaacaagct gatcgccgac 19620 tacgctgccg atcgcgcgag gctggtcgta agaggcaccg aagctcaggt cgcccggcat 19680 acgcaactca gcgaagccgc tcaaaagctc cgcagcagca tccagaattt tggcaaccaa 19740 cgccgcacct tcgtcgcact ccacgacgag gtccgctcca tgcgggcaac cggctcgccg 19800 gagatgctgc ggcaggcgca ggcccgtcac gccaatagcg ggctcaacgc cacgcaatgg 19860 gacgaattcc tgctgatcta caagggcgac gtcgacaaga gccttacagc ctatgtgaac 19920 tgggcggata ccgagatccg taagcttcag ggcgttcccc cgccgcccgg cgatcccaat 19980 gtcgcgctca tcgccgacac ggttgatatc tcaacactgc ccctggcgcc aatcatcgcc 20040 gaaatgacgc ggctagaagc actgttcagc gcagataagg tggtgcgaga tcaatatacg 20100 gcactcacca accgcatcgc gcaggaaaat tccgcgctcc aaacgctgca gacgcgcctt 20160 aaagatgcgg aaagggccgc ggcgcgccgc aaggacctgc agaacgaacg tgacgacacc 20220 tacggccgcg tattcgaagc tatcatcaac gagcagaata cgctggccgg gctttacgca 20280 cccctgatgg cgcgcctcgc ggccgcctcg ggcacgttga agaagctcag cttctcggtc 20340 cgccggatcg ccgacgtcca ggcctggggc acctttgccg aggaggagct tctcgaccga 20400 cgcaaaaccg gtcccttcta cgggcgcggt tcgctgatcg ctgcggccac ggacgcgctc 20460 aactcggcgt gggagacggg atccgcggct gaggtacagt ccgccatgac ggccttcatg 20520 gcgaaatatc tgcgagatct gctgacccat gcaccttatg cgccgaccca gcaggcggaa 20580 ttccgggctt ggtcgaagca gttcgcgcac tggcttttca gcaccgagca catcactgtc 20640 cggtatgaaa tctcctatga cggcgtcgac atccgcaagc tctcacccgg cacgcggggt 20700 atcgtgcttc tgttgctcta tctggcgctc gacgattccg acgatcggcc actgatcatt 20760 gaccagcctg aagagaatct cgatccgaag tccgtcttcg acgagcttgt cgcgctcttc 20820 atcgccgcga aagcaaagcg ccaggtgatc atggtcacgc acaacgccaa cctcgtcatc 20880 aacacggacg cggaccagat catcgtcgcc gaagcagggc cgcatcccgc aggcggcctg 20940 ccgccgatca gttatgtggc gggcgggctg gagaacgcgg caatccgcaa ggcggtctgc 21000 gacatcctcg aaggtggcga agccgctttc cgcgagcgcg cgcggcgcct tcgcgtccgc 21060 ctcgacagat aggatagcga gatggttaca cgcgatatcg ccgcctccga tcctcaacag 21120 atcttcggct tcctggcgga gcgcggctgg tctcgccaca gcagcgaaga cgcggaccca 21180 gacgccatcg tccgcgcgct gggccaactc ggtgatcggc tcgggacgcg cgttccgggt 21240 cgtgcgggct cgctcgagga agtcgtcgag ccgcgtgccg ccgatgatgc gcatcctcga 21300 tccttgagcg cgcgctacgg cctgggcgcc ctgccgcttc acacggaact cagccatcgc 21360 actagaccct gccgttacct ccttctcgga tgtatcgatc cgggatcgcc ggccgcttcg 21420 acgatgcttc tcgactggcg gacgctcggc ttttcgcagg aggagcttga ccttctcgaa 21480 gacgctccga tccttgttcg caccggtcgg cgctccttct actcgacgat cctgtcgccg 21540 ggccgagctt tcttgcggta cgatcccggc tgccttgaag ccttggacga gcgcggccgg 21600 acggccctgg cgcttatcga ggaccggatc gccggcgccc actcagaggc gcatcattgg 21660 cgccggggcg acatcctcat cattgacaac tggcgcgtcc tgcacgggcg cagtccgtcg 21720 gaccgagggt ccggccgccg tctagcaagg attctcatcg atgcctgagg aagtcttcat 21780 cgcaatcaac ggcgacgctc tccatacaaa gtcgaaagtt tacatcggcc gagcccttgt 21840 tcggaagggc gccagcgatc tagacgaata tcagctctgg gcctcgctcg cgctcgagct 21900 gctcggcaaa gccgcgctcg cccggaaaca cccgagcctt gtggtcgatc cgacgcactg 21960 gcagtcgatg ttcgtcgccg ccggtatcaa tgtcacgacc gacgtcaaga cgatcaccgc 22020 caagaccctg ttcgagcgcc tcgcacacct cgtcccgcgc ttcgacaaga cggtgcagaa 22080 attctgccaa gacatcgccg agcgtcgaaa tgccgaactg cactcggccg accttccgtt 22140 ccgcaccatg cgtctcgacg cctgggaggc gcgctattgg catgcgtgcg atacgatcct 22200 gcaccagatg ggatcgtctc tggagcaatg gcttggggcg gccgatgcca aggcgccccg 22260 tcaattgctc gacgaagccg ccaaggccct cgaagcggcg gtcaaacttc gcgtcgaagc 22320 tgcaagggaa cagttcgagg cattgaggag ggccgagcgg gaacgtctgg ccgccgaagc 22380 cgaattgcgc gagccgcagc atcaggcggg aatcttcaag ggccgctacg acgagatctg 22440 gaccgagagc tgcccggcct gcaaatgcag agcgttcatg accggcgagc agaccggtga 22500 agatatcagc gaagagcgcg acgagtatgc gatctgggaa atcgtcgacc gcgagttcgt 22560 cggcgaagag tttcgctgcc cgacatgcga actcgcgctg atgggaagcg acgaaatcgg 22620 cgcgggcgga ctgaactaca tccacgagga ccaacaagag cgcgaaatgg aatacgaggc 22680 cgactacggc aacgactgac catcggcgga gaaatataca acggggcaac acacatgccg 22740 gtctacttca taggcgagga tgaaaacgga tgctcgccga tcaaggtcgg cgtagccaag 22800 gacatcggcc ggcggaagag cgacctgcag accggaaatc cgctcgaact caaactcctc 22860 ggttggatca cgtcgcccga cgatttcgag accgagcgcg atctgcaccg tcgcctcgca 22920 tcccggcgcg gccgcggcga gtggttctac atcgagccgg ccgacgtcct gcctttcctg 22980 atggaggtcg gacagcgtgg tttcgtcgcg aagaatgcgg atgccttcga aatcaccggc 23040 tacgatcgcg acgccatccc cgaatatctc ggtgtgtggg aatgggccga cctcgaaatc 23100 gacgaatgct gtcccttctg cggatgcctt tgcggcatgc attttcagga cgcctctcag 23160 atgtactact gcatccagtg cgacacgctc accgacttct cggaactgtc cccggatgac 23220 cgcgacgggc gagaggactg actggcctca agaccaacaa cgaatggggg cataacatga 23280 gcatgcaatg gctattggcg cgagcaccgg gattccacgc gctgcccgaa gaggaccgcg 23340 cagcgatctt caacttcact ttcctgtgga gcctgttcga ggcccaagtc atgggcaatt 23400 ttgcgcgcgc cgatctcatt tgcgcgaagg ccgacgagtg gcaagacgcc ggcacgctcg 23460 acgccgacca gtatgatgga gagctggctt attttcgcca gcgctatttc gccaacgggc 23520 aattcacgca ccacttcgcc cacctgcatc ttcgccccgc cgatcagccc gacctcgtcc 23580 ggtcggtcct cgacgggagc aacaacgacc cgcgcgatcg gctgctgacc gtgctgataa 23640 tcgtctggcg ctttcgcaac aatctgttcc acggcgagaa gtggacctac cagctccagg 23700 gccagcacgc gaatttcacg cacgccaatg ccgtgttgat gcggctcctc gaacggcatg 23760 ggcagttggc agcctgacgg cgtcaggtgc tccccggctt ccgccagaat ggttcgtccg 23820 catagatgct gacgcccatc tgtccgcgcg gattttcggc cgcccaagcc agcacctctt 23880 cggtcgggac gaccagtctg gtctggccgg tcggctccca gcagttcttg ccggacttca 23940 tgtagaagtc tccgacacct tccacgttga tccggccggt gcgcatgcgc cgcaagccga 24000 aggccgtgat ctggtacgtc aggacgcctc cgtgggtccg gcgaacaacg gccgccgatc 24060 cctcgggttg attgcggtag tagtcttcga tctcggcctc ggtctgacgg gcgcatggcg 24120 aaagcttacg gtctggcacg gcaatcctct cgttcggggg ctgtcggccc tccgctgcac 24180 acaggcggtg actaatccct ggtggcgaac accttgcgcg ttccctgcat cagcagattt 24240 cgtcgatctc gaggcgacga tctagctttg atccagacca attggccctc gtggcaacgc 24300 cggcaccatc gttcgtgcag gtagagagcc acgctttggt tgcgctgaaa tcagttagta 24360 tctcagcaag ttaagcagcg gcttcacaca tagtccccag aaattccgca tgccccgaag 24420 gatctgcttc aaatatttgc cattcaagat gcgtactctg gtctgctttc cagttccgct 24480 ccccacagcc gcccgtccat tcacggcgcc atacagccgc tctccggaca caaaccgacc 24540 ttcaccgctg agcagtttga gcacgttagc ccctattcga ataacagggt cgaaggttct 24600 gatcctttca aggcggcgaa tctcacgctt cgagtggcgc gatgagattt tttaagagat 24660 tacccgatgg aaaatggctc gaaacgcaag ggcatgcccc gctctagggt tacgagctcc 24720 ggtggcagga ttgccagacc ggcggcttgg gccatgggcg acaggcttcc cgacgatccg 24780 cggcccagca ttgccagcac gggagtgcca gaagcgtcgc gactctgaag tcgaacgggg 24840 acgaattccg ttcggccctc cttcttgcgc aacccaaagt cggagatcgc cggcatccag 24900 acgggatcca aatgctcgat cccggccaca gccctgatcg ccggcagcgc aatcttgtcg 24960 agtgtcacgg cggaggccat gggattccca ggcaagccga taaagagcgc cgaccctagc 25020 gtgccgaagg aaaccggctt gcccggtcgc atggcgacat caagcacgcc gagcgacccg 25080 ccgcagcgtg tgagcgcgtc ccgcacatga tcctcgccac ccctggacat cccgcctgac 25140 gtcacgacga tatcgtgctc cgtagcagcg ctgtgaatga tattggtggt cgcctcaatc 25200 gtgtccggcg tcgccccgag atcgcggact tcgagccagg gatgcgacag catggaggcg 25260 aaaaggtagc gattggaatt atagatctgg ccagccgcca agtgctcacc cggctctttc 25320 agttcagagc ctgtcgtaat gaacccgagt cggatctttc gaacgatgga aatccgagac 25380 aagcctgcgg ccgcgagcag cgcaatccgg tgtgctgtca gaaccgtccc ggccttgaac 25440 agcaaagagt tttggtcgac atcttcgccc gccctgcgga tgttctcgcc tgggcgggga 25500 cggtaggcgg tggtgaactg gcgatcatgc cgcgaacatt tttcacggat gatcacggcg 25560 tcgaaaccgg ccgggatcat cgcgccggtg aagatttcca cggcctcagc attttcgaaa 25620 ctgctgctgc tggcctgatc tccggctgcc actctgtctg cgaccagaaa ggtccaggga 25680 ccactgccgg aaaaacccgc cgtgcgaacc gcaaacccgt ccatcgccga atgatcgaag 25740 cgcggcaagg cacagggcga gcggatgtcg gcggccacca cgcggccgcc tgcagaaaac 25800 agatcgaggt cttcggtagc ggtcacgggc cggcacaggc cgatggcgcg ggccaccgca 25860 tcggcaaccg acaacatggg gcgagcagct aaggctcgcc cgcagtcgag agcagcgcgg 25920 tcgaacaacg cggcacggtc cgctggcatg taattcatca aggcctccca accacgatta 25980 aagggacagg tgtggagatc gcgacctcct ctgtgaggtc gcgacaccag cgcttcacgg 26040 ggtgctgatt gttttcaggt aagcgatgac gtcggccaca tcctcgggct tcttcaggcc 26100 ggcgaaggcc atcttggttc ccttgatata ggccttggga ttggcgagat actcggtcaa 26160 gtgggcttcg tcccaggtcc agccctcttc ggcctttgcc ttgaaggcgg gcgagtagtt 26220 gaagccctcg acgcctgcga ccttccggcc gatgatggca ttcagttcag gaccgacctt 26280 gttggccgca ccctcgccga cggcatggca ggcggtgcat ttcttgaaaa cgaccgcgcc 26340 tttttccgcg tcgccctcgg ccatggcggg ggatgttgca atcaggcaca gtgagactat 26400 cgaaaacagt ttccgcattt gtattgtcca tatgtttgaa ggagtgggcg gcgctactgg 26460 ccgcccacgt ctggagggaa gagtggcagg ggccactcgc tgtgtcctca agccgaccgg 26520 tattctttcg acttgaaggt cagatgagcc acgtttttag gcgcatccga aatcttgcgg 26580 atattgcccc aggtctgctt gtagtttggg atgatcaact cgttcgtgcc ggcgctggtc 26640 acattgccct gcacgccagt cgggaaaccg aacaacatga aggtttcgcc gcggcgtgcg 26700 gtcggtgtcg gataggccat ggcctgggtc gcgccggcat cattgtaaat ctcgacgagg 26760 tccccctcct tgagccccgc ttccaccatg tcctccgggt tcatttcgat gaacggatag 26820 gggaaccggt ccatgacgaa gtcgttttcc tggtcaagat aagcggattg ccagaccaca 26880 ttggcgcgcc cgttgttgat cagatatttg tggttgtcct tctgctgttg cttgcccggt 26940 gcctgcagtc cgcgccacgg tgcgtccatg aagcgcgcct tgccatcgtc ggtcgagaac 27000 acgccgtcgg tatagagccg ctgggtgccg gcgatcttgc cgtcggcaaa acccgtcgcc 27060 ggctcctgga atccgttggt gcccatggcg ctcaggcgct cataggtgac gaattcaccg 27120 ccatgagcgt gtctgttgta accgtccatg aaggcgtctt cctcggtctg ccagtcgaag 27180 cccttgaact tgccggcata ggcagcgtcg cccatctcgg tcagcacccg ttccatggta 27240 ttggctagcc gggcggcgat caggcagtcc ggcatggatt ggccgggcgg gtccatgtag 27300 cgctcggtca accgcatccg gcgttcgcca ttcatcgaag tgaggttcat ctcgcccgac 27360 gtggccgcag gcaggatgac gtgacaggcc tcgccgatct ttgtcgggat gatgtctata 27420 ttgacggcga acagaccacc ctggttgatc gcagcgacga tggcgttcac catggcctcg 27480 cggtcgccat agggagcgac gctcatcgca tccttcacca tgtcggtgcg cttcttgtag 27540 acgcgcttga actcgtgggc gttgagggtg gtcttgtagt ggtcgcagcc ccaaatgtgg 27600 tgcacgcccc cttggccgcc gatcagcaac tggtcgacat aggccgccgg ccggccgaca 27660 tgggcgtcgg acgggcgcac ataaccttcc tggtgaccgc cgaggcgaac gacgccaccg 27720 ccaggacgac cgatattgcc ggtggcgagg gccagattca ccagcgcgcc gttggtgcgg 27780 taattgtcgt tgccccagat caggcccttc tcgtagccga acatgacgcg tcgacgcttg 27840 ccgccttcct tcggcatggc aatccattcg gcggctttga tgatctggga ttggtctagc 27900 cccgttattt tcgcggcttc ctcgatggat acgcggcacc cttcgacggc atcctcgaaa 27960 ttggacaaat gtccaggctt gctgtccgat ccgccacgcg cgggatagag cggcggccgt 28020 gctacacctt cccgcaaggt cgatttgtcg atgaattcgc ggtcaaccca gcccttatca 28080 gcgatgtatg taaacagcgc attgaatagc gctaggtcgc tgccggaatt gatcgcgaga 28140 tgcaggacgt tgtccttgcc agccgtttcc tcgctcgcat tgacggtcac cgtgcggcgc 28200 ggatcgacaa tgataatccg gcccgcttca tgcggctcgt ctggcatgat ctgctttttc 28260 ttctcgagac tttcgccgcg caggttcggg atccagtgat tgaggaaata gtttgtctgg 28320 gtctccagcg cattggtgcc gaccgcgacg atcgtgtcgg ccagttcggc atcctcatag 28380 cagttgttca actcgccgac gcccatgtcg cgggtaccgt ggacttccga attataggcc 28440 gggcggttgt ggatacggat gttcttgacc ttcatggcct cgaaatagag cttgcccgtg 28500 ccccaggtgt tttcgtagcc gcctccggcg ccgccatggt cgaaggccga aacgatcaga 28560 gcgtcctcac ccttctcctt gatgatcttc gccgtcacgc gggcgacaag atcaagcgca 28620 tcgtcccagc tcgtcggctg catctgtcca tagcgccaga cgaggggatc cgtcaggcgc 28680 tgttgctggg tgttgcgggc ttcggaaaag ctcgtttcgg ccatcctggc tccgcgaact 28740 gaaccgagac cggtgttcac cacgcattcg tggtccggct tgatgacgac atgaacgtcg 28800 cggccatcct gtttgacgac attgtacatg gatggcgaat accaggcgtc agtttccgcc 28860 tgttgctgct cggacagatc gacgccgaac acgtttttct gcgggtccgt gccgccctgt 28920 ttgttgattg gccaggtgta ggcgtgatag ccgcagccga cgatgcagaa gtggcaggtg 28980 acgttgtgct tctttgcgtc cgcgggaatg atcggcagac ggtcgatgtg acgtttgaag 29040 gccatgatct tcttccctta tagaacgttg gacaggcggc cgtagatgag ctcatcgacg 29100 ccttcggcga agatgtcacc gttatctgcg acgcggagca cgtattgagg caggttctgc 29160 gtggactgtc cccagacctg ctggcctccc ttttcagcat cgaacaccga gaagtggccg 29220 ggacagttga acgtcttgtt gtcggcggta tagctcagcg gaaaaccctt gtgggggcag 29280 atggtagaaa agccgacgat gtcgccatcg ggaccgacgc cgccttccac gcgcgtcccg 29340 agtttgagaa gaacgcccga ggcatcttca tcgggatagg cgacgtcgag aggttcgttg 29400 agggtgagtt ccgagatgtt ggcgagacga ttggcgggat agtccacgcc ggccgcagcg 29460 gtagcggctc ttgcctgtgg cgcgccgacg cccgtgacga cgacactagc gcccgcggcg 29520 gccaatgccc ctccgcgtag gaactggcgt cgaccgatat cgaccatgtt tcgacagcgt 29580 gacatgcgat cctcctccat tgaatgtcga aggtcgaatt gcaatagctg tgccaacagg 29640 tagagggctg atttatcgcg cctttttcgc gaatcttccg tgtgtgggtt cggatttccg 29700 aacggccagt aaccaccgtt gttcagttgg ccgaacgttc actagcttct attccgaaac 29760 gcgtcatttt ctcccaaagg gtcgtacgag aaatgccgag atgtcctgcg gcctgagaaa 29820 tctgtccgcc ggttgcgctt agcgcccgca ggatctgtcg gcgctccgcg gcgtcccgcg 29880 catcggagag tgttccgatc cgcggcgtat cagatacttt ggcgacgtcg gggaatagat 29940 ccgccggcat cacgagcaga ttttccgaca gagcagcggc gcgttccagc cgattgcgga 30000 gctcgcgggc attcccgggc caacagtgtt caagcattgc gtcctcggca agcgtactga 30060 tgccccgaac gcgagtctcc ctgatctgca tgatctcctc gagaaagcgc tgagcgagcc 30120 acaggatgtc ttcctgtcgt tcacgcagcg gtgcaagcat gactggaagg gcggaaagac 30180 gaaagaacaa gtcctttcga aaggaactgg cgtcgctgcc aatctcctga tgggtggcac 30240 agacaatgcg tgccttgaac gggatggatg tttcgctgcc gacccgatga aaccaaccat 30300 cctcgatgag acgaagaagt ttcgcctgca gaacaggcgg catatcaccg atctcgtcga 30360 gaaagagaat accttcgccg gcacgttccg cgtagccgcg atgaagttgg tgagcacccg 30420 taaatgctcc tttctcgtgg ccgaaaagct cgctttccag cagttcggct ggaatggctg 30480 cgcagtttac ggcgatgaaa ggggcgagcg cacgctttga taactgatgc agaaacctgg 30540 cgctgacttc cttgccagtg ccggtctctc cctgaatgag aacggggagg ggatgagagg 30600 cataacgccg caacatctgt tcggcgtcgc gcatggcgcg ggagatgccg agggagctat 30660 tgagctcatc ctgccgcttg ctccttaagc ttgatgagac gcgatcgagg aaagccgtca 30720 tgtcgaacgg tttggtgatg aagtcgaccg caccactgcg catcagacgc accgcctggt 30780 