Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL SUBPHTHALOCYANINE COLORANTS, INK COMPOSITIONS, AND METHODS OF MAKING THE SAME
Document Type and Number:
WIPO Patent Application WO/2000/071621
Kind Code:
A1
Abstract:
The present invention is directed to methods of making subphthalocyanine compounds. The methods of the present invention may be used to produce known subphthalocyanine compounds, as well as, a new family of subphthalocyanine compounds. The methods of the present invention may employ environmentally-friendly solvents, which donate a hydrogen atom for use in the reaction mechanism. The methods of the present invention produce subphthalocyanine compounds at a yield of greater than about 50%, and even greater than about 94%. The present invention is further directed to subphthalocyanine compounds having improved lightfastness. The subphthalocyanine compounds may have a Subphth-Lightfastness Test Value of less than 15%.

Inventors:
NOHR RONALD SINCLAIR
MACDONALD JOHN GAVIN
Application Number:
PCT/US2000/013698
Publication Date:
November 30, 2000
Filing Date:
May 18, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KIMBERLY CLARK CO (US)
International Classes:
C07F5/02; C09B47/00; C09B47/067; C09D11/00; C07D487/22; (IPC1-7): C09B47/00; C07F5/02; C07D487/22; C09D11/02; C09D11/00
Domestic Patent References:
WO1994024612A11994-10-27
Foreign References:
US5738716A1998-04-14
US5864044A1999-01-26
US4864324A1989-09-05
EP0864620A11998-09-16
Other References:
B. DEL REY ET AL: "Synthesis and nonlinear optical, photophysical and electrochemical properties of subphthalocyanines", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 120, 1998, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC.; US, pages 12808 - 12817, XP002144997
DATABASE WPI Section Ch Week 200013, Derwent World Patents Index; Class E12, AN 1993-149219, XP002144998
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 07 31 August 1995 (1995-08-31)
Attorney, Agent or Firm:
Withers, James D. (N.E. Atlanta, GA, US)
Download PDF:
Claims:
Claims What is claimed is:
1. An ink composition comprising a subphthalocyanine compound having the following general formula: wherein Xl to X12 each independently represent carbon or nitrogen; Rl to R12 and Z each independently representH, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogencontaining group, a sulfonic acid, a sulfurcontaining group, a lanthanidecontaining group, or an ester group; and wherein when any one of Xl to X12 is nitrogen, the corresponding R1 to R12 represents the pair of electrons on the nitrogen atom.
2. The ink composition of Claim 1, wherein RI to R12 each independently representH, chlorine, bromine, fluorine, iodine, a tertbutyl group,NO2,SO3H,SO3Na,SO3Cl,SO3ClpyH+, or a Eucontaining moiety.
3. The ink composition of Claim 2, wherein R, to R12 each independently representH, chlorine, bromine, fluorine, iodine.
4. The ink composition of Claim 1, wherein Z represents a moiety comprising one of: where x is an integer from 3 to 30, y is from 0 to 6, R"'is a hydrogen or an alkyl group having up to six carbon atoms, and L is acetate; a halogen; ethylene diamine; compounds having the following structure, H2N (CH2) XNH2, wherein x is from 2 to 8; propionate; nitrate; or oxalate.
5. The ink composition of Claim 1, wherein Z represents Cl, a phenyl group, orOR', where R'represent an alkyl, substituted alkyl, aryl, or substituted aryl.
6. An ink set comprising two or more inks, wherein at least one ink comprises the ink composition of Claim 1.
7. The ink set of Claim 6, wherein the ink set further comprises a yellow ink, a blue ink, and a black ink.
8. A subphthalocyanine compound having a Subphth Lightfastness Test Value of less than about 15%.
9. The subphthalocyanine compound of Claim 8, wherein the compound has a SubphthLightfastness Test Value of less than about 12%.
10. The subphthalocyanine compound of Claim 9, wherein the compound has a SubphthLightfastness Test Value of less than about 10%.
11. The subphthalocyanine compound of Claim 8, wherein the compound has a general formula: wherein X1 to X12 each independently represent carbon or nitrogen; R1 to R12 and Z each independently representH, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogencontaining group, a sulfonic acid, a sulfurcontaining group, a lanthanidecontaining group, or an ester group; and wherein when any one of Xl to X12 is nitrogen, the corresponding R1 to R12 represents the pair of electrons on the nitrogen atom.
12. The subphthalocyanine compound of Claim 11, wherein R1 to Rl2 each independently representH, chlorine, bromine, fluorine, iodine, a tertbutyl group,NO2,SO3H,SO3Na,SO3Cl, SO3ClpyH+, or a Eucontaining moiety.
13. The subphthalocyanine compound of Claim 11, wherein Rl to R12 each independently representH, chlorine, bromine, fluorine, iodine.
14. The subphthalocyanine compound of Claim 11, wherein Z represents a moiety comprising one of: where x is an integer from 3 to 30, y is from 0 to 6, R"'is a hydrogen or an alkyl group having up to six carbon atoms, and L is acetate, propionate, nitrate, or oxalate.
15. The subphthalocyanine compound of Claim 14, wherein Z representsCl, a phenyl group, orOR', where R'represent an alkyl, substituted alkyl, aryl, or substituted aryl.
16. An ink composition comprising the subphthalocyanine compound of Claim 8.
17. An ink set comprising at least two inks, wherein at least one ink comprises the ink composition of Claim 16.
18. A subphthalocyanine compound containing one or more moieties having a spinorbital coupling constant, Çl, of greater than about 500.
19. The subphthalocyanine compound of Claim 18, wherein the compound containing one or more moieties having a spinorbital coupling constant, l, of greater than about 1000.
20. The subphthalocyanine compound of Claim 19, wherein the compound containing one or more moieties having a spinorbital coupling constant, l, of greater than about 1400.
21. A method of making a subphthalocyanine compound, wherein the method takes place at a temperature below about 180°C, and produces the subphthalocyanine compound at a reaction yield of greater than about 50%.
22. The method of Claim 23, wherein the yield is greater than about 80%.
23. The method of Claim 24, wherein the yield is greater than about 90%.
24. The method of Claim 25, wherein the yield is greater than about 94%.
25. The method of Claim 23, wherein the method comprises reacting one or more first reactants with one or more hydrogen donating solvents.
26. The method of Claim 25, wherein the one or more first reactants comprise phthalonitrile, substituted phthalonitriles, pyridine2,3dicarbonitrile, substituted pyridine2,3dicarbonitriles, pyridine3,4dicarbonitrile, substituted pyridine3,4dicarbonitriles, pyrazine2,3dicarbonitrile, substituted pyrazine2,3dicarbonitriles, or a combination thereof.
27. The method of Claim 25, wherein the one or more hydrogendonating solvents comprise substituted aromatic compounds; cyclohexadiene; alcools, such as 2propanol; ethers, such as petroleum ether, tetrahydrofuran, dioxane, and tetralene; or a combination thereof.
28. The method of Claim 27, wherein the one or more hydrogendonating solvents comprise oxylene, mxylene, pxylene, toluene, or a substituted benzene, wherein the substituent comprises a hydrogencontaining moiety.
29. The method of Claim 21, wherein the compound has a general formula: wherein Xl to X12 each independently represent carbon or nitrogen; Ri to R12 and Z each independently representH, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogencontaining group, a sulfonic acid, a sulfurcontaining group, a lanthanidecontaining group, or an ester group; and wherein when any one of Xl to X12 is nitrogen, the corresponding R, to R12 represents the pair of electrons on the nitrogen atom.
30. A subphthalocyanine compound formed by the method of Claim 21.
Description:
Novel Subphthalocyanine Colorants, Ink Compositions, and Methods of Making the Same Cross-Reference to Related Application This patent application claims the benefit of priority to U. S. provisional patent application 60/135,456, filed on May 24,1999, and U. S. provisional patent application 60/175,653, filed on January 12, 2000.

