Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NEW LANTIBIOTIC DERIVATIVES AND A PROCESS FOR THEIR PREPARATION
Document Type and Number:
WIPO Patent Application WO/2014/085637
Kind Code:
A1
Abstract:
The present invention concerns novel antibiotic compounds, which are lantibiotics, the processes for their preparation, their pharmaceutically acceptable salts, pharmaceutical compositions containing the lantibiotics, and their use as antibacterial agents. Compounds designated as lantibiotics, such as those of the present invention, are peptides belonging to the general class of antibiotic compounds, and are further generally characterized by the presence of the amino acids lanthionine and/or 3-methyllanthionine. The novel lantibiotic compounds are active against bacterial infections caused by Clostridium difficile, Staphylococcus spp., Streptococcus spp, Enterococcus spp., and other bacteria.

Inventors:
MAFFIOLI SONIA I (IT)
MONCIARDINI PAOLO (IT)
CATACCHIO BRUNO (CH)
BRUNATI MARIACRISTINA (IT)
MAZZETTI CARLO (IT)
Application Number:
PCT/US2013/072307
Publication Date:
June 05, 2014
Filing Date:
November 27, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SENTINELLA PHARMACEUTICALS INC (US)
International Classes:
A61K38/17; A61K38/00; A61K38/04; C07K5/00; C07K7/00; C07K14/47; C07K16/00; C07K17/00
Domestic Patent References:
WO2012135636A12012-10-04
WO2009010765A22009-01-22
WO2005014628A12005-02-17
WO2010058238A12010-05-27
Foreign References:
US7989416B22011-08-02
Other References:
FIELD, D ET AL.: "The Generation Of Nisin Variants With Enhanced Activity Against Specific Gram-Positive Pathogens.", MOLECULAR MICROBIOLOGY., vol. 69, no. 1, 1 July 2008 (2008-07-01), pages 218 - 230, XP002577248, DOI: 10.1111/J.1365-2958.2008.06279.X
DATABASE GENBANK [online] 29 December 2011 (2011-12-29), OU, H ET AL.: "GrpE Protein [Streptomyces cattleya NRRL 8057 = DSM 46488].", XP055264082, retrieved from NCBI Database accession no. AEW97476
MOTA-MEIRA, M ET AL.: "Purification And Structure Of Mutacin B- Ny 266: A New Lantibiotic Produced By Streptococcus Mutans.", FEBS LETTERS., vol. 410, no. 2-3, 30 June 1997 (1997-06-30), pages 275 - 279, XP001008895, DOI: 10.1016/S0014-5793(97)00425-0
COOPER, LE ET AL.: "Biosynthesis And Mode Of Action Of Lantibiotics.", MODE OF ACTION OF LANTIBIOTICS., vol. 5, 2010, pages 217 - 220, XP008179922
KNERR, PJ ET AL.: "Chemical Synthesis And Biological Activity Of Analogues Of The Lantibiotic Epilancin 15X.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 18, 23 April 2012 (2012-04-23), pages 7648 - 7651, XP055262065, DOI: 10.1021/JA302435Y
FIELD, D ET AL.: "Bioengineered Nisin A Derivatives With Enhanced Activity Against Both Gram Positive And Gram Negative Pathogens.", PLOS ONE ., vol. 7, no. 10, 1 October 2012 (2012-10-01), pages 1 - 12, XP055262068, DOI: 10.1371/JOURNAL.PONE.0046884
See also references of EP 2925342A4
T. W. GREENE: "Protective Groups in Organic Synthesis", 1981, J. WILEY
"Applied Animal Nutrition", 1969, W.H. FREEDMAN AND CO.
"0 and B books", 1977, article "Livestock Feeds and Feeding"
Attorney, Agent or Firm:
VOGT, Frederick, G. (1701 Market StreetPhiladelphia, Pennsylvania, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1 . A compound of formula (1)

FORMULA (I) wherein X represents an aliphatic amino acid chosen among Ala, Val, Leu or lieu; Y represents an aromatic amino chosen among Phe, Tyr, Trp or His; n is 1 or 2 and Ri and R2 independently represent OH or NR3R4 wherein R3 and R4 independently represent:

• hydrogen or

• an alkyl of 1 to 20 carbon atoms;

• an alkenyl of 2 to 20 carbon atoms;

• an alkynyl of 2 to 20 carbon atoms;

• a cycloalkyl of 3 to 8 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l-C4)alkyl , phenoxy, phenoxy-(Cl-C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms;

• a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl- (C l -C4)alkyl , phenoxy, phenoxy-(C l -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy- (Cl -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (Cl - C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (C l -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(Cl -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l -C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a naphthyl radical optionally substituted by one or two substituents selected from halo, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l-C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a group of formula

-(CH2)pOR5

in which p represents an integer from 2 to 8 and R5 represents

o hydrogen or

o (Ci-C4) alkyl or

o a cycloalkyl of 3 to 8 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (C 1 -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(Cl - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l-C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (Cl -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l- C4)alkoxy optionally substituted by 1 to 3 halogen atoms o a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (Cl -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l- C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l-C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l - C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a group of formula

-(CH2)qNR6R7

in which q represents an integer from 2 to 8 and R& and R7 independently represent

hydrogen or

- (Ci-C4) alkyl or

" a cycloalkyl of 3 to 8 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (C l-C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, pheny!-(C l -C4)alkyl , phenoxy, phenoxy-(C l - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (Cl - C4)alkoxy optionally substituted by 1 to 3 halogen atoms.

a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (C l-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms

■ a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (Cl -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(Cl - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l - C4)alkoxy optionally substituted by 1 to 3 halogen atoms

R6 and R7 taken together represent a -(CH2)3, -(CH2)4-, -(CH2)2-0-(CH2)2, - (CH2)2-S-(CH2)2 or

R6 and R7 taken together with the adjacent nitrogen atom represent: a piperazine mojety which may be substituted in position 4 with a substituent selected from (C1 -C4) alkyl, (C3-C8) cycloalkyl, pyridyl, benzyl and substituted benzyl wherein the phenyl mojety bears 1 or 2 substituents selected from chloro, bromo, nitro, (Q -C4) alkyl and (C1 -C4) alkoxy

provided that when n=2, X is never selected as Val and Y is never selected as Trp

2. A compound of formula (I) according to claim 1 , wherein: Ri and R2 are selected as OH.

3. A compound of formula (I) according to claim 1, wherein Ri and R2 are selected as NR3R4, and wherein R3 and R4 independently represent:

• an alkyl of 1 to 12 carbon atoms;

• an alkenyl of 3 to 10 carbon atoms;

• a cycloalkyl of 5 to 6 carbon atom optionally substituted by one or two substituents independently selected from (C l -C4)alkyl , (Cl -C4)alkoxy , phenyl, phenyl-(C l- C4)alkyl , phenoxy, phenoxy-(C 1 -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C 1 -C4)alkyl group is optionally substituted by one or two substituents selected from halo, (Cl - C4)alkyl , and (C l-C4)alkoxy.

• a phenyl radical optionally substituted by one or two substituents independently selected from halo, (C l -C4)alkyl , (C l -C4)alkoxy , phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l -C4)alkyl .

• a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl , (Cl -C4)alkoxy , phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(Cl -C4)alkyl .

• a naphthyl radical optionally substituted by one or two substituents selected from halo, (C l -C4)alkyl , and (Cl -C4)alkoxy

• a group of formula

-(CH2)pOR5

in which p represents an integer from 2 to 5 and R5 represent

o hydrogen or

o (CrC4) alkyl or

o a cycloalkyl of 5 to 6 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (Cl -C4)alkyl , (Cl - C4)alkoxy , phenyl, phenyl-(Cl-C4)alkyl , phenoxy, phenoxy-(Cl-C4)alkyl . o a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl , (C 1 -C4)alkoxy , phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(Cl -C4)alkyl .

• a group of formula

-(CH2)qNR6R7

in which q represents an integer from 2 to 8 and R4 and R5 independently represent

hydrogen or

(C, -C4) alky l or

a cycloalkyl of 3 to 6 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (Cl -C4)alkyl , lower alkoxy of 1 to 4 carbon, phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy- (C l -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, lower alkyl of 1 to 4 carbon, and (Cl -C4)alkoxy .

■ a phenyl radical optionally substituted by one or two substituents independently selected from halo, (Cl -C4)alkyl , (Cl -C4)alkoxy , phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(C l -C4)alkyl .

■ a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (Cl -C4)alkyl , (Cl- C4)alkoxy , phenyl, phenyl-(C l-C4)alkyl , phenoxy, phenoxy-(C 1 -C4)alkyl .

R6 and R7 taken together represent a -(CH2)3, -(CH2)4-, -(CH2)2-0-(CH2)2, - (CH2)2-S-(CH2)2 or

■ R6 and R7 taken together with the adjacent nitrogen atom represent: a piperazine mojety which may be substituted in position 4 with a substituent selected from (C) -C4) alkyl, (C3-C8) cycloalkyl, pyridyl, benzyl and substituted benzyl wherein the phenyl mojety bears 1 or 2 substituents selected from chloro, bromo, nitro, (Q-C4) alkyl and (C1 -C4) alkoxy.

4. A compound of formula (1) according to claim 2, wherein X is He, Y is Tyr, n is 1 and R, and R2 are OH (NAI-857).

5. A compound of formula (I) according to claim 2, wherein X is Val, Y is Tyr, n is 1 and R, and R2 are OH (NAM 30).

6. A compound of formula (I) according to claim 2, wherein X is He, Y is Tip, n is 2 and R, and R2 are OH (NAI-1 14).

7. A compound of formula (I) according to claim 2, wherein X is He, Y is Tyr, n is 2 and Ri and R2 are OH (NAI-438).

A compound of formula (I) according to claim 3 wherein -NR3R4 has the following formula:

-NH-(CH2)2-NH2 -NH(CH2)3NH2

-NH-(CH2)4-NH2 -NH(CH2)3NHCH3

-NH-(CH2)3-N(CH3)2 -NH-(CH2)3N(C2H5)2

-NH-(CH2)3N(C3H7)2 -NH-(CH2)3N(C4H9)2

-NH-(CH2)5N(CH3), -NH(CH2)6N(CH3)2

-NH(CH2)6NHCH3 -N[(CH2)2N H2]2

-N[(CH2)3NH2]2 -N[(CH2)2N(CH3)2]2

-N[(CH2)3N(CI I3)2]2 -N[(CI I2)4NH2]2

9. A compound of formula (I) according to claim 3, wherein said NR3R4 is selected among:

Table 1 -NR3R4

10. A compound of formula (I) according to claim 1 wherein X is He, Y is Tyr, n is 1 and Ri and R2 is NR3R4 where R3 (or R4) is H and R4 (or R3) is (CH2)qNR6R7 with q=2 and R6 and R7 are H.

1 1. A compound of formula (I) according to claim 1 wherein X is He, Y is Trp, n is 2 and Ri and R2 is NR3R4 where R3 (or R4) is H and R4 (or R3) is (CH2)qNR6R7 with q=2 and R6 and R7 are H.

12. A process for the preparation of compounds of formula (I) according to claim 1 , characterized in that it comprises;

- cultivating Actinoplanes sp. chosen among Streptomyces sp. DSM 24056, Streptomyces sp. DSM 24058, Streptosporangium sp. DSM 24060 and Streptomyces sp. DSM 24069 or a variant or mutant thereof maintaining the ability to produce antibiotic of formula (1), under aerobic conditions, in an aqueous nutrient medium containing an assimilable source of carbon, nitrogen and inorganic salts;

- isolating the resulting antibiotic of formula (1) from the whole culture broth, or from the separated mycelium or from the filtered fermentation broth;

- purifying the isolated antibiotic of formula (I).

13. A process according to claim 12, wherein the strain Actinoplanes sp. chosen among Streptomyces sp. DSM 24056, Streptomyces sp. DSM 24058, Streptosporangiiim sp. DSM 24060 and Streptomyces sp. DSM 24069is pre-cultured.

14. A process according to any of claims 12 and 13, wherein the isolation of the antibiotic of formula (I) is carried out by filtering the fermentation broth and recovering the antibiotic from the filtered fermentation broth according to at least a technique selected from: extraction with a water-immiscible solvent, precipitation by adding a non-solvent or by changing the pH of the solution, absorption chromatography, partition chromatography, reverse phase partition chromatography, ion exchange chromatography, molecular exclusion chromatography, a combination of two or more of said techniques included.

15. A process according to any of claims 12 and 13, wherein the isolation of the antibiotic of formula (I) is carried out by separating the mycelium from the supernatant of the fermentation broth and extraction of the mycelium with a water- miscible solvent whereby, after the removal of the spent mycelium, obtaining a water-miscible solution containing the crude antibiotic, which is processed either separately or in pool with the filtered fermentation broth to recover the antibiotic chosen among NAI-857, NAI-130, NAI-1 12, NAI-438 by means of a technique selected from at least one of: extraction with a solvent, precipitation by adding a non-solvent or by changing the pH of the solution, absorption chromatography, partition chromatography, reverse phase partition chromatography, ion exchange chromatography and molecular exclusion chromatography, a combination of two or more of said techniques included.

16. A process for the preparation of antibiotic of formula (I) according to claim 12, wherein X is He, Y is Tyr, n is 1 and R, and R2 are OH (NAI-857).

17. A process for the preparation of antibiotic of formula (I) according to claim 12, wherein X is Val, Y is Tyr, n is 1 and Ri and R2 are OH (NAM 30).

1 8. A process for the preparation of antibiotic of formula (I) according to claim 12, wherein X is He, Y is Trp, n is 2 and R, and R2 are OH (NAI-1 14).

1 9. A process for the preparation of antibiotic of formula (I) according to claim 12, wherein X is He, Y is Tyr, n is 2 and R, and R2 are OH (NAI-438).

