Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NEW BIOSYNTHESIS PATHWAY FOR PRENOL IN A RECOMBINANT MICROORGANISM
Document Type and Number:
WIPO Patent Application WO/2013/053824
Kind Code:
A1
Abstract:
The present invention concerns a method for the biological preparation of prenol comprising culturing a microorganism genetically modified for the bioproduction of prenol, wherein the microorganism comprises a metabolic pathway for conversion of 3-methylcrotonyl-CoA into prenol by the action of an alcool dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme.

Inventors:
BOISART CEDRIC (FR)
LETELLIER GUILLAUME (FR)
Application Number:
PCT/EP2012/070160
Publication Date:
April 18, 2013
Filing Date:
October 11, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
METABOLIC EXPLORER SA (FR)
International Classes:
C12P7/16
Domestic Patent References:
WO2009006429A12009-01-08
WO2009006429A12009-01-08
WO2009076676A22009-06-18
WO2010031076A22010-03-18
WO2004076659A22004-09-10
WO2005073364A22005-08-11
WO2008052973A22008-05-08
WO2008052595A12008-05-08
WO2008040387A12008-04-10
WO2007144346A12007-12-21
WO2007141316A22007-12-13
WO2007077041A12007-07-12
WO2007017710A12007-02-15
WO2006082254A22006-08-10
WO2006082252A22006-08-10
WO2005111202A12005-11-24
WO2005047498A12005-05-26
Foreign References:
US20100304450A12010-12-02
US6403342B12002-06-11
US20100216958A12010-08-26
EP11306306A2011-10-07
US201161544748P
US201113169703A2011-06-27
Other References:
FÖRSTER-FROMME ET AL: "Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 72, 2006, pages 4819 - 4828, XP002669173
ANDERSON ET AL: "3-methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants", PLANT PHYSIOLOGY, vol. 118, 1998, XP002669174
MAHMUT ET AL: "A biosynthetic pathway to isovaleryl-CoA in myxobacteria: The involvement of the mevalonate pathway", CHEMBIOCHEM, vol. 5, 2004, pages 1 - 9, XP002669175
BODE ET AL: "Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the Myxobacterium Myxococcus xanthus", CHEMBIOCHEM, vol. 10, 2009, pages 128 - 140, XP002669181
LU ET AL: "Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid beta-oxidation pathway in E. coli", FEMS MICROBIOLOGY LETTERS, vol. 221, 2003, pages 97 - 101, XP002688997
WALLON ET AL: "Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1337, 1997, pages 105 - 112, XP004281510
AMANN E; BROSIUS J; PTASHNE M, GENE, vol. 25, 1983, pages 167 - 178
AMANN E; OCHS B; ABEL KJ, GENE, vol. 69, 1988, pages 301 - 315
ANDERSON EH, PROC NATL ACAD SCI USA., vol. 32, 1946, pages 120 - 128
BODE HB; RING MW; SCHWÄR G; ALTMEYER MO; KEGLER C; JOSE IR; SINGER M; MÜLLER R, CHEMBIOCHEM., vol. 10, 2009, pages 128 - 140
DÄSCHNER K; COUEE I; BINDER S, PLANT PHYSIOL., vol. 126, 2001, pages 601 - 612
DATSENKO KA; WANNER BL, PROC NATL ACAD SCI USA., vol. 97, 2000, pages 6640 - 6645
DHAR A; DHAR K; ROSAZZA JP, J IND MICROBIOL BIOTECHNOL., vol. 28, 2002, pages 81 - 87
FÖRSTER-FROMME K; JENDROSSEK D, FEMS MICROBIOL LETT., vol. 286, 2008, pages 78 - 84
GOGERTY DS; BOBIK TA, APPL ENVIRON MICROBIOL., vol. 76, 2010, pages 8004 - 8010
HARRINGTON KJ; LAUGHLIN RB; LIANG S, PROC NATL ACAD SCI USA., vol. 98, 2001, pages 5019 - 5024
KOVACH ME; ELZER PH; HILL DS; ROBERTSON GT; FARRIS MA; ROOP RM 2ND; PETERSON KM, GENE, vol. 166, 1995, pages 175 - 176
LERNER CG; INOUYE M, NUCLEIC ACIDS RES., vol. 18, 1990, pages 4631
LIEBL W; KLAMER R; SCHLEIFER KH, APPLMICROBIOL BIOTECHNOL., vol. 32, 1989, pages 205 - 210
LUTZ R; BUJARD H, NUCLEIC ACIDS RES., vol. 25, 1997, pages 1203 - 1210
MILLER JH: "A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria", 1992, COLD SPRING HARBOR LABORATORY PRESS
MOHSEN AW; NAVARETTE B; VOCKLEY J, MOL GENET METAB., vol. 73, 2001, pages 126 - 137
NAGAI K; THOGERSEN HC, NATURE, vol. 309, 1984, pages 810 - 812
NORRANDER J; KEMPE T; MESSING J, GENE, vol. 26, 1983, pages 101 - 106
OROSZ A; BOROS I; VENETIANER P, EUR J BIOCHEM., vol. 201, 1991, pages 653 - 659
PARK JH; KIM TY; LEE KH; LEE SY, BIOTECHNOL BIOENG., vol. 108, 2011, pages 934 - 946
PERHAM RN; LOWE PN, METHODS ENZYMOL., vol. 166, 1988, pages 330 - 342
PRESCOTT L ET AL.: "Microbiology 4th Edition", 1999, WCB MCGRAW-HILL
RIEDEL C; RITTMANN D; DANGEL P; MOCKEL B; PETERSEN S; SAHM H; EIKMANNS BJ, J MOL MICROBIOL BIOTECHNOL., vol. 3, 2001, pages 573 - 583
SAMBROOK J ET AL.: "Molecular Cloning: A Laboratory Manual 2nd Edition", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHAEFER U; BOOS W; TAKORS R; WEUSTER-BOTZ D, ANAL BIOCHEM., vol. 270, 1999, pages 88 - 96
SINCLAIR DA; DAWES IW; DICKINSON JR, BIOCHEM MOL BIOL INT., vol. 31, 1993, pages 911 - 922
SKINNER DD; MORGENSTERN MR; FEDECHKO RW; DENOYA CD, J BACTERIOL., vol. 177, 1995, pages 183 - 190
SYKES PJ; BURNS G; MENARD J; HATTER K; SOKATCH JR, J BACTERIOL., vol. 169, 1987, pages 1619 - 1625
WARD DE; ROSS RP; VAN DER WEIJDEN CC; SNOEP JL; CLAIBORNE A, J BACTERIOL., vol. 181, 1999, pages 5433 - 5442
ZHANG YX; DENOYA CD; SKINNER DD; FEDECHKO RW; MCARTHUR HA; MORGENSTERN MR; DAVIES RA; LOBO S; REYNOLDS KA; HUTCHINSON CR, MICROBIOLOGY., vol. 145, 1999, pages 2323 - 2334
Attorney, Agent or Firm:
TETAZ, Franck (139 rue Vendôme, Lyon Cedex 06, FR)
Download PDF:
Claims:
CLAIMS

1. Method for the fermentative production of prenol, comprising culturing a recombinant microorganism in a culture medium comprising a source of carbon, wherein in said microorganism, the prenol biosynthesis pathway comprises 3-methylcrotonyl-CoA as intermediate product, that is converted into prenol by the action of an alcohol dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme.

2. Method according to claim 1, wherein the alcohol dehydrogenase and aldehyde dehydrogenase functions are present in the same enzyme.

3. Method according to claim 2, wherein the enzyme is the alcohol-aldehyde dehydrogenase enzyme (AdhE).

4. Method according to claim 3, wherein the AdhE enzyme is heterologous.

5. Method according to claim 3 or 4, wherein the AdhE enzyme has a specificity for the substrate 3-methylcrotonyl-CoA.

6. Method according to anyone of claims 3 to 5, wherein the AdhE enzyme is

AdhE2 from Clostridium acetobutylicum.

7. Method according to anyone of claims 1 to 6, wherein the biosynthesis pathway of 3-methyl-crotonyl-CoA from pyruvate and acetyl-CoA includes the following intermediate products: 4-methyl-2-oxopentanoate and 3-methylbutanoyl-CoA.

8. Method according to claim 7, wherein at least one of the following enzymes is overexpressed: an acetolactate synthase, a keto-acid reductoisomerase, a dihydroxy-acid dehydratase, a 2-isopropylmalate synthase, a 2-isopropylmalate hydro lyase, a 3- isopropylmalate dehydrogenase, a branched chain keto acid dehydrogenase complex and an acyl-CoA dehydrogenase.

9. Method according to claim 8, wherein two enzymes are overexpressed: an heterologous branched chain keto acid dehydrogenase complex and an heterologous acyl- CoA dehydrogenase.

10. Method according to anyone of claims 1 to 6, wherein the biosynthesis pathway of 3-methyl-crotonyl-CoA from pyruvate and acetyl-CoA includes the following intermediate products: 3-hydroxy-3-methylglutaryl-CoA and 3-methylglutaconyl-CoA.

11. Method according to claim 10, wherein at least one of the following enzymes is overexpressed: an acetyl-CoA C-acetyltransferase, a HMG-CoA synthase, a 3- methylglutaconyl-CoA hydratase, a 3-methylglutaconyl-CoA decarboxylase.

12. Method for the fermentative production of prenol according to anyone of claims 1 to 11 , wherein the microorganism is from the species Escherichia coli or Corynebacterium glutamicum.

13. Method for the fermentative production of prenol according to anyone of claims 1 to 12, comprising a step of isolation of the prenol from the culture medium.

14. Method for the production of isoprene, comprising :

culturing a recombinant microorganism in a culture medium comprising a source of carbon, wherein in said microorganism, the prenol biosynthesis pathway comprises 3-methylcrotonyl-CoA as intermediate product, that is converted into prenol by the action of an alcohol dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme, and

performing a step of chemical dehydratation of the bioproduced prenol into isoprene.

15. A genetically modified microorganism for the fermentative production of prenol according to anyone of claims 1 to 12 wherein said microorganism overexpresses at least one enzyme chosen among the group consisting of:

an acetolactate synthase, a keto-acid reductoisomerase, a dihydroxy-acid dehydratase, a 2- isopropylmalate synthase, a 2-isopropylmalate hydro lyase, a 3-isopropylmalate dehydrogenase, a branched chain keto acid dehydrogenase complex and an acyl-CoA dehydrogenase, an acetyl-CoA C-acetyltransferase, a HMG-CoA synthase, a 3- methylglutaconyl-CoA hydratase, and a 3-methylglutaconyl-CoA decarboxylase.

Description:
NEW BIOSYNTHESIS PATHWAY FOR PRENOL IN A RECOMBINANT MICROORGANISM

The present invention concerns a method for the biological preparation of prenol comprising culturing a microorganism genetically modified for the bioproduction of prenol, wherein the microorganism comprises a metabolic pathway for conversion of 3- methylcrotonyl-CoA into prenol by the action of an alcool dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme. INTRODUCTION

Prenol or 3-methyl-2-buten-l-ol (number CAS 556-82-1), has the following formula:

CH 3

Prenol is a natural alcohol that occurs naturally in citrus fruits, cranberry, bilberry, currants, grapes, raspberry, blackberry, tomato, white bread, hop oil, coffee, arctic bramble, cloudberry and passion fruit.

Prenol is under the form of a clear, colorless oil that is reasonably soluble in water and miscible with most common organic solvents. It has a fruity odor and is used as an aroma compound, in pharmaceuticals and in perfumery. It is usually manufactured industrially, in particular by BASF.

Advantageously, prenol can be converted into isoprene, a compound of high importance for industry since it is the basis for the synthesis of synthetic rubber.

Isoprene (short for isoterpene) or 2-methyl-l,3-butadiene (Numero CAS 78-79-5) is an organic compound having the formula CH2=C(CH3)CH=CH2. Under standard conditions it is a colorless liquid. However, this compound is highly volatile because of its low boiling point. Isoprene is the monomer of natural rubber and also a common structure motif to an immense variety of other naturally occurring compounds, collectively termed the isoprenoids.

About 95% of isoprene production is used to produce cis-l,4-polyisoprene— a synthetic version of natural rubber. Isoprene is also copolymerized for use as a synthetic elastomer in other products such as footwear, mechanical products, medical products, sporting goods, and latex.

Isoprene was first isolated by thermal decomposition of natural rubber. It is most readily available industrially as a by-product of the thermal cracking of naphtha or oil, as a side product in the production of ethylene. While isoprene can be obtained by fractionating petroleum, the purification of this material is expensive and time-consuming. Isoprene is naturally produced by a variety of microbial, plant, and animal species. In particular, two pathways have been identified for the biosynthesis of isoprene: the mevalonate pathway and the non-mevalonate pathway. However, the yield of isoprene from naturally-occurring organisms is commercially unattractive.

Thus, more economical methods for producing isoprene are needed. In particular, methods that produce isoprene at rates, titers, and purity that are sufficient to meet the demands of a robust commercial process are desirable. Also desired are systems for producing isoprene from inexpensive starting materials.

PRIOR ART

Although the main industrial way for producing prenol is chemical synthesis, some biosynthetic pathways have been identified recently.

The patent application WO 2009/006429 provides a method for producing prenol with a genetically modified cell expressing a first enzyme capable of catalysing the dephosphorylation of the intermediate products: isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP).

Concerning the isoprene synthesis, methods for fermentative production have been described. In particular, WO 2009/076676 describes cells comprising a heterologous nucleic acid encoding an isoprene synthase polypeptide. Two biosynthesis pathways are proposed.