Technical Field The present invention relates to new methods for making subphthalocyanine compounds. The present invention also relates to a family of new subphthalocyanine compounds. The new subphthalocyanine compounds may be used as a colorant, alone or in combination with one or more colorants. The present invention further relates to inks containing the new subphthalocyanine compounds.

Background of the Invention A variety of subphthalocyanine compounds and methods for making the same are known in the art. Most conventional methods for producing subphthalocyanine compounds typically require a high reaction temperature, usually in the range of about 200°C to about 250°C, due to the use of solvents, such as 1-chloro-naphthalene.

Further, most conventional methods produce subphthalocyanine compounds along with a variety of secondary products, which require extensive separation procedures in order to isolate the subphthalocyanine compound. In addition, the reaction yield for the production of subphthalocyanine compounds by most conventional methods is at most about 35%, and usually less than about 20%. Such

reaction conditions result in high energy costs, potential damage to the environment due to environmentally-unfriendly solvents, and low yields, which in turn results in high costs for the subphthalocyanine compounds produced.

U. S. Patent No. 5,864,044 issued to Van Lier et al. discloses methods of making subphthalocyanine compounds, wherein a solvent having a lower boiling point is used. Van Lier discloses the use of 1-chlorobenzene (b. p. 130°C) as a suitable solvent for the production of subphthalocyanine compounds. However, 1- chlorobenzene is an environmentally unfriendly solvent currently under increased scrutiny by the U. S. Environmental Protection Agency. Although Van Lier discloses the production of subphthalocyanine compounds at yields of about 60%, the method uses an environmentally unfriendly solvent, which presents manufacturing problems in the U. S.

Although the prior art discloses methods of making subphthalocyanine compounds at yields of up to about 60%, higher yields are desired in order to cost-effectively produce subphthalocyanine compounds. Further, higher yields without the use of environmentally unfriendly solvents are more desirable.

Moreover, known subphthalocyanine compounds possess poor lightfastness properties, which prevent the compounds from being used as colorants in conventional ink sets. It is believed that the poor lightfastness of known subphthalocyanine compounds is primarily due to the high reactivity of the molecule in the excited state, as well as, the higher concentration of molecules in the excited state and the length of time in the excited state, when a sample of the molecule is exposed to light. As reported in"Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines", del Rey et al., J. Am. Chem. Soc., Vol. 120, No.

49 (1998), known subphthalocyanine compounds have an excited state lifetime of as much as 100 jusec. Other possible reasons for poor lightfastness and tendency to fade are (1) reaction with singlet oxygen, and (2) nucleophilic attack resulting in a loss of boron and/or substitution of a chromophore.

What is needed in the art is an improved method of making subphthalocyanine compounds, which uses an environmentally- friendly solvent, and at the same time, results in yields of greater than 50%. Further, what is also needed in the art is a new family of

stable, subphthalocyanine compounds having improved lightfastness properties, which may be used as colorants, alone or in combination with one or more colorants.

Summary of the Invention The present invention addresses the needs described above by providing new methods of making subphthalocyanine compounds.

The methods of the present invention may be used to produce known subphthalocyanine compounds, as well as, new families of subphthalocyanine compounds having superior light fastness properties disclosed herein.

The present invention is further directed to a new family of subphthalocyanine compounds having the following general formula:

wherein X, to X12 each independently represent carbon or nitrogen; Ri to R12 and Z each independently represent-H, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogen-containing group, a sulfonic acid, a sulfur-containing group or an ester group; and wherein when any one of Xl to X12 is nitrogen, the corresponding Rl to R12 represents the pair of electrons on the nitrogen atom. The subphthalocyanine compounds may be used as a colorant alone or in combination with one or more colorants.

The present invention also relates to colorant compositions having improved stability, wherein the colorant comprises one or more of the above-described subphthalocyanine compounds.

These and other features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

Detailed Description of the Invention The present invention is directed to methods of making subphthalocyanine compounds. The methods of the present invention may be used to produce known subphthalocyanine compounds, as well as, a new family of subphthalocyanine compounds disclosed herein. Unlike conventional methods of making subphthalocyanine compounds, the methods of the present

invention utilize a reaction mechanism, which occurs at a temperature below about 180°C, while employing environmentally friendly solvents. In addition, the methods of the present invention produce subphthalocyanine compounds at a reaction yield of greater than about 50%, and up to about 94%.

One method of making subphthalocyanine compounds of the present invention may be given by the following reaction scheme: Ri P2. i R2 X2, sX ìloCN X2 Ro 39VR3CN R2\ ZR3 z R4 X2 ~ X3/ X----X5 CN RT 1'. OOC RTH180C | H-donating solvent argon R crr N N N I RS I I % iz B R X5 12 "''6\"//\ yo I X7-xg N X10 X9- Ril CN R7 Rg R9 Rlo 1 R12 RZ wherein X, to X12 each independently represent carbon or nitrogen; Rl to R12 and Z each independently represent-H, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogen-containing group, a sulfonic acid, a sulfur-containing group, or an ester group; and wherein when any one of Xl to X12 is nitrogen, the corresponding Rl to R12 represents the pair of electrons on the nitrogen atom. The reaction may occur at a reaction temperature much lower than most conventional reaction methods. In one embodiment of the present invention, the method of making subphthalocyanine compounds takes place at a desired reaction temperature of from about 20°C to about 180°C. More desirably, the reaction temperature is from about 50°C to about 160°C. Even more desirably, the reaction temperature is from about 80°C to about 150°C.

In a further embodiment of the present invention, the method of making subphthalocyanine compounds may be given by the following reaction scheme:

Ri R2 CN R, R 3 \ Z R3 CN Ri \ Ra Rua OU N 14 CN < <R I I solvent argon R CN * * N N B N N NN -RI, RUZ CL 12 RUZ R$ R9 Rio wherein R, to R4, R7 to R12 and Z each independently represent-H, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogen-containing group, a sulfonic acid, a sulfur-containing group, or an ester group. The reaction may occur at a reaction temperature as discussed above, with the desired reaction temperature being from about 80°C to about 150°C. The resulting subphthalocyanine compounds have a unique, unsymmetrical chemical structure, which enables"intramacrocyclic quenching,"as well as,"intermacrocyclic quenching"with other molecules as described below.