20. A process for the preparation of antibiotic of formula (I) according to claim 12, characterized in that it comprises the condensation reaction between at least a starting compound of formula (I) as defined in any one of claims 16 to 19, and at least a selected amine of general formula HNR3R4, wherein R3 and R4 are defined as in claim 1, in the presence of a condensing agent.

21. The process according to claim 20 wherein said NR3R4 are chosen among:

-NH-(CH2)2-NH2 -NH(CH2)3NH2

-NH-(CH2)4-NH2 -NH(CH2)3NHCH3

-NH-(CH2)3-N(CH3)2 -NH-(CH2)3N(C2H5)2

-NH-(CH2)3N(C3HV)2 -NH-(CH2)3N(C4H9)2

-NH-(CH2)5N(CH3)2 -NH(CH2)6N(CH3)2

-NH(CH2)6NHCH3 -N[(CH2)2NH2]2

-N[(CH2)3NH2]2 -N[(CH2)2N(CH3)2]2

-N[(CH2)3N(CH3)2]2 -N[(CH2)4NH2]2

22. The process according to claim 20 wherein said NK3K4 are chosen among:

2. /

\

3. /

\

4.

5. — N— ^

H

6.

7.

— N— '

H

8.

9.

H

10. OH

11. ^OMe

H

12. /

\

13.

— N

14. ^"\^NH2

15.

23. The process according to any of claims 20 to 22 wherein said condensation reaction is carried out in the presence of at least a condensing agent and at least a solvent chosen among: organic amides, ethers of glycols and polyols, phosphoramide derivatives, sulfoxides dimethylformamide, dimethoxy ethane, hexamethyl phosphoroamide, dimethylsulphoxide, dioxane, N-methylpyrrolidone and mixtures thereof.

24. The process according to any of claims 20 to 23 wherein said condensation reaction is carried out at a temperature ranging from 0° C to 50° C.

25. A pharmaceutical composition comprising compound of formula (I) according to claim 1 or their pharmaceutically acceptable salts.

26. The pharmaceutical composition according to claim 25 comprising a pharmaceutically acceptable carrier.

27. The pharmaceutical composition according to any of claims 25 or 26 characterized in that it is orally, topically or parenterally administrable.

28. The pharmaceutical composition according to any of claims 28 to 30 characterized in that it is in the forms of capsules, tablets, liquid solutions or suspensions aqueous, oily solutions or suspensions, hydrophobic or hydrophilic bases as ointments, creams, lotions, paints, or powders.

29. A compound of formula (I) according to claim 1 and their acceptable salts for use in the treatment of bacterial infections.

30. A compound of formula (1) according to claim 26, wherein said bacterial infections are caused by enterococci, streptococci and staphylococci.

31. A compound of formula (1) according to claim 26, wherein said bacterial infections are caused by Clostridium difficile, Staphylococcus spp., Streptococcus spp, Enterococcus spp.

32. A compound of formula (I) according to any of claims 26 to 28, wherein the dosage range is comprised between 1 and 40 mg of active ingredient per Kg of body weight.

33. A biologically pure culture of the strain Actinoplanes sp. chosen among Strepiomyces sp. DSM 24056, Strepiomyces sp. DSM 24058, Streptosporangium sp. DSM 24060 and Strepiomyces sp. DSM 24069 or a variant or mutant thereof maintaining the ability to produce the antibiotic of formula (I) of claim 1 , when cultivated under submerged aerobic conditions in the presence of assimilable sources of carbon, nitrogen and inorganic salts.

Description:
TITLE

New Lantibiotic Derivatives And A Process For Their Preparation

FIELD OF THE INVENTION

The present invention concerns novel lantibiotic compounds having general formula (1), the processes for their preparation, their pharmaceutical acceptable salts and the pharmaceutical compositions containing them as well as their use as antibacterial agents.

BACKGROUND

The compounds designated as lantibiotics are peptides belonging to the general definition of antibiotic compounds, characterized by the presence of the amino acids lanthionine and/or 3-methyllanthionine. The term lantibiotic thus defines a structural feature of these compounds and not necessarily a common possible pharmacological activity. In fact, some lantibiotics possess antibacterial activity while others are totally devoid of it. Among the lantibiotics possessing antibacterial activity, of particular relevance are those active against methicillin-resistant Staphylococcus aureus (MRSA), which can be of considerable interest in medicine. All the lantibiotics endowed with antibacterial activity described so far, exert their action by interfering with cell wall biosynthesis, through sequestration of a key intermediate in peptidoglycan formation.

The antibacterial lantibiotics can be broadly divided into two groups on the basis of their structures: type-A lantibiotics are typically elongated, amphiphilic peptides, while type- B lantibiotics are compact and globular. Nisin is the typical representative of type A lantibiotic, whereas actagardine and mersacidin belong to the type B lantibiotic subclass. Remarkably, despite differences in shape and primary structure, both nisin-type and mersacid in-type lantibiotics interact with the membrane-bound peptidoglycan precursor lipid II. Furthermore, while the spectrum of antibacterial activity is generally restricted to Gram- positive bacteria, individual members of subclasses A and B greatly vary in their potency. Overall, the structural elements responsible for increased target binding and/or enhanced antibacterial activity in lantibiotics are poorly understood.

Traditionally, lantibiotics have been isolated mostly from the order Firmicutes (low G-C Gram-positive bacteria) and relatively few have been described from the Actinomyceiales, the order best known for the ability to produce a large variety of other antibacterial agents. Actagardine and the recently described 107891 (International Publication Number WO2005/014628) are representative lantibiotics produced by the Actinomycetales.

These lantibiotics are active in vitro against Methicillin-Resistant Staphylococcus aureus (MRS A), streptococci and enterococci. S. aureus can cause life-threatening infections and MRSA is of particular clinical significance because it is resistant to all penicillins and cephalosporins and also to multiple other antibiotics; in addition it easily spreads from patient to patient causing outbreaks of infection with important implications for healthcare facilities. Vancomycin resistant enterococci (VRE) are emerging as important hospital-acquired pathogens responsible for severe human infections (such as endocarditis, meningitis and septicemia) posing an increasing therapeutic challenge. Streptococcus pneumoniae and Moraxella catarrhalis are recognized important human pathogens. They are a common cause of respiratory tract infections, particularly otitis media in children and lower respiratory tract infections in the eldery. M. catarrhalis and S. pneumoniae have been recently accepted as the commonest pathogens of the respiratory tract.

Variants and/or derivatives of naturally occurring antibiotics have been long sought after and can be useful in medicine. They can be produced by chemical synthesis or by modification of a natural product, but most structural variations in naturally occurring antibiotics tend to abolish or severely impair their antibacterial activity. This is particularly true in the field of lantibiotics, where structure-activity relationships (SAR) are poorly defined, in the absence of molecular details about antibiotic-target interactions. Furthermore, other factors likely to contribute to antibacterial potency are the diffusion rate of the compound to the target, after crossing the thick peptidoglycan layer, and possible interactions with polar, charged and hydrophobic moieties present on the protective external surfaces of the bacterial cell. An additional element rendering unpredictable the outcome of lantibiotic modifications is the existence of unrelated compounds possessing a similar mechanism of action, preventing conclusions drawn from SAR studies on one subtype to be applied to the other.

DETAILED DESCRIPTION

The disclosure herein encompasses novel lantibiotic compounds, processes for their preparation and their use in therapy, including for treating conditions requiring antibacterial therapy. These and other aspects of the present disclosure are described herein.

The present disclosure encompasses novel antibiotic compounds, which are lantibiotics, having the general formula (I), the processes for their preparation, and the pharmaceutical compositions containing them, their pharmaceutical acceptable salts and their use as antibacterial agents.

The present disclosure encompasses lantibiotic substances of microbial origin of general formula (I), their pharmaceutical acceptable salts, pharmaceutical compositions and their use as antibacterial agents.

The present disclosure encompasses a process for preparing lantibiotic derivatives according to formula (I), which comprises culturing one of the following strains: Streptomyces sp. ID105857 hereinafter identified as Streptomyces sp. DSM 24069 (deposited on 29 th September, 2010 with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) with accession number DSM 24069), or Streptomyces sp. ID 106130 hereinafter identified as Streptomyces sp. DSM 24058 (deposited on 29 lh September, 2010 with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) with accession number DSM 24058), or Slreptosporangium sp. 1D1 14623 hereinafter identified as Streptosporangium sp. DSM 24060 (deposited on 29 th September, 2010 with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) with accession number DSM 24060), or Streptomyces sp. ID99438 hereinafter identified as Streptomyces sp. DSM 24056 (deposited on 29 th September, 2010 with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) with accession number DSM 24056) or a variant or mutant of each one, still maintaining the ability to produce lantibiotics belonging to those of general formula (I), recovering the lantibiotic according to the present disclosure from the mycelium and/or from the fermentation broth and isolating the pure substance by chromatographic means. The present disclosure also encompasses a process for the preparation of lantibiotics derivatives according to formula (I) comprising modifications through chemical reactions of the lantibiotics directly obtained from culturing different strains of Streptomyces sp. according to the above.

According to the disclosure encompassed herein, compounds of formula (I) have the following general formula:

wherein X represents an amino acid chosen among Ala, Val, Leu or lie; Y represents an amino acid chosen among Phe, Tyr, Trp or His; n is 1 or 2

and R| and R 2 independently_represent OH or NR3R4 wherein R 3 and R 4 independently represent:

• hydrogen or

• an alkyl of 1 to 20 carbon atoms;

• an alkenyl of 2 to 20 carbon atoms;

• an alkynyl of 2 to 20 carbon atoms;

• a cycloalkyl of 3 to 8 carbon atoms optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl-C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(Cl -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms;

• a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl-C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl- (C l -C4)alkyl , phenoxy, phenoxy-(C l -C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy- (C l -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (Cl- C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l-C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C 1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl-C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l-C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a naphthyl radical optionally substituted by one or two substituents selected from halo, (Cl -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms

• a group of formula

-(CH 2 ) p OR 5

in which p represents an integer from 2 to 8 and R 5 represents

o hydrogen or

o (C, -C 4 ) alkyl or

o a cycloalkyl of 3 to 8 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(Cl -C4)alkyl , phenoxy, phenoxy-(Cl- C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l - C4)alkoxy optionally substituted by 1 to 3 halogen atoms.

o a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (C l-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (C 1 -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(Cl - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (Cl - C4)alkoxy optionally substituted by 1 to 3 halogen atoms

a group of formula

-(CH 2 )qNR 6 R 7

in which q represents an integer from 2 to 8 and 1¾ and R 7 independently represent

hydrogen or

• (C] -C 4 ) alkyl or

a cycloalkyl of 3 to 8 carbon atom optionally substituted by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l- C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1 -C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(C l-C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (Cl- C4)alkoxy optionally substituted by 1 to 3 halogen atoms.

a phenyl radical optionally substituted by one or two substituents independently selected from halo, cyano, (C l -C4)alkyl optionally substituted by 1 to 3 halogen atoms, (C 1 -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l-C4)alkyl , phenoxy, phenoxy-(Cl- C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by 1 to 3 halogen atoms, and (C l -C4)alkoxy optionally substituted by 1 to 3 halogen atoms

a benzyl radical optionally substituted on the phenyl ring by one or two substituents independently selected from halo, cyano, (Cl-C4)alkyl optionally substituted by 1 to 3 halogen atoms, (Cl -C4)alkoxy optionally substituted by 1 to 3 halogen atoms, phenyl, phenyl-(C l -C4)alkyl , phenoxy, phenoxy-(C l - C4)alkyl wherein each of phenyl, phenyl portion of the phenyl (C1-C4), alkoxy, phenoxy, phenoxy portion of the phenoxy-(Cl -C4)alkyl group is optionally substituted by one or two substituents selected from halo, cyano, (Cl -C4)alkyl optionally substituted by 1 to 3 halogen atoms, and (C l - C4)alkoxy optionally substituted by 1 to 3 halogen atoms

> R 6 and R 7 taken together represent a -(CH 2 ) 3 , -(CH 2 ) 4 -, -(CH 2 ) 2 -0-(CH 2 ) 2 , - (CH 2 ) 2 -S-(CH 2 ) 2 or

R6 and R 7 taken together with the adjacent nitrogen atom represent: a piperazine moiety which may be substituted in position 4 with a substituent selected from (C1 -C4) alkyl, (C 3 -C 8 ) cycloalkyl, pyridyl, benzyl and substituted benzyl wherein the phenyl moiety bears 1 or 2 substituents selected from chloro, bromo, nitro, (C1 -C4) alkyl and (C1 -C4) alkoxy

provided that when n=2, X is never selected as Val and Y is never selected as Trp.

In particular embodiments are featured lantibiotic compounds of formula (I) herewith arbitrarily named NAI-857, NAI-130, NAl-1 14 and NAI-438.

In an embodiment, the terms "antibiotic NAI-857", "lantibiotic NAI-857", or simply "NAI-857" are referred, unless otherwise specified, to the novel lantibiotic compound of general formula (I), wherein X is He, Y is Tyr, n is 1 and R \ and R 2 are OH.

In an embodiment, the terms "antibiotic NAI-130", "lantibiotic NAI-130", or simply "NAI-130" are referred, unless otherwise specified, to the novel lantibiotic compound of general formula (1), wherein X is Val, Y is Tyr, n is 1 and R] and R 2 are OH.

In an embodiment, the terms "antibiotic NAI-1 14", "lantibiotic NAI- 1 14", or simply "NAI-1 14" are referred, unless otherwise specified, to the novel lantibiotic compound of general formula (I), wherein X is He, Y is Trp, n is 2 and Ri and R 2 are OH.

