Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL HETEROCYCLIC ANTIESTROGENS
Document Type and Number:
WIPO Patent Application WO/2017/072792
Kind Code:
A1
Abstract:
The present invention provides novel heterocyclic compounds as anticancer agents, especially as estrogen receptor (ER) antagonists/ degraders and process for their preparation.

Inventors:
PAL RANJAN KUMAR (IN)
SEDANI AMIT PRAVINBHAI (IN)
PRAJAPATI KAUSHIKKUMAR DHANJIBHAI (IN)
RANA DIJIXA PINAKIN (IN)
PATHAK SANDEEP PANKAJBHAI (IN)
DESAI JAPAN NITINKUMAR (IN)
ARADHYE JAYRAJ DILIPBHAI (IN)
PANCHAL BHAVESH MOHANBHAI (IN)
GHOSH INDRANEEL (IN)
CHITTURI TRINADHA RAO (IN)
Application Number:
PCT/IN2016/050364
Publication Date:
May 04, 2017
Filing Date:
October 26, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SUN PHARMA ADVANCED RES CO LTD (IN)
International Classes:
C07D311/60; C07D215/12; C07D335/06
Domestic Patent References:
WO2014203132A12014-12-24
WO2013090829A12013-06-20
WO2011156518A22011-12-15
WO2010145010A12010-12-23
WO2004091488A22004-10-28
WO2001068634A12001-09-20
WO2014203132A12014-12-24
WO2011156518A22011-12-15
WO2013090829A12013-06-20
Foreign References:
US5395842A1995-03-07
US5389646A1995-02-14
US5407947A1995-04-18
EP0470310A11992-02-12
US20140107095A12014-04-17
Other References:
PETER G. M. WUTSTHEODORA W GREENE: "Greene's Protective Groups in Organic Chemistry", WILEY INTERSCIENCE
See also references of EP 3368519A4
Download PDF:
Claims:
CLAIMS:

1. A compound of Formula I

Form ula I

or salts or stereoisomers thereof wherein,

Rj is mono or di-substitution on ring A and is selected from a group comprising -R3, -OR3, halogen, -C1-6 haloalkyl, -Od_6 haloalkyl, -CN, -N(R3)2, -NR3SO2R3, -NR3CHO, -NR3COR3, -OC(0)R3, -OC(0)N(R3)2, -OP(0)(OH)2 and -OC(0)OR3 wherein R3 at each occurrence is selected from hydrogen, Ci_6 linear, branched or cyclic alkyl and Ci_6 linear, branched or cyclic haloalkyl;

R2 is mono or di-substitution and is selected from a group comprising -Rn, -ORn, halogen, - d_6 haloalkyl, -Od_6 haloalkyl, -CN, -N(Rn)2, -NRnS02Rii, -NR„CHO, -NRnCORn, - OC(0)Rii, -OC(0)N(Rn)2, -OP(0)(OH)2 and -OC(0)ORn wherein Rn at each occurrence is selected from hydrogen, Ci_6 linear, branched or cyclic alkyl and Ci_6 linear, branched or cyclic haloalkyl;

R4 is selected from hydrogen, -Ci-5 alkyl, -C3 cycloalkyl, -OCi_s alkyl, -Ci-5 haloalkyl, halogen;

L is selected from Ci_7 linear or branched alkyl;

R7 and Rg are absent or independently selected from hydrogen and Ci_s alkyl;

R9 and R10 are independently selected from hydrogen or d_2o linear, branched or cyclic alkyl or Ci-20 haloalkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(02)-, -CR5=CR5-, -C≡d, -NR5CO-, -NR5CO-, -NR5CONR5-, NRsC(O)C)-, and -OC(0)0-; wherein R5 at each occurrence is selected from a group comprising hydrogen or Q_6 linear, branched or cyclic alkyl; or R and Rjo together with the nitrogen atom to which they are attached forms a 4 to 7 membered ring optionally containing 1 to 2 additional heteroatoms selected from oxygen, nitrogen or sulfur; and the ring is optionally substituted with one or more group selected from halogen, -OR6, -N(R6)2 and R6 wherein R6, at each occurrence is selected from a group comprising hydrogen, Ci_2o linear, branched or cyclic alkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(0)2-, -CRs=CRs-, -C≡C-, -NRsCO-, -CONRs-, -NR5CONR5-, NR5C(0)0- and -OC(0)0-; optionally, R6 is further substituted with one or more groups selected from a group comprising halogen, -OR12, -N(R12)2, and -COOR12, -CON(R12)2 or -CON(R12)OH; wherein R12 at each occurrence is selected from hydrogen or Ci_6 linear, branched or cyclic alkyl;

≡≡= is a double or a triple bond; ring D is optionally further substituted with a group selected from -R13, -OR13, halogen, -Ci_6 haloalkyl, -Od_6 haloalkyl, -CN, -N(R13)2, -NR13S02R13, -NR13CHO, -NR13COR13, - OC(0)R13, -OC(0)N(R13)2, -OP(0)(OH)2 and -OC(0)OR13 wherein R13 at each occurrence is selected from hydrogen, and Ci-6 linear, branched or cyclic alkyl; and

X is selected from NH, sulfur and oxygen with a proviso that, when Ri3 is hydrogen, Ri and R2 are mono-substitution and are hydroxyl group and R2 is present at 4 position of the ring C, then Rj is not at position 8 of the ring A.

2. The compound of claim 1 wherein, Rj is selected from OH, OR3 and -OC(0)R3

R2 is selected from halogen, ORn and -OC(0)Rn;

R4 is selected from Ci_s alkyl or Ci_s haloalkyl;

L is selected from C1-4 alkyl;

R and RJO are independently selected from hydrogen, Ci_2o linear alkyl and Ci_2o haloalkyl optionally interrupted with one or more radicals selected from -0-, -NR5-, -S- and - CR5=CR5-, or R9 and R10 together with the nitrogen atom to which they are attached forms a 5-6 membered ring optionally containing 1 or 2 additional nitrogen atom and the ring is optionally substituted with one or more group selected from halogen, -OR6, -N(Re)2 and Re; wherein R6, at each occurrence is selected from hydrogen and Ci_2o linear, branched or cyclic alkyl optionally interrupted with one or more radicals selected from -0-, -NR5-, -S- and - CR5=CR5-;

optionally, R6 is further substituted with one or more groups selected from halogen, -OR12 and -N(R12)2;

≡≡= is a double or a triple bond; and R7 and Rg are hydrogen or absent; Ri3 is a group selected from halogen and -Ci-6 haloalkyl; and X is oxygen.

3. The compound of claim 1 wherein R9 and Rjo together forms a 5 to 6 membered ring optionally containing 1 additional heteroatom selected from oxygen, nitrogen and sulfur; and the ring is further substituted with R6 wherein R6 is a CMS linear or branched alkyl optionally interrupted with one or more radicals selected from -0-, -NR5-, -S- or -CRs=CRs-.

4. The compound of claim 1 wherein R is hydrogen or Ci_3 alkyl and Rjo is selected from Ci-15 linear or branched alkyl optionally interrupted with one or more radicals selected from -

0-, -NR5-, -S- and -CR5=CR5-.

5. The compound of any preceding claims wherein X is O.

6. The compound of any preceding claims wherein R2 is substituted at position 3 of ring C and Ri is substituted at position 7 of the ring A.

Description:
NOVEL HETEROCYCLIC ANTIESTROGENS

RELATED APPLICATIONS This application claims the benefit of Indian Patent Application no. 4058/MUM/2015 filed on October 27, 2015 which is hereby incorporated by reference.

FIELD OF THE INVENTION The present invention provides novel heterocyclic compounds as anticancer agents, especially as estrogen receptor (ER) antagonists/ degraders and process for their preparation.

BACKGROUND OF THE INVENTION Endogenous estrogen, 17 ?-estradiol (E2) shows a wide variety of biological activities in the reproductive systems, bone metabolism, and the cardiovascular systems, as well as the central nervous system. The link between estrogen and breast cancer growth and development has been well established. A number of strategies to inhibit the action of endogenous estrogen in estrogen receptor (ER) positive breast cancer are in practice. These include, selective ER modulators (SERMs) such as tamoxifen, which act as selective tissue-specific antagonist of ER in the breast; selective ER degraders (SERD) such as fulvestrant, which promote ER turnover; and aromatase inhibitors (AI) such as exemestane (steroidal), anastrozole and letrozole (nonsteroidal) which inhibit estrogen biosynthesis and are primarily used for postmenopausal women with ER- positive breast cancer. Unfortunately, many women with breast cancer initially respond well to tamoxifen or AI therapy but develop resistance over a period of time during treatment. In resistant form of breast cancer there is evidence that pro-growth signaling pathways downstream of estrogen receptor still play a significant role. Recently, there has been increasing clinical evidence that following treatment with AIs, resistance develop due to mutations in the ligand-binding domain of ER-a rendering it constitutively active even in the absence of ligand, leading to resistance. Currently fulvestrant is considered as a first-in-class SERD. Unfortunately, significant pharmaceutical liabilities of fulvestrant (requiring intramuscular injection of large volume) limit its widespread use. Therefore, development of an orally bio-available ER-antagonist especially with ER degrading properties would be beneficial to patients who have developed resistance to currently available therapies targeting ER activity. Many non-steroidal ER antagonists are reported in prior art. For instance US patent 5395842 discloses anti-estrogenic compounds and compositions. WIPO application WO 2014203132A1, WO2011156518A1, WO2013090829A1, US patents US 5389646, US 5407947 and European patent EP 470310 discloses benzopyran compounds useful for treatment or prevention of conditions modulated through the estrogen receptor.

SUMMARY OF THE INVENTION

The present invention provides a compound of Formula I

or salts or stereoisomers thereof wherein,

Rj is mono or di-substitution on ring A and is selected from a group comprising -R 3 , -OR 3 , halogen, -C 1-6 haloalkyl, -Od_ 6 haloalkyl, -CN, -N(R 3 ) 2 , -NR3SO2R3, -NR3CHO, -NR3COR3, -OC(0)R 3 , -OC(0)N(R 3 ) 2 , -OP(0)(OH) 2 and -OC(0)OR 3 wherein R 3 at each occurrence is selected from hydrogen, and Ci_6 linear, branched or cyclic alkyl;

R2 is mono or di-substitution and is selected from a group comprising -Rn, -ORn, halogen, - d_ 6 haloalkyl, -Od_ 6 haloalkyl, -CN, -N(R n ) 2 , -NR n S0 2 Rn, -NR„CHO, -NR n COR n , - OC(0)R n , -OC(0)N(R n ) 2 , -OP(0)(OH) 2 and -OC(0)OR n wherein R n at each occurrence is selected from hydrogen, and Ci_6 linear, branched or cyclic alkyl;

R 4 is selected from hydrogen, -Ci -5 alkyl, -C 3 cycloalkyl, -OCi_s alkyl, -Ci -5 haloalkyl, halogen; L is selected from linear or branched alkyl;

R7 and R8 are absent or independently selected from hydrogen and C 1 -5 alkyl; R9 and Rjo are independently selected from hydrogen or Ci_2o linear, branched or cyclic alkyl or Ci_2o haloalkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(0 2 )-, -CR 5 =CR 5 -, -C≡C-, -NR 5 CO-, -NR 5 CO-, -NR 5 CONR 5 -, NRsC(O)C)-, and -OC(0)0-; wherein R5 at each occurrence is selected from a group comprising hydrogen or Ci-6 linear, branched or cyclic alkyl; or R and Rjo together with the nitrogen atom to which they are attached forms a 4 to 7 membered ring optionally containing 1 to 2 additional heteroatoms selected from oxygen, nitrogen or sulfur; and the ring is optionally substituted with one or more group selected from halogen, -OR 6 , -N(Re)2 and R6 wherein R6, at each occurrence is selected from a group comprising hydrogen, Ci-2 0 linear, branched or cyclic alkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(0)2-, -CRs=CRs-, -C≡C-, -NRsCO-, -CONRs-, -NR 5 CONR 5 -, NR 5 C(0)0- and -OC(0)0-; optionally, R6 is further substituted with one or more groups selected from a group comprising halogen, -OR 12 , -N(R 12 ) 2 , and -COOR 12 , -CON(R 12 ) 2 or -CON(R 12 )OH; wherein R 1 2 at each occurrence is selected from hydrogen or Ci-6 linear, branched or cyclic alkyl;

≡≡≡ is a double or a triple bond; Ri3 is selected from a group comprising -R14, -OR 1 4, halogen, -Ci-6 haloalkyl, -OCi-6 haloalkyl, -CN, -N(R 14 ) 2 , -NR 14 S0 2 Ri 4 , -NR 14 CHO, -NR 14 COR 14 , -OC(0)R 14 , - OC(0)N(R 14 ) 2 , -OP(0)(OH) 2 and -OC(0)ORi 4 wherein R 14 at each occurrence is selected from hydrogen, and Ci_6 linear, branched or cyclic alkyl; and X is selected from NH, sulfur and oxygen; with a proviso that, when Rj 3 is hydrogen, Rj and R2 are mono substitution and are hydroxyl group and R2 is present at 4 position of the ring C, then Rj is not at position 8 of the ring A. The compounds of present invention are antagonists/degraders of estrogen receptors and can be used for the treatment of diseases which are related to modulation of ER.

GLOSSARY

The term "halogen", as used herein includes chloro, fluoro, bromo and iodo. The term "haloalkyl" refers to alkyl group substituted with one or more halogen radicals.

The term "alkyl" refers to a saturated hydrocarbon chain that includes carbon and hydrogen atoms in the backbone, either linear or branched, having from 1 to 20 carbon atoms, both inclusive unless defined otherwise. The length of the chain may vary and is defined by the expression, for example, Ci_2o which means an alkyl chain having 1 to 20 carbon atoms. The term alkyl includes linear as well as branched alkyl. The examples of alkyl chain are methyl, ethyl, w-propyl, 1-methylethyl (isopropyl), «-butyl, «-pentyl, and 1 ,1-dimethylethyl (i-butyl). Unless set forth or recited to the contrary, all alkyl groups described or claimed herein may be substituted or unsubstituted. The numbers or the range written as subscript in terms like "Ci- " refers to the number of carbon atoms in the group. Thus the referred group may have 1 , 2, 3, 4, 5 or 6 carbon atoms. The term "cycloalkyl" or "cyclic alkyl" denotes a non-aromatic monocyclic ring. The size of the ring is described by the expression, for example C3-4 which denotes that the ring may have 3 or 4 carbon atoms. Wherever the ring size is not defined, the cycloalkyl or cyclic alkyl ring may contain 3 to 8 carbon atoms. The examples of cycloalkyl ring include, but are not limited to, cylcopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Unless set forth or recited to the contrary, all cycloalkyl groups described or claimed herein may be substituted or unsubstituted.