The methods of the present invention use a variety of environmentally-friendly solvents. Desirably, the solvent comprises a"hydrogen-donating"solvent. As used herein, the term "hydrogen-donating"describes solvents, which are capable of donating a hydrogen atom during the above-described reactions.

Hydrogen-donating solvents are distinguishable from hydrogen- containing solvents, such as benzene, 1-chloro-naphthalene and 1- chlorobenzene, which do not possess a hydrogen, which may be donated during the reaction mechanism of the present invention.

Suitable hydrogen-donating solvents for use in the present invention may vary according to the reactants, reaction temperature, and other reaction parameters. Suitable hydrogen-donating solvents include, but are not limited to, substituted aromatic compounds; cyclohexadiene; alcohols, such as 2-propanol; ethers, such as

petroleum ether, tetrahydrofuran, dioxane, and tetralene. Desirably, the solvent comprises o-xylene, m-xylene, p-xylene, toluene, or a substituted benzene, wherein the substituent comprises a hydrogen- containing moiety. More desirably, the solvent comprises p-xylene, toluene, or cumene. Even more desirably, the solvent comprises p- xylene or cumene.

The methods of the present invention produce a variety of subphthalocyanine compounds at yields of greater than about 50%.

Desirably, the method of making subphthalocyanine compounds has a yield of greater than about 60%. More desirably, the method of making subphthalocyanine compounds has a yield of greater than about 70%. Even more desirably, the method of making subphthalocyanine compounds has a yield of greater than about 80%.

Even more desirably, the method of making subphthalocyanine compounds has a yield of greater than about 85%. Even more desirably, the method of making subphthalocyanine compounds has a yield of greater than about 90%. Most desirably, the method of making subphthalocyanine compounds has a yield of greater than about 94%.

In the methods of the present invention, one or more reactants may be used in combination with one or more hydrogen-donating solvents. Suitable reactants include, but are not limited to, phthalonitrile, one or more substituted phthalonitriles, pyridine-2,3- dicarbonitrile, one or more substituted pyridine-2,3-dicarbonitriles, pyridine-3,4-dicarbonitrile, one or more substituted pyridine-3,4- dicarbonitriles, pyrazine-2,3-dicarbonitrile, one or more substituted pyrazine-2,3-dicarbonitriles, or a combination thereof. Substituted phthalonitrile compounds include phthalonitrile compounds having up to six moieties bonded to the aromatic ring of the phthalonitrile compound. Further, substituted pyridine-2,3-dicarbonitrile compounds include pyridine-2,3-dicarbonitrile compounds having up to three additional moieties bonded to the aromatic ring of the pyridine-2,3-dicarbonitrile compound. Substituted pyridine-3,4- dicarbonitrile compounds include pyridine-3,4-dicarbonitrile compounds having up to three additional moieties bonded to the aromatic ring of the pyridine-3,4-dicarbonitrile compound.

Substituted pyrazine-2,3-dicarbonitrile compounds include pyrazine- 2,3-dicarbonitrile compounds having up to two additional moieties

bonded to the aromatic ring of the pyrazine-2,3-dicarbonitrile compound.

Suitable moieties on the above-referenced substituted reactants include, but are not limited to, halogens, alkyl groups, alkoxy groups, cyano groups, carboxylic acid groups, sulfur-containing groups, nitrogen-containing groups, and salts thereof. Suitable halogens include, but are not limited to, chlorine, bromine, fluorine, and iodine. Suitable alkyl groups include, but are not limited to, methyl groups, ethyl groups, and tert-butyl groups. Suitable alkoxy groups include, but are not limited to, methoxy groups and ethoxy groups.

Suitable sulfur-containing groups include, but are not limited to, -SC8Hl7,-SO3H,-SO3Na,-SO3Cl, and-SO3Cl-. Suitable nitrogen- containing groups include, but are not limited to,-NO2,-pyH+,-NR2, and-NR3, wherein R represents-H, a halogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxide group, a phenoxy group, a substituted phenoxy group, an alkyl sulfide, an aryl sulfide, a nitrogen-containing group, a sulfonic acid, a sulfur-containing group, or an ester group. Other suitable groups also include, but are not limited to,-CO2Na.

In addition to the above reactants, one or more boron- containing compounds may be used in the methods of the present invention. Suitable boron-containing compounds include, but are not limited to, halogen-substituted boron compounds, such as boron trichloride, boron trifluoride, and boron tribromide. Other suitable boron-containing compounds include mixed boron compounds containing at least one halogen atom and at least one phenyl group.

Such mixed boron compounds include, but are not limited to, BCl2Ph, BClPh2, BBr2Ph, and BBrPh2, wherein"Ph"represents a phenyl group.

In one embodiment of the present invention, subphthalocyanine compounds are produced using the reaction mechanism described below: Step 1:

In step 1, X represents any Lewis base. Desirably, X is a halogen.

More desirably, X is Cl.

Step 2 :

Step 3 : Step 4: C% N C% N O O N-BXs N Migratio -- ofX BXZ C\ X O II C-x C

Steps5-8: c0 N CL O \\/N O % N \E) c c t X2/t (Step 5) N BOX2 Nu N -Z O r// \ O (Step 6) C/// (Step 7) N Nx N-H i nu (DB _ x N N : x N O NO+ O N/O/ N (Step 8) ;-X- + 2e- -- N I X N . B. I B I N8+ N' (Step 9) \/ un

In step 9 two electrons are donated from hydrogen atoms of the hydrogen-donating solvent. The interaction of hydrogen atoms in the above mechanism may be described below:

The hydrogen-donating solvent supplies two hydrogen atoms, which form two hydrogen ions and two electrons. The electrons balance the charge on two nitrogen atoms in the subphthalocyanine compound.

The two hydrogen ions react with the Lewis base released by the boron compound to form two acid molecules as shown below.

In a further embodiment of the present invention, subphthalocyanine compounds are produced using the following reaction mechanism. Steps 1-4 are the same steps as described above.

Steps 5-11 are described below: Steps 5-9: N HN N N N \E) N N BOX2 (Step 5) NO N N-H + z_ O II_Z/ -z I-I H (Step 6) H H (Step 7)'/H N NX N H 1/X e O N O O H O H (Step 8) ; H oh H (StepS) Ste 9 n R/7 U '' n W gNA CN i N v NO N N X i N H H N N O i e e Step 10 : Step 11 :

In the above mechanisms, although phthalonitrile is shown as the reactant in Steps 1,2, and 5 (of the first mechanism), it is to be understood that one or more unsubstituted phthalonitriles, substituted phthalonitriles, unsubstituted pyridine-2,3- dicarbonitriles, substituted pyridine-2,3-dicarbonitriles, unsubstituted pyridine-3,4-dicarbonitriles, substituted pyridine-3,4- dicarbonitriles, or a combination thereof may be used in Steps 1,2, and 5 of the reaction mechanisms described above. Further, as shown in the second mechanism, a"capped"phthalonitrile may be used as a reactant. In this embodiment, the capped phthalonitrile may be formed by the following reaction: As in the first mechanism, the hydrogen-donating solvent supplies two electrons from hydrogen atoms in the solvent as shown in Step 11.