In an embodiment, the terms "antibiotic NAI-438", "lantibiotic NAI-438", or simply "NAI-438" are referred, unless otherwise specified, to the novel lantibiotic compound of general formula (I), wherein X is He, Y is Tyr, n is 2 and Rl and R2 are OH. Generally lantibiotics are known for their conservative and complex structure, lantibiotics of the present disclosure overcome the limits of prior art. In fact the disclosure encompasses novel lantibiotics wherein specific and conservative amino acids, in a polypeptide chain, are substituted and replaced on the basis of chemical and functional similarity. In an embodiment, substitution and/or replacement are predetermined. In another embodiment, substitution and/or replacement are determined using experimental testing to identify the most suitable amino acid to use in a particular position, based on the desired use and/or function of the resultant lantibiotic.

The term "(C1 -C4) alkyl" represents straight or branched alkyl chains of from 1 to 4 carbon atoms such as, but not limited to: methyl, ethyl, propyl, 1-methylethyl, butyl, 1 - methylpropyl or 1 , 1 -dimethylethyl. The term "(C3-C 8 ) cycloalkyl" represents a cycloalkyl group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, ciclooctyl. The term "(C1 -C4) alkoxy" represents a straight or branched alkoxy chain of 1 to 4 carbon atoms such as, but not limited to, methoxy, ethoxy, propoxy, 1 -methylethoxy, butoxy, 1 -methylpropoxy and 1 , 1 -dimethylethoxy.

According to another embodiment, when X is He, Y is Trp, n is 2 and R] and R2 is NR3R4 where R 3 (or R4) is H and R 4 (or R 3 ) is (CH 2 )qNR 6 R7 with q=2 and R 6 and R 7 are H , the compound is called NAI-1 14 derivative.

According to still another embodiment, when X is He, Y is Tyr, n is 1 and R) and R 2 is NR3R4 where R 3 (or R 4 ) is H and R 4 (or R 3 ) is (CH 2 )qNR 6 R 7 with q=2 and R 6 and R 7 are H, the compound is called NAI-857 derivative.

In another preferred embodiment, the present disclosure encompasses novel compounds of general formula (I) wherein X represents an amino acid chosen among Ala, Val, Leu or lieu; Y represents an amino acid chosen among Phe, Tyr, Trp or His; n is 1 or 2 and Ri and R 2 are independently chosen among NR3R4 wherein the group -NR R 4 has the following formula: -NH-(CH 2 ) 2 -NH 2 -NH(CH 2 ) 3 NH 2

-NH-(CH 2 ) 4 -NH 2 -NH(CH 2 ) 3 NHCH 3

-NH-(CH 2 ) 3 -N(CH 3 ) 2 -NH-(CH 2 ) 3 N(C 2 H 5 ) 2

-NH-(CH 2 ) 3 N(C 3 H 7 ) 2 -NH-(CH 2 ) 3 N(C 4 H 9 ) 2

-NH-(CH 2 ) 5 N(CH 3 ) 2 -NH(CH 2 ) 6 N(CH 3 ) 2

-NH(CH 2 ) 6 NHCH 3 -N[(CH 2 ) 2 NH 2 ] 2

-N[(CH 2 ) 3 NH 2 ] 2 -N[(CH 2 ) 2 N(CH 3 ) 2 ] 2

-N [(CH 2 ) 3 N(CH 3 ) 2 ] 2 -N[(CH 2 ) 4 NH 2 ] 2

The present disclosure also encompasses a process for the preparation of the novel compounds having the general formula (I) wherein X is chosen among Ala, Leu, Val or He; Y is chosen among Phe, His, Tyr or Trp; n is 1 or 2 and and Ri and R 2 represent OH or NR3R4 wherein R 3 and R4 are defined as above.

In an embodiment, compounds of general formula (I) wherein and Ri and R 2 represent NR 3 R4 can be obtained and prepared by reacting corresponding compounds of formula (I) wherein Ri and R 2 are chosen as OH, with a selected amine of formula HNR3R4, wherein R 3 and R 4 are defined as above.

In an embodiment, the reaction is carried out in the presence of a condensing agent, i.e. in the presence of a solvent. Preferred inert organic aprotic solvents useful for the condensation reaction are those solvents which do not unfavorably interfere with the reaction course and are capable of at least partially solubilizing the starting material, for example compounds chosen among those previously indicated as NAI-857, NAI- 130, NAI- 1 14 or NAI-438. Solvents can be chosen among organic amides, ethers of glycols and polyols, phosphoramide derivatives, sulfoxides. Preferably solvents are chosen among, but not limited to: dimethylformamide, dimethoxyethane, hexamethyl phosphoroamide, dimethylsulphoxide, dioxane, N-15 methylpyrrolidone and mixtures thereof. Preferably, dimethylformamide (DMF) is employed. The condensing agent according to the present disclosure is one suitable for forming amide bonds in organic compounds and, in particular, in peptide synthesis. Representative examples of condensing agents are diisopropylcarbodiimide (DIC), dicyclohexylcarbodiimide (DCC) without or in the presence of hydroxybenzotriazole (HOBT), Ν,Ν,Ν',Ν'- tetramethyl-0-(benzotriazol-l-yl)uronium tetrafluoroborate. (TBTU), N,N,N',N'-tetramethyl-0-(7oxabenzotriazol-l-yl)uranium hexafluorophosphate (HATU), benzotriazolyl-oxy-tris-(dimethyIamino)phosphonium hexafluorophosphate (HBTU), benzotriazolyloxy- tris-(pyrrolidino)phosphonium hexafluorophosphate (PyBOP) and (Cl - C4) alkyl, phenyl or heterocyclic phosphorazidates such as diphenylphosphorazidate, dimorpholyl-phosphorazidate. The preferred condensing agent is PyBOP. The condensing agent is generally employed in a slight molar excess, such as from 2.2 to 5; preferably the molar excess of condensing agent is about 2.5 times the molar amount of lantibiotic starting compound, for example chosen among NAI-857, NAI-130, NAI- 1 14 or NAI-438. According to one embodiment, the amine is used in slight molar excess with respect to the starting compound. In general, a 3 to 10 fold molar excess of the selected amine is used, while a 4-5 fold molar excess is preferred. In an embodiment, when the amine HNR 3 R4 is reacted as a corresponding salt, for example the hydrochloride salt, it is necessary to add a suitable base in at least a molar proportion to obtain the free base of the amine HNR3R4 which reacts with compounds for example chosen among those indicated as NAI-857, NAI-130, NAI- 1 14 or NAI-438. In this case, an excess of the base is generally preferred. It is convenient to add a salt-forming base to the reaction mixture in an at least equimolecular amount, and preferably in about 2.2 fold molar excess with respect to the amine HNR3R4. Examples of said salt- forming bases include, but are not limited to, tertiary organic aliphatic or alicyclic amines such as trimethylamine, triethylamine (TEA), N-methylpyrrolidine or heterocyclic bases such as picoline and the like, alkali metals (e.g. sodium and potassium) hydrogen carbonates and carbonates. The reaction temperature will vary considerably depending on the specific starting materials and reaction conditions. In general, it is preferred to conduct the amidation reaction at temperature from about 0°C to about 50°C, and in an embodiment, preferably at room temperature. Also the reaction time varies considerably, depending on the other reaction parameters; in general the condensation is completed in about 2-4h. In an embodiment, the condensation is completed in less than 2 hours. In an embodiment, the condenstaion is completed in more than 4 hours. When the amine HNR3R4 contains a further primary amino group it might be protected, if necessary, as known in the art, in order to get the desired product. Any typical protecting group of the amino rest, which is resistant to the conditions applied during the process of this disclosure and may be readily removed under conditions which do not affect the stability of the compounds for example chosen among NAI-857, NAI-130, NA1-1 14 or NAI-438 core portion can be utilized here. In an embodiment, suitable protecting groups of the amino function can be selected, for instance, from the groups described in: T. W. Greene, "Protective Groups in Organic Synthesis", J. Wiley, N. Y., 1981. In an embodiment, in this case, those protecting groups, which are formed by acylating the amino moiety, are preferred. The protecting groups employed in the process herein described are those generally employed in peptides synthesis. A deprotection step is then necessary to obtain the desired final product. Generally, the reaction course is monitored by HPLC according to methods known in the art. On the basis of the results of this assays it will be possible to evaluate the reaction course and decide when to stop the reaction and start working up the reaction mass according to per se known techniques which include, for instance, precipitation by addition of non-solvents, extraction with solvents, in conjunction with further common separation operations and purification, e.g. by column chromatography.

Encompassed herein are a series of compounds can be prepared, as summarized in Table 1.

In an embodiment, a compound is characterized in that X is He, Y is Trp, n=2, R \ or R 2 is - NHCH 2 CH 2 NH 2 . The disclosure herein also encompasses a compound where X is He, Y is Tyr, n=l , Ri or R 2 is - NHCH 2 CH 2 NH 2 .

Compounds of general formula (I) possess acid and/or basic functions, they are capable of forming salts with suitable bases or acids according to known procedures and it may exist also in the form of inner salt. In an embodiment, the lantibiotics, when obtained in the acid form or in the form of inner salt, may be converted into a corresponding non-toxic pharmaceutically acceptable salt with bases. Suitable salts include the alkali and alkaline earth metal salts, typically the sodium, potassium, calcium and magnesium salts, and the ammonium and substituted ammonium salts. Representative, non-limiting, substituted ammonium salts include primary, secondary or tertiary (C 1 -C4) alkylammonium and hydroxy (C1 -C4) alkylammonium salts and, according to an embodiment of the present disclosure, the benzathine, procaine, hydrabamine and similar water insoluble, non-toxic, pharmaceutically acceptable salts. Another preferred class of salts of the compound of the present disclosure is represented by the basic addition salts with basic amino acids such as arginine or lysine, or aminosugars such as glucosamine and the like.

The alkali and alkaline earth metal salts are prepared according to the usual procedures commonly employed for preparing metal salts. As an example, lantibiotics according to the present disclosure, in the acid form or in the inner salt form, are dissolved into the minimum amount of a suitable solvent, typically a lower alkanol, or a lower alkanol water mixture, the stoichiometric amount of a suitable selected base is gradually added to the obtained solution and the obtained salt is precipitated by the addition of a non-solvent. The alkali or alkaline earth metal salt, which forms are then recovered by filtration or evaporation of the solvents.

Alternatively, these salts can be prepared in a substantially anhydrous form through lyophilization; in this case aqueous solutions containing the desired salts, resulting from the salification of the compounds according to the disclosure with a suitably selected alkali or alkaline earth metal carbonate or hydroxide in such a quantity as to obtain a pH comprised between and are filtered from any non soluble and lyophilized.

The organic ammonium salts can be prepared according to the above procedure by adding the properly selected amine to a solution of compounds in a suitable solvent and then evaporating off the solvent and the excess of the amine reagent or by lyophilizing the concentrate solution.

The addition salts of compounds encompassed herein with acids can be also prepared. Representative and suitable acid addition salts of the compounds of the disclosure include those salts formed by standard reaction with both organic and inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, trifluoroacetic, trichloroacetic, succinic, citric, ascorbic, lactic, maleic, fumaric, palmitic, cholic, pamoic, mucic, glutamic, camphoric, glutaric, glycolic, phthalic, tartaric, lauric, stearic, salicylic, methanesulfonic, benzenesulfonic, sorbic, picric, benzoic, cinnamic and the like acids. The addition salts of the above mentioned compounds with acids can be prepared in a substantially analogues manner as that employed for the preparation of the salts with bases but using the appropriately selected acid as reagent in the place of the base. As known in the art, the salt formation with either pharmaceutically or non- pharmaceutically acceptable acids may be used as a convenient purification technique. After formation and isolation, the salt form of a compound of formula (I) can be transformed into the corresponding non-salt or into a pharmaceutically acceptable salt. In some instances the acid addition salt of a compound of formula (I) is more soluble in water and hydrophilic solvents and has an increased chemical stability. Good solubility and stability in water or hydrophilic solvents of an active compound are in general appreciated in the art, for the preparation of suitable pharmaceutical compositions for the administration of the medicament. However, in view of the similarity of the properties of the compounds of formula (I) with their salts, what is said in the present application when dealing with the biological activities of the non-salt compounds of formula (I) applies also to their pharmaceutically acceptable salts, and vice versa.

The compounds encompassed herein can be administered orally, topically or parenterally, the preferred route of administration depending on the treatment to be carried out. Depending on the route of administration, these compounds can be formulated into various dosage forms. Preparations for oral administration may be in the form of capsules, tablets, liquid solutions or suspensions. As known in the art, the capsules and tablets may contain in addition to the active ingredient conventional excipients such as diluents e.g. lactose, calcium phosphate, sorbitol and the like lubricants e.g. magnesium stearate, talc, polyethylene glycol, binding agents, e.g. polyvinylpyrrolidone, gelatin, sorbitol, tragacanth, acacia, flavoring agents, and acceptable disintegrating and wetting agents. The liquid preparations generally in the form of aqueous or oily solutions or suspensions may contain conventional additives such as suspending agents. For topical use, the compounds of formula (I) of the present disclosure may also be prepared in suitable forms for absorption through the mucous membranes of the nose and throat or bronchial tissues and may conveniently take the form of liquid sprays or inhalants lozenges or throat paints. For medication of the eyes, the preparation may be presented in liquid or semi-liquid form. Topical applications may be formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints, or powders. For rectal administration the compounds of formula (I) of the disclosure are administered in the form of suppositories admixed with conventional vehicles, such as, for example, cocoa butter, wax, spermaceti or polyethylenglycols and their derivatives. Compositions for injection may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for reconstitution at the time of delivery with a suitable vehicle, such as sterile water. The amount of active principle to be administered depends on various factors such as the size and conditions of the subject to be treated, the route and frequency of administration, and the causative agent involved.

The compounds encompassed herein are generally effective at a dosage comprised between about 1 and 40 mg of active ingredient per Kg of body weight. Depending on the characteristics of the specific compound, the infection and the patients, the effective dose can be administered in a single administration per day or divided in 2 to 4 administrations per day. Particularly desirable compositions are those prepared in the form of dosage units containing from about 30 to about 500 mg per unit.

