Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A NOZZLE FOR A FAN ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/2020/002878
Kind Code:
A1
Abstract:
There is provided a nozzle for a fan assembly. The nozzle comprises an air inlet, one or more air outlets for emitting the air flow from the nozzle, the one or more air outlets together defining a total air outlet of the nozzle, a single internal air passageway extending between the air inlet and the one or more air outlets, and a valve for varying a size of the total air outlet of the nozzle. The valve is arranged such that, in a directed mode, one or more first sections of the total air outlet are occluded and one or more second sections of the total air outlet are at least partially open and, in a diffuse mode, both the one or more first sections and the one or more second sections of the total air outlet are at least partially open.

Inventors:
MACQUEEN NEIL (GB)
Application Number:
PCT/GB2019/051714
Publication Date:
January 02, 2020
Filing Date:
June 19, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DYSON TECHNOLOGY LTD (GB)
International Classes:
F04F5/16; F04B39/08; F04B39/10; F04D29/40; F04D29/44; F04D29/54; F04F5/46
Domestic Patent References:
WO2010100451A12010-09-10
Foreign References:
US5821475A1998-10-13
US20180080676A12018-03-22
US20120051884A12012-03-01
CN103807149A2014-05-21
US2488467A1949-11-15
Attorney, Agent or Firm:
CHAPMAN, Alan et al. (GB)
Download PDF:
Claims:
CLAIMS

1. A nozzle for a fan assembly, the nozzle comprising:

an air inlet;

one or more air outlets for emitting the air flow from the nozzle, the one or more air outlets together defining a total air outlet of the nozzle;

a single internal air passageway extending between the air inlet and the one or more air outlets; and

a valve for varying an open area of the total air outlet of the nozzle by varying an open area of one or more first sections of the total air outlet without varying an open area of one or more second sections of the total air outlet.

2. The nozzle of claim 1 , wherein the valve is arranged such that, in a first mode, one or more first sections of the total air outlet are occluded and one or more second sections of the total air outlet are at least partially open and, in a second mode, both the one or more first sections and the one or more second sections of the total air outlet are at least partially open.

3. The nozzle of any one of claims 1 or 2, wherein the valve comprises one or more valve members which are moveable to adjust the open area of one or more first sections of the total air outlet.

4. The nozzle of claim 3, wherein the one or more valve members are arranged such that they do not occlude the one or more second sections of the total air outlet.

5. The nozzle of any one of claims 2 or 3, wherein the one or more valve members are moveable between a first end position in which the one or more first sections of the total air outlet are occluded and a second end position in which the one or more first sections are at least partially open.

6. The nozzle as claimed in claim 4, wherein the one or more valve members are arranged such that they do not occlude the one or more second sections of the total air outlet in any of the second end position and the first end position.

7. The nozzle of claim 1 , wherein the nozzle comprises a plurality of air outlets and the valve is arranged to vary an open area of a first subset of the plurality of air outlets without varying an open area of a second subset of the plurality of air outlets.

8. The nozzle of claim 7, wherein the valve is arranged such that, in a first mode, only the first subset of the plurality of air outlets are occluded by the valve and, in a second mode, the first subset of the plurality of air outlets are at least partially open.

9. The nozzle of claim 8, wherein the valve comprises one or more valve members which are moveable to adjust the open area of the first subset of the plurality of air outlets, and the one or more valve members are arranged such that they do not occlude the second subset of the plurality of air outlets.

10. The nozzle of claim 9, wherein the one or more valve members are moveable between a first end position in which the first subset of the plurality of air outlets are occluded and a second end position in which the first subset of the plurality of air outlets are at least partially open.

11 . The nozzle as claimed in claim 10, wherein the one or more valve members are arranged such that they do not occlude the second subset of the plurality of air outlets in any of the second end position and the first end position.

12. The nozzle of claim 1 , wherein the nozzle comprises a single air outlet and the valve is arranged to vary an open area of one or more first sections of the single air outlet without varying an open area of one or more second sections of the single air outlet.

13. The nozzle of claim 12, wherein the valve is arranged such that, in a first mode, only the one or more first sections of the single air outlet are occluded by the valve and, in a second mode, the one or more first sections of the single air outlet are at least partially open.

14. The nozzle of claim 13, wherein the valve comprises one or more valve members which are moveable to adjust the open area of the one or more first sections of the single air outlet, and the one or more valve members are arranged such that they do not occlude the one or more second sections of the single air outlet.

15. The nozzle of claim 14, wherein the one or more valve members are moveable between a first end position in which the one or more first sections of the single air outlet are occluded and a second end position in which the one or more first sections of the single air outlet are at least partially open.

16. The nozzle of claim 15, wherein the one or more valve members are arranged such that they do not occlude the one or more second sections of the single air outlet in any of the second end position and the first end position.

17. The nozzle of any one of claims 1 to 16, wherein the one or more air outlets are oriented towards a convergent point.

18. The nozzle of any one of claims 1 to 6, wherein the one or more air outlets comprise a plurality of adjacent arcuate slots that are provided on a face of the nozzle, and preferably wherein the adjacent arcuate slots define a total air outlet that is generally elliptical in shape, and more preferably wherein the total air outlet is generally circular in shape.

19. The nozzle of any one of claims 1 to 18, and further comprising an intermediate surface that spans an area between the one or more air outlets.

20. The nozzle of claim 19, wherein the one or more air outlets are oriented to direct an air flow over at least a portion of the intermediate surface.

21 . The nozzle of any one or claims 19 or 20, wherein the face of the nozzle comprises the intermediate surface.

22. The nozzle of claim 21 , and further comprising a nozzle body that defines one or more outermost surfaces of the nozzle, wherein the face of the nozzle further comprises a portion of the nozzle body that extends around the periphery of the intermediate surface.

23. The nozzle of any one of claims 20 to 22, wherein the nozzle defines an opening between the intermediate surface and the nozzle body, and wherein each of the one or more air outlets are provided by separate portions of the opening.

24. A fan assembly comprising an impeller, a motor for rotating the impeller to generate an air flow, and a nozzle as claimed in any one of claims 1 to 23 for receiving the air flow.

Description:
A NOZZLE FOR A FAN ASSEMBLY

FIELD OF THE INVENTION

The present invention relates to a nozzle for a fan assembly, and a fan assembly comprising such a nozzle.

BACKGROUND OF THE INVENTION

A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an airflow. The movement and circulation of the airflow creates a 'wind chill' or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an airflow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.

US 2,488,467 describes a fan which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing an airflow into the base, and a series of concentric, annular nozzles connected to the base and each comprising an annular outlet located at the front of the nozzle for emitting the airflow from the fan. Each nozzle extends about a bore axis to define a bore about which the nozzle extends.

Each nozzle is in the shape of an airfoil may therefore be considered to have a leading edge located at the rear of the nozzle, a trailing edge located at the front of the nozzle, and a chord line extending between the leading and trailing edges. In US 2,488,467 the chord line of each nozzle is parallel to the bore axis of the nozzles. The air outlet is located on the chord line, and is arranged to emit the airflow in a direction extending away from the nozzle and along the chord line.