The patent application WO 2010/03 1076 describes the conversion of prenyl derivatives, such as prenol, into isoprene. Said method comprises: a) culturing cells for producing prenol, wherein the cells comprise a heterologous isoprene synthase polypeptide, b) recovering prenol, and c) dehydrating or decarboxylating prenol to produce isoprene. The cells may further comprise: an IDI polypeptide, an MVA pathway enzyme, and a DXP pathway enzyme.

DESCRIPTION OF THE INVENTION

The present invention is related to a new biosynthesis pathway for prenol in a recombinant microorganism. This biosynthesis pathway is characterize d by the intermediate product, that is 3-methylcrotonyl-CoA (number CAS 6247-62-7), and that is converted into prenol by the action of an alcohol dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme.

In particular, the enzyme capable of converting 3-methylcrotonyl-CoA into prenol is the alcohol-aldehyde dehydrogenase enzyme AdhE, that is heterologous to the recombinant microorganism, and that is preferentially issued from Clostridium acetobutylicum. According to the invention, the intermediate product 3-methylcrotonyl-CoA can be obtained from two different metabolic pathways:

1) From the degradation pathway of leucine, starting from a condensation of pyruvate and acetyl-CoA into 4-methyl-2-oxopentanoate, converted into 3-methylbutanoyl- CoA and then into 3-methylcrotonyl-CoA. Here, this pathway is named leucine pathway,

2) From the mevalonate biosynthesis pathway, the precursor 3-hydroxy-3- methylglutaryl-CoA being converted into 3-methylglutaconyl-CoA and then into 3- methylcrotonyl-CoA. Formation of 3-methylcrotonyl-CoA from two acetyl-CoA molecules has been suggested to be possible in the article from Gogerty and Bobik

(Gogerty and Bobik, 2010). Here, this pathway is named HMG-CoA pathway. According to a specific aspect of the invention, the obtained prenol is converted into isoprene by chemical dehydration. DRAWINGS

Figure 1. Metabolic pathway for biosynthesis of prenol, from the leucine pathway.

Figure 2. Metabolic pathway for biosynthesis of prenol, from the HMG-CoA pathway.

DETAILED DESCRIPTION OF THE INVENTION

Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified methods and may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting, which will be limited only by the appended claims.

All publications, patents and patent applications mentioned herein are cited for the purpose of describing and disclosing the protocols, reagents and vectors that are reported in the publications and that might be used in connection with the invention.

Furthermore, the practice of the present invention employs, unless otherwise indicated, conventional microbiological and molecular biological techniques within the skill of the art. Such techniques are well known to the skilled worker, and are explained fully in the literature. See, for example, Prescott et al., (1999) and Sambrook et al., (1989) (2001).

It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a microorganism" includes a plurality of such microorganisms, and a reference to "an endogenous gene" is a reference to one or more endogenous genes, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any materials and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred materials and methods are now described.

In the claims that follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

Definitions

The term "prenol" as used herein refers to 3-methyl-2-buten-l-ol or to a 3,3- dimethylallyl alcohol or DMAPP-ol while the term "isoprenol" refers especially to 3- methyl-3-buten-l-ol or IPP-ol.

3-Methylcrotonyl-CoA or β-Methylcrotonyl-CoA (CAS number 6247-62-7) is an intermediate in the metabolism of leucine. It is usually formed from 3-methylbutanoyl- CoA (also called isovaleryl-coenzyme A) by isovaleryl-coenzyme A dehydrogenase.

The term "aldehyde dehydrogenase" in this invention designates the aldehyde dehydrogenase (CoA-acylating) enzyme which catalyzes the reaction of conversion of an acyl-CoA into an aldehyde.

The term "alcohol dehydrogenase" in this invention designates the enzyme which catalyzes the reaction of conversion of an aldehyde into an alcohol.

Here, the term "AdhE enzyme" refers to a bifunctional enzyme having the two activities aldehyde dehydrogenase and alcohol dehydrogenase.

The terms "activity" and "function" refer to a specific catalytic activity or function of an enzyme, i.e. the biochemical reaction(s) that is(are) catalyzed by this enzyme.

The term "microorganism", as used herein, refers to a bacterium, yeast or fungus which is not modified artificially.

The term "recombinant microorganism" or "genetically modified microorganism", as used herein, refers to a microorganism genetically modified or genetically engineered. It means, according to the usual meaning of these terms, that the microorganism of the invention is not found in nature and is modified either by introduction, by deletion or by modification of genetic elements. It can also be transformed by forcing the development and evolution of new metabolic pathways in combining directed mutagenesis and evolution under specific selection pressure (see for instance WO 2004/076659).

A microorganism may be modified to express exogenous genes if these genes are introduced into the microorganism with all the elements allowing their expression in the host microorganism. A microorganism may be modified to modulate the expression level of an endogenous gene. The modification or "transformation" of microorganisms with exogenous DNA is a routine task for those skilled in the art. The term "endogenous gene" means that the gene was present in the microorganism before any genetic modification, in the wild-type strain. Endogenous genes may be overexpressed by introducing heterologous sequences in addition to, or to replace endogenous regulatory elements, or by introducing one or more supplementary copies of the gene into the chromosome or a plasmid. Endogenous genes may also be modified to modulate their expression and/or activity. For example, mutations may be introduced into the coding sequence to modify the gene product or heterologous sequences may be introduced in addition to or to replace endogenous regulatory elements. Modulation of an endogenous gene may result in the up-regulation and/or enhancement of the activity of the gene product, or alternatively, down regulate and/or lower the activity of the endogenous gene product. Another way to enhance expression of endogenous genes is to introduce one or more supplementary copies of the gene onto the chromosome or a plasmid.

The term "exogenous gene" means that the gene was introduced into a microorganism, by means well known by the man skilled in the art whereas this gene is not naturally occurring in the microorganism. Exogenous genes can be heterologous or not. A microorganism can express exogenous genes if these genes are introduced into the microorganism with all the elements allowing their expression in the host microorganism. Transforming microorganisms with exogenous DNA is a routine task for the man skilled in the art. Exogenous genes may be integrated into the host chromosome, or be expressed extra-chromosomally by plasmids or vectors. A variety of plasmids, which differ with respect to their origin of replication and their copy number in the cell, are all known in the art. These genes may be heterologous or homologous. The term "heterologous gene" means that the gene is derived from a species of microorganism different from the recipient microorganism that expresses it. It refers to a gene which is not naturally occurring in the microorganism.

In the present application, all genes are referenced with their common names and with references that give access to their nucleotidic sequences on the website http://www.ncbi.nlm.nih.gov/gene.

The man skilled in the art knows different means to modulate, and in particular up- regulate, the expression of endogenous genes. For example, a way to enhance expression of endogenous genes is to introduce one or more supplementary copies of the gene onto the chromosome or a plasmid.

Another way is to replace the endogenous promoter of a gene with a stronger promoter. These promoters may be homologous or heterologous. It is well within the ability of the person skilled in the art to select appropriate promoters, for example, the promoters Ptrc, Ptac, Plac or the lambda promoter cl are widely used.

Finally, the sequence of exogenous gene may be adapted for its expression in the host microorganism. Indeed, the man skilled in the art knows the notion of codon usage bias and how adapt nucleic sequence for a particular codon usage bias without modify the deduced protein.

The term Overexpression' means in this context that the expression of a gene or an enzyme is increased compared to a non modified microorganism. Increase of expression of an enzyme is obtained by the increase of the expression of a gene encoding said enzyme.

The 'activity' of an enzyme is used interchangeably with the term 'function' and designates, in the context of the invention, the reaction that is catalyzed by the enzyme.

The terms "encoding" or "coding" refer to the process by which a polynucleotide, through the mechanisms of transcription and translation, produces an amino-acid sequence.

The gene(s) encoding the enzyme(s) can be exogenous or endogenous.

"Attenuation" of genes may be achieved by means and methods known to the man skilled in the art and contains gene deletion by homologous recombination, gene attenuation by insertion of an external element into the gene or gene expression under a weak promoter. The man skilled in the art knows a variety of promoters which exhibit different strength and which promoter to use for a weak genetic expression.

The "fermentation" is generally conducted in fermenters with an appropriate culture medium adapted to the microorganism being used, containing at least one simple carbon source, and if necessary co-substrates.

An "appropriate culture medium" designates a medium (e.g., a sterile, liquid media) comprising nutrients essential or beneficial to the maintenance and/or growth of the cell such as carbon sources or carbon substrate, nitrogen sources, for example, peptone, yeast extracts, meat extracts, malt extracts, urea, ammonium sulfate, ammonium chloride, ammonium nitrate and ammonium phosphate; phosphorus sources, for example, monopotassium phosphate or dipotassium phosphate; trace elements (e.g., metal salts), for example magnesium salts, cobalt salts and/or manganese salts; as well as growth factors such as amino acids and vitamins.

As an example of known culture media for E. coli, the culture medium can be of identical or similar composition to an M9 medium (Anderson, 1946), an M63 medium (Miller, 1992) or a medium such as defined by Schaefer et al, (1999).

As another example of culture medium for C. glutamicum, the culture medium can be of identical or similar composition to BMCG medium (Liebl et al, 1989) or to a medium such as described by Riedel et al, (2001).

Those skilled in the art are able to define the culture conditions for the microorganisms according to the invention. In particular the bacteria are fermented at a temperature between 20°C and 55°C, preferentially between 25°C and 40°C, and more specifically about 30°C for C. glutamicum and about 37°C for E. coli.

The term "carbon source" or "carbon substrate" or "source of carbon" according to the present invention denotes any source of carbon that can be used by those skilled in the art to support the normal growth of a micro-organism, including hexoses (such as glucose, galactose or lactose), pentoses, monosaccharides, oligosaccharides, disaccharides (such as sucrose, cellobiose or maltose), molasses, starch or its derivatives, hemicelluloses and combinations thereof.

Prenol biosynthesis

The present invention is related to a method for the fermentative production of prenol, comprising culturing a recombinant microorganism in a culture medium comprising a source of carbon, wherein in said microorganism, the prenol biosynthesis pathway comprises 3-methylcrotonyl-CoA as intermediate product, that is converted into prenol by the action of an alcohol dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme.

An alcohol dehydrogenase enzyme designates an enzyme catalyzing the following reactions, in one way or in the other:

an aldehyde (or a ketone) + NAD(P)H + H+ an alcohol + NAD(P)+

This enzyme always functions with an ' acceptor' of hydrogen, such as NAD+,

NADP+, or other specific acceptors. The activity of this enzyme is the conversion of an alcohol into an aldehyde, and/or the conversion of an aldehyde into an alcohol with a donor of hydrogen.

Other known names are: aldehyde reductase; ADH; NAD-dependent alcohol dehydrogenase; NADH-alcohol dehydrogenase; primary alcohol dehydrogenase; aldehyde reductase (NADPH); NADP-alcohol dehydrogenase; NADP-aldehyde reductase; NADP- dependent aldehyde reductase; NADPH-aldehyde reductase; NADPH-dependent aldehyde reductase; alcohol dehydrogenase (NADP); the common abbreviation is ADH.

In a specific aspect of the invention, the enzyme having alcohol dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 1 :

According to the present invention, the alcohol dehydrogenase enzyme has specific activity for prenal or 3-methyl-2-butenal (number CAS 107-86-8), an aldehyde of formula:

, and converts it into prenol with the hydrogen donor NADH. This enzyme is also named 3-methyl-2-butenal dehydrogenase in the invention.

An aldehyde dehydrogenase (CoA-acylating) enzyme designates an enzyme catalyzing the following reaction, in one way or in the other:

an acyl-CoA + NAD(P)H + H+ an aldehyde + NAD+ + Coenzyme A

Other known names are: aldehyde:NAD+ oxidoreductase (CoA-acylating), aldehyde dehydrogenase (acylating); acylating aldehyde dehydrogenase; Coenzyme A-acylating aldehyde dehydrogenase; aldehyde dehydrogenase (acetylating); aldehyde:NAD(P)+ oxidoreductase (CoA-acetylating); the common abbreviation is ALDH.

This enzyme always functions with an ' acceptor' of hydrogen, such as NAD+, NADP+, or other specific acceptors. The activity of this enzyme is the conversion of an acyl-CoA into an aldehyde, and/or the conversion of an aldehyde into an acyl-CoA with a donor of hydrogen.

In a specific aspect of the invention, the enzyme having aldehyde dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 2:

mhpF acetaldehyde dehydrogenase (EC: 1.2.1.10) R.eutropha

cmtH acetaldehyde dehydrogenase (EC: 1.2.1.10) R.opacus

adhE bifunctional acetaldehyde-CoA/alcohol dehydrogenase S. aureus

(EC:1.1.1.1)

adhE bifunctional acetaldehyde-CoA/alcohol dehydrogenase S.enterica

(EC:1.1.1.1 1.2.1.10)

adhE bifunctional acetaldehyde-CoA/alcohol dehydrogenase S. pneumoniae

(EC:1.1.1.1)

adhE metal binding site; other site (EC: 1.2.1.10) S. typhimurium adhE bifunctional acetaldehyde-CoA/alcohol dehydrogenase Y.pestis

(EC:1.1.1.1)

According to the present invention, the aldehyde dehydrogenase enzyme has specific activity for 3-methylcrotonyl-CoA, an acyl-CoA of d converts it into prenal with the hydrogen donor NADH. In the invention, this enzyme is also named 3-methyl-2-butanol dehydrogenase.

In a preferred embodiment of the invention, the alcohol dehydrogenase and aldehyde dehydrogenase activities are catalyzed by the same enzyme, capable of both functions; in a specific embodiment, said enzyme capable of both functions is the alcohol-aldehyde dehydrogenase enzyme (AdhE enzyme).