The compounds encompassed herein can also be employed in combination with other drugs, being that another antibacterial agent or an agent intended to treat a second symptom or the cause of a different condition. For example, the antibacterial agents that can be used in conjunction with the compounds of the present disclosure include but are not limited to penicillins, cephalosporins, aminoglycosides, glycopeptides, rifamycins, lipopeptides, aminoglycosides. Therefore, compositions of the compounds of the present disclosure with other approved drugs fall also within the scope of the present disclosure.

The novel compounds of formula (I) encompassed herein, including salts, formulation and compositions thereof, can be effectively employed as the active ingredients of the antimicrobial preparations used in human or animal medicine for the prevention and treatment of infectious diseases caused by gram positive aerobic and anaerobic bacteria, such as Enterococcus sp., Streptococcus sp., Staphylococcus sp„ Clostridium sp., including strains resistant to commonly used antibiotics.

The compounds encompassed herein, i.e. particulary lantibiotics NAI-857, NA1- 130, NAI-1 14 or NAI-438 as well as their derivatives, are advantageously used as antibacterial agents against gram positive aerobic and anaerobic bacteria, such as Enterococcus sp., Streptococcus sp., Staphylococcus sp„ Clostridium sp. in infectious diseases.

The disclosure also encompasses the use of a compound or composition thereof for the manufacture of a medicament for use in a specific method of treatment or prophylaxis of the human or animal body.

According to one embodiment, compounds of formula (I) are for example added to animal feed. This is preferably accomplished by preparing an appropriate feed premix containing the active compound in an effective amount and incorporating the premix into the complete ration. Alternatively, an intermediate concentrate or feed supplement containing the active ingredient can be blended into the feed.

The way in which such feed premixes and complete rations can be prepared and administered are described in reference books such as "Applied Animal Nutrition", W.H. Freedman and CO., S. Francisco, U.S.A., 1969 or "Livestock Feeds and Feeding" 0 and B books, Corvallis, Ore., U.S.A., 1977.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. l and FIG.2 represent mass spectra (full-scan low resolution spectrum) of antibiotic NAI-857 showing a doubly protonated ion at m/z 1086.

FIG.3 represents the UV spectrum of antibiotic NAI-857 dissolved in Acetonitrile : TFA 0.1 % = 1 : 1

FIG.4 represents the Ή- NMR spectrum of NAI-857 recorded in the mixture Acetonitrile-d 3 :D20 at 25°C on a Bruker AMX 400 spectrometer.

FIG.5 and FIG.6 represents the HSQC and HMBC NMR spectra of NAI-857 recorded in the mixture Acetonitrile-d3:D20 at 25°C on a Bruker AMX 600 spectrometer.

FIG.7 and FIG.8 represent mass spectra (full-scan low resolution spectrum) of antibiotic NAI-130 showing a doubly protonated ion at m/z 1078.5.

FIG.9 represents the UV spectrum of antibiotic NAI-130 dissolved in Acetonitrile : TFA 0.1% = 1 : 1

FIG.10 represents the 1 H- NMR spectrum of NAI-130 recorded in the mixture Acetonitrile-d3:D20 at 25°C on a Bruker AMX 600 spectrometer

FIG. l 1 and FIG.12 represents the HSQC and HMBC NMR spectra of NAI-130 recorded in the mixture Acetonitrile-d3:D20 at 25°C on a Bruker AMX 600 spectrometer.

FIG.13 and FIG.14 represent mass spectra (full-scan low resolution spectrum) of antibiotic NAI-1 14 showing a doubly protonated ion at m/z 1 104.

FIG.15 represents the UV spectrum of antibiotic NAI-1 14 dissolved in Acetonitrile : TFA 0.1 % = 1 : 1 FIG.16 represents the Ή- NMR spectrum of NAI-1 14 recorded in the mixture Acetonitrile-d 3 :D20 at 25°C on a Bruker AMX 600 spectrometer

FIG.17 and FIG.18 represents the HSQC and HMBC NMR spectra of NAI-1 14 recorded in the mixture Acetonitrile-d3:D20 at 25°C on a Bruker AMX 600 spectrometer.

FIG.19 and FIG.20 represent mass spectra (full-scan low resolution spectrum) of antibiotic NAI-438 showing a doubly protonated ion at m/z 1093.

FIG.21 represents the UV spectrum of antibiotic NAI-438 dissolved in Acetonitrile : TFA 0.1 % = 1 : 1

FIG.22 and FIG.23 represent mass spectra (full-scan low resolution spectrum) of NAI-857 diamide with ethylenediamine showing a doubly protonated ion at m/z 1 128.

FIG.24 and FIG.25 represent mass spectra (full-scan low resolution spectrum) of NAI-1 14 diamide with ethylenediamine showing a doubly protonated ion at m z 1 146.

Strains And Fermentation

Encompassed herein is a process for the preparation of compounds of formula (I) comprising:

- cultivating at least one of an Aclinomycetales sp. chosen among Sireptomyces sp. DSM 24056, Sireptomyces sp. DSM 24058, Streplosporangium sp. DSM 24060 and Sireptomyces sp. DSM 24069 or a variant or mutant thereof maintaining the ability to produce lantibiotic of formula (I), under aerobic conditions, in an aqueous nutrient medium containing an assimilable source of carbon, nitrogen and inorganic salts;

- isolating the resulting lantibiotic of formula (I) from the whole culture broth, or from the separated mycelium or from the filtered fermentation broth;

- purifying the isolated lantibiotic of formula (I).

In an embodiment, the production of lantibiotic NAI-857 is achieved by cultivating a Streplomyces sp. strain capable of producing it, i.e. Sireptomyces sp. DSM 24069 or a variant or mutant thereof maintaining the ability to produce lantibiotic NAI-857, isolating the resulting lantibiotic from the whole culture broth and/or from the separated mycelium and/or from the filtered fermentation broth, and purifying the isolated lantibiotic by chromatographic means.

In an embodiment, the production of lantibiotic NAI-130 is achieved by cultivating a Streptomyces sp. strain capable of producing it, i. e. Streptomyces sp. DSM 24058 or a variant or mutant thereof maintaining the ability to produce lantibiotic NAI-130, isolating the resulting lantibiotic from the whole culture broth and/or from the separated mycelium and/or from the filtered fermentation broth, and purifying the isolated lantibiotic by chromatographic means.

In an embodiment, the production of lantibiotic NAI-1 14 is achieved by cultivating a Slreptosporangium sp. strain capable of producing it, i. e. Slreptosporangium sp. DSM 24060 or a variant or mutant thereof maintaining the ability to produce lantibiotic NAI-1 14, isolating the resulting lantibiotic from the whole culture broth and/or from the separated mycelium and/or from the filtered fermentation broth, and purifying the isolated lantibiotic by chromatographic means.

In an embodiment, the production of lantibiotic NAI-438 is achieved by cultivating a Streptomyces sp. strain capable of producing it, i. e. Streptomyces sp. DSM 24056 or a variant or mutant thereof maintaining the ability to produce lantibiotic NAI-438, isolating the resulting lantibiotic from the whole culture broth and/or from the separated mycelium and/or from the filtered fermentation broth, and purifying the isolated lantibiotic by chromatographic means.

According to one preferred embodiment, the production of lantibiotic NAI-857 (or NAI- 130, NAI- 1 14, NAI-438) is carried out under aerobic conditions in an aqueous nutrient medium containing easy digestible or usable sources of carbon, nitrogen, and inorganic salts. Many of the nutrient media usually employed in fermentation field can be used, however preferred carbon sources are starch, dextrin, glucose, maltose, glycerol, and the like. Preferred nitrogen sources are soybean meal, peptone, meat extract, hydrolyzed casein, tryptone, corn steep liquor, cottonseed meal, yeast extract, and the like.

Soluble salts capable of yielding sodium, potassium, iron, zinc, cobalt, magnesium, calcium, ammonium, chloride, carbonate, sulphate, phosphate, nitrate, and the like ions can be incorporated in certain media. In a preferred embodiment, the strain producing antibiotic NAI-857 (or NAI-130, NAI-1 14, NAI-438) is pre-cultured in a fermentation tube or in a shake flask, then the culture is used to inoculate jar reactors for fermentation for the production of substantial quantities of substances. The medium used for the pre-culture can be the same as that employed for larger fermentations, but other media can also be employed.

According to one preferred aspect, Streptomyces sp. DSM 24069 (or Streptomyces sp. DSM 24058, Streptosporanghim sp. DSM 24060, Streptomyces sp. DSM 24056) strain is grown on S I plates (detailed information are described in Experimental part - Example 1). On this medium strain Streptomyces sp. DSM 24069 forms grey colonies with light grey- white aerial mycelium. A light brown pigment is released in the medium with ageing of the cultures.

On S I plates Streptomyces sp. DSM 24058 strain forms brown colonies with white aerial mycelium. A dark brown pigment is released in the medium.

On S I plates Strepto sporangium sp. DSM 24060 strain forms light orange to light pink colonies with patches of whitish aerial mycelium.

On S I plates Streptomyces sp. DSM 24056 strain forms white-cream colonies with aerial mycelium of the same color.

The temperature for growing strain Streptomyces sp. DSM 24069 (or Streptomyces sp. DSM 24058, Streptosporangium sp. DSM 24060, Streptomyces sp. DSM 24056) producing antibiotic NAI-857 (or NAI-130, NAI-1 14, NAI-438) is 26-35 °C, preferably 28-32°C. During the fermentation, antibiotic NAI-857 (or NAI-130, NAI-1 14, NAI-438) production can be monitored by bioassay on susceptible microorganisms and/or by HPLC analyses. Maximum production of antibiotic NAI-857(or NAI-130, NAI-1 14, NAI-438) generally occurs after 72 hours and before 192 hours of fermentation.

Antibiotic NAI-857 (or NAI-130, NAI-1 14, NAI-438) is thus produced by cultivating Sireptomyces sp. DSM 24069 (or Streptomyces sp. DSM 24058, Streptosporanghim sp. DSM 24060, Streptomyces sp. DSM 24056) or a variant or mutant thereof capable of producing antibiotic NAI-857 (or NAI-130, NAI- 1 14, NAI-438), and it is found in the culture broths and/or in the mycelium. Streptomvces sp. DSM 24069 16S rRNA gene SEQUENCE

The partial sequence of the 16 rRNA gene ( 16S rDNA), i.e 644 nucleotides, of strain Streptomyces sp. DSM 24069 is reported in SEQ ID No. 1 . This sequence is compared with those deposited in public databases, and is found to be related to the 16S rRNA gene sequences of various Streptomyces strains.

As with other microorganisms, the characteristics of strain producing antibiotic NAI- 857 are subject to variation. For example, artificial variants and mutants of the strain can be obtained by treatment with various known mutagens, such as U.V. rays, and chemicals such as nitrous acid, N-methyl-N'-nitro-N-nitrosoguanidine, and many others. All natural and artificial variants and mutants of strain Streptomyces sp. DSM 24069 are capable of producing antibiotic NAI-857.

SEQJD No. 1 (16S rRNA gene of strain Streptomyces sp. DSM 24069)

1 ATGGCTCAGG ACGAACGCTG GCGGCGTGCT TAACACATGC AAGTCGAACG

51 ATGAACC ACT TCGGTGGGGA TTAGTGGCGA ACGGGTGAGT AACACGTGGG

101 CAATCTGCCC TGCACTCTGG GACAAGCCCT GGAAACGGGG TCTAATACCG

151 GATACAACCA CTAGGGGCAT CCCTCGGTGG TGGAAAGCTC CGGCGGTGCA

201 GGATGAGCCC GCGGCCTATC AGCTTGTTGG TGAGGTAACG GCTCACCAAG

251 GCGACGACGG GTAGCCGGCC TGAGAGGGCG ACCGGCCACA CTGGGACTGA 301 GACACGGCCC AGACTCCTAC GGGAGGCAGC AGTGGGGAAT ATTGCACAAT 351 GGGCGAAAGC CTGATGCAGC GACGCCGCGT GAGGGATGAC GGCCTTCGGG 401 TTGTAAACCT CTTTCAGCAG GGAAGAAGCG AAAGTGACGG TACCTGCAGA

451 AGAAGCGCCG GCTAACTACG TGCCAGCAGC CGCGGTAATA CGTAGGGCGC 501 AAGCGTTGTC CGGAATTATT GGGCGTAAAG AGCTCGTAGG CGGCTTGTCG

551 CGTCGGTTGT GAAAGCCCGG GGCTTAACCC CGGGTCTGCA GTCGATACGG

601 GCAGGCTAGA GTCGGTAAGG GGAGATCGGA ATTCCTGGTG TAAC

Streptomyces sp. DSM 24058 16S rRNA gene SEQUENCE

The partial sequence of the 16 rRNA gene (16S rDNA), i.e 1342 nucleotides, of strain Streptomyces sp. DSM 24058 is reported in SEQ ID No. 2. This sequence is compared with those deposited in public databases, and is found to be related to the 16S rRNA gene sequences of various Streptomyces strains. As with other microorganisms, the characteristics of strain producing antibiotic NAI- 130 are subject to variation. For example, artificial variants and mutants of the strain can be obtained by treatment with various known mutagens, such as U.V. rays, and chemicals such as nitrous acid, N-methyl-N'-nitro-N-nitrosoguanidine, and many others. All natural and artificial variants and mutants of strain Streptomyces sp. DSM 24058 are capable of producing antibiotic NAI-130.