Another fan assembly which does not use caged blades to project air from the fan assembly is described in WO 2010/100451 . This fan assembly comprises a cylindrical base which also houses a motor-driven impeller for drawing a primary airflow into the base, and a single annular nozzle connected to the base and comprising an annular mouth/outlet through which the primary airflow is emitted from the fan. The nozzle defines an opening through which air in the local environment of the fan assembly is drawn by the primary airflow emitted from the mouth, amplifying the primary airflow. The nozzle includes a Coanda surface over which the mouth is arranged to direct the primary airflow. The Coanda surface extends symmetrically about the central axis of the opening so that the airflow generated by the fan assembly is in the form of an annular jet having a cylindrical or frusto-conical profile.

The user is able to change the direction in which the air flow is emitted from the nozzle in one of two ways. The base includes an oscillation mechanism which can be actuated to cause the nozzle and part of the base to oscillate about a vertical axis passing through the centre of the base so that that air flow generated by the fan assembly is swept about an arc of around 180°. The base also includes a tilting mechanism to allow the nozzle and an upper part of the base to be tilted relative to a lower part of the base by an angle of up to 10 ° to the horizontal.

SUMMARY OF THE INVENTION

According a first aspect there is provided a nozzle for a fan assembly. The nozzle comprises an air inlet, one or more air outlets for emitting the air flow from the nozzle, the one or more air outlets together defining a total air outlet of the nozzle, a single internal air passageway extending between the air inlet and the one or more air outlets, and a valve for varying an open area (i.e. the size) of the total air outlet of the nozzle by varying an open area of one or more first sections of the total air outlet without varying an open area of one or more second sections of the total air outlet. In other words, the valve is arranged to vary the open area of the total air outlet of the nozzle by varying an extent to which one or more first sections of the total air outlet are occluded without varying an extent to which one or more second sections of the total air outlet are occluded. The valve is arranged such that, in a first mode or configuration (referred to herein as directed mode), one or more first sections of the total air outlet are occluded and one or more second sections of the total air outlet are at least partially open and, in a second mode or configuration (referred to herein as diffuse mode), both the one or more first sections and the one or more second sections of the total air outlet are at least partially open.

The valve may comprise one or more valve members which are moveable to adjust the open area of one or more first sections of the total air outlet, and thereby vary the aggregate size of the total air outlet. In other words, the valve may comprise one or more valve members which are moveable to vary the extent to which one or more first sections of the total air outlet are occluded. Preferably, the one or more valve members are arranged such that they do not occlude (i.e. do not encroach or impinge upon) the one or more second sections of the total air outlet.

The one or more valve members may be moveable between a first end position in which the one or more first sections of the total air outlet are occluded by the one or more valve members and a second end position in which the one or more first sections are at least partially open. The one or more valve members may be arranged such that they do not occlude (i.e. do not encroach or impinge upon) the one or more second sections of the total air outlet in any of the second end position and the first end position. In the first mode, the one or more valve members may then be in the first end position, such that the one or more first sections are occluded. In the second mode, the one or more valve members may then be in the second end position, such that the one or more first sections are at least partially open.

Preferably, the nozzle comprises a face with the one or more outlets of the nozzle being provided on the face of the nozzle. The face of the nozzle may have an elliptical shape, and preferably the face of the nozzle is circular.

The nozzle may comprise a plurality of air outlets. The valve may then be arranged to vary an open area of the total air outlet of the nozzle by varying an open area of a first subset of the plurality of air outlets without varying an open area of a second subset of the plurality of air outlets. The valve may be arranged such that, in the first mode, only the first subset of the plurality of air outlets are occluded by the valve and, in the second mode, the first subset of the plurality of air outlets are at least partially open, and preferably maximally open. The valve may then also be arranged such that, in both the first mode and the second mode, the second subset of the plurality of air outlets are at least partially open. The one or more first sections of the total air outlet may then consist of the first subset of the plurality of air outlets, and the one or more second sections of the total air outlet consist of the second subset of the plurality of air outlets.

The valve may comprise one or more valve members which are moveable to adjust the open area of the first subset of the plurality of air outlets, wherein the one or more valve members are arranged such that they do not occlude (i.e. do not encroach or impinge upon) the second subset of the plurality of air outlets. The one or more valve members may be moveable between a first end position in which the first subset of the plurality of air outlets are occluded and a second end position in which the first subset of the plurality of air outlets are at least partially open. The one or more valve members may be arranged such that they do not occlude the second subset of the plurality of air outlets in any of the second end position and the first end position.

The nozzle may comprise a single air outlet. The valve may then be arranged to vary an open area of the total air outlet of the nozzle by varying an open area of one or more first sections of the single air outlet without varying an open area of one or more second sections of the single air outlet. The valve may be arranged such that, in the first mode, only the one or more first sections of the single air outlet are occluded by the valve and, in the second mode, the one or more first sections of the single air outlet are at least partially open, and preferably maximally open. The valve may then also be arranged such that, in both the first mode and the second mode, one or more second sections of the single air outlet are at least partially open. The one or more first sections of the total air outlet may then consist of the one or more first sections of the single air outlet, and the one or more second sections of the total air outlet consist of the one or more second sections of the single air outlet.

The valve may comprise one or more valve members which are moveable to adjust the open area of the one or more first sections of the single air outlet, wherein the one or more valve members are arranged such that such that they do not occlude (i.e. do not encroach or impinge upon) the one or more second sections of the single air outlet. The one or more valve members may be moveable between a first end position in which the one or more first sections of the single air outlet are occluded and a second end position in which the one or more first sections of the single air outlet are at least partially open. The one or more valve members may be arranged such that they do not occlude the one or more second sections of the single air outlet in any of the second end position and the first end position.

The one or more valve members may be arranged to move translationally (i.e. without rotation), and preferably rectilinearly (i.e. in a straight line). The one or more valve members may be arranged to move laterally relative to a body of the nozzle.

Preferably, the one or more air outlets are oriented towards a convergent point. The convergent point may be located on a central axis of the face of the nozzle. The one or more air outlets may be oriented towards a central axis of the face of the nozzle.

The one or more air outlets may comprise a plurality of adjacent arcuate slots that are provided on a face of the nozzle. Preferably, the adjacent arcuate slots define a total air outlet that is generally elliptical in shape, and more preferably define a total air outlet that is generally circular in shape.

The one or more second sections of the total air outlet may comprise two congruent arcuate slots that are diametrically opposed on the face of the nozzle body, and are preferably shaped as circular arcs. Each of the two congruent arcuate slots may have an arc angle of from 20 to 1 10 degrees, preferably from 45 to 90 degrees, and more preferably from 60 to 80 degrees. The one or more first sections of the total air outlet may then comprise two further congruent arcuate slots that are diametrically opposed on the face of the nozzle body, and are preferably shaped as circular arcs. The nozzle may further comprise an intermediate surface that spans an area between the one or more air outlets. In other words, the intermediate surface may extend across the space or distance that separates the one or more air outlets. Preferably, the intermediate surface is outward facing, i.e. faces away from the centre of the nozzle. The intermediate surface may be flat or partially convex. The one or more air outlets may be oriented to direct an air flow over at least a portion of the intermediate surface. The one or more outlets may be arranged to direct the air flow emitted therefrom such that the air flow passes across at least a portion of the intermediate surface. The one or more air outlets may be arranged to direct an air flow over a portion of the intermediate surface that is adjacent to the respective air outlet.

