Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OFFSET BASE STORAGE RACK ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/2001/010749
Kind Code:
A1
Abstract:
A storage rack system (110) includes a base (40) detachably secured from the storage rack (110) wherein the materials of construction for the base are a heavier gauge material than that of the storage rack (110) for improved weight carrying capability and for resistance to abuse while minimizing the cost of the rack assembly. The base (40) has offset front legs (46) closest to the aisle to protect the front legs (46) from accidentally being hit by a forklift truck.

Inventors:
GRUBER ROBERT D (US)
KAUTZ ALLEN B (US)
Application Number:
PCT/US2000/020054
Publication Date:
February 15, 2001
Filing Date:
July 21, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INTERLAKE MATERIAL HANDLING IN (US)
GRUBER ROBERT D (US)
KAUTZ ALLEN B (US)
International Classes:
A47B47/02; A47B91/00; B65G1/02; (IPC1-7): B65G1/02; A47B91/00; A47B47/02
Foreign References:
US3785502A1974-01-15
US4117938A1978-10-03
US3928905A1975-12-30
FR2165750A11973-08-10
US3785502A1974-01-15
US4117938A1978-10-03
Attorney, Agent or Firm:
Camoriano, Theresa Fritz (KY, US)
Download PDF:
Claims:
What is claimed is:
1. A storage rack, comprising: a base defining forward and rear receptacles; and a substantially vertical, downwardly projecting support leg between said forward and rear receptacles, which extends to the ground and supports said base, with at least said forward receptacle at an elevation above the ground; a storage rack supported on said base, including a forward leg secured to said forward receptacle and a rear leg secured to said rear receptacle, with at least said forward leg terminating at an elevation above the ground.
2. A storage rack as recited in claim 1, wherein said forward and rear legs are secured to their respective receptacles by bolts.
3. A storage rack as recited in claim 1, wherein said base is made of heavy, structural members, and said storage rack is made of lighter weight members.
4. A storage rack as recited in claim 1, wherein said forward and rear legs are received inside their respective receptacles, and connectors extend through said legs and into their respective receptacles.
5. A storage rack as recited in claim 1, wherein said forward leg is shorter than said rear leg, and said rear leg extends through said rear receptacle and rests on the ground.
6. A storage rack as recited in claim 1, and further comprising at least one splice member secured both to said forward leg and to said forward receptacle.
7. A storage rack as recited in claim 6, wherein said splice member extends inside and is fastened to said forward leg and said forward receptacle.
8. A storage rack as recited in claim 1, wherein said base also includes a rear leg which extends to the ground.
9. A storage rack as recited in claim 8, wherein said rear leg also serves as said rear receptacle.
10. A method of converting an existing storage rack, having forward and rear legs that extend to the ground into a rack having a recessed base, comprising the steps of: providing base members that are completely separate from the existing rack, each base member including forward and rear receptacles and a downwardly projecting support leg between said forward and rear receptacles; and connecting the forward and rear legs of said existing rack to said forward and rear receptacles, with at least said forward legs and forward receptacles terminating at an elevation above ground level.
11. A method as recited in claim 10, wherein said rear legs extend through said rear receptacles to ground level.
12. A method as recited in claim 10, wherein said rear legs and said forward legs terminate at substantially the same height, and said bases have rear support legs which extend to ground level.
Description:
OFFSET BASE STORAGE RACK ASSEMBLY BACKGROUND OF THE INVENTION This application claims priority from U. S. Provisional Application S. N.

60/147,710, filed August 6,1999, which is hereby incorporated by reference. This invention relates to storage racks and, more particularly, to improved versions of storage rack assemblies designed for high density storage of goods delivered by power driven lift equipment such as fork trucks.

Since warehouse space for storage of goods is expensive, there are many advantages to an efficient and well organized vertical storage rack system which will allow the storage of goods in an orderly fashion. Since the products are stacked vertically, optimum use of the floor space may be achieved. The disadvantage is that the goods to be stored must now be raised to the height of the rack where they are to be stored. The moving and especially the raising of the goods is most efficiently accomplished via fork trucks.

In as much as fork trucks require aisles to travel to the desired location to either store or retrieve goods from a particular rack, this aisle space is not available for storage. To maximize the storage area given a limited number of square feet in a building or warehouse, one must minimize the area reserved for aisle space for the fork trucks.