Examples of enzymes possessing both activities are enzymes previously listed called

"bifunctional acetaldehyde-Co A/alcohol dehydrogenase".

Preferentially, the recombinant microorganism expresses an AdhE enzyme that is heterologous to the microorganism.

According to a specific embodiment, the AdhE enzyme has specificity for the substrate

3 -methylcrotonyl-Co A.

The term "specificity" designates affinity of an enzyme for a precise substrate. According to this invention specificity of AdhE enzyme means that this enzyme recognizes the 3-methylcrotonyl-CoA as preferred substrate among all other substrates.

According to a preferred embodiment of the invention, the AdhE enzyme is AdhEl from Clostridium acetobutylicum.

According to a more preferred embodiment of the invention, the AdhE enzyme is encoded by the gene adhE2 from Clostridium acetobutylicum (listed in table 1 and table 2).

Prenol bisosynthesis by leucine pathway

In this aspect of the invention, the biosynthesis pathway of 3 -methylcrotonyl-Co A from pyruvate and acetyl-CoA includes the following intermediate products

oxopentanoate and 3-methylbutanoyl-CoA. The whole pathway for the biosynthesis of prenol according to this embodiment of the invention is illustrated in figure 1, entited "Metabolic pathway for biosynthesis of prenol, from the leucine pathway".

The first reaction of the conversion of 4-methyl-2-oxopentanoate into 3- methylbutanoyl-CoA is catalysed by the branched-chain keto-acid dehydrogenase complex. This complex is composed of four subunits Εΐα, Ε ΐβ, E2 and E3. This enzymatic complex has been identified in several species, and in particular in:

• Bacillus substilis (genes bkdAA, bkdAB, bkdB, IpdV), for reference: Perham and Lowe, (1988).

· Pseudomonas putida (genes bkdAl, bkdA2, bkdB, IpdV): Sykes et al , (1987).

• Streptomyces avermitilis, for reference: Skinner et al , (1995).

• Enterococcus faecalis (operon bkdABCD), for reference: Ward et al., ( 1999).

• Saccharomyces cerevisiae, for reference: Sinclair et al , (1993). In a specific aspect of the invention, the subunit El of the enzymatic complex having branched-chain keto acid dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 3:

In a specific aspect of the invention, the subunit E2 of the enzymatic complex having branched-chain keto acid dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 4:

In a specific aspect of the invention, the subunit E3 of the enzymatic complex having branched-chain keto acid dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 5 :

Preferentially, the enzymatic complex having branched-chain keto acid dehydrogenase activity is the complex from P. putida.

The second reaction of the conversion of 3-methylbutanoyl-CoA into 3- methylcrotonyl-CoA is catalysed by an acyl-CoA dehydrogenase, in particular an isovaleryl-CoA dehydrogenase. This enzyme has been identified in several species, and in particular in:

• Pseudomonas aeruginosa (gene HuA), for reference: Forster-Fromme and Jendrossek (2008).

· Streptomyces coelicolor and Streptomyces avermitilis (acdH), for reference:

Zhang et al, (1999).

• Caenorhabditis elegans (ivd) Mohsen et al, (2001).

• Arabidopsis thaliana (ivd): Daschner et al, (2001). In a specific aspect of the invention, the enzyme having acyl-CoA dehydrogenase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 6:

fadE acyl-CoA dehydrogenase (EC:1.3.99.3) S.enterica

acdA acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

acdA-3 acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

fadEl acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

fadEB acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

fadE21 putative acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

fadE22 putative acyl-CoA dehydrogenase S.erythraea

fadE31 putative acyl-CoA dehydrogenase (EC:1.3.99.3) S.erythraea

fadE domain of unknown function (DUF1974); region: S. typhimurium

DUF1974; pfam09317 (EC:1.3.99.3)

acdA acyl-CoA dehydrogenase X.oryzae

fadE acyl-CoA dehydrogenase (EC:1.3.99.3) X.oryzae

fadE acyl-CoA dehydrogenase (EC:1.3.99.3) Y.pestis

In a preferred embodiment of the invention, the acyl-CoA dehydrogenase is encoded by the gene acdH from S. avermitilis.

In a specific embodiment of the invention, in the recombinant microorganism, at least one of the following enzymes is overexpressed: an acetolactate synthase, a keto-acid reductoisomerase, a dihydroxy-acid dehydratase, a 2-isopropylmalate synthase, a 2- isopropylmalate hydrolyase, a 3-isopropylmalate dehydrogenase, a branched chain keto acid dehydrogenase complex and an acyl-CoA dehydrogenase.

In a more specific aspect of the invention, in the recombinant microorganism, branched chain keto acid dehydrogenase complex and the enzyme acyl-CoA dehydrogenase, that are overexpressed in the genetically modified microorganism, are heterologous.

In particular, the branched chain keto acid dehydrogenase is encoded by one or several genes issued from Bacillus subtilis (bkdAA, bkdAB, bkdB, IpdV), Pseudomonas putida (bkdAl, bkdA2, bkdB, IpdV), Streptomyces avermitilis, Enterococcus faecalis (bkdABCD) or Saccharomyces cerevisiae.

In particular the acyl-CoA dehydrogenase is encoded by a gene from Pseudomonas aeruginosa (UuA), Streptomyces coelicolor, Streptomyces avermitilis (acdH), Caenorhabditis elegans (ivd) or Arabidopsis thaliana (ivd).

In another aspect of the invention, the microorganism is further modified to improve the availability of at least one biosynthesis intermediate chosen among pyruvate, 3-methyl-

2-oxobutanoic acid and 4-methyl-2-oxopentanoate.

In order to optimize pyruvate availability, the microorganism is modified to overexpress at least one gene involved in pyruvate biosynthesis pathway, chosen among gene coding for phosphoglycerate mutase {gpmA and pgml in E. coli or homologous gene), enolase (eno in E. coli or homologous gene) or pyruvate kinase (pykA and pykF in E. coli or homologous gene). Alternatively or in combination, at least one gene involved in pyruvate degradation pathway is attenuated. This gene is chosen among pyruvate oxidase (poxB in E. coli or homologous gene), phosphate acetyltransferase (pta in E. coli or homologous gene), acetate kinase (ackA in E. coli or homologous gene), aldehyde/alcohol dehydrogenase (adhE in E. coli or homologous gene), pyruvate dehydrogenase operon repressor (pdhR in E. coli or homologous gene) or lactate dehydrogenase (pfl, lldD, IdhA or did in E. coli or homologous gene).

In order to optimize 3-methyl-2-oxobutanoic acid availability, the microorganism is modified to overexpress at least one gene involved in the L-valine biosynthesis pathway, chosen among gene coding for acetolactate synthase (ilvl, ilvH, ilvN and ilvB in E. coli or homologous genes), keto-acid reductoisomerase (ilvC in E. coli or homologous gene) and dihydroxy-acid dehydratase (ilvD in E. coli or homologous gene). Alternatively or in combination, the gene encoding the branched chain amino acid transaminase (ilvE in E. coli or homologous gene) is deleted in the microorganism of the invention. In another embodiment of the invention, the ilvN gene is modified so as to produce an IlvN protein which is feedback deregulated. Such mutations of ilvN are disclosed in Park et al. , 2011.

In order to optimize 4-methyl-2-oxopentanoate availability, the microorganism is modified to overexpress at least one gene chosen among the genes coding for 3- isopropylmalate dehydratase (leuC, leuD in E. coli or homologous genes), 3- isopropylmalate dehydrogenase (leuB in E. coli or homologous gene) or 2-isopropylmalate synthase (leuA in E. coli or homologous gene). Alternatively or in combination, the gene encoding the branched chain amino acid transaminase (ilvE in E. coli or homologous gene) is deleted in the microorganism of the invention. In another embodiment of the invention, the leuA gene is modified so as to produce a LeuA protein which is feedback deregulated. Such mutations of leuA are disclosed in patent application US 6,403,342.

Prenol bisosynthesis by HMG-CoA pathway

In this aspect of the invention, the biosynthesis pathway of 3-methylcrotonyl-CoA from pyruvate and acetyl-CoA includes the following intermediate products: 3-hydroxy-3- methylglutaryl-CoA (HMG-CoA) and 3-methylglutaconyl-CoA.

The whole pathway for the biosynthesis of prenol according to this embodiment of the invention is illustrated in figure 2, entitled "Metabolic pathway for biosynthesis of prenol, from an intermediate of the HMG-CoA pathway".

The first reaction of condensation of two acetyl-CoA molecules into 3-hydroxy-3- methylglutaryl-CoA (HMG-CoA) is catalysed successively by two enzymes: (1) an acetyl- CoA acetyltransferase, and (2) a 3-hydroxy-3-methylglutaryl-CoA synthase.

Genes coding for enzymes having an acetyl-CoA acetyltransferase activity have been identified in several species, and in particular in Escherichia coli (gene atoB), Clostridium acetobutylicum (thlA) and Saccharomyces cerevisiae (ERG 10). In a specific aspect of the invention, the enzyme having acetyl-CoA acetyltransferase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 7:

In a preferred embodiment of the invention, the acetyl-CoA acetyltransferase is encoded by the gene atoB from E. coli.

Genes coding for enzymes having a 3-hydroxy-3-methylglutaryl-CoA synthase activity have been identified in several species, and in particular in Enterococcus faecalis (gene mvaS), and Saccharomyces cerevisiae (ERG13).

In a specific aspect of the invention, the enzyme having 3-hydroxy-3-methylglutaryl- CoA synthase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 8:

Preferentially the 3-hydroxy-3-methylglutaryl-CoA synthase is encoded by the gene mvaS from Enterococcus faecalis.

The second reaction of the conversion of HMG-CoA into 3-methylcrotonyl-CoA is catalysed successively by two enzymes: (1) 3-methylglutaconyl-CoA hydratase, and (2) 3- methylglutaconyl-CoA decarboxylase.

Enzymes having a 3-methylglutaconyl-CoA hydratase activity have been identified in several species and in particular in Galactomyces reessi (See for reference: Dhar et ah , 2002).

In a specific aspect of the invention, the enzyme having 3-methylglutaconyl-CoA hydratase activity is encoded by a gene chosen among a list of genes well known in the art, including but not limited to the genes listed in table 9:

Preferentially the 3-methylglutaconyl-CoA hydratase is encoded by the gene MXAN_3757 from Myxococcus xanthus.

At least one gene coding for an enzyme having a 3-methylglutaconyl-CoA decarboxylase activity has been identified in Myxococcus xanthus (See for reference: Bode et al, 2009).

Preferentially the 3-methylglutaconyl-CoA decarboxylase is encoded by the genes MXAN_4264 and MXAN_4265 from Myxococcus xanthus, each of them coding for one subunit of the enzyme.

In a specific embodiment of the invention, in the recombinant microorganism, at least one of the following enzymes is overexpressed: an acetyl-CoA acetyltransferase, a HMG- CoA synthase, a 3-methylglutaconyl-CoA hydratase, and a 3-methylglutaconyl-CoA decarboxylase.

In another aspect of the invention, the microorganism is further modified to improve the availability of acetyl-CoA by:

- overexpressing at least one gene encoding the pyruvate dehydrogenase chosen among aceE, aceF or lpd. In a specific aspect of the invention, inactivation of pdhR coding for a repressor leads to an overexpression of aceE and aceF.

- modifying the Ipd gene so as to produce a mutant, feedback deregulated Lpd enzyme. Such mutations of lpd are disclosed in patent application WO2005073364.

- attenuating at least one gene chosen among aldehyde/alcohol dehydrogenase (adhE), phosphate acetyltransferase (pta), acetate kinase (ackA) or citrate Synthase (gltA). Preferentially, the microorganism of the invention is selected among Enterobacteriaceae, Clostridiaceae, Bacillaceae, Streptomycetaceae, Corynebacteriaceae and Saccharomycetaceae. More preferentially the microorganism is a species of Escherichia, Clostridium, Bacillus, Klebsiella, Pantoea, Salmonella, Pseudomonas, Corynebacterium or Saccharomyces.

According to a specific aspect of the invention, the microorganism is from the species Escherichia coli, Klebsiella pneumoniae, Pseudomonas putida, Saccharomyces cerevisiae, Corynebacterium glutamicum or Bacillus subtilis.

An especially preferred simple carbon source is glucose. Another preferred simple carbon source is sucrose.

In some embodiments of the invention, the culture medium comprises a carbon source being a by-product of another process using biomass as starting material, or eventually, the product of mechanical and/or chemical and/or enzymatic, and in such instance in vitro or in vivo, degradation of biomass, such as degradation of cellulose.

According to a specific aspect of the invention, the fermentative production of prenol comprises a step of isolation of the prenol from the culture medium. Recovering the prenol from the culture medium is a routine task for a man skilled in the art. It may be achieved by a number of techniques well known in the art including but not limiting to distillation, gas-stripping, pervaporation or liquid extraction. The expert in the field knows how adapt parameters of each technic dependant of the characteristics of the material to be separated.

Distillation may involve an optional component different from the culture medium in order to facilitate the isolation of prenol by forming azeotrope and notably with water. This optional component is an organic solvent such as cyclohexane, pentane, butanol, benzene, toluene, trichloroethylene, octane, diethylether or a mixture thereof.

Gas stripping is achieved with a stripping gas chosen among helium, argon, carbon dioxide, hydrogen, nitrogen or mixture thereof.

Liquid extraction is achieved with organic solvent as the hydrophobe phase such as pentane, hexane, heptane, dodecane.