The face of the nozzle may comprise the intermediate surface. The nozzle may further comprise a nozzle body or outer casing that defines one or more outermost surfaces of the nozzle. The nozzle body or outer casing therefore substantially defines the external shape or form of the nozzle. The face of the nozzle may therefore comprise the intermediate surface and a portion of the nozzle body that extends around or surrounds the periphery of the intermediate surface. The nozzle body may define an opening and the intermediate surface may then be exposed within the opening. The opening may be provided at the face of the nozzle. Preferably, the intermediate surface defines a portion of the one or more air outlets. Each of the one or more air outlets may comprise a slot defined between a portion of the nozzle body and the intermediate surface. The nozzle may define a generally elliptical gap/opening between the intermediate surface and the nozzle body, and each of the one or more air outlets may then be provided by separate portions of the I gap/opening. . For each of the one or more air outlets, the portion of the intermediate surface that partially defines the air outlet may have a shape that corresponds with a shape of the opposing portion of the nozzle body. In particular, the portion of the intermediate surface that partially defines the air outlet may have a radius of curvature that is substantially equal to a radius of curvature of the opposing portion of the nozzle body.

The nozzle may further comprise a base that is arranged to be connected to a fan assembly, and the base may define the air inlet of the nozzle. Preferably, the angle of face relative to the base is fixed. The angle of the face relative to the base may be from 0 to 90 degrees, is more preferably from 0 to 45 degrees, and is yet more preferably from 20 to 35 degrees

The nozzle body may have the general shape of a truncated ellipsoid, with a first truncation forming a face of the nozzle and a second truncation forming a base of the nozzle body. The nozzle body may have the general shape of a truncated sphere, with a first truncation forming a circular face of the nozzle and a second truncation forming at least part of a circular base of the nozzle body. Preferably, the one or more second sections of the total air outlet define a first directed mode air outlet and a second directed mode air outlet. The first and second directed mode air outlets are discrete. In other words, the first directed mode air outlet and the second directed mode air outlet are physically separated from one another. The nozzle may then further comprise a further, flow vectoring valve arranged to adjust the size of the first directed mode air outlet relative to the size of the second directed mode air outlet while keeping the combined/aggregate open area of the first and second directed mode air outlets constant. The further valve may comprise one or more further valve members, each of the one or more further valve members being moveable through a range of positions between a first end position and a second end position, wherein in the first end position the first directed mode air outlet is maximally occluded and the second directed mode air outlet is maximally open and in the second end position the first directed mode air outlet is maximally open and the second directed mode air outlet is maximally occluded.

According a second aspect there is provided a nozzle for a fan assembly. The nozzle comprises an air inlet, one or more air outlets for emitting the air flow from the nozzle, the one or more air outlets together defining a total air outlet of the nozzle, a single internal air passageway extending between the air inlet and the one or more air outlets, and a valve for varying a size/an open area of the total air outlet of the nozzle. The valve is arranged such that, in a first/directed mode, one or more first sections of the total air outlet are occluded and one or more second sections of the total air outlet are at least partially open and, in a second/diffuse mode, both the one or more first sections and the one or more second sections of the total air outlet are at least partially open.

According a third aspect there is provided assembly comprising an impeller, a motor for rotating the impeller to generate an air flow, and a nozzle according to any of the first aspect and the second aspect for receiving the air flow. The fan assembly may comprise a base upon which the fan assembly is supported, and an angle of the face of the nozzle relative to the base of the fan assembly is then preferably fixed. Preferably, the angle of the face of the nozzle relative to the base of the fan assembly is from 0 to 90 degrees, is more preferably from 0 to 45 degrees, and is yet more preferably from 20 to 35 degrees. The base of the fan assembly is preferably provided at a first end of a body of the fan assembly, and the nozzle is then preferably mounted to an opposite second end of the body of the fan assembly. Preferably, the motor and the impeller are housed within the body of the fan assembly. BRIEF DESCRIPTION OF THE INVENTION

An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 is a front view of a first embodiment of a fan assembly;

Figure 2 is a side of the fan assembly of Figure 1 ;

Figure 3 is a perspective view of the spherical nozzle of the fan assembly of Figures 1 and 2; Figure 4 is a top view of the spherical nozzle of the fan assembly of Figures 1 and 2;

Figure 5 is a front view of the spherical nozzle of the fan assembly of Figures 1 and 2;

Figure 6 is a side view of the spherical nozzle of the fan assembly of Figures 1 and 2;

Figure 7 is a vertical cross-sectional view of the spherical nozzle taken along line A-A of Figure 5;

Figure 8 is a vertical cross-sectional view of the spherical nozzle taken along line B-B of Figure

6

Figure 9 is a top view of the spherical nozzle of Figure 3 with an upper portion removed;

Figure 10 is a perspective view of the spherical nozzle of Figure 3 with an upper portion removed;

Figure 1 1 a is a simplified vertical cross-sectional view of the spherical nozzle illustrating a valve member in a first position;

Figure 1 1 b is a simplified vertical cross-sectional view of the spherical nozzle illustrating a valve member in a second position; and

Figure 1 1 c is a simplified vertical cross-sectional view of the spherical nozzle illustrating a valve member in a third position.

DETAILED DESCRIPTION OF THE INVENTION

There will now be described a nozzle for a fan assembly that provides two separate air delivery modes from a single arrangement of outlets. In particular, the nozzle is capable of switching between a directed air delivery mode and a diffuse air delivery mode by varying the size of an aggregate or total air outlet of the nozzle, wherein the total air outlet is defined by the combination/aggregation of a single set of one or more air outlets. The present invention thereby provides the user of the fan assembly with various options as to how air is delivered by the fan assembly. The term“fan assembly” as used herein refers to a fan assembly configured to generate and deliver an airflow for the purposes of thermal comfort and/or environmental or climate control. Such a fan assembly may be capable of generating one or more of a dehumidified airflow, a humidified airflow, a purified airflow, a filtered airflow, a cooled airflow, and a heated airflow. The nozzle comprises an air inlet for receiving an air flow, one or more air outlets for emitting the air flow from the nozzle, with the one or more air outlets together defining an aggregate or total air outlet of the nozzle, and a single internal air passageway that extends between the air inlet and the one or more air outlets. The nozzle then further comprises a mode switching valve for varying an open area (i.e. the size) of the total air outlet of the nozzle by varying an open area of one or more first sections of the total air outlet without varying an open area of one or more second sections of the total air outlet. In other words, the valve is arranged to vary the open area of the total air outlet of the nozzle by varying an extent to which one or more first sections of the total air outlet are occluded without varying an extent to which one or more second sections of the total air outlet are occluded. Consequently, the valve is arranged such that, in a first mode or configuration (referred to herein as directed mode) , one or more first sections of the total air outlet are occluded and one or more second sections of the total air outlet are at least partially open. The valve is then further arranged such that, in a second mode or configuration (referred to herein as diffuse mode), both the one or more first sections and the one or more second sections of the total air outlet are at least partially open.