DESCRIPTION OF THE INVENTION In one aspect the present invention provides a compound of Formula I

or salts or stereoisomers thereof wherein,

Rj is mono or di-substitution on ring A and is selected from a group comprising -R3, -OR 3 , halogen, -d-6 haloalkyl, -Od-6 haloalkyl, -CN, -N(R 3 ) 2 , -NR3SO2R3, -NR3CHO, -NR3COR3, -OC(0)R 3 , -OC(0)N(R 3 ) 2 , -OP(0)(OH) 2 and -OC(0)OR 3 wherein R 3 at each occurrence is selected from hydrogen, and d-6 linear, branched or cyclic alkyl;

R2 is mono or di-substitution and is selected from a group comprising -Rn, -ORn, halogen, - d-6 haloalkyl, -Od-6 haloalkyl, -CN, -N(R n ) 2 , -NR n S0 2 Rii, -NR„CHO, -NR n COR n , - OC(0)R n , -OC(0)N(R n ) 2 , -OP(0)(OH) 2 and -OC(0)OR n wherein R n at each occurrence is selected from hydrogen, and d_6 linear, branched or cyclic alkyl;

R 4 is selected from hydrogen, -C 1 -5 alkyl, -C3-4 cycloalkyl, -OC 1 -5 alkyl, -C 1 -5 haloalkyl, halogen;

L is selected from d_7 linear or branched alkyl;

R 7 and Rg are absent or independently selected from hydrogen and d-5 alkyl; R and R 10 are independently selected from hydrogen or d_ 2 o linear, branched or cyclic alkyl or d_ 2 o haloalkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(0 2 )-, -CR 5 =CR 5 -, -C≡C-, -NR 5 CO-, -NR 5 CO-, -NR 5 CONR 5 -, NRsC(0)0-, and -OC(0)0-; wherein R5 at each occurrence is selected from a group comprising hydrogen or d_6 linear, branched or cyclic alkyl; or R 9 and R 10 together with the nitrogen atom to which they are attached forms a 4 to 7 membered ring optionally containing 1 to 2 additional heteroatoms selected from oxygen, nitrogen or sulfur; and the ring is optionally substituted with one or more group selected from halogen, -OR 6 , -N(Re) 2 and R6 wherein R6, at each occurrence is selected from a group comprising hydrogen, Ci_2o linear, branched or cyclic alkyl optionally interrupted with one or more radicals independently selected from -0-, -NR 5 -, -S-, -SO-,-S(0) 2 -, -CRs=CRs-, -C≡C-, -NR5CO-, -CONR5-, -NR5CONR5-, NR 5 C(0)0- and -OC(0)0-;

optionally, R6 is further substituted with one or more groups selected from a group comprising halogen, -OR 12 , -N(R 12 ) 2 , and -COOR 12 , -CON(R 12 ) 2 or -CON(R 12 )OH; wherein R 12 at each occurrence is selected from hydrogen or Ci_6 linear, branched or cyclic alkyl;

≡≡= is a double or a triple bond; Ri3 is selected from a group comprising -R 1 4, -OR 1 4, halogen, -Ci_6 haloalkyl, -OCi_6 haloalkyl, -CN, -N(R 14 ) 2 , -NR 14 S0 2 R 14 , -NR 14 CHO, -NR 14 COR 14 , -OC(0)R 14 , - OC(0)N(R 14 ) 2 , -OP(0)(OH) 2 and -OC(0)OR 14 wherein R 14 at each occurrence is selected from hydrogen, and Ci_6 linear, branched or cyclic alkyl; and X is selected from NH, sulfur and oxygen; with a proviso that, when R 13 is hydrogen, Rj and R 2 are mono substitution and are hydroxyl group and R 2 is present at 4 position of the ring C, then Rj is not at position 8 of the ring A. Ri can be mono or di-substitution on ring A. When Rj is di-substitution, the two groups are independently selected from each other and can be same or different. In one embodiment the present invention provides compound of Formula I, wherein Rj is selected from -OR 3 , - OC(0)R 3 , -OC(0)N(R 3 ) 2 , and -OC(0)OR 3 . In another embodiment Rj is selected from OH, OR 3 , or -OC(0)R 3 . In another embodiment Ri is selected from -N(R 3 ) 2 , -NR S0 2 R 3 , - NR 3 CHO and -NR 3 COR 3 .

R 2 can be mono or di-substitution on ring C. When R 2 is di-substitution, the two groups are independently selected from each other and can be same or different. In another embodiment the present invention provides compound of Formula I, wherein R 2 is selected from -ORn, - OC(0)R n , -OC(0)N(R n ) 2 , and -OC(0)OR n . In another embodiment R 2 is selected from ORn and -OC(0)Rn-

In another embodiment the present invention provides compound of Formula I, wherein R 2 is selected from -N(R n ) 2 , -NRnSO^n, -NR n CHO and -NRnCORn- In another embodiment the present invention provides compound of Formula I, wherein R n is selected from -C 1 -5 alkyl or -C 1 -5 haloalkyl. In another embodiment the present invention provides compound of Formula I, wherein Rj and R2 are hydroxyl group.

The invention intends to exclude the compounds wherein when Rj3 is hydrogen, Rj and R2 are mono substitution and are hydroxyl group and R2 is present at 4 position of ring C, then Ri is not at position 8 of the ring A.

In another embodiment the present invention provides compound of Formula I, wherein L is selected from Ci_ 4 linear or branched alkyl. In another embodiment the present invention provides compound of Formula I, wherein R 4 is -Ci_5 alkyl. In another embodiment R 4 is methyl.

In another embodiment the present invention provides compound of Formula I, wherein≡≡= is a double bond.

In another embodiment the present invention provides compound of Formula I, wherein R7 and Rg are hydrogen.

In one embodiment the present invention provides the compound of Formula I, wherein R and Rio are independently selected from a group comprising hydrogen or Ci-2 0 linear, branched or cyclic alkyl or Ci_2o haloalkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S-, -SO-,-S(0 2 )-, -CR 5 =CR 5 -, -C≡C-, -NR 5 CO, - NRsCO, -NR 5 CONR 5 -, NR 5 C(0)0-, and -0C(0)O; wherein R 5 at each occurrence is selected from a group comprising hydrogen or Ci_6 linear, branched or cyclic alkyl. The phrase "Ci_2o linear, branched or cyclic alkyl" includes groups wherein and linear or branched chain alkyl group is substituted with a cycloalkyl ring with total number of the carbon atoms in alkyl chain and cycloalkyl ring are equal to or less than 20. For instance, it refers to groups like, but not limited to, Ci_io alkyl-C3_6 cycloalkyl. R and Rjo can be interrupted by one or more time with same group The substitutions R 9 and R 10 together with the nitrogen to which they are attached may form a 4 to 7 membered ring optionally containing 1 to 2 additional heteroatoms selected from oxygen, nitrogen or sulfur. Exam les of such rings include, but not limited to,

In another embodiment R9 and Rio together with the nitrogen atom to which they are attached form a 5 to 6 membered ring optionally containing 1 additional heteroatom selected from oxygen, nitrogen and sulfur. When R and Rjo together with the nitrogen atom to which they are attached forms a ring, the ring may be further substituted with R6, wherein R6 is a C1 5 linear or branched alkyl optionally interrupted with one or more radicals independently selected from -0-, -NR5-, -S- or -CRs=CRs-. In another embodiment R6 can be further substituted with one or more groups selected from a group comprising halogen, -OR5, - N(R 5 ) 2 , and -COOR 5 , -CON(R 5 ) 2 or -CON(R 5 )OH; In another embodiment R is hydrogen or Ci_3 alkyl and Rjo is selected from C1 5 linear or branched alkyl optionally interrupted with one or more radicals selected from -0-, -NR5-, -S- and -CR 5 =CR 5 -.

In another embodiment the present invention provides the compound of Formula I, wherein Ri3 is selected from a group comprising -R14, -OR 1 4, halogen, -Ci_6 haloalkyl, -OCi_6 haloalkyl, -CN, -N(R 14 ) 2 , -NR 14 S0 2 Ri 4 , -NR 14 CHO, -NR 14 COR 14 , -OC(0)R 14 , - OC(0)N(R 14 ) 2 , -OP(0)(OH) 2 and -OC(0)ORi 4 wherein R 14 at each occurrence is selected from hydrogen, and Ci_6 linear, branched or cyclic alkyl. In another embodiment the Rj3 is a group selected from hydrogen, halogen, -Ci-6 haloalkyl and -Ci-6 alkyl.

In another embodiment the present invention provides the compound of Formula I, wherein X is NH.

In another embodiment the present invention provides a compound of Formula la

wherein Rj, R2, R4, R9, Rio, R 13 and L are groups as defined above.

In another embodiment the present invention provides a compound of Formula lb

wherein Rj, R2, R4, R9, Rio, R 13 and L are groups as defined above.

In another embodiment the present invention provides a compound of Formula Ic

wherein Ri, R2, R4, R9, Rio, R 13 and L are groups as defined above.

a preferred embodi of Formula Id wherein R4, 7, Rs, R9, Rio, R 1 3, X and L are groups as defined above.

In another preferred embodiment the present invention provides a compound of Formula Ie

wherein R4, R 7 , Rg, R9, Rjo, R 13 , X and L are groups as defined above.

In another preferred embodiment the present invention provide a compound of Formula I, la, lb, Ic, Id and Ie wherein the substitution on Ring D is at 4 position. In another embodiment, the compound of Formula la or lb can be prepared by the route as depicted

Compound (1) can be prepared by the processes reported in the art for example US patent application publication 20140107095A1 and their obvious modifications. It is well under general purview of those skilled in the art that when the substituent groups Rj and R2 are selected from one which may interfere with the general course of the reaction scheme, the groups may be protected with a suitable protecting group such as provided in text book Greene's Protective Groups in Organic Chemistry by Peter G. M. Wuts and Theodora W Greene, 4th edition, published by Wiley Interscience. Compound (3) can be prepared by reacting compound (1) (where in Y is halide) with alcohol (2) by Sonogashira reaction in a presence of suitable catalyst, like Pd(PPh 3 ) 2 Cl 2 and Cul. Alcohol group of compound (3) can be converted to a suitable leaving group (LG) such as - OMs, -CI, -Br, -I, -OTs, -OTf to produce compound (4). In some embodiments, where LG- is -OMs, compound (4) may be converted to compound of formula (5) by reacting with suitable amine. Deprotection of compound (5) would give compound la. The reduction of compound of formula (5) using reducing agent such as Lindlar catalyst followed by deprotection can provide compound of Formula (lb). In some embodiments, the compounds of formula Ic can be prepared as described in the following Sche

Scheme 2

The compound (3) can be reduced using reducing agent such as lithium aluminium hydride (LAH) in a suitable solvent to compound (6). Alcohol group of compound (6) is further converted to suitable leaving group like -OMs, -CI, -Br, -I, -OTs, -OTf to yield compound (7). In some embodiments, where LG- is -OMs, compound (7) can be converted to compound of Formula (Ic) by reacting with suitable amine followed by deprotection.

Alternatively the compound of Formula lb can also be prepared as outlined in the following Scheme 3.

The compound (1) (where in Y is halide) may be reacted with alkyne (8) in a presence of suitable catalyst, like Ρά(ΡΡ]¾)2(¾ and Cul (Sonogashira reaction) to yield compound (9). It is then reduced to compound (10) using Lindlar catalyst. Compound (10) may be converted to amine (11) which may then be converted to compound of Formula lb under suitable reaction condition which may include deprotection step.

The substituents Rj and R2 are suitably protected with suitable protecting groups before proceeding for chemical transformations as and when it is required.

Alternatively compounds described herein can also be prepared by Heck reaction, Stille or Suzuki coupling as shown in Scheme 4 (where M is hydrogen, -Sn(alkyl) 3 , -CI, -Br, -I or -OTf)

Table 1 provides few exemplary compounds of Formula I. Table 1

23. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H

24. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H

25. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H

26. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H

27. -7-OH -3-OH -CH 3 -O- - c≡c- H

(CH 2 )

28. -7-OH -3-OCH3 -CH 3 -O- -(Z) CH=CH- -CH 2 - H

29. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H

30. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -O

31. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -O

32. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H

33. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H

— N— s

34. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H

35. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H - -NHO(n-C 9 H 19 )

36. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H

37. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H - -NHO(n-C 9 H 19 )

38. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CH 2 F

39. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CH 2 F

40. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- H

CH(C

H3)-

41. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH -(COH 2 ) 9 CH 2 F

42. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H -NH(CH 2 ) 8 CH 2 F

43. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -NH(CH 2 ) 9 CH 2 F

44. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CHF 2

45. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -N(CH 3 )(CH 2 ) 8 CH 2 F

46. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CHF 2

47. -7-OH -3-OCH3 -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CH 2 F

48. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -N(CH 3 )(CH 2 ) 8 CH 2 F

49. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) V CH 2 F

50. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H -NH(CH 2 ) V CH 2 F

51. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H -NH(CH 2 ) V CH 2 F

52. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H -NH(CH 2 ) 9 CH 2 F

53. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H -NCH 3 (CH 2 ) 9 F

54. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - H -NH(CH 2 ) 8 CHF 2 78. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H

79. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CH 2 F #

80. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H -NH(CH 2 ) 8 CH 2 F *

81. -7-OH -3-OH,-5-F -CH 3 -O- -(Z) CH=CH- -CH 2 - H -Q

82. -7-OH -3-OH,-5-F -CH 3 -O- -(Z) CH=CH- -CH 2 - H

83. -7-OH -3-F,-5-F -CH 3 -O- -(Z) CH=CH- -CH 2 - H

84. -7-OH -3-OH -CH 3 -O- -(E) CH=CH- -CH 2 - H

85. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - H

86. -7-OH -3-OH -CH 3 -O- -(Z) CH=CH- -CH 2 - 2-F

87. -7-OH -3-OH -CH 3 -O- - c≡c- -CH 2 - 2-F -o

88. -7-OCH 2 F -3-OCH 2 F -CH 3 -O- - c≡c- -CH 2 - H -o

*isomer A; #isomer B -o

The present invention is further illustrated in detail with reference to the following examples. It is desired that the examples are to be considered in all respects as illustrative and are not intended to limit the scope of the claimed invention.

EXAMPLES

General Method of Preparation

The compounds described herein, including compounds of Formula I can be prepared by reaction schemes depicted in Schemes 1, 2, 3 and 4. Furthermore, in the following examples, where specific acids, bases, reagents, coupling agents, solvents, etc. are mentioned, it is understood that other suitable acids, bases, reagents, coupling agents etc. may be used and are included within the scope of the present invention. Modifications to reaction conditions, for example, temperature, duration of the reaction or combinations thereof are envisioned as part of the present invention. The compounds obtained by using the general reaction scheme may be of insufficient purity. These compounds can be purified by any of the methods for purification of organic compounds known in the art, for example, crystallization or silica gel or alumina column chromatography using different solvents in suitable ratios. 2-(4- Iodophenyl)-4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetra hydropyran-2-yloxy)phenyl]- 2H-chromene is prepared in a manner similar to the process described in the US patent application publication 20140107095A1.

Method-A

Preparation of 3-(3-hvdroxyphenyl)-4-methyl-2-r4-(3-piperidin-l-yl-prop-l- vnyl)phenvn-2H-chromen-6-ol (compound No. 25)

Step I: 3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahydrop yran-2- yloxy)phenyl -2H-chromen-2-yl}phenyl)prop-2-yn-l-ol

Bis(triphenylphosphine)palladium (II) dichloride (0.061 g, 0.081 mmol) was added to a stirred solution of 2-(4-iodophenyl)-4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromene (1.1 g, 1.76 mmol)(prepared as per the process provided in US 20140107095A1), propargyl alcohol (0.30 g, 5.28 mmol) and cuprous (I) iodide (0.027 g, 0.142 mmol) in a mixture of tetrahydrofuran:triethylamine (1 : 1 , 35 mL). Stirring was continued at ambient temperature for 1 hour. It was then concentrated under reduced pressure to get a crude residue which was purified by column chromatography (silica gel, toluene : ethyl acetate 85: 15) to yield 3-(4- {4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)prop -2-yn- l-ol.