Conversion of prenol into isoprene:

In a specific embodiment, the invention is also related to a method for the production of isoprene from prenol. Said method comprises the following successive steps:

culturing a recombinant microorganism in a culture medium comprising a source of carbon, wherein in said microorganism, the prenol biosynthesis pathway comprises 3-methylcrotonyl-CoA as intermediate product, that is converted into prenol by the action of an alcohol dehydrogenase enzyme and of an aldehyde dehydrogenase enzyme, and

performing a step of chemical dehydratation of the bioproduced prenol into isoprene. This conversion of "bioproduced prenol", i.e. prenol produced from a simple source of carbon by fermentation, into isoprene can be achieved by means and methods known to the man skilled in the art. In particular, this conversion may be achieved by chemical way involving dehydrogenation and dehydration by acid catalyst (chemical dehydratation) such as disclosed in patent application US20100216958.

Another way of conversion is the enzymatic conversion of prenol by action of a prenol kinase, an isopentenyl-diphosphate delta isomerase and an isoprene synthase polypeptide such as disclosed in patent application WO2010031076. These three enzymes may be produced in a different strain than that producing prenol or in the same strain. If they are produced independently from the prenol production, the expressed enzymes or the strains expressing these enzymes can be directly mixed, partly or not, with the fermentation medium of the strain producing prenol or with the culture supernatant wherein prenol is accumulated.

In a specific aspect of the invention, the bioproduced prenol is purified before the step of chemical dehydration.

In another embodiment of the invention, isoprene is purified by standard methods well known in the art. For examples, isoprene can be recovered by gas stripping, extractive distillation with an alcohol such as ethanol, methanol, propanol, or a combination thereof, liquid extraction or solid separation (adsorption, desorption) or combination thereof.

The present invention is also related to a genetically modified microorganism for the fermentative production of prenol such as described above. Specifically, said microorganism overexpresses at least one enzyme chosen among the group consisting of: an acetolactate synthase, a keto-acid reductoisomerase, a dihydroxy-acid dehydratase, a 2- isopropylmalate synthase, a 2-isopropylmalate hydro lyase, a 3-isopropylmalate dehydrogenase, a branched chain keto acid dehydrogenase complex and an acyl-CoA dehydrogenase, an acetyl-CoA C-acetyltransferase, a HMG-CoA synthase, a 3- methylglutaconyl-CoA hydratase, and a 3-methylglutaconyl-CoA decarboxylase. In particular, the genetically modified microorganism comprises a heterologous enzyme AdhE, which has specificity for the substrate 3-methylcrotonyl-CoA.

In said genetically modified microorganism, endogenous sequences may also be knocked out or deleted, to favour the new metabolic pathway for producing prenol.

All techniques for transforming the microorganisms, and regulatory elements used for enhancing the production of prenol, are well known in the art and available in the literature, including the applicant's own patent applications on the modification of biosynthesis pathways in various microorganisms, including WO 2008/052973, WO 2008/052595, WO 2008/040387, WO 2007/144346, WO 2007/141316, WO 2007/077041, WO 2007/017710, WO 2006/082254, WO 2006/082252, WO 2005/111202, WO 2005/073364, WO 2005/047498, WO 2004/076659, the content of which is incorporated herein by reference.

EXAMPLES

The present invention is further defined in the following examples. It should be understood that these example, while indicating preferred embodiments of the invention, are given by way of illustration only. From above disclosure and these examples, the man skilled in the art can make various changes of the invention to adapt it to various uses and conditions without modifying the essentials means of the invention.

In particular, examples show modified Escherichia coli (E. coli) strains, but these modifications can easily be performed in other microorganisms of the same family.

E. coli belongs to the Enterobacteriaceae family, which comprises members that are Gram-negative, rod-shaped, non-spore forming and are typically 1-5 μιη in length. Most members have flagella used to move about, but a few genera are non-motile. Many members of this family are a normal part of the gut flora found in the intestines of humans and other animals, while others are found in water or soil, or are parasites on a variety of different animals and plants. E. coli is one of the most important model organisms, but other important members of the Enterobacteriaceae family include Klebsiella, in particular Klebsiella terrigena, Klebsiella planticola or Klebsiella oxytoca, and Salmonella.

PROTOCOLES

Several protocols are used to construct prenol producing strains and are described in the following examples. Protocol 1: Chromosomal modifications by homologous recombination and selection of recombinants (Datsenko and Wanner, 2000)

Allelic replacement or gene disruption in specified chromosomal loci is carried out by homologous recombination as described by Datsenko and Wanner (2000). The chloramphenicol (Cm) resistance cat or the kanamycin (Km) resistance kan flanked by Flp recognition sites, are amplified by PCR by using pKD3 or pKD4 plasmids as template respectively. The resulting PCR products are used to transform the recipient E. coli strain harbouring plasmid pKD46 that expresses the λ Red (γ, β, exo) recombinase. Antibiotic- resistant transformants are then selected and the thermo-sensitive pKD46 plasmid is removed by cultivating the strain at 42°C following by an isolation of the strain's culture on LB plates. Single clones are verified for the loss of ampicillin resistance and by PCR analysis with appropriate primers listed in Table 2. The cat and a/?-resistance genes are removed by using plasmid pCP20 as described by Datsenko & Wanner (2000). Antibiotic sensitive clones are then verified by PCR using primers listed in Table 2. Protocol 2: Transduction of phage P 1

Chromosomal modifications are transferred to a given E. coli recipient strain by PI transduction. The protocol is composed of 2 steps: (i) preparation of the phage lysate on a donor strain containing the resistance associated chromosomal modification and (ii) infection of the recipient strain by this phage lysate.

Preparation of the phage lysate

Inoculate 100 μΐ of an overnight culture of the strain MG 1655 with the chromosomal modification of interest in 10 ml of LB + Cm 30μg/ml or Km 50μg/ml + glucose 0.2% + CaCl 2 5 mM.

Incubate 30 min at 37°C with shaking.

- Add 100 μΐ of PI phage lysate prepared on the donor strain MG1655 (approx. 1 x

10 9 phage/ml).

- Shake at 37°C for 3 hours until the complete lysis of cells.

- Add 200 μΐ of chloroform, and vortex.

Centrifuge 10 min at 4500 g to eliminate cell debris.

- Transfer of supernatant to a sterile tube.

- Store the lysate at 4°C.

Transduction

Centrifuge 10 min at 1500 g 5 ml of an overnight culture of the E. coli recipient strain cultivated in LB medium.

- Suspend the cell pellet in 2.5 ml of MgS0 4 10 mM, CaCl 2 5 mM.

Infect 100 μΐ cells with 100 μΐ PI phage of strain MG1655 with the modification on the chromosome (test tube) and as a control tubes 100 μΐ cells without PI phage and 100 μΐ PI phage without cells.

Incubate 30 min at 30°C without shaking.

- Add 100 μΐ sodium citrate 1 M in each tube, and vortex.

- Add l ml of LB.

Incubate 1 hour at 37°C with shaking.

Centrifuge 3 min at 7000 rpm.

Plate on LB + Cm 30 μg/ml or Km 50 μg/ml.

- Incubate at 37°C overnight. The antibiotic-resistant transductants are then selected and the chromosomal structure of the mutated locus was verified by PCR analysis with appropriates primers listed in Table 2.

Table 1 : Describe the genotype and corresponding number of intermediate strains and producing strains that appear in the following examples.

Table 2: Primers used for PCR verifications of chromosomal modifications described in the following examples

EXAMPLE 1

Calculation of maximum yields for prenol production on glucose and sucrose

1.1 - Parameters used for simulations

Simulations were performed with the METEX proprietary software METOPT™. A simplified metabolic network of E. coli was used including a central metabolic network, metabolic pathways for all biomass precursors and specific production pathways as described in Figure 1 for the leucine pathway and Figure 2 for the HMG-CoA pathway. A classical biomass composition for E. coli was used. Simulations were performed using either glucose or sucrose carbon source. For sucrose utilization, both the PTS system and the non-PTS system were modelled. As there were no differences on maximal yields calculated, only one yield on sucrose is reported. Maximum prenol yields were calculated from the "leucine pathway" and the "HMG-CoA pathway". Calculation of a theoretical maximum yield was performed, taking into account no growth and no maintenance. Calculation of a practical maximum yield was performed, taking into account a growth rate of O. lh "1 and maintenance energy of 5 mmo TP-gDw _1 .h _1 . All simulations were performed with a specific uptake rate of glucose of 3 mmol.gDw ^h "1 , or a specific uptake rate of sucrose of 1.5 mmol.gDw ^h "1 . Simulations were performed under aerobic conditions.

1.2 - Simulation results

EXAMPLE 2

Demonstration of the 3-Methyl-2-butenal dehydrogenase and 3-Methyl-2-butenol dehydrogenase activities encoded by the gene adhE2 of Clostridium acetobutylicum 2.1 - Construction of strain DH5a (pNSTLL-factorXA-adhE2ca)

pNSTLL- actorXA-adhE '2 'ca plasmid was derived from pSOS95 (genbank accession N° AYl 87686) and RBS-Strep-Tag-Linker-factorXA-adhE2ca fragment with the adhEl gene from Clostridium acetobutylicum ATCC-824 coding for the aldehyde / alcohol dehydrogenase.

In this plasmid, expression of the adhE2ca gene is driven by the promoter of the thiolase gene from Clostridium acetobutylicum. The RBS-Strep-Tag-Linker-factorXA- adhE2ca fragment was amplified by PCR with primers ST_LL_XA_adhE2ca F (SEQ ID N°01) and adhE2ca R (SEQ ID N°02) using Clostridium acetobutylicum genomic DNA. The PCR product was digested and cloned between the BamRl and Sfol sites of the pSOS95. The ligation product was introduced in DH5a strain, the resulting strain DH5a (pNSTLL-factorXA-adhE2ca) is called strain 1 (table 1). The resulting plasmid was verified by DNA sequencing and called: pNSTLL- actorXA-adhE 2 'ca.

ST_LL_XA_adhE2ca F (SEQ ID N°01) T AGG ATC Cafcaaaatttogggggttogttogaatgtggtcacatcctcaatttgaaaaaggtagtg gtggtggta gtggtggtggtagtCCCGGGafcgaagggcgcatgaaagttacaaatcaaaaag

- sequence (bold upper case) for BamRl restriction site and extrabases

- sequence (underlined italic lower case) corresponding to RBS sequence

- sequence (underlined bold lower case) corresponding to Strep-tag sequence (Strep-

Tag® II, IBA-GmbH)

- sequence (underlined lower case) corresponding to linker sequence (artificial sequence)

- sequence (upper case) for Smal restriction site

- sequence (italic lower case) corresponding to factorXA sequence (Nagai and

Thorgersen, 1984)

- sequence (bold lower case) homologous to the adhE gene of Clostridium acetobutylicum (36298-3 6277 (p S O L l ) , re ferenc e s e quenc e on the web site http ://www.ncbi.nlm.nih. gov/ sutils/ genom table.cgi)

adhE2ca R (SEQ ID N°02)

T AAGTGGC GC C TTAAAA TGA TTTTA TA TA GA TA TCC

- sequence (bold upper case) for Sfol restriction site and extrabases,

- sequence (italic upper case) homologous to the adhE gene of Clostridium acetobutylicum (33722-3 3 746 (p S O L l ) , re ferenc e s e quenc e on the web site http ://www.ncbi.nlm.nih. gov/ sutils/ genom table.cgi).

2.2 - Overproduction of the protein AdhE2ca

Protein production was realised in a 1L Schott bottle. The production strain was inoculated in fifteen precultures of 5 mL LB medium (Sigma 25 %) with 2.5 g.L "1 glucose. The temperature was maintained at 37°C and agitation at 200 RPM.

Theses precultures were used to inoculate an 800 mL culture of MAC medium to an OD 6 oo nm of 0.3. The temperature of the culture was maintained at 37°C and the agitation at 150 RPM. Ampicilin was added at concentration of 50 mg.L "1 in preculture and culture. When the culture had reached an OD 6 oo of 0.8 (approximately 7 hours), the culture was centrifuged and the cell pellet conserved. Table 3 : MAC Medium composition.

2.3 - Purification of the protein adhE2

All the purification steps were performed under anaerobic conditions.

Stepl : Preparation of cell- free extracts

About 200mg of E.coli biomass was suspended in 30 ml of lOOmM Tris HC1, 150mM NaCl, ImM EDTA pH 8 and a protease inhibitor cocktail. The cell suspension was sonicated on ice (Sonics and Materials, 70 W) in a 50 ml conical tube during 8 cycles of 30 sec with 30 sec intervals. After sonication, cell debris was removed by centrifugation at 12000g for 30min at 4°C. The crude extract was incubated with 0,16g/L Avidin during 30 min at 4°C. The crude extract was centifuged at 12000g for 5 min and filtered through a 0.45 μιη filter.

Step2 : Affinity purification

After Avidin treatment, the crude extract was loaded on a 1ml StrepTrap HP column

(GE Healthcare) equilibrated with 100 mM Tris-HCl, 150 mM NaCl, ImM EDTA pH8. The column was washed with 10 column volumes of the same buffer. The protein was eluted from the column with 6 column volumes of 100 mM Tris-HCl, 150 mM NaCl, ImM EDTA, 2.5mM Desthiobiotin pH8. The fractions containing the protein were pooled. For the storage of the protein; the buffer was exchanged using a desalting column (Econo-Pac, Bio-Rad) against 100 mM Hepes pH7.5.

2.4 - 3-Methyl-2-butenal dehydrogenase assay

3-Methyl-2-butenal dehydrogenase activity was assayed by measuring the initial rate of NADH oxidation under anaerobic conditions with a spectrophotometer at a wavelength of 340 nm and a constant temperature of 30°C. The reaction mixture using 2.5 mM 3-methyl- crotonyl-coA as substrate was carried out in 200mM HEPES, 144 mM Semicarbazine buffer pH 7.5, 2 mM DTT, 0.2 mM NADH, and about 8 μg of purified enzyme (adhE2) in a final volume of lml. Control assay (blank), lacking the substrate was run in parallel, and the value measured for the control is subtracted to the value measured for the assay in order to take into account the non-specific oxidation of NADH (Epsilon 340 nm=6290 M-l cm-1).