SEQJD No. 2 (16S rRNA gene of strain Streptomyces sp. DSM 24058)

1 ATCATGGCTC AGGACGAACG CTGGCGGCGT GCTTAACACA TGCAAGTCGA

51 ACGATGAACC ACTTCGGTGG GGATTAGTGG CGAACGGGTG AGTAACACGT 101 GGGCAATCTG CCCTGCACTC TGGGACAAGC CCTGGAAACG GGGTCTAATA 151 CCGGATACAA CCACTGACCG CATGGTCGGG TGGTGGAAAG CTCCGGCGGT 201 GCAGGATGAG CCCGCGGCCT ATCAGCTTGT TGGTGAGGTA ATGGCTCACC 251 AAGGCGACGA CGGGTAGCCG GCCTGAGAGG GCGACCGGCC ACACTGGGAC 301 TGAGACACGG CCCAGACTCC TACGGGAGGC AGCAGTGGGG AATATTGCAC 351 AATGGGCGCA AGCCTGATGC AGCGACGCCG CGTGAGGGAT GACGGCCTTC 401 GGGTTGTAAA CCTCTTTCAG CAGGGAAGAA GCGAAAGTGA CGGTACCTGC 451 AGAAGAAGCG CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG 501 CGCAAGCGTT GTCCGGAATT ATTGGGCGTA AAGAGCTCGT AGGCGGCTTG 551 TCGCGTCGGT TGTGAAAGCC CGGGGCTTAA CCCCGGGTCT GCAGTCGATA

601 CGGGCAGGCT AGAGTTCGGT AGGGGAGATC GGAATTCCTG GTGTAGCGGT 651 GAAATGCGCA GATATCAGGA GGAACACCGG TGGCGAAGGC GGATCTCTGG 701 GCCGATACTG ACGCTGAGGA GCGAAAGCGT GGGGAGCGAA CAGGATTAGA 751 TACCCTGGTA GTCCACGCCG TAAACGGTGG GCACTAGGTG TGGGCGACAT 801 TCCACGTCGT CCGTGCCGCA GCTAACGCAT TAAGTGCCCC GCCTGGGGAG

851 TACGGCCGCA AGGCTAAAAC TCAAAGGAAT TGACGGGGGC CCGCACAAGC 901 GGCGGAGCAT GTGGCTTAAT TCGACGCAAC GCGAAGAACC TTACCAAGGC 951 TTGACATACA CCGGAAACGT CTGGAGACAG GCGCCCCCTT GTGGTCGGTG 1001 TACAGGTGGT GCATGGCTGT CGTCAGCTCG TGTCGTGAGA TGTTGGGTTA

1051 AGTCCCGCAA CGAGCGCAAC CCTTGTCCCG TGTTGCCAGC AGGCCCTTGT 1 101 GGTGCTGGGG ACTCACGGGA GACCGCCGGG GTCAACTCGG AGGAAGGTGG 1 151 GGACGACGTC AAGTCATCAT GCCCCTTATG TCTTGGGCTG CACACGTGCT

1201 ACAATGGCCG GTACAATGAG CTGCGATACC GCGAGGTGGA GCGAATCTCA 1251 AAAAGCCGGT CTCAGTTCGG ATTGGGGTCT GCAACTCGAC CCCATGAAGT 1301 CGGAGTCGCT AGTAATCGCA GATCAGCATT GCTGCGGTGA AT Streptosporamium sp. DSM 24060 16S rRNA gene SEQUENCE

The partial sequence of the 1 6 rRNA gene (16S rDNA), i.e 1425 nucleotides, of strain Streptosporangi m sp. DSM 24060 is reported in SEQ ID No. 3. This sequence is compared with those deposited in public databases, and is found to be related to the 16S rRNA gene sequences of various Streptosporangiiim strains.

As with other microorganisms, the characteristics of strain producing antibiotic NAI- 1 14 are subject to variation. For example, artificial variants and mutants of the strain can be obtained by treatment with various known mutagens, such as U.V. rays, and chemicals such as nitrous acid, N-methyl-N'-nitro-N-nitrosoguanidine, and many others. All natural and artificial variants and mutants of strain Streplosporangium sp. DSM 24060 are capable of producing antibiotic NAI- 1 14.

SEQ ID No. 3 (16S rRNA gene of strain Streptosporangium sp. DSM 24060)

1 CGGCGTGCTT AACACATGCA AGTCGAGCGG AAAGGCCCTT CGGGGTACTC 5 1 GAGCGGCGAA CGGGTGAGTA ACACGTGAGT AACCTGCCCC TGACTCTGGG 101 ATAAGCCCGG GAAACTGGGT CTAATACCGG ATACGACCAC TTCCCGCATG 151 GGATGGTGGT GGAAAGTTTT TCGGTCGGGG ATGGGCTCGC GGCCTATCAG 201 CTTGTTGGTG GGGTAGTGGC CTACCAAGGC GACGACGGGT AGCCGGCCTG 251 AGAGGGCGAC CGGCCACACT GGGACTGAGA CACGGCCCAG ACTCCTACGG 301 GAGGCAGCAG TGGGGAATAT TGCGCAATGG GCGAAAGCCT GACGCAGCGA 351 CGCCGCGTGG GGGATGACGG CCTTCGGGTT GTAAACCTCT TTCAGCAGGG 401 ACGAAGTTGA CGTGTACCTG CAGAAGAAGC GCCGGCTAAC TACGTGCCAG 451 CAGCCGCGGT AATACGTAGG GCGCAAGCGT TGTCCGGAAT TATTGGGCGT 501 AAAGAGCTCG TAGGTGGCTT GTCGCGTCGG GTGTGAAAGC TTGGGGCTTA 551 ACTCCAGGTC TGCATTCGAT ACGGGCTGGC TAGAGGTAGG TAGGGGAGAA 601 CGGAATTCCT GGTGTAGCGG TGAAATGCGC AGATATCAGG AGGAACACCG 651 GTGGCGAAGG CGGTTCTCTG GGCCTTACCT GACGCTGAGG AGCGAAAGCG 701 TGGGGAGCGA ACAGGATTAG ATACCCTGGT AGTCCACGCT GTAAACGTTG 751 GGCGCTAGGT GTGGGGACCT TCCACGGTTT CCGCGCCGTA GCTAACGCAT 801 TAAGCGCCCC GCCTGGGGAG TACGGCCGCA AGGCTAAAAC TCAAAGGAAT 851 TGACGGGGGC CCGCACAAGC GGCGGAGCAT GTTGCTTAAT TCGACGCAAC 901 GCGAAGAACC TTACCAAGGC TTGACATCGC CCGGAAAGCT TCAGAGATGG 951 AGCCCTCTTC GGACTGGGTG ACAGGTGGTG CATGGCTGTC GTCAGCTCGT 1001 GTCGTGAGAT GTTGGGTTAA GTCCCGCAAC GAGCGCAACC CTTGTTCCAT 1051 GTTGCCAGCA CGCCCCTTTG GGGGTGGTGG GGACTCATGG GAGACTGCCG 1 101 GGGTCAACTC GGAGGAAGGT GGGGATGACG TCAAGTCATC ATGCCCCTTA 1 151 TGTCTTGGGC TGCAAACATG CTACAATGGC CGGTACAGAG GGTTGCGATA 1201 CCGTGAGGTG GAGCGAATCC CTAAAAGCCG GTCTCAGTTC GGATTGGGGT 1251 CTGCAACTCG ACCCCATGAA GTCGGAGTCG CTAGTAATCG CAGATCAGCA 1301 ACGCTGCGGT GAATACGTTC CCGGGCCTTG TACACACCGC CCGTCACGTC 1351 ACGAAAGTCG GCAACACCCG AAGCCCGTGG CCCAACCAGC TTGCTGGGGG 1401 GAGCGGTCGA AGGTGGGGCT GGCGA

Streptomyces sp. DSM 24056 16S rRNA gene SEQUENCE

The partial sequence of the 16 rRNA gene ( 16S rDNA), i.e 1448 nucleotides, of strain Streptomyces sp. DSM 24056 is reported in SEQ ID No.4. This sequence is compared with those deposited in public databases, and is found to be related to the 16S rRNA gene sequences of various Streptomyces strains.

As with other microorganisms, the characteristics of strain producing antibiotic NAI- 438 are subject to variation. For example, artificial variants and mutants of the strain can be obtained by treatment with various known mutagens, such as U.V. rays, and chemicals such as nitrous acid, N-methyl-N'-nitro-N-nitrosoguanidine, and many others. All natural and artificial variants and mutants of strain Streptomyces sp. DSM 24056 are capable of producing antibiotic NAI-438.

SEQJD No. 4 (1 6S rRNA gene of strain Streptomyces sp. DSM 24056)

1 GACGAACGCT GGCGGCGTGC TTAACACATG CAAGTCGAAC GATGAAGCCC

51 TTTCGGGGGT GGATTAGTGG CGAACGGGTG AGTA AC ACGT GGGC AATCTG

101 CCCTGCACTT CGGGACAAGC CCTGGAAACG GGGTCTAATA CCGGATACAA 151 CTCCCTTGGG CATCCTTGGG GGTGGAA AGC TTCGGCGGTG CAGGATGAGC 201 CCGCGGCCTA TCAGCTTGTT GGTGGGGTGA TGGCCTACCA AGGCGACGAC 251 GGGTAGCCGG CCTGAGAGGG CGACCGGCCA CACTGGGACT GAGACACGGC 301 CCAGACTCCT ACGGGAGGCA G CAGTGGGG A ATATTGCACA ATGGGCGAAA 35 1 GCCTGATGCA GCGACGCCGC GTGAGGGATG ACGGCCTTCG GGTTGTAAAC 401 CTCTTTCAGC AGGGAAGAAG CGAGAGTGAC GGTACCTGCA GAAGAAGCAC 451 CGGCTAACTA CGTGCCAGCA GCCGCGGTAA TACGTAGGGT GCGAGCGTTG 501 TCCGGAATTA TTGGGCGTAA AGAGCTCGTA GGCGGCCTGT CACGTCGGAT 551 GTGAAAGCCC GGGGCTTAAC CCTGGGTCTG CATTCGATAC GGGCAGGCTA 601 GAGTTCGGTA GGGGAGATCG GAATTCCTGG TGTAGCGGTG AAATGCGCAG 651 ATATCAGGAG GAACACCGGT GGCGAAGGCG GATCTCTGGG CCGATACTGA 701 CGCTGAGGAG CGAAAGCATG GGGAGCGAAC AGGATTAGAT ACCCTGGTAG 751 TCC ATGCCGT A A ACGTTGGG CACTAGGTGT GGGCGACATT CC ACGTTGTC

801 CGTGCCGCAG CTAACGCATT AAGTGCCCCG CCTGGGGAGT ACGGCCGCAA

851 GGCTAAAACT CA AAGGAATT GACGGGGGCC CGCACAAGCG GCGGAGCATG 901 TGGCTTAATT CGACGCAACG CGAAGAACCT TACCAAGGCT TGACATACAC

951 CAGAAAGCTG TGGAGACACA GCCCCCCTTG TGGTTGGTGT ACAGGTGGTG

1001 CATGGCTGTC GTCAGCTCGT GTCGTGAGAT GTTGGGTTAA GTCCCGCAAC

1051 GAGCGCAACC CTTATCCTGT GTTGCCAGCA ACTCTTCGGA GGTTGGGGAC

1 101 TCACGGGAGA CTGCCGGGGT CAACTCGGAG GAAGGTGGGG ACGACGTCAA 1 151 GTCATCATGC CCCTTATGTC TTGGGCTGCA CACGTGCTAC AATGGCCGGT

1201 ACAATGAGTT GCGATGCCGT GAGGTGGAGC GAATCTCAAA AAGCCGGTCT 1251 CAGTTCGGAT TGGGGTCTGC AACTCGACCC CATGAAGTCG GAGTCGCTAG 1301 TAATCGCAGA TCAGCATTGC TGCGGTGAAT ACGTTCCCGG GCCTTGTACA

1351 CACCGCCCGT CACGTCACGA AAGTCGGTAA CACCCGAAGC CGGTGGCCCA 1401 ACCCCTCGTG GGAGGGAGCC GTCGAAGGTG GGACTGGCGA TTGGGACG

Extraction And Purification Of Lantibiotics Of Formula (I)

Preferred compounds NAI-857, NA 30, NAI-438, NAM 14 are distributed both in the mycelium and in the filtered fraction of the fermentation broth. The harvested broth is processed to separate the mycelium from the supernatant of the fermentation broth and the mycelium is extracted with a water-miscible solvent to obtain a solution containing the lantibiotic, after removal of the spent mycelium. This mycelium extract is then processed separately or in pool with the supernatant according to the procedures reported hereafter for the supernatant fraction. When the water-miscible solvent would cause interferences with the operations for recovering the lantibiotic from the mycelium extract, the water-miscible solvent is removed by distillation or is diluted with water to a non-interfering concentration,

As used herein the term "water-miscible solvent" refers to solvents that, at the conditions of use, are miscible with water in a reasonably wide concentration range. Examples of water-miscible organic solvents that can be used in the extraction of the compounds of the disclosure are: lower alkanols, e.g. (C1-C3) alkanols such as methanol, ethanol, and propanol, phenyl (C 1 -C3) alkanols such as benzyl alcohol; lower ketones, e. g. (C 1 -C4) ketones such as acetone and ethyl methyl ketone; cyclic ethers such as dioxane and tetrahydrofuran; glycols and their products of partial etherification such as ethylene glycol, propylene glycol, and ethylene glycol monomethyl ether, lower amides such as dimethylformamide and diethylformamide; acetic acid dimethylsulfoxide and acetonitrile.

The recovery of the compound from the supernatant of the fermentation broth of the producing microorganism is conducted according to known per se techniques which include extraction with solvents, precipitation by adding non-solvents or by changing the pH of the solution, by partition chromatography, reverse phase partition chromatography, ion exchange chromatography, molecular exclusion chromatography and the like or a combination of two or more of said techniques. A procedure for recovering the compounds of the disclosure from the filtered fermentation broth includes extraction of a compound chosen among NAI-857, NAI-130, NAI-438 or NAI-1 14 with water-immiscible organic solvents, followed by precipitation from the concentrated extracts, possibly by adding a precipitating agent.