Step II: l-[3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahyd ropyran-2- yloxy)phen l]-2H-chromen-2-yl}phenyl)prop-2-ynyl]piperidine

A solution of methanesulfonyl chloride (0.18 mL, 2.40 mmol) in dichloromethane (3 mL) was added to a solution of 3-(4- {4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)prop -2-yn- l-ol (1.1 g, 2.00 mmol) and triethyl amine (0.42 mL, 3.00 mmol) in dichloromethane (8 mL) at 0-5 C. The reaction mixture was stirred at 0-5 C for 30 minutes. Water was added to the reaction mixture and the organic layer was separated. The aqueous layer was extracted with dichloromethane. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get methanesulfonicacid-3-(4-{4-methyl-6- (tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-yloxy)phen yl]-2H-chromen-2- yl}phenyl)prop-2-ynylester.

The solution of methanesulfonicacid-3-(4-{4-methyl-6-(tetrahydropyran-2-ylox y)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)prop -2-ynylester in acetonitrile (3 mL) was added to a slurry of piperidine (0.49 mL, 5.00 mmol) and potassium carbonate (0.714 g, 5.2 mmol) in acetonitrile (8 mL) at ambient temperature and stirred for 40 minutes. Water was added and was extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, dichloromethane : methanol 97:3) to get l-[3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahyd ropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)prop-2-ynyl]piperidine.

Step III: 3-(3-Hydroxyphenyl)-4-methyl-2-[4-(3-piperidin-l-ylprop-l-yn yl)phenyl]-2H- chromen-6-ol

A solution of l-[3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahyd ropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)prop-2-ynyl]piperidine (0.1 g, 0.16 mmol) in a mixture of sulfuric acid (0.05 mL) and methanol (5 mL) was stirred at ambient temperature for 10 minutes. The reaction mixture was made alkaline with saturated solution of sodium bicarbonate and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, methanol: dichloromethane 12:88) to get 3- (3-hydroxyphenyl)-4-methyl-2-[4-(3-piperidin-l-ylprop-l-ynyl )phenyl]-2H-chromen-6-ol.

Method-B

Preparation of 3-(3-hvdroxyphenyl)-4-methyl-2-r4-((Z)-3-piperidin-l-ylprope nyl) phenvn-2H-chromen-6-ol (compound No. 11)

Step I: l-[(Z)-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetr ahydropyran-2- yloxy)phenyl] -2H-

Lindlar catalyst (0.24 g) was added to a solution of l-[3-(4-{4-methyl-6-(tetrahydropyran-2- yloxy)-3-[3-(tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl }phenyl)prop-2- ynyl]piperidine (0.80 g, 1.29 mmol) (prepared same as per method A step I, II) and quinoline (0.1 g, 12.5 % w/w) in ethanol (30 mL). The reaction mixture was stirred under hydrogen atmosphere (70 psi) at ambient temperature for 5 hours. The reaction mixture was filtered and washed with ethanol (15 mL). Filtrate was concentrated under reduced pressure to get the crude which was purified by column chromatography (silica gel, dichloromethane : methanol 97:3) to yield l-[(Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetr ahydropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]piperidine.

Step II: 3-(3-Hydroxyphenyl)-4-methyl-2-[4-((Z)-3-piperidin-l-ylprope nyl)phenyl]-2H- chromen-6-ol

A solution of l-[(Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetr ahydropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]piperidine (0.28 g, 0.45 mmol) in a mixture of acetic acid (5.6 mL) and water (1.4 mL) was heated at 75 C for 20 minutes. The reaction mixture was concentrated under reduced pressure and made alkaline with saturated solution of sodium bicarbonate and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, methanol : dichloromethane 1 :9) to get 3- (3-hydroxyphenyl)-4-methyl-2-[4-((Z)-3-piperidin-l-ylpropeny l)phenyl]-2H-chromen-6-ol .

Method-C

Preparation of 3-(3-ΗνάΓθχνρΗβην1)-4-ηιβίΗν1-2-Γ4-(( )-3-ρίρβΓί(ϋιι-1-ν1ρΓθρβην1) phenvn-2H-chromen-6-ol (compound No. 12)

Step I: (E)-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahy dropyran-2- yloxy)phenyl -2H-chromen-2-yl}phenyl)prop-2-en-l-ol

Lithium aluminium hydride (0.35 g, 10.30 mmol) was added to a stirred solution of 3-(4-{4- methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-y loxy)phenyl]-2H-chromen-2- yl}phenyl)prop-2-yn-l-ol (1.15 g, 2.08 mmol) (prepared same as method A step-I) in tetrahydrofuran (33 mL) at 0-5 C and the stirring was continued at ambient temperature for 30 minutes. Reaction mixture was again cooled to 0-5 C, treated with ethyl acetate and aqueous sodium bicarbonate solution and was extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, ethyl acetate : toluene 17:83) to yield (£T)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetra hydropyran-2- yloxy)phenyl] -2H-chromen-2-yl }phenyl)prop-2-en- 1 -ol.

Step II: l-[( )-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahydr opyran-2- yloxy)phenyl] -2H- hromen-2-yl}phenyl)allyl] piperidine

A solution of methanesulfonyl chloride (0.098 mL, 1.26 mmol) in dichloromethane (lmL) was added drop-wise to a stirred solution of (£T)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)- 3-[3-(tetrahydropyran-2-yloxy)-phenyl]-2H-chromen-2-yl}pheny l)prop-2-en-l-ol (0.58 g, 1.05 mmol) and triethylamine (0.25 mL, 1.80 mmol) in dichloromethane (17 mL) at 0-5 C. The reaction mixture was further stirred at 0-5 C for 20 minutes. Water was added to the reaction mixture and organic layer was separated. The aqueous layer was extracted with dichloromethane. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get methanesulfonic acid (£T)-3-(4-{4-methyl-6- (tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-yloxy)phen yl]-2H-chromen-2- yl } phenyl) allylester .

The solution of methanesulfonic acid (£T)-3-(4-{ 4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)ally lester in acetonitrile (6 mL) was added to a solution of potassium carbonate (0.432 g, 3.10 mmol) and piperidine (0.27 mL, 2.60 mmol) in acetonitrile (12 mL) at 0-5 C. The reaction mixture was stirred at room temperature for 1.5 hours. Water was added and the mixture was extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, methanol : dichloromethane 6:94) to yield l-[(£T)-3-(4-{4-methyl-6-(tetrahydropyran-2- yloxy)-3-[3-(tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl }phenyl)allyl]piperidine. Step III: 3-(3-Hydroxyphenyl)-4-methyl-2-[4-(( )-3-piperidin-l-yl-propenyl)phenyl]- 2H-chromen- -ol

A solution of l-[(£)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tet rahydropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]piperidine (0.43 g, 0.70 mmol) in a mixture of sulfuric acid (0.05 mL) and methanol (5 mL) was stirred at ambient temperature for 10 minutes. The reaction mixture was made alkaline with saturated solution of sodium bicarbonate and extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, methanol : dichloromethane 14:86) to get 3- (3-hydroxyphenyl)-4-methyl-2-[4-((£T)-3-piperidin-l-ylprope nyl)phenyl]-2H-chromen-6-ol.

Method-D

Preparation of 3-(3-hvdroxyphenyl)-4-methyl-2-(4-((Z)-3-r9-(4.4.5.5.5-penta fluoro pentylsulfanyl)nonylamino1propenyl}phenyl)-2H-chromen-6-ol (compound No. 7)

Step I: 2-[3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahyd ropyran-2-yloxy) phen -2H-chromen-2-yl}phenyl)prop-2-ynyl]isoindole-l,3-dione

Bis(triphenylphosphine)palladium(II) dichloride (0.045 g,0.064 mmol) was added to a stirred solution of 2-(4-iodophenyl)-4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-( tetrahydropyran-2- yloxy)phenyl]-2H-chromene (0.8 g, 1.28 mmol) (prepared as of given in US20140107095A1), 2-prop-2-ynylisoindole-l ,3-dione (0.46 g, 2.50 mmol) and cuprous(I) iodide (0.02 g, 0.103 mmol) in a mixture of triethylamine :tetrahydrofuran (26 mL, 1 : 1) at ambient temperature. After stirring for 1 hour, 2-prop-2-ynyl-isoindole-l ,3-dione (2x0.35 g) was added to the reaction mixture and stirring was continued for one more hour. Removal of solvent under reduced pressure yielded a viscous residue which was purified by column chromatography (silica gel, toluene:ethyl acetate 19: 1) to get 2-[3-(4-{4-methyl-6- (tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-yloxy)phen yl]-2H-chromen-2- yl } phenyl)prop-2-ynyl] isoindole- 1 , 3 -dione .

Step II: 2-[(Z)-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetr ahydropyran-2- yloxy)phenyl]-2H- hromen-2-yl}phenyl)allyl]isoindole-l,3-dione

Lindlar catalyst (0.45 g) was added to a stirred solution of 2-[3-(4-{4-methyl-6- (tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-yloxy)phen yl]-2H-chromen-2-yl}- phenyl)prop-2-ynyl]isoindole-l ,3-dione (0.87 g, 1.28 mmol) and quinoline (0.087g, 10% w/w) in a mixture of ethyl acetate : ethanol (1 : 1, 34 mL). The reaction mixture was stirred under hydrogen atmosphere (70 psi) at ambient temperature for 24 hours. It was then filtered through celite bed and washed with ethyl acetate. Combined filtrate was concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, toluene : ethyl acetate 24: 1) to get 2-[(Z)-3-(4-{ 4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)ally l]isoindole-l ,3-dione.

Step III: (Z)-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahy dropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allylamine

A solution of hydrazine hydrate (0.015 g, 0.31 mmol) in methanol (1 mL) was added to a stirred solution of 2-[(Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetr ahydropyran- 2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]isoindole-l,3-d ione (0.084 g, 0.123 mmol) in tetrahydrofuran (10 mL). The reaction mixture was heated at 65-70 C for 1.5 hours. Solvent was removed under reduced pressure to get crude which was suspended in diethyl ether and stirred for 10 minutes. It was then filtered and washed with diethyl ether (25 mL). Combined filtrate was concentrated under reduced pressure to get (Z)-3-(4-{4-methyl-6- (tetrahydropyran-2-yloxy)-3-[3-(tetrahydropyran-2-yloxy)phen yl]-2H-chromen-2-yl}- phenyl)allylamine

Step IV: [(Z)-3-(4-{4-Methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrah ydropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]-[9-(4,4,5,5,5-pe ntafluoropentylsulfanyl) nonyljamine

l-Bromo-9-(4,4,5,5,5-pentafluoropentylsulfanyl)nonane (0.036 g, 0.09 mmol) was added to a stirred solution of (Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrahy dropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allylamine (0.05 g, 0.09 mmol) and potassium carbonate (0.033 g, 0.243 mmol) in N,N-dimethyl formamide (0.5 mL). The reaction mixture was heated at 85-90 C for 1.5 hours. Solvent was removed under reduced pressure to get residue which was suspended in ethyl acetate and stirred for 30 minutes. It was then filtered and washed with ethyl acetate. Filtrate was concentrated under reduced pressure to get a crude which was purified by column chromatography (silica gel, methanol : dichloromethane 24: 1) to get [(Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3- (tetrahydropyran-2-yloxy)phenyl]-2H-chromen-2-yl}phenyl)ally l]-[9-(4,4,5,5,5- pentafluoropentylsulf anyl)nonyl] amine .

Step V: 3-(3-Hydroxyphenyl)-4-methyl-2-(4-{(Z)-3-[9-(4,4,5,5,5-penta fluoropentyl sulfanyl)nonylam

A solution of [(Z)-3-(4-{4-methyl-6-(tetrahydropyran-2-yloxy)-3-[3-(tetrah ydropyran-2- yloxy)phenyl]-2H-chromen-2-yl}phenyl)allyl]-[9-(4,4,5,5,5-pe ntafluoropentylsulfanyl) nonyl]amine (0.2 g, 0.23 mmol) in a mixture of sulfuric acid (0.035 mL) and methanol (5 mL) was stirred at room temperature for 10 minutes. The reaction mixture was made alkaline with saturated solution of sodium bicarbonate and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, methanol : dichloromethane 8:92) to get 3-(3-hydroxyphenyl)-4-methyl-2-(4-{ (Z)-3-[9-(4,4,5,5,5- pentafluoropentylsulfanyl)nonylamino]propenyl}phenyl)-2H-chr omen-6-ol

Method-E

Preparation of 2,2-Dimethylpropionic acid 3-r3-(2,2-dimethylpropionyloxy)phenyl1-4

-methyl-2-{4-r(Z)-3-(( ?)-3-methylpyrrolidin-l-yl)propenvnphenyl}-2H-chromen-6-yl ester (compound No.

Pivoloyl chloride (0.054 mL, 0.44 mmol) was added to a stirred solution of 3-(3- hydroxyphenyl)-4-methyl-2- { 4-[(Z)-3-((R)-3-methylpyrrolidin- 1 -yl)propenyl] phenyl } -2H- chromen-6-ol (0.09 g, 0.2 mmol) (prepared same as method B) and triethylamine (0.069 mL, 0.50 mmol) in dichloromethane (6 mL) at 0 C under nitrogen atmosphere. The reaction mixture was stirred at ambient temperature for 2.5 hours. It was then treated with saturated sodium bicarbonate and organic layer was separated. The aqueous solution was extracted with dichloromethane. The combined organic layer was dried over sodium sulfate and concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, dichloromethane : methanol 19: 1) to yield 2,2- dimethylpropionicacid-3-[3-(2,2-dimethyl propionyloxy)phenyl]-4-methyl-2-{4-[(Z)-3-((R)- 3-methylpyrrolidin- 1 -yl)propenyl] phenyl } -2H-chromen-6-ylester.

Method-F

Preparation of (/?)-l-((Z)-3-{4-r6-methoxy-3-(3-methoxyphenyl)-4-methyl-2H- chromen- 2-vnphenyl)allyl)-3-methylpyrrolidine (compound No. 20)

Step I: 3-(3-H roxyphenyl)-2-(4-iodophenyl)-4-methyl-2H-chromen-6-ol

A solution of 2-(4-iodophenyl)-4-methyl-6-tetrahydropyran-2-yloxy)-3-[3-(t etrahydropyran- 2-yloxy)phenyl]-2H-chromene (1.0 g, 1.60 mmol) (prepared same as method A) in sulfuric acid (0.1 ml) and methanol (10 ml) was stirred for 20 minutes at ambient temperature. Aqueous solution of sodium bicarbonate was added and extracted with ethyl acetate. Combined organic layer was washed with water and dried over anhydrous sodium sulfate. It was then concentrated under reduced pressure to get residue which was purified by column chromatography (silica gel, n-hexane : ethyl acetate 50:50) to yield 3-(3-hydroxyphenyl)-2- (4-iodophenyl)-4-methyl-2H-chromen-6-ol.