For example, the mode switching valve may comprise one or more valve members which are moveable to adjust the open area of one or more first sections of the total air outlet, and thereby vary the aggregate size of the total air outlet. In other words, the valve may comprise one or more valve members which are moveable to vary the extent to which one or more first sections of the total air outlet are occluded. The one or more valve members may then be arranged such that they do not occlude (i.e. do not encroach or impinge upon) the one or more second sections of the total air outlet. Each of the one or more valve members may be moveable between a first end position in which the one or more first sections of the total air outlet are occluded by the one or more valve members and a second end position in which the one or more first sections are at least partially open, and preferably maximally open (i.e. open to the fullest extent possible). Each of the one or more valve members are preferably arranged such that they do not occlude (i.e. do not encroach or impinge upon) the one or more second sections of the total air outlet in either the first end position or the second end position. In the first mode, the one or more valve members may then be in the first end position, such that the one or more first sections are occluded. In the second mode, the one or more valve members may then be in the second end position, such that the one or more first sections are at least partially open.

The nozzle may comprise a plurality of air outlets, with the total air outlet of the nozzle then being formed from the combination/aggregation of all of the plurality of air outlets. The one or more first sections of the total air outlet may then comprise a first subset of this plurality of air outlets whilst the one or more second sections of the total air outlet comprise a second subset of this plurality of air outlets. Alternatively, the nozzle may comprise just a single air outlet that thereby forms the total air outlet. The one or more first sections of the total air outlet may then comprise one or more first portions/segments of this single air outlet whilst the one or more second sections of the total air outlet comprise one or more second portions/segments of this single air outlet, wherein the one or more second portions/segments will comprise those portions that separate adjacent first portions/segments.

The term“air outlet” as used herein refers to a portion of the nozzle through which an air flow escapes from the nozzle. In particular, in the embodiments described herein, each air outlet comprises a conduit or duct that is defined by the nozzle and through which an air flow exits the nozzle. Each air outlet could therefore alternatively be referred to as an exhaust. This contrasts with other portions of the nozzle that are upstream from the air outlets and that serve to channel an air flow between an air inlet of the nozzle and an air outlet.

This dual mode configuration is particularly useful when the nozzle is intended for use with a fan assembly that is configured to provide purified air as the user of such a fan assembly may wish to continue to receive purified air from the fan assembly without the cooling effect produced by the higher pressure, focussed airflow provided in directed mode. For example, this may be the case in winter when the user may consider the temperature to be too low to make use of the cooling effect provided by the directed mode airflow. In such a situation, the user can control the air delivery mode by manipulating a user interface. In response to these user inputs, a main control circuit would then cause the mode switching valve members to move from a closed position to an open position so that the entirety of the aggregate/total air outlet of the nozzle is at least partially open providing a more diffuse, low pressure flow of air.

Figures 1 and 2 are external views of a first embodiment of a fan assembly 1000. Figure 1 shows a front view of the fan assembly 1000 and Figure 2 is a side view of the fan assembly 1000. Figure 3 shows a perspective view of the nozzle 1200 of the fan assembly 1000 of Figures 1 and 2. Figures 4, 5 and 6 then show top, front and side views of the nozzle 1200 respectively.

The fan assembly 1000 comprises a body or stand 1 1 00 and a generally spherical nozzle 1200 mounted on the body 1 100. As will be described in more detail below, the spherical nozzle 1200 comprises a generally annular gap 1260 that provides a single, diffuse mode air outlet of the nozzle 1200, whilst two diametrically opposed portions of this gap 1260 then form a pair of congruent, circular arc shaped slots that provide a pair of directed mode air outlets 1210, 1220 of the nozzle 1200 (i.e. the one or more second sections of the total air outlet). The nozzle then further comprises a mode switching valve that is arranged such that, in a first mode or configuration (referred to herein as directed mode), only the portions of the gap 1260 that separate the pair of arcuate slots (i.e. the one or more first sections of the total air outlet) are occluded and, in a second mode or configuration (referred to herein as diffuse mode), the portions of the gap 1260 that separate the pair of arcuate slots are maximally open.

In this embodiment, the body 1 100 is substantially cylindrical and comprises an air inlet 1 1 1 0 through which an air flow enters the body 1 100 of the fan assembly 1000, and the air inlet 1 1 10 comprises an array of apertures formed in the body 1 100. Alternatively, the air inlet 1 1 1 0 may comprise one or more grilles or meshes mounted within windows formed in the body 1 100. The body 1 1 00 houses a motor-driven impeller (not shown) for drawing an airflow through the air inlet 1 1 10 and into the body 1 100. Preferably, the body 1 100 further comprises at least one purifying/filter assembly (not shown) that comprises at least one particulate filter media. The at least one purifying/filter assembly is then preferably located downstream of the air inlet 1 1 10 but upstream of the motor-driven impeller, such that the air drawn into the body 1 100 by the impeller is filtered prior to passing through the impeller. This serves to remove any particles which could potentially cause damage to the fan assembly 1000, and also ensures that the air emitted from the nozzle 1200 is free from particulates. In addition, the purifying/filter assembly preferably further comprises at least one chemical filter media that serves to remove various chemical substances from the air flow that could potentially be a health hazard so that the air emitted from the nozzle 1200 is purified.

In the illustrated embodiment, the nozzle 1200 is mounted on the upper end of the body 1 100 over an annular air vent through which the airflow exits the body 1 100. The nozzle 1200 has an open lower end which provides an air inlet 1240 for receiving the airflow from the body 1 100. The external surface of an outer wall of the nozzle 1200 then converges with the outer edge of the body 1 100.

The nozzle 1200 comprises a nozzle body, outer casing or housing 1230 that defines the outermost surfaces of the nozzle and therefore defines the external shape or form of the nozzle 1200. In the illustrated embodiment, the nozzle body/outer casing 1230 of the nozzle 1200 has the general shape of a truncated sphere, with a first truncation forming a circular face 1231 of the nozzle and a second truncation forming a circular base 1232 of the nozzle body/outer casing 1230, and the angle (a) of the face 1231 of the nozzle body 1230 relative to the base 1232 of the nozzle body 1230 is fixed. In the illustrated embodiment, this angle (a) is approximately 25 degrees; however, the angle of the face 1231 relative to the base 1232 of the nozzle body 1230 could be anything from 0 to 90 degrees, is more preferably from 0 to 45 degrees, and is yet more preferably from 20 to 35 degrees.

In the illustrated embodiment, the first truncation provides that the diameter (DN) of the nozzle body 1230 is approximately 1 .2 times greater than the diameter (DF) of the circular face 1231 of the nozzle body 1230; however, the diameter (DN) of the nozzle body 1230 could be anything from 1 .05 to 2 times greater than a diameter (DF) of the circular face 1231 of the nozzle body, and is preferably from 1 .1 to 1 .4 times greater. The second truncation then provides that diameter (DN) of the nozzle body 1230 is also approximately 1 .2 times greater than the diameter (DB) of the circular base 1232 of the nozzle body 1230; however, the diameter (DN) of the nozzle body 1230 could be anything from 1 .05 to 2 times greater than the diameter (DB) of the circular base 1232 of the nozzle body 1230, and is preferably from 1 .1 to 1 .4 times greater.