The present invention is further directed to a new family of subphthalocyanine compounds having the following general formula:

wherein X1 to X12 each independently represent carbon or nitrogen; Rl to Rl2 and Z each independently represent-H; a halogen; an alkyl group containing up to about 12 carbon atoms; a substituted alkyl group containing up to about 18 carbon atoms along the alkyl backbone; an aryl group; a substituted aryl group; an alkoxide group containing up to about 12 carbon atoms; a phenoxy group; a substituted phenoxy group; an alkyl sulfide containing up to about 8 carbon atoms; an aryl sulfide; a nitrogen-containing group; a sulfonic acid; a sulfur-containing group; a lanthanide-containing group;-OR', -NR'R", or-SR', wherein R'and R"each independently represent an alkyl group containing up to about 8 carbon atoms, a substituted alkyl group containing up to about 12 carbon atoms along the alkyl backbone, an aryl group, or a substituted aryl group; and wherein when any one of Xl to X12 is nitrogen, the corresponding R1 to R12 represents the pair of electrons on the nitrogen atom. Desirably, R, to R12 each independently represent-H, a halogen, an alkyl group containing up to about 8 carbon atoms, a nitrogen-containing group, a sulfur-containing group, or a lanthanide-containing group. More desirably, R1 to R12 each independently represent-H, chlorine, bromine, fluorine, iodine, a tert-butyl group,-N02,-SC8Hl7,-SO3H, -SO3Na,-SO2Cl,-SO3-pyH+, or a Eu-containing moiety. Even more desirably, Rl to R12 each independently represent-H, chlorine, bromine, fluorine, or iodine.

Suitable Z substituents may be selected from a variety of substituents, which provide desirable properties to the resulting

subphthalocyanine compound. Desirably, Z comprises a moiety, which stabilizes the subphthalocyanine compound; a moiety, which renders the subphthalocyanine compound water soluble; or a moiety, which stabilizes and renders the subphthalocyanine water soluble.

Examples of suitable Z include, but are not limited to, a hydroxyl group; a halogen; an alkyl group containing up to about 12 carbon atoms; an alkoxy group containing up to about 12 carbon atoms; an ether group; a polyol group; an aromatic group; a substitute aromatic group; a nitrogen-containing group; a sulfur-containing group; a lanthanide-containing group; -OR',-NR'R", or-SR', wherein R and R"each independently represent an alkyl group containing up to about 8 carbon atoms, a

substituted alkyl group containing up to about 8 carbon atoms, an aryl group, or a substituted aryl group. Desirably, Z comprises one of the following moieties:

where x is an integer from 3 to 30, y is from 0 to 6, R"'is a hydrogen or an alkyl group having up to six carbon atoms, and L is acetate; halogens; ethylene diamine; compounds having the following structure, H2N (CH2) XNH2, wherein x is from 2 to 8; propionate; nitrate; or oxalate.

By selecting particular"R"and"Z"groups, subphthalocyanine compounds having superior lightfastness properties may be produced. In one embodiment of the present invention, subphthalocyanine compounds having superior lightfastness properties are produced; these compounds have the above general formula, wherein X1 to X12 each independently represent carbon or nitrogen; Rl to R12 each independently represent-H, a halogen, or- SR' ; and Z represents a halogen, an aryl group, a substituted aryl group, a pyridine group, a substituted pyridine group,-OR',-NR'R", or-SR', wherein R'and R"each independently represent an alkyl group containing up to about 12 carbon atoms, a substituted alkyl group containing up to about 12 carbon atoms along the alkyl backbone, an aryl group, or a substituted aryl group.

In a further embodiment of the present invention, subphthalocyanine compounds having the above general formula are

produced, wherein Xl to X12 each independently represent carbon or nitrogen; R1 to R12 each independently represent-H, a halogen, or- SR' ; and Z is desirably a phenyl group, an aryl group, or a substituted aryl group. In this embodiment, the phenyl group, aryl group, or substituted aryl group prevents a photochemical 1,3 shift of the axial ligand as shown in the example mechanism below: The superior lightfastness property of a given subphthalocyanine compound may be measured by the"Subphth.- Lightfastness Test"described herein. The Subphth.-Lightfastness Test used in the present invention measures the percent change in absorption of a 5x10-5 M concentration solution of the subphthalocyanine compound in o-xylene, and is given by the following equation: =[(P0-P144)/P0]x100%#A wherein Po represents an absorption value at time zero (i. e., at the start of the test) and P144 represents an absorption value after 144 hours of exposure to a standard fluorescent lamp (i. e., Sylvania Cool White, 115 W, Model No. F48T12) placed about six feet from the subphthalocyanine compound. Desirably, the subphthalocyanine compound of the present invention has a Subphth.-Lightfastness Test value of less than about 15%. More desirably, the subphthalocyanine compound of the present invention has a Subphth.-Lightfastness Test value of less than about 12%. Even more desirably, the

subphthalocyanine compound of the present invention has a Subphth.-Lightfastness Test value of less than about 10%.

As shown by the general formula above, the present invention is directed to a number of new subphthalocyanine compounds.

Subphthalocyanine compounds of the present invention include, but are not limited to, the following compounds given below, wherein

and wherein R14 represents Rl to R4, R5 8 represents R5 to R8, and R9-12 represents Rg to R12 :

It is believed that the new subphthalocyanine compounds of the present invention possess superior lightfastness properties due to their reduced time in the excited state, as well as, their lower probability of being in the excited state. The presence of one or more substituents having high"Z"values (i. e., atomic number) on the aromatic rings of the compounds produces a"heavy atom effect," also known as"spin orbital coupling,"which enables the distribution of vibrational energy at an excited state, resulting from exposure to light, intramolecularly. This"intramolecular quenching"of the molecule results in rapid quenching of the excited state back to the ground state. The net effect being a much smaller concentration of excited state species at any one time. A general discussion of"heavy atom effect"and"spin orbital coupling"may be found in the Handbook of Photochemistry (Murov et al.), 2nd ed., Section 16, entitled"Spin-Orbit Coupling", pages 338-341 (1993), the entirety of which is incorporated herein by reference.

In one embodiment of the present invention, subphthalocyanine compounds having superior lightfastness are formed, wherein one or more"R"and/or"Z"groups have a spin- orbital coupling constant, 41, of greater than about 500. Suitable"R" and/or"Z"groups have a spin-orbital coupling constant of greater

than about 500 include, but are not limited to, chlorine (=587), europium (l=1469), bromine (l=2460), and iodine (l=5069).

Desirably, the subphthalocyanine compounds of the present invention contain one or more"R"and/or"Z"groups, which have a spin-orbital coupling constant, Cl, of greater than about 500. More desirably, the subphthalocyanine compounds of the present invention contain one or more"R"and/or"Z"groups, which have a spin-orbital coupling constant, Cl, of greater than about 1000. Even more desirably, the subphthalocyanine compounds of the present invention contain one or more"R"and/or"Z"groups, which have a spin-orbital coupling constant, Cl, of greater than about 1400.