ctatatcggc gtagccagac atgaataaaa agggtgttgc ggtatcgcgg ctggcctggc 30840 ggaaaacctc ttcaccattc atgtctggaa ggcggatatc gcaaacgacg aggtcgaacg 30900 gttctgatcc gctggcgagc tcgcgcatgg cctgctctcc cttcgtccac catttcacct 30960 tgtggccctc aagcgaaagt cgctggatga gcgactctcc catgatggga tcgtcctcga 31020 gtatggcgat gcgccctgtt tcacgctgca tggctagttt cctccccagg aatcaatatc 31080 ggcaagtgca attcaatgac ggtcaggccg gcttcggtcc ttgacaaacg gatatgtcca 31140 ccggcctcat ccaccagctt ccggaccatc cacaggccaa gccctccagc tgactgagcg 31200 gccggccatg gatctggcga tgtaaggaca ttagttgcgg ccttcggcag gcccggcccc 31260 gtatcggcaa ccgagaggat taacgtcgag ccgtcttcct cgaggcatgt ctccacaaaa 31320 atcgtgccgt catcgcccgc agcggcgctt gcgtttagca cgaggttcaa aagtgcttgc 31380 cgcacagtag agccgggcag ggcagatatg gtgagattgg atgggctgct cacccagtgc 31440 atcgtttgtc tgcggcttat aatgacgggg ccggccagta ggcgcacatc ttccagatcc 31500 tgtaggacga gaggctttcc ggagcggtcc ggccggtatg ttgccagtgc tgcctgtaca 31560 acatcgcgaa taccgccgag accacgttcc agaagggaca cactggtgct ccgtacgcct 31620 tcgtttgccc catgtcgctt caacgtgtcg atggagttga acagtcctcc gagcggatta 31680 ttgatctcgt gggccatgct ggatgcgagc cgtcctaaac tggcaagctt ctcttcctcg 31740 gccaatcgac gcgtgagtgc gctgcgctgc tgctcggctt gtaccaaagc gttgaagcca 31800 tgaaacagat cagcgagttc acccgcgcga tacggaaatt cttcagcggg aatggtgtag 31860 ggctgtccgg ccgcaccaga gcgcatgtgt tgtgccaatg tcgccaccgg cctgaccata 31920 cgtctggtca agacgtatcc aactgcggca aacacgaatg ccaagacagc attcgtcgca 31980 agaagcgtct ggagaacctg gcgcctttcc gcgacaagat gggtgatgtc gaaagaggcg 32040 tgtacggtcc cgatcgactt tccctgataa aggagctgcc tgatcccgaa cccggtgttc 32100 gactgccatt cgatgcggat ttcatcgtct ttgcctcggt cagcgaaggc cgggggaagt 32160 tcggaaagta ccgggatagc gtgcggatcg ctggaagcca gtaccatgcc atcccgtcca 32220 gtcacaaccg tctcgatcgg agacacggcc gcaaacatcg tacgggtgcg gtcgagcagg 32280 tcataggttt cccatacatc ctgccgcaaa acagccggga taagagcggt ggacaagcca 32340 tcgaaatagg ttcccacgac gccgttcaga tgctgttcct gcatgtcatg aaggcgagcc 32400 aatacgcgtt cggagatgat gaggctgacg acgatcatca gggatgccac cattaccggg 32460 acccgaaccg tcaagggaat gccgcgaacg cgctcgatga ggctcacccc agcctccgaa 32520 cccgttccat gttgaccgcg atactttcgt agctttcggg tggaacctga gtgaacccgt 32580 caagctggag gcgctcaagc accgttcggc ccagctcgtc gctgtgcatt tgcaggagcg 32640 cgtttcttat tctggcaacc ggctggcttt cgcgctgtcg tgcggcggct gcgatgggcg 32700 ggaagccgtg ccagtcagac ttcaccagta ccctcgtttt cgagagcagt tccggttcgg 32760 tctgtttcat gacttcccag acgtacccat caacgctccc ggaatcggca aggccggaag 32820 ccactgcccg gatcacattg cggtggccgt aggtaaaaaa tgacttgcga aagaagcctt 32880 cctcggagac gccgcgttcg gccagatagg ttttcgtgac gaggtagccg gaattggaat 32940 cggggtcgga gaacgcatgg atatcccccc gacagtcatc aaaggcctgg atgtcacgat 33000 gttgaccgac gatgaggtag gattggtaaa gcggcttatc acgccacaat ggcgtggcaa 33060 ccagctccag ctcgtcccgg aacttcatga acgggtagcc gcaaatccag gcggcctcaa 33120 gattccccga gaccaggagg gcagtgactt cctggtaggt acgctgtgtg acaagttgta 33180 cttcttgacc aatagcgcgg actaggtagg cctgtagttc gtccagcact tccaggtcat 33240 tcgatagaaa gacgggtgtc aacccaaacc gaatcacgcc aggtcgcggc ggcacggaca 33300 gcaactcgct tcccgcaggc gatccggcga agcatatcgc ggacaaagct ccgcctatcg 33360 ccatccggcg cgatatacga cacttgtcgg cgtgccgacc gcgcgtgtgg tctcgatttg 33420 acaccgacga cctccctcag ctctcctcca gagcctaaat caattgtact gtcttcagac 33480 agattgtcca accgctcctc cgggattgag gtgctggttg catggatctc aggatttcgc 33540 ccgctaccac ctttttgcaa ctatccggga cgggtgaaga cacagaccgg gagcggtgaa 33600 attttacttc aaacctgtat ccattgaata accggcgcct ctaacggtcc ggatcaggtc 33660 tggcttgttg gcaaagttaa gggcttttct gagccggccg acatgaacgt cgaccgttct 33720 ttcgtctaca tagagatcgt gaccccaaac gccgtcaagg agctgtgctc gggagaagac 33780 gcgccccggc gacgccatga gaaaatcgag gagacggaac tcggtcggac cgagcctgac 33840 ttcacggcgc tcgcgatgga cacgatggct ttcccggtca agctcgatgt cagcatagcg 33900 caaaatggac gagatcaatg ctggtttgga acgcctcagc agagctctca ccctggccat 33960 aagttccgga gtcgagaatg gcttcaccag atagtcatcc gcacctgtcg ccaatccccg 34020 cacacgctct gtctcctccc cccgtgccgt cagcataatg acggggagcc gctccgtgtt 34080 tggtctggcg cgtagacggc ggcaaagttc gattccggat acaccgggaa gcatccaatc 34140 cagaattagc agatccggca cgctttcctg cagaactatg tcagcctctt cgccgtggcc 34200 gattgtctcg acaaggtatc cttcggcctc gaggttgtag cggagcagaa cactcagcgc 34260 ttcctcgtct tcgacgatca tgacctttgg ggacatcagc ttcgctcctt agtttcgcgg 34320 ctgtcaggcg atttattaca gtgacacttc agttttgtga caaacgcgaa atatctagaa 34380 atctggaaat atgattgtca tcgtgaggat tttgggatat cctgcaaacc tctcgccatc 34440 gtgggtgcat cgagagcgac gcatctctac ggttaaattc cggataatat tttcgtcaaa 34500 tcatgtatta agcaagtaaa aaacttccaa ctcaaatatc aatctatcta gatataccat 34560 actatacttg gttgacataa aactgtcatc caacaatact atgaccgccc tgcgttcgcg 34620 gatgtcgcgt tcagcttttc tgaattcaca gagggtcgtc atgacacaca acacgaaaac 34680 ctttcgcccg gcgcgcgccg ccttcgcctc ttccgcagct tcgatcgtta ctctcggcct 34740 cctcgttgcc ccttcttttg cgcagcaggc accgacagtg ctgatcgacg gctcgagcac 34800 cgtattcccc atttccgaag ccatggctga agagttccag aaggctcaag ccggcaaaac 34860 cctggtgacc gtcggttctt ctggcacggg cggtggcttc aagaagttct gccgcggcga 34920 aaccgacatc accggcgctt cccgaccgat caagtccgac gagatcgaac tgtgcaagca 34980 gaacggcgtt gaattcatcg agctgcctgt cgcaatcgat gctctcgcaa cgatcgtaaa 35040 cccggcgaac gactgggcga cgtgcatgac cgtcgaggaa ctgaagaaga tttgggagcc 35100 tgaagcacag gggaaggtca cgaactggaa ccaggtccgc ggcgaattcc ctgacgccaa 35160 gctcggcctc tttggcgccg gcacggattc cggaacctac gactactaca cgttcgccat 35220 taacggcaaa gagcatgcca gccgcggcga ctataccgcg accgaggacg acaacatcac 35280 gatccagggc gtcggcggcg acaagaatgc gatcggcttc ctgggtctcg cctatctgac 35340 cgagaatgct ggcaaggtga aggctgtcga aatcaagcag gccgatggat cgtgcgtggc 35400 gccgtccatc gagacagcca ccgacggaac ttaccagccg ctcacccgtc cgcttttcta 35460 ttacgcttcc aagaagtcag ccgaagaaaa ggaacatgtg cgtgccttcg cggagttcct 35520 tttcgatgcc aagaaccagg aagaactcgt cagcgaggtc ggctatgtcg ccctgcctgc 35580 cgaagccgct ggccttgctc tgaagaagtt cgaaaagcgt gtcaccggga gccacttcga 35640 aggcggttcc aaggtcggcg tgacggtcac cgacctggtc gccgacgcag ccaactaaca 35700 tcccaaccct cccggcagtc gcgagtactc gcggctgccg tcagtggagc tcaagatgcc 35760 aacaacgctc gacgcctata ttccaagcga cgcttttctg aaacggcgac gtatcatcga 35820 cctgtcgatg cgcgtgttgc ttttcttgtc cgccgctctc tcggtgcttg tcaccgctgc 35880 catcgtttac gtgcttgtaa gcgagtcgtg gaatttcttc accgaggttt ccctttggac 35940 gttcctgacc gataccgagt ggacgccggt ctttgcgcag cctcgctacg gcattctgcc 36000 acttcttaca gcaaccctct gggccgccgg gatcgcgatt ttgatcgcaa tccccttggg 36060 aacaagcctc gccgtctacc tcagtgagta tgcgcgcccg gccgtccgcg aaaccgtcaa 36120 accggtgctc gaattgctcg gcggcgtgcc gaccgtcgtc tttggttatt tcgctctcct 36180 gtttatcact ccactgcttc agacgttcat tcccggcctg accggcttca accttctggc 36240 tcccggtatc gtgctcggca tcatgatcat gccctacatc gtctccatca gcgaagacgc 36300 gatgcgtgcc gtgccggcct cattgaggga aggcgcttac gctcttggca tgacgaggct 36360 gcagacgtcg ttcagggtca tcattccggg tgcgttctcg ggcatcaccg cagcgtatct 36420 tctcggaatg tcacgggccg taggcgagac catggtgctt gcaattgccg caggacagaa 36480 ccctaatctc accgcagatc ctcgcgaagg cgctgcaacg attacgtcct atatcgtaca 36540 gatgagcctc ggtgatctgc cccatggctc gctggcatat caaacgattt tcgctgcagg 36600 cctcgcactt ttcgtgctga cccttgtttt caacatcatc ggcttctttc ttcgccgccg 36660 cttccgggag gcttactgat ggctatcaca gcagacagcc caatcgtggc tctcgacatc 36720 gattcccaga cctcgctcgt caatcgagca cgacgcaacg acttcatatt cgccggcttg 36780 ggtctcacca tcttgttcgt ggttatggct ttcttggtcg cgttgatagc cgaccttttc 36840 tacgacggac tgggccggat cgattacgcc ttcctgaccg agtttccgtc acggcgaccc 36900 gcagatgccg gcatcctttc ggcctgggtc ggaacctgcc tggttatgtt cgtcacggct 36960 ttgctggcca ttccgcttgg tgtcggtgcg ggtctttacc tcgaagagta tgcgagaaag 37020 aactggatga ccgacgtcat tgaaatcaac gtcaccaatc tcgctggtgt accgtcgatt 37080 atctatggtt tgctcgcgct cggcttcttt gtctatctcg ccgatcttgg ccggacggtt 37140 ctggtcgcgg gcatggtgct tgcgctgctg atcctgccga tcgtcatcgt tgcgacgaga 37200 gaggctataa gggcgatacc gcagacaatc cgcgaaggcg ccttcggtct cggtgcggac 37260 aaatggcaga ccatgtggca ttacattctt ccggctgcgc ggcctggtat ccttaccggt 37320 gcgatcgtcg gcttgtcccg agccatcggg gaaaccgccc cgatcatcac gatcggcgct 37380 ctgaccttca tcgcattcct tcctcctgcg cctgtggatg cgagctttcc ctttatcaac 37440 tttgattggc tgaatgcgcc gttcaccgtg atgcccatcc agatgttcaa ctggatatca 37500 cggccgcagg cagcgtttca catcaatgcc gccgcgactg gtgttgtcct gatgttcatg 37560 acgttgggca tgaatgccgt cgccatctgg atacgcttca ggcttcgacg caatcttggc 37620 ctctaactga gatcggacca aaaatgaacg acacttcgac cgtcagtaaa cctgccagag 37680 tgggccagca aacaggttca gcgcgcaaca ttctgatcca tcccgaacgc ctgcgcgctg 37740 aagtgaggga tctcgatttc tggtacggag aattccacgc gctcaagaag gtcaaccttc 37800 ccgttgcgga aaagcaggtt actgctttga tcggcccgtc aggctgcggc aagagcacgc 37860 tcttgcgatc gttcaaccgt atgcacgatc tttaccctgg caaccggtac gagggcgcga 37920 ttgaactgct gccggaaaag aaaaatttag tggctcaggg catggatccg atcctgatcc 37980 gcttgagcat cgggatggtg tttcagaagc caaacccgtt tccgaaatcg atttatgaaa 38040 acgttgcagc cggcctgaaa atccgtggca tcaccaagaa gagccttctt gatgagcgag 38100 ttgagcaggc tcttcagggc gcggcactct ggaatgaggt gaaggaccgc ctccatcagt 38160 cagcctatgg cctttcggga gggcagcaac agcgtttgtg catcgcccgt acgctggccc 38220 ccaatcccga aatcattctt ttcgatgaac ccacatcggc tctggacccg atcgccaccg 38280 cgaaaatcga ggagctcatc gcggagttgc gagaccagta cacgatcgtc atcgtcacgc 38340 acaacatgca gcaggcagcg cggatatcga catacaccgc ctacatgcac ctgggcgaga 38400 tgaccgagta caacgcaacg aacgagttct tcacgaatcc gcagaacgaa aaaacgcagc 38460 actacatcac cggtcgcttc ggttaagggg gaaacatgac gatggatcac actattcgag 38520 ctttcgacga ggaactgcag gacctgaccg gacaagtatc cgatatgggg cgaatcgctg 38580 cagcgctcct cgacaagtcc gtcaatgctc tcatcggcaa cgacaagaca ctggcagatg 38640 aggtcgtaag ggccgacctt caactcgatg ccatgcagag aaccgccgaa acggcggctg 38700 tgcagatcat tgctcgcaga cagcccgtcg cgaacgacct gcgacggatc gtcggggcga 38760 tgcgcatggt ttcaaacctg gagcgtgtgg gcgatctcgc caagaacatc gccaagcgcg 38820 ctgcaatcat ggatgcttca cttaacaggg gtgttgtctc tgcagggttc agcacattgg 38880 ccgaagccgc caaaacgcag ctggctggcg cgctcgatgc tttccagaac aacgacgcga 38940 aggcggcatc tcaagtccga ctccaggacg agcacatcga tgtactctat aacggcctct 39000 ttcgagaact cctgacatac atgatggaag accagcgctc gatcacattg tgcgctcacc 39060 tccttttttg cgccaagaac ctggagcggg tcggagatca tgctaccaat cttgctgaga 39120 ccgtcgagta catcgtgacg ggcgatgatg tttcgactga tcgccctcgc gccgaaactg 39180 tcgttgcgat ggagtagact tcatgccgag cgtcgttatc gtacaggaag atattggcgt 39240 tggctcgatc ctggaagcaa gcttccgcga ggaaggttat atcgccgggg tatgtggact 39300 ggccgagcag tgcgaacgta tggtagcaga aaggcaacca gatctggttg ttgtcgattc 39360 agtgagccgt gcgaccaatc tccgtcagtc gtttatgaaa atgcgagccc atgtgcgcag 39420 aaggcagttg gcgatcatcg tcttgggcgg agaggcgctg cccaagcccc tttttgatgc 39480 cggagctgac gattacttgc cgcgcccctt ttccgttcag gaacttctcg ctcgcagcaa 39540 tgcgctcctt gagcgttcat gctcgaagac gaccaggata ttgaaccatc gcgagatatc 39600 cctgaacgtc gaaacgcaca gggtttcgcg gaagggacgg gagatccacc ttggtccgac 39660 ggaatatcgt ctcctgcaga cgatgctgac agaaccgtcg cgactgtttg cgcgtcgcga 39720 gattcttgag atggtgtgga acgacaccag ccgggatgaa cgcatcgttg atgtcagcat 39780 caagcgattg cggaagtcct tgaacatcgg aagcaaggaa gacgcaattc gtactgtgcg 39840 cggctgcggt tacggcctgc agtaatagcg atcagggtag actgtttccg attgccctca 39900 actgcgtttg aagggacatc ctgtcgatcg actcgatcgg aagcgcggtg aagacggaga 39960 gcctgttggc gatagcgtct gccgcccgtc gaaaggcggc gagcctttgc agttcacttc 40020 cctcaacaag cgtgggatcg tcgatagccc agtgcgctgt aaaaggctga ccgggccagg 40080 aggggcattg ctcccccgtc agtgtatcgc aaacggtgaa gacgaaatcc atagcgacac 40140 ggttgagacc tttgaactcg tcccagctct tgggcctgag gttctcgatt ggacagtcca 40200 tcttctgaag tgttgcgagt gtcatcggat gcacctcgct tgcgggaaga tttcctgcag 40260 agaacgccgc aaaccgcatc ggcgccatct tgcgcagaat ggcctccgcc atgatcgatc 40320 tggcagaatt tgcgcggcat aggaaaagca cattgaaaat gcgtggtacc tgttggtctg 40380 gcttggttct ggtcgacgag gttttgccag ccatgggggt aaagtccgtc gccaaaaact 40440 cgaccagcct ccagacaagt tcggtgttcg gccgataaat tatcgtggtg ccaacgcgtt 40500 gggtctggac cagtccagca cgcttcaaca cgttaagatg agacgacatc gtattttgag 40560 gcacatcgag cagtcttcct atgtcgcctg agggcaatcc ctccggcgaa tgatccagga 40620 gaagacgcag tgcatcaagt cgggtggttt gcgcgattgc agcaaatgcc tctacgatag 40680 ccgatttttc cataagtctg gatatataga ttttcgttta gttgagcaag ttgcgttccc 40740 ttggcgggcg acaataaatc cgtatttctg gaaatgtgca gttctgtcat atttctgtgg 40800 cgcaagtgcc gaataagcgg gtgtctgttt tggatcgatg gagaacctga tgaaaaagct 40860 cgtggccgca ctggcgataa ccgtagcatt tgcaatgcct gctcaggcag aattcaaact 40920 cgacgcccgc tacacggatg cggacggtga catggtcgcc gacattccga cggatgccag 40980 ccagctcgca gaccctgata cgctggtgtt cgcctataca ccggtcgaag atccggctgt 41040 ttacgccgat gtctggaaag gctttctcga tcacctcgcg gaaaagaccg gcaagaaggt 41100 tcagtttttc ccggtgcagg aaaacgccgc tcagatcgaa gccatgcggg ccggtcggct 41160 gcacgtgtcc ggctttaata ccggttccaa tccgatcgct gtcgcctgtg ccggcttccg 41220 gccgtttgca atgatggcct ccaaggacgg cgccttcggc tacgagatgg aaatcattac 41280 ttatccaggt tccggggtcg agaagatcga ggatctcaag ggcaagaagc tcgccttcac 41340 cgccgagaca tccaactccg gtttcaaggc tccatcggca ttgctgaagt ccgagtacaa 41400 gctcgaggcg ggcaaggatt ttgagccggt tttctcgggc aaacatgaca attcggtcct 41460 cggcgttgcc aacaaggact acccggctgc ggctgtcgcc aattccgtca tgaagcgcat 41520 gatcgcccgt gatgtcgtca aggcggacca gattgtctca atcttcaagt cgcagacgtt 41580 cccgaccaca ggttatggcg tggcccacaa tctgaccccg gaactgcagg aaaagatcaa 41640 aggtgccttc ttctcctaca actgggaagg ctcggcgctc ctgaaggaat tccagacatc 41700 ggagccgccg caggaaagtt tcatcccgat ctccttcaag gaaaactggt ctgtcgttcg 41760 ccagatcgat gaagccaacg gcgtcaccta cgcgtgcaaa taagcacgtt tgaccaataa 41820 gcgccgggtc gtacgcgacc cggcgcttac tcatgtttta aaggcgggga acgagaatgc 41880 tcaggatcac ggggctcacc aaaacctaca aaaccggcga caaggcgctg aacgggatca 41940 cattggaaat ccctgccggc caggtggtag