Step II: 2-(4-Iodophenyl)-6-methoxy-3-(3-methoxyphenyl)-4-methyl-2H-c hromene

Methyl iodide (0.82 mL, 13.1 mmol) was added to a stirred solution of 3-(3-hydroxyphenyl)- 2-(4-iodophenyl)-4-methyl-2H-chromen-6-ol (0.6 g, 1.31 mmol) and potassium carbonate (0.54 g, 3.94 mmol) in N,N-dimethylformamide ( 6.0 mL) at 5-10 C. The reaction mixture was stirred at ambient temperature for 4 hours. Water was added and extracted with ethyl acetate. Combined organic layer was washed with water and dried over anhydrous sodium sulfate. It was then concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, n-hexane : ethyl acetate 8:2) to give 2-(4-iodophenyl)-6- methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chromene.

Step III : (/?)-l-(3-{4-[6-Methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chro men-2- yl]phenyl}prop-2

(R)-l-(3-{ 4-[6-Methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chromen-2-yl]ph enyl}prop-2- ynyl)-3-methylpyrrolidine prepared same as that of step-1,11 of method A using 2-(4- iodophenyl)-6-methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chrome ne

Step IV: (/?)-l-((Z)-2-{4-[6-Methoxy-3-(3-methoxyphenyl)-4-methyl-2H- chromen-2- yl]phenyl}vinyl)-3-

(R)- 1 -((Z)-2- { 4- [6-methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chromen-2-yl]phen yl } vinyl)- 3-methylpyrrolidine prepared same as that of step-I of method B using (R)-l-(3-{4-[6- Methoxy-3-(3-methoxyphenyl)-4-methyl-2H-chromen-2-yl]phenyl} prop-2-ynyl)-3- methylpyrrolidine .

Method-G

Preparation of 3-(3-Methoxy phenyl)-4-methyl-2-i4-r(Z)-3-( R)-3-methyl pyrrolidin-1- yl)propenvnphenyl)-2H-chromen- -ol (compound No. 28)

Step I: 2-Hydroxy-4-(tetrahydropyran-2-yloxy)benzoic acid

Aqueous sodium hydroxide (3.5 mL, 10 %) was added to the stirred solution of 2-hydroxy-4- (tetrahydropyran-2-yloxy)-benzoic acid methyl ester (0.5 g, 1.98 mmol) in methanol (10 mL) at ambient temperature and heated to 50 C for 4 hours. Solvent was removed under reduced pressure. Water was added to it and extracted with (ethyl acetate: n-hexane, 2:8). Aqueous layer was made acidic with acetic acid at 0-5 C and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get 2-hydroxy-4-(tetrahydropyran-2-yloxy)benzoic acid.

Step II: 2-Hydr y)benzamide

Aqueous alkaline solution of N, 0-dimethyl hydroxylamine hydrochloride (0.12 g, 1.3 mmol) in tetrahydrofuran (2 mL) was added to a stirred solution of I -Hydroxy benzotriazole (0.17 g, 1.3 mmol), l-ethyl-3-(3-dimethylaniinopropyl)carbodiimide hydrochloride (0.24 g. 1.3 mmol) and 2-hydroxy-4-(tetrahydropyran-2-yloxy)benzoic acid (0.2 g, 0.8 mmol) in tetrahydrofuran (3 mL) at room temperature and stirred for 2 hours. Water (10 mL) was added to the reaction mixture and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel n-hexane : ethyl acetate 8:2) to get 2-hydroxy-N-methoxy-N-methyl-4-(tetrahydropyran-2-yloxy)benz amide.

Step III: l-[2-Hydroxy-4-(tetrahydropyran-2-yloxy)phenyl]-2-(3-methoxy phenyl) ethanone

A solution of 3-methoxybenzyl chloride (1.10 g, 7.12 mmol) in diethyl ether (7.5 mL) was added to a stirred mixture of magnesium (0.216 g, 8.90 mmol), iodine (crystals) and 1 ,2- dibromoethane (0.1 mL) in diethyl ether (7.5 mL) as dropwise manner at 45-50 C. The reaction mixture was refluxed for 1 hour. A solution of 2-hydroxy-N-methoxy-N-methyl-4- (tetrahydropyran-2-yloxy)benzamide (0.5 g, 1.78 mmol) in tetrahydrofuran (5 mL) was added dropwise to the reaction mixture at 0 C followed by 1 hour room temperature stirring. Saturated ammonium chloride was added to the reaction mixture at 0-5 C and extracted with ethyl acetate. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, ethyl acetate : n-hexane 2:8) to get l-[2-hydroxy-4- (tetrahydropyran-2-yloxy)phenyl]-2-(3-methoxyphenyl)ethanone .

Step IV : 2-(4-Iodophenyl)-3-(3-methoxyphenyl)-4-methyl-7-(tetrahydrop yran-2-yloxy)- 2H-chromene

2-(4-Iodophenyl)-3-(3-methoxyphenyl)-4-methyl-7-(tetrahydrop yran-2-yloxy)-2H-chromene prepared as per the process given in US20140107095A1 using l-[2-hydroxy-4- (tetrahydropyran-2-yloxy)phenyl]-2-(3-methoxyphenyl)ethanone .

Step V: 3-{4-[3-(3-Methoxyphenyl)-4-methyl-7-(tetrahydropyran-2-ylox y)-2H-chromen- 2-yl]phenyl}prop-2-yn-l-ol

3-{4-[3-(3-Methoxyphenyl)-4-methyl-7-(tetrahydropyran-2-ylox y)-2H-chromen-2- yl]phenyl}prop-2-yn-l-ol was prepared same as that of step-I of method A using 2-(4- Iodophenyl)-3 - (3 -methoxyphenyl)-4-methyl-7- (tetrahydropyran-2-yloxy) -2H-chromene .

Step VI: 3-(3-Methoxyphenyl)-4-methyl-2-{4-[(Z)-3-((/?)-3-methylpyrro lidin-l-y l)propenyl]phenyl}-2 -chromen-7-ol

3- (3-Methoxyphenyl)-4-methyl-2- { 4-[(Z)-3-((R)-3-methylpyrrolidin- 1 -yl)propenyl]phenyl } - 2H-chromen-7-ol was prepared same as that of method B using 3-{4-[3-(3-Methoxyphenyl)-

4- methyl-7-(tetrahydropyran-2-yloxy)-2H-chromen-2-yl]phenyl }prop-2-yn- 1 -ol

Method-J

Preparation of acetic acid 3-(6-acetoxy-2-(4-r( )-3-(9-fluorononylamino)propenvn

Step I: (9-Fluorononyl)-((^)-3-{4-[6-hydroxy-3-(3-hydroxyphenyl)-4-m ethyl-2H- chr men-2-yl]phenyl}allyl)carbamic acid tert-butyl ester

Di-teri-butyl dicarbonate (0.19 g, 0.85 mmol) was added to a stirred solution of 2-{4-[(£T)-3- (9-fluorononylamino)propenyl]phenyl}-3-(3-hydroxyphenyl)-4-m ethyl-2H-chromen-6-ol (0.41 g, 0.77 mmol) and triethylamine (0.09 g, 0.93 mmol) in dichloromethane (15 mL) at ambient temperature and was allowed to stirred at same temperature for 40 minutes. Solvent was removed under reduced pressure to get crude which was purified by column chromatography (silica gel, n-hexane:ethyl acetate, 6:4) to get (9-fluorononyl)-((£)-3-{4-[6- hydroxy-3-(3-hydroxyphenyl)-4-methyl-2H-chromen-2-yl]phenyl} allyl)carbamic acid tert- butyl ester. Step II: Acetic acid 3-[6-acetoxy-2-(4-{(E)-3-[tert-butoxycarbonyl-(9- fluorononyl)amino]propenyl}phenyl)-4-methyl-2H-chromen-3-yl] phenyl ester

Acetyl chloride (0.04 g, 0.52 mmol) was added to a stirred solution of (9-fluorononyl)-((£)- 3- { 4-[6-hydroxy-3-(3-hydroxyphenyl)-4-methyl-2H-chromen-2-yl]ph enyl } allyl)carbamic acid teri-butyl ester (0.11 g, 0.17 mmol) and triethylamine (0.07 g, 0.70 mmol) in dichloromethane (5 mL) at 0-5 C and was stirred at ambient temperature for 1 hour. Saturated sodium bicarbonate solution was added to the reaction mixture and was extracted with dichloromethane. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel n-hexane : ethyl acetate 8:2) to yield acetic acid 3-[6-acetoxy-2- (4-{(^-3-[tert-butoxycarbonyl-(9-fluorononyl)amino]propenyl} phenyl)-4-methyl-2H- chromen-3-yl]phenyl ester. Step III: Acetic acid 3-(6-acetoxy-2-{4-[(E)-3-(9-fluorononylamino)propenyl]phenyl }-4- meth l-2H-chromen-3-yl)phenyl ester

Zinc bromide (0.15 g, 0.67 mmol) was added to a stirred solution of acetic acid 3-[6-acetoxy- 2-(4-{ (£)-3-[tert-butoxycarbonyl-(9-fluorononyl)amino]propenyl}ph enyl)-4-methyl-2H- chromen-3-yl]phenyl ester (0.12 g, 0.17 mmol) in dichloromethane (3 mL) at ambient temperature and was allowed to stirred at same temperature for 4 hours. Water was added to reaction mixture and extracted with dichloromethane. Combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude which was purified by column chromatography (silica gel, dichloromethane : methanol, 8:2) to yield acetic acid 3-(6-acetoxy-2-{4-[(£T)-3-(9-fluorononylamino)propenyl]phen yl}-4-methyl-2H- chromen-3-yl)phenyl ester.

Table 2 provides some of the representative compounds prepared as per the general process.

Table 2:

2//-chromen-6-ol 6.53-6.60 (m, 2H); 6.69-6.74 (m, 2H); 6.77 (d, J=7.72 Hz, IH); 6.80 (d, J=2.28 Hz, IH); 7.16-7.24 (m, 3H); 7.32 (d, J=8.24 Hz, 2H); four exchangeable protons

2-(4-{(Z)-3-[4-(2-Hydroxy (d 6 -DMSO, 400 MHz); 2.09 (s, 3H); 2.20-2.50 (br m, 10H); 3.16-3.24 (br ethyl)piperazin- 1 - yl] - s, 2H); 3.51-3.60 (br s, 2H); 5.74 (dt, J^l l.95 Hz, J 2 =6.25 Hz, IH); 5.97 propenyl}phenyl)-3-(3- (s, IH); 6.47 (d, J=11.90 Hz, IH); 6.52-6.59 (m, 2H); 6.68-6.75 (s merged hydroxyphenyl)-4-methyl- with d, 2H); 6.77 (d, J=7.60 Hz, IH); 6.80 (d, J=2.40 Hz, IH); 7.20 (t, 2//-chromen-6-ol J=7.80 Hz, IH); 7.22 (d, J=8.15 Hz, 2H); 7.33 (d, J=8.15 Hz, 2H); 9.04

(s, IH); 9.52 (s, IH); one exchangeable proton

3-(3-Hydroxyphenyl)-4- (de-DMSO, 400 MHz); 1.68 (quintet, J=7.00 Hz, 2H); 2.09 (s, 3H); 2.13- methyl-2-(4-{(Z)-3-[4- 2.32 (m, 3H); 2.32-2.50 (m, 8H); 3.19 (d, J=4.72 Hz, 2H); 5.74 (dt,

(4,4,5,5,5- J ! =12.16 Hz, J 2 =6.16 Hz; IH); 5.97 (s, IH); 6.47 (d, J=12.08 Hz, IH); pentafluoropentyl)piperazi 6.52-6.61 (m, 2H); 6.68-6.75 (m, 2H); 6.77 (d, J=7.64 Hz, IH); 6.80 (d, n- 1 - yl] propenyl } phenyl) - J=2.32 Hz, IH); 7.16-7.26 (m, 3H); 7.33 (d, J=8.24 Hz, 2H), 9.03 (s, IH); 2//-chromen-6-ol 9.51 (s, IH); one proton is merged between 2.50-2.60

2,2-Dimethyl propionic (d 6 -DMSO, 400 MHz); 0.96 (d, J=6.72 Hz, 3H); 1.20-1.34 (br s, 19H); acid 3-[3-(2,2-dimethyl 1.34-1.46 (m, IH); 1.93-2.04 (m, IH); 2.07 (s, 3H); 2.18-2.30 (br m, IH); propionyloxy)-phenyl]-4 2.90-3.10 (br m, 2H); 3.10-3.22 (br m, IH); 3.74-3.89 (br s, 2H); 5.75 (dt, -methyl-2-{4-[(Z)-3-((i?)- J ! =12.20 Hz, J 2 =6.24 Hz, IH); 6.20 (s, IH); 6.57 (d, J=11.92 Hz, IH); 3-methyl pyrrolidin-1- 6.74 (d, J=8.64 Hz, IH); 6.83 (dd, J^S.64 Hz, J 2 =2.68 Hz, IH); 7.01 (dd, yl)propenyl] -phenyl }-2 J ! =8.12 Hz, J 2 =1.52 Hz, IH); 7.06 (d, J=2.64 Hz, IH); 7.12-7.16 (br m, //-chromen-6-yl ester IH); 7.16-7.25 (m, 3H); 7.32 (d, J=8.20 Hz, 2H); 7.39 (t, J=7.88 Hz, IH)

(i?)-l-((Z)-3-{4-[6- (de-DMSO, 400 MHz); 1.06 (dd, J^l l.20 Hz, J 2 =6.65 Hz, 3H); 1.45-1.65 Methoxy- 3 - ( 3 -methoxy (m, IH); 2.02-2.12 (m, IH); 2.16 (s, 3H); 2.25-2.50 (m, IH); 2.94-3.20 phenyl)-4-methyl-2//- (m, 2H); 3.47-3.67 (m, 2H); 3.78 (s, 3H); 3.79 (s, 3H); 4.10 (d, J=5.95 chromen-2-yl]phenyl } Hz, 2H); 5.82-5.90 (m, IH); 6.17 (s, IH); 6.68-6.78 (m, 3H); 6.90-6.97 allyl)-3-methyl pyrrolidine (m, 4H); 7.24 (d, J=8.20 Hz, 2H); 7.34 (t, J=8.15 Hz, 1H);7.39 (d, J=7.45 hydrochloride. Hz, 2H)

3-(3-Hydroxy phenyl)-4- (de-DMSO, 400 MHz); 2.08 (s, 3H); 2.35 (s, 3H); 3.51 (s, 2H); 5.98 (s, methyl-2-[4-(3-methyl IH); 6.54-6.60 (m, 2H); 6.66-6.69 (br s, IH); 6.71-6.77 (m, 2H); 6.80 (d, aminoprop-1- J=2.30 Hz, IH); 7.19 (t, J=7.85 Hz, IH); 7.30-7.36 (m, 4H); 9.04 (s, IH); ynyl) phenyl] -2H- 9.51 (s, IH); one exchangeable proton

chromen-6-ol

2-[4-(3-Dodecylamino- (d 6 -DMSO, 400 MHz); 0.90 (t, J=6.64 Hz, 3H); 1.21-1.38 (m, 18H); 1.38- prop-l-ynyl)-phenyl]-3- 1.50 (m, 2H); 2.08 (s, 3H); 2.61 (t, J=7.08 Hz, 2H); 3.56 (s, 2H); 5.98 (s, (3-hydroxy-phenyl)-4- IH); 6.54-6.61 (m, 2H); 6.66-6.69 (br s, IH); 6.70-6.77 (m, 2H); 6.80 (d, methyl-2//-chromen-6-ol J=1.60 Hz, IH); 7.19 (t, J=7.88 Hz, IH); 7.29-7.35 (br s, 4H); 9.04 (s,