The nozzle body 1230 defines an opening at the circular face 1231 of the nozzle body 1230. The nozzle 1200 then further comprises a fixed, external guide surface 1250 that is located concentrically within the opening at the circular face 1231 of the nozzle body 1230 such that this external guide surface 1250 is at least partially exposed within the opening, with a portion of the nozzle body 1230 extending around the periphery of the guide surface 1250. The external guide surface 1250 is therefore outward facing (i.e. faces away from the centre of the nozzle).

In the illustrated embodiment, this guide surface 1250 is convex and substantially disk-shaped; however, in alternative embodiments the guide surface 1250 could be flat or only partially convex. An inwardly curved upper portion 1230a of the nozzle body 1230 then overlaps/overhangs a circumferential portion 1250a of the guide surface 1250. The outermost, central portion 1250b of the convex guide surface is then offset relative to the outermost point of the open circular face 1231 of the nozzle body 1230. In particular, the outermost point of the open circular face 1231 of the nozzle body 1230 is in front of the outermost portion 1250b of the guide surface.

The circumferential portion 1250a of the guide surface 1250 and an opposing portion of the nozzle body 1230 together define the gap 1260 between them, with this gap 1260 providing the single, diffuse mode air outlet of the nozzle 1200. Two diametrically opposed portions of this gap 1260 then form a pair of congruent, circular arc shaped slots that provide the first and second directed mode air outlets 1210, 1220 of the nozzle 1200. The guide surface 1250 therefore provides an intermediate surface that spans the area between the first and second directed mode air outlets 1210, 1220. . In other words, the guide surface 1250 forms an intermediate surface that extends across the space that separates the first and second directed mode air outlets 121 0, 1220. As will be described in more detail below, when the nozzle 1200 is in the directed air delivery mode, the portions of the gap 1260 that separate the pair of arcuate slots (i.e. the one or more first sections of the total air outlet) are covered/occluded.

In the illustrated embodiment, the pair of arcuate slots that provide the first and second directed mode air outlets 1210, 1220 each have an arc angle (b) (i.e. the angle subtended by the arc at the centre of the circular face 2231 ) of approximately 60 degrees; however, they could each have an arc angle of anything from 20 to 1 10 degrees, preferably from 45 to 90 degrees, and more preferably from 60 to 80 degrees. Consequently, the area of the gap 1260 can be anything from 3 to 18 times greater than the area of each of the first and second directed mode air outlets 1210, 1220, is preferably from 4 to 8 times greater, and is more preferably from 4 to 6 times greater.

The first and second directed mode air outlets 1210, 1220 are approximately the same size and together form an aggregate or combined directed mode air outlet of the spherical nozzle 1200. The first directed mode air outlet 1210 and the second directed mode air outlet 1220 are located on opposing sides of the guide surface 1250, and are orientated to direct an emitted air flow over a portion of the guide surface 1250 that is adjacent to the respective air outlet and towards a convergent point that is aligned with a central axis (X) of the guide surface 1250. The first directed mode air outlet 1210, the directed mode second air outlet 1220 and the guide surface 1250 are then arranged such that emitted air flows are directed over a portion of the guide surface 1250 that is adjacent to the respective directed mode air outlet. In particular, the directed mode air outlets 1210, 1220 are arranged to emit an air flow in a direction that is substantially parallel to the portion of the guide surface 1250 adjacent the air outlet 1210, 1220. The convex shape of the guide surface 1250 then provides that the air flows emitted from the first and second directed mode air outlets 1210, 1220 will depart from the guide surface 1250 as they approach the convergent point so that these air flows can collide at and/or around the convergent point without interference from the guide surface 1250. When the emitted air flows collide, a separation bubble is formed that can assist in stabilising the resultant jet or combined air flow formed when two opposing air flows collide.

The construction and operation of the nozzle 1200 will be described in more detail below in relation to Figures 7 to 1 1 c. Figure 7 shows a sectional view through line A-A of Figure 5, whilst Figure 8 shows a sectional view through line B-B of Figure 6. Figures 9 and 10 then show top and perspective views of the nozzle 1200 with the guide surface and an upper portion of the nozzle body removed. As described above, the nozzle 1200 has the general shape of a truncated sphere, with a first truncation forming a circular face 1231 of the nozzle and a second truncation forming a circular base 1232 of the nozzle body 1230. The nozzle body 1230 therefore comprises an outer wall 1233 that defines the truncated spherical shape. The outer wall 1233 then defines a circular opening on the circular face 1231 of the nozzle 1200 and a circular opening on the circular base 1232 of the nozzle body 1230. The nozzle body 1230 also comprises a lip 1234 that extends inwardly from the edge of the outer wall 1233 that forms the first truncation. This lip 1234 is generally frustoconical in shape and tapers inwardly towards the guide surface 1250.

The nozzle body 1230 further comprises an inner wall 1235 that is disposed within the nozzle body 1230 and that defines the single internal air passageway 1270 of the nozzle 1200. The inner wall 1235 is entirely curved and has a generally circular cross-section, with the cross- sectional area of the inner wall 1235 in a plane that is parallel to either the face 1231 or base 1232 of the nozzle body 1230 varying between the air inlet 1240 and the gap 1260 that provide the single, diffuse mode air outlet of the nozzle 1200ln particular, the inner wall 1235 widens or flares outwardly adjacent the air inlet 1240 and then narrows adjacent the air outlets. The inner wall 1235 therefore generally conforms to the shape of the nozzle body 1230.

The inner wall 1235 has a circular opening at its lower end that is located concentrically within the circular opening of the circular base 1232 of the nozzle 1200, with this lower circular opening of the inner wall 1235 providing the air inlet 1240 for receiving the airflow from the body 1 100. The inner wall 1235 also has a circular opening at its upper end that is located concentrically within the circular opening of the circular face 1231 of the nozzle body 1230. An inwardly curved upper end of the inner wall 1235 then meets/abuts with the lip 1234 that tapers inwardly from the outer wall 1233 to define the circular opening of the circular face 1231 of the nozzle body 1230.

The guide surface 1250 is then located concentrically with the upper circular opening of the inner wall 1235, and offset relative to the upper circular opening of the inner wall 1235 along the central axis of the upper circular opening of the inner wall 1235, such that the gap 1260 is therefore defined by the space between the inner wall 1235 and an adjacent portion of guide surface 1250. The inwardly curved upper end of the inner wall 1235 then overlaps/overhangs the circumferential portion 1250a of the guide surface 1250 to ensure that the angle at which an air flow exits the nozzle 1200 through the gap 1260 is sufficiently shallow to optimise the resultant air flow generated by the nozzle 1200. In particular, the angle at which an air flow exits the nozzle 1200 through the gap 1260 will determine the distance of the convergent point along the central axis (X) of the guide surface 1250 and the angle at which air flows will collide at the convergent point. The tapering outer surface of the lip 1234 then minimises the impact of this overhang on the angular range through which the air flow can be varied.