gtttgatcgg tccttcggga gccggcaaat 42000 ccagtctcat ccgttgcgta aatcgactga ccgaacccac gtcaggcaag atctttctag 42060 gcgagcgaga cgtgaccgcg ttgtctcggt ccgatctcag ggtcgcgcgc cgccgtatcg 42120 gcatgatctt ccaggaatat gctctggtcg agcggttgac cgtaatggaa aacgtgctct 42180 ccggtcggct cggctacgtg cctttctggc gcagtttttt acgccgctac cccgcaggct 42240 acgtgcagaa cgcattcgca cttctggagc gcgttggttt gacggcccat gccgacaaac 42300 gcgccgatgc tctctcaggc ggtcagcgac agcgcgtcgg tatcgcacgc gcgctggagc 42360 aagaccctga actgcttctg gttgatgagc cgaccgcttc gctcgaccct aaaacctcac 42420 ggcaaatcat gaggctgatc gtcgagatct gcaaagaacg aaacctgccg gcggtcatca 42480 atatccatga cgtcctgttg gcgcaggctt tcgttcaacg gattatcggc ctgcgtgctg 42540 gcgaggtagt cttcgacggc acgcctgacc aactcgacac agctgcactc acccgcatct 42600 atggcgaaga ggactgggtt gccatgcaga agcaagccca ggatgatgcc gaagaagagc 42660 tccttgcagt tattgaacga gaacgggcgg aagagcgctt ggcaggagcc ttgtgatggc 42720 ccatgtactc tcgacgagct atccttcggt gtggcggcgg ccaccactgt tcatcaggtc 42780 ggcggttttg cgctggctga tctatggggg cgcgctgatt tatatcatcg ttgccgttgc 42840 gaccatcgat gtaaactggg cgcgtgccta cgaagggctc gatcgcggct ggcgtttcct 42900 tcaaggcttt ctggtcccaa actttaccac gcgctggcgt gatatcgcac agggacttga 42960 agagagcctg acgatgacgt tgacttcgac tatcgtcggt atcctcgttt ccatcccgat 43020 tggcatcgga ggggcgcgca atcttgcgcc agcgcccgtc tactacgtgt gccgctcaat 43080 cattgccatt tcgcgtgcct tccaggagat catcattgcg atcctgctcg ttgcaatgtt 43140 cggtttcggc ccgttcgcgg gtttcctgac gctcaccttc gcaacgattg gctttatcgc 43200 caagctcctc gctgacgcta tcgaagaaat cgatgaaaag caggcagagg ccatccgtgc 43260 caccggcgcg tcttggctgc aactcgtcaa ctatgcggtc caaccacagg taatgccgcg 43320 actgataggg ctttcgctct accggtttga catcaatttc cgtgaatcgg ccgtcatcgg 43380 catcgtcggg gcaggaggta tcggtgcaac gctcaacacg tcgattgacc gatacgagta 43440 cgatagcgcc ggtgctgtgc tgatcctcat tatcgtcatc gtcatgctcg ccgaatacgg 43500 ttcgagctta attcgcaagc gggttcaata atgccagttt cacattccct tgatggcagc 43560 aagacatggc gcaagctcac gccgagccgc gagctcattc agtggatcgg ttggctgcta 43620 ctcgtcgcct tcttcatgtt ctgctggcag atcatgacaa aagatacgat ctgggcgttt 43680 atttacgatg cgccccggca aggcggcgac attcttagcc gcgcctttcc acctcgcctg 43740 ttttatgtaa gcgagctcat cactccgctt tgggacacgc tcaacatggc gacgcttggg 43800 acgctttttg gcactgtgct ggcggtgcct attgctttcc ttgccgctcg caacaccacg 43860 cccagcctgc ttgtccttcg gccgatcgca cttttcctga tcgttgcatc acggtccatc 43920 aactcgctga tctgggcatt gcttctcgtc tcgatcctgg gacctggact gcttgccggc 43980 atcattgcga tcgcccttcg gtcaattggc ttcgtcggaa agctccttta cgaaacgatt 44040 gaggagatcg accagaagca ggttgaagct atctcatcca ccggggcaag tcgcatacag 44100 gttatcgact acgcgattgt gccgcaggtc ctgccttcgt ttctgggaat taccgtgttc 44160 cgctgggaca tcaacatcag ggaatcggcg atcctcggcc tcgtcggtgc aggcgggctc 44220 ggcctcaagc ttcagtcctc tttgaacatg ttggcctggc cccaggtaac gacgatcttc 44280 atcgtcattc tggccacggt tatcctggcc gagtgggtct cggcagctgt acgcaaggcg 44340 ctcgtgtgag cctgtttaac gtcaaggctt tcgggtcccg ggcaaggccg tctgcagtgt 44400 tgcagtctaa gttcgtgcgt tcttattcaa agtcgagggc aggcgctgct gaacaaacgt 44460 gttgacttcg tccataattc cagtaatctg gatatatgga acaggaacaa gcaattctcg 44520 ctcttgcagc gctcgcgcaa ccaacccgtc ttgagacttt tcggttgctc ataaaacacg 44580 cgccggaggg gctgccggct ggcgatatag cgcgtgcgct cgtggtgccg caaaatacca 44640 tgtcggcgca tttgaacatt ctgtcgcggg ccgggctcgt aacctcgcaa cggcacagca 44700 ggatcatcat gtaccgcgct gagctcgaac agcttcgcga tatgacgcta ttccttctga 44760 aggaatgctg tggtggatcc gctgaattgt gtgcgccact catcgctgaa ctgacaccgt 44820 gctgtgtccc gaccccgcag gaaagtctcg catgagtgcg ctcagggtag aacgattaga 44880 cgggagcgat ctcgaatcag gcagcgacat gttccttgct accaagaggg catcgccgct 44940 ttttgcctgc ctcgtgttca tcgaagtttg acgggaaaat ctgccagccg cagtgcttgc 45000 cacacggcag ctgtcctctc tgcccatcat cggcgacgat catgaaatct acccgaccac 45060 taacttaaca cacggatcac agacatgacc gaaaagacct ataacgtgct cttcctgtgc 45120 acgggcaatt ccgcacgctc cattcttgcc gaagccatcc tcaacaagga aggcggcggt 45180 cgcttcaagg cttactccgc tggcagtcag ccgaagggcg aagtcaatcc gcacgcgctc 45240 aaggaactcg cggcgctcgg ttacgcctca acaggcttct cgtccaagag ctgggatgtg 45300 tttgccgagc cgggtgcgcc acagatggat ttcatcttca ccgtttgtga cagtgcagcg 45360 ggtgaagctt gcccggtatg gatcggtcac ccgatgacag cccattgggg cgtcgaggat 45420 cctgcatctg tcaacggaac cgaagtcgaa attcagcggg cattcgcgca ggcggcgcgg 45480 tttctgaaaa atcgtatcac ggcattcctg agccttccgc tcgaatccat tgatcgcctg 45540 gccctcgaaa cacggctacg gcagatcgga acgatggaag gaacgaccgg tgttcgggaa 45600 gcgaccaatt aaagccagat gacggattcg gccgaagtga agaaacgcgc gccgttaatt 45660 cgtcggccct cgacctccat actttctctc cagtcaaaca aaaggcccga cgtcgcatga 45720 ccaaccccgt cgatatcgtc atctaccaca acccggactg cggaacttcg cgcaacacgc 45780 ttgcgatgat ccgcaacgcc ggcatcgaac cccatgtggt cgagtatctc aagaccccgc 45840 cttcgcgcgc gctgctggag cagttgatcg accggatggg aatttctgcg cgtgaccttc 45900 ttcgcgaaaa gggaacaccg ttttccgaac tcggtctggg cgacacatcc ttgtcggatg 45960 agcaactggt tgatgcaatg atggaacatc ccatcctcat caaccgcccg atcgtcgtca 46020 cgcctgccgg tgtcaagctg tgccgaccat cggaagtggt gctggatatc cttccagccg 46080 atcagcaggc tgcgtttacc aaggaagatg gcgaagtcgt cgtcgaccag accggtcgtc 46140 gcgtggtcta acgtaagtca attcaagctg aacgcgtgtg accgcagtct tcgttgcaag 46200 gctgcggacg atgtttatct gccaaggaga gcgccaatgc gtcccgaaga accaacactg 46260 cgcctgtcgt ttctcgaccg ctatctgacc gtctggattt ttgccgccat ggcactgggt 46320 gtgctgctcg gtaccgtctt taccggcctg cctgcagcgc tcgacagcct ttccgtcggc 46380 accaccaata ttccgattgc catcggcctc atcctgatga tgtatccgcc tctggcgaaa 46440 gtgcgcttcg aggaattgcc gcaggtgttt gccgacaagc gggttctggc gatttctctc 46500 ctgcagaact ggataatcgg tccggtgctg atgtttgcac tggcggtgat ttttctgcgg 46560 gactatccgg aatatatgac cggtttgatc ctgatcggtc tcgcccgctg cattgccatg 46620 gttctcgtct ggaaccagct tgcaaggggc gacaaccagt atgtcgcggg cctcgttgcc 46680 ttcaattcga tcttccagat cctgtttttc agcgtctatg cgtggttctt cctgtccttc 46740 ctgcctccgc tgtttggcct tgaaggcagt gtgatcgacg tctcgttctg gacgattgcg 46800 gaagcggtgc tgatctatct cggtattccg ttcctcgccg gttacctcac gcgccgcttg 46860 ctgactgcga aaaagagcag ggattggtac gagaacgtct tcctgccgaa gatcagcccg 46920 atgacgctgg cagcccttct gttcacgatc gtcgccatgt tcagcctgaa gggtggggat 46980 gtggtccgcc tgccgggcga tgtggtgatg atcgccattc cgctgacgat ctactttctc 47040 atcatgtttc ttgtcagctt ctggatggcg aagtccgtcg gcacggatta tccgcgcacg 47100 acagccgttg cctttacggc ggccggcaac aacttcgagc ttgccattgc ggttgccatt 47160 gctgcttttg gtttggcctc gccggtcgca tttgccgcgg tgattggccc cttggtcgaa 47220 gttccggtgc tgatcttgct ggtgcaactg gcactctgga tgggccgcaa gtattttaca 47280 aagtcggccg gaaacccggc tgcgtaaaaa gtaaggaagc gcaatgtctt cggacatttt 47340 cgatgtcgtc gtgatcggtg cgggccaggc tggcctcgca tcggcttact atctgcggcg 47400 tgccgacgtc agattcgtga tccttgatgc tgaagaaggg cccggtggtg catggcgaca 47460 tgcgtggaat tcactccatc tgttttcacc ggcatccttt agctcgctgc cgggatggat 47520 gatgccggcg aagaccgagg cggcctatcc gtcaaggaat gaggtggtcg attatctggc 47580 gcgctacgag gagcggtatc attttcccat agaacgcccg gtcgcagtga cgtcggtccg 47640 caacgtcgaa ggcgctctgg aggtcgtcgc cgatagcaga cagtggcgag cgcgtgccgt 47700 tctgagcacg accggcactt ggcgacatcc tttcgttccg gactatgccg gtgcctctgg 47760 cttcaagggc gtgcagattc attcggcgga ttatgtctcg gctgatccct ttgtgggcca 47820 gcgggtcgcc atcgttggcg gcggaaattc cggggcgcag atacttgccg aagtatcaag 47880 ggtcgccgaa accatctggg tcacgcctca ggaaccggtg tttttgcccg atgaagtcga 47940 tggacacgtg ctgtttcagc gcgctaccgc acgggtgctt ggcggggaga gtggcccagc 48000 agttggcagc cttggtgata ttgtcatggt tcccccggtc cgggacgcac gggatcgcgg 48060 cgtgctgggt tcggtgcggc cattctcaaa ctttgatcgg gatggcgtcg tctggcagga 48120 cgatactaga agcgatcttg acgccgtcat ctggtgcacc gggtttcggc cagcgctcga 48180 tcatctccag gatctcggcg tgatcacgga cgatggcagg gttgatgtgg atgaggggcg 48240 ctcgattaag cagccacgcc tttggcttgc cgggtatggg aattggaccg gggctgcctc 48300 ggcgacgctt ctggggtcag gccggacggc ccgcgagatg atcccgagac ttgtcgcggc 48360 gctgtaggcg cgcaatcccg atgaatgcga caattgcact tgcacccagc gtggtggtaa 48420 tgacgagcga ccacagcgtg ccgatatggg ccatggcaaa cgctagcgca aagggtgcgg 48480 tggccgacag gatcaaccgt gcggccatga ccttgccttg cagcctgccg tagccatcgc 48540 tgccaaacag catcagcggc aaggtaccgg tgacgatgct gaaaagaccg ctgcccaaac 48600 cgaagacaac ggcaaaagcc atggctcctg ctaccgacgg agcggtgagg gtcaggatga 48660 gtacgccccc ggggatcaat gtggcggcaa tcgttgccaa agcgagcggc ggcagattgc 48720 cgccgagcac catgttggca aaccggctca gcacctgcga cggaccaaac agcgtgccga 48780 caatggcggc ggtggcccca aggccaagcc ccgacagcag cggcaccata tgcaccagga 48840 tcgccgcact gacgagagat tgcagcgaga accccaccac catcagcttg aacccgaact 48900 gccggacgtc cgggctgaga cttccctcca cgatctgcgc cgtgccggct tgtttctgtg 48960 ctctaccctt ggcaaggccg taagacagcc aggcgtggag cggcaggcag acgagcaagt 49020 tgagcgcggc gaacaccagg tagacattct gccaggagag atgggcgtgc agagccgttg 49080 tgatgggcca gaagatcgtt gaggcgaagc cggcgatcag ggtcagatag gtgatgctgc 49140 gctgggcggt gcgggggctt gcctgcacca gcagcgcgaa ggcggcgcca tattgcacga 49200 gattggcggc gatttcgacc acgatcaggg cggcgacgaa gccgctcttg cccggcgcat 49260 aggcacagac gatcagcgcg gctgcggcaa tcgcggagcc ggccgtcatc acctgtcctg 49320 cgccgaaatg atcaatggcc cggccaaggt agggcgcagt caagccgcct agaagaagtg 49380 ccgcggaaag tgcggcgaaa atccactccg tagaccagtt caggtctcgc gccatatcgg 49440 gtgcaaggat gctgaaactg tagtagaggg ttccatagcc aatgatctgg gtgaggccca 49500 gggcaaggat agtgccgacc ggcgggcgct cgctcatatt gatttcagat ccacgcgctg 49560 ttcgagcttt gcggcctctt ccttcctctc gctatagcgg tcggtcaggt agtcggaggc 49620 atcgcgggtc agcagtgtga acttcaccag ttcctcgcag acatcgacga cgcgatcata 49680 ataggcagag ggtttcatgc gaccctccgt gtcgaactcc tgccaggcct tggcgaccga 49740 cgactggttc ggaatggtga tcatccgcat ccaacggccc agtatccgca actgattgac 49800 ggcgttgaac gactgcgagc caccggagac ctgcatgacg gccagcgtct ttccctgtgt 49860 cggtcgcacc gaaccggtcg tgagggggat ccagtcgatc tgggccttga tgatgccggt 49920 catcgcgccg tgccgctcgg ggctgaccca gacatggcct tccgaccaca gagaaagctc 49980 gcgcagttcc tgaacctttg ggtctgtatc cggcgctcca tcgggaaggg gcagaccctc 50040 gggattgaag atctttacct cgcatccgag gtgctcgaga agccgtgcag cttcttccgc 50100 caaaagacgg ctgaacgaaa tctttcgcag cgatccgtag aggatgagga tccgtggctt 50160 gtgctgcgaa taagccgggc gaagcgcgtc aaggtcgggc tgggaaatga gatcaagcga 50220 ggcggctggc agatcggcca ttggggctac tccgtattgt aggatttagg cgtttgtatt 50280 ccggggccgt tatgaatctg atccggcaag ttctgggggc acgtcaccgc cgtcagattg 50340 acccgaacaa cagttctcca tcaggaaatg agcgaggccg ttgagggtct cgaagctcgc 50400 gctgtagacg atggagcgtg actcccgctg agcactaatc agaccagcat gttccagttc 50460 tttgagatga aaggaaatgt tggaaggcga gacgttcaca gcttcggcaa ttatacccgc 50520 cgccaatccg cccggaccgg cgacgacgag cttgcgaatg acctgcagtc gggtctgctg 50580 tgacagtgcg cgaaacgcat ccaggacctg ccgctcgttc ataaaatcca atcctcgtaa 50640 aagcgttcta aggtgccagg atatacaagg cttcggcacc tgcgggggat gatcgtattt 50700 cacaccccac ttgttttcat atttcaacta atattgaaat tatgagttag ttgcggctac 50760 gtcaagaagt gttttgcccg tcagtggacc agaagcagcg gaagatcggc tgcagccaaa 50820 acttcccgcg tttcgtgacc catgagccat tccagccact cgctatgact aaaagccccg 50880 gtgaccagaa cgtccgcttt cagggcatcc gcttcacgga cgagctgcgc gccgatcgtt 50940 ttgtcggaac ggggcagaat atgaacttct ggtgtgacgc ctgagccttg catcacagta 51000 tttagcgtcc tatcggcgtt gctttcatcc gttacgcgaa gtgcgctgac acgttctgcg 51060 gcttcgagcc atggtccggc agtctctatt gcgcggcgag ctagatcgct gtctgtgagg 51120 cccacggcga catgcgaaaa ccttgcgcgc gctcctgctt tccaaccggg cggaaccagc 51180 agaaccggcc ggtgcgccgt gaagatctca gcgtggaaag catcggcggc atccatgttt 51240 ctattatgcg acaagacgac gagggcgata tccgcggtcg tctcccgtaa aacggtctgc 51300 gcctccggcc cggtaatcgt gcgcaattct atcgaaggcg cttcgggtcg caaaactata 51360 ttccattcgc cgaacgcgga tttgatagcg tccgcacgct gttgcagcga gccttcgtca 51420 tgggtgcgaa gctcctgcat gtcgatttcc tcgggagggc agacgagatg tgcaggatcg 51480 acgatgacat tcaacgcttc gatcgacgag caggtcacgg atgctgccgc cataactgca 51540 gcatccatcg ttcccgcgac tgtatcgcct tttgtcagta cagccagaat tctcatgtta 51600 gtgctcccat catttcccga accgtgcagc accaccaagt tctgcctcga tctccagcag 51660 ccgattgtat ttcgcaatcc ggtcagagcg cgaggctgaa cccgtcttga tctgaccgcc 51720 acccatggcg acagcgaaat cggcgatgaa gctgtcttcc gtctcgcccg agcggtgcga 51780 aatgacatag ttccagccgg cattacggca gagctggatc gcgctgatcg tctcggtcac 51840 cgtgccgatc tggttgagct tgatcagtgc cgcattgcag gccttctcct cgataccctt 51900 tgcaatgaag tgggtattgg tgacgaggtt gtcgtccccg acgatctgaa tccggtcgcc 51960 gagagcgttg gtgatggcct tgtagccgtc ccaatcgttc tcatcatggc tgtcctcgat 52020 cgagacgatc gggaattttt cgacccaggt ctcgaacagg ctgaccatct cctcggacgt 52080 cttgtttcct tgcccgctgc gcgtcaggcg atagagcccg tcctcaaaga acgaactggc 52140 agcaggatcg agcgcgatag caatatcgtc gcctggccgg tagcctgcgg cctcgattgc 52200 ttcgacaatg acctcgcagg cctcctcgtt gctccggagc ttcggtgcaa atccaccttc 52260 gtcgccgaca ctggtgctga gaccgcgctt cgacaggata gatttcaggg catgaaacgt 52320 ctcggcccca aaacggaggg cttcagcaaa tgttggcgca ccatgcgggt agagcatgaa 52380 ttcctggaaa tccatgccgg aatcggcgtg catgccgcca ttgagcacgt tcatcatggg 52440 gatgggcaga tggacggccc caacgccacc cagataggcg taaagaggaa ggtcgtggct 52500 tgcggcggcg gcccggcaga gcgcctggga aaccccaagg atggcattgg ctccaagctc 52560 ggatttgttc ggcgagccgt cgagttcgat cattgccgcg tcgagcgccg cttgatgtga 52620 aggatcccgt cccttcagaa gaggagcgat ccgctgattg acattgtcga cggctttacg 52680 aacgcccttg ccaccatagc ggctggcgtc accgtcgcgc agttccacgg cctcgttggc 52740 gccagtggag gcgccggagg gaacggacga ggtgccgaca atgccattgt cgagatgaac 52800 gctgacgcga agcgtcggat taccccgcga atcgaggatc tccagggcgg tgatgttttc 52860 gatgaaggct ctcatggact tgctcctgct gccgagatgg cggctttagt gctttccaat 52920 cgggaaatcc ctagattggg cggttggcat cttctatttc tttttctcga tctgatcgaa 52980 acgaccggta ctcccaccga cctgtttgag ggtttcgtcg tcgccatacc tcctccagcc 53040 agaatacgtg atcatcgact ggtataactg gaaaccaggc gtaccactcg cgccacaagc 53100 attgttcctt caccatggcc caatcctccc agttgttatc tcttggtctt