As discussed above, it is believed that adding one or more substituents having high"Z"values (i. e., atomic number) onto the aromatic rings of the subphthalocyanine compounds produces "intramolecular quenching"of the molecule. In addition to "intramolecular quenching"of the subphthalocyanine compound, "intermolecular quenching"of the subphthalocyanine compound may be accomplished by associating one or more quenching compounds with the subphthalocyanine compound. An example of "intermolecular quenching"is shown in the structure below: wherein a copper compound forms a coordinate covalent bond with two pair of electrons present on nitrogen atoms in close proximity to one another within the subphthalocyanine compound. A further example of"intermolecular quenching"is shown in the subphthalocyanine complex below:

wherein a copper compound forms a coordinate covalent bond with two pair of electrons present on nitrogen atoms in close proximity to one another within the subphthalocyanine compound. In the Cu (L) 2 compound,"L"may be any moiety capable of complexing with the copper atom. Suitable"L"moieties include, but are not limited to, acetate; halogens; ethylene diamine; and compounds having the following structure, H2N (CH2) wherein x is from 2 to 8; propionate; nitrate; and oxalate. It should be noted that compounds other than Cu (L) 2 may be used as a quenching moiety. Other compounds include, but are not limited to, other complexing transition metals and compounds containing a transition metal.

The above-described subphthalocyanine compound-containing complexes having"intramolecular quenching"and"intermolecular quenching"may be formed by reacting a subphthalocyanine compound with one or more complexing transition metals and compounds containing a transition metal. One method of reacting the above-described subphthalocyanine compounds with the quenching moiety is to simply mixed the materials, add the mixture to a solvent, and allow the mixture to react at room temperature.

Suitable solvents include, but are not limited to, dimethyl sulfoxide and dimethyl formamide. In some cases, the reaction may take place at a reaction temperature of up to about 100°C.

A variety of subphthalocyanine compound-containing complexes may be formed by the above-described reaction mechanism. By selecting particular"R"groups, axial ligand Z, and quenching groups, subphthalocyanine compound-containing complexes having superior lightfastness properties may be produced.

Examples of possible subphthalocyanine compound-containing complexes include, but are not limited to,

Other desired subphthalocyanine compound-containing complexes include, but are not limited to, the above compounds wherein the axial ligand comprises a substituted aryl having the formula wherein R31 to R35 each independently represent-H, a halogen,-N02, a carboxy group, or a carbonyl group.

One example of a subphthalocyanine compound-containing complexes wherein the axial ligand contains a quenching compound is given below.

It should be noted that the above compound is only one example of many subphthalocyanine compound-containing complexes of the present invention, wherein the axial ligand contains a quenching compound.

In a further embodiment of the present invention, two subphthalocyanine compounds are reacted with a third reactant to obtain a compound having the following general formula:

wherein R21 to R36, Zl, and Z2 each independently represent moieties as described above with respect to R, to Rl2 and Z. In the formation of the above compound, the third reactant may be selected from 1,3,4,6-tetracyanobenzene or 1,3,4,6-tetracyanobenzene further substituted with one or more electron-withdrawing groups, E1 and E2. Suitable electron-withdrawing groups"E"include, but are not limited to, a halogen;-NO2, a halogen,-OR', and-CO2R', wherein R' represents an alkyl group containing up to about 8 carbon atoms, a substituted alkyl group containing up to about 12 carbon atoms along the alkyl backbone, an aryl group, or a substituted aryl group.

The above-described subphthalocyanine compounds may be used as a colorant, alone or in combination with one or more other colorants. The subphthalocyanine compounds may be incorporated into ink compositions, which may form an ink set including yellow, blue, black, and magenta inks.

The present invention also relates to colorant compositions having improved stability, wherein the colorant comprises one or more of the above-described subphthalocyanine compounds.

Desirably, one or more of the new subphthalocyanine compounds are admixed with or covalently bonded to a colorant stabilizer. The colorant stabilizer may be one or more colorant stabilizers disclosed in the following U. S. Patent Applications Serial Nos. 08/563,381 filed November 28,1995, now abandoned; 08/589,321 filed January 22, 1996, now abandoned; and 08/788,863 filed January 23,1997, pending; and U. S. Patents Nos. 5,855,655; 5,885,337; and

5,891,229; all of which are assigned to Kimberly Clark Worldwide, Inc., the entirety of which is incorporated herein by reference.

Optionally, the new subphthalocyanine compounds may be associated with a molecular includant, chelating agent, or other material to improve solubility and/or interaction of the subphthalocyanine compound and any colorant stabilizers present.

Suitable molecular includant, chelating agent, and other composition materials are also disclosed in the above-referenced U. S. Patent Applications and Patents assigned to Kimberly Clark Worldwide, Inc., the entirety of which is incorporated herein by reference.

In one embodiment of the present invention, the above- described subphthalocyanine compound is covalently bonded to a colorant stabilizer in the form of a porphine. Suitable porphines are disclosed in U. S. Patents Nos. 5,782,963; 5,855,655 ; and 5,891,229; all of which are assigned to Kimberly Clark Worldwide, Inc., the entirety of which is incorporated herein by reference. Desirably, the porphine is covalently bonded to the subphthalocyanine compound at Z, Zl, and/or Z2. In a further embodiment of the present invention, two subphthalocyanine compounds are covalently bonded to one another. In this embodiment, it is desirable for one subphthalocyanine compound to be bonded to the other subphthalocyanine compound at Z, Zl and/or Z2 The present invention is further described by the examples, which follow. Such examples, however, are not to be construed as limiting in any way either the spirit or scope of the present invention.

In the examples, all parts are parts by weight unless stated otherwise.

EXAMPLE 1 Preparation of Subphthalocyanine in Xylene The following reaction was conducted to produce a subphthalocyanine: CN Cl BCl p-XYlen' " CN aT'g011 CN 10.0 g (0.078 mole) of phthalonitrile (Aldrich Chemical Company) was added to 100 ml of p-xylene. The mixture was distilled using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 50°C. The mixture was then added to a three-necked, round-bottom 250 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube.

The mixture was heated to 50°C. Into the heated mixture was syringed 26 ml of a 1M solution containing 3.04 g (0.026 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene over a period of about 2 minutes. The reaction mixture turned an orange/red color. The reaction mixture was gradually heated up to a reflux temperature of about 138°C. The reaction was monitored using HPLC analysis. Aliquots were removed during the reaction to obtain a W spectra of each aliquot. The reaction was stopped about 35 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 20 ml of hexane was added to the mixture. The reaction mixture was filtered and pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 9.9 g of a red/brown solid. The yield was 90%.

The following analytical data was measured. The solid was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a ZORBAXTM column.

Xmax (p-xylene solvent) = 564 nm TLC (silica with CHCl3 as eluent) Rf = 0.71 HPLC Retention time = 5.5 min.