In this embodiment, two separate valve mechanisms are then located beneath the guide surface 1250. The first of these is a flow vectoring valve that is arranged to control the air flow from the air inlet 1240 to the first and second directed mode air outlets 1210, 1220 by adjusting the size of the first air directed mode outlet 1210 relative to the size of the second directed mode air outlet 1220 while keeping the size of the aggregate directed mode air outlet of the nozzle 1200 constant. The second of these valve mechanisms is a mode switching valve that is arranged to change the air delivery mode of the nozzle 1200 from the directed mode to the diffuse mode. Both valve mechanisms will be described in more detail below.

The nozzle 1200 further comprises an internal air directing or diverting surface 1271 beneath both valve mechanisms, with the air directing surface 1271 being arranged to direct the airflow within the single air inlet passageway 1270 towards the gap 1260. In this embodiment, this air directing surface 1271 is convex and substantially disk-shaped, and is therefore similar in form to the guide surface 1250, and is aligned/concentric with the guide surface 1250. Both valve mechanisms are therefore housed within a space defined between the guide surface 1250 and the air directing surface 1271 .

In the illustrated embodiment, the internal air passageway 1270 that extends between the air inlet 1240 and the gap 1260 forms a plenum chamber that functions to equalise the pressure of the air flow received from the body 1 1 00 of the fan assembly 1 000 for more even distribution to the gap 1260. The air directing surface 1271 therefore forms an upper surface of the plenum chamber defined by the internal air passageway 1270.

The flow vectoring valve comprises a single valve member 1280 mounted beneath the guide surface 1250 and above the air directing surface 1271 . The flow vectoring valve member 1280 is arranged to move translationally between a first end position and a second end position. In particular, the flow vectoring valve member 1280 is arranged to move rectilinearly (i.e. in a straight line) between a first end position and a second end position. Specifically, the flow vectoring valve member 1280 is arranged to laterally (i.e. translationally) relative to the guide surface 1250 between a first end position and a second end position. In the first end position the first directed mode air outlet 1210 is maximally occluded (i.e. occluded to the maximum extent possible, such that the size of the first directed mode air outlet is at a minimum) by the valve member 1280 and the second directed mode air outlet 1220 is maximally open (i.e. open to the maximum extent possible, such that the size of the second directed mode air outlet is at a maximum), whilst in the second end position the second directed mode air outlet 1220 is maximally occluded by the valve member 1280 and the first directed mode air outlet 1210 is maximally open. When the valve member 1280 moves between its two extreme positions the size/open area of the aggregate/combined directed mode air outlet remains constant.

When at a minimum the first and/or second directed mode air outlets 1210, 1220 may be fully occluded/closed. However, when at a minimum the first and/or second directed mode air outlets 1210, 1220 may be at least open to a very small extent as doing so can provide that any tolerances/inaccuracies arising during manufacture will not lead to small gaps that could induce additional noise (e.g. whistling) when air passes through.

In the illustrated embodiment,, the valve member 1280 has a first end section 1280a that maximally occludes the first directed mode air outlet 1210 when the valve member 1280 is in the first end position, and an opposing second end section 1280b that maximally occludes the second directed mode air outlet 1220 when the valve member 1280 is in the second end position. The distal edges of the first and second end sections 1280a, 1280b of the valve member 1280 are both arcuate in shape so as to correspond with the shape of an opposing surface of the nozzle body 1230 that partially defines the corresponding directed mode air outlet. The first end section 1280a of the valve member 1280 can therefore abut (i.e. touch or be adjacent/proximate to) an opposing surface when in the first end position in order to occlude the first directed mode air outlet 1210, with this opposing surface thereby providing a first valve seat, whilst the second end section 1280b of the valve member 1280 can abut (i.e. touch or be adjacent/proximate to) an opposing surface when in the second end position in order to occlude the second directed mode air outlet 1220, with this other opposing surface thereby providing a second valve seat. In addition, the arcuate shape of the distal edges of the first and second end sections 1280a, 1280b of the valve member 1280 also provide that the distal edge of the first end section 1280a will be substantially flush with an adjacent edge of the guide surface 1250 when in the second end position and that the distal edge of the second end section 1280b will be substantially flush with an adjacent edge of the guide surface 1250 when in in the first end position.

The flow vectoring valve further comprises a valve motor 1281 that is arranged to cause lateral (i.e. translational) movement of the valve member 1280 relative to the guide surface 1250 in response to signals received from the main control circuit. To do so, the valve motor 1281 is arranged to rotate a pinion 1282 that engages with a linear rack 1280c provided on the valve member 1280. In this embodiment, the linear rack 1280c is provided on an intermediate section of the valve member that extends between the first and second end sections 1280a, 1880b. Rotation of the pinion 1282 by the valve motor 1281 will therefore result in the linear movement of the valve member 1280.

As described briefly above, the mode switching valve is arranged to change the air delivery mode of the nozzle 1200 from a directed mode to a diffuse mode. In the directed mode, the mode switching valve closes off all but the first and second directed mode air outlets 1210, 1220 that are used to provide a directed air flow from the nozzle (i.e. covers/occludes those portions of the gap 1260 that separate the pair of arcuate slots). In this directed mode, the flow vectoring valve is then used to control the direction of the air flow emitted from the nozzle 1200 by just the first and second directed mode air outlets 1210, 1220. When switching from directed mode to diffuse mode, the mode switching valve opens the remainder of the gap 1260 (i.e. opens those portions of the gap 1260 that separate the pair of arcuate slots). In this diffuse mode, the entire gap 1260 can then become a single air outlet of the nozzle 1200 thereby providing a more diffuse, low pressure flow of air. In addition, the opening up of the entire gap 1260 by the mode switching valve provides that the air leaving the nozzle 1200 can be distributed around the entire periphery/circumference of the guide surface 1250 and all directed to the convergent point such that the resultant air flow generated by the nozzle 1200 will be directed substantially perpendicular relative to the face 1231 of the nozzle 1200. In this embodiment, the angle of the face 1231 of the nozzle 1200 relative to the base 1232 of the nozzle 1200, and therefore relative to the base of the fan assembly 1000, is such that when positioned on an approximately horizontal surface the resultant air flow generated by the fan assembly 1 000 when the nozzle 1200 is in the diffuse mode will be directed in a generally upwards direction.

In the illustrated embodiment, the mode switching valve comprises a pair of mode switching valve members 1290a, 1290b mounted beneath the guide surface 1250 and above the air directing surface 1271 . These mode switching valve members 1290a, 1290b are arranged to move laterally (i.e. translationally) relative to the guide surface 1250 between a closed position and an open position. In the closed position, the portions of the gap 1260 between the arcuate slots (i.e. the one or more first sections of the total air outlet) are occluded by the mode switching valve members 1290a, 1290b, whilst in the open position the portions of the gap 1260 between the arcuate slots are open. These mode switching valve members 1290a, 1290b can therefore be considered to be moveable covers for those portions of the gap 1260 that are between the arcuate slots.

In the illustrated embodiment, the mode switching valve members 1290a, 1290b are arranged such that in the closed position they each occlude the separate, diametrically opposed portions of the gap 1260 that are between one end of the first directed mode air outlet 1210 and an adjacent end of the second directed mode air outlet 1220. To do so, the mode switching valve members 1290a, 1290b are arranged such that in the closed position they each extend between opposing ends of the first air directed mode outlet 1210 and the adjacent end of the second directed mode air outlet 1220.