aagccctgta 53160 cgcgacgagc acggctcatc ccgcgatcat cacgacaccg agccagttcg gaagtgtcag 53220 gcgttcgccg aggaacagga cggcaaagat ggaaacgaag acaaccgaca acatgtcgat 53280 cggcgcgacg cgggccgcgt cgccaagctt cagcgctcga aaatagcaaa tccaggatgc 53340 gccggtcgcg aggcctgaaa gcacaaggaa taaccagctt ctgctggaga ccgacgacgg 53400 ctcctgccag ttgccggtga tatagaccat catcccagcg gcgagcagaa tgacgatggt 53460 acgaatgaag gtggcgaatt cggagttcga cgccgatctt ggcgaagatc gctgtcagcg 53520 ctgcaaagcc tgctgacatg agagcccaca ggggccagct ggcaaggagg cttttcatgt 53580 cgcttgtcct tgcccaatga gccgtatcaa cgtgagacca gcaaacagtc cagccatcga 53640 aagcaccagc gaagccaagc aagcgtgcgg cggcaatatt gacggcgtgc cgggaaacac 53700 cacccaaacc cgctccgagg aacacgatca gatagaccaa gaccgtctcc ttcaggatgt 53760 cgtgactttg agtgcttctg ccgccgccac gttgtgatgg acgacgtccc actgttccag 53820 gtgcttgtag acgatcacct tgtttttcag gagcgcgcca tgagtccggc agaattcctc 53880 aagcttgtcg cgcgacgcaa tcatctcgac gcacatggtc agatccggat tggggatttc 53940 gaaaccctcg tcctgaagct tgccgctgtt cgaatatccg aagtgtgtat ggtgagcgac 54000 ggcattcata attcctgctg acttcgcctg caggaccagt tctcgataga gcggcttggc 54060 accaaaccag ctactcttgc ctgaggtctt ctcccgcggt ttcatataga tacggaccat 54120 gccgatttcg gtggaatgca gcctgtgttg cgtcacgatg atgggccttt cggtgagggt 54180 tgcggtggta gcaagggacc ggagccggac cttgccgaca aagtcgccga gcgcattggc 54240 gttcatgtcg cgcatatggc gaaccgagat gtcaggagga atgtcgttgg ccgcagctgt 54300 cttcggcacg cccacgcgct gcgaaaggta gatgctggaa tggccgctgc agaggtaggc 54360 aacgaagcag gcgaccgcga tgtagacgga gtgggttgcc ccgaaaagct cgatgcccat 54420 gatcatgcaa gcgagcggcg tgttggtcgc gcccgcgaag acggcgacga aaccgagagc 54480 ggcaaatagg tccggtggcg caccgagaac gcccgcgaca gcactgccga gagccgcacc 54540 gacgaagaac agcggcgtca cctcaccacc cttgaagcca gcgcttagag tgatgatcgt 54600 gaacagaccc ttccaggccc aactccagta atcgatgtga tctgggcgga agaagccgag 54660 gatcgttgca tcctcgggat tgggggacca taccccaagc cccagatatt ctcgtgttcc 54720 aagggcgtag accaagccaa gcaggatcaa gcttgcgaga accggacgca gcggggcata 54780 gggcaggatg gccttgtagg cggacgatgc caggtgagaa agttctgcga agaaatgcgc 54840 tgccagtcca aaggccacgg aggcaatcac aaccttcagc atcagcacgg cgtcgaggtg 54900 aaagccgatg ccttcaccag cgccgctcag ataggcgatg gcataatgtg tatgcccaat 54960 gctccaggcg tggcaggtcc agtctgcgac aatggcggcc agcaaggcag gaagcaatgc 55020 ctcgtattgc atccggccaa ttgtcaggac ttccaaggca aagaccgcgc cggcaatagg 55080 cgtgccgaag actgcaccaa acccggccgc aatgcctgcc atcaacagga tacgaatgtc 55140 ggcggatgtc agtttaaaga ccttaccgaa ggcgctcgca aggctgccgc ctagctgcac 55200 ggcggttccc tcgcgtccag ctgaaccgcc gaccagatgg gtcagcacgg ttgtgacgag 55260 gatgaacgga gccatgcgca gtggcacgcc gccacccggc tcgtggattt gatcgacgat 55320 cagattgttg ccgccctcgg cggacttgcc aaactttccg taggcccaca ccatagcaaa 55380 gccagccact ggcatacaga agatcagcca aggaaactcg aaccgtagtt ctgtcgcccg 55440 atcaaggctc cagaggaaca gagcaacgag cgatccgacg gctattgcca tcggaatgac 55500 aatggcgatc cactttgcga gactgcggat ttgctgaaaa cgaaggccga ataatgatgc 55560 gagcgtcatg cgaaagacac tccaccaaaa ctgtcagcag atatgagaaa acacagaaaa 55620 tgaattccag acacgaccct actccttcgc gttatgcgcg ttgagtagga gtcatcagct 55680 tcatcgagga agcggttcgg cgtaatgccc ggcagaatcc attaccgttg aggttaaata 55740 ccgttggaaa gtaactagag tcaaggtccc tcatcccgct catcggagtg atcccgtgca 55800 gatagggcaa gacagactgc ggcgatcacc gggacggtga acaggccggc tatcgtgatg 55860 agctgcattt catggcccca actcaaagtc cgcccaaatc gggtagcggt cggaagcgac 55920 gtcggttgtg tcattgctgg cgactgcgta tcccacggcg cgtcagcaag gcgcttgctg 55980 gcaagcaggt agtcggaacg gaaagtcatg aactccgtat tcgtgaaacc gcgtgccggg 56040 acagtcggcg tcggagtggc ttcaaggctg ttaccgacgt ccacgaaacc ggcccgcaac 56100 aacccggcta tcgtggtcct gtccgctgtg ccgtcctcac gggtgtagcg catacgatat 56160 cgtgcaggca gcaatgccag atcgtcaggc tcaggatcat ccggcgcgac ggaattgaag 56220 tcgccgccaa tcagggtcag tgtggatttc cttgaggatg cctccgtgaa cctgttgatc 56280 ctgcttgcgc ttggatggtc gcttcgcaac cgcgtgcgcg ttggcgtggc tctggctctg 56340 atcttgctcg ttcccggaat cgcgacgttg tggactacct atcagagcct tatggcgccc 56400 gttccgcccc agccgttcct gttggcagtc acaggcacgg gggcgcttgc agtcaacctt 56460 tcctgtgcat ttctgctgac agctttccgt cacgagaacg gtagcctgac gagggccgcg 56520 ttcctttcgg cgcgcaatga cgcgcttgcc aatatagcaa tcatcgtggc cggtatcgtc 56580 acggcctacg cctggcattc cgcctggccg gaccttatcg ttggcctgga gattgccgga 56640 atgaacatgg acgccgcccg cgaggtctgg caagccgctc ggaaggaaca cgccgctgcg 56700 gcttgaagcg attgtcggtg ggtattccaa aggcgaaagc tgcggacgca tgattaccag 56760 gttcacgcat gccgccatac cttcacggca gagatcagca gaatggcggc aagcgccgga 56820 aggagcaagg ccgtcggcac gacaccgagc aactgcccgc caatgaaggc gccagctatc 56880 gagccgagcg ccatgacgat gaggaatgtc ttgttgcgag cgacaacaga gaagctttgg 56940 tcccggctgt agcgcgtaaa gccgaccagc atcgtcggca ggctgacagc aagggagagg 57000 ctgcccgcga gtttaatatc tgcaccgaac agcagcacga gcgttgggat gagaagttcg 57060 ccgccggcaa cgcccaggag cgaggcgact acaccgatta ccagacctgc caaaatgcca 57120 gcgacaatct gcgtcgtgcc agtcacgagg ccagctccgg cggttgcatc gtggccgaac 57180 aacagcacca ctgcgatgac gattagcagc accgcgatca ccttatacag gttttccgat 57240 ctgaggcggg ttgcccagcc cgcgccaaac catgcaccaa gaagacttcc agccagcagg 57300 ttgacgacaa tagtccagtg cgcgacgatc tgatccagtg gaacggtcgc tgcccggaac 57360 ggcaaagcga atgcaacgac aacgaggctc attgctttgt tgaggatgac cgcttcgagt 57420 gccgcgtacc gaaacaggcc gatgagcagc ggcaggcgga actccgctcc acccagaccg 57480 atgaggccgc cgagcgttcc gatcacggca ccccagatga aggctgttgc cgaacgaatc 57540 ttacccgtca tttcttgcct cgtatgggtc ggtgcgctgg tgaaatggtc gcggcacgct 57600 tggtggagtt catgtcaaag ggactgttgg agcgaaagcg ttttcagaga tcgtatgaca 57660 gcgcagcgtt cgatctgcgc tgcgccatcg ttgtaatccg tataaatgtt cacgatattt 57720 gatttttgac cgatcgacga tcagacatcc tgagcaggat gtatccgctc actccggcga 57780 tgattgatcc gcctaggatg ccgaacttga cccgatcctg catgacgggg tcctcgaacg 57840 cgagcaggcc aatgaacaag ctcatcgtga acccaattcc gcagagaagg gagacgccca 57900 gtgtctgtcc ccagctggcc gcggcgggca attccgccca tccgcttcga accatgacaa 57960 aaactgttcc gaaaatgccg agcagcttgc caagaacgag accggcacca acacccagcg 58020 ttaatggctc gatcagagtt gctggcgata cacctgcgaa cgaaacgcct gcatttgcaa 58080 agccgaagat cggaacgatg agaaatgcca cgggcttgtg cagaccatgt tccagcttgt 58140 gaagcggcga agccgctggc gttgcctcag gagtgccggg agtaagacgg atggggatcg 58200 ttagtgcgag aagaacgccg gcaagcgttg cgtgaacgcc tgacatcaaa acaagaaccc 58260 acaggaccgc ccccaggacg agaaatggcc aaagccgcat caccccaagg cggttgaaaa 58320 gcaccagatt cccgatcaca agtgcggccc caccaagggc gtacagattg acatcggccg 58380 tataaaacag cgcaatgacg atgaccgcgc ccagatcgtc aatgatggca agcgttgcca 58440 gaaagatttt cagtgatgcc ggcaccctcg gtcccagcag cgaaagcacc ccgagtgcaa 58500 aggcgatatc ggttgccgac ggaatggccc agccgcgcag ggcggcaggg ttctcgtagt 58560 tgaaggcgat ataaatcagc gccggaacga ccatgccacc ggctgcagcg gctcccggca 58620 gaatgcggcg gctccagctc gagagctggc catcgagcat ttcgcgcttg atctccaggc 58680 ctaccagcag gaaaaagact gccatcagcg cgtcgttgat ccaatgctgt acgctcagcg 58740 gtccaacata gacatgcagg agtgcgaaat attggtcggc aaaaggtgaa tttgccacga 58800 tgatggcgag tagcgcgact gccataagca ccaggccgcc tgatgcctca ttgtcgagga 58860 actgacgaag cgtagagtta atgcgacccc gcaacgggcg ggactgaatt gtggacatag 58920 atctgcgtcc tctgtgcaag agttgttgtt gttctccgta atagggggat ccctggcgca 58980 cgcagcacac gccatagcat tcaatatatt catcaattgt gcagatggcc agcaaaaccg 59040 gtacttcctc ggacagaacc gggatccctg cacctctgca atacgactca gacatctgga 59100 gatttcgtga gcaggtctgc ggcaggaaac ggccgacggg acgggctaac aaggattaga 59160 actgcctttc ggaggtgcga tggtcagcaa gcagcgactt ggatcgcccc acccgcaagc 59220 gaaccaattc cgctctcatg cgatggcgtc ctggcccagg tccgatcttc cacgatcaac 59280 ccgcaagggg tccgctagca ggctgcggcc gctcatggct ttgccatcgc ggtgatcgcg 59340 cccgtccccg tgcctttttg gagccatcga gcgggattgg cccgctcccg gatggagcct 59400 tcgaaatgtc gcacgatctt gtcctcgcac agtcccacgc cttccagctt tcccgtgacc 59460 tgatggtccc ggtcaccgtc ttcgaggtcg acggcgaata tggcgtttat ctgaacagtc 59520 aagctgtctc actggcattt cgctgagctc gccggctccc ggaacagcgt ctcgatcagc 59580 ggacattccc gccgattgcc ttctgtgcat tgggccacca cgtccttcag cactcgctcc 59640 atgcgtttca ggtcggcgat cttttcacgc acgtcgtcga gatgcgcggc ggcaacggcg 59700 cttgcctcgg cgcagggctg gtcgcgctcg tcgacgaggc gcagcagttc acggacttca 59760 tcgagggaga agccgagctc gcgcgcccgc aagacgaagc gaagccgtcg ctcgtgggtg 59820 ctgtcgtagc tgcgatagcc gctcgccgtg cgcggcggct ccggcaggag gccgaccttc 59880 tcgtaatagc ggaccgtctc cagattgcac cctgtgcgct gtgcgagttc ggcgcgcttg 59940 aggcctttca cgccagcgtg atcgcgcatc caaaaatacc ccttgaccct gtagttgcta 60000 cagaccgcac attagcgcct ggataggttt tcgacaagaa gagcgaggtc gaacatgaat 60060 gcatcccgac acggaccagc agacgttgca ccgactgcgg caaacctgac gacgccagag 60120 cgaagcgagg ccgggcgaca gcgcctggtc gccgtcggcg gcatactcgg cgccatcgcc 60180 gcctcgtcct gttgcatcat tccgctcgtc ctgttcagcc tcggcatcgg cggcgcctgg 60240 atcggcaatc tgacggcgct tgcgccctac aagccactgt ttgtcgccgc aacggcgggc 60300 atgctcggct acggcttcta ccttgtctac tggaagccgc gacaggcctg tgccgatggg 60360 gctgcctgca cgcgcgccgt ccccagccgc ctcgttcaga tcgcgctctg gttcgcgacc 60420 gtactcgtcg ccgctgcttt cgccttcgac tacgtcgcgc cgctgctgct ttccgcctga 60480 caccaagagg agactacccc atgaggaaga gtttgagcgc tttcactttg atcgcgtcgg 60540 tgatgactgc gcctgccgcc ttcgccgccg aacgcactgt gacgtttgcc gtcgacaaca 60600 tgacctgcgc ctcgtgcccc tacatcgtga agaccacgat ggcggcaatc cccggtgtcg 60660 cgaaggtgac cgtctccttc gaggcgaagt ccgcgaccgt gaccttcgac gacgctaaga 60720 cgagcaccga tgccatcgca gccgccagca tgaatgctgg ttatccggcc cacccgacgc 60780 agcaaggcag ctagatgact gatcgcgccg taatccgcgc aggtgccgtt ggcgccgtcc 60840 tcgccgcgat ctgctgcgcg gcgccgctcc tcgccgtcgg cctgtctctg gcgggtcttg 60900 gcacgtggct gacaggtgtg ggtgcagtgg tgcttcccct gatcgtcgcg ggcttcggct 60960 tcggcgcgtg ggggccccat catcgccggg caagagccac ggcctatgag acgaagattc 61020 gcaaggaagg cgtgaagcca tgaacgattg ctgtgcaacc tcctcccggg acaacccggc 61080 cgtttctcag cccgcgacac tggcgagctt tgccgttcga ccgggcgtaa cgtttccgga 61140 ttggtcggcg gtcacgtcgc ctgtggtcaa gaacgctctg caggcgatgg tcgggtccga 61200 ccacgtgctc aatcgctgga gcggttacga tcccgccacc gacagggtgc gtgttgcgtt 61260 gctccgactc tacgccgacc acgggggtgc cccgaccata agcgcgcttg cggagcgtac 61320 aaaactcagt gagatggtca tccggccact gctcgacgag ctccgccggc gcgacctcgt 61380 cgttctcgat ggcgagctga tcgtcggcgc ctatccgttc agcgatcata acaccggcca 61440 tcgggtcact ctggacggac gcacgctgaa tgcaatgtgc gcggtcgacg cgctgggcat 61500 cggtgccatg accgatcgcg acaccgcgat cgcctcgccc tgcggccatt gcggcgcact 61560 gatccggatc accacgcagg accgagggcg ggcactcgcc gacgtcgagc cacagtcggc 61620 cgtcatgtgg cagagcgtcc gttatgaagg cggctgcgcc gcgagctcgc tctgcgcgac 61680 gaccgctttt ttctgctcgg acgagcatct ttccgcctgg cgcgacgaac gttccaccga 61740 cgagccaggt ttccggctgt cgatcgagga aggactggaa gccggccgtg ctctgttcgg 61800 gccgagcctc gctggtctcg atgtggcgtc gaagagcctg gtggtcgcca accgaccctt 61860 gcgcacaaac ggtcgcaatg gaggcgctta cgatctcgtc gtcatcggcg ccggctcggc 61920 cggcttctcg gcctcgatca cggccgccga tcagggcgca caggtggcgc tcatcggcag 61980 tggcaccatc ggcggcacct gcgtcaatgt cggctgcgtg ccgtcgaaga ccctgatccg 62040 cgcggccgag acgcttcata acgctcgcgt ggcggcacgt tttgccggca ttactgctga 62100 agccgaactg acagactggc gcggaaccgt tcgtcagaag gacacgctcg tgtctgggct 62160 gcgccaggcc aaatacgcgg acctgctccc cgcgtacaat ggtatcgcct atcgcgacgg 62220 gccggctcgc ctcctcgacg gcggtgtcga agttgacggc gcgcgtattg ccgctggcaa 62280 gatcattatc gcaaccggcg cgcggccggc agttcctgct attcctggcc tcgagaccgt 62340 accgtatctc accagtacga cggcgctcga cctcgaggaa ctgccgcgat cgctgctggt 62400 gatcggcggc ggttatatcg gcgcggagct cgcccagatg ttcgcccgtg ccggcgtcaa 62460 ggtgaccctc gtctgccggt cccgactgct ccccgaggcc gagcccgaga tcggcgcggc 62520 gctcacgggg tatttcgagg atgaaggcat caccgttatc tccggcatcg cttaccgcgc 62580 gatccgcaaa accgagggcc gagcgtcact gaccgtcacg cgtgacggtc acgatgtcca 62640 gatcgacgcc gatcaggtgc tgatcaccac gggccgcacg cccaacatcg aaggccttgg 62700 gctggccgag cacgggatca ccgtctcggc gaagggcggc atcgtggtcg acgaccgcat 62760 gcgcacgacc aaggctggcg tctatgccgc cggcgacgtc accggccgcg accagttcgt 62820 ctacatggcc gcctatggcg ccaagctcgc cgccaagaac gccctcaatg gcgacagcct 62880 gcgctacgat aacagcgcca tgcccgctat cgtcttcacc gatccgcagg tcgcaagcgt 62940 aggtctcacc gaggcggcgg cgcgtgcggc cgggcatgag atccgcgttt cgacgatcgg 63000 tctcgatcag gtgccgcgcg cactcgccgc ccgcgacact cgtgggctta tcaagctcgt 63060 ggccgatgct gctggcggtc gtttgctcgg cgcccacatc ctcgcgccgg aaggtgccga 63120 cagcattcag accgcggctc tcgcgatccg ccagggtctc accgtcgatg acctcgcgga 63180 cacgatcttt ccttacctca ccacggtcga ggggctgaag ctcgcagcac tttcgttcgg 63240 caaggacatc gccaaactct cctgctgcgc cgggtgagca caatcggcgt caagggcgtt 63300 tcctgccgat gatcggtatg acgtcggcgg tgcggttatc gcgccgccgt tccataagct 63360 ggcacagcgc gcggacttga cgatgctggg cgagcacggt ttcgacggcg cgccgctcct 63420 gttcggcccg ggccgtcccc gccggccgat ccgtcgcgtt gcgccgggct ctcgactcgg 63480 caactgcatg gcggaaggct tccagcacct cggaagcgcg gttcgcggtc gcgcgactga 63540 cacctgcctc gatggccaga ttcacaaccg tcagcctgcc atcagccacg cgggggcacc 63600 cataaaggag gcgcgccatc gcctcacgaa gcgcctgttc cgtggctgca ctgaccggct 63660 tcatgatgtg cgttccttca acggcgcgat gagcctgcgt tttctgtcgt tgtccaggcg 63720 cagcgcttcg cgttgcagcg gggagagacg cttgtcggcg agaagatcct ccgcctgtgc 63780 aatggaggct tcccatggcg ggagatgtcg ctcgacgagg caggcgttgg gacatcggtc 63840 gggcgcgcat cgcgacagga ccggcaccga ggctgaaggt ttctcagact cccgcaggca 63900 gagcgccgtc aatgggtcga agaagcagtc gttcagatat ccgacatgca gcgtgcgcgc 63960 cagatgcgcc agcatcgcct tcaggcgctt gcgatcggcc agttgccccg gaagcgggcc 64020 gagttcgcgg ccgacccgct ccagttccac gccgacgcgc ttaccggcgg gtccgcctgg 64080 accgtgaccg cgtcgatggt tttcgaagta gtcgatgatg tcgtcgagtt gtccgagcgc 64140 cagttcctgt tcgacctcct gcctgaagcc ggatgcggac gagccggcat agccgttgaa 64200 catggccacg gaggcgtgct tgtactggat tttgccggcg acaaccccga agggccggtt 64260 cgcgatgtac caggccagcg ttcgcctgaa ctgacgggtg ttgaagcgcc agacgtcttc 64320 tcccactcgg