As used herein the term "water-immiscible solvent" refers to solvents that, at the conditions of use, are slightly miscible or practically immiscible with water in a reasonably wide concentration range, suitable for the intended use. Examples of water-immiscible organic solvents that can be used in the extraction of the compounds of the disclosure from the fermentation broth are: alkanols of at least four carbon atoms which may be linear, branched or cyclic such as n-butanol, 1-pentanol, 2-pentanol, 3-pentanol, I-hexanol, 2- hexanol, 3-hexanol, 3,3-dimethyl-l-butanol, 4-methyl- 1-pentanol, 3-methyl-l-pentanol, 2,2- dimethyl-3-pentanol, 2,4-dimethyl-3-pentanol, 4,4-dimethyl2-pentanol, 5-methyl-2-hexanol,

1 - heptanol, 2-heptanol, 5methyl-l-hexanol, 2-ethyl-l-hexanol, 2-methyl-3-hexanol, l octanol,

2- octanol, cyclopentanol, 2-cyclopentylethanol, 3- cyclopenthyl-l-propanol, cyclohexanol, cycloheptanol, cyclooctanol, 2,3-dimethyl-cyclohexanol,4-ethylcyclohexanol, cyclooctylmethanol, 6-methyl-5-hepten-2-01 , 1 -nonanol, 2nonanol, 1 -decanol, 2-decanol, and 3-decanol; ketones of at least five carbon atoms such as methylisopropylketone, methyl isobutylketone, methyl-n-amylketone, methylisoamylketone and mixtures thereof.

As known in the art, product extraction from the filtered fermentation broth may be improved by adjusting the pH at an appropriate value, and/or by adding a proper organic salt forming an ion pair with the lantibiotic, which is soluble in the extraction solvent. As known in the art, phase separation may be improved by salting the aqueous phase.

When, following an extraction, an organic phase is recovered containing a substantial amount of water, it may be convenient to azeotropically distill water from it. Generally, this requires adding a solvent capable of forming minimum azeotropic mixtures with water, followed by the addition of a precipitating agent to precipitate the desired product, if necessary. Representative examples of organic solvents capable of forming minimum azeotropic mixtures with water are: n-butanol, benzene, toluene, butyl ether, carbon tetrachloride, chloroform, cyclohexane, 2,5-dimethylfuran, hexane, and mxylenei the preferred solvent being n-butanol. Examples of precipitating agents are petroleum ether, (Cl - C4)alkyl ethers, such as ethyl ether, propyl ether, and butyl ether, and (Cl-C4)alkyl ketones such as acetone.

According to a preferred procedure for recovering lantibiotic NAI-857, NAI-130, NAI-1 14 or NAI-438, the filtered fermentation broth can be contacted with an adsorption matrix followed by elution with a polar, water miscible solvent or a mixture thereof, concentration to an oily residue under reduced pressure, and precipitation with a precipitating agent of the type already mentioned above.

Examples of adsorption matrixes that can be conveniently used in the recovery of the compounds of the disclosure, are polystyrene or mixed polystyrene-divinylbenzene resins (e. g. M l 12 or 81 12, Dow Chemical Co.; Amberlite© XAD2 or XAD4, Rohm & Haasi Diaion HP 20, Mitsubishi), acrylic resins (e.g. XAD7 or XAD8, Rohm & Haas), polyamides such as polycaprolactames, nylons and cross-linked polyvinylpyrrolidones (e.g. Polyamide-CC 6, Polyamide-8C 6, Polyamide-CC 6.6, Polyamide-CC 6AC andPolyamide-SC 6AC, Macherey- Nagel & Co., Germany; PA 400,' M.Woelm AG, Germany); and the polyvinylpirrohdone resin PVPCL, (Aldrich Chemie GmbH & Co., KG, Germany) and controlled pore cross- linked dextrans (e.g. Sephadex® LH-20, Pharmacia Fine Chemicals, AB). Preferably polystyrene resins are employed, particularly preferred being the Diaion HP 20 resin. In the case of polystyrene resins, polystyrenedivinylbenzene resins, polyamide resins or acrylic resins a preferred eluent is a water-miscible solvent or its aqueous mixtures. The aqueous mixtures can contain buffers at appropriate pH value.

The successive procedures for the isolation and purification of the lantibiotic may be carried out on the pooled extracts from the broth supernatant and from the mycelium. For example, when the portion of the lantibiotic product contained in the filtered fermentation broth or supernatant is recovered by absorption on an absorption resin and the portion of the lantibiotic product contained in the mycelium is extracted therefrom with a water-miscible solvent, followed by adsorption onto an absorption resin, the eluted fractions from each of the two sets of absorption resins are combined, optionally after concentration, and then further processed as a unitary crop. Alternatively, when the two sets of absorption resins utilized for the separate extraction stages are of the same type and have the same functional characteristics, they are pooled together and the mixture may be submitted to a unitary elution step, for instance, with a water-miscible solvent or a mixture thereof with water. In any case, whatever the procedure adopted for recovering the lantibiotics NAI-857, NAI-130, NAI-1 14 or NAI-438, the successive purification step is usually carried out on the mixture of the crude materials resulting from the combination of the separate extraction stages.

Purification of the crude lantibiotics NAI-857, NAI-130, NAI-1 14 or NAI-438, can be accomplished by any of the known per se techniques but is preferably conducted by means of chromatographic procedures.

Examples of these chromatographic procedures are those reported in relation to the recovery step and include also chromatography on stationary phases such as silica gel, alumina, activated magnesium silicate and the like or reverse phase chromatography on silanized silica gel having various functional derivatizations, and eluting with water miscible solvents or aqueous mixture of water-miscible solvents of the kind mentioned above.

For instance, preparative HPLC or medium or low pressure liquid chromatography may be employed, using RP-8 or RP-18 as stationary phase and a mixture of HCOONH 4 buffer (or TFA 0.1 %) : CH 3 CN (or MeOH) as eluting system. The active fractions recovered from the purification step are pooled together, concentrated under vacuum, precipitated by addition of a precipitating agent of the kind mentioned above and dried or lyophilized in single or iterative rounds. In the case the product contains residual amounts of ammonium formate or other buffering salts, these may be removed by absorption of the lantibiotics NAI- 857, NAI-130, NAI- 1 14 or NAI-438, on solid phase extraction column, for instance a reverse phase resin column such as SPE Superclean LCP18 Supelco (Belle fonte PA, USA) followed by washing with distilled water and elution with an appropriate aqueous solvent mixture, e. g. methanol: water. The lantibiotic is then recovered by removing the elution solvents.

Accordingly, purified lantibiotics NAI-857, NAI-130, NAI-1 14 or NAI-438 dried preparations are obtained as a white-beige powder. As usual in this art, the production as well as the recovery and purification steps may be monitored by a variety of procedures including inhibitory assay against susceptible microorganisms,HPLC or HPLC coupled with mass spectrometry. HPLC method 1 : A preferred analytical HPLC technique is performed on a Shimadzu instrument (LC 2010A-HT liquid chromatograph, Shimadzu Corporation, Japan) equipped with a column LiChrosphere RP 18, 5μ (125 x 4.6 mm) eluted at 1 ml/min flow rate and at 50°C temperature.

Elution is with a multistep program: Time=0 ( 10% phase B); Time=20 min (50% Phase B); Time=21 min (80 % of phase B); Time=25 min (80 % of phase B); Time=26 min ( 1 0 % of phase B); Time=35 min ( 10 % of phase B). Phase A is trifluoroacetic acid 0.1 %) in water (v/v) and Phase B is acetonitnle. UV detector is at 230 nm and 270 nm. In these analytical HPLC conditions the lantibiotics show the following retention times: NAI-857 14,8 minutes, NAI- 1 30 13,3 minutes, NAl-1 14 1 6,7 minutes, NAI-438 14,4 minutes.

HPLC method 2: A preferred analytical HPLC-MS technique is performed on a Agilent 1 100 series liquid chromatograph equipped with a column Ascentis express Supelco RP1 8, 2.7μ (50 x 4.6 mm) eluted at 1 ml/min flow rate and at 40°C temperature. Elution is with a multistep program: Time=0 (5%> phase B); Time=6 min (95% Phase B); Time=7 min ( 100 % phase B); Time=7.2 min (5 % phase B); Time= 10 min (5 % phase B). Phase A is trifluoroacetic acid 0.05% in water (v/v) and phase B is trifluoroacetic acid 0.05% in acetonitrile (v/v). UV detector is at 220 nm.

The effluent from the column is splitted in a ratio 50:50 and one part (500 μί/ιηίη) is diverted to photodiode array detector. The remaining 500 μί/ηιίη are diverted to the ESI interface of a Bruker Esquire3000 plus ion trap mass spectrometer.

The mass spectrometric analysis is performed under the following conditions: sample inlet conditions: sheat gas (N 2 ) 50 psi; dry gas 1 0 L/min; capillary heater 365°C; sample inlet voltage settings: polarity : positive; capillary voltage -4000V; end plate offset -500V; Scan conditions: maximum ion time 200 ms; ion time 5 ms; full micro scan 3 ; segment: duration 10 min, scan events positive (100-2400 m/z). In these analytical HPLC conditions the lantibiotics show the following retention times: NAI-857 3.3 minutes, NAI- 130 3,5 minutes, NAI- 1 14 4.1 minutes, NAI-438 3.5 minutes.

Physico-Chem ical Characteristics Of Antibiotic Of Formula (I) NAI-857

A) Mass spectrometry: in MS experiments on a Thermofinnigan LCQ deca instrument fitted with an electrospray source, using Thermofinnigan calibration mix, antibiotic NAI-857 gives a doubly protonated ion at 1086 m/z. MS/MS analysis of the double charged ion is performed with the observed main fragmentations: monocharged 1 1 16, 1373, 1456, 1791 and double charged 1021 m/z. The electrospray conditions are: Spray Voltage: 4.7 kV; Capillary temperature: 220°C; Capillary Voltage: 3 V; Infusion mode 10 μΙ7ι η ίη. Spectra are recorded from a 0.2 mg/ml solution in methanol/water 80/20 (v/v) with trifluoroacetic acid 0, 1% and are reported in Fig. l and Fig.2 (full-scan low resolution spectrum).

B) The U.V. spectrum of antibiotic NAI-857, performed in TFA 0.1%-acetonitrile (in ratio 50:50) with a Shimadzu Diode Array detector SPD-M 10A VP (Shimadzu Corporation, Japan) during a HPLC analysis, exhibits two maxima at 225 and 280 nm. UV spectrum is reported in Fig. 3

C) Ή-NMR and 2D experiments are recorded in the mixtures CD 3 CN/D 2 0 (1/1) with and without the addition of 50 μΐ of H 2 0 at 25°C on a Bruker AMX 600 or 400 spectrometers. If necessary a water suppression sequence is applied.

Ή NMR spectrum of antibiotic NAI-857 exhibits the following groups of signals [8=ppm; multiplicity; (attribution)]: 0.90 t (CH 3 ), 1.00 d (CH 3 ), 1.04 t (CH 3 ), 1.15 d (CH 3 ), 1 .27 d (CH 3 ), 1.37 d (CH 3 ), 1.89 d (CH 3 ), 1.25-1.47 m (CH 2 ), 1.35-1 .62 m (CH 2 ), 1.91-1.98 m (CH 2 ), 1 .87-2.42 m (CH 2 ), 2.9-3.76 (peptidic beta CH and CH 2 ), 3.83-5.14 (peptidic alpha CH and CH 2 ), 5.54-6.07 s (CH 2 ), 6.68 q (CH), 6.89-9.15 s, d and m (aromatic CH's and peptidic NH's). The ! Η-ΝΜΡν spectrum of NAI-857 is reported in Fig.4.

NAI-857 exhibits the following 13C groups of signals [5=ppm; (attribution)]: 10.1 - 21.4 (aliphatic CH 3 's), 25.7 - 67.0 (aliphatic and peptidic signals), 108 - 157 (aromatic and double bonds CH's and quaternary carbons), 165 - 174 (peptidic carbonyls). HSQC and HMBC spectra of NAI-857 are reported in Fig.Fig.5 and Fig.6.

D) HPLC data: NAI-857 shows a retention time of 14.8 minutes when analysed with the HPLC method 1 as above described. NAI-857 shows a retention time of 3.3 minutes when analysed with HPLC method 2 as above described.

Physico-Chemical Characteristics Of Antibiotic Of Formula (I) NAI- 130

A) Mass spectrometry: in MS experiments on a Thermofinnigan LCQ deca instrument fitted with an electrospray source, using Thermofinnigan calibration mix, antibiotic NAI- 130 gives a doubly protonated ion at 1079 m/z. MS/MS analysis of the double charged ion is performed with the observed main fragmentations: monocharged 1 1 16, 1373, 1456, 1791 and double charged 1021 m/z. The electrospray conditions are: Spray Voltage: 4.7 kV; Capillary temperature: 220°C; Capillary Voltage: 3 V; Infusion mode 10 μ17ιηίη. Spectra are recorded from a 0.2 mg/ml solution in methanol/water 80/20 (v/v) with trifluoroacetic acid 0, 1% and are reported in FIG.7 and FIG.8 (full-scan low resolution spectrum).

B) The U.V. spectrum of antibiotic NAI-130, performed in TFA 0.1 %-acetonitrile (in ratio 50:50) with a Shimadzu Diode Array detector SPD-M10A VP (Shimadzu Corporation, Japan) during a HPLC analysis, exhibits two maxima at 225 and 280 nm. UV spectrum is reported in Fig. 9

C) ! H-NMR and 2D experiments are recorded in the mixtures CD 3 CN/D 2 O (1/1) with and without the addition of 50 μί of H 2 0 at 25°C on a Bruker AMX 600 or 400 spectrometers. If necessary a water suppression sequence is applied.