One unit of enzyme activity was defined as the amount of enzyme that consumed 1 μιηοΐ substrate per min under the conditions of the assay. Specific enzyme activity was expressed as units per mg of protein.

2.5 - 3-Methyl-2-butenol dehydrogenase assay

3-Methyl-2-butenol dehydrogenase activity was assayed by measuring the initial rate of NADH oxidation under anaerobic conditions with a spectrophotometer at a wavelength of 340 nm and a constant temperature of 30°C. The reaction mixture using 5 mM 3-Methyl-2- butenal as substrate was carried out in lOOmM HEPES buffer pH 7.5, 2 mM DTT, 0.2 mM NADH, and about 12 μg of purified enzyme (adhE2) in a final volume of lml. Control assay (blank), lacking the substrate was run in parallel and the value measured for the control is subtracted to the value measured for the assay in order to take into account nonspecific oxidation of NADH (Epsilon 340 nm=6290 M-l cm-1).

One unit of enzyme activity was defined as the amount of enzyme that consumed 1 μιηοΐ substrate per min under the conditions of the assay. Specific enzyme activity was expressed as units per mg of protein. - Activity of purified enzyme AdhE2

EXAMPLE 3

Construction of strain 2 MG1655 (pCL1920-Ptrc01/RBS01 *2-ilvBN*(GMV20- 22DDF)CD-TT07-PtrcO 1/RBSO 1 *2-acdHsaO 1 ec-TT02) (pBBRl MCS5-PtrcO 1 - bkdAl 2B+lpdVpp-TT07) (pUC 19-PlacIq-lacI-TT02-PtrcO 1/OPO 1/RBS28- leuA*(G462D)BCD-TT07-Ptrc30/RBS01-adhE2ca-TT02)

3.1 - Construction of pCL1920-Ptrc01/RBS01*2-ilvBN*(GMV20-22DDF)CD-TT07- PtrcOl/RBSOl *2-acdHsaOlec-TT02 plasmid

3.1.1 - Construction of plasmid pCL1920-Ptrc01/RBS01*2-ilvBN*(GVM20- 22DDF)CD-TT07

Plasmid pCL\920-Ptrc01/RBS01 *2-ilvBN*(GVM20-22DDF)CD-TT07 is derived from plasmid pCL1920-Ptrc01/RBS01 *2-ilvBN*(GVM20-22DDF)C described in patent applications EPl 1306306.9 and US61/544748 to which the ilvD gene from Escherichia coli coding for the dihydroxy-acid dehydratase is added.

In this plasmid, expression of the ilvD gene is driven by a constitutive Ftrc promoter, the ilvD gene is expressed in the operon with ilvBN*(GVM20-22DDF)C and a transcriptional terminator is added downstream of the gene. The ilvD gene is amplified by PCR with primers ilvD F (SEQ ID N°03) and ilvD R (SEQ ID N°04) using pCL1920- Vtrc01/RBS01 *2-ilvBN*(GVM20-22DDF)C-VilvE-ilvED-TT07 described in patent applications EPl 1306306.9 and US61/544748. The PCR product is digested and cloned between the ΒατηΆΙ and Nhel sites of the pCL1920-Ptrc01/RBS01 *2-ilvBN*(GVM20- 22DDF)C described in patent applications EPl 1306306.9 and US61/544748. The resulting plasmid is verified by DNA sequencing and called: pCL1920-Ptrc01/RBS01 *2- ilvBN*(GVM20-22DDF)CD-TT07.

ilvD F (SEQ ID N°03)

T ACTGGCT AGCatacaaaaaatgggacggc

with

- sequence (upper case) for Nhel restriction site and extrabases - sequence (bold lower case) homologous to the region upstream of z ' /vD gene (3951437-3951455, reference sequence on the website http ://eco ene . or /)

ilvD R (SEQ ID N°04)

agcaaggatccGC AG AAAGGC C C AC C C G AAGG

with

- sequence (lower case) for BamRl restriction site and extrabases

- sequence (bold upper case) for T7Te transcriptional terminator sequence from T7 phage (Harrington et αί, 2001). 3.1.2 - Construction of plasmid pCL1920-Ptrc01/RBS01*2-ilvBN*(GVM20-

22DDF)CD-TT07-Ptrc01/RBS01*2-acdHsaOlec-TT02

Plasmid *2-ilvBN*(GVM20-22DDF)CD-TT07- Ptrc01/RBS01 *2-acdHsaOlec-TT02 is derived &om pCL1920-Ptrc01/RB SO 1 *2- ilvBN*(GVM20-22DDF)CD-TT07 described above and the synthetic gene acdR from Streptomyces avermitilis optimized for Escherichia coli described below.

Synthetic gene acdHsaOlec

A synthetic gene of the Streptomyces avermitilis acdR gene coding for the acyl-CoA dehydrogenase is synthesized by Invitrogen. The codon usage and GC content of the gene is adapted to Escherichia coli according to the supplier's matrix. The construct is cloned into supplier's pM vectors and verified by sequencing.

acdR gene sequence from Streptomyces avermitilis (AF 143210) optimized for Escherichia coli : acdHsaOlec contains the following sequence (SEQ ID N°35):

atggatcatcgtctgacaccggaactggaagaactgcgtcgtaccgttgaagaatttgca catgatgttgttgcaccgaaaatc ggcgatttctatgaacgtcatgaattcccgtatgaaattgtgcgtgaaatgggtcgtatg ggtctgtttggtctgccgtttccggaaga atatggtggtatgggtggtgattatctggcactgggtattgccctggaagaactggcacg tgttgatagcagcgttgcaattaccctg gaagccggtgttagcctgggtgcaatgccgattcacctgtttggcaccgatgcacagaaa gcagaatggctgcctcgtctgtgtag cggtgaaattctgggtgcatttggtctgaccgaaccggatggtggtagtgatgccggtgc aacccgtaccaccgcacgtctggatg aaagcaccaatgaatgggttattaatggcaccaaatgcttcattaccaatagcggcaccg atatcaccggtctggttaccgttaccgc agttaccggtcgtaaacctgatggtaaaccgctgattagcagcattattgttccgagcgg tacaccgggttttaccgttgcagcaccg tatagcaaagttggttggaatgcaagcgatacccgtgaactgagctttgcagatgttcgt gttccggcagcaaatctgctgggtgaa cagggtcgtggttatgcacagtttctgcgtatcctggatgaaggtcgtattgcaattagc gcactggcaacaggtctggcacagggt tgtgttgatgaaagcgttaaatatgcaggcgaacgccatgcctttggtcgtaatattggt gcatatcaggcaatccagtttaaaatcgc agatatggaaatgaaagcccatatggcacgcgttggttggcgtgatgcagcaagccgtct ggttgccggtgaaccgttcaaaaaa gaagcagcaattgcaaaactgtatagcagtaccgttgccgttgataatgcacgtgaagca acccagattcatggtggttatggttttat gaatgaatatccggttgcacgtatgtggcgtgatagcaaaattctggaaattggtgaagg caccagcgaagttcagcgtatgctgat tgcacgcgaactgggtctggtgggttaa Construction of plasmid pCL 1920-Ptrc01/RBS01 *2-ilvBN*fGVM20-22DDF)CD- TT07-Ptrc01/RBS01 *2-acdHsaOlec-TT02

In this plasmid, expression of the synthetic gene is driven by a constitutive Ptrc promoter and a transcriptional terminator is added downstream of the acdHsaOlec synthetic gene. The acdHasaOlec synthetic gene is amplified by PCR with primers PtrcOl -acdHsaOlec F (SEQ ID N°05) and PtrcOl -acdHsaOlec R (SEQ ID N°06) using the pM vector harbouring the acdHsaOlec synthetic gene provided by the supplier. The PCR product is digested and cloned between the BamRl and Xbal sites of the plasmid pCL1920- Vtrc01/RBS01 *2-ilvBN*(GVM20-22DDF)CD-TT07 described above. The resulting plasmid is verified by DNA sequencing and called pCL1920-Ptrc01/RBS01 *2- ilvBN*(GVM20-22DDF)CD-TT07-Ptrc01/RBS01 *2-acdHsaOlec-TT02.

PtrcOl -acdHsaOlec F (SEQ ID N°05)

TTCTGCGGATCCgagctgttgacaattaatcatccggctcgtataatgtgtggaaGrCG^ CGTT^C

CCTA GGtaaggaggttataaatggatcatcgtctgacaccgg

with

- sequence (upper case) for BamRl restriction site and extrabases,

- sequence (bold lower case) for the trc promoter sequence (Amann et al, 1983 and Amann et a/., 1988),

- sequence (italic upper case) for Sail, Hpal and Avrll restriction sites,

- sequence (underlined lower case) corresponding to RBS consensus sequence with a

Psil restriction site,

- sequence (italic lower case) homologous to the beginning of acdHsaOlec synthetic gene sequence,

PtrcOl -acdHsaOlec R (SEQ ID N°06)

ggtcgactctagaAAC AG AT A AAAC G AAAGGC C C AGTC TTTC G AC TG AGC C TTT

CGTTTTATTTGATGagatct7TA4 CCCA CCA GA CCCA GTTCGCG

with

- sequence (lower case) for the Xbal restriction site and extrabases,

- sequence (bold upper case) for Ti transcriptional terminator sequence from the Escherichia coli rrnB gene (Orosz et al, 1991 ),

- sequence (underlined lower case) for Bglll restriction site,

- sequence (italic upper case) homologous to the end of the acdHsaOlec synthetic gene sequence.

3.2 - Construction of plasmid pBBRlMCS5-Ptrc01-bkdA12B+lpdVpp-TT07

Plasmid pBBR\MCS5-Ptrc01-bkdA12B+lpdVpp-TT07 is derived from pBBRlMCS5 (Kovach et al, 1995) and the bkdAl-bkdA2-bkdB-lpdV operon from Pseudomonas putida ATCC-23287 coding for the branched-chain keto-acid dehydrogenase complex. In this plasmid, expression of the bkdAl-bkdA2-bkdB-lpdV operon is driven by a constitutive Ptrc promoter and a transcriptional terminator is added downstream of the operon. The bkdAl-bkdA2-bkdB-lpdV operon is amplified by PCR with primers RBSbkdAl F (SEQ ID N°07) and lpdV-TT07 Xhol R (SEQ ID N°08) using Pseudomoans putida ATCC-23287 genomic DNA. The PCR product is digested and cloned between the Xbal and Xhol sites of the pBBRlMCS5. The resulting plasmid is verified by DNA sequencing and called: pBBRlMCS5-Ptrc01-bkdA12B+lpdVpp-TT07.

RBSbkdAl F (SEQ ID N°07)

GCCGCTCTAGAACTAGTgagctgttgacaattaatcatccggctcgtataatgtgtggaa gtcgacGTTA A Ccaaatacccgagcgagcg

with

- sequence (upper case) for Xbal and Spel restriction sites and extrabases,

- sequence (italic lower case) for the trc promoter sequence (Amann et ah, 1983 and Amann et a/., 1988),

- sequence (italic upper case) for the Hpal restriction site,

- sequence (underlined lower case) homologous to the region upstream of the bkdAX gene.

lpdV-TT07 Xhol R (SEQ ID N°08)

taccgggcccctcgagGC AG AAAGGC C C AC C C G AAGGTG AGC C AGTCAGATATG CAGGGCGTGGCCC

with

- sequence (lower case) for Apal and Xhol restriction sites and extrabases,

- sequence (bold upper case) for T7Te transcriptional terminator sequence from T7 phage (Harrington et al, 2011),

- sequence (underlined upper case) homologous to the end of IpdV gene.

3.3 - Construction of plasmid pUC19-Plartq-lacI-TT02-Ptrc01/OP01/RBS28- leuA*(G462D)BCD-TT07-Ptrc30/RBS01-adhE2ca-TT02

3.3.1 - Construction of plasmid pSCB-RBS28-leuABCD-TT07-Ptrc30

Plasmid pSCB-RBS28-leuABCD-TT07-Ptrc30 is derived from pSCB (Agilent) and the leuA-leuB-leuC-leuD operon from Escherichia coli coding for 2-isopropylmalate synthase, 3-isopropylmalate dehydrogenase and two 3-isopropylmalate dehydratase respectively.

The leuA-leuB-leuC-leuD operon is amplified by PCR with primers RBS28-leuA F (SEQ ID N°09) and Ptrc30-TT07-leuD R (SEQ ID N°10) using E. coli MG1655 genomic DNA. The PCR product is cloned in the pSCB (Agilent). The resulting plasmid is verified by DNA sequencing and called pSCB-RBS28-leuABCD-TT07-Ptrc30.

RBS28-leuA F (SEQ ID N°09) TAACAATTTACGTAGCTCAGCCGGCACTAGTGAATTCattaaagaggagaaaGGT ACCatgagccagcaagtcattattttcg

with

- sequence (upper case) for SnaBl, Blpl, Spel and EcoRI restriction sites and extrabases,

- sequence (bold lower case) corresponding to RBS sequence of the pZE12-luc (Lutz et al., 1997),

- sequence (bold upper case) for Kpnl restriction site,

- sequence (underlined lower case) homologous to the beginning of leuA gene (83529- 83505, reference sequence on the website http://ecogene.org/)

Ptrc30-TT07-leuD R (SEQ ID N°10)

tccttatacgtaTTC C AC AC AGT AT AC G AGC C GG ATG ATT AATC GTC AAC AGC T

CgggcccGCAGAAAGGCCCACCCGAAGGTGAGCCAGgtcgac7TA4 TTCA TAAA CGCA GGTTGTTTTGC

with

- sequence (lower case) for SnaBl restriction site and extrabases,

- sequence (bold upper case) corresponding to modified trc promoter sequence (Amann et al, 1983 and Amann et al. , 1988),

- sequence (bold lower case) for Apal restriction site,

- sequence (upper case) for T7Te transcriptional terminator sequence from T7 phage

(Harrington et al., 2011),

- sequence (underlined lower case) for Sail restriction site,

- sequence (italic upper case) homologous to the end of leuD gene (78848-78874, reference sequence on the website http://ecogene.org/).