Each of the mode switching valve members 1290a, 1290b is substantially planar, with a distal edge of the valve member then being arcuate in shape so as to correspond with the shape of an opposing surface of the nozzle body 1230 that partially defines the gap 1260. In particular, the distal edge of each valve member has a radius of curvature that is substantially equal to a radius of curvature of the opposing surface of the nozzle body 1230. The distal edge of each of the mode switching valve members 1290a, 1290b can therefore abut against the opposing surface (i.e. the corresponding valve seat) when in the closed position in order to occlude a portion of the gap 1260 between the arcuate slots. In addition, the arcuate shape of the distal edge of each of the valve members 1290a, 1290b also provides that the distal edge will be substantially flush with an adjacent edge of the guide surface 1250 when in the open position. Each of the mode switching valve members 1290a, 1290b is then provided with a valve stem 1290c, 1290d that extends from the proximal edge of the valve member.

The mode switching valve further comprises a mode switching valve motor 1291 that is arranged to cause lateral (i.e. translational) movement of the mode switching valve members 1290a, 1290b relative to the guide surface 1250 in response to signals received from the main control circuit. To do so, the valve motor 1291 is arranged to cause rotation of a pinion 1292 that engages with linear racks provided on each of the valve stems 1290c, 1290d. Rotation of the pinion 1292 by the valve motor 1291 will therefore result in the linear movement of both valve members 1290a, 1290b. In this embodiment, rotation of the pinion 1292 by the valve motor 1291 is achieved using a set of gears, with a drive gear mounted on the shaft of the valve motor

1291 engaging a driven gear that is fixed to the pinion 1292, with the driven gear and the pinion

1292 thereby forming a compound gear.

In the embodiment illustrated in Figures 7 to 10, the mode switching valve further comprises two pairs of movable baffles 1293, 1294 that are arranged to assist with channelling the air emitted from the first and second directed mode air outlets 1210, 1220 respectively when the nozzle 1200 is in directed mode. In particular, the first pair of movable baffles 1293a, 1293b are arranged to assist with channelling the air emitted from the first directed mode air outlet 1210 when the nozzle 1200 is in directed mode, whilst the second pair of movable baffles 1294a, 1294b are arranged to assist with channelling the air emitted from the second directed mode air outlet 1220 when the nozzle 1200 is in directed mode. These two pairs of movable baffles 1293, 1294 are therefore arranged to be extended when the nozzle 1200 is in directed mode, and retracted when the nozzle 1200 is in diffuse mode so as to avoid the baffles from obstructing the gap 1260.

Each pair of movable baffles 1293, 1294 comprises a first moveable baffle 1293a, 1294a and a second moveable baffle 1293b, 1294b, with the first moveable baffle 1293a, 1294a and second moveable baffle 1293b, 1294b being provided at opposite ends of an elongate strut 1293c, 1294c. Each moveable baffle 1293a, 1293b, 1294a, 1294b has an approximately L-shaped cross section, with a first planar section extending downwardly from the end of the strut 1293c, 1294c to which the baffle is attached, and a second planar section then extending from the bottom end of the first planar section in a direction that is parallel with the length of the strut 1293c, 1294c. The first and second planar sections of each baffle then also extend in a direction that is perpendicular to the length of the strut 1293c, 1294c. The first planar section of each baffle then defines an end of one of the first and second directed mode air outlets 1210, 1220. A distal edge of the second planar section of each baffle is then arcuate in shape so as to correspond with the shape of an opposing surface of the nozzle body 1230 that partially defines the gap 1260. In particular, the distal edge of each baffle has a radius of curvature that is substantially equal to a radius of curvature of the opposing surface of the nozzle body 1230. The distal edge of the second planar section of each baffle can therefore abut against an opposing surface when in the closed position. The second planar section of each baffle is then further arranged to overlap with a portion of the proximal edge of an adjacent mode switching valve member 1290a, 1290b so as to ensure that there is no route by which air can exit the nozzle 1200 between the baffle and the adjacent mode switching valve member 1290a, 1290b.

In this embodiment, these pairs of movable baffles 1293, 1294 are arranged to move laterally (i.e. translationally) relative to the guide surface 1250 between an extended position when the nozzle 1200 is in directed mode and a retracted position when the nozzle 1200 is in diffuse mode. To do so, each pair of movable baffles 1293, 1294 is provided with an actuator arm 1293d, 1294d that extends perpendicularly from the corresponding strut 1293c, 1294c at a position part-way between the ends of the strut 1293c, 1294c. These actuator arms 1293d, 1294d are each provided with a linear rack that engages with the pinion 1292 of the mode switching valve. Rotation of the pinion 1292 by the mode switching valve motor 1291 will therefore result in the linear movement of both pairs of movable baffles 1293, 1294. Consequently, when the mode switching valve is used to change the air delivery mode of nozzle 1200 between directed mode and diffuse mode, activation of the mode switching valve motor 1291 will cause rotation of the pinion 1292 that will in turn cause mode switching valve members 1290a, 1290b to move between a closed position and an open position, and will also simultaneously cause the pairs of movable baffles 1293, 1294 to move between an extended position and a retracted position.

In Figures 7 to 1 0 the nozzle 1200 is shown in directed mode, with the mode switching valve members 1290a, 1290b in the closed position and both pairs of movable baffles 1293, 1294 in the extended position. The portions of the gap 1260 that are between the first directed mode air outlet 1210 and the second directed mode air outlet 1220 are therefore occluded by the mode switching valve members 1290a, 1290b, with the first planar section of each pair of movable baffles 1293, 1294 then defining opposite ends of the first and second directed mode air outlets 1210, 1220 in order to assist in channelling the air over the guide surface 1500 and towards the convergent point.

In order to switch the nozzle 1200 to diffuse mode, the mode switching valve motor 1291 is activated so as to cause a rotation of the pinion 1292 that will in turn cause mode switching valve members 1290a, 1290b to move from the closed position to the open position. In the open position, the mode switching valve members 1290a, 1290b are retracted into the space defined between the guide surface 1250 and the air directing surface 1271 such that they no longer obstruct the portions of the gap 1260 that are between the first directed mode air outlet 121 0 and the second directed mode air outlet 1220. Simultaneously, this rotation of the pinion 1292 will also cause the pairs of movable baffles 1293, 1294 to move from the extended position to the retracted position. In the retracted position, the pairs of movable baffles 1293, 1294 are retracted into the space defined between the guide surface 1250 and the air directing surface 1271 such that they no longer obstruct the portions of the gap 1260 that are between the first directed mode air outlet 1210 and the second directed mode air outlet 1220. Preferably, when switching the nozzle 1200 from directed mode to diffuse mode, the flow vectoring valve motor 1281 is also activated so as to cause a rotation of the pinion 1282 that will in turn cause the flow vectoring valve member 1280 to move to a central position in which the first directed mode air outlet 1210 and the second directed mode air outlet 1220 are equal in size. In this configuration, the entire gap 1260 then becomes a single air outlet of the nozzle 1200 thereby providing a more diffuse, low pressure flow of air.