gggatcacag gactatcgtc cgcgccatat cgctcatcga gatgttctcg 64380 gaattggttg atcttcttgg cgatgagtat cggcgtctcg gcattgttcg tctcgcggtc 64440 gtcaagggca agccatagcc gctctgtccc cgcattccgg cggaatcgtt ccgaaagacg 64500 ctcggcaacc cggatcgcct ggacggcggc ctcgatggtg atccattcga cctgttcgcc 64560 gcgagcgccg cgatccttcc aggtcacgcc ctcgatcgcc agcctttctg ttcgcccgtc 64620 ccggtcgaga ttccgtttca ggcagccgga tcgcagcgac tgcacctcac cgtcgcgcat 64680 gcccgtcaga tagcaacaca cgatataggc ggccgtctgc aggtgccgtt cttcccgcgc 64740 caggctgatg gcatcgaagc gctcccgcca cggtcgcccc gtgtcgggat ccggggagat 64800 cggcgtgtcc atcccgccca cctcgaaccc aagctcgtcg acagcatcat gaaccatcga 64860 caacagggcc ggatctttgt ggacggtggt gagatgcagc ccgcattgca tcgtcaggag 64920 cttcagattg atgacctcgc catcaaacct gccgccccgc gacaatctgc cggtcagccc 64980 cccgatcgaa agaggtcttt cccagacagg aatgcctctt ccttcctcgc gacgcttgtc 65040 gatccaggag gccagcatta ccgcgggccg cgtgtggcgg gcgcgcgagc gtgctgcgaa 65100 ccggctgttc agtgcatcgg cttcagcccg ggcagtgaag atgtcgtcgc agaggtgctc 65160 gacatatttc aaggcccatc gcagcattgc gccgatgacc ggctccggga tgcgcgcggt 65220 ccggttttcc gaacagcgcg ttccctggcc ggttgcccga tagaccggtc ggccgcgcca 65280 cggggtgaag gtgatgccac cgcacgtcag atagggcgcc aggcgatgaa gctggacgat 65340 gggcctgagg cacacaccca cgcgccccgg cgtgatcggc cgcgcccggt gatgggtcgc 65400 gtatgcatcg atcaaatcct gatcgacgtt tgccagatcg agcttgccga tccgcgagcg 65460 cacgaagtcc aggaaccggc gcagcgtcgc aagcgcagta tggccggaga ctggccgcaa 65520 ccgcggctca ccgtcggcgc gccgttcatt catccaggca tagatgtatt ccttcgcaag 65580 caaccgctct gccgcgcagg ggatcacgcc gaagtcgacc gttcgaaagg cctttctggc 65640 catgttgaac atcgccggcg ccatatccca gacatcatcg ccgaaccgcg agagcgccgc 65700 tcggtcggta ccatccctga gaggcatcga agccaaaacg atgtcgtcat cgaccctgag 65760 gcgtgagacg gcacgctcat cgttcaaagg agaggtagtg gtcatgagcc gtaagcctcc 65820 ggcggaagat agagcaaccg cgccgaggat tctgccgcct caacccgtgc gcctccgacg 65880 acggaggacg ggaacatcgg cagaatttgc tccgtgatcc tgcggtatgg ccgatcgaat 65940 ttctcgttcc agtcgccaga aggcaacgcc tcccgcagct cgtccatgaa cgcctggaac 66000 gcgatcagcg ccggtagttt ccgtgcggta atgaccgcgt tggagcattc caggcacccc 66060 cagaacggcg tcggacaggc ttcgccttcc cgaccgaaag ggctgacgcg gaagttgctg 66120 cacgccgcca gccaaagatc ctgctctccg tccaggagcg ggccgatctt ttccgacggc 66180 accggcagcc cggtcgcgtc ggctgaggtt cgcagccggg cttcatccgc gggcacaacg 66240 atccaaggtc gcagagccgg cgccatcgcg tcggtcagtg cctcgactat cgtctgctca 66300 tgcagatgcc gaagggcggg gatgtcggca taatggttgg ccgccaccgc taccgtgtgg 66360 ccgacggcaa agttctccaa ctgccctccg gtccgcttat accagtcagc cttctgggtc 66420 ttgcgcagcc tggagagatt gagcgccagc gattttccgg cgtcatcgac gattccgtac 66480 ttctcgacaa acgcggccac gcaggtcccc agctttttcg gcgacgacag gcgccccggc 66540 ttccaggtga tccagagctt gctcgatcca gtgtgctgcc gagccttttc cgtcagcttg 66600 atcgccagcc gcaggacggc tccgggcgtc tcccgtccgc catcgcggac acgcaagcgc 66660 ttccactggg catgatgcgc gcgccgcttt cgatactcga tctcgacata accccggttg 66720 ggattgcgca agcagtcagc ctcaagccca cgcagcgctt cgatctccat gccggtcgtc 66780 aaggacagcc agacgaggaa gccgacgaca tcgtaccggg tcagatggaa gccggcatgc 66840 agttcctcga ccggaggcgg ctcgagcccg catctatgag cgtggtagcg cagattgtcg 66900 aacagcgcgc cttccccggc gactactccc gccgtcacaa tctgttcgac cactaggtca 66960 tagcgacggc gcaattctgg atcacggcct acatccagaa gtgggggagg cagagcctcg 67020 cccgtcgcta tccggtcgcg agcctcgatg atctggcgca tcgctgcctg cagcaacgtc 67080 gaggcaatcc tcccactgta ggcatcgcgc ggctttgaga cgccgtgctc gccgtgaccg 67140 atgtatttca ggcgcaacag tgtttcgggc ggaagccttt caggattgag ctcggcggcg 67200 acgcgcagca ccccgatcag agcaccgagc acattgcgct gattgggtcg ctcgccgccg 67260 ttctgctcca gccagtcctc ataggcattg attaccgccg gagttaagtc gtcgagacga 67320 cgaggtttta ccgacgcccc ttccaggaac agccagaacc gccgcagacg gcggataaag 67380 gtgcctgcgg ttttccagag tggtgccggc cccatccggt ggagatactc ctgcaggaat 67440 ggcgcaacct catgggtcag cgccgtcagc ggccaggaag acagattgac gtcgatcctc 67500 ccggcatctt ccgtccgaag gacgaagacg agcggatttt gcggattttc ctcttgagtg 67560 tcgaacaatt cgattccaac tgggaaggtg gcacgacgac cgcgtttcat cacaggggtc 67620 caccagcatt aacgcgcagt tcccaggcct cgaccgcagc gtcgatcatt tcctggcttt 67680 cttccatgca atccaggtag atgtgagtgc tttcgatgcg gctatggccc agcaaacgct 67740 gcaacttcag aagaggatcg ccaatcaagc ggcggtacgc cgcgccgata tgggatcggc 67800 gttcgtcgag tacccatccg atctgttcac gcacgagcag cgacagcata tgaaccgcaa 67860 aggtgtggcg catcatgtgc ggagtgacgt cgaggtcgat cccgaaccgc ctgcaccgta 67920 cgcttgccct ccggaagacc acctcccaag cggccggggg catgggccgc gccccttccg 67980 ccagccaaag acacaatggt tcggatgttt ccgcccatac caagcggctg cgttcgcgcg 68040 gcgccagcac gtcgacactg gctcgaactg tgtccttttc cagaaggagc cttccccgat 68100 cgtggctgac gacacggatc ggatgttcga ttgacctatt gcgcggttgc gaaaggcgca 68160 tgaggacatt ggtccgttcc aacgccgcgt attcatgcag acgcttcagc acgcgctcgg 68220 gcaagcggat ctcgcgcccc ttgctaccct tggcaatggc cggcgccagt cggaaagatc 68280 ggctcctcaa tgcaccgacc ggctccgtcc tcgggaactc gatccagagc agacttgccg 68340 cttcctggag ccgcaggccc gtcgtgacga gcaattcggc gaacaacgca ttgcgctcgc 68400 tgttgcggcc ctgccaggtg ggatcctcgc tcccgtctgg aagacgacca cgcaagccga 68460 tctcgcgaaa caggagatac cgatccaggg aaaggaaccg gatatcgcgt gtccgtgcgc 68520 cgcgctcggt ggcaacattg gcagcgaccg ctatggcccc gccgccgttc gtccgtcgcc 68580 atgattgccg ataggtgaaa ggcgatttgg cgatcattcc ctcttcaaga gcccatcggt 68640 aaagcttgtc gagcgctgct accgaccggt tccagctcgc ggccgagatg cgcgccggag 68700 gaagcgccag acgtcgcgcc gcatggaagg ctgcgacatc gtgccgatca gccgcccaga 68760 gggctctgtt gtctcggcgc tcggcaagaa agcgcatcca gatcaggata tcccaaccat 68820 aggcgcgcaa gctgttgggc gaacgaaccc ccaacgtggg gcaagctcga aagaaccggt 68880 tcaggtcgtg atcgtagctg tcgtcatcgc caagaatgaa cggcatgccg tccacgaggt 68940 tcagcttctc ggcggctgcg acttcatcca ccgacagcct gtggacgacg ccatcaaccg 69000 taacagactg ccgcagcgtc gaaagatccg tgaagaagag ctggggcatc ctgttctcct 69060 cggccgcgat tttcccgccg ggacgggctc gagcccgtcc cggcgggaaa atcgcatcgc 69120 ctcacctcaa gcgaagggga atgtcgtcaa cgttgatcgt gtgctgcgaa cgtcacagcg 69180 gtaagacaga acacagagtc aggataatgg cgtccttccc tctgacgaga tcgacgaggc 69240 gacgacctcg aggtcattca tgaattttat ccctgggcgg ctcattgagc cgctttgccg 69300 ttccggctga cgctggcgag cggcatgccg caagggacgc ttcgccatgg ccggtgcaaa 69360 tttgcacctt gcaggccatg cccttgcggc ttttgctctt cgcgtccgtc agaagctggc 69420 ccgcaaaatg cgggaaggaa agcaatgata aattagccgc cacgcggccg gagaagaaaa 69480 tgaagagaga cgagatcgag cgactccggg atacagtggg ttgtcaagcg gtattggaaa 69540 aggctgggtt tgcccttgat ggcaaggaaa gtaccaagcg agcgatgaag tatcgccgcg 69600 gtagcgagat cattatcgtc acccatgccg gccggggatg gtttgatcct ctcagtgacg 69660 ccaagggcga tatcttcggt ttggtgacca ccctggaggg ctgtaatttc ccggagggat 69720 gtatgcgggt cgccgagcta tcggggttgc ggccatctga tcttgtctgg aacaaggaca 69780 ccgtcgagac gatcagccta gtctcgactg ctgaagattg ggcgcgccga cgatcgcctt 69840 cggccggttc tgccagctgg cgttatcttc gatggcaaag gtcactcccc gcatttgtca 69900 tccgggcggc gatcaaccgc aatctgctgc gcgaggggcc ttacggtagc atttgggcag 69960 cccatactga tcaccatgga aaagtgagcg gttgggaggg gcgtgggccc gattggcgcg 70020 gcttcgcgaa gggtggcgcc aagatcctgt ttcggctcgg cgctgaccac gccactcgat 70080 tgtgtgtcac cgaggctgct atcgatgcga tgagtttggc cgcaattgag ggaatgcgcg 70140 acggaacgct gtatctcagc acaggcggtg gctgggcgcc agccaccgca gccgcactgc 70200 gccggcttgg tcagcggccc gacatacagc ttgtggcagc aacagacggc aattctcaag 70260 gtgatgtttt tgctgatcgg ctgcgcatcc tcgccgagga tctcggctgt tcgtggcttc 70320 gcctgcgtcc ccacgccgac gactggaatg aggttttgaa gcaaatggag aaggaaaaga 70380 cccaaagaag ggtggaaaaa ggaggcgtgc cgcctgcacg cccgccgcat caagggaggc 70440 ttcgcccggc tgcaccggcc cttgacccgg ccgacgggca ggccggcgtt ccggaaggtg 70500 tcaaggagga ctgaagagga aggcgaggtc gtgaggatct cggcacttcg gtccggcaaa 70560 cccgaaggaa cagccaatgt ccaaccatac cataattcga aagatctttg aggggcgtgc 70620 gacccgtcag cagatgttct cgcttttcga tcgccatgcc aagcgaccca cgcggggcca 70680 cgatgaacca gcagcgctct acgccggtga gtggttcgaa atttcggaag ccgaacacga 70740 ctacatgttc gagatcctgc cgccgctgtg gatctgcggc tctacgttcg ccatgcgcga 70800 attcatgacg ggttcggtaa cctcggtgtt ctttgccctc aggatcgatg ggctgatccg 70860 ttacttccac ggttactgcg atcttttcga cagctcgaac gtcgaagcga tgagactggc 70920 catcatcgag cgcgaaagcc gacccgtccg aacaatcacg cgcgatgaac gtcttgagca 70980 tatctggagc atcacggcgg acgcctaccg cggctatgcc ggcgatcgct ggccgcctgc 71040 agcgcgaggg cagcgcaccg tcatgctctg gtgcacggct aagggaacga cgctgaagct 71100 gctcaccgat ttgaccgaag acgaggtagc ggccaagctc ccggttcagt tccgttatct 71160 ccccgacgcc attgcggctt gagggaggat gagatgcttt cgttcccgct cgaaaaagta 71220 cgcgaggttc tcgatcgcgg tcgggtcgac gctgaggcaa atggcggctt tcgcaattta 71280 catcacgggc tcctgcccgg cgaaagtgaa cagccaggcc tctgacttgt cggagataac 71340 ggcgtctatc tgatgtcgaa ctgcaagctg cccgagggta tcaggccgct cgtgatctac 71400 gccgaagagt gcgacccaaa cacaaatgaa gactggtttc acgtcaagcg cgccacgttc 71460 ggcggcgatg atggtgttga gttttttaat ggtgcttctc tggaggccat gatggccgcc 71520 agtcctaccg caagccacct ctcgatcgtt ttccacgacg acgcgatgca cttgtcgctc 71580 atcacgccgc agtaggcacc gtcggccgct tcaagccaac ccaaaatcgc ctctctcagc 71640 acggtcaagc cggcgctcac gcaccgtcga tgtcgtgcgc tggcaccaca aggagaaacc 71700 ccatgagtaa taaccttttt cactcgatcg gcctgatacc ctcgacatgt ttggcagttc 71760 tgccctctca tccggactaa gcattggcat ccccatttgt ggaggcttcg agccggttgc 71820 cgctaacgat gacgatcccg atccgacacc tccctctcct cccttaatgc cttctccaaa 71880 acgcgcgata gccaaagcgt cgcgaccggc ccttccaagc cagatggaac gggcaaactt 71940 ctatctcgat ggcgatgatc gtcgtcttgc tacgacgtgg aaggagcgcg cgctcaccaa 72000 tgtcgccgcc attctgaccg caaatgagat tgagcgaaac gacgtaccca tcacgcgcga 72060 gcaccagaaa gtgctgatcc gctttaccgg cttcggcgcc ggcgagctcg ccaatggcat 72120 gttccgtcgg ccgggcgagg tcgatttccg caaaggctgg gacgatattg gttcttcgct 72180 cgagcgcgcg gtttgcgaga gcgattacgc gtcgcttgcc cgctgcaccc aatatgcgca 72240 tttcacgccg gagttcatta tccgcgcaat ctgggctggg gtccggaaac tgggctggcg 72300 cggcggccgg gtgctcgaac cgggtatcgg cacggggctg ttccctgccc tgatgccgca 72360 accctatcgc gacgccgcct atgtgaccgg gatcgagctc gatccggtca ccgcccgcat 72420 cgcccgcctg cttcagccga aggcgcggat catcaatggc gattttgccc gcacggatct 72480 ggcaccgatc tacgatctcg ccatcggcaa tccacccttc tccgatcgca ccgtccgctc 72540 ggaccgcgct taccggtcgc ttggccttcg tttgcacgac tatttcatcg ctcggtcgat 72600 tgacatgctg aagcccggcg cgctcgccgc cttcgtcacc tcacatggca ccatggacaa 72660 ggccgatacc acggcacgcg agcatatcgc caagtcggcc gacttgatcg gggcaatccg 72720 gttgcccgaa ggcagctttc gccgtgacgc cggcacggat gtcgttgtcg acatcctctt 72780 cttccgcaag cgcaagcccg gagagccgga gggaaatcag ctgtggctcg atatcgatga 72840 aatcaggccg gccaccgagg acgaaggcgc catcagggtc aatcgctggt ttggtcggca 72900 tccggacttc gtgctcggca cacacgccct gacctccggc ccgttcggcg agacctacac 72960 atgccggccc cgcgatgacg aggatctcga cgccgccctc gccgctgcaa tcgatctatt 73020 gccggccgat ctctatgacg gcgagccgac accgatcgat attgatctgg aggaagaact 73080 cggcgagatc gtcgatctgc agccgagagg cggctccgtt cgcgagggca gcttcttcct 73140 cgaccggtcg aagggcctga tgcagatgct cgacggctcg gccgtgccgg tcaccgtccg 73200 caaaggtcgc acgggtaatg gggtcccgga aaagcacgtc cggatcgtct caaagctgat 73260 cctgatccgc gatgcagtgc gcgaggtcct gaaggcgcag gaagccgatc ggccatggcg 73320 cgatctccag gtgcgattgc gcatcgcctg gtcgagtttt gtgcgcgatt tcgggccgat 73380 caaccacaca gtcgtttccg ttcaagagga tatcgagacc ggcgaggtca aggaaacgca 73440 tcgccaaccg aacctcgcac cgttccgcga cgatcccgat tgctggctgg tcgcctcgat 73500 cgaggactac gatctggaga cggacacggc gaaaccgggg ccgatttttt ccgaacgcgt 73560 gattgctccg ccggccgccc cgacgattac ctcacctgcc gatgcgctcg ccgtcgtgct 73620 gaatgaacga ggccacgtcg atatcgacca tgtcgcggag ctgttgcaca gcgatccggc 73680 tgatgtggtc gacgagctgg gcgaggccat cttccgcgat ccggccgatg gatcgtggaa 73740 gacggcggac ggatatctct caggggccgt ccgcacaaag ctcgccgccg cgcaggcagc 73800 ggtcgagctc gaccccgcct atgagcgcaa tgtccgcgcc ctccaggagg tccagccggc 73860 tgatctccgg ccatccgaca tcacagcccg cctcggcgca ccttggatcc cggccgccga 73920 tgtcgtcgcc ttcgtcaggc aaaagatgga ggcggaaatc cgcatctacc acatgccgga 73980 gcttggttcc tggacggtgg acgcacggca gttcggttac agcgccgctg gcacatcgga 74040 atggggaacg agccgccgcc acgccggcga cctgctgtct gacgcgctga atagccgggt 74100 ccctcagatc ttcgacgtgt tcaaggatgc ggacggcgag cgccgggtcc tcaatgtcgt 74160 tgacaccgaa gccgcgcgcg acaagctcca aaggatcaag caggcattcc aggactgggt 74220 ctggaccgat ccggatcgaa ccgaccggct ggcccgcgat tacaatgacc gtttcaacaa 74280 catcgcgccg aggaaattcg acggctccca cctgagactc cctggcgcct ctggcgcctt 74340 tattttgtat gggcaccaga aacgcggcat ctggcggatc atcgccgatg gctcgaccta 74400 tcttgcccat gccgtcggcg ccggtaagac gatgaccatg gcggcagcca tcatggagca 74460 gcgccggctt ggcctgatcg ccaaggcgat gctggtcgtg cccggccatt gccttgcgca 74520 ggcggcgcgc gagtttctag gactctatcc aaatgcccgc attctcgttg ccgacgagac 74580 caacttcacc aaagacaagc gtgcccggtt tctgtctcgt gcggcgactg caacgtggga 74640 tgcgatcatc atcacgcatt cggcgttccg tttcatcgcc gtgccctcaa ccttcgagca 74700 acagatgatt caggacgagt tgcagctcta tgaggatctg ctgaccaagg tcgacagcga 74760 ggaccgcgtt tcgcgcaagc gcctcgaacg gctgaaggaa ggtcttcagg agcggctcga 74820 aggcttggcg acccgcaagg acgaccttct gaccatctcc gaaatgggcg tcgatcagat 74880 cgtcgtcgac gaggcacagg agttccgcaa gctgtccttc gccaccaaca tgtcgacgct 74940 aaagggcatc gatccgaacg gctcgcagcg cgcctgggat ctctatgtca aatcccgcta 75000 cgtcgaaacg aagaaccccg gccgctcact ggtgctcgct tccggcacgc cgataacgaa 75060 tacgctcggc gaaatgtttt cgatccagcg cctgctcggc catgctgcgc ttgccgaacg 75120 cggattgcac gagttcgacg cctgggcctc ctgcttcggc gacacgacca ccgaactcga 75180 aatccagcct tcgggcaaat acaagccggt cagccgcttt gcgtcgttcg tgaacgtgcc 75240 ggagctgatc gccatgttcc gctcgtttgc cgatgtggtg atgccggatg acctgcggca 75300 atacgtgaag gtgcccaaca tctcgaccgg ccggcggcag atcatgacgg ccaagccgac 75360 ggcactgttc aagacctatc agcagaccct cggcagcagg atcaaggcga tcgagcagcg 75420 cgagggtccc gccaagcccg gcgacgacat cctgctgtcc gtcatcactg atgggcgcca 75480 tgcggcgatc gacctgcgcc tcgtcatgcc ggcggctgaa