3.3.2 - Construction ofplasmidpSCB-RBS28-leuA*(G462D)BCD-TT07-Ptrc30

Plasmid v$CB-RBS28-leuA *(G462D)BCD-TTW-Vtrc30 i s obtaine d from an oligonucleotide-directed mutagenesis on the pSCB-RBS28-leuABCD-TT07-Ptrc30 with primers leuA*(G462D) F (SEQ ID N°l l) and leuA*(G462D) R (SEQ ID N° 12) using pSCB-RBS28-leuABCD-TT07-Ptrc30 as template. The PCR product is digested with Dpnl and transformed in competent cell. The resulting plasmid is verified by DNA sequencing and called pSCB-RBS28-leuA *(G462D)BCD-TT01-Vtrc30.

The mutant leuA described above confer leucine resistance in E. coli

leuA*(G462D) F (SEQ ID N°l 1)

ggccacggtaaagatgcgcttg Atcaggtggatatcgtcgctaactac

with

- base modification (upper case) to introduce the amino acid substitution,

- base modification (bold lower case) to introduce a Bell restriction site. leuA*(G462D) R (SEQ ID N°12)

GTAGTTAGCGACGATATCCACCTGAtCAAGCGCATCTTTACCGTGGCC with

- base modification (lower case) to introduce the amino acid substitution,

- base modification (bold upper case) to introduce a Bell restriction site.

3.3.3 - Construction of plasmid pUC19-Plartq-lacI-TT02-Ptrc01/OP01/RBS01- adhE2ca-TT02

Plasmid p\JCl9-PlacIq-lacI-TT02-Ptrc01/OP01/RBS01-adhE2ca-TT02 is derived from p\JC19-Ptrc01/OP01/RBS01-adhE2ca-TT02 described in patent application US 13/169,703 and the Placlq-laci from pTRC99A (Amersham).

In this plasmid, expression of the lacl gene is driven by its natural promoter and a transcriptional terminator is added downstream of the gene. The Placlq-laci is amplified by PCR with primers Placlq F (SEQ ID N° 13) and lacl R (SEQ ID N° 14) using pTRC99A (Amersham). The PCR product is digested and cloned between the BamRl and Sacl sites of the p\JC19-Ptrc01/OP01/RBS01-adhE2ca-TT02 described in patent application US 13/169,703. The resulting plasmid is verified by DNA sequencing and called: pUC19- PlacIq-lacI-TT02-Ptrc01/OP01/RBS01-adhE2ca-TT02.

Placlq F (SEQ ID N°13)

tcgggcccggatcccatttacgttgacaccatcgaatgg

with

- sequence (lower case) for Apal and BamRl restriction sites and extrabases,

- sequence (underlined bold lower case) for the laclq promoter sequence

lacl R (SEQ ID N°14)

ACTT AAGG AGCTC AAC AG AT AAAAC G AAAGGC C C AGTC TTTC G AC TG AG

CCTTTCGTTTTATTTGATGTACGrC4 CTGCCCGCTTTCCA GTCGGG

with

- sequence (upper case) for Sacl restriction site and extrabases,

- sequence (underlined bold upper case) for Ti transcriptional terminator sequence from the Escherichia coli rrnB gene (Orosz et αί , 1991 ),

- sequence (italic upper case) homologous to the end of the lacl gene.

3.3.4 - Construction of plasmid pUC19-PlacIq-lacI-TT02-Ptrc01/OP01/RBS28- leuA*(G462D)BCD-TT07-Ptrc30/RBS01-adhE2ca-TT02

Plasmid pUC 19-?lacIq-lacI-TT02-?trc01/OP01/RBS28-leuA *(G462D)-11Q)1-

Ptrc30/RBS01-adhE2ca-TT02 is derived from pSCB-RBS28-leuA *(G462D)BCD-11Q)1- Ptrc30 and p\JCl9-PlacIq-lacI-TT02-Ptrc01/OP01/RBS01-adhE2ca-TT02 described above. In this plasmid, expression of the leucine operon is driven by an IPTG-inductible Ptrc promoter and expression of the adhE2ca gene is driven by a constitutive Ptrc promoter. A transcriptional terminator is added downstream the leucine operon. The pSCB-RBS28- leuA *(G462D)BCD-TT07-Vtrc30 is digested and cloned in the SnaBI site of the pUC19- PlacIq-lacI-TT02-Ptrc01/OP01/RBS01-adhE2ca-TT02. The resulting plasmid is verified by DNA sequencing and called: p\JC19-VlacIq-lacI-TT02-Vtrc01/OP01/RBS28- leuA *(G462D)BCD-TT07-Vtrc30/RBS01-adhE2ca-TTQ2.

3.4 - Construction of the strain 2: MG1655 (pCL1920-Ptrc01/RBS01*2- UvBN*(GMV20-22DDF)CD-TT07-Ptrc01/RBS01 *2-acdHsaOlec-TT02) (pBBRlMCS5- Ptrc01-bkdA12B+lpdVpp-TT07) (pUC19-Pladq-lacI-TT02-Ptrc01/OP01/RBS28- leuA*(G462D)BCD-TT07-Ptrc30/RBS01-adhE2ca-TT02)

Construction of a strain with increased prenol pathway flux express the z ' /vBN*(GMV20-22DDF)CD operon to produce 3-methyl-2-oxobutanoic acid, the /ewA*(G462D)BCD operon to produce 4-methyl-2-oxopentanoate, the 3/a A12B+lpdV operon from Pseudomonas putida to produce 3-methylbutanoyl-CoA, the optimized acdR gene from Streptomyces avermitilis to produce 3-methylcrotonyl-CoA and the adhE2ca gene from Clostridium acetobutylicum to produce prenol.

The pCL1920-Ptrc01/RBS01 *2-ilvBN*(GMV20-22DDF)CD-TT07-Vtrc01/RBS01 *2- acdHsaOlec-TT02, pBBRlMCS5-Vtrc01-bkdA12B+lpdVpp-TT07 and pUC19-P/ac/ - lacI-TT02-?trc01/OP01/RBS28-leuA *(G462D)BCD-TT07-Vtrc30/RBS01-adhE2ca-TT02 plasmids are introduced by electroporation into the MG1655 strain. The presence of the three plasmids is verified and the resulting strain MG1655 (^ L\92Q-? trcO 1/RBSO 1 *2- UvBN*(GMV20-22DDF)CD-TT07-Vtrc01/RBS01 *2-acdHsaOlec-TT02) (pBBRlMCS5- Vtrc01-bkdA12B+lpdVpp-TT07) fpUC 19-PlacIq-lacI-TT02A>trcO 1/OPO 1/RBS28- leuA *(G462D)BCD-TT07-Vtrc30/RBS01-adhE2ca-TT02) is called strain 2 (Table 1).

EXAMPLE 4

Construction of strain 4: MG1655 Ptrc30-atoB ApdhR lpd*(A55V) (pUC19- PtrcO 1/OPO 1/RBSO 1 -adhE2ca-RBS01 *2-mvaSefO 1 ec-TT02) (pCL 1920-PtrcO 1/RBSO 1 *2- MXANmxO 1 ec(3757-4264-4265)-TT07)

4.1 - Construction of the strain 3: MG1655 Ptrc30-atoB ApdhR lpd*(A55V) 4.1.1 - Construction of strain MG1655 Ptrc30-atoB::Cm

To increase the expression level of acetyl-CoA acetyltransferase atoB, a constitutive artificial trc promoter is added upstream atoB gene into the strain MG1655 pKD46 according to Protocol 1, except that primers PtrcO 1/OPO 1-atoB F (SEQ ID N°15) and Ptrc30-atoB R (SEQ ID N°16) are used to amplify the chloramphenicol resistance cassette from pKD3 plasmid.

Chloramphenicol resistant recombinants are selected. The presence of the artificial promoter Vtrc30 and the insertion of the resistance cassette are verified by PCR with primers atoB F (SEQ ID N°17) and atoB R (SEQ ID N°18) (Table 2) and by DNA sequencing. The resulting strain is called MG1655 Ftrc30-atoB::Cm.

PtrcOl/OPOl-atoB F (SEQ ID N°15)

GCATCACTGCCCTGCTCTTCTCCGGTGTCATTTTCGTCATTGGTTTAACGCT GTTCTGACGGCACCCCTACAAACAGAAGGAATATAAACTGGCTCACCTTCGGG TGGGCCTTTCTGCTGTAGGCTGGAGCTGCTTC

with

- sequence (upper case) homologous to sequence upstream of the atoB gene (2324042- 2324130 reference sequence on the website http://ecogene.org

- sequence (underlined upper case) for T7Te transcriptional terminator sequence from phage T7 (Harrington et al , 2001)

- sequence (italic upper case) corresponding to the primer site 2 of plasmid pKD3 (Datsenko and Wanner, 2000)

Ptrc30-atoB R (SEQ ID N°16)

C C G AT AGC AGT AC GT AC C GC AC TG AC G ATG AC AC AATTTTTC AT TTA TA

^CCrCCr7¾TTCCACACAGTATACGAGCCGGATGATTAATCGTCAACAGCTCCA TGGTCcatatgaatatcctccttag

with

- sequence (bold upper case) homologous to sequence of the atoB gene (2324131- 2324174, reference sequence on the website http://ecogene.org ,

- sequence (italic upper case) corresponding to RBS consensus sequence with a Psil restriction site,

- sequence (underlined upper case) for the trc promoter sequence (Amann et al, 1983 and Amann et al, 1988),

- sequence (lower case) corresponding to the primer site 1 of plasmid pKD3 (Datsenko and Wanner, 2000).

4.1.2 - Construction of strain MG1655 ApdhRr.Km

To delete the pdhR gene, which encodes a pyruvate dehydrogenase operon repressor, into the strain MG1655 pKD46, Protocol 1 is used except that primers DpdhR F (SEQ ID N°19) and DpdhR R (SEQ ID N°20) are used to amplify the kanamycin resistance cassette from pKD4 plasmid. DpdhR R (SEQ ID N°20)

gaccaattgacttcggcaagtggcttaagacaggaactcatgattecggggatecgt egacctgcagttegaagttectottctcto gaaagtataggaacttcttcaagatcccctcacgctgccgc

with

- sequence (lower case) homologous to sequence of pdhR gene (122053-122094, reference sequence on the website http://ecogene.org/),

- sequence (italic lower case) corresponding to the upstream region of pKD13-Km gene (Datsenko and Wanner, 2000),

- sequence (bold lower case) corresponding to the FRT site and downstream region of pKD4 plasmid (Datsenko and Wanner, 2000),

DpdhR F (SEQ ID N° 19)

CATCTTCTGGATAATTTTTACCAGAAAAATCACTAATTCTTTCGTTGCTCCAGr GTA GGCTGGA GCrGCJTCGAAGTTCCTATACTTTCTAGAGAATAGGAACTTC AG AGC GC TTTTG A AGC TGGGG

- sequence (upper case) homologous to sequence of pdhR gene (122839-122888, reference sequence on the website http://ecogene.org/),

- sequence (italic upper case) corresponding to the downstream region of pKD13-Km gene (Datsenko and Wanner, 2000),

- sequence (bold upper case) corresponding to the FRT site and upstream region of pKD4 plasmid (Datsenko and Wanner, 2000).

Kanamycin resistant recombinants are selected. The insertion of the resistance cassette is then verified by PCR with primers pdhR F (SEQ ID N°21) and pdhR R (SEQ ID N°22) (Table 2) and by DNA sequencing. The verified and selected strain is called MG1655 ApdhR::Km.

4.1.3 - Construction of strain MG1655 Ptrc30-atoB ApdhRr.Km

The ApdhR::Km chromosomal modification is transduced into the strain MG 1655 Vtrc30-atoB::Cm with a PI phage lysate from strain MG1655 ApdhRr.Km described above, according to Protocol 2.

Kanamycin resistant transductants are selected and the presence of ApdhRr.Km chromosomal modification was verified by PCR with primers pdhR F (SEQ ID N°21) and pdhR R (SEQ ID N°22) (Table 2). The resulting strain is called MG1655 Vtrc30- atoBrCm ApdhRr.Km.

The kanamycin and chloramphenicol resistances of the above strain are removed according to Protocol 1. The loss of the kanamycin and chloramphenicol resistant cassettes is verified by PCR by using the primers pdhR F (SEQ ID N°21) and pdhR R (SEQ ID N°22) and atoB F (SEQ ID N°17) and atoB R (SEQ ID N°18) respectively (Table 2). The resulting strain is called MG1655 Ftrc30-atoB ApdhR. 4.1.4 - Construction of strain MG1655 lpd*(A55V)::Km

To transfer the lpd*(A55V) mutation (described in WO2005073364 patent application), into the strain MG1655 Vtrc30-atoB ApdhR, a kanamycin resistant cassette is inserted downstream of the lpd*(A55V) gene according to Protocol 1 except that primers lpd*(A55V)_Cm F (SEQ ID N°23) and lpd*(A55V)_Cm R (SEQ ID N°24) are used to amplify the kanamycin resistance cassette from pKD4 plasmid.