Unfortunately, as one reduces the size of these aisles, the room to maneuver for the fork trucks is also reduced, and the end result is that the fork trucks sometimes hit the storage racks, damaging the fork trucks as well as the storage racks.

Prior art (Konstant patent 3,785,502; Klein patent has taught the use of recessed legs towards the bottom of the rack in order to give more room to maneuver to the fork trucks at the ground level. This has typically been accomplished by angling back the front legs (the legs closest to the aises), which puts these legs out of harm way. However, the weight of the storage rack and of the goods stacked thereupon is then concentrated on this angled leg, and

substantial use of struts and reinforcing members is required. This makes it very difficult, if not impossible, to retrofit existing storage racks in the field. The retrofit, if possible, is difficult, expensive, and time consuming, and requires specialized skills, such as a good welder to complete the task. Furthermore, while the bottom of the angled legs is far removed from the aisles, the doser one gets to the top portion of the angled legs, the closer one is to the aisle and to the distinct possibility of having a fork truck run into the angled leg. Also, since the prior art designs use the same upright members for the entire storage rack, the only way to beef up one portion of the upright is to beef up the entire height of the rack.

SUMMARY OF THE INVENTION The present invention provides an offset frame, which may be field-installed by bolting onto a storage rack. This design provides the following distinct advantages over the prior art: The base is designed and manufactured as a completely separate piece from the storage rack itself. Thus, an existing storage rack may be raised (or cut off) and placed on top of the base without any additional bracing, struts, or reinforcing members being required of the existing structure. Furthermore, for completely new installations, manufacturing the top and bottom sections separately makes both of them easier to manufacture and install.

The base is designed with the front legs (closest to the aisles) offset back from the aisle. These front legs are substantially vertical, such that the entire leg is set back and away from where the fork trucks travel.

Since the base is a completely separate member, it may be made of heavier members than the rest of the rack in order to support the cantilevered storage rack load without increasing the cost of the rest of the rack. Indeed, all the base members may be made from heavy structural members that enhance the frame s strength and abuse resistance, while the storage rack itself may be manufactured of lighter gauge materials to save on manufacturing costs and to reduce the weight of the structure.

The present invention simply bolts a cantilevered base onto the bottom of a storage rack, which readily permits modification of existing frames in the field to turn an ordinary rack into an offset rack. Using separate base and top members, using heavier structural members for the base than for the top, and the all-bolted capability contribute to this ease of retrofitting an existing storage rack.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view of a prior art storage rack; FIG. 2 is a front perspective view of a first embodiment of a rack made in accordance with the present invention; FIG. 3 is a side view of the base portion of the rack of Figure 2; FIG. 4 is a top view of the base of FIG. 3; FIG. 5 is a side view of the rack of Figure 2 as it is being assembled; FIG. 6 is a side view of the bottom portion of the rack of Figure 2; FIG. 7 is a perspective view of a second embodiment of a rack made in accordance with the present invention; FIG. 8 is a side view of the base of the rack of Figure 7; FIG. 9 is a top view of the base of Figure 8; FIG. 10 is side view of the rack of Figure 7 being assembled; and FIG. 11 is a side view of the bottom portion of the rack of Figure 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 1 shows an example of a prior art rack that may be retrofitted to make a rack in accordance with the present invention. A first preferred embodiment of the present invention is shown in Figures 2-6. A second preferred embodiment is shown in Figures 7-11.

The rack 10 of Figure 1 has a plurality of forward legs 12, a plurality of rear legs 14, and horizontal beams 16 interconnecting the forward and rear legs 12,14 to form shelves to support products. Each pair of forward and rear legs 12,14 also includes horizontal forward-to-rear supports 18 and angled forward-to-rear supports

20. This rack encounters the problems discussed above with respect to prior art racks, which may be hit by forklift trucks maneuvering along the aisles in a warehouse.

Figure 2 shows a rack that is recessed at the bottom to greatly reduce the opportunity for impact with the forklift trucks. This rack 110 may be made in this form initially, or it may be made by retrofitting the prior art rack of Figure 1. This rack also has front legs 12, rear legs 14, horizontal beams 16, horizontal forward-to-rear supports 18, and angled forward-to-rear supports 20. In addition, it has a base 40 at each pair of forward and rear legs 12,14. The base 40 is shown in detail in Figures 3 and 4. Each base 40 has a front receptacle 42 and a rear receptacle 44. A structural member 45 connects the front and rear receptacles 42,44 together, and a support leg 46 projects downwardly from the structural member 45 between the front and rear receptacles 42,44 and terminates at ground level with a foot 47, which bolts into the floor.