IH); 9.50 (s, IH); one exchangeable proton

2-{4-[3-((£)-3,7-Dimethyl (d 6 -DMSO, 400 MHz); 1.60 (s, 3H); 1.67 (s, 3H); 1.69 (s, 3H); 2.00-2.07 octa-2,6-dienylamino)- (m, 2H); 2.07-2.14 (m, 5H); 3.33 (d, J=6.80 Hz, 2H); 3.40 (s, 2H); 5.08- prop- 1 - ynyl] -phenyl } - 3 - 5.14 (br t, IH); 5.16-5.23 (br t, IH); 6.00 (s, IH); 6.54-6.60 (m, 2H); (3-hydroxyphenyl)-4- 6.67-6.82 (m, 4H); 7.20 (t, J=7.84, IH); 7.32-7.38 (m, 4H); 9.06 (s, IH); methyl-2//-chromen-6-ol 9.52 (s,lH); one exchangeable proton

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 1.02 (d, J=6.50 Hz, 3H); 1.27-1.37 (br m, IH); methyl-2-{4-[3-((i?)-3- 1.94-2.05 (br m, IH); 2.09 (s, 3H); 2.16-2.27 (br m, 2H); 2.62-2.72 (m, methylpyrrolidin- 1- 2H); 2.80-2.91 (br t, IH); 3.60 (s, 2H); 5.99 (s, IH); 6.54-6.60 (m, 2H); yl)prop- 1 -ynyl] phenyl } - 6.68 (d, J=1.75 Hz, IH); 6.72 (dd, J 1= 8.10 Hz, J 2 =1.65 Hz, IH); 6.76 (d, 2//-chromen-6-ol J=7.70 Hz, IH); 6.80 (d, J=2.00 Hz, IH); 7.20 (t, J=7.85 Hz, IH); 7.32 (d,

J=8.35 Hz, 2H), 7.35 (d, J=8.35 Hz, 2H); 9.04 (s, IH); 9.51 (s, IH)

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 1.35-1.43 (m, 2H); 1.50-1.59 (m, 4H); 2.09 (s, methyl-2-[4-(3-piperidin- 3H); 2.43-2.52 (m, 4H); 3.47 (s, 2H); 5.99 (s, IH); 6.54-6.60 (m, 2H); 1 - yl-prop- 1 - ynyl) phenyl] - 6.66-6.69 (br s, IH); 6.70-6.78 (m, 2H); 6.80 (d, J=1.64 Hz, IH); 7.19 (t, 2//-chromen-6-ol J=7.84 Hz, IH); 7.31 (d, J=8.36 Hz, 2H); 7.35 (d, J=8.40 Hz, 2H); 9.05

(s, IH); 9.52 (s, IH)

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 2.08 (s, 3H); 2.21 (s, 3H); 2.31-2.50 (br s, 3H); methyl-2-{4-[3-(4-methyl 3.50 (s, 2H); 5.98 (s, IH); 6.52-6.61 (m, 2H); 6.68 (d, J=1.60 Hz, IH); piperazin- 1 -yl)prop- 1 - 6.72 (dd, J ! =8.10 Hz, J 2 =1.95 Hz IH); 6.74 (d, J=7.70 Hz, IH); 6.80 (d, ynyl] phenyl } -2H- J=2.10 Hz, IH); 7.19 (t, J=7.90 Hz, IH); 7.32 (d, J=8.30 Hz, 2H); 7.35 (d, chromen-6-ol J=8.25 Hz, 2H); 9.04 (s, 1H); 9.51 (s, 1H); five protons are merged between 2.50-2.61

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 2.08 (s, 3H); 2.26 (s, 3H); 2.37-2.53 (br m, 7H); methyl-2- { 4- [4-(4-methyl 2.58-2.61 (br m, 5H); 5.97 (s, 1H); 6.54-6.59 (m, 2H); 6.66-6.68 (br m, piperazin- 1 -yl)-but- 1 - 1H); 6.70-6.77 (m, 2H); 6.78-6.82 (br m, 1H); 7.19 (t, J=7.84 Hz, 1H); ynyl] phenyl } -2H- 7.30 (s, 4H); 9.06 (s, 1H); 9.52 (s, 1H)

chromen-6-ol

3-(3-Methoxyphenyl)-4- (de-DMSO, 400 MHz); 1.04 (d, J=6.72 Hz, 3H); 1.41-1.56 (br m, 1H); methyl-2-{4-[(Z)-3-((i?)-3- 2.01-2.10 (br m, 1H); 2.11 (s, 3H); 2.23-2.39 (br m, 1H); 2.90-3.33 (br m, methylpyrrolidin- 1- 4H); 3.79 (s, 3H); 3.82-4.02 (br s, 2H); 5.82 (q, J=5.36 Hz, 1H); 6.10 (s, yl)propenyl]phenyl}-2//- 1H); 6.58 (d, J=2.52 Hz, 1H); 6.59 (s, 1H); 6.62-6.68 (br d, 1H); 6.82 (d, chromen-6-ol. J=2.28 Hz, 1H); 6.88-6.96 (m, 3H); 7.23 (d, J=8.24 Hz, 2H); 7.33 (t,

J=7.88 Hz, 1H); 7.37 (d, J=8.20 Hz, 2H); 9.07 (s, 1H)

3-(4-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 1.71-1.84 (br s, 4H); 2.10 (s, 3H); 2.63-2.81 (br s, methyl-2-[4-((Z)-3- 4H); 3.50-3.65 (br s, 2H); 5.82 (dt, =10.12 Hz, J 2 =6.28 Hz, 1H); 5.99 pyrrolidin-1- (s, 1H); 6.48-6.62 (d merged in m, 3H); 6.68-6.86 (m, 4H); 7.17-7.28 (d ylpropenyl)phenyl] -2H- merged in t, 3H); 7.34 (d, J =8.16 Hz, 2H); 9.05 (s, 1H); 9.53 (s, 1H) chromen-6-ol

3-(4-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 1.71-1.84 (br s, 4H); 2.09 (s, 3H); 2.60-2.74 (br s, methyl-2-[4-((£)-3- 4H); 3.28-3.50 (br d, 2H); 5.95 (s, 1H); 6.33 (dt, ^ =13.28 Hz, J 2 =6.59 pyrrolidin-1- Hz, 1H); 6.52-6.61 (m, 3H); 6.67-6.74 (m, 2H); 6.76 (d, J =7.72 Hz, 1H); ylpropenyl)phenyl] -2H- 6.81 (s, 1H); 7.19 (t, J =7.83 Hz, 1H); 7.29 (d, J=8.23 Hz, 2H); 7.36 (d, chromen-6-ol J=8.23 Hz, 2H); 9.05 (s, 1H); 9.53 (s, 1H)

2-{4-[(Z)-3-(3-Butylamino (ds-Pyridine, 400 MHz); 0.79 (t, J =7.32 Hz, 3H); 1.22-1.31 (m, 2H); pyrrolidin-1- I.36-1.44 (m, 2H); 1.47-1.61 (br m, 1H); 1.90-2.01 (m, 1H); 2.13 (s, 3H); yl)propenyl]phenyl}-3-(3- 2.33-2.42 (m, 2H); 2.42-2.58 (m, 3H); 2.63-2.70 (m, 1H); 3.18-3.34 (m, hydroxyphenyl)-4-methyl- 3H); 5.84 (dt, J ! =12.39 Hz, J 2 =5.99 Hz, 1H); 6.29 (s, 1H); 6.38 (d, 2//-chromen-6-ol J=12.01 Hz, 1H); 6.86-6.96 (m, 3H); 7.04 (dd, J ! =7.88 Hz, J 2 =1.93 Hz,

1H); 7.18-7.30 (m, 5H); 7.60 (d, J=8.14 Hz, 2H); 10.99-11.45 (br s, 1H);

I I.45-11.90 (br s, 1H) one exchangeable proton

2-{4-[(£)-3-(3-Butylamino (ds-Pyridine, 400 MHz); 0.74-0.81 (m, 3H); 1.21-1.32 (m, 2H); 1.36-1.46 pyrrolidin-l-yl)- (m, 2H); 1.53-1.64 (br m, 1H); 1.96-2.08 (m, 1H); 2.13 (s, 3H); 2.37-2.62 propenyl]phenyl}-3-(3- (br m, 5H); 2.70-2.77 (m, 1H); 3.08-3.16 (m, 2H); 3.21-3.32 (br m, 1H); hydroxyphenyl)-4-methyl- 4.80-5.10 (br s, 1H); 6.23 (s, 1H); 6.25-6.48 (m, 1H); 6.48 (d, J=15.93

2//-chromen-6-ol Hz, 1H); 6.88-6.97 (m, 2H); 7.02-7.39 (m, 7H); 7.52-7.56 (m, 2H); 10.97- 11.18 (br s, 1H); 11.55-11.80 (br s, 1H)

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 2.09 (s, 3H); 2.60-2.71 (m, 8H); 3.11 (d, J=6.40 methyl-2-[4-((£)-3- Hz, 2H); 5.94 (s, 1H); 6.26 (dt, J ! =16.56 Hz, J 2 =6.48 Hz, 1H); 6.48 (d, J thiomorpholin-4-yl- = 15.96 Hz, 1H); 6.55 (s, 2H); 6.67-6.82 (m, 4H); 7.19 (t, J=7.80 Hz, 1H); propenyl)phenyl] -2H- 7.27 (d, J=8.24 Hz, 2H); 7.36 (d, J=8.24 Hz, 2H); 9.04 (s,lH); 9.52 (s,lH) chromen-6-ol

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO+Acetic acid, 400 MHz); 0.92 (d, J=6.55 Hz, 3H); 1.20-1.31 methyl-2-{4-[(Z)-3-(4- (br m, 2H); 1.37-1.50 (br s, 1H); 1.63-1.72 (br d, 2H); 2.10 (s, 3H); 2.25- methylpiperidin- 1 - 2.36 (br t, 2H); 3.05 (d, J=11.35 Hz, 2H); 3.52 (d, J=5.55 Hz, 2H); 5.80 yl)propenyl]phenyl}-2//- (dt, J^l l.90 Hz, J 2 =6.40 Hz, 1H); 5.99 (s, 1H); 6.54-6.62 (m, 3H); 6.68- chromen-6-ol 6.75 (m, 2H); 6.77-6.83 (m, 2H); 7.16-7.25 (m, 3H); 7.34 (d, J=8.10 Hz,

2H); two exchangeable protons

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 0.90 (t, J=6.96 Hz, 3H); 1.25-1.37 ( br s, 12H); methyl-2-[4-((£)-3- 1.48-1.57 (br m, 2H); 2.09 (s, 3H); 2.72 ( t, J=7.56 Hz, 2H); 3.52 (d, J= nonylamino 6.44 Hz, 2H);5.96 (s, 1H); 6.28 (dt, J ! =15.88 Hz, J 2 =6.56 Hz, 1H); 6.56 propenyl)phenyl] -2H- (s, 2H); 6.62 (d, J=15.84 Hz, 1H); 6.68-6.85 (m, 4H); 7.20 (t, J=7.84 Hz, chromen-6-ol 1H); 7.31 (d, J=8.28 Hz, 2H); 7.36 (d, J=8.32 Hz, 2H); 9.05 (s, 1H); 9.53

(s, 1H); one exchangeable proton

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 0.94 (d, J=6.50 Hz, 3H); 1.31-1.40 (br m, 2H); methyl-2-{4-[(£)-3-(4- 1.52-1.64 (br s, 1H); 1.73-1.82 (br d, 2H); 2.09 (s, 3H); 2.73 (t, J=11.90 methylpiperidin-l-yl)- Hz, 2H); 3.28 (d, J=12.25 Hz, 2H); 3.68 (d, J=7.10 Hz, 2H); 5.97 (s, 1H); propenyl] phenyl } -2H- 6.32 (dt, J ! =15.80 Hz, J 2 =7.25 Hz, 1H); 6.54-6.58 (m, 2H); 6.68-6.74 (m, chromen-6-ol 3H); 6.77 (d, J=7.70 Hz, IH); 6.79-6.82 (br t, IH); 7.19 (t, J=7.80 Hz, IH); 7.33 (d, J=8.25 Hz, 2H); 7.41 (d, J=8.30 Hz, 2H); two exchangeable protons

3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 0.91 (t, J=6.60 Hz, 3H); 1.23-1.36 (br s, 12H); methyl-2-[4-((Z)-3- 1.50-1.62 (br m, 2H); 2.10 (s, 3H); 2.88 (t, J=7.48 Hz, 2H); 3.83 (d, nonylamino J=5.04 Hz, 2H); 5.76 (dt, J ! =12.36 Hz, J 2 =6.36 Hz, IH); 6.01 (s, IH); propenyl)phenyl] -2H- 6.55-6.59 (m, 2H); 6.68 (d, J=12.40 Hz, IH); 6.71-6.83 (m, 4H); 7.20 (t, chromen-6-ol J=7.72 Hz, IH); 7.24 (d, J =8.24 Hz, 2H); 7.37 (d, J =8.28 Hz, 2H); 9.07

(s, IH); 9.56 (s, IH); one exchangeable proton

2- {4-[(Z)-3-(9- (d 6 -DMSO, 400 MHz); 1.26-1.42 (m, 10H): 1.50-1.59 (m, 2H); 1.62-1.73 Fluorononyl (m, 2H); 2.10 (s, 3H); 2.82 (t, J=7.55 Hz, 2H); 3.73-3.80 (m, 2H); 4.48 amino)propenyl] phenyl } - (dt, Ji =47.56 Hz, J 2 =6.10 Hz, 2H); 5.76 (dt, J^ll.90 Hz, J 2 =6.25 Hz,

3- (3-hydroxyphenyl)-4- IH); 6.00 (s, IH); 6.53-6.67 (m, 3H); 6.70-6.82 (m, 4H); 7.20 (t, J =7.90 methyl-2//-chromen-6-ol Hz, IH); 7.24 (d, J =8.30 Hz, 2H); 7.36 (d, J=8.20 Hz, 2H); 9.05 (s,lH);

9.53 (s,lH); one exchangeable proton

2-{4-[(£)-3-(9-Fluoro (d 6 -DMSO, 400 MHz); 1.26-1.40 (m, 10H); 1.54-1.61 (m, 2H); 1.61-1.72 nonylamino)propenyl] phe (m, 2H); 2.09 (s, 3H); 2.83 (t, J=7.75 Hz, 2H); 3.64 (d, J=6.75 Hz, 2H); nyl}-3-(3-hydroxy 4.47 (dt, J ! =47.56 Hz, J 2 =6.10 Hz, 2H); 5.97 (s, IH); 6.27 (dt, ^ =15.90 phenyl)-4-methyl-2//- Hz, J 2 =6.70 Hz, IH); 6.53-6.59 (br s, 2H); 6.67-6.83 (m, 5H); 7.19 (t, J chromen-6-ol =7.85 Hz, IH); 7.33 (d, J=8.30 Hz, 2H); 7.38 (d, J=8.45 Hz, 2H); 9.07

(s,lH); 9.54 (s,lH); one exchangeable proton

3-(3-Hydroxy phenyl)-4- (d 6 -DMSO+Acetic acid, 400 MHz); 1.33-1.41 (m, 3H); 1.74-1.86 (br m, methyl-2-[4-((Z)-3- 4H); 2.10 (s, 3H); 2.80-2.98 (m, 4H); 3.88-3.98 (m, IH); 5.74 (m, IH); pyrrolidin- 1 -ylbut- 1 - 6.01 (s, IH); 6.53-6.62 (m, 3H); 6.70-6.75 (m, 2H); 6.77-6.83 (m, 2H); enyl) phenyl] -2H- 7.16-7.26 (m, 3H); 7.33-7.41 (m, 2H). two exchangeable protons chromen-6-ol.