Lpd*(A55V)_Cm F (SEQ ID N°23)

cccgaaagcgaagaagaagtaatttttcgtttgccggaacatccggcaattaaaaaagcg gctaaccacgccgctttttttacg tctgcaagtgtaggctggagctgcttcg

with :

- sequence (lower case) homologous to sequence downstream of the lpd*(A55V) gene (129315-129405 reference sequence on the website http://ecogene.org/),

- sequence (bold lower case) corresponding to the primer site 2 of plasmid pKD4 (Datsenko and Wanner, 2000),

Lpd*(A55V)_Cm R (SEQ ID N°24)

CCATACTGTCAGGCTGAATAACGAGCAACGGTCAGCAGTATGCGAACGTCT CTCTGAACGTGGAGCAAGAAGACTGGAAAGGTAAACATATGAATATCCTCCT TAG

with :

- sequence (upper case) homologous to sequence downstream of the lpd*(A55V) gene

(129491-129406 reference sequence on the website http://ecogene.org/),

- sequence (bold upper case) corresponding to the primer site 1 of plasmid pKD4 (Datsenko and Wanner, 2000).

Kanamycin resistant recombinants are selected. The insertion of the resistance cassette is then verified by PCR with primers Lpd*(A55V) ver F (SEQ ID N°25) and Lpd*(A55V) ver R (SEQ ID N°26) and by DNA sequencing. The verified and selected strain is called MG1655 lpd*(A55V)::Km.

4.1.5 - Construction of strain MG1655 Ptrc30 ApdhR lpd*(A55V)::Km

The lpd*(A55V) chromosomal modification is transduced into the strain MG1655

Vtrc30-atoB ApdhR with a PI phage lysate from strain MG1655 lpd*(A55V): :Km described above, according to Protocol 2.

Kanamycin resistant transductants are selected and the presence of lpd*(A55V)::Km chromosomal modification was verified by PCR with primers Lpd*(A55V) ver F (SEQ ID N°25) and Lpd*(A55V) ver R (SEQ ID N°26) (Table 2). The resulting strain is called MG1655 Ptrc30-atoB ApdhR lpd*(A55V)::Km.

The kanamycin resistance of the above strain is removed according to Protocol 1. The loss of the kanamycin resistant cassette is verified by PCR using the primers Lpd*(A55V) ver F (SEQ ID N°25) and Lpd*(A55V) ver R (SEQ ID N°26) (Table 2). The resulting strain MG1655 Ftrc30-atoB ApdhR lpd*(A55V) is called strain 3 (Table 1).

4.2 - Construction of pUC19-Ptrc01/OP01/RBS01-adhE2ca-RBS01*2-mvaSefOlec- TT02 plasm id

The p\JCl9-Ptrc0l/OP01/RBS01-adhE2ca-RBS01 *2-mvaSefOlec-TT02 plasmid is derived from pUC19 plasmid (Norrander et ah, 1983), adhEl gene from Clostridium acetobutylicum coding for the bifunctional aldehyde/alcohol dehydrogenase described in patent application US 13/169,703 and the synthetic gene mvaS from Enterococcus faecalis coding for an hydroxymethylglutaryl-CoA synthase optimized for Escherichia coli described below.

In this plasmid, expressions of both genes are driven by a constitutive trc promoter with an operator site, and a transcriptional terminator is added downstream the entire construct.

Synthetic gene mvaSefOlec

A synthetic gene of the Enterococcus faecalis mvaS gene coding for an 3-hydroxy-3- methylglutaryl-CoA synthase is synthesized by Invitrogen. The codon usage and GC content of the gene is adapted to Escherichia coli according to the supplier's matrix. The construct is cloned into supplier's pM vectors and verified by sequencing.

mvaS gene sequence from Enterococcus faecalis (AF290092) optimized for

Escherichia coli: mvaSefOlec contains the following sequence (SEQ ID N°36):

ATGACCATTGGCATCGACAAAATCAGCTTTTTTGTTCCGCCTTACTATATCG ACATGACCGCACTGGCCGAAGCACGTAATGTTGATCCGGGTAAATTTCATATT GGTATTGGTCAGGATCAGATGGCCGTTAATCCGATTAGCCAGGATATTGTTAC CTTTGCAGCAAATGCAGCAGAAGCAATTCTGACCAAAGAAGATAAAGAAGCC ATCGATATGGTTATTGTTGGCACCGAAAGCAGCATTGATGAAAGCAAAGCAGC CGCAGTTGTTCTGCATCGTCTGATGGGTATTCAGCCGTTTGCACGTAGCTTTGA AATTAAAGAAGCATGTTACGGCGCAACCGCAGGTCTGCAGCTGGCAAAAAATC ATGTTGCACTGCATCCGGATAAAAAAGTTCTGGTTGTTGCAGCAGATATCGCC AAATATGGTCTGAATAGCGGTGGTGAACCGACCCAGGGTGCCGGTGCAGTTGC AATGCTGGTTGCAAGCGAACCGCGTATTCTGGCACTGAAAGAGGATAATGTTA TGCTGACGCAGGATATCTATGATTTTTGGCGTCCGACCGGTCATCCGTATCCGA TGGTTGATGGTCCGCTGAGCAATGAAACCTATATTCAGAGCTTTGCACAGGTG TGGGATGAACATAAAAAACGTACCGGTCTGGATTTCGCAGATTATGATGCACT GGCCTTTCATATTCCGTACACCAAAATGGGTAAAAAAGCACTGCTGGCCAAAA TTAGCGATCAGACCGAAGCCGAACAAGAACGTATCCTGGCACGTTATGAAGAA AGCATTATCTATAGCCGTCGTGTGGGTAATCTGTACACCGGTAGCCTGTATCTG GGTCTGATTAGCCTGCTGGAAAATGCAACCACCCTGACCGCTGGTAATCAGAT TGGTCTGTTTAGCTATGGTAGCGGTGCCGTTGCAGAATTTTTCACAGGTGAACT GGTTGCAGGTTATCAGAATCATCTGCAGAAAGAAACCCATCTGGCCCTGCTGG ATAATCGTACCGAACTGAGCATTGCAGAATATGAAGCAATGTTTGCAGAAACC CTGGATACCGATATTGATCAGACCCTGGAAGATGAACTGAAATATAGCATTAG CGCCATTAATAACACCGTGCGTAGCTATCGTAACTAA

The mvaSefOlec synthetic gene is amplified by PCR with primers RBS01 *2- mvaSefOlec-Xhal F (SEQ ID N°27) and mvaSefOlec-Nhel R (SEQ ID N°28) using the pM vector harbouring the mvaSefOlec synthetic gene providing by the supplier. The PCR product is digested and cloned between the Xbal and Nhel sites of the pUC19- Ptrc01/OP01/RBS01-adhE2ca-TT02 described in patent application US 13/169,703. The resulting plasmid is verified by DNA sequencing and called p\JC19-Ptrc01/OP01/RBS01- adhE2ca-RBS01 *2-mvaSefOlec-TT02.

RBS01 *2-mvaSefOlec-XhaI F (SEQ ID N°27)

gctctagaTAAGGAGGTTATAAatgaccattggcatcgac

with

- sequence (lower case) for Xbal restriction site and extrabases,

- sequence (upper case) for the RBS consensus sequence with Psil restriction site,

- sequence (underlined lower case) homologous to the beginning of mvaSefOlec synthetic gene sequence,

mvaSefO 1 ec-Nhel R(SEQ ID N°28)

CT AGCT AGCTT AGTT AC G AT AGCT AC GC AC

- sequence (underlined upper case) for Nhel restriction site and extrabases,

- sequence (upper case) homologous to the end of the mvaSefOlec synthetic gene sequence.

4.3 - Construction of pCL1920-Ptrc01/RBS01*2-MXANmxOlec(3757-4264-4265)- TT07 plasmid

The pCL1920-Vtrc01/RBS01 *2-MXANmxOlec(3457-4264-4265)-TT01 plasmid is derived from plasmid pCL1920 (Lerner and Inouye, 1990), MXANJ757, MXAN 264 and MXAN_4265 synthetic genes from Myxococcus Xanthus, strain DK 1622, coding for a 3- methylglutaconyl-CoA hydratase, a 3-methylglutaconyl-CoA decarboxylase subunit A and B respectively, optimized for Escherichia coli described below.

In this plasmid, these genes are organized in operon and their expressions are driven by a constitutive trc promoter with an operator site, and a transcriptional terminator is added downstream the entire construct. 4.3.1 - Construction ofpCL1920-Ptrc01/RBS01*2-MXAN_3757mxOlec plasmid

MXAN_3757mx01ec synthetic gene

A synthetic gene of the Myxococcus xanthus MXAN_3757 gene coding for a 3- methylglutaconyl-CoA hydratase is synthesized by Invitrogen. The codon usage and GC content of the gene is adapted to Escherichia coli according to the supplier's matrix. The construct is cloned into supplier's pM vectors and verified by sequencing.

MXAN_3757 gene sequence from Myxococcus xanthus (NC_008095) optimized for Escherichia coli: MXAN_3757mx01ec contains the following sequence (SEQ ID N°37):

ATGCCTGAGTTTAAAGTTGATGCACGTGGTCCGATTGAAATTTGGACCATT GATGGTGAAAGCCGTCGTAATGCAATTAGCCGTGCAATGCTGAAAGAACTGGG TGAACTGGTTACCCGTGTTAGCAGCAGCCGTGATGTTCGTGCAGTTGTTATTAC CGGTGCCGGTGATAAAGCATTTTGTGCCGGTGCCGATCTGAAAGAACGTGCAA CAATGGCCGAAGATGAAGTTCGTGCATTTCTGGATGGTCTGCGTCGTACCTTTC GTGCAATTGAAAAAAGCGATTGCGTTTTTATTGCCGCAATTAATGGTGCAGCA CTGGGTGGTGGCACCGAACTGGCACTGGC ATGTGATCTGCGTGTTGCAGCACC GGCAGCGGAACTGGGTCTGACCGAAGTTAAACTGGGCATTATTCCGGGTGGTG GTGGTACACAGCGTCTGGCACGTCTGGTTGGTCCGGGTCGTGCAAAAGATCTG ATTCTGACCGCACGTCGTATTAATGCAGCAGAAGCATTTAGCGTTGGTCTGGC AAATCGCCTGGCACCGGAAGGTCATCTGCTGGCAGTTGCCTATGGTCTGGCCG AAAGCGTTGTTGAAAATGCACCGATTGCAGTTGCAACCGCCAAACATGCAATT GATGAAGGCACCGGTCTGGAACTGGATGATGCACTGGCCCTGGAACTGCGTAA ATATGAAGAAATTCTGAAAACCGAAGATCGCCTGGAAGGCCTGCGTGCATTTG CAGAAAAACGTGCACCGGTGTATAAAGGTCGTTAA

The MXAN _3757mxO 1 ec synthetic gene is amplified by PCR with primers Ptrc01/RBS01 *2-MXAN_3757mxOlec-SacI F (SEQ ID N°29) and MXAN_3757 mxOlec-Kpnl R (SEQ ID N°30) using the pM vector harbouring the MXAN_3757mx01ec synthetic gene providing by the supplier. The PCR product is digested and cloned between the Sacl and Kpnl sites of the pCL1920. The resulting plasmid is verified by DNA sequencing and called pCL1920-Ptrc01/RBS01 *2-MXAN_3757mxOlec.

Ptrc01/RBS01 *2-MXAN_3757mxOlec-SacI F (SEQ ID N°29)

with

CcgagctcgagctgttgacaattaatcatccggctcgtataatgtgtggaaGTCGACGTT AACACGCGTtaa ggaggttataa^ TGCCTGA GTTTAAA GTTG

- sequence (lower case) for Sacl restriction site and extrabases,

- sequence (underlined lower case) for the trc promoter sequence (Amman et ah,

1983),

- sequence (upper case) for Sail, Hpal and Mlul restriction sites, - sequence (bold lower case) corresponding to RBS consensus sequence with a Psil restriction site,

- sequence (italic upper case) homologous to the beginning of MXAN_3757mx01ec synthetic gene sequence,

MXAN_3757mx01ec -Kpnl R(SEQ ID N°30)

with

CGGGGTACCTTAACGACCTTTATACACCG

- sequence (underlined upper case) for Kpnl restriction site and extrabases,

- sequence (upper case) homologous to the end of the MXAN_3757mx01ec synthetic gene sequence.

4.3.2 - Construction of pCL1920-Ptrc01/RBS01*2-MXANmxOlec(3757-4264) plasmid

pCL1920-Ptrc01/RBS01 *2-MXANrnxOlec(3757-4264) plasmid is derived from pCL1920-Ptrc01/RBS01 *2-M X A N _ 3 7 5 7 m x O 1 e c d e s c r i b e d a b o v e a n d MXAN_4264mx01ec synthetic gene described below.

MXAN_4264mxQl ec synthetic gene

A synthetic gene of the Myxococcus xanthus MXAN_4264 gene coding for a 3- methylglutaconyl-CoA decarboxylase subunit A is synthesized by Invitrogen. The codon usage and GC content of the gene is adapted to Escherichia coli according to the supplier's matrix. The construct is cloned into supplier's pM vectors and verified by sequencing.