EXAMPLE 2 Preparation of Subphthalocyanine in Cumene The following reaction was conducted to produce a subphthalocyanine: Con cl + BC'3 cumene,,, f t + BLig j/\ CN argon ce Example 1 was repeated except cumene was used as the solvent and hydrogen source, instead of p-xylene. The reaction mixture was 10.0 g (0.078 mole) of phthalonitrile (Aldrich Chemical Company), 100 ml of cumene, and 26 ml of a 1M solution containing 3.04 g (0.026 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction was stopped about 45 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 20 ml of hexane was added to the mixture. The reaction mixture was filtered and pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 10.8 g of a deep red solid. The yield was 96%. The following analytical data was measured: Xmax (p-xylene solvent) = 564 nm TLC (silica with CHCl3 as eluent) Rf = 0.71 HPLC Retention time = 5.5 min.

EXAMPLE 3 Preparation of Trinitrosubphthalocyanine in Cumene The following reaction was conducted to produce a nitrite- substituted subphthalocyanine: N02 cul YrT 1 cumene/V- + BC13 cumene argon CN p2N N02

Example 2 was repeated except 4-nitrophthalonitrile was used as a reactant, in place of phthalonitrile. The reaction mixture was 10.0 g (0.058 mole) of 4-nitrophthalonitrile (Aldrich Chemical Company), 100 ml of cumene, and 19.2 ml of a 1M solution containing 2.25 g (0.019 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction was stopped about 25 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 20 ml of hexane was added to the mixture. The reaction mixture was filtered and pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 10.5 g of a purple solid.

The yield was 96.3%. The following analytical data was taken. imax (p-xylene solvent) = 586 nm TLC (silica with CHC13 as eluent) Rf = 0.63 HPLC Retention time = 4.7 min.

EXAMPLE 4 Preparation of Tri-tert-butylsubphthalocyanine in Cumene The following reaction was conducted to produce a tert-butyl- substituted subphthalocyanine: tBu tBu CN Cl cumene cl3 argon CN tBu tBu Example 2 was repeated except 4-tert-butylphthalonitrile was used as a reactant, in place of phthalonitrile. A 25 ml three-necked, round-bottom flask was used instead of the 250 ml flask used in Example 2. The reaction mixture was 1.0 g (5.4 mmole) of 4-tert- butylphthalonitrile (Aldrich Chemical Company), 10 ml of cumene, and 1.8 ml of a 1M solution containing 0.21 g (1.8 mmole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction was stopped about 67 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 2 ml of hexane was added to the mixture. The reaction mixture was pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 1.05 g of a pink/red solid. The yield was 90%. The following analytical data was measured: Xmax (p-xylene solvent) = 569 nm HPLC Retention time = 18.9 min.

EXAMPLE 5 Preparation of Dichlorosubphthalocyanine in Cumene The following reaction was conducted to produce a chlorine- substituted subphthalocyanine: Ci ci Cl con BC 3 cumene Cl argon C C1 Cl ci CI C1 C! Cl Example 2 was repeated except 4,5-dichlorophthalonitrile was used as a reactant, in place of phthalonitrile. The reaction mixture was 10.0 g (0.051 mole) of 4,5-dichlorophthalonitrile (Aldrich Chemical Company), 100 ml of cumene, and 16.9 ml of a 1M solution containing 2.0 g (0.017 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction mixture turned red and then deep red/blue during heating up to a reflux temperature of about 150°C. The reaction was stopped about 60 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 60 ml of hexane was added to the mixture. The reaction mixture was filtered and pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 10.1 g of a red/purple solid. The yield was 92%.

The following analytical data was taken.

(p-xylene solvent) = 574 nm HPLC Retention time = 25.5 min.

EXAMPLE 6 Preparation of Tetra-fluorosubphthalocyanine in Cumene The following reaction was conducted to produce a fluorine- substituted subphthalocyanine: F F4 F CN BCIumene Cl argon F CL F 4 Example 2 was repeated except 3,4,5,6-tetrafluorophthalonitrile was used as a reactant, in place of phthalonitrile. The reaction mixture was 10.0 g (0. 050 mole) of 3,4,5,6-tetrafluorophthalonitrile (Aldrich Chemical Company), 100 ml of cumene, and 16.7 ml of a 1M solution containing 1.95 g (0.017 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction was stopped about 30 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 60 ml of hexane was added to the mixture. The reaction mixture was filtered and pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 10.5 g of a red/purple solid. The yield was 90%.

The following analytical data was taken.

Xmax (p-xylene solvent) = 577 nm HPLC Retention time = 4.4 min.

EXAMPLE 7 Preparationof Tetrachlorosubphthalocyanine in Cumene The following reaction was conducted to produce a chlorine- substituted subphthalocyanine: a ci, CL CON Cl BC13 cum Cl argon Cl C14 CI4 CI Example 2 was repeated except 3, 4, 5,6-tetrachlorophthalonitrile was used as a reactant, in place of phthalonitrile. The reaction mixture was 10.0 g (0. 038 mole) of 3,4,5,6-tetrachlorophthalonitrile (Aldrich Chemical Company), 100 ml of cumene, and 12.5 ml of a 1M solution containing 1.47 g (0.012 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene. The reaction was stopped about 80 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature and 60 ml of hexane was added to the mixture. A precipitate did not form so the reaction mixture was pumped under vacuum for 4 hours at 0.01 mm Hg and in a water bath at 50°C to remove any solvent. The reaction produced 9.6 g of a solid. The yield was 93%.

The following analytical data was taken.

Xmax (p-xylene solvent) = 593 nm HPLC Retention time = 26.0 min.

EXAMPLE 8 Preparation of a"Capped"Trinitrosubphthalocyanine The following reaction was conducted to produce a capped trinitrosubphthalocyanine: NO2 \) H NO2 EGDME Cl O O O S03Na 02N NOZ 0, NNO,

Into a 250 ml round-bottom flask equipped with magnetic stirrer bar was placed 2.0 g (3.54 mmole) of tri- nitrosubphthalocyanine from Example 3; 0.69 g (3.54 mmole) of 4- hydroxybenzene sulphonic acid, sodium salt (Aldrich Chemical Company); and 100 ml of ethylene glycol dimethyl ether (EGDME) (Aldrich Chemical Company). The mixture was gradually heated up to a reflux temperature of about 85°C. The mixture was heated at reflux for about 16 hours.

The reaction mixture was cooled to ambient temperature. The reaction mixture was pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 2.1 g of a solid.

The yield was 84%.

EXAMPLE 9 Preparation of a"Capped"Dichlorosubphthalocyanine The following reaction was conducted to produce a capped dichlorosubphthalocyanine: Oh CN C1 Cl N C1 Cl 2 Cl EGDME O O S03Na + Cl Cl C1 Cl Cl Cl S 03Na Cl CI

Into a 250 ml round-bottom flask equipped with magnetic stirrer bar was placed 2.0 g (3. 5 mmole) of dichlorosubphthalocyanine from Example 5; 0.84 g (3.5 mmole) of 4-

hydroxy-3-nitrobenzene sulphonic acid, sodium salt (Aldrich Chemical Company); and 100 ml of ethylene glycol dimethyl ether (Aldrich Chemical Company). The mixture was gradually heated up to a reflux temperature of about 85°C. The mixture was heated at reflux for about 16 hours.