Ή NMR spectrum of antibiotic NAI-130 exhibits the following groups of signals [5=ppm; multiplicity; (attribution)] : 0.96 d (CH 3 ), 1.00 d (CH 3 ), 1.04 t (CH 3 ), 1 .13 d (CH 3 ), 1.24 d (CH 3 ), 1.33 d (CH 3 ), 1.89 d (CH 3 ), 1.33-1.63 m (CH 2 ), 1 .91-1.98 m (CH 2 ), 1.87-2.39 m (CH 2 ), 2.9-3.76 (peptidic beta CH and CH 2 ), 3.8-5.1 (peptidic alpha CH and CH 2 ), 5.47- 6.26 s (CH 2 ), 6.68 q (CH), 6.89-9.21 s, d and m (aromatic CH's and peptidic NH's). The Ή- NMR spectrum of NAI-130 is reported in Fig.10.

NAI-130 exhibits the following 13C groups of signals [5=ppm; (attribution)]: 10.1 - 21 .4 (aliphatic CH 3 's), 25.7 - 67.0 (aliphatic and peptidic signals), 106 - 157 (aromatic and double bonds CH's and quaternary carbons), 165 - 174 (peptidic carbonyls). HSQC and HMBC spectra of NAI-130 are reported in Fig. l 1 and Fig.12.

D) HPLC data: NAI-130 shows a retention time of 13.3 minutes when analysed with the HPLC method 1 as above described. NAI-130 shows a retention time of 3.5 minutes when analysed with HPLC method 2 as above described.

Physico-Chemical Characteristics Of Antibiotic Of Formula (I) NAI- 1 14

A) Mass spectrometry: in MS experiments on a Thermofinnigan LCQ deca instrument fitted with an electrospray source, using Thermofinnigan calibration mix, antibiotic NAI-1 14 gives a doubly protonated ion at 1 104 m/z. MS/MS analysis of the double charged ion is performed with the observed main fragmentations: monocharged 1 130, 1387, 1470, 1828 and double charged 1039 m/z. The electrospray conditions are: Spray Voltage: 4.7 kV; Capillary temperature: 220°C; Capillary Voltage: 3 V; Infusion mode 10 μΙ7 η ιίη. Spectra are recorded from a 0.2 mg/ml solution in methanol/water 80/20 (v/v) with trifluoroacetic acid 0, 1% and are reported in Fig.13 and Fig.14 (full-scan low resolution spectrum).

B) The U.V. spectrum of antibiotic NA 14, performed in TFA 0.1%-acetonitrile (in ratio 50:50) with a Shimadzu Diode Array detector SPD-M10A VP (Shimadzu Corporation, Japan) during a HPLC analysis, exhibits two maxima at 225 and 280 nm. UV spectrum is reported in Fig. 15

C) Ή-NMR and 2D experiments are recorded in the mixtures CD 3 CN/D 2 0 (1/1) with and without the addition of 50 of H 2 0 at 25°C on a Bruker AMX 600 or 400 spectrometers. If necessary a water suppression sequence is applied.

Ή NMR spectrum of antibiotic NAI-1 14 exhibits the following groups of signals [5=ppm; multiplicity; (attribution)]: 0.83 t (CH 3 ), 0.93 d (CH 3 ), 0.99 t (CH3), 1.07 d (CH3), 1.21 d (CH 3 ), 1.31 d (CH 3 ), 1.85 d (CH 3 ), 1.8-5.3 (peptidic CH and CH 2 ), 5.34-6.22 s (CH 2 ), 6.66 q (CH), 7.3 1 -10.09 s, d and m (aromatic CH's and peptidic NH's). The Ή-NMR spectrum of NAM 14 is reported in FIG.16.

NAI-1 14 exhibits the following 13C groups of signals [8=ppm; (attribution)] : 10.6 - 21.6 (aliphatic CH 3 's), 24.7 - 67.1 (aliphatic and peptidic signals), 105 - 134 (aromatic and double bonds CH's and quaternary carbons), 165 - 174 (peptidic carbonyls). HSQC and HMBC spectra of NAI-1 14 are reported in Fig.17 and Fig.18

D) HPLC data: NAI-1 14 shows a retention time of 16,7 minutes when analysed with the HPLC method 1 as above described. NAI-1 14 shows a retention time of 4.1 minutes when analysed with HPLC method 2 as above described.

Physico-Chcmical Characteristics Of Antibiotic Of Formula (I) NAI-438

A) Mass spectrometry: in MS experiments on a Thermofmnigan LCQ deca instrument fitted with an electrospray source, using Thermofmnigan calibration mix, antibiotic NAI-438 gives a doubly protonated ion at 1093 m/z. MS/MS analysis of the double charged ion is performed with the observed main fragmentations: monocharged 1 130, 1387, 1470, 1806 and double charged 1036 m/z. The electrospray conditions are: Spray Voltage: 4.7 kV; Capillary temperature: 220°C; Capillary Voltage: 3 V; Infusion mode 10 μί/ηιίη. Spectra are recorded from a 0.2 mg/ml solution in methanol/water 80/20 (v/v) with trifluoroacetic acid 0, 1% and are reported in Fig.19 and Fig.20 (full-scan low resolution spectrum).

B) The U.V. spectrum of antibiotic NAI-438, performed in TFA 0.1%-acetonitrile (in ratio 50:50) with a Shimadzu Diode Array detector SPD-M 10A VP (Shimadzu Corporation, Japan) during a HPLC analysis, exhibits two maxima at 225 and 280 nm. UV spectrum is reported in Fig. 21

D) HPLC data: NAI-438 shows a retention time of 14,4 minutes when analysed with the HPLC method 1 as above described. NAI-438 shows a retention time of 3.5 minutes when analysed with HPLC method 2 as above described.

Determination Of "Acid Resistant" Aminoacids In Antibiotic NAI-857

Acid labile amino acids are not detectable with this approach. The hydrolysate of NAI-857 was studied by HPLC-MS analysis, after suitable derivatization, in comparison with a mixture of standard amino acids similarly derivatized. Antibiotic NAI-857 was submitted to complete acidic hydrolysis (HC1 6N, 160°C, 5 minutes, microwaves). The hydrolyzed sample was treated with 4-[4-isothiocyanate-phenyl]-azo-N,N-dimethyl aniline and triethylamine in water : acetonitrile 1 : 1. The reaction mixture was stirred 2 hours at 60°C and extracted with petroleum ethenmethylene chloride 8:2. The organic phase was evaporated to dryness, redissolved in water: acetonitrile 1 : 1 (1 n L) and analyzed by HPLC-MS.

The qualitative HPLC analysis was carried out on a liquid chromatography system with simultaneous DAD and MS detection. The HPLC method had the following conditions: Column: Ascentis express Supeico RP18, 2.7μ (50 x 4.6 mm) Column temperature: 40°C Flow: 1 mL/min. Phase A: Trifluoroacetic acid 0.05% in water (v/v) Phase B: Trifluoroacetic acid 0.05% in acetonitrile (v/v)

Elution Program

MS conditions were the following: Spectrometer: Bruker Esquire3000 plus equipped with standard electrospray source: capillary temperature: 365°C; capillary voltage: -4 kV; end plate offset: -500V; sheat gas (N 2 ): 50 psi.

In the LC/MS chromatograms obtained on the hydrolysate of antibiotic NAI-857, the following amino acids are identified along with other unidentified peaks: lanthionine, m ethyl - lanthionine, glycine, proline, phenylalanine, tyrosine and leucine or isoleucine.

Identification Of N-Terminal Aminoacid In NAI-857:

5 mg of NAI-857 were dissolved in 200 i of DMF, triethylamine {5 xL) and phenylisothiocyanate (5 μί) were added and the reaction was stirred at 60°C for lh. After that time HPLC-MS showed the reaction complete. The solution was extracted with hexane:dichloromethane 8:2 (3X300 xL), evaporated to dryness, dissolved in trifluoroacetic acid and reacted at 60°C for lh. HPLC-MS analysis shows that reaction is complete, with the double charged peak of m/z 1029 arau corresponding to the loss of the N-terminal Leu (or He) amino acid residue. (NMR analysis highlights the presence of two isoleucine residues while leucine was not detected)

N-Terminal Aminoacid Identification Of NAI- 1 30:

5 mg of NAI-130 were dissolved in 200 i of DMF. Triethylamine (5 μί) and phenylisothiocyanate (5 μΌ) were added and the reaction was stirred at 60°C for lh. After that time HPLC-MS showed the reaction complete. The solution was extracted with hexane:dichIoromethane 8:2 (3X300 μί), evaporated to dryness, dissolved in trifluoroacetic acid (500 μΚ) and reacted at 60°C for l h.. The reaction solution was directly analysed by HPLC-MS and the double charged peak of m/z 1029 amu corresponding to the truncated peptide was detected corresponding to a loss of the N-terminal Val aminoacid.

The following examples are provided for illustrative purposes only and should in no way be considered as limiting the protection scope of the disclosure encompassed herein.

EXAMPLES

Example 1 : Fermentation method of STREPTOMYCES sp. DSM 24069 Streptomyces sp. DSM 24069 is maintained on S I plates for 2-3 weeks at 28 °C. S I is composed of (g/L): oatmeal 60, agar 18, FeS0 4 x 7 H 2 0 0,001 , MnCl 2 x 4 H 2 0 0,001 , ZnS0 4 x 7 H 2 0 0,001 and prepared by boiling oatmeal in 1 L distilled water for 20 min, filtering it through cheesecloth, adding the remaining components, adjusting volume to 1L with distilled water and pH to 7.2 before sterilization at 121 °C for 20 min. The microbial content of one plate is scraped and inoculated into 500 mL Erlenmeyer flasks containing 100 ml of seed medium which is composed of (g/1): dextrose monohydrate 20, yeast extract 2, soybean meal 8, NaCl 1 and calcium carbonate 4. Medium is prepared in distilled water and pH adjusted to 7.3 prior to sterilization at 121 °C for 20 min. The inoculated flasks are grown at 28°C, on a rotatory shaker operating at 200 rpm. After 2-3 days, 5% of this culture is inoculated into a series of flasks containing the same medium. After 72 hours of incubation, 500 mL are transferred into 19,5 L bioreactor containing 10 L of the production medium composed of (g/L) corn steep liqour 30, maize dextrin 20, yeast extract 5, glucose monohydrate 10, calcium carbonate 2, NaCl 1. The medium is prepared in deionized water and the pH adjusted to 7 before sterilization at 121 °C for 25 min, while glucose is sterilized separately and added after cooling. The fermentation is carried out at 30°C, with 400 rpm stirring and 0.5 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 98 hours of fermentation. The production of the antibiotic NAI-857 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 2: Fermentation method of Streptomyces sp. DSM 24058

Streptomyces sp. DSM 24058 is maintained on S I plates (composed and prepared as described in Example 1 ) for 2-3 weeks at 28 °C. The microbial content of one plate is scraped and inoculated into 500 mL Erlenmeyer flasks containing 100 ml of seed medium which is composed and prepared as described in Example 1. The inoculated flasks are grown at 28°C, on a rotatory shaker operating at 200 rpm. After 3-4 days, 5% of this culture is inoculated into a series of flasks containing the same medium. After 48 hours of incubation, 300 mL are transferred into 19,5 L bioreactor containing 6 L of the production medium composed and prepared as described in Example 1. The fermentation is carried out at 30°C, with 500 rpm stirring and 0.6 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 98 hours of fermentation. The production of the antibiotic NAI-130 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 3 : Fermentation method of Streptosporangium sp. DSM 24060

Streplosporangium sp. DSM 24060 is maintained on S I plates (composed and prepared as described in Example 1 ) for 2-3 weeks at 28 °C. The microbial content of one plate is scraped and inoculated into 50 mL Erlenmeyer flasks containing 15 mL of seed medium (composed and prepared as described in Example 1 ). The inoculated flasks are grown at 28°C, on a rotatory shaker operating at 200 rpm. After 3-4 days, 5% of this culture is inoculated into 500 mL Erlenmeyer flasks containing 100 mL of the same medium. After 72 hours of incubation, 120 mL are transferred into 3 L bioreactor containing 2 L of the production medium composed of (g/L): maize dextrin 20, glucose 10, yeast extract 2, casein hydrolysed 4, meat extract 4 and calcium carbonate 3. The medium is prepared in deionized water and the pH adjusted to 7.2 before sterilization at 121 °C for 25 min, while glucose is sterilized separately and added after cooling. The fermentation is carried out at 30°C, with 600 rpm stirring and 0.5 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 96 hours of fermentation. The production of the antibiotic NAI-1 14 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 4: Fermentation method of Streptomyces sp. DSM 24056

Streptomyces sp. DSM 24056 is maintained on S I plates (composed and prepared as described in Example 1 ) for 2-3 weeks at 28 °C. The microbial content of one plate is scraped and inoculated into 50 mL Erlenmeyer flasks containing 15 mL of seed medium (composed and prepared as described in Example 1 ). The inoculated flasks are grown at 28°C, on a rotatory shaker operating at 200 rpm. After 2-3 days, 5% of this culture is inoculated into 500 mL Erlenmeyer flasks containing 100 mL of the same medium. After 48 hours of incubation, 100 mL are transferred into 3 L bioreactor containing 2 L of the production medium composed of (g/L): glycerol 30, soybean meal 1 5, NaC12, calcium carbonate 5. The medium was prepared in deionized water and the pH adjusted to 7.2 before sterilization at 121 °C for 25 min. The fermentation is carried out at 30°C, with 600 rpm stirring and 0.5 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 120 hours of fermentation. The production of the antibiotic NAI-438 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 5 : Alternative Fermentation method of STREPTOMYCES sp. DSM 24069

Streptomyces sp. DSM 24069 is maintained on BTT-agar plates for 2-3 weeks at 28 °C. BTT-agar is composed of (g/L): glucose 10, yeast extract 1 , meat extract 1 , casitone 1 , agar 18. Medium is prepared in distilled water and pH adjusted to 7.3 before sterilization at 121 °C for 20 min. The microbial content of one plate is scraped and inoculated into 50 mL Erlenmeyer flasks containing 15 mL of seed medium (composed and prepared as described in Example 1 ). The inoculated flasks are grown at 28°C, on a rotatory shaker operating at 200 rpm. After 2-3 days, 5% of this culture is inoculated into 500 mL Erlenmeyer flasks containing 100 mL of the same medium. After 72 hours of incubation, 100 mL are transferred into 3 L bioreactor containing 2 L of the production medium composed and prepared as described in Example 4. The fermentation is carried out at 30°C, with 400 rpm stirring and 0.5 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 120 hours of fermentation. The production of the antibiotic NAI-857 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 6: Alternative Fermentation method of STREPTOMYCES sp. DSM 24058

Streptomyces sp. DSM 24058 is maintained on BTT-agar plates (composed and prepared as described in Example 5) for 2-3 weeks at 28 °C. The microbial content of one plate is scraped and inoculated into 50 mL Erlenmeyer flasks containing 15 mL of seed medium composed of (g/L): dextrose monohydrate 10, maize dextrin 24, yeast extract 5, soya peptone 5. Medium is prepared in distilled water and pH adjusted to 7.2 before sterilization at 121 °C for 20 min. After 3-4 days, 5% of this culture is inoculated into 500 mL Erlenmeyer flasks containing 100 mL of the same medium. After 48 hours of incubation, 120 mL are transferred into 3 L bioreactor containing 2 L of the production medium composed and prepared as described in Example 3. The fermentation is carried out at 30°C, with 500 rpm stirring and 0.6 vvm aeration. During the fermentation pH is maintained <7.2 by addition of sulphuric acid when required. The fermenter is harvested after 120 hours of fermentation. The production of the antibiotic NAI- 130 is monitored by HPLC as previously described, after extracting the whole culture broth with twice the volume of methanol and stirring for one hour.