MXAN_4264 gene sequence from Myxococcus xanthus (NC_008095) optimized for Escherichia coli: MXAN_4264mx01ec contains the following sequence (SEQ ID N° 38):

ATGAAAACCGCACGTTGGTGTAGCCTGGAAGAAGCAGTTGCAAGCATTCCG GATGGTGCAAGCCTGGCAACCGGTGGTTTTATGCTGGGTCGTGCACCGATGGC ACTGGTTATGGAACTGATTGCACAGGGTAAACGTGATCTGGGTCTGATTAGCC TGCCGAATCCGCTGCCAGCAGAATTTCTGGTTGCCGGTGGTTGTCTGGCACGTC TGGAAATTGCATTTGGTGCACTGAGCCTGCAAGGTCGTGTTCGTCCGATGCCGT GTCTGAAACGTGCAATGGAACAGGGCACCCTGGCATGGCGTGAACATGATGGT TATCGTGTTGTTCAGCGTCTGCGTGCAGCAAGCATGGGTCTGCCGTTTATTCCG GCACCGGATGCAGATGTTAGTGGCCTGGCACGTACCGAACCGCCTCCGACCGT TGAAGATCCGTTTACAGGTCTGCGTGTTGCAGTTGAACCGGCATTTTATCCGGA TGTTGCCCTGCTGCATGCACGTGCCGCAGATGAACGTGGTAATCTGTATATGG AAGATCCGACCACCGATCTGCTGGTTGCGGGTGCAGCAAAACGTGTTATTGCA ACCGTGGAAGAACGTGTTGCAAAACTGCCTCGTGCAACCCTGCCTGGTTTTCA GGTTGATCGTATTGTTCTGGCACCGGGTGGTGCCCTGCCGACCGGTTGTGCAGG TCTGTATCCGCATGATGATGAAATGCTGGCACGTTATCTGAGCCTGGCAGAAA CCGGTCGTGAAGCCGAGTTTCTGGAAACCCTGCTGACCCGTCGTGCAGCATAA The MXAN _4264mxO 1 ec synthetic gene is amplified by PCR with primers RBS01 *2- MXAN_4264mx01ec-SmaI F (SEQ ID N°31) and MXAN_4264mx01ec-BamHI R(SEQ ID N°32) using the pM vector harbouring the MXAN _4264mxO 1 ec synthetic gene providing by the supplier. The PCR product is digested and cloned between the Smal and BamHl sites of the pC !920-Ptrc01/RBS01 *2-MXAN_3757mx01ec. The resulting plasmid is verified by DNA sequencing and called pCL1920-Ptrc01/RBS01 *2- MXANmx01ec(3757-4264) .

RBS01 *2-MXAN_4264mxOlec-SmaI F (SEQ ID N°31)

with

cggggggtacccccgggTAAGGAGGTTATAAATGAAAACCGC ACGTTGGTG

- sequence (lower case) for Kpnl and Smal restriction sites and extrabases,

- sequence (bold upper case) for RBS consensus sequence with a Psil restriction site,

- sequence (upper case) homologous to the beginning of MXAN _4264mxOl ec synthetic gene sequence,

MXAN_4264mxO 1 ec-Bamffl R(SEQ ID N°32)

with

GCTCTAGAGGATCCTTATGCTGCACGACGGGTCAG

- sequence (underlined upper case) for BamHl and Xbal restriction sites and extrabases,

- sequence (upper case) homologous to the end of the MXAN _4264mxOlec synthetic gene sequence.

4.3.3 - Construction of pCL1920-Ptrc01/RBS01*2-MXANmxOlec(3757-4264-4265) plasmid

pCL1920-Ptrc01/RBS01 *2-MXANmxOlec(3757-4264-4265) plasmid is derived from pCL1920-Ptrc01/RBS01 *2-MXANmx01ec(3757-4264) d e s c r i b e d a b o v e a n d MXAN _4265mxOlec synthetic gene described below and a transcriptional terminator.

Synthetic gene MXAN _4265mxOlec

A synthetic gene of the Myxococcus xanthus MXAN _4265 gene coding for a 3- methylglutaconyl-CoA decarboxylase subunit B is synthesized by Invitrogen. The codon usage and GC content of the gene is adapted to Escherichia coli according to the supplier's matrix. The construct is cloned into supplier's pM vectors and verified by sequencing.

MXAN _4265 gene sequence from Myxococcus xanthus (NC_008095) optimized for Escherichia coli: MXAN _4265mxOlec contains the following sequence (SEQ ID N°39):

ATGAGCGCAACCCTGGATATCACACCGGCAGAAACCGTTGTTAGCCTGCTG GCACGTCAGATTGATGATGGTGGTGTTGTTGCAACCGGTGTTGCAAGTCCGCT GGCAATTCTGGCCATTGCAGTTGCACGTGCCACCCATGCACCGGATCTGACCT ATCTGGCATGTGTTGGTAGCCTGGACCCGGAAATTCCGACCCTGCTGCCGAGC AGCGAAGATCTGGGTTATCTGGATGGTCGTAGCGCAGAAATTACCATTCCGGA CCTGTTTGATCATGCACGTCGTGGTCGTGTTGATACCGTTTTTTTTGGTGCAGCC GAAGTTGATGCCGAAGGTCGTACCAATATGACCGCAAGCGGTAGTCTGGATAA ACCGCGTACCAAATTTCCTGGTGTTGCCGGTGCAGCAACCCTGCGTCAGTGGG TTCGTCGTCCGGTTCTGCTGGTTCCGCGTCAGAGCCGTCGTAATCTGGTTCCGG AAGTTCAGGTTGCCACCACCCGTGATCCGCGTCGTCCTGTTACCCTGATTAGCG ATCTGGGTGTTTTTGAACTGGGTGCAAGCGGTGCACGTCTGCTGGCTCGCCATC CGTGGGCAAGCGAAGAACATATTGCAGAACGTACCGGTTTTGCATTTCAGGTT AGCGAAGCACTGAGCGTTACCAGCCTGCCGGATGCACGTACCGTTGCAGCAAT TCGTGCAATTGATCCGCATGGTTATCGTGATGCACTGGTTGGTGCATAA

The MXAN_4265mx01ec synthetic gene is amplified by PCR with primers RBS01 *2-

MXAN_4265mx01ec-XbaI F (SEQ ID N°33) and MXAN_4265mx01ec-PstI R (SEQ ID N°34) using the pM vector harbouring the MXAN_4265mx01ec synthetic gene providing by the supplier. The PCR product is digested and cloned between the Xbal and Pstl sites of the pCL1920-Ptrc01/RBS01 *2-MXANmxOlec(3757-4264). The resulting plasmid is verified by DNA sequencing and called pCL1920-Ptrc01/RBS01 *2-MXANmxOlec(3757- 4264-4265).

RBS01 *2-MXAN_4265mxOlec-XbaI F (SEQ ID N°33)

with

gctctagaTAAGGAGGTTATAAATGAGCGCAACCCTGGATATC

- sequence (lower case) for Xbal restriction site and extrabases,

- sequence (bold upper case) for RBS consensus sequence with a Psil restriction site,

- sequence (upper case) homologous to the beginning ofMXAN_4265mx01ec synthetic gene sequence,

MXAN_4265mx01ec-PstI R (SEQ ID N°34)

with

GCCAAGCTTCTGCAGGCAGAAAGGCCCACCCGAAGGTGAGCCAGgtatacT TATGCACCAACCAGTGCATC

- sequence (underlined upper case) for Hindlll and Pstl restriction sites and extrabases,

- sequence (bold upper case) for T7Te transcriptional terminator sequence from T7 phage (Harrington et αί, 2011),

- sequence (lower case) for BstZl 71 restriction site,

- sequence (upper case) homologous to the end of the MXAN_4265mx01ec synthetic gene sequence. 4.4 - Construction of strain 4: MG1655 Ptrc30-atoB ApdhR lpd*(A55V) (pUC19- Ptrc01/OP01/RBS01-adhE2ca-RBS01 *2-mvaSefOlec-TT02) (pCL1920- PtrcOl/RBSOl *2-MXANmx01ec(3757-4264-4265)-TT07)

Construction of a strain with increased prenol pathway flux expressing the ato gene to produce acetoacetyl-CoA, the optimized mvaS gene from Enterococcus faecalis to produce 3-hydroxy-3-methylglutaryl-CoA, the optimized MXAN(3757-4264-4265) operon from Myxococcus xanthus to produce 3-methylcrotonyl-CoA and the adhE2ca gene from Clostridium acetobutylicum to produce prenol.

The pUC 19-?trc01IOP01IRBS01-adhE2ca-RBS01 *2-mvaSef01ec-T T 0 2 a n d pCL1920-Ptrc01/RBS01 *2-MXANmxOlec(3757-4264-4265)-TT07 p l a s m i d s ar e introduced by electroporation into the strain 3 (Table 1). The presence of the two plasmids is verified and the resulting strain MG1655 Ptrc30-atoB ApdhR lpd*(A55V) (pUC19- PtrcO 1/OPO 1/RBSO 1 -adhE2ca-RBS01 *2-mvaSefO 1 ec-TT02) (pCL 1920-PtrcO 1/RBSO 1 *2- MXANmxOlec(3757-4264-4265)-TT07) is called strain 4 (Table 1).

EXAMPLE 5 - Culture of the above described prenol production strains on glucose.

Production strains 1, 2, 3 and 4 are evaluated in small Erlenmeyer flasks using modified M9 medium (Anderson, 1946, Proc. Natl. Acad. Sci. USA 32: 120-128) that is supplemented with 10 g.L "1 MOPS and 10 g.L "1 glucose and adjusted to pH 6.8.

A 5 mL preculture is grown at 37°C for 6.5 hours in a mixed medium (10 % LB medium (Sigma 25 %) with 2.5 g.L "1 glucose and 90 % minimal medium described above). It is used to inoculate a 50 mL culture to an OD 6 oo of 0.1 in minimal medium. When necessary, antibiotics are added at concentrations of 50 mg.L "1 for ampicillin and spectinomycin and 10 mg.L "1 for gentamycin. The temperature of the cultures is 37°C. When the culture reaches an OD 6 oo of 7 to 9, extracellular metabolites are analyzed using HPLC with refractometric detection (organic acids and glucose). Production of prenol is determined by GC/MS.

The strains 2 and 4 produce prenol with a concentration ranging between 0,001 and 100 mM whereas strains 1 and 3 do not produce it. PATENT REFERENCES

- WO 2009/006429

- WO 2009/076676

- WO 2010/031076

- US 2010/0216958

- WO 2010/031076

- WO 2008/052973

- WO 2008/052595

- WO 2008/040387

- WO 2007/144346

- WO 2007/141316

- WO 2007/077041

- WO 2007/017710

- WO 2006/082254

- WO 2006/082252

- WO 2005/111202

- WO 2005/073364

- WO 2005/047498

- WO 2004/076659

NON-PATENT REFERENCES

- Amann E, Brosius J, Ptashne M (1983), Gene. 25:167-178

- Amann E, Ochs B, Abel KJ (1988), Gene. 69:301-315

- Anderson EH (1946), Proc Natl Acad Sci USA. 32:120-128

- Bode HB, Ring MW, Schwar G, Altmeyer MO, Kegler C, Jose IR, Singer M, Miiller R (2009), Chembiochem. 10: 128-140

- Daschner K, Couee I, Binder S (2001), Plant Physiol. 126:601-612

- Datsenko KA, Wanner BL (2000), Proc Natl Acad Sci USA. 97:6640-6645

- Dhar A, Dhar K, Rosazza JP (2002), JInd Microbiol Biotechnol. 28:81-87

- Forster-Fromme K, Jendrossek D (2008), FEMS Microbiol Lett. 286:78-84

- Gogerty DS, Bobik TA (2010), Appl Environ Microbiol. 76:8004-8010

- Harrington KJ, Laughlin RB, Liang S (2001), Proc Natl Acad Sci USA. 98:5019-5024 - Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson

KM (1995), Gene. 166: 175-176

- Lerner CG, Inouye M (1990), Nucleic Acids Res. 18:4631

- Liebl W, Klamer R, Schleifer KH (1989), ApplMicrobiol Biotechnol. 32:205-210 - Lutz R, Bujard H (1997), Nucleic Acids Res. 25: 1203-1210

Miller JH (1992), A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

- Mohsen AW, Navarette B, Vockley J (2001), Mol Genet Metab. 73: 126-137

- Nagai K, Thogersen HC (1984), Nature. 309:810-812

- Norrander J, Kempe T, Messing J (1983), Gene. 26: 101-106

- Orosz A, Boros I, Venetianer P (1991), Eur J Biochem. 201:653-659

- Park JH, Kim TY, Lee KH, Lee SY (2011), Biotechnol Bioeng. 108:934-946

- Perham RN, Lowe PN (1988), Methods Enzymol. 166:330-342

- Prescott L et al. (1999), "Microbiology" 4th Edition, WCB McGraw-Hill

- Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ (2001), J Mol Microbiol Biotechnol. 3:573-583

- Sambrook J et al. (1989) (2001), "Molecular Cloning: A Laboratory Manual" 2nd & 3rd Editions, Cold Spring Harbor Laboratory Press

- Schaefer U, Boos W, Takors R, Weuster-Botz D (1999), Anal Biochem. 270:88-96

- Sinclair DA, Dawes IW, Dickinson JR (1993), Biochem Mol Biol Int. 31:911-922

- Skinner DD, Morgenstem MR, Fedechko RW, Denoya CD (1995), J Bacteriol.

177: 183-190

- Sykes PJ, Burns G, Menard J, Hatter K, Sokatch JR (1987), J Bacteriol. 169: 1619- 1625

- Ward DE, Ross RP, van der Weijden CC, Snoep JL, Claiborne A (1999), J Bacteriol.

181:5433-5442

- Zhang YX, Denoya CD, Skinner DD, Fedechko RW, McArthur HA, Morgenstem MR, Davies RA, Lobo S, Reynolds KA, Hutchinson CR (1999), Microbiology. 145:2323-

2334