The reaction mixture was cooled to ambient temperature. The reaction mixture was pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 2.4 g of a red/brown solid. The yield was 89%.

EXAMPLE 10 Preparation of a Di-Subphthalocyanine in Cumene The following reaction was conducted to produce a disubphthalocyanine: I Cri N ! ZN,- N N NC CN CN cul ne + BC13 + NEC CN CN/I C) ACN (MCN c + + BC13 + N _ N-B N Zon \ 2.0 g (0.011 mole) of tetracyanobenzene (Aldrich Chemical Company) and 6.1 g (0.044 mole) of phthalonitrile (Aldrich Chemical Company) were added to 80 ml of cumene. The mixture was distilled using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 60°C. The mixture was then added to a three-necked, round-bottom 2000 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube.

The mixture was heated to 60°C. Into the heated mixture was syringed 11 ml of a 1M solution containing 1.3 g (0.011 mole) of boron trichloride (Aldrich Chemical Company) in p-xylene over a period of about 3 minutes. The reaction mixture turned a red/blue color. The reaction mixture was gradually heated up to a reflux temperature of about 150°C. The reaction mixture was monitored using HPLC analysis. Aliquots were removed during the reaction to obtain a UV spectra of each aliquot. The reaction was stopped about 20 minutes after the introduction of the boron trichloride solution.

The reaction mixture was cooled to ambient temperature. The reaction mixture was pumped under vacuum for 4 hours at 0.01 mm Hg to remove any solvent. The reaction produced 9.9 g of a red/brown solid. The yield was 98%.

EXAMPLE 11 Measurement of Subphth.-Lightfastness Values For A Variety of Subphthalocyanine Compound Solutions A variety of subphthalocyanines were prepared as described above. The subphthalocyanines were dissolved in o-xylene to form stock solutions having a subphthalocyanine concentration of 5x10-5 M. Each stock solution was split into four separate 50 ml. solutions and placed in Pyrex conical flasks labeled A, B, C, and D. The flasks were sealed with aluminum foil.

Five milliliters of distilled water was added to Samples B and D of each set. Samples A and B were placed on a laboratory benchtop about six feet from fluorescent lamps (i. e., Sylvania Cool White, 115 W, Model No. F48T12), which remained on 24 hours/day. Samples C and D were placed in a dark refrigerator at 10°C. Each day sample aliquots were removed from each sample to measure the absorption of the sample. Subphth-Lightfastness Test values were determined for each sample for each subphthalocyanine solution at 21 hours, 48 hours, and 144 hours. The results are given in Table 1 below.

The subphthalocyanines tested had the following formula, wherein"R"varied as shown in Table 1. Table 1. Subphth-Lightfastness Test Values For Subphthalocyanine Compounds Subphthalocyanine Subphth-Lightfastness Test Substituents Sample Values (% #A) "R""Z"21 Hours 48 Hours 144 Hours A339Cl4Cl B0212Cl4Cl C222Cl4Cl Cl4 Cl D 0 2 2 F4 81219A F4 81326B F4 678C F4 6812D A111631Cl2Cl B91336Cl2Cl C6810Cl2Cl Cl2 Cl D 10 13 14 A71440NO2Cl N02 Cl B 12 22 48 C778NO2Cl N02 Cl D 10 10 12 A122257HCl B51631HCl HClC000 Cl000 H OPh A 7 14 39 H OPh B 12 22 41 C000HOPh H OPh D 0 2 6

EXAMPLE 12 Preparation of Unsymmetrical Subphthalocyanine Compounds in Cumene The following reaction was conducted to produce unsymmetrical subphthalocyanine compounds at the given yield: % 10% 56% 23% 10% . max 586 nm 582 nm 585 nm 564 nm 3.3 g (0.019 mole) of 4-nitrophthalonitrile (Aldrich Chemical Company) and 4.9 g (0.038 mole) of phthalonitrile (Aldrich Chemical Company) were added to 80 ml of cumene. The mixture was distilled using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 50°C. The mixture was then added to a three-necked, round-bottom 250 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube.

The mixture was heated to 50°C. Into the heated mixture was syringed 19.2 ml of a 1M solution (0.019 mole) of boron trichloride (Aldrich Chemical Company) in cumene over a period of about 2 minutes. The reaction mixture was gradually heated up to a reflux temperature of about °C and held at this temperature for about 45 minutes. The reaction was monitored using HPLC analysis.

The product was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a C-18 HYPERSILTM column. The HPLC spectra showed four peaks around the 5 min retention area.

The resulting spectra was compared to reference spectra for various compounds. The four peaks corresponded to peaks on the spectra of the four compounds shown above. The weight percent of each compound was calculated and found to be 10 wt% A, 56 wt% B, 23 wt% C, and 10 wt% D as shown above.

EXAMPLE 13 Preparation of Unsymmetrical Subphthalocyanine Compound in Cumene The following reaction was conducted to produce unsymmetrical subphthalocyanine compounds at the given yield: On CN CN BC13 + +-cumene- argon IF NOZ H H A'A"A'A ON NA 02N 02N H N0 H H % 33% 54% 13% trace Amax 586 nm 582 nm 585 nm 564 nm 6.6 g (0.038 mole) of 4-nitrophthalonitrile (Aldrich Chemical Company) and 2.4 g (0.019 mole) of phthalonitrile (Aldrich Chemical Company) were added to 80 ml of cumene. The mixture was distilled using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 50°C. The mixture was then added to a three-necked, round-bottom 250 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube.

The mixture was heated to 50°C. Into the heated mixture was syringed 19.2 ml of a 1M solution (0.019 mole) of boron trichloride (Aldrich Chemical Company) in cumene over a period of about 2 minutes. The reaction mixture was gradually heated up to a reflux temperature of about °C and held at this temperature for about 45 minutes. The reaction was monitored using HPLC analysis.

The product was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a C-18 HYPERSILTM column. The HPLC spectra showed four peaks around the 5 min retention area.

The resulting spectra was compared to reference spectra for various compounds. The four peaks corresponded to peaks on the spectra of the four compounds shown above. The weight percent of each compound was calculated and found to be 33 wt% A, 54 wt% B, 13 wt% C, and <1 wt% D as shown above.

EXAMPLE 14 <BR> <BR> Preparation of Unsymmetrical Subphthalocyanine Compounds in Cumene The following reaction was conducted to produce unsymmetrical subphthalocyanine compounds at the given vield: tBu CN O., N CN ""a CN CN argon argon CL f v N0 tBu tBu tBu c CI 1 CI 02N NO2 02N N0 tBu N02 tBu tBu

% 29 % 54 % 16 % trace Amax 586 nm 580 nm 588 nm 592 nm 3.50 g (0.019 mole) of 4-tert-butylphthalonitrile (Aldrich Chemical Company) and 6.57 g (0.038 mole) of 4-nitrophthalonitrile (Aldrich Chemical Company) were added to 80 ml of cumene. The mixture was distilled using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 50°C. The mixture was then added to a three-necked, round-bottom 250 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube.