Example 7: Recovery and purification of antibiotic NAI-857 (compound of formula (I) wherein X is He, Y is Tyr, n is 1 , R and R? areOH)

The fermentation broth (10L) described in the Example 1 is added of 2.5L of methanol and the pH lowered to 4.5 by addition of AcOH (80 raL). The mixture is shaken for 1 hour at room temperature and filtered with filter paper. Antibiotic NAI-857 is found mainly in the cleared broth The filtered broth is concentrated to 3.6 L and then 300 niL of Diaion HP-20 polystyrenic resin were added; the mixture is stirred 3h at room temperature and then the resin is recovered, washed with 1.2 L methanol: water 35: 75 (v/v) and then eluted with 3 L methanol: water 9: 1 (v/v) stirring overnight at room temperature. The eluted fraction containing antibiotic NAI-857 is concentrated to small volume on a rotary evaporator and maintained at 4°C overnight. The formed precipitate is collected by filtration obtaining 3.4 g of crude antibiotic NAI-857. The solid is suspended in acetone (20 mL), stirred for 30 minutes at room temperature and filtered thus obtaining 1 .8 g of NAI-857 as a beige powder.

Antibiotic NAI-857 (100 mg) was further purified by medium pressure chromatography on reverse phase C I 8 RediSep Column, 86g, (Teledyne ISCO, Nebraska, USA) by using a CombiFlash Medium Pressure Chromatography System (Teledyne ISCO, Nebraska, USA) with a detection wavelength (230 nm). Phase A is 50 mM ammonium formate buffer (pH 6.6) and phase B is acetonitrile. The resin is previously conditioned with a mixture of phase A: phase B 9: 1 (v/v) and is then eluted at 60 mL/min with linear gradient from 10 % to 90 % of phase B in 1 7 min. The fractions containing antibiotic NAI-857 are pooled, concentrated under vacuum and lyophilized from water, yielding 45 mg of purified antibiotic NAI-857.

Example 8: Recovery and purification of antibiotic NAI- 130 (compound of formula (I) wherein X is Val, Y is Tyr n is 1 , R^ and R2 are OH)

The fermentation broth (2.2 L) described in the Example 2 was added with 550 mL of methanol and the pH lowered to 3.8 by addition of AcOH. The mixture was shaken for at room temperature overnight and filtered on Buchner. The filtered solution was evaporated to reduced volume (1 L) and added with 50 mL of Diaion HP-20 polystyrenic resin. The suspension was then stirred 3h at room temperature. Diaion HP-20 polystyrenic was recovered by filtration, washed with methanohwater 30: 70 (v/v, 4X20mL) and eluted batchwise with methanol :water 9: 1 (v/v, 200mL). The eluted fractions containing antibiotic NAI-130 were concentrated to small volume on a rotary evaporator. The concentrated solution was maintained at 4°C overnight. The formed precipitated was collected by filtration obtaining 300 mg of crude antibiotic. The solid was purified by medium-pressure liquid chromatography on reverse phase C 18 RediSep Column, (Teledyne ISCO, Nebraska, USA) by using a CombiFlash Medium Pressure Chromatography System (Teledyne ISCO, Nebraska, USA) with a detection wavelength (230 nm). Phase A is 50 mM ammonium formate buffer (pH 6.6) and phase B is acetonitrile. The resin is previously conditioned with a mixture of phase A: phase B 9: 1 (v/v) and is then eluted at 60 mL/min with linear gradient from 10 % to 90 % of phase B in 17 min. Fractions containing NAI- 130 were evaporated at reduced pressure to small volume and liophylazed obtaining 120 mg of NAI-130.

Example 9: Recovery of antibiotic NAI- 1 14 (compound of formula (I) wherein X is He, Y is Trp n is 2, R j^ and R? are OH)

To the fermentation broth (2 L) described in the Example 3 methanol (2L) was added and the mixture was shaken for l h at room temperature and filtered on a Buchner funnel to remove the mycelium. The filtered solution was concentrated to 1 L and then added with 120 mL of Diaion HP-20 polystyrenic resin. The suspension was stirred for 1.5 h at room temperature and the resin was recovered by filtration on a Buchner funnel. The resin was then washed with 1 L of a solution of methanol: water 30:70 for 1 h at room temperature. The resin was filtered on a Buchner funnel, poured into 1 L of a solution of methanol: water 9: 1 and stirred for an 1 h at room temperature. The filtered solution was evaporated in vacuum to give the crude product NAI- 1 14 which was further purified by medium-pressure liquid chromatography. Instruments: Isco Combiflash. Phase A. TFA 0.1 % Phase B: MeCN. Gradient: 0-20 minutes (linear 10-50% of acetonitrile),. The fractions containing NAI-1 14 were evaporated at reduced pressure to small volume and lyophilized to obtain 60 mg of NAI-1 14. Example 10: Recovery and purification of antibiotic NAI-438 (compound of formula (I) wherein X is He, Y is Tyr n is 2, R] and R? are OH)

To part of the fermentation broth (0.2 L) described in the Example 4 were added 50 mL of methanol, the mixture was and the mixture is shaken for 1 hour at room temperature followed by filtration on a Buchner funnel to remove the mycelium. The filtered solution was concentrated to 100 mL and then added to 20 mL of Diaion HP-20 polystyrenic resin. The suspension was stirred for 2 h at room temperature and the resin was recovered by filtration on a Buchner funnel. The resin was then washed with 100 mL of a solution of methanokwater 30:70 for 1 h at room temperature. The resin was then filtered on a Buchner funnel, poured into 100 mL of a solution of methanokwater 9: 1 and stirred for an additional 1 h at room temperature. The filtered solution was evaporated in vacuum to give the crude product NAI-438 which was further purified by medium-pressure liquid chromatography. Instruments: Isco Combiflash. Phase A. TFA 0.1% Phase B: MeCN. Gradient: 0-20 minutes (linear 10-50% of acetonitrile), The fractions containing NAI-438 were evaporated at reduced pressure to small volume and lyophilized to obtain 4 mg of NAI-438.

Example 1 1 : Synthesis of NAI-857 diamide with ethylendiamine (compound of formula (I) wherein X is He, Y is Tyr.n is l , Ri or R z is -NHCH¾CH Z NH Z )■

To a stirred solution of 30 mg of NAI-857, prepared as described under Example 7, in 1 .2 mL of DMF, 4 \L of ethylendiamine and 8 mg of PyBOP are added and the reaction is kept under stirring at room temperature for 20 minutes; after that time HPLC-MS analysis shows one major double charged peak of m/z 1 128 amu corresponding to the diamide derivative. The reaction mixture solution is then adsorbed on 4.3g reverse-phase CI 8 RediSep Column, (Teledyne ISCO, Nebraska, USA) and purified by using a CombiFlash Medium Pressure Chromatography System (Teledyne ISCO, Nebraska, USA) with a detection wavelength (230nm). The resin is previously conditioned with a mixture of phase A: phase B 9.5:0.5 (v/v) and is then eluted at 18 mL/min with linear gradient from 5 % to 90 % of phase B in 18 min. Phase A is TFA 0.1% and phase B is acetonitrile. The fractions containing the diamide derivative are pooled, concentrated under vacuum and lyophilized from water, yielding 10 mg of purified NAI-857-diamide derivative. MS analysis showes a doubly protonated ion at m/z 1 128. Example 12: Synthesis of NAI- 1 14 diamide with ethyl en diamine (compound of formula (I) wherein X is He, Y is Trp.n is 2, R, or R z is -NHCFLCLLNFL ).

To a stirred solution of 10 mg of NAI-1 14, prepared as described under Example 9, in 0.5 niL of DMF, 1 μΕ of ethylendiamine and 8.8 mg of PyBOP are added and the reaction is kept under stirring at room temperature for 1 hour; after that time HPLC-MS analysis showes one major double charged peak of m/z 1 146 amu corresponding to the diamide derivative. The reaction mixture solution is then adsorbed on 4.3g reverse-phase CI 8 RediSep Column, (Teledyne ISCO, Nebraska, USA) and purified by using a CombiFlash Medium Pressure Chromatography System (Teledyne ISCO, Nebraska, USA) with a detection wavelength (214nm). The resin is previously conditioned with a mixture of phase A: phase B 9.5:0.5 (v/v) and is then eluted at 18 mL/min with linear gradient from 5 % to 90 % of phase B in 18 min. Phase A is TFA 0.1 % and phase B is acetonitrile. The fractions containing the diamide derivative are pooled, concentrated under vacuum and lyophilized from water, yielding 2 mg of purified NAI-1 14-diamide derivative. MS analysis showes a doubly protonated ion at m/z 1 146.

Example 1 3 : In vitro antibacterial activity of NAI-857, NAI- 1 30, NAI- 1 14. NAI-438 and their diamides with ethylendiamine (NAI-857 derivative, NAI- 130 derivative, NAI- 1 14 derivative, NAI-438 derivative)

Minimal inhibitory concentrations (MICs) for aerobic bacteria are determined by broth microdilution methodology, according to Clinical and Laboratory Standards Institute guidelines (CLSI documents M 100-S 16 and M27-A, NCCLS, Wayne, PA) using inocula of l -5xl 0 5 CFU/mL for Gram positive and negative bacteria and lxl O 4 CFU/mL for Candida albicans.

Test results are scored after 20-24 hours of incubation at 35°C for all tested strains, with the exception of C. albicans, which is incubated for 48 hours.

Staphylococcus aureus, enterococci, Escherichia coli and Moraxella catharralis strains are grown in Cation Adjusted Mueller Hinton (CAMHB) broth, streptococci isolates in Todd Hewitt broth and Candida albicans in RPMI-1640. All media are from Difco Laboratories, Detroit, MI, USA. The effect of 30% bovine serum is determined under the same experimental conditions. MICs for anaerobic bacteria are determined by the broth dilution method in Brucella broth (BB) supplemented with hemin (5 μg/mL), vitamin l (1 Hg/mL), lysed horse blood (5%) and Oxyase (1 :25 v/v) (CLSI documents M1 1 -A6, NCCLS, Wayne, PA).

Inocula are prepared by suspending few colonies from a 48-hours agar plate in BB to an OD625=0.8, which is then diluted 1 : 10 to achieve a final suspension of about 10 3 CFU/mL.. Plates are incubated at 37 °C under anaerobic atmosphere (80% N0 2 , 10% C0 2 and 10% H 2 , GasPak EZ anaerobe container system, Becton Dickinson, Italy) for 48 hours.

All strains used are clinical isolates or strains from American Type Culture Collection (ATCC). The results of the tests are reported in Table 2.

Compounds NAl-857 (prepared as described under Example 7), NAI- 130 (prepared as described under Example 8), NAl- 1 14 (prepared as described under Example 9), NAl-857 diamide with ethylendiamine (prepared as described under Example 1), NAl-1 14 diamide with ethylendiamine (prepared as described under Example 12), and vancomycin (VA) are dissolved in DMSO to obtain a 10 mg/mL stock solution, and subsequently diluted in the test media to obtain working solutions. Microplates are always pre-coated with 0.02% bovine serum albumine to prevent non-specific adhesion of compounds.

Table II: Antimicrobial activity of lantibiotics NAl-857, NAI-130, NAl-1 14, NAl-857 diamide with ethylendiamine and NAl-1 14 diamide with ethylendiamine against aerobic bacteria.

Enterococcus faecium VanS 568 256 > 128 >128 8 16 2

+ serum 30% >512 >128 >128 32 64 2

E. faecium VanA 569 512 > 128 >128 8 16 >128

E. faecal is VanS 559 256 128 128 32 32 1

+ serum 30% >512 >128 >128 64 64 2

E. faecalis VanA 560 256 128 >128 32 64 2

Escherichia coli ATCC QC 25922 >512 > 128 >128 >512 >128 > 128

Candida albicans 145 >512 > 128 >128 >512 >128 >128

VA= vancomycin, code= internal code for clinical isolates