2-{4-[(£)-3-(10-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.30 (s, 12H); 1.53-1.60 (br m, 2H); decylamino)propenyl]phe 1.61-1.72 (br m, 2H); 2.09 (s, 3H); 2.80 (t, J=7.65 Hz, 2H); 3.61 (d, nyl}-3-(3-hydroxy J=6.70 Hz, 2H); 4.46 (t, J=47.56 Hz, J 2 =6.10 Hz, 2H); 5.97 (s, IH); 6.27 phenyl)-4-methyl-2//- (dt, Ji =15.90 Hz, J 2 =6.90 Hz, IH); 6.56 (s, 2H); 6.65-6.79 (m, 4H); 6.81 chromen-6-ol (s, IH); 7.19 (t, J=7.85 Hz, 2H); 7.32 (d, J=8.35 Hz, 2H); 7.37 (d, J=8.35

Hz, 2H); two exchangeable protons

2-{4-[3-(9-Fluoro (d 6 -DMSO+Acetic acid); 1.24-1.41 (br m, 10H): 1.52-1.72 (m, 4H); 2.08 nonylamino)prop- 1 - (s, 3H); 2.93 (t, J =7.75 Hz, 2H); 4.04 (s, 2H); 4.45 (dt, l x =47.56 Hz, J 2 ynyl] phenyl }-3-(3hydroxy =6.15 Hz, 2H); 6.01 (s, IH); 6.54-6.61 (m, 2H); 6.66-6.83 (m, 4H); 7.19 phenyl)-4-methyl-2//- (t, J =7.85 Hz, IH); 7.36 (d, J=8.35 Hz, 2H); 7.40 (d, J=8.40 Hz, 2H); chromen-6-ol. three exchangeable protons

2-{4-[(Z)-3-(10-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.30 (s, 12H); 1.53-1.60 (br m, 2H); decylamino)propenyl]phe 1.61-1.72 (br m, 2H); 2.09 (s, 3H); 2.80 (t, J=7.65 Hz, 2H); 3.61 (d, nyl}-3-(3-hydroxy J=6.70 Hz, 2H); 4.46 (t, J=47.56 Hz, J 2 =6.10 Hz, 2H); 5.97 (s, IH); 6.27 phenyl)-4-methyl-2//- (dt, =15.90 Hz, J 2 =6.90 Hz, IH); 6.56 (s, 2H); 6.65-6.79 (m, 4H); 6.81 chromen-6-ol (s,lH); 7.19 (t, J=7.85 Hz, 2H); 7.32 (d, J=8.35 Hz, 2H); 7.37 (d, J=8.35

Hz, 2H); two exchangeable protons

2-{4-[(£)-3-(9,9-Difluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.24-1.47 (br m, 10H): 1.51-1.63 (m, nonylamino)propenyl] phe 2H); 1.73-1.92 (m, 2H); 2.09 (s, 3H); 2.80 (t, J=7.60 Hz, 2H); 3.61 (d, nyl}-3-(3-hydroxy J=6.56 Hz, 2H); 5.97 (s, IH); 6.09 (tt, J ! =56.90 Hz, J 2 =4.44 Hz, IH); phenyl)-4-methyl-2//- 6.27 (dt, Ji =15.89 Hz, J 2 =6.76 Hz, IH); 6.54-6.60 (m, 2H); 6.64-6.84 chromen-6-ol (m, 5H); 7.19 (t, J =7.80 Hz, IH); 7.32 (d, J=8.36 Hz, 2H); 7.37 (d,

J=8.36 Hz, 2H); three exchangeable protons

2-(4-{(£)-3-[(9-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.26-1.41 (br m, 10H); 1.45-1.56 (br nonyl)methylamino] - m, 2H); 1.58-1.73 (m, 2H); 2.10 (s, 3H); 2.31 (s, 3H); 2.46-2.53 (m, 2H); propenyl}phenyl)-3-(3- 3.29 (d, J=6.40 Hz, 2H); 4.46 (dt, Ji=47.54 Hz, J 2 =6.12 Hz, 2H); 5.96 (s, hydroxyphenyl)-4-methyl- IH); 6.29 (dt, J ! =15.85 Hz, J 2 =6.80 Hz, IH); 6.53-6.59 (m, 3H); 6.68- 2//-chromen-6-ol 6.83 (m, 4H); 7.20 (t, J=7.84 H z , IH); 7.29 (d, J=8.28 Hz, 2H); 7.37 (d,

J=8.32 Hz, 2H); two exchangeable protons 2-{4-[(Z)-3-(9,9-Difluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.18-1.42 (br m, 10H): 1.44-1.55 (m, nonylamino)propenyl] phe 2H); 1.69-1.87 (m, 2H); 2.05 (s, 3H); 2.81 (t, J=7.84 Hz, 2H); 3.76 (d, J nyl}-3-(3-hydroxy =4.76 Hz, 2H); 5.70 (dt, J^l l.84 Hz, J 2 =6.40 Hz, IH); 5.95 (s, IH); phenyl)-4-methyl-2//- 6.04 (tt, J ! =56.94 Hz, J 2 =4.48 Hz, IH); 6.48-6.55 (m, 2H); 6.58-6.78 (m, chromen-6-ol 5H); 7.12-7.21 (m, 3H); 7.3 (d, J=8.24 Hz, 2H); three exchangeable protons

2-{4-[(£)-3-(9-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.24-1.42 (br m, 10H); 1.53-1.75 (m, nonylamino)propenyl] phe 4H); 2.05 (s, 3H); 2.83 (t, J=7.88 Hz, 2H); 3.65 (d, J=7.36 Hz, 2H); 3.73 nyl}-3-(3- (s, 3H); 4.41 (dt, 1^47.54 Hz, J 2 =6.12 Hz, 2H); 6.01 (s, IH); 6.20 (dt, ^ methoxyphenyl)-4- =15.93 Hz, J 2 =6.96 Hz, IH); 6.55-6.59 (m, 2H); 6.68 (d, J=15.93 Hz, methyl-2//-chromen-6-ol IH); 6.80-6.85 (m, IH); 6.87-6.94 (m, 3H); 7.28-7.42 (m, 5H); two exchangeable protons

2- (4-{(Z)-3-[(9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.25-1.40 (br m, 10H); 1.40-1.48 (br Fluorononyl) methyl m, 2H); 1.61-1.73 (m, 2H); 2.09 (s, 3H); 2.23 (s, 3H); 2.38-2.45 (m, 2H); amino]propenyl Jphenyl)- 3.33 (d, J=4.98 Hz, 2H); 4.47 (dt, 1^47.56 Hz, J 2 =6.12 Hz, 2H); 5.75 (dt,

3- (3-hydroxyphenyl)-4- J^l l.95 Hz, J 2 =6.15 Hz, IH); 5.98 (s, IH); 6.51 (d, J=11.98 H z , IH); methyl-2//-chromen-6-ol 6.54-6.59 (m, 2H); 6.70-6.82 (m, 4H); 7.20 (t, J=7.78 H z , IH); 7.22 (d,

J=8.32 Hz, 2H); 7.33 (d, J =8.22 Hz, 2H); two exchangeable protons

2-{4-[(£)-3-(8-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.26-1.43 (m, 8H); 1.54-1.75 (m, octylamino)- 4H); 2.09 (s, 3H); 2.88 (t, J=7.60 Hz, 2H); 3.70 (d, J =6.76 Hz, 2H); 4.46 propenyl]phenyl}-3-(3- (dt, Ji=47.54 Hz, J 2 =6.08 Hz, 2H); 5.98 (s, IH); 6.26 (dt, J ! =15.93 Hz, J 2 hydroxyphenyl)-4-methyl- =6.88 Hz, IH); 6.54-6.59 (br s, 2H); 6.68-6.84 (m, 5H); 7.19 (t, J=7.80

2//-chromen-6-ol Hz, IH); 7.33 (d, J=8.32 Hz, 2H); 7.38 (d, J=8.48 Hz, 2H); three exchangeable protons

2-{4-[(Z)-3-(8-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.23-1.42 (m, 8H); 1.48-1.58 (m, octylamino)propenyl]phen 2H); 1.60-1.73 (m, 2H); 2.10 (s, 3H); 2.84 (t, J=7.60 Hz, 2H); 3.80 (dd, yl}-3-(3-hydroxyphenyl)- J ! =6.50 Hz, J 2 =1.75 Hz, 2H); 4.47 (dt, J ! =47.51 Hz, J 2 =6.15 Hz, 2H);

4-methyl-2//-chromen-6- 5.74 (dt, J^ll.85 Hz, J 2 =6.35 Hz, IH); 6.00 (s, IH); 6.54-6.61 (m, 2H); ol 6.65 (d, J=12.00 Hz, IH); 6.69-6.75 (m, 2H); 6.78 (d, J=7.65 Hz, IH);

6.81 (d, J=2.40 Hz, IH); 7.20 (t, J =7.85 Hz, IH); 7.23 (d, J =8.25 Hz, 2H); 7.36 (d, J =8.20 Hz, 2H); three exchangeable protons

2-{4-[3-(8-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.28-1.40 (br m, 8H): 1.40-1.50 (br octylamino)prop- 1- m, 2H); 1.58-1.75 (m, 2H); 2.02 (s, 3H); 2.60-2.69 (br m, 2H); 3.54-3.63 ynyl] phenyl }-3-(3hydroxy (br m, 2H); 4.40 (dt, ^ =47.58 Hz, J 2 =6.12 Hz, 2H); 5.93 (s, IH); 6.55- phenyl)-4-methyl-2//- 6.59 (m, 2H); 6.66-6.82 (m, 4H); 7.14 (t, J=7.88 Hz, IH); 7.31-7.37 (m, chromen-6-ol 4H); three exchangeable proton

2-{4-[3-(10-Fluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.27-1.42 (br m, 12H); 1.46-1.55 (m, dec ylamino)prop- 1 - 2H); 1.61-1.73 (m, 2H); 2.08 (s, 3H); 2.75 (t, J=7.25 H z , 2H); 3.78 (s, ynyl]phenyl}-3-(3- 2H); 4.46 (dt, 1^47.36 Hz, J 2 =6.25 Hz, 2H); 6.00 (s, IH); 6.54-6.60 (m, hydroxyphenyl)-4-methyl- 2H); 6.67-6.82 (m, 4H); 7.19 (t, J=7.95 Hz, IH); 7.33 (d, J=8.35 Hz, 2H); 2//-chromen-6-ol 7.36 (d, J =8.50 Hz, 2H); three exchangeable protons

2-(4-{3-[(9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.31 (s, 10H); 1.40-1.49 (br m , 2H);

Fluorononyl) methyl 1.60-1.71 (br m, 2H); 2.08 (s, 3H); ); 2.28 (s, 3H); 2.43 (t, J=7.50 Hz, amino]prop-l- 2H); 3.56 (s, 3H); 4.45 (dt, J 1= 47.71 Hz, J 2 =6.10 Hz, 2H); 5.98 (s, IH); ynyl}phenyl)-3-(3- 6.56 (s, 2H); 6.68 ( t, J=1.80 Ηζ,ΙΗ); 6.72-6.78 (m, 2H); 6.80 (d, J=1.60 hydroxyphenyl)-4-methyl- Hz, 2H); 7.20 (t, J=7.75 Hz, IH); 7.34 (q, J=8.32 Hz, 2H); two

2//-chromen-6-ol exchangeable protons

2-{4-[3-(9,9-Difluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.25-1.44 (m, 10H); 1.46-1.56 (m, nonylamino)prop- 1 - 2H); 1.76-1.90 (m, 2H); 2.08 (s, 3H); 2.74 (t, J=7.55 Hz, 2H); 3.76 (s, ynyl]phenyl}-3-(3- 2H); 6.00 (s, IH); 6.08 (tt, ^ =56.86 Hz, J 2 =4.55 Hz, IH); 6.54-6.60 (m, hydroxyphenyl)-4-methyl- 2H); 6.66-6.78 (m, 3H); 6.81 (d, J=2.30 Hz, IH); 7.20 (t, J=7.90 Hz, IH); 2//-chromen-6-ol. 7.33 (d, J =8.55 Hz, 2H); 7.36 (d, J=8.50 Hz, 2H); three exchangeable protons

2-{4-[(Z)-3-((/?)-3- (d 6 -DMSO+Acetic acid, 400 MHz); 1.41-1.52 (m, IH); 1.85-1.96 (m, Fluoromethyl pyrrolidin- IH); 2.10 (s, 3H); 2.60-2.79 (m, 4H); 3.43-3.50 (m, 2H); 4.24-4.34 1 - yl)-propenyl] phenyl } - 3 - (m,lH); 4.36-4.46 (m,lH); 5.79 (dt, J^l l.88 Hz, J 2 =6.32 Hz, IH); 5.98

(3-hydroxyphenyl)-4- (s, IH); 6.48 (d, J=12.00 Hz, IH); 6.53-6.60 (m, 2H); 6.70-6.83 (m, 4H); methyl-2//-chromen-6-ol 7.17-7.25 (m, 3H); 7.34 (d, J=8.20 Hz, 2H); one proton is merged between 2.45-2.55; two exchangeable protons

2-{4-[3-(3,3-Difluoro (de-DMSO+Acetic acid, 400 MHz); 2.09 (s, 3H); 2.23-2.37 (m, 2H); 2.84 pyrrolidin-l-yl)prop-l- (t, J=7.00 Hz, 2H); 3.02 (t, J=13.36 Hz, 2H); 3.69 (s, 2H); 5.99 (s, IH); ynyl]phenyl}-3-(3- 6.53- 6.60 (br s, 2H); 6.67-6.82 (m, 4H); 7.20 (t, J=7.80 Hz, IH); 7.33 (d, hydroxyphenyl)-4-methyl- J=8.32 Hz, 2H); 7.38 (d, J=8.36 Hz, 2H); two exchangeable protons