In the embodiment illustrated in Figures 7 to 10, the nozzle 1200 is also arranged so that the position of the pair of arcuate slots on the circular face of the nozzle 1200 can be varied. Specifically, the angular position of the pair of arcuate slots with respect to the central axis (X) of the guide surface 1250 is variable. The nozzle 1200 therefore further comprises an outlet rotation motor 1272 that is arranged to cause rotational movement of the pair of arcuate slots around the central axis (X) of the guide surface 1250. To do so, the outlet rotation motor 1272 is arranged to cause rotation of a pinion 1273 that engages with an arc-shaped rack 1274 that is connected to the air directing surface 1271 . The air directing surface 1271 is then rotationally mounted within the nozzle body 1230, with the flow vectoring valve and mode switching valve mechanisms then being supported by the air directing surface 1271 . Rotation of the pinion 1273 by the outlet rotation motor 1272 will therefore result in the rotational movement of the air directing surface 1271 within the nozzle body 1230 that will in turn cause rotation of both the flow vectoring valve and mode switching valve around the central axis (X) of the guide surface 1250. Given that the pair of arcuate slots that form the first and second directed mode air outlets 1210, 1220 are defined by those portions of the gap 1260 that are not occluded by the mode switching valve members 1290a, 1290b, rotation of the mode switching valve results in a change in the angular position of the pair of arcuate slots with respect to the central axis (X) of the guide surface 1250.

Turning now to Figures 1 1 a to 1 1 c, these show three potential resultant air flows that can be achieved, when the nozzle 1200 is in directed mode, by varying the size of the first directed mode air outlet 1210 relative to the size of the second directed mode air outlet 1220 while keeping the size of the aggregate directed mode air outlet of the nozzle 1200 constant.

In Figure 1 1 a, the flow vectoring valve is arranged with the flow vectoring valve member 1280 in the central position in which the first directed mode air outlet 1210 and the second directed mode air outlet 1220 are equal in size such that an equal amount of air flow is emitted from the first directed mode air outlet 1210 and the second directed mode air outlet 1220. The first and second directed mode air outlets 121 0, 1220 are oriented towards the convergent point that is aligned with the central axis (X) of the guide surface 1250. When the two air flows have the same strength, as will be the case in the Figure 1 1 a, the resultant air flow will be directed forwards from (i.e. substantially perpendicular relative to) the face 1231 of nozzle 1200, as indicated by arrows AA.

In Figure 1 1 b, the flow vectoring valve is arranged with the flow vectoring valve member 1280 in the first end position in which the first directed mode air outlet 1210 is maximally occluded and the second directed mode air outlet 1220 is maximally open. This means that most, if not all, of the air flow entering the nozzle 1200 will be emitted through the second directed mode air outlet 1220. The air flow will be directed to flow over the guide surface 1250 as normal, but since it will not collide with any significant air flow that is emitted from the first directed mode air outlet 1210 it will continue on its flow path, as indicated by arrows BB. In Figure 1 1 c, the flow vectoring valve is arranged with the flow vectoring valve member 1280 in the second end position in which the second directed mode air outlet 1220 is maximally occluded and the first directed mode air outlet 1210 is maximally open. This means that most, if not all, of the air flow entering the nozzle 1200 will be emitted through the first directed mode air outlet 1210. The air flow will be directed to flow over the guide surface 1250 as normal, but since it will not collide with any significant air flow that is emitted from the second directed mode air outlet 1220 it will continue on its flow path, as indicated by arrows CC.

It will be readily understood that the examples of Figures 1 1 a, 1 1 b and 1 1 c are merely representative, and actually represent some of the extreme cases. By utilising a control circuit to control the flow vectoring valve motor 1281 connected to the flow vectoring valve member 1280 it is possible to achieve a wide variety of resultant air flows. The direction of the resultant air flows can be further varied by controlling the outlet rotation motor 1272 to adjust the angular position of the first and second directed mode air outlets 1210, 1220.

As described above, the dual mode configuration of the nozzle is particularly useful when the nozzle is intended for use with a fan assembly that is configured to provide purified air as the user of such a fan assembly may wish to continue to receive purified air from the fan assembly without the cooling effect produced by the higher pressure, focussed airflow provided in directed mode. Furthermore, in the preferred embodiments described above, the angle of the face of the nozzle relative to the base of the nozzle, and therefore relative to the base of the fan assembly, is such that when positioned on an approximately horizontal surface the resultant air flow generated by the fan assembly when the nozzle is in the diffuse mode will be directed in a generally upwards direction. These embodiments therefore also provide that the diffuse mode airflow is delivered to the user indirectly, thereby further decreasing the cooling effect produced by the airflow.

It will be appreciated that individual items described above may be used on their own or in combination with other items shown in the drawings or described in the description and that items mentioned in the same passage as each other or the same drawing as each other need not be used in combination with each other. In addition, the expression "means" may be replaced by actuator or system or device as may be desirable. In addition, any reference to "comprising" or "consisting" is not intended to be limiting in any way whatsoever and the reader should interpret the description and claims accordingly.

Furthermore, although the invention has been described in terms of preferred embodiments as set forth above, it should be understood that these embodiments are illustrative only. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure which are contemplated as falling within the scope of the appended claims. For example, those skilled in the art will appreciate that the above-described invention might be equally applicable to other types of environmental control fan assemblies, and not just free standing fan assemblies. By way of example, such a fan assembly could be any of a freestanding fan assembly, a ceiling or wall mounted fan assembly and an in-vehicle fan assembly.

By way of further example, whilst in the above described embodiment the nozzle has the general shape of a truncated sphere, with the face and the slot defining the total air outlet of the nozzle both then being generally circular in shape, the nozzle and slot could have different shapes. For example, rather than having the general shape of a sphere, the nozzle of the above described embodiment could have the generally shape of a cylinder, such as right circular cylinder, a non-spherical ellipsoid or a non-spherical spheroid. In addition, rather than being circular, the face of the nozzle could have the shape of a non-circular ellipse. Similarly, rather than being circular, the slot defining the total air outlet of the nozzle could have the shape of a non-circular ellipse, with the first and second directed mode air outlets then each being non circular, elliptical arcs.

Furthermore, whilst in the above described embodiment the nozzle has just a single air outlet in the form of the gap, the nozzle could equally comprise a plurality of air outlets. For example, the space between the intermediate guide surface and the nozzle body could be divided up into a plurality of separate arc -shaped slots, with each of these slots then forming a separate air outlet that together define the total air outlet of the nozzle. In this case, the mode switching valve could be arranged such that, when in the directed mode, only a first subset of the plurality of air outlets would be occluded by the one or more valve members, whilst in the diffuse mode, the first subset of the plurality of air outlets would be at least partially open, and preferably maximally open. In both the directed and diffuse modes, a second subset of the plurality of air outlets would then be at least partially open (i.e. the valve would be arranged such that the valve members do not encroach/impinge upon the second subset of the plurality of air outlets), with this second subset then providing the directed mode air outlets of the nozzle.

Moreover, whilst some of the above described embodiments make use of a valve motor for driving the movement of one or more valve members, all of the nozzles described herein could alternatively include a manual mechanism for driving the movement of the valve member(s), wherein the application of a force by the user would be translated into movement of the valve member(s). For example, this could take the form of a rotatable dial or wheel or a sliding dial or switch, with rotation or sliding of the dial by a user causing rotation of a pinion.