The mixture was heated to 50°C. Into the heated mixture was syringed 19.2 ml of a 1M solution (0.019 mole) of boron trichloride (Aldrich Chemical Company) in cumene over a period of about 2 minutes. The reaction mixture was gradually heated up to a reflux temperature of about 138°C and held at this temperature for about 30 minutes. The reaction was monitored using HPLC analysis.

The product was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a C-18 HYPERSILTM column. The HPLC spectra showed four peaks around the 5 min retention area.

The resulting spectra was compared to reference spectra for various compounds. The four peaks corresponded to peaks on the spectra of the four compounds shown above. The weight percent of each

compound was calculated and found to be 29 wt% A, 54 wt% B, 16 wt% C, and <1 wt% D as shown above.

EXAMPLE 15 Preparation of Unsymmetrical Subphthalocyanine Compounds in a Cumene/Xylene Mixture The following reaction was conducted to produce unsymmetrical subphthalocyanine compounds: Cl CN CN cumene/xylene BC13 + O + nitrogen Cl CN N CN T ci CI ci ci Ci N N' N N N N I i ( i B N NN N\NN Cl cl/ cl/ N (nez C1 C1 Cl 1.50 g (7.8 mmole) of 2,3-dichlorophthalonitrile (Aldrich Chemical Company) and 0.50 g (3. 9 mmole) of pyridine-2,3- dicarbonitrile (TCI America, Portland, OR) were added to a mixture of 3 ml of cumene and 27 ml of xylene. The mixture was distilled for about 40 minutes using a Dean and Stark apparatus in order to remove any water present in the mixture. The mixture was allowed to cool to a temperature below about 50°C and the trap was removed.

The mixture was then added to a three-necked, round-bottom 250 ml flask equipped with stirrer bar, condenser, thermometer, argon bubbler, and argon inlet tube. The mixture was heated to 50°C under a nitrogen blanket. Into the heated mixture was syringed 11.7 ml of a 1M solution (11.7 mmole) of boron trichloride (Aldrich

Chemical Company) in cumene over a period of about 5 minutes.

The reaction mixture was gradually heated up to a reflux temperature of about 138°C and held at this temperature for about 60 minutes. The reaction was monitored using HPLC analysis.

The product was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a C-18 HYPERSILTM column. The HPLC spectra showed two peaks, one at a retention time of 8.1 minutes and one at 25.4 minutes. The resulting spectra was compared to reference spectra for various compounds. The two peaks corresponded to peaks on the spectra of hexachlorosubphthalocyanine and the above unsymmetrical subphthalocyanine compound. The weight percent hexachlorosubphthalocyanine was found to be 77 wt% and the weight percent of the unsymmetrical subphthalocyanine compound was found to be about 15 wt%.

The reaction mixture was cooled to ambient temperature and 30 ml of hexane was added to the reaction mixture. The mixture was filtered. The solid was washed with hexane and then dried in a vacuum oven at ambient temperature and 0.01 mmHg for about 4 hours. The yield was 2.0 g of product.

EXAMPLE 16 Preparation of a"Capped"Subphthalocyanine The following reaction was conducted to produce a capped dichlorosubphthalocyanine: ce cumene Cl C + Ph2BCl >/9 +/t argon CN Into a 250 ml round-bottom flask equipped with magnetic stirrer bar was placed 3.8 g (0.3 mole) of phthalonitrile (Aldrich Chemical Company) and 30 ml of cumene (Aldrich Chemical Company) under an argon atmosphere. By syringe, 2.0 g (0.01 mole) of chlorodiphenylboron (Aldrich Chemical Company) was added.

The mixture was gradually heated up to a reflux temperature of about 138°C. The mixture was heated at reflux for about 90 minutes.

The reaction mixture was cooled to room temperature and 40 ml of hexane was added to the mixture. The precipitate was filtered.

The product was analyzed on a HPLC 1100 Series (Hewlett Packard) using acetonitrile and a C-18 HYPERSILTM column. HPLC analysis showed the product to be 75 wt% of the phenyl capped subphthalocyanine compound and 25 wt% of the chlorine capped subphthalocyanine compound. The yield of the reaction was 3.1 g.

The subphthalocyanine compounds were separated by column chromatography using neutral alumina with a 50: 50 mixture by volume of methylene chloride and toluene as an eluent.

EXAMPLE 17 Preparation of a Symmetrical Subphthalocyanine The following reaction was conducted to produce a subphthalocyanine: CN cumene N Cl + BCl3/B N CNg°n N-N wherein represents a mixture of Into a 250 ml round-bottom flask flushed with argon and equipped with magnetic stirrer bar was placed 2.0 g (0.155 mole) of

pyridine-2,3-dicarbonitrile (TCI America, Portland, OR) and 30 ml of cumene (Aldrich Chemical Company). By syringe, 1.8 g (0. 0155 mole) of trichloroboron (Aldrich Chemical Company) in xylene was added to the mixture. The mixture turned yellow and then a brown/red color at room temperature. The mixture was gradually heated up to a temperature of about 80°C and held at this temperature for about 30 minutes.

The reaction mixture was cooled to room temperature and the precipitate was filtered. The product was washed with hexane. The yield of the reaction was 1.5 g (Actual yield 71%).

EXAMPLE 18 Preparation of a Mixture of Symmetrical and Unsymmetrical Subphthalocyanine Compound The following reaction was conducted to produce a mixture of symmetrical and unsymmetrical subphthalocyanine compounds: Cul Con con cumene N Cl Cl + BCl3 + CN N CN argon wherein represents Into a 250 ml round-bottom flask flushed with argon and equipped with magnetic stirrer bar was placed 2.0 g (15.5 mmole) of phthalonitrile (Aldrich Chemical Company), 1.0 g (7.8 mmole) of pyridine-2,3-dicarbonitrile (TCI America, Portland, OR) and 30 ml of cumene (Aldrich Chemical Company). By syringe, 1.8 g (15.5 mmole) of trichloroboron (Aldrich Chemical Company) in xylene

was added to the mixture. The mixture was gradually heated up to a reflux temperature of about 138°C. The mixture was heated at reflux for about 45 minutes and then cooled to room temperature.

30 ml of hexane was added to the reaction mixture. The precipitate was filtered and washed with hexane. The yield of the reaction was 2.5 g.

HPLC analysis showed the product to be a mixture of 18 wt% of the symmetrical subphthalocyanine compound and 82 wt% of the unsymmetrical subphthalocyanine compound.

EXAMPLE 19 Mass Spectroscopy Analysis of Selected Subphthalocyanine Compounds Using the techniques in the examples above, a number of subphthalocyanine compounds were produced. The compounds were analyzed using two different mass spectrometers. The following compounds were analyzed by atmospheric pressure chemical ionization (APCI) on a Micromass Quattro II Triple Quadrupole Mass Spectrometer:

The following compounds were analyzed using a Thermoquest LCQ Mass Spectrometer:

While the specification has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.