2//-chromen-6-ol

2-{4-[(Z)-3-(3,3-Difluoro (d 6 -DMSO+Acetic acid, 400 MHz); 2.09 (s, 3H); 2.19-2.32 (m, 2H); 2.73 pyrrolidin-1- (t, J=6.92 Hz, 2H); 2.91 (t, J=13.32 Hz, 2H); 3.37 (d, J=4.72 Hz, 2H); yl)propenyl]phenyl}-3-(3- 5.76 (dt, J^ll.96 Hz, J 2 =6.40 Hz, IH); 5.98 (s, IH); 6.47 (d, J=12.00 Hz, hydroxyphenyl)-4-methyl- IH); 6.55-6.59 (m, 2H); 6.69-6.83 (m, 4H); 7.18 (d, J=7.96 Hz, IH); 7.21 2//-chromen-6-ol (d, J=8.24 Hz, 2H); 7.33(d, J=8.20 Hz, 2H); two exchangeable protons

2-{4-[(£)-3-(3,3-Difluoro (d 6 -DMSO+Acetic acid, 400 MHz); 2.09 (s, 3H); 2.20-2.34 (m, 2H); 2.74 pyrrolidin-1- (t, J=7.00 Hz, 2H); 2.92 (t, J=13.28 Hz, 2H); 3.24 (d, J=7.00 Hz, 2H); yl)propenyl]phenyl}-3-(3- 5.94 (s, IH); 6.30 (dt, ^ =15.93 Hz, J 2 =6.48 Hz, IH); 6.54 (s, IH); 6.55 hydroxyphenyl)-4-methyl- (s, 2H); 6.67-6.82 (m, 4H); 7.19 (t, J=7.88 Hz, IH); 7.28 (d, J=8.24 Hz, 2//-chromen-6-ol 2H); 7.36(d, J=8.28 Hz, 2H); two exchangeable protons

2-{4-[(£)-3-((/?)-3- (d 6 -DMSO+Acetic acid, 400 MHz); 1.48-1.57 (m, IH); 1.94-2.00 (m, Fluoromethyl pyrrolidin- IH); 2.09 (s, 3H); 2.48-2.52 (m, 3H); 2.71-2.88 (m, 2H); 3.40 (d, J=6.50 1 - yl)propenyl] phenyl } - 3 - Hz, 2H); 4.30-4.45 (m, 2H); 5.95 (s, IH); 6.32 (dt, J ! =15.80 Hz, J 2 =6.80 (3-hydroxyphenyl)-4- Hz, IH); 6.53-6.61 (m, 3H); 6.68-6.83 (m, 4H); 7.20 (t, J=7.85 Hz, IH); methyl-2//-chromen-6-ol 7.29 (d, J=8.20 Hz, 2H); 7.37 (d, J=8.20 Hz, 2H); two exchangeable proton

2-{4-[(£)-3-((/?)-3- (d 6 -DMSO+Acetic acid, 400 MHz); 1.55-1.67 (m, IH); 1.94-2.02 (m,

Hydroxymethyl IH); 2.09 (s, 3H); 2.32-2.46 (m, IH); 2.71-2.82 (m, IH); 2.95-3.04 (m, pyrrolidin-1- 2H); 3.04-3.13 (m, IH); 3.32-3.45 (m, 2H); 3.63 (d, J=6.80 Hz, 2H); 5.97 yl)propenyl]phenyl}-3-(3- (s, IH); 6.31 (dt, J^IS.89 Hz, J 2 =6.84 Hz, IH); 6.53-6.59 (br s, 2H); hydroxyphenyl)-4-methyl- 6.65-6.83 (m, 5H); 7.20 (t, J =7.80 Hz, IH); 7.32 (d, J=8.20 Hz, 2H); 7.39 2//-chromen-6-ol (d, J=8.24 Hz, 2H); three exchangeable proton

2-(4-{3-[4-(4- (de-DMSO+Acetic acid, 400 MHz); 1.53-1.62 (br m, 6H); 1.62-1.76 (m,

Fluorobutoxy)butylamino] 2H); 2.08 (s, 3H); 2.80-2.88 (br s, 2H); 3.37-3.45 (m, 4H); 3.84-3.92 (br prop-l-ynyl}phenyl)-3-(3- s, 2H); 4.46 (dt, 1^47.48 Hz, J 2 =6.10 Hz, 2H); 6.01 (s, IH); 6.54-6.61 hydroxyphenyl)-4-methyl- (m, 2H); 6.67-6.71 (m, IH); 6.71-6.78 (m, 2H); 6.80 (d, J=1.97 Hz, IH);

2//-chromen-6-ol 7.20 (t, J=7.86 Hz, IH); 7.35 (d, J=8.41 Hz, 2H); 7.38 (d, J =8.31 Hz,

2H); three exchangeable protons

2-{4-{(Z)-3-[4-(4- (d 6 -DMSO+Acetic acid, 400 MHz); 1.50-1.80 (br m, 8H); 2.10 (s, 3H);

Fluorobutoxy)butylamino] 2.93 (t, J=7.20 H z , 2H); 3.34-3.45 (m, 4H); 3.84-3.90 (br m, 2H); 4.49 propenyl}phenyl)-3-(3- (dt, Ji=47.46 Hz, J 2 =6.04 Hz, 2H); 5.74 (dt, J^ll.84 Hz, J 2 =6.32 Hz, hydroxyphenyl)-4-methyl- IH); 6.02 (s, IH); 6.53-6.61 (m, 2H); 6.66-6.77 (m, 3H); 6.78-6.84 (m,

2//-chromen-6-ol 2H); 7.20 (t, J=8.44 Hz, IH); 7.24 (d, J=8.24 Hz, 2H); 7.37 (d, J =8.24

Hz, 2H); three exchangeable protons

2-{4-{(£)-3-[4-(4- (d 6 -DMSO+Acetic acid, 400 MHz); 1.52-1.78 (m, 8H); 2.09 (s, 3H); 2.94

Fluorobutoxy)butylamino] (t, J=7.55 H z , 2H); 3.33-3.47 (m, 4H); 3.73 (d, J=6.75 H z , 2H); 4.47 (dt, propenyl}phenyl)-3-(3- Ji=47.46 Hz, J 2 =6.10 Hz, 2H); 5.98 (s, IH); 6.25 (dt, J ! =15.90 Hz, J 2 hydroxyphenyl)-4-methyl- =7.00 Hz, IH); 6.53-6.59 (m, 2H); 6.68-6.84 (m, 5H); 7.19 (t, J=7.85 H z ,

2//-chromen-6-ol IH); 7.34 (d, J =8.30 Hz, 2H); 7.39 (d, J=8.30 Hz, 2H); three exchangeable protons

2-{4-[3-((/?)-3- (CDCI 3 +CD 3 OD, 400 MHz); 1.41-1.52 (m, IH); 1.86-1.94 (m, IH); 2.09

Fluoromethyl pyrrolidin- (s, 3H); 2.60-2.80 (m, 5H); 3.65 (s, 2H); 4.26-4.32 (m, IH); 4.39-4.45 (m, l-yl)-prop-l- IH); 5.99 (s, IH); 6.54-6.61 (m, 2H); 6.67-6.82 (m, 4H); 7.20 (t, J =7.84 ynyl]phenyl}-3-(3- Hz, IH); 7.32 (d, J=8.48 Hz, 2H); 7.36 (d, J=8.44 Hz, 2H); two hydroxyphenyl)-4-methyl- exchangeable proton

2//-chromen-6-ol

3-(3-Hydroxyphenyl)-4- (CDCI 3 +CD 3 OD, 400 MHz); 1.83-1.93 (m, IH); 1.95-2.01 (m, IH); 2.03 methyl-2-{4-[(£)-3-(3- (s, 3H); 2.40-2.50 (m, 2H); 2.80-2.92 (m, 2H); 3.12-3.24 (m, 2H); 3.35 trifluoromethyl pyrrolidin- (s, IH); 5.79 (s, IH); 6.15 (dt, J ! =15.80 Hz, J 2 =6.75 Hz, IH); 6.41 (d, 1 - yl)propenyl] phenyl } - J=15.85 Hz, IH); 6.50-6.58 (m, 2H); 6.61 (s, IH); 6.66 (t, J=8.10 Hz, 2//-chromen-6-ol 2H); 6.76 (s,lH); 7.10 (t, J=7.85 Hz, IH); 7.16 (d, J=8.00 Hz, 2H);

7.20(d, J=8.00 Hz, 2H); two exchangeable protons

3-(3-Hydroxyphenyl)-4- (CDCI 3 +CD 3 OD, 400 MHz); 1.82-1.90 (m,lH); 1.95-2.03(m, IH); 2.04 methyl-2-{4-[(Z)-3-(3- (s, 3H); 2.38-2.48 (m, 2H); 2.67-2.75 (m, IH); 2.78-2.90 (m, 2H); 3.28- trifluoromethyl pyrrolidin- 3.40 (m, 2H); 5.68 (dt, ^ =11.85 Hz, J 2 =6.34 Hz, IH); 5.82 (s, IH); 6.41 1 - yl)propenyl] phenyl } - (d, J=11.84 Hz, IH); 6.52-6.62 (m, 3H); 6.65-6.69 (m, 2H); 6.77 (d, 2//-chromen-6-ol J=2.72 Hz, IH); 7.02 (d, J=8.09 Hz, 2H); 7.11 (t, J=7.98 Hz, IH); 7.23

(d, J=8.12 Hz, 2H); two exchangeable protons

2-{4-[(Z)-3-(3,3-Bis- (CDCI 3 +CD 3 OD, 400 MHz); 1.55-1.64 (br t, 2H); 2.05 (s, 3H); 2.40 (s, fluoromethyl pyrrolidin-1- 2H); 2.53-2.62 (br t, 2H); 3.25-3.32 (m, 2H); 4.18-4.28 (m, 2H); 4.31- yl)propenyl]phenyl}-3-(3- 4.42 (m, 2H); 5.68 (dt, J^l l.88 Hz, J 2 =6.48 Hz, IH); 5.83 (s, IH); 6.40 hydroxyphenyl)-4-methyl- (d, J =11.72 Hz, IH); 6.53-6.64 (m, 3H); 6.65-6.70 (m, 2H); 6.77 (d, 2//-chromen-6-ol J=2.68 Hz, IH); 7.03 (d, J=8.12 Hz, 2H); 7.12 (t, J =7.84 Hz, IH); 7.23

(d, J =8.20 Hz, 2H); two exchangeable proton

2,2-Dimethylpropionic (d 6 -DMSO, 400 MHz); 1.25-1.42 (m, 30H); 1.53-1.74 (br m, 4H); 2.13 (s, acid-3-(6-(2,2- 3H); 2.86 (t, J=7.08 Hz, 2H); 3.67 (d, J=6.88 Hz, 2H); 4.43 (dt, Ji=47.54 dimethylpropionyloxy)-2- Hz, J 2 =6.12 Hz, 2H); 6.22-6.31 (m, 2H); 6.73 (d, J=16.05 Hz, IH); 6.80

{4-[(£)-3-(10- (d, J=8.64 Hz, IH); 6.90 (dd, Ji=8.64 Hz, J 2 =2.68 Hz, IH); 7.06-7.28 (m, fluorodecylamino)propeny 4H); 7.37 (d, J=8.28 Hz, 2H); 7.41 (d, J=8.40 Hz, 2H); 7.46 (t, J=7.96 Hz, l]phenyl}-4-methyl-2//- IH); one exchangeable proton

chromen-3-yl)phenyl

ester.

2-(4-{3-[(10,10-Diiluoro (d 6 -DMSO+Acetic acid, 400 MHz); 1.26-1.34 (br s, 10H); 1.34-1.50 (m, decyl)methyl amino]prop- 4H); 1.74-1.92 (m, 2H); 2.08 (s, 3H); 2.31 (s, 3H); 2.46 (t, J=7.28 Hz, l-ynyl}phenyl)-3-(3- 2H); 3.60 (s, 2H); 5.98 (s, IH); 6.08 (tt, J ! =56.94 Hz, J 2 =4.52 Hz IH); hydroxyphenyl)-4-methyl- 6.54-6.60 (br s, 2H); 6.67-6.83 (m, 4H); 7.20 (t, J =7.88 Hz, IH); 7.32 (d, 2//-chromen-6-ol J=8.48 Hz, 2H); 7.36 (d, J=8.40 Hz, 2H); two exchangeable proton

2- (4-{(£)-3-[(9,9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.22-1.47 (m, 10H); 1.52-1.63 (m, Difluorononyl)methy 2H); 1.73-1.90 (br m, 2H); 2.09 (s, 3H); 2.79 (t, J=7.24 Hz, 2H); 3.60 (d, lamino]propenyl Jphenyl)- J=7.44 Hz, 2H); 5.97 (s, IH); 6.08 (tt, J ! =56.94 Hz, J 2 =4.44 Hz, IH);

3- (3-hydroxyphenyl)-4- 6.31 (dt, J ! =15.85 Hz, J 2 =7.04 Hz, IH); 6.56 (s, 2H); 6.65-6.83(m, 5H); methyl-2//-chromen-6-ol 7.19 (t, J=7.72 Hz, IH); 7.32 (d, J=8.28 Hz, 2H); 7.41 (d, J=8.28 Hz, 2H);

three protons are merged between 2.50-2.70, two exchangeable protons

2-(4-{(Z)-3-[(9,9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.20-1.45 (m, 10H); 1.45-1.56 (m, Difluorononyl)methylami 2H); 1.75-1.90 (br m, 2H); 2.09 (s, 3H); 2.47 (s, 3H); 2.70 (t, J=7.72 Hz, no] propenyl } phenyl) -3 - ( 3 - 2H); 3.66 (d, J=5.72 Hz, 2H); 5.78 (dt, J^l l.92 Hz, J 2 =6.12 Hz, IH); hydroxyphenyl)-4-methyl- 6.00 (s, IH); 6.08 (tt, J ! =56.94 Hz, J 2 =4.36 Hz, IH); 6.54-6.60 (m, 2H); 2//-chromen-6-ol 6.64 (d, J=11.84 Hz, IH); 6.70-6.83 (m, 4H); 7.18 (d, J=7.72 Hz, IH);

7.22 (d, J=8.04 Hz, 2H); 7.35 (d, J=8.12 Hz, 2H); two exchangeable protons

2-{4-[(Z)-3-((/?)-3- (d 6 -DMSO+Acetic acid, 400 MHz); 1.58-1.69 (m, IH); 1.95-2.05 (m,

Hydroxymethyl IH); 2.10 (s, 3H); 2.38-2.47 (m, IH); 2.84-2.92 (m, IH); 3.07-3.16 (br t, pyrrolidin-1- 2H); 3.32-3.46 (m, 2H); 3.88-3.97 (m, 2H); 5.80 (dt, J^l l.68 Hz, J 2 =6.60 yl)propenyl]phenyl}-3-(3- Hz IH); 6.01 (s, IH); 6.54-6.61 (m, 2H); 6.64 (d, J=12.24 Hz, IH); 6.70- hydroxyphenyl)-4-methyl- 6.77 (m, 2H); 6.77-6.83 (m, 2H); 7.17-7.27 (m, 3H); 7.36 (d, J=8.16 Hz, 2//-chromen-6-ol 2H); one proton is merged between 3.16-3.25; three exchangeable protons