aacgaggaga acaacaagct 75540 caatctgctc gtccgcaatg cctacgggat ctggaaggat accggcgagg cgatctatcg 75600 acgccccgac ggcaaagact tcgatctacc aggggctgcc cagatgatct tctccgatct 75660 cggcacgatc aatgtcgaaa agtcccgcgg cttctcggcc taccgcttca tccgcgacga 75720 gctgatccgg cttggggtgc cgggatcgca aatcgccttc atgcaggact acaagaagac 75780 cgaagccaag cagcgactgt tcggcgatgt cagggccggc aaggttcgtt tcctgatagg 75840 ctcgtctgaa acgatgggca cgggcgtgaa cgctcaagcg cggctgaagg cgctccatca 75900 cctcgatgtg ccatggctgc cgtcgcagat cgaacagcga gaaggccgga tcgtccgtca 75960 gggcaaccag cacgaagagg tcgatatctt cgcttatgcc acagagggtt cgctcgatgc 76020 cagcatgtgg caaaacaacg agcgtaaagc ccggttcatt gccgcggccc tgtcgggaga 76080 tacctcgatc aggcggctcg aagacgttgg cgaaggggcg gccaaccagt ttgccatggc 76140 caaggcgatc gcatccggtg atgaacggtt gatgcagaag gcaggcttgg aggccgatat 76200 cgcacggctc gagcggctgc gggccgccca cgaggacgat caatatgccg tccgtcggca 76260 gatgcgcgat gcagagcgcg aaatcgaggt ctcagcccgg cggatcgccg aaatcggcca 76320 ggacatcgcg cggcttcagt cgaccaccgg cgacgccttc acgatgacgg ttctaggtaa 76380 agaacatgcc gagcgcaagg aggccggccg ggcgttgatg aaggagatac tcacactgct 76440 gcagctccag caggagggtg aagttcatct ggcgacgatc ggcggcttca atctcgttta 76500 tgatggtgag cggttcggca agggcgacgg ctatcgctac gagacgctgc ttcggcgtac 76560 cggtgcggac tacgagatcg atctggcgat cacggtgacg ccgctgggcg caatctcacg 76620 gctggagcat ggactcggcg gcttcgagga ggaacagcgt cagtatcgct ggcggctcga 76680 cgaggccgag cgccggctga gttcgtatca gtcgcgcatc ggcggcgctt tccagttcgg 76740 cgatgagctc ggcgccaaga agaagcaact tcgcgagatc gaggaagaac tggctgcatc 76800 cgccatcgca ggctttttgc ctgggctcca ttccagtcgt ggcatcgacg aaggatcgcg 76860 ggtagagact tgtaatttct cgacctcatc catgtctgat gatcacttcc cgttcagatg 76920 atgtcctgca aatggcgctt ggcaatggct ttcggagtcg tccgggttag acaaagggcg 76980 ctcccttcgc gggtcgagcg ccctttttgc gttttcgttt cctggcaagg tcctgcgtgc 77040 cattcgcgcc gcagcgtgcg cgggccagcc cttcaataga ggaatggagg agaaggagga 77100 gggaaagaac cgattgctga tcgatcctcc tgccgacgca gctgctcaac cgccacctgc 77160 gccatcccgg ctactcgtcc ttcgcagggc tgtcagcccc gcttgttctt cgcagcaggg 77220 atgctcggtc gcagttgcgt cagtccggcc gatcagcggt ccgggagatg tcttcgagaa 77280 aaatgaagac aggaagggcc ggcatggcgc cggtccggaa ctctctagac aaggacaaat 77340 cccatgcaaa tcatcaaggt tgacccgcgc gcgttgaagg aaaaccccga ccggatgcgc 77400 cagtcgaagt cgtcgccgca ggccgatgcg ctgatgctgg ccacgatcaa ggccgtcggc 77460 atcgttcagc cgccggtggt cgcaccggaa acggatggcg gaaatggtta tatcattgac 77520 gccggccatc gccgtgtgcg ccttgccatc gccgcaggcc tcgaagaaat cgaaatcctc 77580 gtcgttgatg cagccaacga caacggcgcg atgcgttcca tggtcgagaa cagcgttcgc 77640 gaagcgctca atccggtaga ccaatggcga ggtgttgaac gccttgttgc actaggctgg 77700 acagaggaag cgatcgccgt cgctcttgct cttcccgtcc gccagatccg caagctgcgc 77760 ctgcttgcca atgtcctgcc agctatgctg gagcagatgg cgctgggcga catgccgtcc 77820 gagcagcagc tacgggtgat cgcggccgcg ggccaagtcg atcagaaaga agtctggaag 77880 gcgcacaagc caaagaaggg tgatacggcg ccatggtggc agatcgccaa tgcgctgacg 77940 aaaaagcgca tgtatgccag ggacgcgagc ttcggtgacg atctggctca ggcctacggc 78000 atcgaatggg tggaggatct cttcgcaccg gccgacgagg acggccgcta caccaccaat 78060 gtcgaaggtt ttcttggcgc ccagcacgaa tggatgacga acaatctgcc gaaacgcggc 78120 gcgatcgtcg aggtcaacag ctggggccag ccggaactgc cgaaaaaggg atcccaagtt 78180 tacggcaagc cgtccaagtc cgaccatacg gcgctctacc tcgatcgtga cggcaaggtc 78240 cagaccgtgc attaccgcat gcccgaggcg gcgaagccga agggtgctgt tggcgacgga 78300 tcggtcactg gcggcgatga caccgacgca gtcgccacgc cgaaagcccg gcccgacgtc 78360 acgcagaagg gccacgacat gatcggcgat ttccgcactg atgccctgca cgatgcgctc 78420 ggtcgcgcgc cgatcgagga tgatatgctg atggcgctga tggtcctggc gttcgccggc 78480 cagaatgtcc gcatcgactc cggcgcagat ggcaccttgt acggcggcaa gcgcttctcg 78540 cgtcatgccg tcggactgtt tgacgagcat ggcaagctcg ccttcgatca ggacacgctt 78600 cggatcgccg cccgctcggt gctgatcgac gtcctctcgt gccggcgggg catgtcgaac 78660 agcggcatgg tcgcgcgctt cgccggcgag gctattggcg ccgacgcttt cctgccaaac 78720 atgggctcaa aggacttcct cttgtgcttg tcgcgtcagg cactggaagc ctcttgcgcc 78780 gaggcatcgg tccagccgcg cccgaaggtc cgcgaaaccc gcgcggcact cgtcgagcat 78840 ttcgcgtacg aacacttcgt gcatgcgtcg gcccgcttcg caccgcctgc cgacgagttg 78900 ctcgagtgga tccgggcagg cgcggacacg ggtggcatcg gcgccacgcc ccaggatgaa 78960 ggggaaagcc gtaccgatga tccatcggta gatcagccag aacacaatac cgacgatgtg 79020 gtcgaaggcg aaactgagga tgcggatctg cccgaccatg atgtgcatga cgaagacgtc 79080 gatcagaggg ttgcagcatg accgccgcct tccagtcgaa catgacacca cccacccccg 79140 atcatttggg ggtggagttt gccaccactg cggacggcct gcccgtggcc cgcatcggtg 79200 acctggtcct tgccatggtc acatcacaga gcggctttgc ttttattgca agcgcccgtg 79260 cgatccgtcg gccactcgca gatctgacgc gcgccgactt catcgggcat gacggccggg 79320 tggcggatga agcagagttc cgggcccgtg tcgccgagac cgctggtcac aaacgcgatc 79380 tggccaaact gaaccgcatg caaacccgca tttcggccag cacaccatgg ggcggatcgc 79440 agagagcggt cgtgtacgcc gagggcgtcg tcgcccacat gacatcaggg catgggggct 79500 tccatctgtc gacagagcgc aatgccaagg tccatccgct gctgcggaag gatatgccct 79560 ggtacgagga agactgcgaa tgggcgatcg tagcgatctg ctttccggac ctgttcacca 79620 cctatgagcg gtcgatggct gagaagaccg tccgcaatac ttggcccgac gcctgggaga 79680 aaatccatgg gcgtgcgctc gccgagggcg agagctgggc caaggatcgc cgggcgttcg 79740 atcagcgtca tgccgtcgac ttcatagtca cgtcggcaat cttgtccgat cagcgccccg 79800 gcatgacgga ggtcgtggcg aagatcggcg gaggccatat ccgcggtggc gaagaacgcc 79860 gatttctggt ggcaagcgac gaatatgcgg ggcgggggcg gttcggcttc gtcatcgatc 79920 tcgcgcgcca cgctgaatat gatggcccct cctccttcat tggctggaga aaccgggggg 79980 atgggtcatg atcgacatcc gcctattgag gccgctggcg aaagcaatcg gcgcccggcg 80040 cgagacccag cggcatctcg attgtctgac tcgccagatt gcggcgcgcg ccgcaagaca 80100 ggcgaccaca gtgaaggtcc ggagccgcgc gcggcaccgg tccagtcccc gtctctacca 80160 tcgggagatc gtcgaccgcc ttgccttcga gcgctgggtc gaactcgaca tgatcgcctg 80220 caggctggcg atgcaggagc aggtcatcgg ggcgttcctg catcgcgacc gcgagcctgt 80280 gctgcatccg gcgatatagg aggacccgaa gcgaaaggac ctggcgatgt cctacccggc 80340 tgcgatgtca tcgtcatggt gggcttggcc atgtctgtcg cttgccttgg gattgatatc 80400 ggacccgtgg cggactgccc ttcttgttcg ctgcggtctg aaccggcggc cggtcgtttc 80460 aaggccgctt gcgcgccgcg gggcggccga tccagcctct ctgcgcgagg gcaggctcgc 80520 ggtctgctca ggtcaagacc tgctggcccg caaccctacc ctgctggctc agccagatcg 80580 gacctgtgaa gccacccgtc ccttgccggt tcctggtcgt ccgcatcgaa gggcagaccg 80640 gcacgggccg gaaccgcttc gcaagccaag gaaggaacag acatggccaa gccctctacc 80700 cccaatcgct ccaacaccag gtcgtcgcaa tcccgcaaag gtgcaaccct cgaaatggtc 80760 cgcctcacat gccccgacgc cacccaggcg tccaagatcg cgacaagctt cggcacggca 80820 gtcgtcgaca gcgatggcat ccgcagcctt cacgagcggc tgatcgtcga gaccgccgaa 80880 agtctgtccg aaggcctcgg cgagaaggcg atgcagatcc acctccagcg catcgtcggg 80940 tcctttgtcg gatccgcgca tggcgccggg caattctact cccgcgccgt cacagaggcg 81000 cgcgacgcaa cggccaaggc gtccaacgat gcccgtgacg aggatctcga tggtccggtc 81060 ggctatgaca gcgccgccca gcgcaagcgg gagttcgcgg ccgacatggg tgtccaatcg 81120 cacgccctgc gcatggcagc cgagggcgca gtcgcggctt acgaacaggt catcggcgag 81180 acctggaagc ccttcgaccg gccggtcgaa aatccgggcg catcactcga ccgcaaagca 81240 gccgaagctc agttggccgc tttcggataa cacattggcg gggtcgcacc ccgccctttc 81300 ttcatgttcc gaggcaggcc ctcgcagggg cccgcctttt ctcatgtcaa aaatgaaagc 81360 tgggtgcgcg cctatcgcgg cccgtcccgc tcggcggtcc tgcaggagcc gggcacccat 81420 gcaacggctt tgccgtcctc cacgctgttg cggccgttcc ggtgcatggc cgcaccatcg 81480 cccctgactt cggacctccg tgacggaccg cgacaggcgc ggtcttcaag aaaaggagaa 81540 ggaagtcatg gccaggaaaa cggataaaga tcgcatcgat atctacaccc ggatcacaga 81600 tcggatcatt gaggatctcg aacagggcgt gcgtccctgg atgaaaccat ggagcgctgc 81660 caacaccggt ggccggatca cccggcccgt gcgacacaac ggcctcccct attccggcat 81720 gaacgtggtg ctcctgtggt cggagcaggt atcgcggggc ttcgcgtcgt cgatgtggat 81780 gacgttcaag caatccctcg aactgggcgg ggccgtgcgc aagggcgaga ccggctcgac 81840 cgtcgtcttc gccagccgct tcaccaagtc cgaagcggac gggaatggca acgaggttga 81900 tcgggagatc ccgttcctga aggcctattc ggtgttcaac gtcgagcagg tcgacggtct 81960 gccccaaagc tattatgcgc cgccggccaa ggtcgttgat ccgatcgcgc ggctcgagag 82020 cgtcgatcgc tttttccgca ataccggcgc agtcatccgt cacgggggca accaagccta 82080 ctactccccg gtcatggact atatccagat gccgcccttt gagtcgtttc gcgatgcagg 82140 cggatacgcg gctgtgctca gccatgaggc gacccactgg acggcggcgg agaatcgggt 82200 gggacgtgac ctatcgcgct atgcaaagga ccggaccgag cgggcacggg aagaactcat 82260 tgcagaactc ggcagttgct tcctctgcgc cgatcttggc atcgcaccgg agctcgaacc 82320 gcggccggat catgcatcct atctgcagtc gtggctctcg gtgctggcca acgacaggcg 82380 ggctatcttc caggcggcgg ctcatgcgca gcgcgctgtg aatttcctgc attccttgca 82440 gccggaagtg gatgtgaagg ctgcggcctg acgctcaggc gcggtcgtta ccaccggtgg 82500 cggccgcgtg attttcatca tgttggtcct tgagaccctg cgcaatgtca gcatccagcc 82560 ttccccagat cgacggtttc tgagcgtcgg atttgggttt acgggatggt ttgcgctcaa 82620 tgatgaacgg cttggtctgc tgacgcattg atcctccagg cagcgatttg cgagcgcaac 82680 gatatcgcaa tgggcgcagt cagcaagcgg gccagtgttg acaggcacgg cttgtccccc 82740 gattgaggca gtgcagcacc ggtctgaggg ggcgtagcgc aggatgccat tcgtgcccat 82800 ggcgaatgcg gcggaacgcc attgccatat cccttcacgt cagagtttcc ggcaacccat 82860 ctgcgggctc gataaggcat gtctgaccgg agaccggctg cgcctcaatc gttttcccgc 82920 aacggcaagc cgtaaatttc ttaccccgga gcccacctac cccactcgac aagtcgagcg 82980 gggaccccag ctcggctcct cctctcccac taacaaatct gcgacttgcc gccctccatt 83040 tcattccggc cttatcaggt gcggtccgat catcaccggt cctttgacag ctatcgaggt 83100 cgcgatgggc gcggcccgaa catgagaaaa ggaatacgac aatggcaacc atcggcacat 83160 tcacctccac cgaaaacggc ttcaccggct ccatccgcac gctcgccctc aacgtcaagg 83220 cccgcatcgc ccgggtcgaa accccctccg acaagggccc gcagttccgc gtctacgctg 83280 gcagcgtcga gctgggcgcc gcctggcaga aaacctcaga acagggccgc gactacctct 83340 cggtcaagct cgacgatccg agcttcccgg ctcctatcta cgcaacgctc gccgaagttg 83400 aaggcgagga tggcctccag ctcatctggt cccgcccgaa ccgggactga ttgacatcac 83460 ggggctccgc cgccggcgga gccttctcct ctgccgagaa ctcaaagcag taccctgcat 83520 cgagccaggt cctgcttttt tggtggcata ccgagacggg ggatatgctg ctcagatcgg 83580 gcgagggtgc cgggccggaa tgacggcgtc aaggacgagc ggttccccca atttcgcgcg 83640 aacgctcttt gagcgcccgc acgaaatcgg ctcccccact cgccgccgct ggcggtcgca 83700 tccgcgatcc ctgaccccgc catcccgccc cgccctgcga tgtcgtcttt cacaaactca 83760 aggagatggg acgatgacga tcgaacagca catcgaagaa ctgcgcgccg agctcaagaa 83820 cgcatgcgac gctgcggagc gcggcgagat ccagaccgag ctggacctgg ctcaagcgga 83880 gttggcaatc atcacggcag agcaggacgg aagcgttgat gccgagccgc ccttctgagg 83940 gcggtagacg acacagccag gcgtggtctc tgtgtaaggt gtcgaaaggc cgagacattg 84000 caccgcgtcc ttgtcgagct aggccatcga catcagggat gttgcagtcc ggtcgtcggg 84060 cagcaactca tcgccatcag aattttcccc gccgcttcgc gtctcctcgc gcgccaaaat 84120 tcaggtgtcg ataagtcctc cgcttcgctg cggccgtacc gatgcaatcc tccttgtccc 84180 ggcctgcggc cgatccctgc gatgtccgca atcgacaagg agaaaccacc atgcaacgcc 84240 tcgcgcaatt cctggccgcc acaggccgca agctttcttc ccttggcaag gtgatcggtc 84300 acattttccg caagggcaaa ctcggcctga agctcgcgat caagatcccg ttcttcgtcg 84360 agatcgagat ctcctttgaa acagattgga gcaggcgccg ataacggcgt tgtgcaacgg 84420 ccagcaatcg tgggccggtt tcagcaccag ggctgtctac ggcccgtcca ggttctggcc 84480 aggccttccg atacgaggat atcgccgaga ctcctgccgt cacggatgag gacgcggagc 84540 ttgcgaccgt atctgtcttc gtcgcgtccg ggccatgcgc gaagcttgaa ggacccctga 84600 ttgaccagtt cgatcaggcg atcggtcgct cgatttccaa gcgccagctc cgttgcgcat 84660 ttcggctcac tgatctcggg agcatcgata tcggcaattc ggatttttgc gccctcaatc 84720 cagagagtat ctccgtccac gacgcaggcg aagcgatcac caccataaca tttccggtat 84780 gtcgtctctg gactgatgac cgagctcgca gcctcggcga ctggagtgag cccaaatatg 84840 tgagagccca gcgcgcagcc ggatactgcg atcgcgacga tgatccttct cacggggtaa 84900 cggacctctg gcagaccgct atggtcgctt ctctacaatt ccatggctct caatttcaat 84960 gcgatccgtc agagatggtt ttcatatcgc tcttcggtgc agctggcgca aacgccactg 85020 cgagctttcc cgatcacgta tgttgcgccg agttgattgt acggtatccc cggtggcgtt 85080 tttgcctgac gagatcaagg aacaattcaa ccgcgtcttt ctcttgctcg aagtgatgaa 85140 gctttagctg gcctctggtg ccgatgcgtc cccaacgccg cataagacag gcctctccga 85200 agagggtcgg ctcgatcgat atggcataga agcgtgccat attcttctca gcatccgtgc 85260 gttcgatata gaggtgatag ggctgggcga tcatggtgag aggatcgcgc aatcgggcct 85320 atgcgtccaa cgacagttgt gaatcgatgg tcggggaatg attcagtttt gtgaagtatg 85380 gacagacgga gcaccgggcg gtccgccttt ggcgtacggc tctattcgct ggagcgaacg 85440 aagccgagct gtggtcttcg ccgatcccgg taacgatcct cccgcgatag ccgactgcca 85500 ttgatcagta tcccaggtaa ccgagaatat cggcgccaca atagtcggct tgctcgtctg 85560 gatgaacgat gagatcaccg gtcgtgacat ccaccaaagc gctatcgctt tcgcgaacga 85620 tggcctcaat ttgatggacg cggcattctt cgatggcctc ttctaccgtg acctgtgcct 85680 cgcaggcttc ccaatatctc atcgcccggt ctctggattt gggttctccc tcagaccttg 85740 atttccaatg gtccacggtt tccatggaag cggttatcgc caacgcagga cttcatgtcg 85800 gctcgccgga accacatcgc gcgaccgcat cgaagcggcg catttccccc ggtgaacaca 85860 atctgctcat cggcacgcat tcgcaggact tcgtgcggct ggatcaatgg tcggctggca 85920 agttgctttg atcgggttcg tgacgaaccc ctcgcctgaa agctgcggct gacctggtcg 85980 atctcgactg tcgttgttcc acaacgccgg gagatatagt ccgcggtctc cggatcgttg 86040 atcgctgaga aactgatcca gctcgcgctt tcgaaccact tgctggtggc gtcgcgtccg 86100 ccataggttt cgcgcatctg gccgatcgac tgatagatca tgagaagcgt gatcccgtac 86160 tttcggccgg catcgcgtgc cgtctcaagg atcctcatga aacccaggcg agcgacctcg 86220 tcgagaagga agagagcgcg tcccggcatc gccccgtcac gattatagat ggcgttcagg 86280 aatgagccga tgatcacccg cgccagacct ccgtgggttt ccagcgtttt gagatccagt 86340 gcgacgaaca cgtcggtcgt tcccgacgcg atgtcatcgg tcgaaaaggt cgaaccggac 86400 acgagaccgg catagttcgg atagctcagc caatgtgttt ctttgatcgc attggcatag 86460 acaccggaaa atgtctccgg cgtcatgttc acgaacgctg caacgttctc ctttacgaaa 86520 tcggactcgg agttgtcgta gatttcctga agccgcgccc gcagctttgg ctccggttcc 86580 gagaggttca tgcggacggt ccgcagcgtc tgattcttct tttccgtatg accggacagg 86640 cagacatcgg cgatgatcgc cgtcagcagc tgcaagccgg acgcccgaaa gaaatcgtcc 86700 