Figures 5 and 6 show how the rack is assembled onto the base 40. The front leg 12 of the rack is a channel, which is shorter than the rear leg 14. If the rack 10 of Figure 1 is being retrofitted, the front leg 12 would be cut off at the desired height, and any cross members 18,20 that were connected to the portion of the front leg that is cut off would also be removed. The front leg 12 receives internally the upper portion of a splice member 12A, which preferably is a rectangular or C-shaped structural member. The lower portion of the splice member 12A is received in the front receptacle 42. The receptacle 42 and the front leg 12 are secured to the splice member 12A by fasteners, which, in this preferred embodiment, are bolts 48, extending through holes 50 in the leg 12 and the splice member 12A or through holes 50 in the receptacle 42 and the splice member 12A. The rear leg 14 of the rack extends through the rear receptacle 44 to the ground level and is secured to the rear receptacle 44 by bolts 48 extending through holes 50 in the rear leg and the rear receptacle 44. As shown in Figure 4, in this preferred embodiment, the front receptacle 42 is a rectangular-shaped structural beam, and the rear receptacle 44 is a C-channel-shaped structural beam.

Figure 6 shows the bottom portion of the assembled offset rack 110. It can be seen that the support leg 46 of the beam 45 and the rear leg 14 of the rack rest on the ground, while the front leg 12 and front receptacle 42 are elevated off of the ground a desired distance, which usually is in the range of six inches to thirty-six inches for a rack that is retrofitted and six inches to ninety-six inches for a new rack.

The support leg 46 is recessed back from the front receptacle 42 a distance of about six to twenty-four inches.

When a prior art rack 10 of Figure 1 is being retrofitted to make the offset rack of Figure 2, it is not necessary to move the original rack 10 or even to unload it. The retrofit may be done simply by providing an external support for the front legs 12 above the point where they are to be cut off, cutting them off, and installing the splice member 12A and the base 40. This does not require welding or a substantial amount of labor and can be accomplished quickly and easily.

Figures 7-11 show a second embodiment of a rack 210 made in accordance with the present invention. In this design, the base 240 includes a front receptacle 242 and a rear receptacle 244 connected together by a structural member 245.

Projecting downwardly from the structural member 245 between the front and rear receptacles 242,244 is a support leg 246, which extends to the ground and terminates at a flat plate 247. This base differs from the previous embodiment in that the rear receptacle 244 also serves as a rear support leg, extending all the way to the ground level and terminating at a foot 247. If the base 240 is tall, as shown here, it will have additional bracing 218,220. (The height of the base may be tall or short in either embodiment.) Very tall bases may require additional bracing 218, 220. The rack that is assembled onto this base 240 has front and rear legs 12,14 cut to the same length and inserted into their respective receptacles 242,244. The legs 12,14 preferably are secured to the receptacles 242,244 by fasteners, which, in this preferred embodiment, are bolts 48, extending through holes 50 in the respective members that are being joined. In this preferred embodiment, both the front and rear receptacles 242 244 are preferably rectangular cross-section structural members, although other shapes of structural members could be used

instead. The base 240 may be made of much thicker-walled, heavier-duty materai than the legs 12,14 of the rack.

In order to retrofit the rack 10 of Figure 1 to form the rack 210 shown here, the foot plates at the bottoms of the legs 12,14 are cut off, the rack 10 is lifted up, and the legs 12,14 are inserted into the receptacles 242,244 of the base 240 and secured in place. Of course, if this rack were being made originally, the foot plates would not be added to the legs 12,14, and the legs 12,14 would simply be inserted into their respective receptacles 242,244 and secured in place.

The rack 210 shown in Figures 7-11 has the front leg 12 and its front receptacle 242 terminating at a desired elevation above the ground level, in this embodiment approximately three to six feet, and the support leg 246 is recessed from the front of the rack approximately six to twenty-four inches.

It will be obvious to those skilled in the art that modifications may be made to the embodiments described above without departing from the scope of the present invention.




 
Previous Patent: COMPACTOR DEVICE

Next Patent: STORAGE RACK COLUMN PROTECTOR