Acetic acid 3-(6-acetoxy- (d 6 -DMSO+Acetic acid, 400 MHz); 1.03 (d, J =6.60 Hz, 3H); 1.27-1.32 4-methyl-2-{4-[(Z)-3-((i?)- (br s, IH); 1.42-1.53 (m, IH); 2.13 (s, 3H); 2.30 (s, 3H); 2.31 (s, 3H); 3-methyl pyrrolidin-l-yl)- 2.63-2.69 (m, IH); 3.15-3.21 (m, 2H); 3.75-4.10 (m, 2H); 5.79 (dt, propenyl] phenyl } -2H- J ! =12.00 Hz, J 2 =5.92 Hz IH); 6.28 (s, IH); 6.60-6.70 (m, IH); 6.81 (d, chromen-3-yl)phenyl ester J=8.56 Hz, IH); 6.92-6.96 (m, IH); 7.10-7.15 (m, IH); 7.18-7.21 (m,

IH); 7.21-7.28 (m, 3H); 7.29-7.34 (m, IH); 7.38-7.50 (m, 3H); two protons are merged between 2.50-2.60 74 Acetic acid-3-(6-acetoxy- (d 6 -DMSO+Acetic acid, 400 MHz); 1.23-1.37 (m, 10H); 1.54-1.74 (m, 2-{4-[(£)-3-(9-fluorononyl 4H); 2.12 (s, 3H); 2.30 (s, 3H); 2.31 (s, 3H); 2.91 (t, J=7.72 Hz, 2H); 3.72 amino)propenyl] phenyl } - (d, J=6.80 Hz, 2H); 4.47 (dt, 1^47.54 Hz, J 2 =6.08 Hz, 2H); 6.20-6.30 (m, 4-methyl-2//-chromen-3- 2H); 6.76 (d, J=16.01 Hz, IH); 6.80 (d, J=8.60 Hz, IH); 6.93 (dd, J^S.64 yl)phenyl ester Hz, J 2 =2.64 Hz, IH); 7.11 (dd, 1^7.76 Hz, J 2 =1.56 Hz, IH); 7.17-7.21

(br m, 2H); 7.28 (d, J=7.88 Hz, IH); 7.37 (d, J=8.32 Hz, 2H); 7.41 (d, J=8.40 Hz, 2H); 7.45 (t, J=7.88 Hz, IH); one exchangeable proton

75 3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 0.96 (d, J=6.60 Hz, 3H); 1.25-1.37 (br s, IH); methyl-2-{4-[(Z)-3-((i?)-3- 1.89-2.00 (br s, IH); 2.04 (s, 3H); 2.13-2.34 (br s, 2H); 2.60-2.85 (br d, methylpyrrolidin- 1- 2H); 2.85-3.02 (br s, IH); 3.45-3.65 (br s, 2H); 5.73 (dt, J 1= 12.25 Hz, yl)propenyl]phenyl}-2//- J 2 =6.30 Hz, IH); 5.93 (s, IH); 6.40-6.55 (m, 3H); 6.63-6.70 (s merged chromen-6-ol with d, 2H); 6.72 (d, J=7.70 Hz, IH); 6.75 (d, J=2.35 Hz, IH); 7.13 (t,

Isomer B J=7.80 Hz, IH); 7.16 (d, J=8.30 Hz, 2H); 7.29 (d, J=8.15 Hz, 2H); 8.98

(s, IH); 9.47 (s, IH)

76 3-(3-Hydroxyphenyl)-4- (d 6 -DMSO, 400 MHz); 0.98 (d, J=6.70 Hz, 3H); 1.35-1.47 (br s, IH); methyl-2-{4-[(Z)-3-((i?)-3- 1.93-2.01 (br s, IH); 2.04 (s, 3H); 2.20-2.30 (br s, IH); 2.45-2.55 (br s, methylpyrrolidin- 1- IH); 2.80-3.10 (br s, 2H); 3.10-3.25 (br s, IH); 3.71-3.91 (br s, 2H); 5.77 yl)propenyl]phenyl}-2//- (dt, J ! =12.20 Hz, J 2 =6.25 Hz, IH); 5.95(s, IH); 6.49-6.60 (m, 3H); 6.65- chromen-6-ol 6.69 (s merged with d, 2H); 6.73 (d, J=7.70 Hz, IH); 6.75 (d, J=2.40 Hz,

Isomer A IH); 7.15 (t, J=7.65 Hz, IH); 7.18 (d, J=8.20 Hz, 2H); 7.30 (d, J=8.20 Hz,

2H); 9.00 (s, IH); 9.49 (s, IH)

77 3-(3-Hydroxyphenyl)-4- (d 6 -DMSO+Acetic acid, 400 MHz); 2.09 (s, 3H); 2.43 (s, 3H); 2.46-2.54 methyl-2-{4-[(Z)-3-(4- (br m, 4H); 2.65-2.78 (br m, 4H); 3.24-3.29 (br d, 2H); 5.73 (dt, J^l l.94 methylpiperazin- 1 -yl)- Hz, J 2 =6.26 Hz, IH); 5.98 (s, IH); 6.49 (d, J=11.99 Hz, IH); 6.52-6.60 propenyl] phenyl } -2H- (m, 2H); 6.66-6.83 (m, 4H); 7.15-7.24 (m, 3H); 7.33 (d, J=8.17 Hz, 2H); chromen-6-ol two exchangeable protons

Isomer B

78 3-(3-Hydroxyphenyl)-4- (d 6 -DMSO+Acetic acid, 400 MHz); 2.09 (s, 3H); 2.49 (s, 3H); 2.74-2.88 methyl-2-{4-[(Z)-3-(4- (br m, 4H); 3.24-3.32 (m, 2H); 5.73 (dt, J ! =12.08 Hz, J 2 =5.96 Hz, IH); methylpiperazin- 1 - 6.04 (s, IH); 6.50 (d, J=11.84 Hz, IH); 6.55-6.59 (m, 2H); 6.70-6.83 (m, yl)propenyl]phenyl}-2//- 2H); 7.11-7.26 (m, 5H); 7.30-7.37 (m, 2H); four protons are merged chromen-6-ol between 2.46-2.54; two exchangeable protons,

Isomer A

79 2-{4-[(£)-3-(9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.31 (s, 10H); 1.56-1.65 (br m , 3H);

Fluorononylamino)propen 1.66-1.73 (br m, IH); 2.09 (s, 3H); 2.88 (t, J=7.56 Hz, 2H); 3.70 (d, yl]phenyl}-3-(3- J=6.80 Hz, 2H); 4.46 (t, ^=47.53 Hz, J 2 =6.12 Hz, 2H); 5.98 (s, IH); 6.26 hydroxyphenyl)-4-methyl- (dt, =15.92 Hz, J 2 =6.96 Hz, IH); 6.56 (s, 2H); 6.67-6.83 (m, 5H); 7.19

2//-chromen-6-ol (t, J=7.84 Hz, IH); 7.33 (d, J=8.32 Hz, 2H); 7.39 (d, J=8.40 Hz, 2H);

Isomer B three exchangeable protons

80 2-{4-[(£)-3-(9- (d 6 -DMSO+Acetic acid, 400 MHz); 1.31 (s, 10H); 1.56-1.65 (br m , 3H);

Fluorononylamino)propen 1.66-1.73 (br m, IH); 2.09 (s, 3H); 2.88 (t, J=7.56 Hz, 2H); 3.70 (d, yl]phenyl}-3-(3- J=6.80 Hz, 2H); 4.46 (t, J 1= 47.53 Hz, J 2 =6.12 Hz, 2H); 5.98 (s, IH); hydroxyphenyl)-4-methyl- 6.26 (dt, Ji =15.92 Hz, J 2 =6.96 Hz, IH); 6.56 (s, 2H); 6.67-6.83 (m, 5H);

2//-chromen-6-ol 7.19 (t, J=7.84 Hz, IH); 7.33 (d, J=8.32 Hz, 2H); 7.39 (d, J=8.40 Hz, 2H);

Isomer A three exchangeable protons

81 3-(3-Fluoro-5- (d 6 -DMSO+Acetic acid, 400 MHz); 1.02 (d, J =6.68 Hz, 3H); 1.38-1.49 hydroxyphenyl)-4-methyl- (m, IH); 1.98-2.09 (m, IH); 2.11 (s, 3H); 2.23-2.34 (m, IH); 2.41-2.51

2-{4-[(Z)-3-((i?)-3-mefhyl (m, IH); 2.89-3.04 (m, 2H); 3.09-3.17 (m, IH); 3.51-3.59 (m, 2H); 5.77- pyrrolidin-1- 5.84 (m, IH); 6.02 (s, IH); 6.51-6.67 (m, 6H); 6.82 (s, IH); 7.23 (d, yl)propenyl]phenyl}-2//- J=8.20 Hz, 2H); 7.35 (d, J=8.16 Hz, 2H); two exchangeable protons chromen-6-ol

82 3 - ( 3 -Fluoro-5 -hydroxy (d 6 -DMSO+Acetic acid, 400 MHz)2.10 (s, 3H); 2.31 (s, 3H); 3.20-3.26 phenyl)-4-methyl-2- { 4- (br m, 2H); 5.74 (dt, J^l l.96 Hz, J 2 =6.16 Hz, IH); 5.99 (s, IH); 6.44- [(Z)-3-(4-methylpiperazin- 6.66 (m, 6H); 6.79-6.84 (m, IH); 7.22 (d, J=8.20 Hz, 2H); 7.33 (d, J=8.20 1 - yl)propenyl] phenyl } - Hz, 2H); eight protons are merged between 2.40-2.70, two exchangeable 2//-chromen-6-ol protons

83 3-(3,5-Difluorophenyl)-4- (d 6 -DMSO+Acetic acid, 400 MHz) 1.99 (s, 3H); 2.19-2.23 (m, 5H); 2.30- methyl-2-{4-[(Z)-3-(4- methylpiperazin- 1 - 2.60 (br m, 6H); 3.17 (d, J=6.56 Hz, 2H); 5.64 (dt, ^ =11.88 Hz, J 2 =6.44 yl)propenyl]phenyl}-2//- Hz, 1H); 5.78 (s, 1H); 6.44-6.53 (m, 3H); 6.68-6.80 (m, 4H); 7.04 (d, J chromen-6-ol =8.16 Hz, 2H); 7.18 (d, J =8.16 Hz, 2H); one exchangeable proton

84 3-(3-Hydroxyphenyl)-2- (d 6 -DMSO+Acetic acid, 400 MHz) 2.09 (s, 3H); 2.57-2.70 (m, 4H); 3.12-

{4-[(£)-3-(4-{2-[2-(2- 3.22 (br m, 2H); 3.26 (s, 3H); 3.43-3.49 (m, 2H); 3.52-3.62 (m, 8H); 5.94 methoxyethoxy)ethoxy] et (s, 1H); 6.27 (dt, ^ =15.81 Hz, J 2 =6.72 Hz, 1H); 6.48-6.52 (m, 1H); hyl}piperazin-l- 6.52-6.58 (m, 2H); 6.67-6.78 (m, 3H); 6.79-6.82 (m, 1H); 7.19 (d, J=7.84 yl)propenyl]phenyl}-4- Hz, 1H); 7.28 (d, J=8.12 Hz, 2H); 7.36 (d, J=8.28 Hz, 2H); six protons methyl-2//-chromen-6-ol are merged between 2.50-2.57; two exchangeable protons

85 3-(3-Hydroxyphenyl)-2- (d 6 -DMSO+Acetic acid, 400 MHz) 2.08-2.19 (m, 3H); 2.49 (s, 3H); 3.29 {4-[(Z)-3-({2-[2-(2- (s, 3H); 3.43-3.68 (m, 6H); 3.68-3.3.83 ( m, 4H); 4.05-4.18 (m, 2H); 5.70- methoxyethoxy)ethoxy] et 5.80 (m, 1H); 6.02-6.14 (br s, 1H); 6.53-7.03 (m, 8H); 7.16-7.29 (m, 2H); hyl }-methylamino) 7.29-7.44 (m, 2H); two protons are merged between 3.30-3.43 two propenyl] phenyl } -4- exchangeable protons

methyl-2//-chromen-6-ol

86 2-[2-Fluoro-4-((Z)-3- (de-DMSO+Acetic acid, 400 MHz) 1.82-1.90 (br m, 4H); 2.12 (s, 3H); pyrrolidin-1- 2.97-3.06 (br m, 4H); 3.88 (d, J=6.04 Hz, 2H); 5.87 (dt, J ! =12.00 Hz, J 2 ylpropenyl)phenyl]-3-(3- =6.24Hz, 1H); 6.26 (s, 1H); 6.54-6.59 (m, 2H); 6.60 (d, J=12.08 Hz 1H); hydroxyphenyl)-4-methyl- 6.69-6.87 (m, 4H); 7.02-7.08 (m, 1H); 7.14-7.24 (m, 2H), 7.34 (t, J=7.88

2//-chromen-6-ol Hz, 1H); two exchangeable protons.

87 2-[2-Fluoro-4-(3- (d 6 -DMSO+Acetic acid, 400 MHz)1.71-1.84 (br m, 4H); 2.11 (s, 3H); pyrrolidin- 1 -ylprop- 1 - 2.64-2.78 (br m, 4H); 3.72 (s, 2H); 6.23 (s, 1H); 6.54-6.59 (m, 2H); 6.66- ynyl)phenyl]-3-(3- 6.79 (m, 3H); 6.82-6.86 (m, 1H); 7.15-7.23 (m, 2H); 7.27-7.35 (m, 2H); hydroxyphenyl)-4-methyl- two exchangeable protons.

2//-chromen-6-ol

88 l-(3-{4-[6- (d 6 -DMSO+Acetic acid, 400 MHz) 1.72-1.79 (m, 4H); 2.14 (s, 3H); 2.59- Fluoromethoxy- 3 - ( 3 - 2.66 (m, 4H); 3.64 (s, 2H); 5.79-5.82 (m, 1H); 5.86 (dd, =12.15 Hz, J 2 fluoromethoxyphenyl)-4- =3.35 Hz, 1H); 5.90-5.93 (m, 1H); 5.96 (dd, ^ =12.30 Hz, J 2 =3.35 Hz, methyl-2//-chromen-2- 1H); 6.21 (s, 1H); 6.78 (d, J =8.70 Hz, 1H); 6.95 (dd, ^ =8.65 Hz, J 2 yl]phenyl }prop-2- =2.85 Hz, 1H); 7.07-7.12 (m, 3H); 7.15 (d, J =2.85 Hz, 1H); 7.35 (d, J ynyl)pyrrolidine =6.35 Hz, 2H); 7.37 (d, J =6.35 Hz, 2H); 7.42 (t, J =8.10 Hz, 1H).

In-vitro cell line assay

MCF-7 Cell growth inhibition assay

MCF-7 cells were plated in 96 well plate in the presence of estradiol (1 nM) and incubated overnight. After 24 hours test compound was added at various concentrations and incubated for five days. On the fifth day, cell viability was evaluated using Presto Blue Cell Viability Reagent. Percentage growth inhibition was calculated as follows: 100 - [(O.D. of sample)* 100/ O.D. of vehicle control] wherein O.D. is optical density. Compounds of Formula I mostly showed growth inhibition more than 50% at 3 micromolar concentrations.

Table 3 provides % inhibition at 1 μΜ in MCF-7 cell growth inhibition assay for some representative compounds. Table 3: % Inhibition at ΙμΜ in MCF-7 cell growth inhibition assay