cggacgccgc taacgcggcc gctctcgctc atgatccagg aggcgaccgc agcgatatcc 86760 tcttccttcg tcccgccatg ctgaccgatc cagtcgaggg cattaaaccc gatatcggga 86820 tctttcgggt cgagcacgat gacatcacgg ccggccttaa tccgatgcgc cttgaccatc 86880 ggcgccacct cattggatgg atcaagtacg atcagcgtgc cgccccattt cagcgccgtt 86940 ggaattgtca ccgacgtagt cttgaaaccg ccggagcccg cgaacacgat gccatgcgac 87000 gatccgaacg aaccatcgaa gcagagcagc ggtgacttgc ccccggtgcc ccatgtctca 87060 ggctgatcgg cccgaaacga gagtgccgcc gtgctgtcgc gatcgacacg ataccgctcg 87120 ccgatcacga tgccgccgcc gtctgcgaac agtttctctg cttccggcag tttcatccat 87180 tccgcctcgc catgcagcgc gcgtttaccg cggatgcgtt tcggctcgga acgcgagaat 87240 gcggcgttgc cgatcaccgc gacgcgcagc gcgaacatgc cagagaacag agctgcggca 87300 gcacctgtca ttgttgccgg gtcgacgtag gacaggatcg acctggccgc aggcgcctgt 87360 ccggcaaatt gcgaaagtcg cattccttcc cgaacgacgg caatggcgat gacggcgccc 87420 gatccggcag cgacgcccca ccctgcggtc ttgatgttga ccgatccctg ggcactgagg 87480 agaaagatca gcccgatcgc agcacttgcg atatagggca gcgacagtcc gattcggccg 87540 agggtcaatt tggcctctgc cgtttttccg aaactggcga gccactgttc gatccccggc 87600 aacatcagtg cgatggcgat catcaccagc ggcggaacaa cggcgagcag gatcctattc 87660 gctgtcattg ccgaatgcct ccgcgccgat tgcgatcaga cgggatcgct ccgcctcatc 87720 ggccttgatc ctcgtcttcg cttcgatcaa cagaccgagc aacagcgcgc gtttttcata 87780 gcgcagtcct gccttgacga tcaggccgcc caattcgatc ttctcgcggg catccttctt 87840 tcttgcctct gctgtggtca gccgctgcat ccgctcaagc ctcgccagcc tggcccgcag 87900 ccgcgccagc actgagcgac gttgccgacg atgttccggt cgctccagcg gcactctttt 87960 cttttccgtt cgatccggct ttggttccgc gaaaccgctt cgccacgtcc tcgaacgctg 88020 cctgaaggtc ggcgtcgtcg acttcgatct ctccaagtcc ggccttcagc gcaatgcggc 88080 cgatgcgttc ggcgtcacgc gtttccgctt gcttcagctg ttcttgcagg cgggcaagtt 88140 cttcgcggat tttcgacgtt ggcttcttca tcggaatgca atctccagtc atgtccgtgg 88200 aatgatggga tgagggtccc cgattttttc ccggcaggac aggtacaaat ttgtacctcg 88260 ccaaagcgtc agcatttggc gaatgatccc gccgctcgac aagagcggat ccaagggcgc 88320 aattatacgt cgctgacgcg acgttctgct tttgccccct ggtggggtca cctcttgcga 88380 tcaacctgtt gatttcgttt gcaagaagga gcgctccacc cgtggccgtc ccgcatttct 88440 cagtcagcat cgtcgcccgt ggctctggcc gcagcgcagt gctgtctgcg gcctaccggc 88500 actgcgccag gatggactac gagcgggaag cacgcacgat cgactacaca ggcaagcagg 88560 gtcttctgca cgaggagttc gtcatccctg ctgatgcgcc agactggctc cgcaccatga 88620 tcgccgatcg ctcggtctcg ggtgcctcgg aggcgttctg gaacaaggtc gaggcgttcg 88680 agaaacgggt cgatgcccaa ctcgccaagg acatcaccat cgcgctgccg atcgagctct 88740 cctccgagca gaacatcgcg ctgatgcaag acttcgttgc cgagcatctt acgacgaagg 88800 gtatggttgc agactgggtc tatcacgatg cacctggcaa cccgcatgtc cacctgatga 88860 cgacattgcg gcctctgagc gaggacgggt tcggtgccaa gaaggtcact gttcgtggat 88920 cagacggcca gcccatgcgc aatgacgccg gcaaaatcat ctatgaactc tgggcgggtg 88980 gcgccgagga cttcaatgcc tttcgtgacg gatggttcgc tgtccagaac cggcacctgg 89040 cgcttgccgg gctggatatc cgcatcgatg gccgatcctt cgaaaagcag ggtatcgagc 89100 tgacacccac aattcatatc ggcgtcggcg cgacagccat cgagcgaaaa tcagaaatgg 89160 aaaaccggct ggcgacagct gggtcacgta agcttgagcg gatcgaattg caggaggagc 89220 ggcgcgcgga gaatgtccgg cgcatccagc gcaatcccgg tattgtgctc gatctgatca 89280 cccgggagag aagcgttttc gacaaccagg acgtggcgaa aatcctccat cgctatgtcg 89340 acgacgcggc cctcttccag agtctgatgg cgcggatcat gcagcatctg gacgtgctgc 89400 gcctcgattg cgagcggatc aactttacct ctggtgtcag gacgccagcg cggtacacga 89460 cgcgcgagat gatccgcctt gaggccgaga tggcaaaccg gtcgatctgg ctgtcgcagc 89520 gatcatcaca tggcgtccgt cagaagatca tcgaggcggt gttcgagcgc cataagcgcc 89580 tctcggatga gcagaaaacg gccatcgagc acgttgcagg tcaagagcgg attgcagccg 89640 tgatcggccg cgccggcgcc ggcaagacca cgatgatgaa ggcggcgcgc gaggcctggg 89700 aagcggccgg ctatcgtgtc gttggcgccg ccctggcggg aaaggcggcc gaaggattgg 89760 aaaaggaagc gggtattctt tcccgcacat tatcctcctg ggaactccgc tgggcccaag 89820 gtcgcgatca gctcgacgac aagacagtca tggtcctcga cgaagccggc atggtctctt 89880 cgaagcagat ggcactgctt gtcgaagagg caacggtgcg aggggcaaag ctcattctca 89940 tcggtgatcc cgaacagctg cagccgatcg aggcaggtgc cgccttcagg gccatcactg 90000 atcgcatcgg ctacgccgaa ctcgaaacca tctatcgcca gcgcgagcaa tggatgcgcg 90060 acgcgtcact cgatctcgcc cgcggcaaca tcgccaaggc tgtcgagtcc tacagcgcaa 90120 acggtcggat gatgggatcg accttgaagt cacaagctgt cgaaaacctt atttccgatt 90180 ggaaccgcga gtacgatccg gcccattcct cgctgatcct cgcacacctt cgccgcgacg 90240 tgcggatgct caataccctg gcgcgcgcca agctggtcga gcgcggcctt gtcgatgacg 90300 gtcacgcctt caaaaccgaa gatggtgtcc gccatttcgc tgctggagat cggatcgtct 90360 tcctcaagaa tgaaagctcg cttggcgtca agaacggcat gctggccaag gtggtggaag 90420 ccaccccggg gcgtatcgtt gccgaaattg gtgaaggcga acatcgcaaa gctatcagcg 90480 tagagcagcg gttctacaac aatgtcgatc atggatatgc gaccacgatc cataagagtc 90540 agggggcgac cgtcgacagg gtcaaggttc tggcctcgct ctccctcgat cgtcacctga 90600 cctatgtggc gatgacccgt catcgagagg atatcggcgt ctattatggc gcgcgatcct 90660 tcgccaaggc gggcggcctg gccgagcttt tatcgcgtac gaactcaaag gaaacgacgc 90720 tcgactacga gaagggcgcc ttctatcgcg cggcccttcg cttcgccgac gcgcgcggcc 90780 tgcatctggt caatgtcgcg cgcaccctcg ttcgcgaccg cctcgactgg accgttcgcc 90840 agaaacagaa gctctttgat ctcaccgccc gcttggcgac gatccgcgca cagctcggtc 90900 tcaagggccc gaatacccaa gtgacctcga aacccgacat ggaggcaaag ccaatggtat 90960 caggcatcac gacgttcccg aaatcgatcg accatgccgt tgaggatcgc ctagtcgccg 91020 atccgggttt gaagaagcaa tggcaggagg tcacgacacg ctttatccaa gtcttcgccg 91080 agccggagac cgcgttcaag gcggtcaatg tcgatgccat gctgaaagat ccggcaagag 91140 cgcagacaac gcttgcgaag atcgcagctg agccggaaag gtttggagcg ctcaagggca 91200 agaccggcat cttcgccgga gcgaatgaga aggcggcgcg cgacacggcg cttgtcaacg 91260 cgcctgcctt ggcgcgaaac ctcgagcgct atgtgacggc gcgcgtcgag gcggagcgca 91320 agcatgaagc gcaagagcgg gcaatccgcc tcaaggtctc catcgacatc cctgccctct 91380 cgccatcggc caggcagacg cttgagcgga tccgcgatgc gatcgatcgc aacgatcttt 91440 ctgccggtct cgaatatgcg ctggccgaca gaaacgtgaa agctgagctt gaaggctttg 91500 ccaaggccgt gtccgagcgt ttcggagaac gcagcctgct gccgatctcg gcaaaagatg 91560 caaacggcga gacctttcac aaaataacgg ccgggatgac cccttcgcag aaaagcgaag 91620 tgaagtcggc ctggaacagc atgcgcactg tgcagcaact cgccgcgcac gagcgcacca 91680 cgctggcatt gaagcaggct gaaacagcgc ggcaaaccca gactaagggg ctttctctga 91740 aatgatattg gcgatgcctg aaagcactgc gatgtctcgt caacgaagct ccgcattgat 91800 tacgttatcg gtggctgccg gcctgctgat cgtcttcttt gcggcgggtc ggattggtgg 91860 tctgcgcgtc aacatgacgc cgagtgagcc gctcggcctc tggcgcatta ttccgctgac 91920 gcgcgcggcc cggtccggcg atacagtttt cgtctgcccg cctgacaatg ccgccatgcg 91980 cgaggcgagg cagcgcggat atctccgccc gggactttgc cccggtgggt tcgcaccgtt 92040 gatcaagaca gtcatcgcgt tggcgggaca gcgcgtggac gtcaccgatc gcatcgccat 92100 tgatggcgta ccgatcgcca gatcccgcat catggagaag gacggacagg ggcgatctct 92160 acggcacgat caaagcgaaa tggtgcggcc cggagaggta tatttgcatt ccaacttcat 92220 cggctcatgg gattcccggt atttcgggcc ggtacctgtt tcaggtgtgc tcggtctggc 92280 gcaagaggtg ttgacctatg cgccgtgagg tcaggatgac tgccgttctc gtcccgcttg 92340 ccgtggtcgc cggggcggtt ggctggagcg gccaggcgtt cctgctccct gcggcaacac 92400 tcttcccgct tctgtgggcg cgatcaccaa cgcggatcgc agcggccctc gtcgcggccg 92460 gctatttcct ggcggcgtca cggggtttgc catccggcgt cgcagagttc tttgctgagg 92520 atctctgggt cagcctcagt ttctgggtcg cggcggcatc gtctttcgtt gctgtccatg 92580 cggcgctttg gacgatgcgg tcgggctcgg caaaatcagc acgctatctg ctcatcttgg 92640 ctctcaccgg tctgccgcca ctcggcatca caggctgggc gcatccgctg acggcggccg 92700 gcatactgtt tccagaatgg ggatggtggg ggcttgtcgc gttgacagcc ggcctgatcg 92760 gtctcgtaac ccggatcggg ccggctatcg ccattgccct gtcaggtcta tggctttggt 92820 ccgccgcatc ggggacaaat cagattcttc cggaggggtg gcgtggtgtc gaccttgaaa 92880 tgggcgcgag tctcggccgc gatcaatccc ttcgacttca acgtgacctg gtgacggctg 92940 ttcggcaggc tgccggaaca cgagagaccg tcgtcgtgct tcccgagagc acactgggct 93000 tctggacgcc aacgcttgaa cgtttctggc ggaatgagct gcaaggaacg cacgtgactg 93060 tagtcgccgg cgcggcggtc gtcgatgcgg ttggctacga caacgtcatg gtggccatcg 93120 atgcgcatgg ggggcgtgtc ctctatcgcg agcgcatgcc tgtgccggtt tcgatgtggc 93180 gtccatggga gcgatggaca ggagagactg gcggcgcccg cgccaacctc ttggccaatc 93240 ccgtcgtcga ggtcgcgggc cgaaagatcg cgcctcttat ctgctacgag cagctcgtac 93300 tgtggcccat tctccagtcg atgctacacc gacccgacgc gatcgttttg atcggcaatg 93360 gctggtggac gacgggtggc aacatcgtcg ccatccagcg cgctagcgcc aaagcctggt 93420 ccgctctgtt cggcgttccc cttgtgattt ccttcaatac ctgaactttg gagccttcgt 93480 catggatgct gcctttatcg cggaatgcgc cgatctctcc ctgaaacccg ccatcgtcga 93540 gcagttcgta gccgctgtcg gtcctggcga tcccctggct gtcacggtca aatccggagg 93600 gcggctcatc cttgtaccaa aaccgaagac cccagacgag gcaatggagg tcatacgcca 93660 gtatgtcgga caggccgtcg tgcgtgtggg cctgacacag ttcccggcgg gtgtcggcgt 93720 gaaggacgcg tccgcgctga aaccagatct ggttgaccca tgcgaaaatc ttcgcatggg 93780 gacgaggatg ttttcaaaga tcatgcgcat cgtttcaaag tggtatggca acccaacgag 93840 cagtgaggtg cttccgcaga tcttcgaaga tgccgtttac gcctggaaca ccggccagtt 93900 cgaaggtgaa agcgtgtttc aggcggagga tccaggtggt acaatcgtcg atcggaagga 93960 agtttcttcg gatgccgcag acaaacctgc tgatgccacc gcctcccaga gcgaagggga 94020 gccctcagac gaaaaggagg ttggaaccgc gggaattcgg gtcgatttgt cccggatcgg 94080 tgggcagaag tagtgctgta tccgacttcg acgacaggta aaatatcagg gatcaggttc 94140 gacaattgcg acattgaggt cgttcagtac atcagccaga cccggcgcgc ggatcagctt 94200 cgtcgtgcgg accgccttca gttttccaat agctcgatcg aacactgcaa ggttggtgtg 94260 gccgttgagc cgagacgggt agatgatgcc gtccacctgg ctgtcgtgtt cattgaaggc 94320 gaccgcccac ttccgtgcga gggattgctt tgagcccttc gcgacatccg tcggcacacc 94380 catcttgatc ggcccgtcgt ctcgaagatc gaccatcatc agcggattga tgacctcgat 94440 ctctgcgaaa ttgcggtcgt acaattcgga ttcagctatc ggcaggtcgc cgaggacccc 94500 atcgcgctga tcgcgcagga cggcttcgag aaagcacacc ttcactgtat cgcccaaata 94560 gagcaccccg aaccggttag cgaattttcg ccggcgtgga tcgctgaaac ggctcggcgt 94620 cttaccgaag cctagcggat cggggtatgt gcccagatag atgcgaccga accgaagtcc 94680 ggccgcgacc gtatgaaggt gaaggctcgc attcgcaaag ccgggaggcg gcagaacacg 94740 tgccattcag cggaaatctc gaccaatgct ctcgacaacc tcgagcgctt gctcggcccg 94800 tccccgctcc aatgcctggc gacctgtcag tccgtccagc tctccgtggg gctggaccag 94860 gaagcggtaa accgcccaag ctccgcccag tcgctcgtgg agcgttgcaa gcgctgcaaa 94920 cggcttgcca tcggcatcga tctgccaatc cgggaagcga aagccgcgtt tcgcgccatc 94980 cagccccaat accagtccgg tctggcgctt tgaattcacc gttacccgtg tcgtgccaag 95040 cagcttggcg aattcgtcgg cattcagcat gtcagtgccg ctgaggacct cagcagcctt 95100 tatgcgtccc cgcgcccgtg cggccaccaa cgcctgctcc aattccggat ccagtgcatc 95160 gttctcctct acgacaggca ccgttgtcat ttccaccgcc tcaacgggag tgacaaccat 95220 ctcaccttcg gaatcgacat cgacacggaa gctgaccggg tggccagcag aacggctttt 95280 tgcgatcgct tgaccatatt cctggaggag cgccttgacg cgattgggat tgccggtcag 95340 ggcttttgat gcattgtccg ggatcttgat cttgaaggcg gctctcccct tcgccagcgg 95400 ggcggcgcct gtggtcagga aaaaagccat ggattcagcg cccggttttt cgcgcccgct 95460 tgcaccgtca cgtatgctgg ttttggactt cagagatgcc atctctcacc ctccgttcgg 95520 agagctatat atggcaaggt tggttaagtt cgtcaagttg gtaaagagcg tagcgctcct 95580 gatcttctgt gtcctgattg cggctacgtg gacgactgcg gagtgatcga cgacaatcat 95640 ggttgatgca ggtcgtcgag gatttctttc ggggatgatg tatcaagcag cggtagggca 95700 gaaacctttt ccccgatcgc tgtcatctgt tcgacggtca tgcgatgtct cacaggcagg 95760 tcgccgaaaa ccccgagagc ctgagcttca cgttcgaggg cagcgcgtat gatatcgtcc 95820 ggtctgcgcc cgacacgggc cgcaatttta cgggcaagct gctcggtgtc gtgggtaagc 95880 tgcaacatgg gttcgctcta aatgggtcct tccatgtaaa gcatttctca aaacaatgac 95940 agatttctgc tcaggggcca tgaagctgag atcgcttggc caattgtgag ctgacacgtt 96000 ttccgcgagt aagcaaaatc cgtggtttgc aattccgaga aaacgattta gaaaaccatt 96060 ccttgatggt caacttacgc gattgaatat gccttattct ttgccagatc actgttcgca 96120 cgcgtcgcga tccttctgac tgcgacgcat tccgccactg cggaacaggt gcgatccaca 96180 gggagattat ggatgtcaaa ctgggtcgag aaactgctgg atatcaccgt gatcggaaat 96240 gatcagtcca tggtcaaggg cgctctggcg aatcttgctg atcggttcga ttttgtgggc 96300 tatgccttcg tcaacattcg tccggggcag acctatgcgg tctccaacta cgatatcgac 96360 tggcagaaaa tctatgacac gctggactac cggttcatcg atccggtcat gcggcaggcc 96420 cagcttataa ggcgcgcttt cgcctggtct ggcgaagccg acaagagctc gctgtcaaaa 96480 gagcagaaaa acttcttttc gaaagccgct gattttaaca ttcgctcggg cgtttccatc 96540 ccggtcgcca ccgccaacgg tgcgatgtcc atgctgacct ttgcatcggc gaagccttcg 96600 cttgccagtg atatggagat cgatgcgatt atggctgcct cagcggtcgc ccagcttcat 96660 acgcgtcttg agcacatgcg ggtcacgccc tccatcgagg aaaagatcgt cttgacgccg 96720 aagcaggtga actacattcg ctggctgtcg cttggcaaaa cggtcgaggt gatcgctgaa 96780 ctggagcagg caaagtatgc tggcgtccgc tctgcgattg acgatgtcag aacgcgctac 96840 aatctggcca atcatgcgca ggtggtggct ttggctatac gacgcggcct gatttaggct 96900 gatctggcgt atcaggcctt gggcgtatag cccagaatgt gcagcagggt cgtcagggct 96960 gacatttgcg cgtgcatcct gatggttgcc tcgagatagg caatattggc atcgccaaga 97020 agctccttac cggctttaac gtcagccggc agttcattga acagattttc tgcccgctcc 97080 aacagtttgc gatgttcacg gatcgcatcg atcgtgagac gctcgacaag cggtgacgga 97140 agcccatgca ggagccctat cagcggcttc agatcgactg cctcgccatt caatcggtcg 97200 tcggcgtcca tgttcaactc ccaaaacagg aatgcgcggt tcgcccccgc atagttcctg 97260 acccctggcg atcggggagt ttgtaaccga gcacactcag cccatggacc tttagttccg 97320 aggaacctgg acatacgtcc acggctcccc gaccataggt cgaggaattc ggcgccctaa 97380 cggcgggcac caaaccggtg tgcttcgggt tacaaagccc ggaggcagcg cgtactgcct 97440 caccagcgct tatagcgacc taaccacatc cgcgccaccg cagatttgtt ggcgtccgag 97500 gtcggctcgc ggccagcgat tgaagaagga gactggaggc gttgtcgctt tggtgtccaa 97560 aatgaaacgg gtgatcgtcc aatagtcaaa cgaagttaac ctcggcattg cgatgcctct 97620 cctcgccgtg aagttgcgtt tgaaccacga aagcaatcag gctacagcac gatcccttga 97680 agttctgcat cgccgccgaa atcggttggc tgatcattcg atctctgcgg cggattgtca 97740 ggtcgcagtg ctggaagcgg atattgacac gatctctcgc cgatttttcc gacgttaagg 97800 aacgccttgc aaagacgggc tcggtgacgg aagcgctcca tttcatacag tcggtctatc 97860 gcgtcgattt cataacctac caccttgctt cgacggtgat cggtgatttt gatgctccgt 97920 tcgtacgcac gacctacccg gatgcgtggg tatccaccta tctgttgaag ggctatgtca 97980 ccatcgatcc tgtcgcgcgg gagggctttt tgcgccagct gccattcgat tggcgagaac 98040 tcgacgtcac gcccgagatg ctgatgtttc tggaagacgc aatacgccat gggatcggcc 98100 gttttggttt ttccatcccg atatcggata aagccggccg tcgcgccatc ctctctttga 98160 attcgaacgc ctccgccgaa gactgggagg atctggtcag tgctcatcgg agtgaatggg 98220 gcgatctcgc gtatctcgtc caccagatgg cagtgttcga gctacatgga gcgagcgatc 98280 cgatcccggc tttaagtccg cgggaacgtg agtgcctcta ctggagcgcg ctcggcaagg 98340 attacaagga tatcgcgctt attctcggcc tttcgcatca cacgacccgc agctacatca 98400 agtcggcgag gacaaaactc ggttgcgcca cgatctcggc ggcggccact cttgccctga 98460 agctacgcgt gatcacgata tgagccgacc gcccgccagt ctttgacaat acccgcatat 98520 gggtctgacc atatgcggga atatctggct cctccgccaa gcggcatctt ccagccaaga 98580 tcaacagctg gagataaacc ttgttcattc tggttcaagc gcatcaatac acccgttatc 98640 aggctctcat ggatcaggca tttcgcctgc gaaaacgcgt ctttcacgac cagctcggat 98700 gggccgtcac aatcgacggt gattgcgagc gcgacgaata cgatgctctg cggccggctt 98760 acctgatgtg gtgcaatgat cgcgcggatc gcctttatgg aaccctgcgg ctgatgccaa 98820 ccaccggccc gacgcttctc tacgacgtct tccgcaacac gtttgcgggt gcaaacctga 98880 ttgcacccgg tatctatgag ggaacgagaa tgtgcctcga tgaggaaaca ctttccgtgg 98940 atttcccgag cctggaaacg ggcaaggctt tcggcatgct gttgctggct ttgtgcgaat 99000 gcggattgtc gcacggtatc gagacgctgg tgtcgaacta cgagccgcac ctagcgcgcg 99060 tctatcgtcg ggcggggctc gccgttgaag aggttggccg cgcagacggc tatggtcgct 99120 ctccggtttg ctgcggtatc ttcgaagttt cagaggaagt tcgcacgcgc atgcagcagg 99180 cgcttggtgt cgcggctccc ctttatgcag gatatcggcc gcgcaaaaat gcagccagcg 99240 agcccgtgcg catatctgcc tgatccagga gttgtcccaa ggcggttgcg gcaacatgtg 99300 cctcaaccgc cataatttcc gggaaagaca atgtcctggt cgacgagaac gttgaacttg 99360 tagcccggcc ggatctggat ggtgggctga acattcagat tcttggaaat cgtctgctcc 99420 gcgacgcggc cgaaggtctc cgcaaagttc ctgcgtgccg cgtcagaggc tgtatcctgt 99480 gtggcgaggg tggaactcgc cggaaccgcc atatcgatgc cggtaccaat cagtgcaaca 99540 agcgccgccg aaccgaaggt gcggaaatag tgattattga ccttgtcaga gaacccgcca 99600 tagccctgcg agtctgttcc agccatgccg ccgatctgca gtgtagagcc attcgggaag 99660 atgacatccg tccagacgac cagaacgcgg ctttggccaa acgagacctt gctgtcatag 99720 cgtccgagta gtttggtacc ctgcggaatg agaagaaaat gcccggtggc gctgtcgtag 99780 atgtgctggc tcacctgcgc tgtgatccgg cccggcaaat cggagatgat gccggtaatc 99840 atggtggccg ggatgacgga gccgcgcttc aattcatagc gtgactgttg gggtacaacc 99900 tggttcggca ggtagccgag atccttgatg tcggcgttga agaaatcttc cttcgaagtc 99960 tgtccgttcg gatcggcatt ctggcccatc aaacccgatt tcatggccgc ggcgtagaga 100020 tcagaggcgc cgttattggt ggtcggctgc cggtctgttg tcctggtgtt gctggagata 100080 tttcccagct ccgagatttt gaccttcagc ggcgagtcaa acgcagtcgc acgggcctga 100140 aggctggcca tccgctgtcg ctgctgttca cgcaggactt gttcgcgctg ttcgcggcga 100200 agtcgggcca accattcttc ttccgactcc atttgcggtc ggcgctcttc tcgtgcctgc 100260 tgctttatct gctcttcttc aatcggcttg gcctccacct gtgtctgggt tgctggcgtg 100320 ggctggaata cgggctgctc ttcgcgatcc ccgatgatgc cgtctttcac cccgcgcttc 100380 atctgatcag cgaaggtcga ggccgggacg ttcgagcctg cttcatccgg aattctgtcg 100440 ccgaaccgca gtccccggga tgagatgccg tagacaagga caccggcgac gacgactgcg 100500 ataccgatgc caaagaacac cggcaggcga ttgagccgtt tcatgccctt ttcctgcgcg 100560 gcgctgctcg gattgccgag ctggagcgac tggaccatat ctgtctctcc ttagtttcgc 100620 ttcattaatg aaagcgggct cgccggcgtg gcgccacctg atgacacaga ataggcccgc 100680 ccaagctcaa gcgtctcgct ggaaagcctc actagtacct gtccgtcgat gtcgatcaac 100740 gagtatgcca gttcgatcgg tttggcggtg tctttccccg agcgtgcctt gtcatccgtt 100800 atgacagtga aaccccaccc ttttaacgcg gcttcgagcg cggccgcgaa atctgatgcg 100860 tcgctgtgaa gcctgatcgg cgtggcggtt gaccctgcct gctcggcata acgtccagct 100920 atgtcgccgg cgatcgcgct tgcggcgggg cctgttacag tcgaaggcgc ggggctcgtc 100980 gtgagcgcgt ctgttccggt ctggcaacca gagagaagaa cggcagcgac aaagggaaaa 101040 aggcaaaggc gcatcgatca gcctccccgt cggatggtga ttttctgctg acgccagccg 101100 acgccggaaa cgaggacagc cttgtcgata ttgtagtcga taatcatcat attgttcttc 101160 atgcgataat tgacgatccg gttttgcccg ccagagacca cgaagaggac cggcgcatcc 101220 tgaccggata gtgcgcgcgg aaactgaatg taggtcttct gcccgtctga atagacgcgc 101280 ttcggcttcc agggcgcgct gccactcaga gaataggcga aggcaagttg ctctggcggc 101340 acgccgccgt cggaattggt catcgtctga atacgagcat taatgtcgga cagtctcgtc 101400 gcggcctctt ccggatactc gaagccgacg cgggccatgt actggttcgg gtgcgatttg 101460 agctggatat gataggtgcg tcttgaggtc gtcaccacca tcgacgtcac cagacccgcc 101520 tcagacggtt tgacgatcag gtgaattgcc tgcccccctg cagcaccgga tgttgccggc 101580 tcgaccttcc agcgcaccgt gtccccgaca agcacgtcgc gcacgatctc cccaccctga 101640 agctcgatgt cgcagacctg taaaggtgag cagacgacag acggctgcgt ctcaccgaac 101700 aggaagatga cttttccgtc agcgcccgtt gtcaccagtc cccgctgccc acgccatttg 101760 ttggagagcg tggttccctt agcctcattc gtcgtcaggc tctgggcaaa acccgatgtc 101820 gtcgccgtga ccaaaagcgc aagtgcggtc atgcagcaaa gcgctgcccg atttaacctt 101880 gtattcattg aagtcccctg cccttacagt tgcgcggtcc agtcgaagtc cttgacatag 101940 aggccgatgg gattgagccg gatcgtcgcc tcgtcctggg gcgcggtgat cgccaccgtg 102000 gctatgccgc gaaatcggcg tgtcgcaatt tccttgccct tgcggtcccg ttcgtactca 102060 gtccagtcga tctgataggt ctggttagac agcgcgacga tgttgttcac ctcgatggcg 102120 acggtcgcat tcacggcctt ttcgaatggc gagttgccgc ggaaccaggc attgatcttt 102180 tgggtcgagg gatcgcttgt cctaagaagc gcataggtcc tgtcgatgta ttgcttctgc 102240 acgacggcat caggcgtgat agagcggaaa ctggtgataa agccgccaag cgtggcccgg 102300 atgaccctgg catcggcata ttcgatctgc tggggaaatc cggcggagac ggtgtttccc 102360 agcttgtcga cctcgacgat gtacggcacg agtttgacct gcgtgctcag atacagtgag 102420 tagccaaaac tgattaccgc catgccgagg ctcaagatgc cgaccgtccg ccatgcggag 102480 gctgccctta cgtaagaacc gtatcgttcc gaccattcct gccttgcggc aagatacggg 102540 ttctctgggg cgcgttgcgc tgccatattg ttttccctgc cttaaattta cgatttgtcc 102600 tgccgctccg gcggctgacc gggcgaggct cccttgccac gagcctggtc gagcttcgcg 102660 ttagccaggc caaggatgga gccggcatag gccccgggcg acccgatcgc cttctctttg 102720 gctgcggatc ctgcggcttg tgctcctgaa ccaaagctag cgccaatccc gcgaagagta 102780 gcgccggcgg tcgaagaccc cgccgcccgt gccgattgtg ctgctgcata tcctgcccca 102840 gcagcgccag ccgcaagaaa agcggcgcct gcagcgaagg aagcgccctg gccgccatgg 102900 cgaatagtct ccatgccgcc agtgacggac gctccctgaa cgacaccctg gataatgttc 102960 ggcacgtaca tggcgatgat gaacaccacg acggcgatgc cggcgatcgc aagtgcggtc 103020 tgaaattgat cgccgatatt tggttcgttg gcgagcccga ttagtacctc ggaaccaata 103080 cgggagatca taacgagcgc catcagtttc atgccgaccg aaaacgcgta gaccagatat 103140 cggacagcaa agtccttggt gaacgacgag ccgccaagcc caagcatgat catcccggcg 103200 agaaggccaa gatacatctc gaccatgacg gagacaaaga ttgctgcgac gagtgaaaat 103260 gcgatcaccg tcacgaccat tgcaaatgcg gccgatatcg ccagtgcatt atcctcgaaa 103320 agtccgaact gcactttcgc tgacatcttc gttgctaccg tcagaccggc attgaagacg 103380 tctgcaggtg aggccgtacc tcctccggca ccgatctgaa aaagactgtc caccacggct 103440 ttggcgaatg tcggtccttg cgtcagcacg aaggcaaaga atcccacaaa catgatccgc 103500 ctgacgagct cggcgaacca gctgtccagt gatgcggcct gcaatgccaa ccaaacagcg 103560 gcaattccaa tctcgatggt ggcgagaatc cagaagagag atttcgccgc gtccatcacg 103620 gtggtctccc accctttggc cgcggttgta atctgggtct gaagagacgt cagaacagag 103680 ccttcctgcg caaaagccgg gtgagcaatc acgacaggaa cggtgacaag tagcagagcg 103740 acccgcaatt cgctgttgga gatcgtcatt ggttcaccat tcgaccttca tcttctctcc 103800 gccagaagtc gggtaggtct tcgacgaacc gaaaaatgtt gcgcggaggt gttgcgcctc 103860 ctgtttctcg gacatcagga accatagccc ggcgctgccg acagcgagca aagatgcgac 103920 tgcgatcaag atcagcttcg ttctcaccat tcgaccttca tcttttcgcc gccggaggtg 103980 gacggtgctg cgccgttgaa gaattccttc cgccgagctt gtgccagatc cttgtcggtc 104040 tgctcgcttt gcagccacgt ccccatcatc gtcatctgct gggatacgag accacgcagc 104100 ttttgcgttt gcgcaacctg ctgcgctgca atctcgtggc cgacctggag agctttcatt 104160 tggccatcgg ccgattccga catgtttcgg agcgagtcca tcgtatcctc ctcgctgtcg 104220 aactgctcag ccgtcaggct tgcggccttg agtgtgctgg cgatggtgtc gcgattggta 104280 tcagaccaac tggcatagtt tgaggacagg tctgtcccgc tggcggcggc agtctgtaga 104340 tcggcatagg attgaaagcg ctgcttcagc acatcatccg cgctccccat agagaaagag 104400 atgctctgtc cctgatcgac gatatcccgc agccggttga ggtcgttttc gacttggccc 104460 cagatgtgat cgggcagctg cgccgtgttt tgcagcatat tctcgtagat gttcagctgg 104520 ttttggatct gctcggccaa ctgactgatc tgtgtcagct gattgtcgac ttgcaggccg 104580 gagcttttaa ggaggtcgac gagctgtgca ttgttggcaa gctgtgtcca ctcggttgca 104640 gcgcccgtcg ctgagccggc aaatgctggt gccgaagcgc agactgcaaa agctgccacg 104700 atagcggtcg cggattttct tctgagcgat aggatatggt caggcatagc gattgatccc 104760 tctttcattg agccattggg tcggccagtc tttgccgtag gttgagagaa gttcccggat 104820 ccgagcgagg tcggctttgc cggaagcacc gacgaaggag agggtgagcg gccccagcgc 104880 catatcgaaa aggcggcgtc cgtccggcga cgtcacgtaa tattcccgct ttggaatggc 104940 ggctgcgacg atttcgattt ggcgaggatt aaagccgatg cgctcataga attctcgtgt 105000 cccggactcg cgtgcagccc cattcgggag gcagatcttg gttgggcagg attccttcag 105060 gacatcgatg atgcccgaac gctctgcgtc cgaaattgac tgagtggcga gaacgacggc 105120 gcagtttgcc tttcgcagca ccttcagcca ctcgcggatt ttgtcgcgga aaaccgggtg 105180 gccgagcatc agccaagcct catcgagaat gatgaggctt ggtgcccccg tgagccgctt 105240 ttcgatcctg cgaaacagat aggtcagcac ggggacgaga tttcgctcgc ccatattcat 105300 cagttgctcg atctcgaagc actggaattg accgagggtc agcgaatcct gttcagcgtc 105360 gagaagctgg cccatggggc cgtcaacagt atagtggtgc agcgcgtcct tgatctcccg 105420 catctgcacg ccactcacaa aatccgacag cgaccggcct ggagcccccg ccatcaaacc 105480 gatctgccga gatatggcgt ttcggtggtc cgggttgacc gtgacaccct gcagggagac 105540 gagtgtttcg atccactcgg aagcccaggc gcggtcggtc tcggtcgaga ggtcggagag 105600 agggcaaaag gcaagcctag ccccctcccc tgcctcgccg ccgatttcgt aatgattacc 105660 atcaacggcc agcgtcagcg gcagaataga gttgcctttg tcgaaggcga aaacctgcgc 105720 acccttatac cggcgaaatt gcgctgcgat gagcgcgaga agcgttgact tgccggaacc 105780 ggttggtccg aaaataagcg tatgcccgac atcatccaca tgaaggttca gtcggaaggg 105840 tgacgatccg gaagccacct gcgtcagtgg cggcgcgtcc ggtggataga acgggcaggg 105900 cgcaagtgga ctgcccgacc agacggaatt gagggggatg aggtccgcga ggttgcgggt 105960 gtttatcagc ggttcccgga tattgcagta ccagttgcct ggcaggctcc cgaggaatgc 106020 gtccgtcgca ttcaacgtct cgatccgcgc gccaaatccc tcagcctgga tcaaccttcg 106080 aaccgactca gctttatcgg cgagcttttc tctgctctcg tcgaatagaa tgatgaccgg 106140 cgtgtagtag ccataagcga ccagctgcga agaagcctcg gcgatcgcgt cttcagtctc 106200 agcgaccatg gccattgcgt cctggtcaac cgatcggctt tgcgtctgga agagttggtc 106260 gaagaacggc cgcaccttct gttgccattt cttgcgcgtg cgctccaacc gctgtttggc 106320 ttcctcggca tccagaaaga taaagcgtga cgaccagcga taggtgagcg gcaagagatc 106380 gaggctattc aagatgcctg gccagctctc ggccggcaaa ccgtcgatcg caatcgcgct 106440 gaggaaccgg ttttcgactt tcggggtaag gccgtgctct agctccgcgg tcgccagcca 106500 atccaaatac atgggaattt caggcagaca gactgggtgg ttttcaccgg tgatgcagaa 106560 ccggatgaac tggaacagct catcgtagcg ggcaatgcgg gtgccaccgc gttccggcac 106620 ctcacgcgtc cgcatacgct caatggagat gacgttgccg aggtattgct caatctctcg 106680 ggtggagcgc ctgaaactgt cgagcaccgt gtcggcatag gtcgccgtcc ggctctcagt 106740 gtccgagtag atataacgcg tgacgccaga tcgccggcgc tcgggagggc gatatgtcag 106800 gacgagcgca tgccggctct cgaaatgccc gcgctcttgt tcgaagtgct tgcgccgctc 106860 atcatcgatc attcgagtga cagcatcggg gaaatgactg cgttccgcag aaggatagtc 106920 agttgttggg atgcgcacgg cctcgacctg gatcatccag ccggaaccta gccgtgaaag 106980 gatcgtattg atctgacggg acagatcgtt gcgctcgaaa tccgtggcgc tctcggagtc 107040 agggccggca aaataccacc ccgccatgag acttccgtcc ttgagaagaa tggtcccatt 107100 gtcgaccagt ccggcatagg gcacgagatc ggcgaacgac ggtgcagacg ggcgaaggga 107160 acacaaagcg accatcatgg cacctctaaa aacgccgcca cggcgaagac gtgggcaggt 107220 agtgatgccg gtagcgcaaa tgccgcacgt agacatgacg catgagggga tcggattttg 107280 ccatcatgcg cagtgcgccg acgatcacga accagatggc gatgccgaac agcgctgaat 107340 acagggtgag cacgacgaag atcaggatga tcgccaccag ccctgtgaca agcaggagct 107400 ctcggtctgc ccccatcagc agattcggtc gtgaaagagc gcggtgaatg cgattgcgtt 107460 ggagagcgga atgcggctca cccattggcc ccctcccctc ttgcaacgga catcggctgg 107520 gaaacggtcc ctggcaaact tgtggcagtg atgccgatcg acgcgccggt cgcaccgaac 107580 agtccgacaa tcgtcgtcgc ccccagcagg ataccggcga ccagtacgat gtagacgagg 107640 cgtcgcgcga aatcgttgag ctcgccgccg aagatcagca ttccgccggc gatcgccatg 107700 gcggcgaggg caattgctcc tgcgactggc ccagtgatgg attcctgaat ctgttcaagc 107760 ggcccctccc agggaagact cccaccggaa ctggcaaggg ctggcgcggc aagcgccgcg 107820 cagaacatcg cagcgagcag tccgaggcga aaagagcgat tatgcagcat gaatgtcctc 107880 atcaatttga gcgtaatgtt cggtctggta ccggctaccg ctgaagccct cgacattgat 107940 gacctctcgt acccgtctcc ccctccccgc gcgctcgatc gagatgacaa gatcaacggc 108000 ctcgccgatc acagcctgca tcggttgctg gctgacctcg gcggtcagtt gctccagacg 108060 acgcaaggcg gacatggcgg tattggagtg gacggtggtg acgccaccgg gatggccagt 108120 attccaggct ttcagcagcg ttagtgcggc gccgtcgcgg acttcgccaa cgatgatgcg 108180 gtcgggacgg aggcgcatgg tgctcttgag cagtcgcgcc atatcgatcg tgtcactggt 108240 atgcaggcac accgcattct ctgccgcaca ccggatttcc gcagtatctt caagaatgac 108300 catgcggtcg tccggagctg aggctatgat ttcggcaatt acggcattgg ccagtgtcgt 108360 tttgcccgag ccagttccgc ccgcaattac gatgttaagc cgattggcga ttgcgctcct 108420 aatgactgcg gcttgggcct ccgtcatcac cttgtcagcg acataatcgt caagcgggat 108480 cagccgtgac gctcgccgcc ggatcgtgaa cgttggggac gcaacaaccg ggggcagcag 108540 cccttcaaag cggtgcccgc caatgggaag ttcgcccgaa atgatcggcc gctcttcgtc 108600 cgcctcagat tgaagagcgt gtgcgacgga gccgatgact gtttccgctg ctgtcgccgc 108660 catctcaccc gcgggcgcaa tgccctgccc taaccgctcg ataaaaactc tgccgtctgg 108720 gttgagcatg atctcgacga ccccagggtc gtcgagggcg atacatagac gatcgcccag 108780 tgcttcttga agcttgcgca caaggcggga atgcgactga agcattgcga cgttctcctc 108840 gctgattgat ttgggggaga aaaaagcggg acggcaccaa gctgtccacg tacaaatttg 108900 tacctcgcga ttctctgtcg tttcctgcac ggtggcgc 108938